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Abstract 

This diploma thesis explores the intersection of computational approaches to language, 

network science, and psycholinguistic research of word production. The thesis introduces 

network science together with its formalism and application in linguistic research as 

phonological and semantic networks. It introduces relevant psycholinguistic experimental 

research of word processing, namely lexical decision task that is indicative of processing 

efficiency. Finally, large language models and word vectors are introduced. The aim of this 

thesis is to construct a semantic network of English based on word vectors computed by 

BERT language model from a sample of the TV Corpus. A structure of the resulting semantic 

network is analysed in the light of results from lexical decision task drawn from the MALD 

database that reflect word processing efficiency. The resulting semantic network has small-

world structure implying that word vectors transformed into a semantic network can capture 

cognitively salient semantic relationships between words. Multiple linear regression analysis 

between degree centrality, closeness centrality, and clustering coefficient of words within the 

semantic network and reaction time for the same words from the MALD database did not 

show statistically significant relationship. Clustering coefficient appears to have slightly 

negative relationship to the reaction time that was approaching statistical significance 

implying that words from denser parts of the network are processed faster. Current results 

allow careful optimism for the use of semantic networks based on word vectors for the 

research of cognitive processes underlying language. 

Keywords: semantic network, word processing, word vectors, machine learning 

Abstrakt 

Tato diplomová práce zkoumá průnik komputačních přístupů k jazyku, vědy o sítích a 

psycholingvistického výzkumu produkce slov. Práce představuje vědu o sítích spolu s jejím 

formalismem a aplikací v lingvistickém výzkumu ve formě fonologických a sémantických sítí. 

Představuje relevantní psycholingvistický výzkum zpracování slov, konkrétně lexical decision 

task, který vypovídá o efektivitě zpracování slov. Nakonec jsou představeny velké jazykové 

modely a vektory slov. Cílem této práce je zkonstruovat sémantickou síť angličtiny na základě 

slovních vektorů vytvořených jazykovým modelem BERT ze vzorku z The TV Corpus. 

Struktura výsledné sémantické sítě je analyzována ve světle výsledků z lexical decision task 

čerpaných z databáze MALD, které odrážejí efektivitu zpracování slov. Výsledná sémantická 

síť má strukturu malého světa (small-world structure), což znamená, že slovní vektory 

transformované do sémantické sítě mohou zachytit kognitivně salientní sémantické vztahy 

mezi slovy. Lineární regresní analýza mezi síťovými proměnnými degree centrality, closeness 

centrality, and clustering coefficient pro jednotlivá slova v sémantické síti a reakčním časem 

pro stejná slova z databáze MALD neprokázala statisticky významný vztah. Zdá se, že 

clustering coefficient má mírně negativní vztah k reakční době, který se blížil statistické 

významnosti, což znamená, že slova z hustších částí sítě jsou zpracovávána rychleji. Současné 

výsledky dovolují opatrný optimismus pro využití sémantických sítí založených na slovních 

vektorech pro výzkum kognitivních procesů, které jsou základem jazyka. 

Klíčová slova: sémantická síť, zpracování slov, slovní vektory, strojové učení 
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1. Introduction 

In recent years, the intersection of network science and linguistics has unveiled new ways 

of understanding the cognitive processes underlying language comprehension and production. 

Network science, a branch of mathematics dedicated to the study of networks consisting of 

nodes and their interconnections, offers rigorous methodologies for modelling and analysing 

complex systems, including the intricate structures of language. This thesis investigates the 

application of network science to explore the semantic network structure of English and its 

implications for word processing. By treating words as nodes and their semantic relationships 

as links, this study seeks to elucidate how the configuration of such network representing 

meaning influences how speakers process words in mind. 

The conceptualization of language as a network is not a novel idea. Early foundations 

were laid by structuralist linguistics, particularly by Ferdinand de Saussure, who suggested 

that elements of language are interconnected within a system (Saussure, 1959). Contemporary 

theories, such as Goldberg’s Construction Grammar, Croft and Cruse’s Cognitive Linguistics 

and various other linguistic frameworks, have increasingly employed the implicit idea about 

the network structure of language (Goldberg, 2009; Croft & Cruse, 2004). Even more recently, 

researchers such as Michael Vitevitch and his colleagues have pursued the study of language 

through the lens of network science that explicitly and formally defines language structures as 

a network. The atheoretical stance of network science provides a neutral platform, focusing on 

empirical data rather than theoretical biases, thereby allowing for a rigorous exploration of 

language networks through metrics like degree centrality, clustering coefficient, and average 

path length that measure different features of networks. 

This thesis specifically addresses the structure and dynamics of semantic networks—

networks where nodes represent words and link denote semantic similarities. The research 

aims to understand how these network structures impact word processing, particularly in tasks 

requiring lexical retrieval. The use of large language models (LLMs), such as BERT 

(Bidirectional Encoder Representations from Transformers), has potential in linguistic 

research as it opens new doors to quantitative analysis of semantics from text. These models 

enable the extraction of high-dimensional word vectors from large corpora, which can then be 

transformed into a network and analysed to identify patterns and semantic relationships within 

the mental lexicon. 

The study builds upon previous research in both phonological and semantic networks, 

aiming to replicate and extend findings related to word processing. It employs computational 
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methods to create semantic network from a sample corpus. The resulting network is analysed 

using tools from network science, and its properties are correlated with empirical data from 

lexical decision tasks, sourced from the Massive Auditory Lexical Decision (MALD) database 

(Tucker et al., 2019), that are indicative of word processing efficiency. The goal is to explore 

the influence of the structure of the semantic network on the efficiency of word processing. 

By examining the structural features of the semantic network and word processing, this 

research contributes to the growing body of knowledge on the cognitive representation of 

language. It also evaluates the relevance and potential of current LLMs in linguistic research 

and cognitive science, offering insights into their applications and limitations.  

Ultimately, this work aims to explore how network science can be combined with the 

LLMs to introduce novel ways how semantics can be studied quantitatively in the light of 

psycholinguistic research of how people process words. The results of such work could 

potentially contribute to the growing body of studies that focus on the use of language 

networks in diagnosing and addressing language-related cognitive impairments that can 

benefit from sensitive quantitative approaches to modelling meaning. 

The chapters that follow will delