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Cúth, Ph.D., and my consultant, Mgr. Michal Doucha, Ph.D.

Large part of this thesis is the culmination of three years of work under the su-
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Introduction
In the paper [11] published in 2003, G. Godefroy and N. Kalton introduced1 the
concept of Lipschitz-free spaces which are now, two decades later, a very popular
topic of study in the field of Banach spaces. Soon thereafter, in 2009, F. Albiac
and N. Kalton generalised2 the notion to the setting of p-Banach spaces (p ∈
(0, 1)), using it to construct two separable p-Banach spaces which are Lipschitz
isomorphic, but not linearly isomorphic in their paper [2]. The question whether
this is possible for two Banach spaces remains open to this day.

The generalisation has not enjoyed as much attention, possibly because of
the problems inherent to working with p-Banach spaces – the topology of these
spaces is not (necessarily) locally convex. Without methods and tools relying on
the dual, as, most notably, the Hahn-Banach theorem, many things one takes for
granted in the world of Banach spaces either do not hold for p-Banach spaces, or
one has to be creative and find a different method of proof (the benefit of which
is that this new method is often applicable to standard Banach spaces, resulting
in new proofs).

Some progress was made in [1], where the authors asked the following question
regarding canonical embeddings of Lipschitz-free p-spaces.

Question. Let (M, d, 0) be a p-metric space and 0 ∈ N ⊂ M be its subspace. Is
the canonical embedding ι : Fp(N) → Fp(M) always an isomorphism?

In [1], there is an example showing that the canonical embedding are not
always isometries.

A seed for a new method to calculate the values of the p-norm in finite-
dimensional spaces appeared in the bachelor thesis [19] and this idea was more
fully developed in the paper [7], where it was applied to the problem of canonical
embeddings. While the authors were unable to use this method to solve the
problem fully, it was used to show that the question has positive answer for the
arguably most important special case, Lipschitz-free p-spaces constructed over
metric spaces:

Theorem (see Theorem 1.29). Let (M, d, 0) be a pointed metric space and 0 ∈
N ⊂ M be its subspace. Then the canonical embedding ι : Fp(N) → Fp(M) is an
isomorphism.

The first chapter of the thesis is primarily dedicated to this result. We start
with Section 1.1 where we recall all the necessary definitions and basic well-known
facts. Section 1.2 reflects [7, Section 3] in its focus on the proof of the aforemen-
tioned algorithm for calculating the p-norm. Finally, Section 1.3 concerns the
canonical embeddings with the ultimate goal of proving the theorem formulated
above.

The second chapter takes us in a somewhat different direction to the first one.
We will switch to the more popular setting of Banach spaces and consider group

1The history is more nuanced, but in the context this thesis is set in, the standard reference
is [11].

2Again, history is more convoluted.
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actions on Lipschitz-free spaces. This topic is also not completely quiet, with
a recent paper concerning this being [8].

The main motivation for the second chapter this question asked by D. Kahz-
dan and A. Yom Din coming from their work in [12]:
Question. Let δ > 0, X be a Banach space and let G be a discrete group acting
on X by linear isometries. Suppose that x∗ ∈ SX∗ satisfies that ∥gx∗ − x∗∥ ≤ δ

10
for all g ∈ G. Must there exist G-invariant y∗ ∈ X∗ with ∥x∗ − y∗∥ ≤ δ?

There are easy examples for which the answer is positive and in [10], E. Glasner
and N. Monod found examples for which the answer is negative. The relation
between the existence of so-called almost-invariant vectors and invariant vectors
is often studied in more general context, one example is Kahzdan’s property (T)
(for reference see, e.g., [4]).

In Section 2.1 we again introduce the required definitions and collect some
needed results, mainly from algebra. Section 2.2 mentions some results for ac-
tions of groups on Banach spaces in general and gives a proof of one of the
examples in the positive directions, namely actions of discrete amenable groups.
Section 2.3 contains new results concerning this question applied to actions of
groups induced on Lipschitz-free spaces. We will lay out some groundwork, char-
acterising properties related to the question in the particular case of Lipschitz-free
spaces and then show that the question (or some weakening of it) has positive
answer in some special cases, namely
Theorem (see Theorem 2.43). Let δ > 0 and FS be a free group with generating
set S equipped with the word metric and action by left-translations. Let f ∈
Lip0(FS) be δ/3-invariant. Then the mapping f : FS → R defined by

f(g) =
n∑︂

i=1
aif(si),

where n ∈ N, a ∈ {−1, 1}n and s ∈ Sn are such that g = sa1
1 · · · san

n is the reduced
word representing g, is an invariant element of Lip0(FS) with

⃦⃦⃦
f − f

⃦⃦⃦
≤ δ.

and
Theorem (see Theorem 2.47). Let G be a finitely presented group equipped with
the word metric and action by left-translations. Then there exists a constant
C > 0 depending on G such that for any δ > 0 and f ∈ Lip0(G) δ-invariant there
is f ∈ InvG(G) with

⃦⃦⃦
f − f

⃦⃦⃦
≤ Cδ.

Both these results use the standard representation of the dual of the Lipschitz-
free space as the space of Lipschitz functions vanishing at the base point.

Note that the goal of the thesis is not to necessarily provide the most efficient
and straightforward proofs of said results. Take this as an stroll through the
Forest of all knowledge; we shall make no haste and at times stray from the main
path just to explore where other paths may lead, for, as a wise man once said,
“not all those who wander are lost.”3

3Here, the words “man” and “said” have to be understood quite broadly. The quoted text
is, of course, a verse from a poem delivered to Bilbo Baggins in a letter written by Gandalf the
Grey, one of the Istari. The content of this poem describes Aragorn, the heir of Isildur, at that
time generally known as the Strider. All the aforementioned are fictional characters and events
from the novel The Lord of the Rings written by J. R. R. Tolkien. The poem appears in the
first book, The Fellowship of the Ring, in chapter 10 entitled “Strider”.
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Before jumping in, let us fix some notation and conventions which are common
for both chapters. For n, m ∈ Z denote [n..m] = {k ∈ Z : n ≤ k ≤ m}. We
consider all (p-)Banach spaces over the field R. The sum over empty sets is
always considered to be equal to 0.
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1. Lipschitz-free p-spaces
After some preliminaries, we will spend this chapter recounting two of the recent
results from [7]. Section 1.2 will be dedicated to [7, Theorem 2.2] and Section 1.3
to [7, Theorem 3.21].

1.1 Preliminaries
Before tackling Lipschitz-free p-spaces, let us first introduce some required back-
ground machinery and notation. Unless stated otherwise, throughout this chap-
ter we will assume that p ∈ (0, 1]. Let us mention a fact concerning the function
t ↦→ |t|p, proven e.g. in [19, Lemma 1.7].

Fact 1.1. Let 0 < p < 1 and x, y ∈ R. Then |x + y|p ≤ |x|p + |y|p and equality
holds if and only if xy = 0.

We recall the definitions of p-metric spaces and p-Banach spaces and quickly
mention some of their properties. For more comprehensive overview see e.g. [14]
or [19].

Definition 1.2. Let M be a set and d : M2 → [0, ∞). We say (M, d) is a p-metric
space if (M, dp) is a metric space; that is,

(M1) ∀x, y ∈ M : d(x, y) = 0 ⇐⇒ x = y,

(M2) ∀x, y ∈ M : d(x, y) = d(y, x),

(M3) ∀x, y, z ∈ M : d(x, y)p ≤ d(x, z)p + d(z, y)p.

A triple (M, d, 0) is a pointed p-metric space if (M, d) is a p-metric space and
0 ∈ M is some distinguished base point.

It is the case that the family {U(x, r) : x ∈ M, r > 0}, where U(x, r) = {y ∈
M : d(x, y) < r}, is a basis of a topology metrisable by the metric dp. From the
concavity of [0, ∞) ∋ t ↦→ tr for any r ∈ (0, 1] follows that if (M, d) is a p-metric
space, then it is also q-metric for any q ∈ (0, p]. To make our lives easier, we will
always assume all p-metric spaces have at least two points, which saves us from
having to deal with some uninteresting degenerate cases.

To illustrate, we give

Example 1.3. The pair (R, d), where d(x, y) = |x − y|1/p , x, y ∈ R, is a p-metric
space denoted in what follows as (R, | · |1/p). Furthermore, this space is not q-
metric for any q ∈ (p, 1].

Proof. The space is p-metric by definition, as dp(x, y) = |x − y| is a metric on R.
To see it is not q-metric for q > p it is enough to calculate

dq(0, 2) = 2q/p > 2 = 1q/p + 1q/p = d(0, 1)q + d(1, 2)q.
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Lipschitz functions on p-metric spaces can be defined verbatim as in the metric
case:

Definition 1.4. Let (M, d), (N, e) be a p-metric spaces and f : M → N . Define

L(f) = sup
x,y∈M,x̸=y

e(f(x), f(y))
d(x, y) .

We say f is Lipschitz if L(f) < ∞. If (M, d, 0M) and (N, e, 0N) are pointed
p-metric spaces, denote

Lip0(M, N) = {f ∈ NM : L(f) < ∞, f(0M) = 0N}.

If N = (R, | · | , 0), we will write only Lip0(M) instead of Lip0(M,R).

Definition 1.5. Let X be a linear space. A map ∥·∥ : X → [0, ∞) is called
a p-norm on X if the following conditions are satisfied:

(N1) ∀x ∈ X : ∥x∥ = 0 ⇐⇒ x = 0,

(N2) ∀x ∈ X ∀α ∈ R : ∥αx∥ = |α| ∥x∥,

(N3) ∀x, y ∈ X : ∥x + y∥p ≤ ∥x∥p + ∥y∥p.

The pair (X, ∥·∥) is called a p-normed linear space. If (X, ∥ · ∥) is complete (i.e.
when endowed with the metric (x, y) ↦→ ∥x − y∥p, it is a complete metric space),
we say that (X, ∥·∥) is a p-Banach space.

Every p-Banach space (X, ∥·∥) is also a p-metric space when equipped with
the p-metric d(x, y) = ∥x − y∥. Unless specified otherwise, we will consider 0 (the
zero element of the linear space X) as the base point of this p-metric space. As in
the case of p-metric spaces, if X is a p-Banach space, then it is also q-Banach for
all q ∈ (0, p]. If we take p = 1, then these definitions are exactly the definitions
of metric and Banach spaces. p-convexity and p-convex hulls are defined, mutatis
mutandis, as usual:

Definition 1.6. Let X be a linear space. We say that A ⊆ X is p-convex if for
any x, y ∈ A and λ, µ ∈ [0, 1] such that λp + µp = 1 holds λx + µy ∈ A. The
p-convex hull of the set A, denoted cop(A), is defined as

cop(A) =
⋂︂

{B ⊆ X : A ⊆ B, B is p-convex}.

The set cop(A) is the smallest p-convex set containing A (in the sense of
inclusion).

While these p-spaces share many properties with their metric counterparts,
there are also some crucial differences. One that is important in the context of
Lipschitz-free spaces, is that it may happen that the only real-valued Lipschitz
functions are constants, as witnessed by (R, | · |1/p):

Example 1.7. Let p < 1 and f : (R, | · |1/p) → R be Lipschitz. Then L(f) = 0.
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Proof. Estimate, as per Definition 1.4,

L(f) = sup |f(x) − f(y)|
|x − y|1/p

≤ sup |f(x) − f((y + x)/2)| + |f((y + x)/2) + f(y)|
|x − y|1/p

≤ sup 2L(f) |(x − y)/2|1/p

|x − y|1/p
= 21−1/pL(f).

Since 21−1/p < 1 and L(f) ≥ 0, it must be that L(f) = 0.

An immediate consequence is that Lipschitz extension theorems, such as Mc-
Shane’s, cannot hold. Indeed, the function f : ({0, 1}, | · |1/p) → R defined as
f(0) = 0, f(1) = 1 is 1-Lipschitz, but by the previous example, there is no Lips-
chitz extension to (R, | · |1/p).

On the p-Banach side of things, causing a lot of trouble is the fact that for p <
1 the Hahn-Banach theorem does not hold and p-Banach spaces may have trivial
dual. Classical examples of such spaces are Lp. Another example which requires
some knowledge of Lipschitz-free p-spaces follows again from Example 1.7.

Now we are ready to define Lipschitz-free p-spaces. We will again omit details
and proofs which can be found in [2], [1] or in the Bachelor thesis [19]. In this
thesis, we will not go through the construction of these spaces and instead opt
for a definition by theorem approach:

Theorem 1.8 ([19, Theorem 2.9]). Let (M, d, 0) be a pointed p-metric space.
Then there exists an up to linear isometry unique p-Banach space Fp(M) and
δ : M → Fp(M) satisfying

(i) δ(0) = 0;

(ii) δ(M \ {0}) is linearly independent and Fp(M) = span δ(M);

(iii) δ is an isometry;

(iv) if Y is a p-Banach space and f ∈ Lip0(M, Y ), then there exists a linear
map Tf : Fp(M) → Y satisfying f = Tf ◦ δ and ∥Tf∥ = L(f), i.e. the
following diagram commutes.

M Y

Fp(M)

δ

f

Tf

The linear mapping Tf from property (iv) is called the linearisation of the
mapping f .

Definition 1.9. The space Fp(M) from Theorem 1.8 is called the Lipschitz-free
p-space (over M).

Some authors instead use the name Arens-Eells p-space and notation Æp(M).
For a different, less functional analysis based approach, the interested reader
may look up the Wasserstein distance, also known as the Kantorovich-Rubenstein
metric (for example in the paper [18, Section 1.6]).
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Finite-dimensional subspaces of p-Banach spaces are always closed, hence from
Theorem 1.8 (ii) follows that dim Fp(M) < ∞ if and only if |M | < ∞ and in
this case Fp(M) = span δ(M); this observation will be of use later. Recall that
by c00(M) we denote the space c00(M) = {f ∈ RM : |{x ∈ M : f(x) ̸= 0}| < ∞}.
There are two well known ways to express the value of the p-norm:

Proposition 1.10. Let (M, d, 0) be a pointed p-metric space and a ∈ c00(M).
Then ⃦⃦⃦⃦

⃦∑︂
x∈M

axδ(x)
⃦⃦⃦⃦
⃦

Fp(M)

= sup
Y,f

⃦⃦⃦⃦
⃦∑︂

x∈M

axf(x)
⃦⃦⃦⃦
⃦

Y

,

where the supremum 1 is taken over all p-Banach spaces Y and mappings f ∈
Lip0(M, Y ) with L(f) ≤ 1.

The Proposition above is a consequence of the construction of Lipschitz-free
p-spaces chosen in the thesis [19], see [19, Definition 2.6].

Proposition 1.11 ([19, Proposition 3.2]). Let (M, d, 0) be a pointed p-metric
space and a ∈ c00(M). Then

⃦⃦⃦⃦
⃦∑︂

x∈M

axδ(x)
⃦⃦⃦⃦
⃦

Fp

= inf
n,y,z,b

⎧⎨⎩
(︄

n∑︂
i=1

|bi|p
)︄1/p

:
∑︂

x∈M

axδ(x) =
n∑︂

i=1
bi

δ(yi) − δ(zi)
d(yi, zi)

⎫⎬⎭ ,

where the infimum is taken over all n ∈ N, b ∈ Rn and y, z ∈ Mn such that
yi ̸= zi, i ∈ [1..n].

In both cases, the value of the norm is given only on (finite) linear combina-
tions of elements of the form δ(x), x ∈ M , but by Theorem 1.8 (ii) and continuity
of p-norms, this extends uniquely to the whole space.

Later on, the relation of the Lipschitz-free p-spaces of a p-metric space and
its subspace will be of interest. If (M, d, 0) is a p-metric space, and 0 ∈ N ⊂ M ,
then technically Fp(N) is not a subset of Fp(M), but there is a natural way to
identify elements of Fp(N) with elements of Fp(M):

Definition 1.12. Let (M, d, 0) be a p-metric space, and 0 ∈ N ⊂ M . Denote
i : N → M the inclusion map (i.e. i(x) = x, x ∈ N). The canonical embedding
of Fp(N) into Fp(M) is defined as the linearisation of δM ◦ i, where δM is the
embedding of M into Fp(M).

If we denote the canonical embedding as ι, the definition above says that the
diagram

N M

Fp(N) Fp(M)

δN

i

δM

ι

1At first glance, one might have doubts whether this is valid in ZF. The supremum is to
be understood as the supremum over all real numbers r ≥ 0 such that there exist a p-Banach
space Y and f ∈ Lip0(M, Y ) with L(f) = 1 such that r equals the norm on the right hand side.
By the axiom schema of specification, this is a subset of the real numbers.
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commutes, or equivalently that ι : Fp(N) → Fp(M) is the linear mapping such
that for any x ∈ N holds ι(δN(x)) = δM(x).

This definition is correct since Fp(M) is a p-Banach space and L(δM ◦ i) ≤
L(δM)L(i) = 1 as both mappings are isometries. From now on, we will identify
the elements µ ∈ Fp(N) and ι(µ) ∈ Fp(M). Immediate consequence of the
definition and Theorem 1.8 (iv) is

Fact 1.13. Let (M, d, 0) be a p-metric space, 0 ∈ N ⊂ M be its subspace and
ι : Fp(N) → Fp(M) be the canonical embedding. Then ∥ι∥ ≤ 1, i.e. for any
µ ∈ Fp(N) holds ∥µ∥Fp(M) ≤ ∥µ∥Fp(N).

Last useful piece of information is

Fact 1.14. Let (M, d, 0) be a pointed p-metric space. Then for a finite set 0 ∈
F ⊂ M and a ∈ RF holds⃦⃦⃦⃦

⃦∑︂
x∈F

axδ(x)
⃦⃦⃦⃦
⃦

Fp(M)

= inf
⎧⎨⎩
⃦⃦⃦⃦
⃦∑︂

x∈F

axδ(x)
⃦⃦⃦⃦
⃦

Fp(N)

: F ⊂ N ⊂ M, |N | < ∞

⎫⎬⎭ .

Proof. By Fact 1.13, the norm is not larger than the infimum. Let ε > 0, from
Proposition 1.11 follows the existence of n ∈ N, b ∈ Rn and y, z ∈ Mn such that∑︁

x∈M axδ(x) = ∑︁n
i=1 bi

δ(yi)−δ(zi)
d(yi,zi) and ∑︁n

i=1 |bi|p ≤ ∥∑︁x∈F axδ(x)∥p
Fp(M) + ε. Put

N = {0} ∪ {yi : i ∈ [1..n]} ∪ {zi : i ∈ [1..n]}.

Since the set δ(M \ {0}) is linearly independent in Fp(M), necessarily F ⊂ N
and again by Proposition 1.11 we have⃦⃦⃦⃦

⃦∑︂
x∈F

axδ(x)
⃦⃦⃦⃦
⃦

p

Fp(N)

≤
n∑︂

i=1
|bi|p ≤

⃦⃦⃦⃦
⃦∑︂

x∈F

axδ(x)
⃦⃦⃦⃦
⃦

p

Fp(M)

+ ε.

1.2 Computation of the Lipschitz-free p-norm
First problem we will concern ourselves with is computation of the Lipschitz-free
p-norm. Propositions 1.10 and 1.11 can be used for some ad-hoc computation
of the p-norm, but a reliable method is missing even for finite p-metric spaces.
The starting point for us will be [7, Lemma 2.4], which is an adaptation of [19,
Theorem 3.8] (in the Bachelor thesis [19], it was proven only for the case of
Lipschitz-free p-spaces).

Lemma 1.15. Let X ̸= {0} be a finite-dimensional p-Banach space and Z ⊆ BX

be a symmetric set such that cop(Z) = BX . Let us denote by B the set of all the
algebraic bases of X consisting of points from Z. Then for x ∈ X we have

∥x∥ = min

⎧⎪⎨⎪⎩
⎛⎝∑︂

b∈b

|cb|p
⎞⎠1/p

: b ∈ B, c ∈ Rb is such that x =
∑︂
b∈b

cbb

⎫⎪⎬⎪⎭ .
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While this result already allows us to compute the norm in finitely-dimensional
Lipschitz-free spaces in finitely many steps, it has two drawbacks. It may not be
immediately clear, but most of the terms over which the minimum is taken are
redundant. For ease of computation, it is desirable to remove these redundancies.
Second, sets of bases consisting of points from some set are not the most natural
way to capture this problem. Both these can be addressed at once - by translating
the previous lemma to the language of trees.

To be able to translate to a language, one must first learn it, which we do in

Definition 1.16. Let V be a finite set and 0 ∈ V . A rooted tree with vertices
V , edges E and root 0 is a triple (V, E, 0) where (V, E) is an acyclic connected
(unoriented) graph and 0 ∈ V is an arbitrary distinguished point of V . By T (V, 0)
we denote the set of all rooted trees T = (V, E, 0) with vertices V , edges E and
root 0.

A path (from x to y) in a graph G = (V, E) is a one-to-one sequence of
vertices x = x0, . . . , xn = y such that {xi−1, xi} ∈ E for i ∈ [1..n]. Given
T = (V, E, 0) ∈ T (V, 0) and x, y ∈ V , we denote

• desc(x) the immediate descendants of x, that is vertices v ∈ V such that
there is a path 0 = x0, . . . , xn = v from 0 to v in T with xn−1 = x;

• if x ̸= 0, then pred(x) denotes the unique vertex v ∈ V such that if 0 =
x0, . . . , xn = x is the unique path from 0 to x in T then xn−1 = v; we denote
ex := {pred(x), x};

• by lca(x, y) ∈ V we denote the lowest common ancestor of x and y, that is
if 0 = x0, . . . , xn = x and 0 = y0, . . . ym = y are the paths from 0 to x and
y and k ∈ [1..n] is maximal such that xk = yk, then lca(x, y) = xk;

• leaves of T are vertices from the set leaf(T ) := {x ∈ V : desc(x) = ∅};

• by Vx we denote vertices in the maximal connected subgraph of (V, E\{ex})
containing x as a vertex (that is, vertices in the subtree of T “rooted at the
point x”).

A picture to illustrate:

0

lca(x, y)

y
pred(x)
ex

x

desc(x)
Vx

12



If we wish to emphasize to which T ∈ T (V, 0) the notions correspond, we write
ET , descT (x), predT (x), lcaT (x, y), eT

x , and V T
x instead of E, desc(x), pred(x),

lca(x, y), ex and Vx, respectively.
If (M, d, 0) is a pointed p-metric space, we write T (M) instead of T (M, 0).

For T = (M, E, 0) ∈ T (M) and e = {x, y} ∈ E we put d(e) := d(x, y).

Now we must for a moment leave the notion of a distance behind and venture
into the world of linear algebra. First, we describe the correspondence between
trees and bases:

Lemma 1.17. Let X be a linear space, n ∈ N and {e1, . . . , en} be a basis of X.
Let ci,j ∈ R \ {0}, i, j ∈ [0..n]. Denote e0 = 0, V = {ei : i ∈ [0..n]} and B the set
of all bases of X consisting of elements from

W =
{︄

ei − ej

ci,j

: i, j ∈ [0..n], i ̸= j

}︄
.

Then for each basis b ∈ B there is a tree T ∈ T (V, e0) and α ∈ {−1, 1}n such
that

b =
{︄

αi
ei − ej

ci,j

: i ∈ [1..n], ej = predT (ei)
}︄

(1.1)

Moreover, for every T ∈ T (V, e0) there is b ∈ B such that (1.1) holds with α ≡ 1.

Proof. First, let b ∈ B. Define Tb = (V, Eb, e0), where

Eb =
{︄

{ei, ej} : ei − ej

ci,j

∈ b

}︄
.

We need to verify that Tb is in fact a tree. To show this, it is enough to
check that it has |V | − 1 edges and contains no cycles (see [17, Section 3-
2]). If {ei, ej}, {ei′ , ej′} ∈ Eb for some i, j, i′, j′ ∈ [0..n] then (ei − ej)/ci,j and
(ei′ − ej′)/ci′,j′ are elements of b and hence {ei, ej} ̸= {ei′ , ej′} for otherwise one
of the vectors would be a multiple of the other, which is impossible since b is
a basis. Hence |Eb| = |b| = n = |V | − 1.

Now assume that Tb contains a cycle. By renumbering the vectors e0, . . . , en,
we may without loss of generality assume that there is k ∈ [3..n] such that
{ei−1, ei} ∈ Eb, i ∈ [1..k] and {ek, e0} ∈ Eb. By definition of Eb, there are
bi ∈ b, i ∈ [0..k] such that ei−1 − ei ∈ span{bi}, i ∈ [1..k] and ek − e0 ∈ span{b0}.
We have that

ek − e0 =
k∑︂

i=1
ei − ei−1 ∈ span{b1, . . . , bk}

and hence also b0 ∈ span{b1, . . . , bk}. But this is in contradiction with the as-
sumption that b is a basis. Thus we have shown that Tb is indeed a tree.

Since b ⊂ W , each element of b can be written as (ei−ej)/ci,j and by definition
of Eb, either ei = pred(ej) or ej = pred(ei). By appropriately choosing the value
of α, one can guarantee that the vector with negative coefficient is the predecessor
of the other. Taking into account that Eb = {{ei, predTb(ei)} : i ∈ [1..n]} and that
if (ei − ej)/ci,j ∈ b, then (ej − ei)/cj,i /∈ b, we see that (1.1) holds.

13



For the moreover part, assume T = (V, E, e0) ∈ T (V, e0) and denote

bT =
{︄

ei − ej

ci,j

: i ∈ [1..n], j ∈ [0..n], ej = predT (ei)
}︄

⊂ W.

Once we verify that bT is a basis, we will be done, because then (1.1) clearly
holds. This we do by induction. For n = 1 it is clear: in this case W =
{e1/c1,0, −e1/c0,1} and T (V, e0) consists of only one tree, given by E = {{e0, e1}}.
Now assume the claim holds for bases of size n−1. Let T = (V, E, e0) ∈ T (V, e0).
Pick k ∈ [1..n] such that ek ∈ leaf(T ). Then T ′ = (V \ {ek}, E \ {e(ek)}, e0) ∈
T (V \ {ek}, e0). By induction assumption, bT ′ is a basis of span(V \ {ek}). It
is the case that bT = bT ′ ∪ {(ek − ek′/ck,k′)}, where ek′ = pred(ek). Hence
span(bT ) = span{e1, . . . en} = X and |bT | = |bT ′| + 1 = (n − 1) + 1 = n, i.e. bT

is a generating set of cardinality equal to the dimension of the space.

In fact, for each tree T and α ∈ {−1, 1}n there is a basis such that (1.1) holds:
replacing (ei − ej)/ci,j by (ej − ei)/cj,i in a basis produces a different basis, but
they both induce the same tree. This is where the promised reduction of number
of expressions over which we minimize happens.

Now that we have the correspondence between bases and trees established,
we calculate how to change coordinates between these bases.

Lemma 1.18. Let n ≥ 1 and {e1, . . . , en} be a basis in a linear space X, V =
{0, e1, . . . , en} and T = (V, E, 0) ∈ T (V, 0). Suppose that for some a, b ∈ Rn and
c ∈ (R \ {0})n we have

n∑︂
i=1

aiei =
n∑︂

i=1
bi

ei − predT (ei)
ci

. (1.2)

Then

bi = ci

∑︂
j∈[1..n] :
ej∈V T

ei

aj for every i ∈ [1..n].

Proof. The proof will be conducted by induction with respect to dim X = n. For
n = 1 the claim holds, because T (V, 0) = {(V, {{e1, 0}}, 0)} and thus we have
a1e1 = b1

e1−0
c1

, implying that b1 = c1a1.
Suppose the claim holds for some n ∈ N. For convenience’s sake assume

en+1 ∈ leaf(T ) and en = pred(en+1), which we may do without loss of generality
as we can simply renumber the vectors of our basis. Because en+1 ∈ leaf(T ),
en+1 only appears once in (1.2), in particular in the term bn+1(en+1 − en)/cn+1.
Hence, as before, bn+1 = cn+1an+1. We have shown the desired equality for
i = n+1 as V T

en+1 = {en+1}. For i ≤ n, put V ′ = V \{en+1}, E ′ = E \{{en+1, en}}
and consider the tree T ′ = (V ′, E ′, 0). If we put a′

i = ai, i ∈ [1..n − 1] and

14



a′
n = an + an+1, then we have the equalities

n∑︂
i=1

a′
iei =

n∑︂
i=1

aiei + an+1en =
n+1∑︂
i=1

aiei + an+1(en − en+1)

=
n+1∑︂
i=1

bi
ei − predT (ei)

ci

+ bn+1
en − en+1

cn+1

=
n+1∑︂
i=1

bi
ei − predT (ei)

ci

− bn+1
en+1 − predT (en+1)

cn+1

=
n∑︂

i=1
bi

ei − predT (ei)
ci

=
n∑︂

i=1
bi

ei − predT ′(ei)
ci

,

where the last equality follows from the fact that removing a leaf does not change
the predecessor of any other vertex. The induction assumption now guarantees
that for i ∈ [1..n] the first equality in

bi = ci

∑︂
j∈[1..n] :
ej∈V T ′

ei

a′
j = ci

∑︂
j∈[1..n+1] :

ej∈V T
ei

aj

holds. The second equality follows from the following consideration: if for some
i ∈ [1..n] holds en+1 /∈ V T

ei
, then V T

ei
= V T ′

ei
and for all relevant j ∈ [1..n] holds

aj = a′
j. On the other hand, if en+1 ∈ V T

ei
, then V T

ei
= V T ′

ei
∪ {en+1} and since

i ≤ n, it must be the case that en ∈ V T ′
ei

. Hence

ci

∑︂
j∈[1..n] :
ej∈V T ′

ei

a′
j = cia

′
n + ci

∑︂
j∈[1..n−1] :

ej∈V T ′
ei

a′
j

= ci(an + an+1) + ci

∑︂
j∈[1..n−1] :

ej∈V T
ei

aj = ci

∑︂
j∈[1..n+1] :

ej∈V T
ei

aj.

in the first sum appears a′
n instead of an + an+1 in the second sum, but by

definition of a′
n, those are equal. This yields the desired equality for i < n + 1

and thus finishes the induction step and also the proof.

At this point, we finally have all the tools ready to prove the main result of
this section. Before doing so, let us define some notation.

Notation 1.19. Let (M, d, 0) be a pointed p-metric space. We define the set of
molecules in Fp(M) as

A(M) =
{︄

δ(x) − δ(y)
d(x, y) : x, y ∈ M, x ̸= y

}︄
⊆ Fp(M).

Note that A(M) is symmetric and for M finite, A(M) is also finite.

Notation 1.20. Let (M, d, 0) be a finite pointed p-metric space, a ∈ RM , x ∈ M
and T ∈ T (M). Denote

cT (x, a) =
∑︂

y∈V T
x

ay and T (a) =
⎛⎝ ∑︂

x∈M\{0}

⃓⃓⃓
cT (x, a)d(eT

x )
⃓⃓⃓p⎞⎠1/p

.

15



Theorem 1.21 ([7, Theorem 2.2]). Let (M, d, 0) be a finite pointed p-metric
space. Then for any a ∈ RM holds⃦⃦⃦⃦

⃦∑︂
x∈M

axδ(x)
⃦⃦⃦⃦
⃦

Fp

= min
T ∈T (M)

T (a).

Proof. Let a ∈ RM and put µ = ∑︁
x∈M axδ(x). It holds that cop(A(M)) =

cop(A(M)) = BFp(M). The first equality is a consequence of M , and thus also
A(M), being finite. The second can be found e.g. in [19, Proposition 3.7]. By
invoking our staring point, Lemma 1.15, with X = Fp(M) and Z = A(M) we
obtain the equality

∥µ∥ = min

⎧⎪⎨⎪⎩
⎛⎝∑︂

b∈b

|cb|p
⎞⎠1/p

: b ∈ B, c ∈ Rb is such that µ =
∑︂
b∈b

cbb

⎫⎪⎬⎪⎭ ,

where B is the set of all bases of Fp(M) consisting of points from A(M). Enu-
merate M = {0, x1, . . . , xn} and pick some b ∈ B. By Lemma 1.17 applied to
X = Fp(M), {e1, . . . , en} = {δ(x1), . . . , δ(xn)} and ci,j = d(xi, xj) and using that
V = {0, δ(x1), . . . , δ(xn)} is bijective to M , we infer that there is T ∈ T (M) such
that

b =
{︄

αx
δ(x) − δ(predT (x))

d(eT
x ) : x ∈ M \ {0}

}︄
for some α ∈ {−1, 1}M . Since the values the minimum is taken over depends
only on the absolute value of the coefficients cb, we may, by switch the sign of the
appropriate coefficients, without loss of generality assume that

b =
{︄

δ(x) − δ(predT (x))
d(eT

x ) : x ∈ M \ {0}
}︄

.

If we denote bx = (δ(x)−δ(predT (x)))/d(eT
x ), then the condition in the minimum

guarantees that
∑︂

x∈M\{0}
axδ(x) =

∑︂
x∈M

axδ(x) =
∑︂
b∈b

cbb =
∑︂

x∈M\{0}
cbx

δ(x) − δ(predT (x))
d(eT

x ) .

By Lemma 1.18, cbx = d(eT
x )∑︁y∈V T

x
ay = d(eT

x )cT (x, a) for x ∈ M \ {0} and hence∑︂
b∈b

|cb|p =
∑︂

x∈M\{0}
|cbx|p =

∑︂
x∈M\{0}

⃓⃓⃓
d(eT

x )cT (x, a)
⃓⃓⃓p

= T (a)p.

To summarize, for every basis b ∈ B we have found T ∈ T (M) such that
(∑︁b∈b |cb|p)1/p = T (a). This implies that ∥µ∥ ≥ min

T ∈T (M)
T (a). The other inequality

follows from the fact that every tree arises in this way for some basis, which we
have shown in Lemma 1.17 as well.

The significance of this Theorem is the fact that, albeit in finite dimension,
it enables us to calculate the norm of any element of the Lipschitz-free space as
a minimum over finitely many expressions, in particular over |T (M)| expressions.
Cayley’s formula (see e.g. [17, Theorem 3.10]) states that |T (M)| = |M ||M |−2.

The following Corollary has been proven in the thesis [19, Corollary 3.10]. To
show the algorithm from Theorem 1.21 at work, we will use it to give a somewhat
simpler proof.
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Corollary 1.22. Let (M, d, 0) be a pointed p-metric space with M = {0, x, y}
and denote dx = d(x, 0), dy = d(y, 0) and dxy = d(x, y). Then for a, b ∈ R holds

∥aδ(x) + bδ(y)∥p
Fp

= min

⎧⎪⎨⎪⎩
|adx|p + |bdy|p ,
|(a + b)dx|p + |bdxy|p ,
|(a + b)dy|p + |adxy|p .

⎫⎪⎬⎪⎭
Proof. We begin by realising that T (M) = {(M, Ei, 0) : i ∈ [1..3]}, where

E1 = {{0, x}, {0, y}}, E2 = {{0, x}, {x, y}}, E1 = {{0, y}, {y, x}}.

Pictorially:

0

x y

(M, E1, 0)
0
x
y

(M, E2, 0)
0
y
x

(M, E3, 0)
We will work through the second tree in detail, the rest can be done in similar
fashion. Let T = (M, E2, 0). Then V T

x = {x, y} and V T
y = {y}. Calculate

cT (x, (a, b)) = a + b, cT (y, (a, b)) = b

and

T ((a, b))p =
⃓⃓⃓
cT (x, (a, b))d(eT

x )
⃓⃓⃓p

+
⃓⃓⃓
cT (y, (a, b))d(eT

y )
⃓⃓⃓p

= |(a + b)dx|p + |bdxy|p .

For T = (V, E1, 0) we would obtain T ((a, b))p = |adx|p + |bdy|p and for T =
(V, E3, 0) we would get T ((a, b))p = |(a + b)dy|p + |adxy|p. By Theorem 1.21, the
p-th power of the p-norm is the minimum of these values.

This formula was derived for the case p = 1 in [9], where the authors were,
in addition, able to recognize which of these three expressions was equal to the
minimum based purely on the values of the coefficients a, b. This we cannot do,
but it is not a fault of our method, but rather a property of these spaces when
p < 1 as is demonstrated by the following theorem, which is the last result of the
section dedicated to calculating the p-norm.

Theorem 1.23. Let 0 < p < 1 and (M, d, 0) be a pointed p-metric space with
|M | ≥ 3. Then the following assertions are equivalent:

(i) For any a ∈ [0, ∞)M such that ∑︁x∈M

(︂
axd(x, 0)

)︂p
< ∞ we have

⃦⃦⃦⃦
⃦∑︂

x∈M

axδ(x)
⃦⃦⃦⃦
⃦

p

Fp(M)

=
∑︂

x∈M

(︂
axd(x, 0)

)︂p
.

(ii) For every x ∈ M \ {0} we have d(x, 0) = d(x, M \ {x}).

We omit the proof of the theorem, as it has been proven in the Bachelor
thesis [19, Theorem 3.4]. (For a shorter proof using Theorem 1.21 see [7, Theorem
2.8].)
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This theorem can also be used to calculate the p-norm. The formula from (i)
is very simple, but the trade-off is that two quite restrictive conditions have to
be satisfied for it to hold - namely (iii) and non-negativity of coefficients. But
as we will see in the beginning of the next section, it can still be used to obtain
some interesting results.

We will end this section with some examples comparing the Lipschitz-free
p-norm p-norm to a weighted ℓp p-norm.

Example 1.24. Let 0 < p < 1 and (M, d, 0) be a p-metric space with M =
{0, x, y}. Denote dx, dy and dxy as in Corollary 1.22. Define ∥·∥ℓp,d

: Fp(M) → R
as the weighted ℓp norm ∥aδ(x) + bδ(y)∥p

ℓp,d
= |adx|p + |bdy|p, a, b ∈ R. Denote

F+
p (M) = {aδ(x) + bδ(y) : a, b ≥ 0}. It may happen that

• ∥·∥Fp(M) = ∥·∥ℓp,d
on Fp(M):

Let a, b ∈ R. We have |a|p = |a + b − b|p ≤ |a + b|p + |b|p. So, if dp
x + dp

y =
dp

xy, we get

|adx|p + |bdy|p ≤ |(a + b)dx|p + |b|p (dp
x + dy)p = |(a + b)dx|p + |bdxy|p .

Similarly we deduce

|adx|p + |bdy|p ≤ |(a + b)dy|p + |adxy|p

and hence, by Corollary 1.22, ∥aδ(x) + bδ(y)∥Fp(M) = ∥aδ(x) + bδ(y)∥ℓp,d
.

• ∥·∥Fp(M) = ∥·∥ℓp,d
on F+

p (M) but not on Fp(M):

Assume max{dp
x, dp

y} ≤ dp
xy < dp

x + dp
y. Then Theorem 1.23 guarantees that

∥·∥Fp(M) = ∥·∥ℓp,d
on F+

p (M), but, using the fact that δ is an isometry, we
have ∥δ(x) − δ(y)∥p

Fp(M) = dp
xy < dp

x + dp
y.

• ∥·∥Fp(M) = ∥·∥ℓp,d
on some proper subset of F+

p (M) but not on F+
p (M):

One can take e.g. dx = dy = 1 and dxy = 1/2. By Theorem 1.23, ∥·∥Fp(M) =
∥·∥ℓp,d

cannot hold on F+
p (M), but direct calculation using Corollary 1.22

verifies that the equality holds for δ(x) + δ(y).

Note that this list is not exhaustive. For illustration we include pictures of the
unit ball for p = 1/2 and three different combinations of values dx, dy and dxy:

- 2 - 1 0 1 2
- 2

- 1

0

1

2

δ(x)

δ(y)δ(y)-δ(x)

δ(o)

dx = dy = dxy = 1
- 2 - 1 0 1 2

- 2

- 1

0

1

2

δ(x)

δ(y)δ(y)-δ(x)

δ(o)

dx = dy = 1, dxy = 4
- 2 - 1 0 1 2

- 2

- 1

0

1

2

δ(x)

δ(y)δ(y)-δ(x)

δ(o)

dx = dy = 1, dxy = 1/2
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1.3 Canonical embeddings and amenability
This section is dedicated to the study of the canonical embeddings of Lipschitz-
free p-spaces, which were defined in Definition 1.12. Throughout this section, we
will often work with Lipschitz-free p-spaces over q-metric spaces for q ≥ p (this
makes sense since for these values q-metric spaces are also p-metric). The reason
for this is that the stronger condition on the q-metric space affects the Lipschitz-
free p-space as well. To make statements less repetitive, we will implicitly assume
that 0 < p ≤ q ≤ 1 and ι will always denote canonical embeddings (we will specify
between which spaces if it is not clear from the context). People acquainted with
the standard theory might be at first sight surprised with all this fuss. Rightly
so, as the canonical embeddings are very well-behaved in the case p = 1:

Proposition 1.25. Let (M, d, 0) be a pointed metric space and 0 ∈ N ⊂ M be
its subspace. Then ι : F1(N) → F1(M) is a linear isometry into.

Proof. It is by definition linear and from Fact 1.13 we know that ∥ι∥ ≤ 1. Let
µ = ∑︁n

i=1 aiδ(xi) for some n ∈ N, a ∈ Rn, x ∈ Nn. Furthermore, let Y be
a Banach space and f ∈ Lip0(N, Y ) satisfy L(f) = 1. By Hahn-Banach theorem,
there is y∗ ∈ SY ∗ such that⃦⃦⃦⃦

⃦
n∑︂

i=1
aif(xi)

⃦⃦⃦⃦
⃦

Y

= y∗
(︄

n∑︂
i=1

aif(xi)
)︄

=
n∑︂

i=1
aiy

∗(f(xi)).

The mapping y∗ ◦ f : N → R is 1-Lipschitz and y∗(f(0)) = 0, so by McShane’s
extension theorem, there is F ∈ Lip0(M,R), L(F ) = 1 extending y∗ ◦ f . By
Proposition 1.10, we have

∥µ∥F1(M) ≥
⃓⃓⃓⃓
⃓

n∑︂
i=1

aiF (xi)
⃓⃓⃓⃓
⃓ =

⃓⃓⃓⃓
⃓

n∑︂
i=1

aiy
∗(f(xi))

⃓⃓⃓⃓
⃓ =

⃦⃦⃦⃦
⃦

n∑︂
i=1

aif(xi)
⃦⃦⃦⃦
⃦

Y

.

Passing to the supremum on the right-hand side and using Proposition 1.10, we
obtain ∥µ∥F1(M) ≥ ∥µ∥F1(N).

This is far from the case when p < 1.

Example 1.26. Define N = N0 and M = N ∪ {z}, where z /∈ N . Equip M with
the q-metric d defined as d(z, n) = d(n, z) = 2−1/q for n ∈ N0 and d(n, m) = 1
for n, m ∈ N0, n ̸= m. Then ι : Fp(N) → Fp(M) is an isomorphism with
∥ι−1∥ = 21/q.

The example is based on [1, Theorem 6.1], where it was only shown that
∥ι−1∥ ≥ 21/q. The other inequality was shown in [19, Theorem 3.12]. We will
include the proof for both completeness’ sake and the reason that the version
presented here is technically cleaner than in [19]. As part of the proof of the
example, let us prove

Proposition 1.27. Let (M, d, 0) be a q-metric space and 0 ∈ N ⊂ M be its
subspace. If there is a Lipschitz retraction r : M → N , then ι : Fp(N) → Fp(M)
is an isomorphism with ∥ι−1∥ ≤ L(r).

In particular, if M \ N = {z} and there exists y ∈ N such that d(z, N) =
d(z, y), then ι : Fp(N) → Fp(M) is an isomorphism with ∥ι−1∥ ≤ 21/q.
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Proof. We need to show that for µ = ∑︁n
i=1 aiδ(xi), n ∈ N, a ∈ Rn, x1, . . . , xn ∈ N

holds ∥µ∥Fp(N) ≤ L(r) ∥µ∥Fp(M). The mapping δN ◦ r : M → Fp(N) is L(r)-
Lipschitz as δN is an isometry. Hence (δN ◦ r)/L(r) ∈ Lip0(M, Fp(N)) is 1-
Lipschitz and subsequently

∥µ∥Fp(M) ≥
⃦⃦⃦⃦
⃦

n∑︂
i=1

ai
(δN ◦ r)

L(r) (xi)
⃦⃦⃦⃦
⃦

Fp(N)
= 1

L(r)

⃦⃦⃦⃦
⃦

n∑︂
i=1

aiδ(xi)
⃦⃦⃦⃦
⃦

Fp(N)
= 1

L(r) ∥µ∥Fp(N) .

For the “in particular” part, it is now enough to find a 21/q-Lipschitz retraction
r : M → N . Define r by r(z) = y and r(x) = x for x ∈ N . Then indeed
L(r) ≤ 21/q, because for x, x′ ∈ N holds

d(r(z), r(x))q = d(y, x)q ≤ d(y, z)q + d(z, x)q ≤ 2d(z, x)q,

d(r(x), r(x′)) = d(x, x′).

Proof of example 1.26. The mapping d is in fact a q-metric: properties (M1) and
(M2) follow from definition and for (M3) we use the fact that 1q = 1 = 1/2+1/2 =
(2−1/q)q + (2−1/q)q. The fact that ∥ι−1∥ ≤ 21/q follows from the “in particular”
part of Proposition 1.27.

It remains to show that ∥ι−1∥ ≥ 21/q. Let n ∈ N and put µn = ∑︁n
i=1 δ(i) ∈

Fp(N). By Theorem 1.23, we have ∥µn∥p
Fp(N) = ∑︁n

i=1 d(0, i)p = n. In Fp(M) we
can write

µn = nδ(z) +
n∑︂

i=1
δ(i) − δ(z).

A simple use of p-triangle inequality and the fact that δ is an isometry yields

∥µn∥p
Fp(M) ≤ ∥nδ(z)∥p +

n∑︂
i=1

∥δ(i) − δ(z)∥p

= (nd(z, 0))p +
n∑︂

i=1
d(i, z)p = 2−p/qnp + 2−p/qn.

So we have for any n ∈ N

⃦⃦⃦
ι−1
⃦⃦⃦p

≥
∥µn∥p

Fp(N)

∥µn∥p
Fp(M)

≥ n

2−p/qnp + 2−p/qn
.

The right-hand side converges to 2p/q as n → ∞, so we have ∥ι−1∥ ≥ 21/q.

Natural follow-up to this example is the

Question 1.28. Let (M, d, 0) be a p-metric space and 0 ∈ N ⊂ M be its sub-
space. Is the canonical embedding ι : Fp(N) → Fp(M) always an isomorphism?

This question is still open. However, the major result of this section gives at
least a partial answer:

Theorem 1.29. Let (M, d, 0) be a pointed metric space and 0 ∈ N ⊂ M be
its subspace. Then ι : Fp(N) → Fp(M) is an isomorphism. Moreover, there is
a constant Cp dependant only on p such that ∥ι−1∥ ≤ Cp regardless of N and M .
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The proof of the theorem will be given at the end of the chapter when we
will have prepared all the required machinery. To shorten the statements, we
introduce the concept of amenability.

Definition 1.30. Let (M, d, 0) be a pointed q-metric space and 0 ∈ N ⊂ M be
its subspace. We say that N is p-amenable in M with constant C > 0 if the
canonical embedding ι : Fp(N) → Fp(M) is an isomorphism and ∥ι∥−1 ≤ C. We
say that N is p-amenable in M if there is some C > 0 such that the above holds.

The first step to proving Theorem 1.29 is to change the infinite-dimensional
qualitative problem of Question 1.28 to a finite-dimensional quantitative one.

Proposition 1.31. Let (M, d, 0) be a pointed q-metric space and 0 ∈ N ⊂ M .
If C > 0 is such that ∥ι−1∥ > C, then there are finite subsets 0 ∈ N ′ ⊂ N and
N ′ ⊂ M ′ ⊂ M such that the canonical embedding ι′ : Fp(N ′) → Fp(M ′) satisfies
∥(ι′)−1∥ > C.

Proof. If ∥ι−1∥ > C, then there must be µ = ∑︁n
i=1 aiδ(xi) ∈ Fp(N), such that

∥µ∥Fp(N) / ∥µ∥Fp(M) > C. Let ε > 0 satisfy ∥µ∥Fp(N) /(∥µ∥Fp(M) + ε) > C. Using
Proposition 1.11 we can find m ∈ N, b ∈ Mm and y, z ∈ Mm so that

µ =
m∑︂

i=1
bi

δ(yi) − δ(zi)
d(yi, zi)

and
(︄

m∑︂
i=1

|bi|p
)︄1/p

≤ ∥µ∥Fp(M) + ε. (1.3)

Put N ′ = {0} ∪ {xi : i ∈ [1..n]} and M ′ = N ′ ∪ {yi, zi : i ∈ [1..m]}. Because
N ′ ⊂ N , we have ∥µ∥Fp(N) ≤ ∥µ∥Fp(N ′). Since the decomposition (1.3) is also
valid in Fp(M ′), we have ∥µ∥Fp(M ′) ≤ (∑︁m

i=1 |bi|p)1/p ≤ ∥µ∥Fp(M) + ε. Hence we
have ⃦⃦⃦

(ι′)−1
⃦⃦⃦

≥
∥µ∥Fp(N ′)

∥µ∥Fp(M ′)
≥

∥µ∥Fp(N)

∥µ∥Fp(M) + ε
> C.

The significance of this proposition is twofold. If there is a q-metric space
(M, d, 0) and its subspace 0 ∈ N ⊂ M which is not p-amenable in M , then
for any C > 0 there must be a finite q-metric space (M ′, d, 0) and its subspace
0 ∈ N ′ ⊂ M ′ which is not p-amenable in M ′ with constant C. On the other
hand, if there is C > 0 such that for every finite q-metric space (M, d, 0) and
subspace 0 ∈ N ⊂ M it is the case that N is p-amenable in M with constant C,
then this must also hold for spaces of infinite cardinality. Of course, for finite M
the embedding ι is always an isomorphism, because all injective linear mappings
between finite-dimensional p-Banach spaces are. So the question is whether there
is a universal bound for the norm of the inverses.

In light of this, we will focus on finite p-metric spaces.

Definition 1.32. Let (M, d, 0) be a finite pointed q-metric space, 0 ∈ N ⊂ M
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be its subspace and n, k ∈ N, n ≤ k. Define2

ap(N, M) := min{C : N is p-amenable in M with constant C},

aaq
p(N) := sup{ap(N, M ′) : M ′ is a q-metric space such that N ⊂ M ′},

aaq
p(n, k) := sup{ap(N ′, M ′) : 0 ∈ N ′ ⊂ M ′ are q-metric spaces, |N ′ \ {0}| ≤ n

and |M ′ \ {0}| ≤ k},

aaq
p(n) := sup{aaq

p(N ′) : N ′ is a q-metric space and |N ′ \ {0}| ≤ n}.

For simplicity’s sake, we write aap(N), aap(n, k) and aap(n) instead of aap
p(N),

aap
p(n, k) and aap

p(n).

Note that ap(N, M) = ∥ι−1∥, where ι : Fp(N) → Fp(M). We will often use

Fact 1.33. Let (M, d, 0) be a finite p-metric space and 0 ∈ N ⊂ M . Then there
is a ∈ RN and T ∈ T (M) such that⃦⃦⃦⃦

⃦∑︂
x∈N

axδ(x)
⃦⃦⃦⃦
⃦

Fp(M)

= T (a) = 1 and
⃦⃦⃦⃦
⃦∑︂

x∈N

axδ(x)
⃦⃦⃦⃦
⃦

Fp(N)

= ap(N, M).

Proof. Denote S = SFp(M) ∩ span δ(N) = SFp(M) ∩ ι(Fp(N)). By definition of the
operator norm we have

ap(N, M) =
⃦⃦⃦
ι−1
⃦⃦⃦

= sup
{︂
∥µ∥Fp(N) : µ ∈ S

}︂
.

So there is a sequence (µn) ∈ SN such that ∥µn∥Fp(N) → ap(N, M). As we are
working in a finite-dimensional space, S is compact and hence there is µ ∈ S such
that ∥µ∥Fp(N) = ap(N, M). We can find a ∈ RN so that µ = ∑︁

x∈N axδ(x). This a
satisfies our requirements; all that is left to do is to find the tree T . Its existence
follows immediately from Theorem 1.21.

It will be convenient to understand a ∈ RN not only as coefficients in the
space Fp(N), but also in Fp(M). To allow this, we identify every a ∈ RN with
the element a′ ∈ RM which is given by ax = a′

x for x ∈ N and a′
y = 0 for

y ∈ M \ N (i.e. we identify RN with RN × {0}M\N).
In Proposition 1.27 we saw that by adding merely one point, one can only

achieve ∥ι−1∥ ≤ 21/p. So, in order to find a counterexample to Question 1.28, it
would be necessary to add more points. But how many points to add? Does the
size of the subspace matter or is it enough to make the superspace large? The
following results shed some light on the situation.

Theorem 1.34. Let (M, d, 0) be a finite q-metric space and 0 ∈ N ⊂ M . Then
for µ ∈ Fp(N) holds

∥µ∥Fp(M) = min
{︂
∥µ∥Fp(F ) : N ⊂ F ⊂ M, |F \ N | ≤ |N | − 2

}︂
.

Proof. As for any F ⊂ M holds ∥µ∥Fp(M) ≤ ∥µ∥Fp(F ) by Fact 1.13, it is enough
to show that the value ∥µ∥Fp(M) appears among the values we are taking the

2The same set-theoretic remark as for Proposition 1.10 applies to the suprema in this defi-
nition.
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minimum over. If |M \ N | ≤ |N | − 2, then this is clearly the case since we can
just take F = M . So assume that |M \ N | > |N − 2|.

Let a ∈ RN be such that µ = ∑︁
x∈M axδ(x). Using Theorem 1.21 find T ∈

T (M) such that ∥µ∥Fp(M) = T (a). We shall inductively find sets Fi and trees Ti,
i ∈ [1..n] for some n ∈ N satisfying

(i) M = F1 ⊃ F2 ⊃ · · · Fn ⊃ N ,

(ii) ∀z ∈ Fn \ N :
⃓⃓⃓
descTn(z)

⃓⃓⃓
≥ 2,

(iii) ∀i ∈ [1..n] : Ti ∈ T (Fi),

(iv) ∀i ∈ [1..n − 1] : |Fi \ Fi+1| = 1 and Ti+1(a) ≤ Ti(a).

Put F1 = M and T1 = T . Assume we have constructed Fi, Ti for i ∈ [1..m].
If (ii) holds for Fm and Tm, put n = m and end the construction, otherwise
continue. By this assumption, there is z ∈ Fm \N such that

⃓⃓⃓
descTm(z)

⃓⃓⃓
≤ 1. Put

Fm+1 = Fm \ {z}. We discern two cases.
If
⃓⃓⃓
descTm(z)

⃓⃓⃓
= 0, define Tm+1 ∈ T (Fm+1) by ETm+1 = ETm \ {{z, pred(z)}}.

This definition is correct, because by our assumption, z is a leaf, i.e. {z, pred(z)}
is the only edge connecting to z. Let x ∈ Fm+1. Then cTm(x, a) = cTm+1(x, a): if
z /∈ V Tm

x , then V Tm
x = V Tm+1

x and

cTm(x, a) =
∑︂

y∈V Tm
x

ay =
∑︂

y∈V
Tm+1

x

ay = cTm+1(x, a).

In case z ∈ V Tm
x , we have V Tm

x = V Tm+1
x ∪ {z} and since az = 0,

cTm(x, a) =
∑︂

y∈V Tm
x

ay = az +
∑︂

y∈V
Tm+1

x

ay =
∑︂

y∈V
Tm+1

x

ay = cTm+1(x, a).

Hence we have the equality

Tm(a)p −
⃓⃓⃓
cTm(z, a)d(eTm

z )
⃓⃓⃓
=

∑︂
x∈Fm\{0}

⃓⃓⃓
cTm(x, a)d(eTm

x )
⃓⃓⃓p

−
⃓⃓⃓
cTm(z, a)d(eTm

z )
⃓⃓⃓

=
∑︂

x∈Fm+1\{0}

⃓⃓⃓
cTm+1(x, a)d(eTm+1

x )
⃓⃓⃓p

= Tm+1(a)p.

As z is a leaf, cTm(z, a) = az = 0 and hence Tm(a)p = Tm+1(a)p.
Now assume

⃓⃓⃓
descTm(z)

⃓⃓⃓
= 1. Let w ∈ Fm be the element such that z =

predTm(w). Define Tm+1 ∈ T (Fm+1) by

ETm+1 =
(︂
ETm \ {{z, pred(z)}, {w, z}}

)︂
∪ {w, pred(z)}.

Tm+1 is the tree which “skips” the vertex z, graphically:

predTm(z)
z
w

⇝
predTm(z)

w
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One can deduce cTm(x, a) = cTm+1(x, a) for every x ∈ Fm+1 exactly as in the
previous case. Furthermore, we have

Tm(a)p −
⃓⃓⃓
cTm(z, a)d(eTm

z )
⃓⃓⃓
−
⃓⃓⃓
cTm(w, a)d(eTm

w )
⃓⃓⃓

=
∑︂

x∈Fm\{0,z,w}

⃓⃓⃓
cTm(x, a)d(eTm

x )
⃓⃓⃓p

=
∑︂

x∈Fm+1\{0}

⃓⃓⃓
cTm+1(x, a)d(eTm+1

x )
⃓⃓⃓p

−
⃓⃓⃓
cTm+1(w, a)d(eTm+1

w )
⃓⃓⃓p

= Tm+1(a)p −
⃓⃓⃓
cTm+1(w, a)d(eTm+1

w )
⃓⃓⃓p

.

After rearranging the terms we have

Tm(a)p−Tm+1(a)p =
⃓⃓⃓
cTm(z, a)d(eTm

z )
⃓⃓⃓
+
⃓⃓⃓
cTm(w, a)d(eTm

w )
⃓⃓⃓
−
⃓⃓⃓
cTm+1(w, a)d(eTm+1

w )
⃓⃓⃓p

.

So we need to show that the right-hand side is non-negative. First, we realize
that

cTm(z, a) = cTm(w, a) + az = cTm(w, a) = cTm+1(w, a),
because az = 0 and V Tm

z = V Tm
w ∪ {z}. Furthermore, d(eTm

z ) = d(z, predTm(z)),
d(eTm

w ) = d(w, z) and d(eTm+1
w ) = d(w, predTm(z)). Thus, our right-hand side is

equal to ⃓⃓⃓
cTm(z, a)

⃓⃓⃓p (︂
d(z, predTm(z))p + d(w, z)p − d(w, predTm(z))p

)︂
,

which is non-negative by p-triangle inequality. This finishes the construction.
Note that if for some m ∈ N holds Fm = N , then (ii) is satisfied and the con-
struction ends. Since M is finite and always Fi ⊃ N , the construction has to end
after at most |M \ N | steps.

Put F = Fn and T ′ = Tn. We have

∥µ∥p
Fp(M) ≤ ∥µ∥p

Fp(F ) ≤ T ′(a)p ≤ T (a)p = ∥µ∥p
Fp(M)

and hence the equality ∥µ∥Fp(M) = ∥µ∥Fp(F ) holds. Now it only remains to show
that |F \ N | ≤ |N | − 2. Because each vertex has a unique predecessor, the sets
descT ′(z), z ∈ (F \ N) ∪ {0} are pairwise disjoint. Combined with descT ′(0) ̸= ∅,
we obtain the following estimate

|F \ N | + |N \ {0}| = |F \ {0}| ≥
∑︂

z∈F \N

⃓⃓⃓
descT ′(z)

⃓⃓⃓
+
⃓⃓⃓
descT ′(0)

⃓⃓⃓
≥ 2 |F \ N | + 1.

Hence |F \ N | ≤ |N \ {0}| − 1 = |N | − 2.
Corollary 1.35. aaq

p(n) = aaq
p(n, 2n − 1) for n ∈ N.

Proof. By definition, aaq
p(n) ≥ aaq

p(n, 2n − 1). Let 0 < C < aaq
p(n). Then

there is a q-metric space (M, d, 0) and 0 ∈ N ⊂ M such that |N \ {0}| ≤ n
and ap(M, N) > C. From Proposition 1.31 follows the existence of N ′ ⊂ N and
N ′ ⊂ M ′ ⊂ M such that M ′ is finite and again ap(N ′, M ′) > C. Using Fact 1.33
we may find µ ∈ Fp(N ′) such that ∥µ∥Fp(N ′) = ap(N ′, M ′) and ∥µ∥Fp(M ′) = 1. By
Theorem 1.34, there is F ⊂ M ′ with N ′ ⊂ F and

|F \ {0}| = |F \ N ′|+ |N ′ \ {0}| ≤ |N ′|−2+ |N ′ \ {0}| = 2 |N ′ \ {0}|−1 ≤ 2n−1

such that ∥µ∥Fp(F ) = ∥µ∥Fp(M ′) = 1. Hence ap(N ′, F ′) ≥ ∥µ∥Fp(N ′) / ∥µ∥Fp(F ) >

C. This implies aaq
p(n, 2n − 1) > C and the claim follows.
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The corollary gives us a bound on the size of the superspace. It is possible
to use Proposition 1.27 to obtain a very crude estimate on aaq

p(N) for p-metric
space (N, d, 0) based on the size of N : From Theorem 1.34 we know it is enough
to get a bound on aaq

p(N, M) where |M | ≤ 2n − 1. Applying Proposition 1.27
n − 1 times yields the estimate aq

p(N) ≤ 2(n−1)/q.
However, with some more work, this bound can be significantly improved. To

do this we use a result on extending Lipschitz functions by Basso. We will state
and prove the theorem only for finite spaces as that is the setting we are working
in, which allows us to obtain a mildly stronger result which is also easier to state.
The proof is virtually unchanged from the one given in [3].
Lemma 1.36 ([3, Theorem 1.1]). Let (X, d) be a metric space, m ∈ N, S, T ⊂ X
satisfy that S is finite, X = S ∪ T and |T | ≤ m. Then there is a retraction
R : X → S with L(R) ≤ (m + 1).
Proof. Assume that S, T are as in the statement. Of course, we can assume that
they are disjoint (switch to S and T \ S). Define

E = {{u, v} ∈ T × (T ∪ S) : u ̸= v} .

The set E is finite (for both T and S are). Let G = (X, E) be the graph with
vertices X and edges E. Define w : E → R by w({u, v}) = d(u, v). Denote
n = |E| and let e : [1..n] → E be an enumeration of E such that w ◦ e is non-
decreasing. Subset E ′ ⊂ E is said to be admissible if the graph G′ = (X, E ′) has
no cycles and no two distinct points of S are connected by a path.

We construct a subset of E by starting with an empty set and looking at
the edges in E in non-decreasing order of length, adding each edge that does
not violate the condition of admissibility. Formally, we inductively construct
a sequence (Ei)n

i=0 of subsets of E by setting

E0 = ∅ and for i ∈ [1..n] Ei =
⎧⎨⎩Ei−1 ∪ {e(i)} if Ei−1 ∪ {e(i)} is admissible,

Ei−1 otherwise.

By the construction (and the fact that E0 is admissible), Ei is admissible for all
i ∈ [1..n]. We start by showing that for all z ∈ T there is a unique xz ∈ S and
a unique path from z to xz in (X, En). The uniqueness follows from admissibility
of En: if there was a path from z to two distinct points xz, yz of S, then there
would also be a path between xz and yz, which there cannot be, so xz is unique.
If there were two different paths from z to xz, then (X, En) would contain a cycle,
which is also impossible. To show the existence, assume that z ∈ T and choose
x ∈ S arbitrarily. If {z, x} ∈ En, then x = xz and we are done. So assume
that {z, x} /∈ En. By the construction, that means that Ei ∪ {{x, z}}, where
e(i + 1) = {x, z} is not admissible. There are two possibilities why this could
happen. One possibility is that (X, Ei ∪ {{x, z}}) contains a cycle, which implies
that in (X, Ei) there is already a path connecting x to z; in this case we again
get x = xz and are done. The second is that in (X, Ei ∪ {{x, z}}) there is a path
connecting two points of S, which means that in (X, Ei) there is a path connecting
z to some other y ∈ S. In this case, put xz = y.

Now we define the retraction R : X → S by

R(z) =
⎧⎨⎩z, z ∈ S,

xz, z ∈ T.
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For x, y ∈ S obviously holds d(R(x), R(y)) = d(x, y).
Let z ∈ T and x ∈ S. If x = xz, then d(R(x), R(z)) = d(x, xz) = 0, so suppose

x ̸= xz. Let z = z0, . . . , zk = xz be the path from z to xz in (X, En). Using the
triangle inequality, we obtain

d(R(x), R(z)) = d(x, xz) ≤ d(x, z) +
k∑︂

i=1
d(zi−1, zi).

Let j ∈ [1..n] be such that e(j + 1) = {x, z}. Since x ̸= xz, {x, z} /∈ En, so
Ej ∪{{x, z}} is not admissible. If (X, Ej ∪{{x, z}}) contained a cycle, then there
would be a path from x to z, implying x = xz. So it must be that (X, Ej∪{{x, z}})
already contains the path from z to xz. Hence, by the construction, we have for
all i ∈ [1..k] that d(zi−1, zi) = w({zi−1, z}) ≤ w({z, x}) = d(z, x). Thus,

d(R(x), R(z)) ≤ d(x, z) +
k∑︂

i=1
d(zi−1, zi) ≤ (1 + k)d(x, z).

By admissibility, z0, . . . , zk−1 ∈ T . As all points of a path are by definition pair-
wise distinct, we have k ≤ |T | and consequently d(R(x), R(z)) ≤ (1 + m)d(x, z).

Now, let z, z′ ∈ T . If xz = xz′ , then d(R(z), R(z′)) = d(xz, xz′) = 0, so
suppose that xz ̸= xz′ . Let z = z0, . . . , zk = xz be the path from z to xz and
z′ = z′

0, . . . , z′
k′ = xz′ be the path from z′ to xz′ . From the triangle inequality

follows that

d(R(z), R(z′)) = d(xz, xz′) ≤ d(xz, z) + d(z, z′) + d(z′, xz′)

≤ d(z, z′) +
k∑︂

i=1
d(zi−1, zi) +

k′∑︂
i=1

d(z′
i−1, z′

i).
(1.4)

As above, let j ∈ [1..n] be such that e(j +1) = {z′, z}. We have that {z, z′} /∈ En,
because otherwise there would be a path from z to z′ implying that there is a path
from xz to z′, but this is not possible by uniqueness of xz′ and the assumption
that xz ̸= xz′ . This means that Ej ∪ {{z, z′}} is not admissible. If Ej ∪ {{z, z′}}
contained a cycle, then (X, Ej) would contain a path from z to z′ and we would
arrive to the same contradiction as a moment ago. So the only option left is that
(X, Ej) already contains the paths from z to xz and from z′ to xz′ (and so adding
the edge {z, z′} would create a path between two points of S). As in the previous
case, by the construction we obtain

∀i ∈ [1..k] : d(zi−1, zi) ≤ d(z, z′) and ∀i ∈ [1..k′] : d(z′
i−1, z′

i) ≤ d(z, z′).

Returning to (1.4), we have d(R(z), R(z′)) ≤ (1 + k + k′)d(z, z′). Finally, as xz

and xz′ are not connected by a path, the sets {zi : i ∈ [0..k]} and {z′
i : i ∈ [0..k′]}

are disjoint subsets of T and so k + k′ ≤ |T |, implying that

d(R(z), R(z′)) ≤ (1 + m)d(z, z′).

We have considered all the possible cases and thus we conclude that L(R) ≤
1 + m, finishing the proof.

Corollary 1.37. For all n, k ∈ N holds aaq
p(n, k) ≤ (k − n + 1)1/q. In particular

aaq
p(n) ≤ n1/q.
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Proof. Let (M, d, 0) be a q-metric space and 0 ∈ N ⊂ M with |N \ {0}| = n ≤
k = |M \ {0}|. Then by Lemma 1.36 there is a retraction R : (M, dq) → (N, dq)
with L(R) ≤ |M \ N | + 1 = (k − n + 1). Then R is a (k − n + 1)1/q-retraction
when viewed as a mapping from (M, d) to (N, d). Appealing to Proposition 1.27
yields the claim. For the “in particular” part, it is enough to again realize that
it suffices to estimate aaq

p(n, 2n − 1) by Corollary 1.35.

We shall now start reducing the problem of amenability to special classes of
q-metric spaces with the goal of proving Theorem 1.29.

Definition 1.38. Let M be a finite set, 0 ∈ M , T ∈ T (M, 0) and w : ET →
(0, ∞). We define the weighted tree q-metric (generated by T and w) on M ,
denoted dT,w, as follows. Let x, y ∈ M . Obviously, if x = y put dT,w(x, y) = 0.
Otherwise, let x = x0, . . . , xn = y be the path from x to y in T and define

dT,w(x, y)q =
n∑︂

i=1
w({xi−1, xi})q.

Fact 1.39. Using the notation from the definition above, dT,w is indeed a q-metric.

Proof. One implication of (M1) holds by definition, the other follows from the
fact that w has strictly positive values. (M2) is easy, since our tree is unoriented
and if x = x0, . . . xn = y is the path from x to y, then y = xn−0, . . . xn−n = x is
the path from y to x. It remains to verify that q-triangle inequality holds. So let
x, y, z ∈ M and y = x0, . . . , xn = x be the path from y to x and y = z0, . . . , zm = z
be the path from y to z. Since xn, . . . x1, y, z1, . . . , zm is a sequence of vertices
starting at x and ending at z, the path from x to z must be its subsequence and
moreover if we denote x = s0, . . . , sk = z the path from x to z, we have

dT,w(x, z)q =
k∑︂

i=1
w({si−1, si})q

≤
n∑︂

i=1
w({xi−1, xi})q +

m∑︂
i=1

w({zi−1, zi})q

= dT,w(x, y)q + dT,w(y, z)q,

thus proving (M3).

Proposition 1.40. If we start with a q-metric space (M, d, 0) and take a tree T ∈
T (M), then this pair induces a weight w on the tree by setting w({x, predT (x)}) =
d(x, predT (x)). The two q-metrics are related as follows:

(i) ∀x ∈ M \ {0} : d(x, predT (x)) = dT,w(x, predT (x));

(ii) ∀x, y ∈ M : d(x, y) ≤ dT,w(x, y).

Moreover, there are also the following relations between the appropriate Lipschitz-
free p-spaces:

(iii) for a ∈ RM holds T (a, d) = T (a, dT,w), where T (a, d) (T (a, dT,w)) is the
value T (a) calculated with respect to the metric d (dT,w);

(iv) ∥·∥Fp(M,d) ≤ ∥·∥Fp(M,dT,w) if we identify the spaces as linear spaces.
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Proof. The weight is positive because no edge connects a vertex to itself and d
is positive for a pair of distinct points. (i) follows easily from the definition as
the path from x to predT (x) is the sequence consisting of the two points, hence
dT,w(x, predT (x))q = d(x, predT (x))q. To show (ii), consider x, y ∈ M and let the
path between them be x = x0, . . . xn = y. Then the inequality

d(x, y)q ≤
n∑︂

i=1
d(xi−1, xi)q = dT,w(x, y)q

is enforced by q-triangle inequality.
Property (iii) follows straight from the definition of T (a) as it only depends

on distances of points to their predecessors with respect to T , where both metrics
coincide as was shown in (i).

Finally, (iv) can be deduced from (ii) as follows: Let a ∈ RM . If T ′ ∈ T (M),
then as a consequence of the definition and (ii) we obtain

T ′(a, d) =
⎛⎝ ∑︂

x∈M\{0}

⃓⃓⃓
cT ′(x, a)d(eT ′

x )
⃓⃓⃓p⎞⎠1/p

≤

⎛⎝ ∑︂
x∈M\{0}

⃓⃓⃓
cT ′(x, a)dT,w(eT ′

x )
⃓⃓⃓p⎞⎠1/p

= T ′(a, dT,w).

Hence minT ′∈T (M) T ′(a, d) ≤ minT ′∈T (M) T ′(a, dT,w) and Theorem 1.21 finishes
the proof.

Definition 1.41. Let n, k ∈ N, n ≤ k. Define Mq
T (k) as the set of all pointed

q-metric spaces (M, d, 0) satisfying that |M \ {0}| ≤ k and d = dT,w for some
T ∈ T (M) and w : ET → (0, ∞). Next, define

Taaq
p(n, k) = sup{ap(N, M) : 0 ∈ N ⊂ M are q-metric spaces, |N \ {0}| ≤ n

and M ∈ Mq
T (k)}.

As this set is smaller than the one considered in the definition of aaq
p(n, k),

clearly Taaq
p(n, k) ≤ aaq

p(n, k). What is not immediately clear is

Proposition 1.42. Let n, k ∈ N, n ≤ k. Then Taaq
p(n, k) = aaq

p(n, k).

Proof. Let (M, d, 0) be a q-metric space, 0 ∈ N ⊂ M , |N \ {0}| ≤ n and
|M \ {0}| ≤ k. Fact 1.33 ensures us that there is a ∈ RN and T ∈ T (M) such
that for µ = ∑︁

x∈N axδ(x) holds ∥µ∥Fp(N) = ap(N, M) and ∥µ∥Fp(M) = T (a) = 1.
Consider the weight w induced by d and M as described in Proposition 1.40.

Then by double application of Proposition 1.40 we are graced with the equal-
ity ∥µ∥Fp(M,d) = ∥µ∥Fp(M,dT,w): from (iii) we have ∥µ∥Fp(M,dT,w) ≤ T (a, dT,w) =
T (a, d) = ∥µ∥Fp(M,d) and the other inequality is exactly (iv).

Appealing to Proposition 1.40 one last time, we get ∥µ∥Fp(N,d) ≤ ∥µ∥Fp(N,dT,w).
Put together,

aq
p(N, M) =

∥µ∥Fp(N,d)

∥µ∥Fp(M,d)
≤

∥µ∥Fp(N,dT,w)

∥µ∥Fp(M,dT,w)
≤ Taaq

p(n, k).

Taking the supremum over all appropriate N and M yields the non-trivial in-
equality.
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In fact, we can do one better. We can only consider superspaces generated by
trees such that N ⊂ leaf(T ) ∪ {0}.

Notation 1.43. Denote T
l aa

q
p(n, k) = sup

N,M
ap(N, M), where (M, d, 0) is a q-metric

space, 0 ∈ N ⊂ M , |N \ {0}| ≤ n, |M \ {0}| ≤ k, there are T ∈ T (M) and
w : ET → (0, ∞) such that d = dT,w and N ⊂ leaf(T ) ∪ {0}.

The crux of the matter is the following “tree-ripping” lemma.

Lemma 1.44. Let (M, d, 0) be a finite p-metric space, T ∈ T (M), 0 ̸= z ∈
M \ leaf(T ) and a ∈ RM . Denote

M1 = V T
z , a1 = a|M1

M2 = M \ (V T
z \ {z}), a2 = (a2

x)x∈M2 ,

where

a2
x =

⎧⎨⎩ax, x ̸= z,

cT (z, a), x = z.

Let T 1 ∈ T (M1) and T 2 ∈ T (M2) be given by

ET1 = ET ∩ {{u, v} : u, v ∈ M1} and ET2 = ET ∩ {{u, v} : u, v ∈ M2}.

Then T (a)p = T 1(a1)p + T 2(a2).

Proof. Directly from these definitions follows that for x ∈ M1 holds V T
x = V T 1

x

and cT (x, a) = cT 1(x, a1). For x ∈ M2 with z ∈ V T 2
x we obtain the same equality

by calculating

cT (x, a) =
∑︂

y∈V T
x

ay =
∑︂

y∈V T
x \V T

z

ay +
∑︂

y∈V T
z

ay =
∑︂

y∈V T
x \V T

z

ay + cT (z, a)

=
∑︂

y∈V T 2
x \{z}

a2
y + a2

z = cT 2(x, a2).

If z /∈ V T 2
x the equality holds as well since cT (x, a) = ∑︁

y∈V T
x

ay = ∑︁
y∈V T 2

x
a2

y =
cT 2(x, a2). Finally, we calculate

T (a)p =
∑︂

x∈M\{0}

⃓⃓⃓
cT (x, a)d(eT

x )
⃓⃓⃓p

=
∑︂

x∈M1\{z}

⃓⃓⃓
cT 1(x, a1)d(eT 1

x )
⃓⃓⃓p

+
∑︂

x∈M2\{0}

⃓⃓⃓
cT 2(x, a2)d(eT 2

x )
⃓⃓⃓p

= T 1(a1)p + T 2(a2)p.

Proposition 1.45. Let n, k ∈ N, n < k. Then T
l aa

q
p(n, k) = aaq

p(n, k).

Proof. In light of Proposition 1.42 and the trivial fact T
l aa

q
p(n, k) ≤ Taaq

p(n, k), it
is enough to verify that T

l aa
q
p(n, k) ≥ Taaq

p(n, k). Let N, M be a pair contributing
to the supremum defining Taaq

p(n, k) with d = dT,w for some tree T and weights
w. If N ⊂ leaf(T ) ∪ {0}, then clearly T

l aa
q
p(n, k) ≥ ap(N, M). So suppose that

there is z ∈ N \ (leaf(T ) ∪ {0}).
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As per usual, we use Fact 1.33 to find a ∈ RN and T ∈ T (M) such that for
µ = ∑︁

x∈N axδ(x) holds ap(N, M) = ∥µ∥Fp(N) and ∥µ∥Fp(M) = T (a) = 1. The
idea is to split everything into two parts. Define

N1 = N ∩ V T
z , M1 = V T

z , a1 = a|N1 ,
N2 = N \ (V T

z \ {z}), M2 = M \ (V T
z \ {z}), a2 = (a2

x)x∈N2 ,

where

a2
x =

⎧⎨⎩ax, x ̸= z,

cT (z, a), x = z.

Consider the pointed q-metric spaces (M1, d|M1×M1 , z) and (M2, d|M2×M2 , 0).
Suppose that neither of µ1 = ∑︁

x∈N1 a1
xδ(x) and µ2 = ∑︁

x∈N2 a2
xδ(x) are zero.

Let T 1 ∈ T (M1) and T 2 ∈ T (M2) be given by

ET1 = ET ∩ {{u, v} : u, v ∈ M1} and ET2 = ET ∩ {{u, v} : u, v ∈ M2}.

We have essentially ripped the tree T into two parts at the vertex z. From
Lemma 1.44 we know that T (a)p = T 1(a1)p + T 2(a2)p. It is the case that
∥µ1∥Fp(M1) = T 1(a1): If there was ˜︁T 1 ∈ T (M1) such that ˜︁T 1(a1) < T 1(a1),
then for the tree ˜︁T ∈ T (M) created by gluing ˜︁T 1 and T 2, i.e. E ˜︁T = E ˜︁T 1 ∪ ET 2 ,
we would have (by Lemma 1.44)

˜︁T (a)p = ˜︁T 1(a1)p + T 2(a2)p < T 1(a1)p + T 2(a2)p = T (a)p.

But this is in contradiction with the assumption that ∥µ∥Fp(M) = T (a) and the
fact that by Theorem 1.21 we have T (a) ≤ ˜︁T (a). By an analogous consideration,
we arrive to the equality ∥µ2∥Fp(M2) = T 2(a2).

Using Theorem 1.21 find trees Si ∈ T (N i) such that ∥µi∥Fp(N i) = Si(ai),
i = 1, 2. In the same spirit as above, glue them together to form a tree S ∈ T (N)
(with ES = ES1 ∪ ES2). Lemma 1.44 guarantees that S(a)p = S1(a1)p + S2(a2)p.
One last use of Theorem 1.21 yields the inequality

∥µ∥p
Fp(N) = min

S′∈T (N)
S ′(a)p ≤ S(a)p = S1(a1)p + S2(a2)p

=
⃦⃦⃦
µ1
⃦⃦⃦p

Fp(N1)
+
⃦⃦⃦
µ2
⃦⃦⃦p

Fp(N2)
.

Using the fact that for A, B, C, D > 0 the inequality

A + B

C + D
≤ max

{︃
A

C
,

B

D

}︃
holds3, we obtain that for some i ∈ {1, 2} holds

ap(N, M)p =
∥µ∥p

Fp(N)

∥µ∥p
Fp(M)

≤
∥µ1∥p

Fp(N1) + ∥µ2∥p
Fp(N2)

∥µ1∥p
Fp(M1) + ∥µ2∥p

Fp(M2)

≤ max
⎧⎨⎩ ∥µ1∥p

Fp(N1)

∥µ1∥p
Fp(M1)

,
∥µ2∥p

Fp(N2)

∥µ2∥p
Fp(M2)

⎫⎬⎭ =
∥µi∥p

Fp(N i)

∥µi∥p
Fp(M i)

.

3 A+B
C+D = A

C+D + B
C+D = A

C · C
C+D + B

D · D
C+D ≤ max

{︁
A
C , B

D

}︁(︂
C

C+D + D
C+D

)︂
= max

{︁
A
C , B

D

}︁
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Put ˜︂N = N i, ˜︂M = M i and ˜︁T = T i. Then ˜︂N ⊊ N , the metric on ˜︂M is again
generated by the tree ˜︁T and the restriction of the original weight function (this
follows from the fact that for two points belonging to ˜︁T , the whole path between
them must also belong to ˜︁T ) and ap(˜︂N, ˜︂M) ≥ ap(N, M). If it happened that
µj = 0 for either of j = 1, 2, we could simply take i ∈ {1, 2} \ {j} and arrive
to the same conclusion. We may repeat this process with ˜︂N and ˜︂M and ˜︁T as
long as there is z ∈ ˜︂N \ (leaf( ˜︁T ) ∪ {0}). But since each time we remove some
points from N and we start with N finite, this process must stop after finitely
many iterations. This implies that we must arrive to a pair ˜︂N ⊂ ˜︂M such that˜︂N ⊂ leaf(T ) ∪ {0} and ap(˜︂N, ˜︂M) ≥ ap(N, M). This means that

ap(N, M) ≤ ap(˜︂N, ˜︂M) ≤ T
l aa

q
p(n, k).

Taking the supremum over all admissible N ⊂ M we obtain the desired inequality
Taaq

p(n, k) ≤ T
l aa

q
p(n, k).

The last missing ingredient is a result on extending Lipschitz functions from
subsets of metric spaces whose metric is generated by a tree to p-Banach spaces.
One possibility is to modify a result of Matoušek ([16]). The benefit of this
approach is that it yields a better constant (for our special case we would obtain
that the Lipschitz constant of the extended function grows at most by a factor of
7 · 61/p). The drawback is that we would need to embed the spaces in so-called
metric trees, which would require a rather technical construction. Instead, we
appeal to a recent result by B́ıma ([5]) which, while resulting in a worse constant,
only requires us to check that the metrics arising from trees have finite Nagata
dimension, which is defined in

Definition 1.46. Let (N, d) be a metric space, γ ≥ 1 and d ∈ N0. We say that
N has Nagata dimension at most d with constant γ if for every s > 0 there is
a family C of non-empty subsets of N satisfying

(Na1) C is a covering, that is ⋃︁ C = N ;

(Na2) ∀C ∈ C : diam C ≤ sγ and

(Na3) ∀A ⊂ N, diam A ≤ s : |{C ∈ C : C ∩ A ̸= ∅}| ≤ d + 1.

Definition 1.47. Let (M, d) be a metric space and N ⊂ M . Define tp(N, M)
as the infimum over all values C > 0 such that for any p-Banach space X and
any Lipschitz function f : N → X there exists f : M → X extending f with
L(f) ≤ CL(f). If (N, d) is a metric space, define aep(N) as the supremum4 of
tp(N, M) over all metric superspaces M of N .

Theorem 1.48 ([5, Theorem 14]). Let (N, d) be a metric space. If N has Nagata
dimension at most d with constant γ, then aep(N) ≤ C(p, d, γ), where C is some
constant depending only on the listed parameters.

This chapter’s penultimate result will be the bridge that connects the problem
of p-amenability and Theorem 1.48.

4The same set-theoretic remark as for Proposition 1.10 applies here.
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Proposition 1.49. Let (M, d, 0) be a finite pointed metric space, T ∈ T (M) and
w : ET → (0, ∞) be such that d = dT,w. Then any N ⊂ M has Nagata dimension
at most 1 with constant 4.

The proof is more-or-less a special case of the proof given in [15, Proposi-
tion 3.2].

Proof. First we show this for N = M . Let s > 0. We split M into, in some sense,
level sets. For n ∈ N0 define

An = {x ∈ M : ns ≤ d(x, 0) < (n + 1)s}.

Clearly A = ⋃︁
n∈N0 An. If A ⊂ M has diam A ≤ s, then A can only intersect two

of these sets: indeed, if x ∈ A ∩ An and y ∈ A ∩ Am for some m, n ∈ N0 satisfying
|n − m| > 1, then, without loss of generality assuming n > m + 1, we would have

diam A ≥ d(x, y) ≥ d(x, 0) − d(y, 0) > ns − (m + 1)s ≥ s,

which is a contradiction. However, we cannot simply take (An)n∈N0 to be our
cover, as the best possible bound for diam An in general is 2(n + 1)s. The trick
is to break the sets An apart into pieces of just the right size.

To do this, fix n ∈ N0. For convenience of notation, define A−1 = ∅. We define
an equivalence ∼n on An by saying that for x ∼n y if and only if lcaT (x, y) ∈
An ∪ An−1.

This is in fact an equivalence: reflexivity and symmetry follow from the fact
that lca(x, x) = x and lca(x, y) = lca(y, x). To show transitivity, assume that
x ∼n y and y ∼n z for some x, y, z ∈ An. Let 0 = y0, . . . , ym = y be the path
from 0 to y and k, l ∈ [0..m] be such that lca(x, y) = yk and lca(y, z) = yl. Take
w = ymin{k,l}. Then w ∈ An ∪ An−1 and x, y, z ∈ Vw. This implies lca(x, z) ∈ Vw

and consequently lca(x, z) ∈ An ∪ An−1 as

(n + 1)s > d(0, x) ≥ d(0, lca(x, z)) ≥ d(0, w) ≥ (n − 1)s.

We will show that if A ⊂ M has diam A ≤ s then A ∩ An intersects at most
one of these equivalence classes. Assume the contrary, i.e. there are x, y ∈ An ∩A
with x ̸∼n y. Then, denoting z = lca(x, y), we have d(x, z) > s and d(y, z) > s:
since x ̸∼n y, z ∈ Ak for some k ∈ [0..n − 2] and hence

d(x, z) ≥ d(x, 0) − d(z, 0) > ns − ((n − 2) + 1)s = s.

The inequality d(y, z) > s can be deduced in the same way. By definition of tree
metrics, we have d(x, y) = d(x, z) + d(z, y) > 2s, a contradiction with the fact
that diam A ≤ s.

Finally, we show that the diameter of the equivalence classes is bounded by
4s. Let x, y ∈ An and x ∼n y. Again, by definition of the tree metric, d(x, 0) =
d(x, lca(x, y)) + d(lca(x, y), 0) and hence

d(x, lca(x, y)) = d(x, 0) − d(lca(x, y), 0) ≤ (n + 1)s − (n − 1)s = 2s.

Similarly we deduce d(y, lca(x, y)) ≤ 2s and finish by using the triangle inequality:
d(x, y) ≤ d(x, lca(x, y)) + d(lca(x, y), y) ≤ 4s.
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We have shown that the family C = ⋃︁
n∈N0 An/ ∼n, where An/ ∼n is the set

of classes of equivalence of the relation ∼n, i.e.

An/ ∼n= {[x]∼n : x ∈ An},

satisfies the conditions (Na1) - (Na3).
The property of having Nagata dimension at most d with constant γ is clearly

inherited by subspaces as we can take the covering {C ∩ N : C ∈ C} \ {∅}.

With this result complete, we are now ready to finally prove the crown jewel
of this chapter.

Proof of Theorem 1.29. By Proposition 1.31, it is enough to get a bound on
aa1

p(n) independent of n. By Corollary 1.35, it suffices5 to get a bound on
aa1

p(n, 2n − 1) independent of n. By Proposition 1.42 we only need to bound
Taa1

p(n, 2n − 1).
So let 0 ∈ N ⊂ M , |M \ {0}| ≤ 2n − 1, |N \ {0}| ≤ n and let the metric on

M be generated by some tree from T (M) and some weight. By Proposition 1.49,
N has Nagata dimension at most 1 with constant 4. By Theorem 1.48 there
is a constant Cp depending only on p such that aep(N) ≤ Cp. The mapping
δ : N → Fp(N) is 1-Lipschitz and so it can be extended to f : M → Fp(N) with
L(f) ≤ Cp. Using Fact 1.33, find a ∈ Rn such that for µ = ∑︁

x∈N axδ(x) holds
∥µ∥Fp(N) = ap(N, M) and ∥µ∥Fp(M) = 1. By Proposition 1.10 we have

1 = ∥µ∥Fp(M) ≥
⃦⃦⃦⃦
⃦∑︂

x∈N

ax
f

L(f)(x)
⃦⃦⃦⃦
⃦

Fp(N)

≥ 1
Cp

⃦⃦⃦⃦
⃦∑︂

x∈N

axδ(x)
⃦⃦⃦⃦
⃦

Fp(N)

= 1
Cp

∥µ∥Fp(N) .

Hence ap(N, M) = ∥µ∥Fp(N) ≤ Cp. As this estimate is independent of N , M , and
even n, we get aa1

p(n, 2n − 1) ≤ Cp and even aa1
p(n) ≤ Cp.

Before moving on to the next chapter, let us mention that this has been by
no means a complete recount of the results included in [7]. For example, we
have skipped the whole part concerning the study of p-amenability for spaces
consisting of three points, in which the following characterisation has been given.

Theorem 1.50 ([7, Theorem 3.9]). Let 0 < p < 1 and (N, d, x0) be a pointed
p-metric space, where N = {x0, x1, x2}. Then the following two conditions are
equivalent:

(i) one of the p-triangle inequalities between points of N is an equality;

(ii) aap(N) = 1.

If these conditions are not met, then aap(N) = ap(N, M), where M = N ∪ {z}
and the p-metric on M is given by

d(xπ(0), z)p = d(xπ(1), xπ(0))p + d(xπ(2), xπ(0))p + d(xπ(1), xπ(2))p

2
for any permutation π of {0, 1, 2}.

5It would be possible to skip this step. Theorem 1.48 does not require finiteness. Propo-
sition 1.49 could be proven in exactly the same way if M was infinite, we would just need to
extend our definition of tree metrics and work with infinite trees.
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Some of the questions still remaining are

Question 1.51. Is it true that supn∈N aa
q
p(n) ≤ 21/q? If not, is it the case for

p = q or p = 1?

Question 1.52. For which p ∈ (0, 1) is it true that aa1
p(2) > 1?

In [7], there is a sufficient condition for the statement of Question 1.52, but
not a necessary one. Also, the authors have shown that aap(2) ≥ 4

4+2p(2p−2) , but
still unknown is the answer to

Question 1.53. Is it true that aap(2) = 4
4+2p(2p−2)?

Finally, there is a question oriented more towards the computer science side
of things.

Question 1.54. Is there an algorithm of polynomial time complexity (in the
number of points of the p-metric space) for the computation of the Lipschitz-free
p-norm for some/any p ∈ (0, 1)?
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2. Group actions on
Lipschitz-free spaces
In the second chapter, we will go in a different direction. First of all, we return
to the standard setting of Banach spaces; in terms of the previous chapter, we
will always have p = 1.

The pivotal concept of this chapter is the one of actions of groups on metric or
Banach spaces. Note that for groups other than Z we will use the multiplicative
notation, that is G = (G, ·,−1 , e).

Definition 2.1. Let (M, d) be a metric space and G be a group. A mapping
α : G × M → M is said to be an (left) action of G on M if the conditions

(A1) ∀x ∈ M : α(e, x) = x and

(A2) ∀g, h ∈ G ∀x ∈ M : α(g, α(h, x)) = α(gh, x)

are satisfied. For g ∈ G we denote by αg : M → M the mapping αg(x) = α(g, x).
If the action is clear from the context, we will often use the even shorter notation
gx = αg(x) = α(g, x) instead of α(g, x) for g ∈ G, x ∈ M .

We say that α is an action by isometries if for every g ∈ G the mapping αg

is an isometry. If, instead of a metric space (M, d), G acts on a Banach space
(X, ∥·∥), we say that the action α is linear/affine if for each g ∈ G the mapping
αg is linear/affine.

Definition 2.2. Let G be a group, X be a Banach space and let α : G × X → X
be an action by linear isometries. We define the dual action α∗ : G × X∗ → X∗

by
α∗(g, x∗)(x) = x∗(α(g−1, x)), x ∈ X, x∗ ∈ X∗, g ∈ G.

Or, written using the shortened notation, gx∗(x) = x∗(g−1x). We say that x∗ ∈
X∗ is G-invariant if gx∗ = x∗ for all g ∈ G.

The dual action is in fact an action: for any x∗ ∈ X∗ and x ∈ X we have

α∗(e, x∗)(x) = x∗(α(e−1, x)) = x∗(x)

and for x∗ ∈ X∗, x ∈ X and g, h ∈ G holds

α∗
g(α∗

h(x∗))(x) = α∗
h(x∗)(αg−1(x)) = x∗(αh−1(αg−1(x)))

= x∗(αh−1g−1(x)) = α∗
gh(x∗)(x).

Now we can state a question asked by Kazhdan and Yom Din, which was the
motivation for this chapter.

Question 2.3. Let δ > 0, X be a Banach space and let G be a discrete1

group acting on X by linear isometries. Suppose that x∗ ∈ SX∗ satisfies that
∥gx∗ − x∗∥ ≤ δ

10 for all g ∈ G. Must there exist G-invariant y∗ ∈ X∗ with
∥x∗ − y∗∥ ≤ δ?

1By discrete group we mean a group equipped with the discrete topology.
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The question is related to their work in [12] and is very similar to the well
known and widely studied Kazhdan’s property (T) (for a book concerning this
property see, e.g., [4]). Some counterexamples were published in [10]. An easy
and elementary example in the positive direction is ℓ∞(G).

Example 2.4. Let G be a group acting on ℓ1(G) by translations, i.e. α(g, x)(h) =
x(g−1h) for g, h ∈ G and x ∈ ℓ1(G). This action is by linear isometries and the
dual action satisfies the statement in Question 2.3.

Proof. The formula gx(h) = x(g−1h) indeed prescribes an action: for x ∈ ℓ1(G)
and h ∈ G holds ex(h) = x(e−1h) = x(h) and for x ∈ ℓ1(G), g, g′ ∈ G and h ∈ G
holds

αg′(αg(x))(h) = αg(x)(g′−1h) = x(g−1g′−1h) = x((g′g)−1h) = αg′g(x)(h).

Linearity is clear: for g, h ∈ G, x, y ∈ ℓ1(G), and t ∈ R holds

αg(x + ty)(h) = (x + ty)(g−1h) = x(g−1h) + ty(g−1h)
= αg(x)(h) + tαg(y)(h) = (αg(x) + tαg(y))(h);

and so is the fact that the action is by isometries: for g ∈ G and x ∈ ℓ1(G) we
have

∥x∥1 =
∑︂
h∈G

|x(h)| =
∑︂
h∈G

⃓⃓⃓
x(g−1h)

⃓⃓⃓
=
∑︂
h∈G

|gx(h)| = ∥gx∥1 ,

where we used that h ↦→ g−1h is a bijection on G.
Of course, ℓ1(G)∗ ∼= ℓ∞(G) and the dual action is given by

gx∗(x) = x∗(g−1x) =
∑︂
h∈G

x∗(h)g−1x(h) =
∑︂
h∈G

x∗(h)x(gh) (2.1)

for x ∈ ℓ1(G), x∗ ∈ ℓ∞(G).
Denote

δg,h =
⎧⎨⎩1, g = h

0, g ̸= h
for g, h ∈ G

and eg ∈ ℓ1(G) the element given by eg(h) = δg,h. Let k, k′ ∈ G. For g = k′k−1

and any h ∈ G we get

gek(h) = ek(g−1h) = δk,g−1h = δgk,h = egk(h) = ek′(h), (2.2)

i.e. gek = ek′ .
We will show that G-invariant functions in ℓ∞(G) ∼= ℓ1(G)∗ are exactly the

constants. If x∗ = (c)h∈G for some c ∈ R, then for any g ∈ G and x ∈ ℓ1(G) we
have

gx∗(x) (2.1)=
∑︂
h∈G

x∗(h)x(gh) =
∑︂
h∈G

cx(gh) =
∑︂
h∈G

cx(h)

=
∑︂
h∈G

x∗(h)x(h) = x∗(x).

On the other hand, let x∗ ∈ ℓ∞(G) be G-invariant. Let k, k′ ∈ G be arbitrary
and denote g = k′k−1. Using (2.2) we deduce

x∗(k′) =
∑︂
h∈G

x∗(h)δk′,h = x∗(ek′) = x∗(gek) = g−1x∗(ek) = x∗(ek) = x∗(k),
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i.e. x∗ is constant when understood as an element of ℓ∞(G).
Finally, assume that x∗ ∈ Sℓ∞(G) and for any g ∈ G holds ∥gx∗ − x∗∥∞ ≤

δ/10. Since x∗ ∈ Sℓ∞(G), there must be a ∈ {−1, 1} and some k ∈ G with
|a − x∗(k)| < δ/10. Let k′ ∈ G be arbitrary. Denoting g = k′k−1 and again
using (2.2), we get

|x∗(k) − x∗(k′)| = |x∗(ek) − x∗(ek′)| = |x∗(ek) − x∗(gek)|

=
⃓⃓⃓
x∗(ek) − g−1x∗(ek)

⃓⃓⃓
≤
⃦⃦⃦
x∗ − g−1x∗

⃦⃦⃦
∞

≤ δ

10

and so |a − x∗(k′)| ≤ |a − x∗(k)| + |x∗(k) − x∗(k′)| ≤ δ/5. We have shown that
for the G-invariant function x∗ = (a)h∈G ∈ ℓ∞(G) holds ∥x∗ − x∗∥∞ ≤ δ.

2.1 Preliminaries
Seeing that Question 2.3 pertains to dual spaces, the following piece of informa-
tion will be fundamental for this chapter.

Theorem 2.5. Let (M, d, 0) be a pointed metric space. Equip the space Lip0(M)
with the norm ∥f∥ = L(f), f ∈ Lip0(M). Then F(M)∗ ∼= Lip0(M) via the
mapping

φ : Lip0(M) → F(M)∗, φ(f)
(︄∑︂

x∈M

axδ(x)
)︄

=
∑︂

x∈M

axf(x), a ∈ c00(M).

The proof can be found e.g. in [21, Chapter 3]. In the statement above, we
only specify how φ(f) behaves on span δ(M), but from Theorem 1.8 we know
that for continuous functions this is enough.

Before returning to group actions, we give a quick primer on some required
topics from group theory. For more detail see e.g. [20, Chapter 2].

Notation 2.6. Let G be a group and A ⊂ G. Denote A−1 = {a−1 : a ∈ A}
and A±1 = A ∪ A−1. By ⟨A⟩ we denote the subgroup generated by A, which
is ⟨A⟩ = {a1 · · · an ∈ G : n ∈ N, ai ∈ A±1, i ∈ [1..n]}. To symbolize that H is
a subgroup of G we write H ≤ G.

Definition 2.7. Let F be a group, S ̸= ∅ a set and σ : S → F be any mapping.
We say F (or more precisely (F, σ)) is free on S if for every group G and mapping
α : S → G there exists a unique homomorphism β : F → G with α = β ◦ σ, that
is, the following diagram commutes.

S G

F

σ

α

β

For every non-empty set S there exists a group FS and σ : S → FS which is
free on S and FS = ⟨σ(S)⟩. For ease of notation, we will identify every element
s ∈ S with the corresponding element of its free group σ(s) ∈ FS.
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Definition 2.8. Let S be a non-empty set and let S−1 = {s−1 : s ∈ S}2 be a set
of the same cardinality as S disjoint with S. By a word in S we mean a finite
sequence s1 · · · sn of elements of the set S±1 = S ∪ S−1. A word s1, · · · sn in S
is reduced if no two consecutive symbols are of the form ss−1 or s−1s for some
s ∈ S. The empty word is the empty sequence.

To each word in S there is a single corresponding reduced word which can be
obtained by removing all offending pairs ss−1 and s−1s. This allows the following
description of free groups.

Proposition 2.9. Let S be a non-empty set. The set F of all reduced words in
S together with

• the inverse operation defined as (s1 · · · sn)−1 = s−1
n · · · s−1

1 ,

• the group operation of two words s1 · · · sn and t1 · · · tm defined as the reduced
word corresponding to the word s1 · · · snt1 · · · tm,

• the unit defined as the empty word and

• the mapping σ : S → F defined as σ(s) = s (where the s on the right is the
word consisting of a single element s)

is a free group on S.

This is in fact characteristic of the free groups:

Proposition 2.10. Let F be a group and S ⊂ F . Then the following are equiv-
alent:

(i) for every g ∈ G there are unique n ∈ N0, s1, . . . , sn ∈ S with si ̸= si+1 for
i ∈ [1..n − 1] and l1, . . . , ln ∈ Z \ {0} such that g = sl1

1 · · · sln
n ;

(ii) F is free on S.

A simple yet very useful consequence of the definition is

Proposition 2.11. Let FS be a free group with generating set S and x ∈ RS.
Then the mapping f : FS → R defined for g ∈ FS as

f(g) =
n∑︂

i=1
aixsi

,

where n ∈ N, a ∈ {−1, 1}n and s ∈ Sn are such that g = sa1
1 · · · san

n is the reduced
word representing g, is a homomorphism.

Proof. By definition of a free group, there is a homomorphism h : FS → R with
h(s) = xs. Let g = sa1

1 · · · san
n be an element of FS and its representation as

reduced word. Then we have

h(g) = h(sa1
1 · · · san

n ) =
n∑︂

i=1
aih(si) =

n∑︂
i=1

aixsi
= f(g).

So h = f and thus f is a homomorphism.
2Here, we understand s−1 to be just a symbol, not an inverse of s in any sense. The reason

for this notation is that we will use the symbol s−1 to somehow represent the inverse of σ(s) in
the free group.
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Finally we remark that for two sets S1 and S2 with |S1| = |S2| the free groups
FS1 and FS2 are isomorphic.

Next, we recall the definitions on normal groups and normal closures.

Definition 2.12. Let G be a group and N ≤ G. We say N is a normal subgroup
of G and write N ⊴G if ∀g ∈ G : gNg−1 ⊂ N . If A is a subset of G, we define the
normal closure of A, denoted ncl A, to be the smallest (with respect to inclusion3)
normal subgroup containing A.

Proposition 2.13. Let G be a group and A ⊂ G. Then

ncl A = ⟨AG⟩, where AG = {g−1ag : a ∈ A, g ∈ G}.

Definition 2.14. Let G be a group and N ⊴ G. For g ∈ G define its coset as
[g] = gN = {gn : n ∈ N}. Define the quotient G/N as the set {[g] : g ∈ G}
equipped with the unit [e] and operations [g]−1 = [g−1] and [g][h] = [gh]. Then
G/N is a group and the mapping q : G → G/N, q(g) = [g], called the quotient
map, is a homomorphism.

Proposition 2.15. Let G be a group and S ⊂ G be such that G = ⟨S⟩. Then
there is N ⊴ FS such that G ∼= FS/N .

Definition 2.16. Let S be a finite set and R ⊂ FS be also finite. We define the
group ⟨S|R⟩ as the quotient

⟨S|R⟩ = FS/ ncl R.

We call the elements of S the generators of ⟨S|R⟩ and elements of R its relators.
The group ⟨S|R⟩ is said to be a presentation of a group G if G is isomorphic to
⟨S|R⟩. A group G is said to be finitely presented if there are a finite set S and
finite R ⊂ FS with G isomorphic to ⟨S|R⟩.

For the sake of clarity of notation, when working with a finitely presented
group G, we will assume G = ⟨S|R⟩ instead of just G being isomorphic to the
presentation.

Last notion we introduce are so-called amenable groups. More detail can be
found e.g. in [4, Appendix G].

Definition 2.17. Let G be a topological Hausdorff group. For f ∈ ℓ∞(G) and
g ∈ G define fg ∈ ℓ∞(G) by

(fg)(h) = f(hg−1), h ∈ G.

Define

Cb
ru(G) = {f ∈ ℓ∞(G) : g ↦→ fg−1 ∈ ℓ∞(G) is G- ∥·∥∞ continuous}

A linear functional M : Cb
ru(G) → R4 is a right-invariant mean if it satisfies the

conditions
3Talking about the smallest normal subgroup makes sense since an arbitrary intersection of

normal subgroups is a normal subgroup and every normal subgroup contains the unit.
4Reserving M for metric spaces and m to be a natural number we arrive to a bit of a co-

nundrum. Either don’t use the letter m for denoting mean or choose some other version of it.
Neither Greek or Cyrillic alphabets offer any satisfying substitute. Among the options, I went
with M, the Anglo-Saxon ruinic version of M.
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(Me1) M(1G) = 1, where 1G is the constant function (1)g∈G;

(Me2) ∀f ∈ Cb
ru(G) ∀g ∈ G : M(fg) = M(f);

(Me3) ∀f ∈ Cb
ru(G), f ≥ 0: M(f) ≥ 0.

Definition 2.18. A group G is amenable if there is a right-invariant mean M :
Cb

ru(G) → R.

2.2 Group actions on Banach spaces
Before moving to Lipschitz-free spaces, we will go through some basic results
which hold for Banach spaces in general. In Definition 2.2, we only defined the
dual action to actions by linear isometries in order to keep the introduction simple.
We will start by generalising the definition to actions by affine isometries. To do
so, we prove

Fact 2.19. Let α be an action of a group G a Banach space X by affine isometries.
Then there is an action Lα of G on X by linear isometries such that α(g, x) =
Lα(g, x) + α(g, 0) for g ∈ G, x ∈ X. Lα is the so-called linear part of α.

Proof. For each g ∈ G the mapping αg : X → X is an affine isometry. So it can
be written as αg(x) = (Lα)g(x) + αg(0) for some linear isometry (Lα)g. We need
to show that Lα(g, x) = (Lα)g(x) is an action of G on X.

By (A1) for α we have that αe is the identity mapping which is itself linear,
so (Lα)e = Id and (A1) is satisfied for Lα as well.

Let g, h ∈ G and x ∈ X. Then

Lα(g, Lα(h, x)) = Lα(g, αh(x) − αh(0))
= Lα(g, αh(x)) − Lα(g, αh(0))
= αg(αh(x)) − αg(0) −

(︂
αg(αh(0)) − αg(0)

)︂
= αg(αh(x)) − αg(αh(0))

and

Lα(gh, x) = αgh(x) − αgh(0).

These equalities imply (A2) for Lα, because by (A2) for α, we have αgh(x) =
αg(αh(x)) and αgh(0) = αg(αh(0)).

Definition 2.20. Let α be an action of a group G on a Banach space X by affine
isometries. We define the dual action α∗ : G × X∗ → X∗ to α as the dual action
to Lα. That is,

α∗(g, x∗)(x) = x∗(Lα(g−1, x)),
or, using the shorter notation

gx∗(x) = x∗(g−1x − g−10) = x∗(g−1x) − x∗(g−10).

If α is linear, then for each g ∈ G we have g−10 = 0 and so this definition is
compatible with Definition 2.2.
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Notation 2.21. Let α be an action of a group G on a Banach space X by affine
isometries. We denote

InvG(X) = {x∗ ∈ X∗ : x∗ is G-invariant}.

The following fact is essential in working with invariant functionals, so in the
following text we will automatically use it without mention.

Fact 2.22. Let X be a Banach space and G be a group acting on X by affine
isometries. Then for x∗ ∈ X∗ are the following equivalent:

(i) x∗ is G-invariant;

(ii) ∀g ∈ G : x ↦→ x∗(gx) − x∗(g0) − x∗(x) is constant zero;

(iii) ∀g ∈ G : x ↦→ x∗(gx) − x∗(x) is constant.

Proof. By definition, x∗ ∈ X∗ is G-invariant if and only if for every g ∈ G holds
gx∗ = x∗. This is equivalent to

∀g ∈ G ∀x ∈ X : x∗(x) = g−1x∗(x) = x∗(gx − g0) = x∗(gx) − x∗(g0).

This establishes the equivalence (i) ⇐⇒ (ii). The equivalence (ii) ⇐⇒ (iii) is
clear, because the two functions differ only by the constant (with respect to x)
x∗(g0).

Proposition 2.23. Let X be a Banach space and G be a group acting on X by
affine isometries. Then InvG(X) is a norm-closed subspace of X∗.

Proof. Let x∗, y∗ ∈ InvG(X). Then the functions x∗(g·) − x∗(·) and y∗(g·) − y∗(·)
are constant. Let λ ∈ R. Then also the functions

(λx∗)(g·) − (λx∗)(·) = λ(x∗(g·) − x∗(·))
(x∗ + y∗)(g·) − (x∗ + y∗)(·) = (x∗(g·) − x∗(·)) + (y∗(g·) − y∗(·))

are constant. Hence λx∗, x∗ + y∗ ∈ InvG(X).
Now let (x∗

n) ∈ InvG(X)N and x∗
n → x∗ ∈ X∗. Fix g ∈ G. We want to show

that x∗(g·) − x∗(·) − x∗(g0) is constant zero. This holds for all x∗
n, n ∈ N. Pick

x ∈ X arbitrarily. Then

|x∗(gx) − x∗(x) − x∗(g0)|
= |(x∗(gx) − x∗(x) − x∗(g0)) − (x∗

n(gx) − x∗
n(x) − x∗

n(g0))|
= |(x∗ − x∗

n)(gx − x − g0)|
≤ ∥x∗ − x∗

n∥ ∥gx − x − g0∥ .

We get |x∗(gx) − x∗(x) − x∗(g0)| = 0 for the right hand side converges to 0 as
n → ∞.

Once again, to simplify notation we introduce

Definition 2.24. Let X be a Banach space, G a group acting on X by affine
isometries and δ > 0. We say that x∗ ∈ X∗ is δ-invariant (for the action of G) if

∀g ∈ G : ∥gx∗ − x∗∥ ≤ δ.
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Akin to Fact 2.22, we have

Fact 2.25. Let X be a Banach space, G a group acting on X by affine isometries
and δ > 0. Then for x∗ ∈ X∗ are the following equivalent:

(i) x∗ is δ-invariant;

(ii) ∀g ∈ G ∀x ∈ X : |x∗(x) − x∗(gx) + x∗(g0)| ≤ δ ∥x∥;

(iii) ∀g ∈ G ∀x, y ∈ X : |x∗(x − gx) − x∗(y − gy)| ≤ δ ∥x − y∥.

Proof. Again, the equivalence (i) ⇐⇒ (ii) can be proved by simply writing out
the definition: x∗ is δ-invariant if and only if for all g ∈ G holds ∥x∗ − gx∗∥ ≤ δ
or, equivalently, for every g ∈ G and x ∈ X holds

δ ∥x∥ ≥
⃓⃓⃓
(x∗ − g−1x∗)(x)

⃓⃓⃓
=
⃓⃓⃓
x∗(x) − g−1x∗(x)

⃓⃓⃓
= |x∗(x) − x∗(gx − g0)| .

If x∗ is δ-invariant, g ∈ G and x, y ∈ X, we calculate in the same spirit

δ ∥x − y∥ ≥
⃓⃓⃓
(x∗ − g−1x∗)(x − y)

⃓⃓⃓
=
⃓⃓⃓
(x∗ − g−1x∗)(x) − (x∗ − g−1x∗)(y)

⃓⃓⃓
= |(x∗(x) − x∗(gx) − x∗(g0)) − (x∗(y) − x∗(gy) − x∗(g0))|
= |x∗(x − gx) − x∗(y − gy)| .

On the other hand, if (iii) holds, by taking y = 0 we obtain (ii).

One more easy case, also briefly mentioned in [10], when the answer to Ques-
tion 2.3 is positive are actions of amenable groups.

Proposition 2.26. Let G be an amenable group acting by affine isometries on
a Banach space X. Assume that the mapping g ↦→ gx is continuous for every
x ∈ X5. Let δ > 0 and x∗ ∈ X∗ be δ-invariant. Denote x∗(x) = M(g ↦→
g−1x∗(x)), x ∈ X, where M is a right-invariant mean on G. Then x∗ ∈ InvG(X)
and ∥x∗ − x∗∥ ≤ δ.

Proof. During the proof we will use the notation “variable ↦→ expression” to
refer to functions without giving them names (often, for example, for elements of
ℓ∞(G) which are function from G to R).

We will start by showing that x∗ is a well-defined function. For x ∈ X define
x∗

x : G → R by
x∗

x(g) = g−1x∗(x) = x∗(gx) − x∗(g0).
First, x∗

x ∈ ℓ∞(G) follows from x∗’s δ-invariance: for any x ∈ X and g ∈ G we
have

|x∗
x(g)| = |x∗(gx) − x∗(g0)|

≤ |x∗(x − gx) − x∗(0 − g0)| + |x∗(x − 0)|
≤ δ ∥x − 0∥ + |x∗(x) − x∗(0)|
≤ (δ + ∥x∗∥) ∥x∥ < ∞.

(2.3)

We need to verify that x∗
x ∈ Cb

ru(G), that is, we need to check that h ↦→ (g ↦→
x∗(ghx − gh0)) is continuous from G to ℓ∞(G). Let h ∈ G be arbitrary and

5This is automatically true for discrete groups.
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(hi)i∈I be a net in G indexed by I such that hi → h. Then, by the assumption,
hix → hx and hi0 → 0. From continuity of x∗ and the fact that the action is by
isometries we now get the desired convergence:

∥(g ↦→ x∗(ghx − gh0)) − (g ↦→ x∗(ghix − ghi0))∥ℓ∞(G)

≤ ∥g ↦→ x∗(ghx − ghix)∥ℓ∞(G) + ∥g ↦→ x∗(gh0 − ghi0)∥ℓ∞(G)

≤ ∥x∗∥ sup
g∈G

(∥ghx − ghix∥ + ∥gh0 − ghi0∥)

= ∥x∗∥ sup
g∈G

(∥hx − hix∥ + ∥h0 − hi0∥)

= ∥x∗∥ (∥hx − hix∥ + ∥h0 − hi0∥) → 0.

So x∗
x ∈ Cb

ru(G) for all x ∈ X.
The mapping x∗ is linear as we are composing linear functionals: for x, y ∈ X

and t ∈ R holds

x∗(x + ty) = M
(︂
g ↦→ g−1x∗(x + ty)

)︂
= M

(︂
g ↦→ (g−1x∗(x) + tg−1x∗(y))

)︂
= M

(︂
(g ↦→ g−1x∗(x)) + t(g ↦→ g−1x∗(y))

)︂
= M

(︂
g ↦→ g−1x∗(x)) + tM(g ↦→ g−1x∗(y)

)︂
= x∗(x) + tx∗(y).

Using the estimate (2.3) and properties (Me1) and (Me3)6 of the mean we obtain

|x∗(x)| = |M(x∗
x)|

(Me3)
≤ M(|x∗

x|)
(Me3)
≤ M(g ↦→ (∥x∗∥ + δ) ∥x∥) (Me1)= (∥x∗∥ + δ) ∥x∥ .

So x∗ ∈ X∗ and ∥x∗∥ ≤ ∥x∗∥ + δ.
To show that x∗ ∈ InvG(X), we will show that for all h ∈ G and x ∈ X holds

x∗(hx − x − h0) = 0. Fix h ∈ G, x ∈ X. Then for any g ∈ G holds

(x∗
hx − x∗

x − x∗
h0)(g) = x∗(ghx) − x∗(g0) − x∗(gx) + x∗(g0) − x∗(gh0) + x∗(g0)

= x∗(ghx − gh0) − x∗(gx − g0)

and using the invariance and linearity of the mean we obtain

x∗(hx − x − h0) = M(x∗
hx − x∗

x − x∗
h0)

= M
(︂
g ↦→ x∗(ghx − gh0)

)︂
− M

(︂
g ↦→ x∗(gx − g0)

)︂
= 0.

By Fact 2.22, x∗ is invariant.
It remains to show that ∥x∗ − x∗∥ < δ. Pick x ∈ X. By definition of x∗

x and
δ-invariance of x∗, for any g ∈ G holds

|x∗(x) − x∗
x(g)| =

⃓⃓⃓
(x∗ − g−1x∗)(x)

⃓⃓⃓
≤ δ ∥x∥ .

6For f ∈ Cb
ru(G) we have |f | ∈ Cb

ru(G) and |f | − f ≥ 0, so by the property (Me3) we obtain
M(|f | − f) ≥ 0, which by linearity yields M(|f)| ≥ M(f). Analogously, |f | + f ≥ 0 and so
M(|f |) ≥ −M(f). Hence |M(f)| ≤ M(|f |).
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Using this estimate and the fact that by (Me1) we have M(g ↦→ C) = C for any
C ∈ R, we get

|(x∗ − x∗)(x)| = |x∗(x) − M(x∗
x)| = |M(g ↦→ (x∗(x) − x∗

x(g))|
(Me3)
≤ M(g ↦→ δ ∥x∥) = δ ∥x∥ .

Hence ∥x∗ − x∗∥ ≤ δ.

Notable examples of amenable groups, and hence groups for which the an-
swer to Question 2.29 is positive are abelian and compact groups (see [4, Exam-
ple G.1.5] and [4, Theorem G.2.1]). On the other hand, free groups with gener-
ating sets consisting of two elements are not amenable (see [4, Example G.2.4]).

The just proven Proposition already answers Question 2.3 for actions of dis-
crete amenable groups, but if we furthermore assume that the action has bounded
orbits, we can use this method to glean more insight into the situation.

Corollary 2.27. Let G, X, δ, x∗ and x∗ be as in Proposition 2.26. Assume that
G has bounded orbits. Then x∗ is constant on each orbit of G. In particular, if
the action of G is topologically transitive (that is, for any two open sets U, V ⊂ X
there is g ∈ G such that gU ∩ V ̸= ∅), then ∥x∗∥ ≤ δ.

Proof. Since G has bounded orbits, (g ↦→ x∗(gx)) ∈ ℓ∞(G) for any x ∈ X. We
need to show that M(g ↦→ x∗(gx)) is well-defined for any x ∈ X. This means
showing that h ↦→ (g ↦→ x∗(ghx)) is continuous from G to ℓ∞(G). Let (hi)i∈I be
a net in G indexed by I such that hi → h. Then, by the assumption, hix → hx
and using the assumption that the action is by isometries we obtain

∥(g ↦→ x∗(ghix)) − (g ↦→ x∗(ghx))∥∞ = sup
g∈G

|x∗(ghix − ghx)|

≤ ∥x∗∥ sup
g∈G

∥ghix − ghx∥

= ∥x∗∥ ∥hi − hx∥ → 0.

For x ∈ X and h ∈ G we calculate

x∗(x) − x∗(hx)
= M(g ↦→ x∗(gx) − x∗(g0)) − M(g ↦→ x∗(ghx) − x∗(g0))
= M(g ↦→ x∗(gx)) − M(g ↦→ x∗(g0)) − M(g ↦→ x∗(ghx)) + M(g ↦→ x∗(g0))

= M(g ↦→ x∗(gx)) − M(g ↦→ x∗(ghx)) (Me2)= 0.

That is, x∗ is in fact constant on every orbit.
In particular, for any g ∈ G we have x∗(g0) = x∗(0) = 0. We will show

that if the action is topologically transitive, then x∗ = 0. This will conclude
the proof because then ∥x∗∥ = ∥x∗ − x∗∥ ≤ δ. Let y ∈ X and ε > 0. Since
the action is topologically transitive, there is g ∈ G and y′ ∈ U(y, ε) such that
y′ ∈ U(y, ε) ∩ gU(0, ε). We estimate

|x∗(y)| ≤ |x∗(y − y′)| + |x∗(y′ − g0)| + |x∗(g0)| ≤ 2 ∥x∗∥ ε.

As ε > 0 was arbitrary, x∗(y) = 0.
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Notice that this in particular implies that the only invariant function for an ac-
tion satisfying the assumptions of Corollary 2.27 is the constant zero. Indeed, if
x∗ is such an invariant function, then it is δ-invariant for any δ > 0 and, by the
Corollary, ∥x∗∥ ≤ δ for any δ > 0, i.e. x∗ = 0.

Note that our mapping x∗ can also be written as x∗(x) = RG(x)(x∗), where
RG : X → X∗∗ is defined as RG(x)(x∗) = M(g ↦→ g−1x∗(x)). This mapping RG

was studied in similar context in [8].

2.3 Group actions on Lipschitz-free spaces
In this section, we finally focus on Question 2.3 in Lipschitz-free spaces. By ∥·∥
on the space Lip0(M) we will mean the norm given by the Lipschitz number, i.e.
∥f∥ = L(f), f ∈ Lip0(M).

Let us establish what our actions look like. We begin with some action by
isometries of a group G on a pointed metric space (M, d, 0). To fit within the
setting of Question 2.3, we need to, in some sense, extend this action to a linear
action by isometries on F(M). For g ∈ G define fg : M → F(M) by fg(x) =
δ(gx) − δ(g0). We have for any x, y ∈ M

∥fg(x) − fg(y)∥ = ∥δ(gx) − δ(gy)∥ = d(gx, gy) = d(x, y)

and fg(0) = 0 so fg ∈ Lip0(M, F(M)) with L(fg) = 1. Define α : G × F(M) →
F(M) by setting αg to be the linearization of the mapping fg (which is given by
Theorem 1.8 (iv)), i.e. for µ = ∑︁n

i=1 aiδ(xi) ∈ F(M)

α(g, µ) =
n∑︂

i=1
ai(δ(gxi) − δ(g0)).

Then α is an action of G on F(M): for µ = ∑︁n
i=1 aiδ(xi) ∈ span δ(M) we have

αe(µ) =
n∑︂

i=1
ai(δ(ex) − δ(e0)) =

n∑︂
i=1

ai(δ(x) − δ(0)) = µ

and for g, h ∈ G we have

αg(αh(µ)) = αg

(︄
n∑︂

i=1
ai(δ(hx) − δ(h0))

)︄

=
n∑︂

i=1
ai(δ(ghx) − δ(g0) − (δ(gh0) − δ(g0)))

=
n∑︂

i=1
ai(δ(ghx) − δ(gh0)) = αgh(µ).

If µ ∈ F(M), there is a sequence (µn) ∈ (span δ(M))N such that µn → µ. Using
the fact that αg are continuous for every g ∈ G, we deduce

αe(µ) = lim
n→∞

αe(µn) = lim
n→∞

µe = µ

and for g, h ∈ G

αg(αh(µ)) = lim
n→∞

αg(αh(µn)) = lim
n→∞

αgh(µn) = αgh(µ).
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Moreover, this action is by isometries: since L(fg) ≤ 1 and L(fg−1) ≤ 1, it
holds that ∥αg∥ ≤ 1 and ∥αg−1∥ ≤ 1; if µ ∈ F(M), then ∥αg(µ)∥ ≤ ∥µ∥ and
∥µ∥ = ∥αg−1(αg(µ))∥ ≤ ∥αg(µ)∥.
Remark 2.28. It would seem more natural to instead consider an action such
that gδ(x) = δ(gx) for x ∈ M . However, if there is g ∈ G such that g0 ̸= 0, then
the action cannot be by linear isometries (since it would not map 0 to 0). So, in
general, the best one can hope for is an action by affine isometries. This is in fact
achievable by the affine action α′ which is constructed by taking our linear action
α and offsetting it so that the condition gδ(x) = δ(gx), x ∈ M holds. That is,

α′
g(µ) = δ(g0) + αg(µ), µ ∈ F(M), g ∈ G, (2.4)

or, written out explicitly,

α′
g(µ) = δ(g0) +

n∑︂
i=1

ai(δ(gxi) − δ(g0)), where µ =
n∑︂

i=1
aiδ(xi) ∈ F(M).

However, since the linear part of α′ is α, by definition we have (α′)∗ = α∗, and
thus, for the purposes of Question 2.29, it is immaterial which action we choose.
For this reason, we will not check that the formula (2.4) really defines an action
and we shall work with the linear action α.

Denote the dual action to α by α∗ : G × F(M)∗ → F(M)∗. To be able to
use Theorem 2.5, we need to define an action β : G × Lip0(M) → Lip0(M) so
that, using the notation from said theorem, α∗

g(φ(f)) = φ(βgf) for any g ∈ G
and f ∈ Lip0(M). We calculate for g ∈ G, f ∈ Lip0(M) and x ∈ M

α∗
g(φ(f))(δ(x)) = φ(f)(αg−1(δ(x))) = φ(f)(δ(g−1x) − δ(g−10))

= f(g−1x) − f(g−10).

Hence, the action of G on Lip0(M) we seek must be defined as βgf(x) = f(g−1x)−
f(g−10). First we need to show that x ↦→ f(g−1x) − f(g−10) is in fact an element
of Lip0(M). Clearly βg(f)(0) = f(g−10)−f(g−10) = 0. For x, y ∈ M we calculate

|βg(f)(x) − βg(f)(y)| =
⃓⃓⃓
f(g−1x) − f(g−1y)

⃓⃓⃓
≤ L(f)d(g−1x, g−1y) = L(f)d(x, y).

So βg(f) ∈ Lip0(M). We can easily show that β satisfies (A1): for x ∈ M holds

βe(f)(x) = f(e−1x) − f(e−10) = f(x) − f(0) = f(x).

The condition (A2) we can deduce from the fact that it holds for α∗: for g, h ∈ G
and f ∈ Lip0(M) holds

φ(β(g, β(h, f))) = α∗(g, φ(β(h, f))) = α∗(g, α∗(h, φ(f)))
= α∗(gh, φ(f)) = φ(β(gh, f)).

This implies β(g, β(h, f)) = β(gh, f) since φ is injective. This way, we also show
that β is by linear isometries: for g ∈ G, f, f ′ ∈ Lip0(M) and t ∈ R we have

φ(βg(f + tf ′)) = α∗
g(φ(f + tf ′)) = α∗

g(φ(f)) + tα∗
g(φ(f ′)) = φ(βg(f) + tβg(f ′))

and

∥βgf∥Lip0(M) = ∥φ(βgf)∥F(M)∗ =
⃦⃦⃦
α∗

gφ(f)
⃦⃦⃦

F(M)∗
= ∥φ(f)∥F(M)∗ = ∥f∥Lip0(M) .

To simplify all of this, we restate Question 2.3 for Lipschitz-free spaces:
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Question 2.29. Let δ > 0, (M, d, 0) be a pointed metric space and G be a discrete
group acting on M by isometries. Consider the action of G by linear isometries
α : G × Lip0(M) → Lip0(M) given by

α(g, f)(x) = f(g−1x) − f(g−10), g ∈ G, f ∈ Lip0(M), x ∈ M.

Assume f ∈ Lip0(M) with L(f) = 1 is δ/10-invariant (with respect to the ac-
tion α). Must there exist invariant f ∈ Lip0(M) with

⃦⃦⃦
f − f

⃦⃦⃦
≤ δ?

From now on, whenever we have a pointed metric space M equipped with
an action of some group by isometries, we will always assume Lip0(M) to be
equipped with the action given above. First step is to characterise functions
which are invariant for this action.

Theorem 2.30. Let (M, d, 0) be a pointed metric space, G be a group acting by
isometries on M , S ⊂ G satisfy G = ⟨S⟩ and assume f ∈ Lip0(M). Then the
following are equivalent:

(i) f is G-invariant;

(ii) for every g ∈ G and x ∈ M holds f(gx) = f(x) + ∑︁n
i=1 aif(si0), where

n ∈ N, a ∈ {−1, 1}n and s ∈ Sn are such that g = sa1
1 · · · san

n ;

(iii) there is a homomorphism H : G → R such that for any x ∈ M and g ∈ G
holds f(gx) = f(x) + H(g).

Proof. First, recall that by Fact 2.22, f is G-invariant if and only if f(h·) − f(·)
is a constant function.

(i) =⇒ (ii): Taking values of the constant function f(h·) − f(·) at z ∈ M
and 0 yields

∀h ∈ G : f(hz) − f(z) = f(h0) − f(0) = f(h0).

Taking z = y or z = h−1y results in

∀y ∈ M ∀h ∈ G : f(hy) = f(y) + f(h0), (2.5)
∀y ∈ M ∀h ∈ G : f(h−1y) = f(y) − f(h0). (2.6)

Let x ∈ M and g ∈ G. Write g = sa1
1 · · · san

n for some n ∈ N, s ∈ Sn and
a ∈ {−1, 1}n. Applying either (2.5) if a1 = 1, or (2.6) if a1 = −1, to h = s1 and
y = sa2

2 · · · san
n x we obtain

f(sa1
1 · · · san

n x) = f(sa2
2 · · · san

n x) + a1f(s10).

Proceeding inductively, we arrive at the equality

f(gx) = f(sa1
1 · · · san

n x) = f(x) +
n∑︂

i=1
aif(si0).

(ii) =⇒ (iii): In light of (ii), we need to verify that the mapping H :
G → R defined by H(g) = ∑︁n

i=1 aif(si0), where g = sa1
1 · · · san

n , s ∈ Sn and
a ∈ {−1, 1}n, is a well-defined homomorphism. It is well defined for if sa1

1 · · · san
n =
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g = tb1
1 · · · tbm

m , where n, m ∈ N, s ∈ Sn, t ∈ Sm, a ∈ {−1, 1}n and b ∈ {−1, 1}m,
then by (ii) holds

n∑︂
i=1

aif(si0) = f(gx) − f(x) =
m∑︂

i=1
bif(ti0).

Now, if g, h ∈ G, then

H(gh) = f(gh0) − f(0) = f(gh0) − f(h0) + f(h0) − f(0) = H(g) + H(h),

where in the last equality we used (ii) for x = h0 and x = 0.
(iii) =⇒ (i): Let x ∈ M and g ∈ G. Then

gf(x) = f(g−1x) − f(g−10) = f(x) + H(g−1) − f(0) − H(g−1) = f(x).

The case we will consider primarily is the case when a group G acts on itself.
To do this, we must equip G with some metric. We use the one given in

Definition 2.31. Let G be a group and S ⊂ G\{e} be generating (i.e. ⟨S⟩ = G).
The word metric on G (induced by S) is defined by

d(g, h) = min
{︂
n ∈ N0 : (∃s ∈ (S±1)n) g−1h = s1 · · · sn

}︂
, g, h ∈ G.

We interpret empty product as the unit.

When equipping a group with a metric, we will implicitly consider the unit to
be the base point.

Definition 2.32. Let G be a group equipped with a metric d. We say that d is
left-invariant if

∀g, h, k ∈ G : d(g, h) = d(kg, kh).
We say that d is right-invariant if

∀g, h, k ∈ G : d(g, h) = d(gk, hk).

Finally, we say that d is invariant if it is both left- and right-invariant.

Fact 2.33. The word metric is a left-invariant metric.

Proof. Let g, h ∈ G. If g = h, then by definition d(g, h) = 0. On the other hand,
if d(g, h) = 0, then necessarily g−1h = e and thus g = h. If g−1h = s1 · · · sn,
where n = d(g, h) and s ∈ (S±1)n, then h−1g = s−1

n · · · s−1
1 and hence d(h, g) ≤

n = d(h, g). Switching the role of g and h, we have d(g, h) ≤ d(h, g) and thus
d(g, h) = d(h, g) for any g, h ∈ G. We have checked that (M1) and (M2) hold.

To verify (M3), let g, h, k ∈ G and let g−1h = s1 · · · sn and h−1k = t1 · · · tm,
where n = d(g, h), m = d(h, k) and s ∈ (S±1)n, t ∈ (S±1)m. Then g−1k =
g−1hh−1k = s1 · · · snt1 · · · tm and hence d(g, k) ≤ n + m = d(g, h) + g(h, k).

Finally, if g, h, k ∈ G and g−1h = s1 · · · sn, for some n ∈ N0 and s ∈ (S±1)n,
then (kg)−1(kh) = g−1k−1kh = g−1h = s1 · · · sn and hence d(kg, kh) ≤ d(g, h). If
g′, h′, k′ ∈ G, then applying the previous to k = (k′)−1, g = k′g′ and h = k′h′ we
get d(g′, h′) = d((k′)−1k′g′, (k′)−1k′h′) ≤ d(k′g′, k′h′).
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Definition 2.34. Let G be a group endowed with a metric d. We define the
action by left-translations of G on itself as the action (g, h) ↦→ gh : G × G → G.

Notice that a direct consequence of the definitions is

Fact 2.35. Let (G, d) be a group equipped with a metric and the action by left-
translations on itself. Then the action is by isometries if and only if d is left-
invariant.

Proof. The metric is left invariant if and only if for all g, h, k ∈ G holds d(g, h) =
d(kg, kh) and the action is by isometries if and only if for all k ∈ G the mapping
g ↦→ kg is an isometry.

Corollary 2.36. Let G be a group endowed with a left-invariant metric. Then
f ∈ Lip0(G) is G-invariant with respect to left-translations if and only if f : G →
R is a homomorphism.

Proof. By Theorem 2.30, f is invariant if and only if there is a homomorphism
H : G → R such that f(gx) = f(x) + H(g) for every x, g ∈ G.

If f is a homomorphism, then for every g, x ∈ G holds f(gx) = f(x) + f(g),
so we may take H = f .

On the other hand, if there is a homomorphism H : G → R such that f(gx) =
f(x) + H(g) for every x, g ∈ G, then for any g ∈ G holds f(g) = f(ge) =
f(e) + H(g) = H(g), so f = H and thus f is a homomorphism.

Next, we shall characterise δ-invariant functions.

Theorem 2.37. Let (M, d, 0) be a pointed metric space and G be a group acting
on M by isometries. Let δ > 0 and f ∈ Lip0(M). Then the following conditions
are equivalent:

(i) f is δ-invariant;

(ii) f − gf is δ-Lipschitz for every g ∈ G;

(iii) the mapping x ↦→ f(gx) − f(x) is δ-Lipschitz for every g ∈ G;

(iv) for any x, y ∈ M and g1, . . . gn ∈ G holds⃓⃓⃓⃓
⃓f(g1 · · · gnx) − f(x) −

n∑︂
i=1

(f(giy) − f(y))
⃓⃓⃓⃓
⃓ ≤ δ

(︄
nd(x, y) +

n∑︂
i=2

d(gix, x)
)︄

.

Proof. (i) ⇐⇒ (ii): Function f ∈ Lip0(M) is δ-invariant if and only if
∥f − gf∥ ≤ δ for all g ∈ G. Since the norm on Lip0(M) we use is the Lips-
chitz number, the equivalence follows.

(ii) ⇐⇒ (iii): This equivalence follows from the equality⃓⃓⃓
(g−1f − f)(x) − (g−1f − f)(y)

⃓⃓⃓
=
⃓⃓⃓
f(gx) − f(g0) − f(x) −

(︂
f(gy) − f(g0) − f(y)

)︂⃓⃓⃓
=
⃓⃓⃓(︂

f(gx) − f(x)
)︂

−
(︂
f(gy) − f(y)

)︂⃓⃓⃓
which is valid for any x, y ∈ M and g ∈ G.
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(iii) ⇐⇒ (iv): Notice that for n = 1, (iv) reduces to (iii). So (iv) =⇒ (iii)
and (iii) directly implies (iv) for n = 1. If n > 1, we expand f(g1 · · · gnx) − f(x)
into the sum

f(g1 · · · gnx) − f(x) =
n∑︂

i=1
f(g1 · · · gix) − f(g1 · · · gi−1x),

where by f(g1 · · · gi−1x) for i = 1 we understand as just f(x). Now we may write⃓⃓⃓⃓
⃓f(g1 · · · gnx) − f(x) −

n∑︂
i=1

(f(gix) − f(x))
⃓⃓⃓⃓
⃓

=
⃓⃓⃓⃓
⃓

n∑︂
i=1

(︂
f(g1 · · · gix) − f(g1 · · · gi−1x)

)︂
−
(︂
f(gix) − f(x)

)︂⃓⃓⃓⃓⃓
≤

n∑︂
i=1

⃓⃓⃓(︂
f(g1 · · · gix) − f(g1 · · · gi−1x)

)︂
−
(︂
f(gix) − f(x)

)︂⃓⃓⃓
=

n∑︂
i=1

⃓⃓⃓(︂
f(g1 · · · gi−1gix) − f(gix)

)︂
−
(︂
f(g1 · · · gi−1x) − f(x)

)︂⃓⃓⃓
=

n∑︂
i=2

⃓⃓⃓(︂
f(g1 · · · gi−1gix) − f(gix)

)︂
−
(︂
f(g1 · · · gi−1x) − f(x)

)︂⃓⃓⃓
+ |f(g1x) − f(g1x) − (f(x) − f(x))|

=
n∑︂

i=2

⃓⃓⃓(︂
f(g1 · · · gi−1gix) − f(gix)

)︂
−
(︂
f(g1 · · · gi−1x) − f(x)

)︂⃓⃓⃓
.

For each summand, we use (iii) for g′ = g1 · · · gi−1, x′ = gix and y′ = x to obtain⃓⃓⃓⃓
⃓f(g1 · · · gnx) − f(x) −

n∑︂
i=1

(︂
f(gix) − f(x)

)︂⃓⃓⃓⃓⃓ ≤
n∑︂

i=2
δd(gix, x).

Finally,⃓⃓⃓⃓
⃓f(g1 · · · gnx) − f(x) −

n∑︂
i=1

(︂
f(giy) − f(y)

)︂⃓⃓⃓⃓⃓
=
⃓⃓⃓⃓
⃓f(g1 · · · gnx) − f(x) −

n∑︂
i=1

(︂
f(gix) − f(x) − f(gix) + f(x) + f(giy) − f(y)

)︂⃓⃓⃓⃓⃓
≤

n∑︂
i=2

δd(gix, x) +
n∑︂

i=1

⃓⃓⃓(︂
f(gix) − f(x)

)︂
−
(︂
f(giy) − f(y)

)︂⃓⃓⃓

≤ δ

(︄
n∑︂

i=2
d(gix, x) + nd(x, y)

)︄
,

where in the last inequality we have again used (iii) for each summand.

Before we proceed, let us make a remark on the relation of δ-invariance and
(partial) quasimorphisms. For more details and uses for quasimorphisms see,
e.g., [6].

Definition 2.38. Let G be a group and f : G → R. We say that f is a quasi-
morphism if there is a constant D ≥ 0 such that

∀g, h ∈ G : |f(gh) − f(g) − f(h)| ≤ D.
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If d is an invariant metric on G, then the mapping f is said to be a partial
quasimorphism (or D-partial quasimorphism) if there is a constant D ≥ 0 such
that

∀g, h ∈ G : |f(gh) − f(g) − f(h)| ≤ D min{d(g, e), d(h, e)}.

Proposition 2.39. Let (G, d) be a group equipped with an invariant metric d.
Let δ > 0 and f ∈ Lip0(G). Consider the statements

(i) f is δ
2-partial quasimorphism;

(ii) the mappings h ↦→ f(gh) − f(h) and h ↦→ f(hg) − f(h) are δ-Lipschitz;

(iii) f is δ-partial quasimorphism.

Then the implications (i) =⇒ (ii) =⇒ (iii) hold.

Proof. (i) =⇒ (ii): Assume that f is δ
2 -partial quasimorphism. Pick g, h, k ∈ G.

We estimate⃓⃓⃓
f(gh) − f(h) −

(︂
f(gk) − f(k)

)︂⃓⃓⃓
=
⃓⃓⃓
f(gh) − f(gk) −

(︂
f(h) − f(k)

)︂⃓⃓⃓
=
⃓⃓⃓
f(gh) − f(gk) − f(k−1h) −

(︂
f(h) − f(k) − f(k−1h)

)︂⃓⃓⃓
≤ δ

2 min{d(gk, e), d(k−1h, e)} + δ

2 min{d(k, e), d(k−1h, e)}

≤ δd(k−1h, e)
= δd(h, k)

and ⃓⃓⃓
f(hg) − f(h) −

(︂
f(kg) − f(k)

)︂⃓⃓⃓
=
⃓⃓⃓
f(hg) − f(kg) −

(︂
f(h) − f(k)

)︂⃓⃓⃓
=
⃓⃓⃓
f(hg) − f(hk−1) − f(kg) −

(︂
f(h) − f(hk−1) − f(k)

)︂⃓⃓⃓
≤ δ

2 min{d(hk−1, e), d(kg, e)} + δ

2 min{d(hk−1, e), d(k, e)}

≤ δd(hk−1, e)
= δd(h, k).

(ii) =⇒ (iii): Using the fact that f(e) = 0 and the assumption (ii), we
obtain for any g, h ∈ G

|f(gh) − f(g) − f(h)| =
⃓⃓⃓
f(gh) − f(h) −

(︂
f(ge) − f(e)

)︂⃓⃓⃓
≤ δd(h, e)

and

|f(gh) − f(g) − f(h)| =
⃓⃓⃓
f(gh) − f(g) −

(︂
f(eh) − f(e)

)︂⃓⃓⃓
≤ δd(g, e).
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Notice that by Theorem 2.37 the first part of condition (ii) is equivalent to
f being δ-invariant for the action of left-translations. The second part would be
equivalent to f being δ-invariant for the (right) action by right-translations which
we have not defined.

Every f ∈ Lip0(M) is automatically 2 ∥f∥-invariant for any action by isome-
tries: for x, y ∈ M with x ̸= y and g ∈ G holds

|(f(x) − f(gx)) − (f(y) − f(gy))|
d(x, y) ≤ |f(x) − f(y)|

d(x, y) + |f(gx) − f(gy)|
d(x, y)

= |f(x) − f(y)|
d(x, y) + |f(gx) − f(gy)|

d(gx, gy)
≤ 2 ∥f∥ .

The computation above shows that, for a Lipschitz mapping f attaining zero
at the base point on a group equipped with an invariant metric, the mapping
h ↦→ f(gh) − f(h) is 2 ∥f∥-Lipschitz. Using the same argument, mutatis mu-
tandis, one may also show that the second part of the condition (ii) holds for
δ = 2 ∥f∥, that is, h ↦→ f(hg) − f(h) is 2 ∥f∥-Lipschitz. Hence, on a group
G equipped with an invariant metric, functions from Lip0(G) are automatically
partial quasimorphisms with a sufficiently large constant. The relation between
Lipschitzness and partial quasimorphisms is described in detail in [13].

As one might expect, δ-invariant functions need not be quasimorphisms.

Example 2.40. Define a sequence of integers (an) recursively by setting a1 = 1
and an+1 = 2an + 1. Define f : Z → R by putting f(k) = 0 for k ≤ 0 and
f(k) = nδ for an ≤ k ≤ 2an. Then f is δ-invariant (with respect to the action by
left-translations), but is not a quasimorphism.

Proof. If k = an for some n ∈ N, then f(k) − f(k − 1) = δ, otherwise f(k) −
f(k − 1) = 0. Since f is non-decreasing, for any m, n ∈ Z (and without loss of
generality m ≤ n) we have

0 ≤ f(n) − f(m) =
n∑︂

i=m+1
f(i) − f(i − 1) ≤ (n − m)δ.

It follows that f is δ-Lipschitz. Clearly f ∈ Lip0(Z). Note that the action by
(any) translations on Z is merely addition. Let g, x, y ∈ Z. If y ≤ x, we have

f(x) − f(y) ∈ [0, (x − y)δ] and f(x + g) − f(y + g) ∈ [0, (x − y)δ].

Since both values are within the same interval of length (x − y)δ, it must hold
that ⃓⃓⃓

f(x) − f(x + g) −
(︂
f(y) − f(g + y)

)︂⃓⃓⃓
≤ |x − y| δ.

If y ≤ x, we proceed analogously. Combined with Theorem 2.37 (iii), this shows
that f is δ-invariant. But f is not a quasimorphism: for n ∈ N we get

|f(2an) − f(an) − f(an)| = |nδ − nδ − nδ| = nδ
n→∞→ ∞.
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Now we can finally get to Question 2.29. We will not answer the question in
general, but we shall give positive results for some special cases. First, we look
at actions by translations on free groups endowed with the word metric.

Lemma 2.41. Let G be a group equipped with a left-invariant metric d and the
action on itself by left-translations. If h : G → R is a homomorphism, then

L(h) = sup
e ̸=g∈G

|h(g)|
d(g, e) .

Proof. By definition of the Lipschitz number, supe̸=g∈G
|h(g)|
d(g,e) ≤ L(h). To show

the converse inequality, let g, g′ ∈ G, g ̸= g′ and calculate

|h(g) − h(g′)|
d(g, g′) = |h(g−1g′)|

d(g, g′) = |h(g−1g′)|
d(g−1g′, e) ≤ sup

e̸=k∈G

|h(k)|
d(k, e) .

Taking the supremum over all g ̸= g′ yields the inequality.

Lemma 2.42. Let G be a group equipped with a left-invariant metric d and the
action by left-translations on itself. If δ > 0, a ∈ {−1, 1} and f ∈ Lip0(G) is
δ-invariant, then for any g ∈ G holds |f(ga) − af(g)| ≤ δd(g, e).

Proof. From the definition of the action by left-translations we obtain

∀g ∈ G : f(g−1) = −(f(e) − f(g−1e)) = −gf(g)

and using Theorem 2.37 (ii)

∀g ∈ G :
⃓⃓⃓
f(g−1) + f(g)

⃓⃓⃓
= |gf(g) − f(g)| ≤ δd(g, e) + |gf(e) − f(e)| = δd(g, e)

where we used that f, gf ∈ Lip0(G) and so gf(e) = f(e) = 0. If a = 1 then
f(ga) − af(g) = f(g) − f(g) = 0 and if a = −1, then

|f(ga) − af(g)| =
⃓⃓⃓
f(g−1) − (−f(g))

⃓⃓⃓
=
⃓⃓⃓
f(g−1) + f(g)

⃓⃓⃓
≤ δd(g, e)

Hence |f(ga) − af(g)| ≤ δ.

Theorem 2.43. Let δ > 0 and FS be a free group with generating set S equipped
with the word metric and action by left-translations. Let f ∈ Lip0(FS) be δ/3-
invariant. Then the mapping f : FS → R defined by

f(g) =
n∑︂

i=1
aif(si),

where n ∈ N, a ∈ {−1, 1}n and s ∈ Sn are such that g = sa1
1 · · · san

n is the reduced
word representing g, is an invariant element of Lip0(FS) with

⃦⃦⃦
f − f

⃦⃦⃦
≤ δ.

Proof. The mapping f is a homomorphism by Proposition 2.11. If we show
f ∈ Lip0(FS), then by Corollary 2.36, it will be invariant. By definition (and the
convention that empty sum is equal to zero), f(e) = 0. Let g = sa1

1 · · · san
n be
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an element of FS and its representation as a reduced word. Then7 d(g, e) = n
and, using the fact that d(s, e) = 1 for every s ∈ S, we estimate⃓⃓⃓

f(g)
⃓⃓⃓

d(g, e) = |∑︁n
i=1 aif(si)|

n
≤ 1

n

n∑︂
i=1

|f(si)| = 1
n

n∑︂
i=1

|f(si) − f(e)|

≤ 1
n

n∑︂
i=1

∥f∥ d(si, e) = ∥f∥ .

Use of Lemma 2.41 shows that f is ∥f∥-Lipschitz.
It remains to show that

⃦⃦⃦
f − f

⃦⃦⃦
< δ. Let g, h ∈ G. Then −f(g) + f(h) =

f(g−1h) and using Theorem 2.37 (iii) we deduce⃓⃓⃓(︂
f(g) − f(h)

)︂
−
(︂
f(e) − f(g−1h)

)︂⃓⃓⃓
=
⃓⃓⃓(︂

f(g) − f(g−1g)
)︂

−
(︂
f(h) − f(g−1h)

)︂⃓⃓⃓
≤ δ

3d(g, h).

Put together,⃓⃓⃓
(f − f)(g) − (f − f)(h)

⃓⃓⃓
≤
⃓⃓⃓
(f − f)(e) − (f − f)(g−1h)

⃓⃓⃓
+
⃓⃓⃓(︂

f(e) − f(g−1h)
)︂

−
(︂
f(g) − f(h)

)︂⃓⃓⃓
≤
⃓⃓⃓
(f − f)(e) − (f − f)(g−1h)

⃓⃓⃓
+ δ

3d(g, h)

=
⃓⃓⃓
(f − f)(g−1h)

⃓⃓⃓
+ δ

3d(g, h)

and hence it is enough to obtain the estimate
⃓⃓⃓
(f − f)(g)

⃓⃓⃓
≤ 2

3d(g, e) for any
g ∈ G.

Let g ∈ FS and g = sa1
1 · · · san

n be the reduced word representing g. Then we
have ⃓⃓⃓

(f − f)(g)
⃓⃓⃓
=
⃓⃓⃓⃓
⃓f(sai

1 · · · san
n ) −

n∑︂
i=1

aif(si)
⃓⃓⃓⃓
⃓

≤
⃓⃓⃓⃓
⃓f(sai

1 · · · san
n ) −

n∑︂
i=1

f(sai
i )
⃓⃓⃓⃓
⃓+

⃓⃓⃓⃓
⃓

n∑︂
i=1

f(sai
i ) − aif(si)

⃓⃓⃓⃓
⃓

(2.7)

To estimate the first term, we use Theorem 2.37 (iv) with gi = sai
i and x = y = e:⃓⃓⃓⃓

⃓f(sai
1 · · · san

n ) −
n∑︂

i=1
f(sai

i )
⃓⃓⃓⃓
⃓ =

⃓⃓⃓⃓
⃓f(sai

1 · · · san
n ) − f(e) −

n∑︂
i=1

(︂
f(sai

i ) − f(e)
)︂⃓⃓⃓⃓⃓

≤ δ

3

n∑︂
i=2

d(sai
i , e) ≤ δ

3n = δ

3d(g, e).

We have used the fact that for s ∈ S±1 we have by definition d(s, e) = 1. Using
Lemma 2.42 for each pair si and ai we obtain that |f(sai

i ) − aif(si)| ≤ δ/3 for
i ∈ [1..n] and hence the second term in (2.7) is estimated by nδ/3 = d(g, e)δ/3.
Altogether, we have shown that

⃓⃓⃓
(f − f)(g)

⃓⃓⃓
≤ d(g, e)2δ/3 which finishes the

proof.
7This follows from the fact that d(g, e) = d(g−1, e) which is the minimal length of a word

representing g. Of these, the (unique) reduced word is the shortest since all others contain some
extra pairs of elements which can be cancelled out and thus the length of the word shortened.
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Later on we will need finer control over the exact values of the invariant
function by which we approximate. To enable this, we have

Corollary 2.44. Let δ > 0 and FS be a free group with generating set S. Equip FS

with the word metric and the action on itself by left-translations. Let f ∈ Lip0(FS)
be δ/3-invariant. Let u ∈ ℓ∞(S) and η ≥ 0 satisfy |f(s) − u(s)| ≤ η, s ∈ S.
Define f : FS → R by

f(sa1
1 . . . san

n ) =
n∑︂

i=1
aiu(si), n ∈ N, s ∈ Sn, a ∈ {−1, 1}n.

Then f ∈ InvFS
(FS) and

⃦⃦⃦
f − f

⃦⃦⃦
≤ δ + η.

Proof. The mapping f is a homomorphism by Proposition 2.11. Denote ˜︁f(g) =∑︁n
i=1 aif(si) the function from Theorem 2.43. For g ∈ G and its representation

as a reduced word g = sa1
1 · · · san

n we calculate⃓⃓⃓ ˜︁f(g) − f(g)
⃓⃓⃓

d(g, e) ≤ 1
n

n∑︂
i=1

|ai(u(si) − f(si))| ≤ 1
n

n∑︂
i=1

η = η.

From Lemma 2.41 we obtain that
⃦⃦⃦ ˜︁f − f

⃦⃦⃦
≤ η. This means that f ∈ Lip0(FS)

and, as it is a homomorphism, by Corollary 2.36 we have f ∈ InvFS
(FS). More-

over, ⃦⃦⃦
f − f

⃦⃦⃦
≤
⃦⃦⃦
f − ˜︁f ⃦⃦⃦+

⃦⃦⃦ ˜︁f − f
⃦⃦⃦

≤ δ + η.

As we have seen in Proposition 2.15, every group can be written as a quotient
of a free group. Since we already have a result for free groups, we would like to
transfer it to the quotients.

Proposition 2.45. Let S be any set, FS a free group over S equipped with the
word metric, N ⊴ FS and δ > 0. Denote G = FS/N , q : FS → G the quotient
map and equip G with the word metric induced by the set q(S) = {q(s) : s ∈ S}.
Equip both FS and G with actions by left-translations. Let f ∈ Lip0(G) be δ-
invariant. Denote F : FS → R, F = f ◦ q. Then F ∈ Lip0(FS), F is δ-invariant
and for η > 0 the following conditions are equivalent

(i) there exists f ∈ InvG(G) with
⃦⃦⃦
f − f

⃦⃦⃦
< η;

(ii) there exists F ∈ InvFS
(FS) with

⃦⃦⃦
F − F

⃦⃦⃦
< η satisfying N ⊂ ker F .

Proof. We will denote both metrics as d as it will always be obvious which metric
we refer to. First, note that d(q(g), q(h)) ≤ d(g, h) for any g, h ∈ FS: if d(g, h) = n
and g−1h = s1 · · · sn for some s ∈ (S±1)n, then q(g−1h) = q(s1) · · · q(sn) and hence
d(q(g), q(h)) ≤ n. Clearly F (e) = f(q(e)) = 0 and for any g, h ∈ G holds

|F (g) − F (h)| = |f(q(g)) − f(q(h))| ≤ ∥f∥ d(q(g), q(h)) ≤ ∥f∥ d(g, h).
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So, F ∈ Lip0(FS). Using Theorem 2.37, we show that F is δ-invariant: for any
g, h, k ∈ G we have⃓⃓⃓

F (gh) − F (h) −
(︂
F (gk) − F (k)

)︂⃓⃓⃓
=
⃓⃓⃓
f(q(g)q(h)) − f(q(h)) −

(︂
f(q(g)q(k)) − f(q(k))

)︂⃓⃓⃓
≤ δd(q(h), q(k)) ≤ δd(h, k).

(i) =⇒ (ii): Put F = f ◦q. Then for g ∈ N holds F (g) = f(q(g)) = f(eG) =
0. This shows N ⊂ ker F and in particular F (e) = 0. As before, for any g, h ∈ FS

we get ⃓⃓⃓
(F − F )(g) − (F − F )(h)

⃓⃓⃓
=
⃓⃓⃓
(f − f)(q(g)) − (f − f)(q(h))

⃓⃓⃓
< ηd(q(g), q(h)) ≤ ηd(g, h),

i.e.
⃦⃦⃦
F − F

⃦⃦⃦
< η and hence also F ∈ Lip0(FS). For g, h ∈ G holds F (gh) =

f(q(gh)) = f(q(g)q(h)). Since f is invariant, by Corollary 2.36 it is a homomor-
phism and so F (gh) = f(q(g)) + f(q(h)) = F (g) + F (h). Corollary 2.36 now
implies that F is invariant, because it is a homomorphism.

(ii) =⇒ (i): F is invariant and hence a homomorphism by Corollary 2.36.
Since ker q = N ⊆ ker F , F factors through q to a homomorphism f : G → R
with F = f ◦ q. To show f ∈ Lip0(G), choose g, h ∈ FS and s1, . . . , sn ∈ S±1 such
that q(g−1h) = q(s1) · · · q(sn) and d(q(g), q(h)) = n. Then

⃓⃓⃓
f(q(g)) − f(q(h))

⃓⃓⃓
=
⃓⃓⃓
f(q(g−1h))

⃓⃓⃓
=
⃓⃓⃓⃓
⃓

n∑︂
i=1

f(q(si))
⃓⃓⃓⃓
⃓ =

⃓⃓⃓⃓
⃓

n∑︂
i=1

F (si)
⃓⃓⃓⃓
⃓

≤ n
⃦⃦⃦
F
⃦⃦⃦

=
⃦⃦⃦
F
⃦⃦⃦

d(q(g), q(h)).

So we have f ∈ Lip0(G) and since it is a homomorphism, by Corollary 2.36
we also have f ∈ InvG(G). It remains to show that

⃦⃦⃦
f − f

⃦⃦⃦
< η. Choose

q(g), q(h) ∈ G and s1, . . . , sn ∈ S±1 such that q(g−1h) = q(s1) · · · q(sn) and
d(q(g), q(h)) = n. This implies that the word s1 · · · sn must be reduced. We
may assume h = gg−1h = gs1 · · · sn and hence by the left-invariance of the word
metric holds

d(g, h) = d(g, gs1 · · · sn) = d(e, s1 · · · sn) = n = d(q(g), q(h)).

We conclude by estimating for g, h ∈ FS:⃓⃓⃓
(f − f)(q(g)) − (f − f)(q(h))

⃓⃓⃓
=
⃓⃓⃓
f(q(g)) − f(q(g)) − f(q(h)) + f(q(h))

⃓⃓⃓
=
⃓⃓⃓
F (g) − F (g) − F (h) + F (h)

⃓⃓⃓
≤
⃦⃦⃦
F − F

⃦⃦⃦
d(g, h) < ηd(q(g), q(h)).

We have distilled the problem down to the question of whether there exists
a homomorphism on a free group which is close to our δ-invariant function on
the generating set while being zero on the corresponding normal subgroup. We
will demonstrate how this can be done, for the price of worsening the constant,
for finitely presented groups.
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Lemma 2.46. Let X, Y be Banach spaces and A : X → Y be a finite-dimensional
linear operator. Then there is a constant C > 0 such that for any x ∈ X there
exists u ∈ ker A with ∥x − u∥ ≤ C ∥Ax∥.

Proof. Put ˜︂X = X/ ker A and ˜︁Y = Im A. Denote q : X → ˜︂X the quotient map
and B : ˜︂X → ˜︁Y the unique linear operator satisfying A = Bq. The operator B is
bijective, so its inverse exists. Since the domain of B−1 is the finite-dimensional
space ˜︁Y , it is continuous.

Fix x ∈ X. Then B−1Ax = q(x) and we can estimate

∥q(x)∥ =
⃦⃦⃦
B−1Ax

⃦⃦⃦
≤
⃦⃦⃦
B−1

⃦⃦⃦
∥Ax∥ .

By the definition of the quotient norm, there is u ∈ ker A such that ∥x − u∥ ≤
∥q(x)∥ + ∥Ax∥. Putting these together we obtain

∥x − u∥ ≤ ∥q(x)∥ + ∥Ax∥ ≤ (
⃦⃦⃦
B−1

⃦⃦⃦
+ 1) ∥Ax∥ .

We have shown the desired inequality with C = ∥B−1∥ + 1.

While the following theorem does not reflect Question 2.29 exactly, it states
that if we allow the constant to depend on the group, the answer is positive for
finitely-presented groups equipped with word metrics acting on themselves by
translations.

Theorem 2.47. Let G be a finitely presented group equipped with the word metric
and action by left-translations. Then there exists a constant C > 0 depending on
G such that for any δ > 0 and f ∈ Lip0(G) δ-invariant there is f ∈ InvG(G) with⃦⃦⃦
f − f

⃦⃦⃦
≤ Cδ.

Proof. Let f ∈ Lip0(G) be δ-invariant. Let S be the generators of G and R be
the relators of G. Denote n = |S|.

We start by defining a mapping # : FS × S → RS. Fix g = sa1
1 · · · sam

m , where
m ∈ N and s ∈ Sm, a ∈ Zm, an element of FS and its representation as a reduced
word. For s ∈ S put Ig,s = {j ∈ [1..m] : sj = s} and define #(g, s) = ∑︁

j∈Ig,s
aj.

This mapping is well-defined, because the representation as a reduced word is
unique.

By Proposition 2.45, there is a δ-invariant function F ∈ Lip0(FS) satisfying
F = f ◦ q. Let r ∈ R and r = sa1

1 · · · sak
k , where d(r, e) = k, s ∈ Sk and

a ∈ {−1, 1}k. Notice that ∑︁k
i=1 aiF (si) = ∑︁

s∈S #(r, s)F (s). Again employing
Theorem 2.37 (iv) in conjunction with Lemma 2.42 and the fact that F (r) =
F (e) = 0, we obtain the inequality⃓⃓⃓⃓

⃓∑︂
s∈S

#(r, s)F (s)
⃓⃓⃓⃓
⃓ =

⃓⃓⃓⃓
⃓F (r) −

∑︂
s∈S

#(r, s)F (s)
⃓⃓⃓⃓
⃓

=
⃓⃓⃓⃓
⃓F (r) − F (e) −

k∑︂
i=1

(aiF (si) − F (e))
⃓⃓⃓⃓
⃓

≤
⃓⃓⃓⃓
⃓F (r) − F (e) −

k∑︂
i=1

(F (sai
i ) − F (e))

⃓⃓⃓⃓
⃓+ nδ

≤ 2δn = 2δd(r, e) ≤ Cδ,

(2.8)
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where C = 2 maxr∈R d(r, e). Define A : ℓ∞(S) → ℓ∞(R) as the (unique) lin-
ear operator satisfying A(es)(r) = #(r, s), s ∈ S, r ∈ R and x = (F (s))s∈S.
From (2.8) follows that ∥Ax∥∞ ≤ Cδ. By Lemma 2.46, there is a constant D > 0
depending only on A (and hence only on G) and u ∈ ℓ∞(S) such that Au = 0
and ∥x − u∥∞ ≤ D ∥Ax∥∞ ≤ CDδ.

Corollary 2.44 applied to the function F guarantees the existence of F ∈
InvFS

(FS) with F (s) = u(s), s ∈ S and
⃦⃦⃦
F − F

⃦⃦⃦
≤ 3δ + ∥x − u∥∞ ≤ (3 + CD)δ.

Thanks to Proposition 2.45, it is enough to verify that F |N ≡ 0 where N = ncl(R).
Let g ∈ FS and r ∈ R. F is invariant, thus a homomorphism by Corollary 2.36
and hence

F (grg−1) = F (g) + F (r) + F (g−1) = F (r).
Finally, we have

F (r) =
∑︂
s∈S

#(r, s)F (s) =
∑︂
s∈S

#(r, s)u(s) =
∑︂
s∈S

u(s)A(es)(r) = (Au)(r) = 0.

By Proposition 2.13, F |N ≡ 0.

We end here, but this has been but the tip of the iceberg. While we have
laid out some groundwork for understanding (δ-)invariant functions for actions
induced on Lipschitz-free spaces, Question 2.29 still stands. There are, of course,
questions regarding the optimality of constants for Theorems 2.43 and 2.47,
namely

Question 2.48. Let C be the set of all constants C ≥ 0 such that the following
statement is true: Let δ > 0 and FS be a free group with generating set S
equipped with the word metric and action by left-translations. Let f ∈ Lip0(FS)
be δ-invariant. Then there is f ∈ InvFS

(FS) with
⃦⃦⃦
f − f

⃦⃦⃦
≤ Cδ. What does inf C

equal to? Is inf C ∈ C?

and

Question 2.49. Let G be a finitely presented group equipped with the word
metric and action by left-translations. Does there exists a constant C > 0 in-
dependent of G such that for any δ > 0 and f ∈ Lip0(G) δ-invariant there is
f ∈ InvG(G) with

⃦⃦⃦
f − f

⃦⃦⃦
≤ Cδ?

We have restrained ourselves only to the study of actions by (left-)translations
with respect to word metrics. If we replace the word metric by some arbitrary
left-invariant metric, matters complicate.

Finally, there is the question of actions on general metric spaces. One possible
approach is captured in

Question 2.50. Let G be a discrete group and C > 0 such that for any left-
invariant metric d on G, δ > 0 and δ-invariant f ∈ Lip0(G, d) there exists f ∈
InvG(G, d) with

⃦⃦⃦
f − f

⃦⃦⃦
≤ Cδ. Is it true that for any action of G on a metric space

(M, ρ) and δ-invariant f ∈ Lip0(M) there is f ∈ InvG(M) with
⃦⃦⃦
f − f

⃦⃦⃦
≤ Cδ?
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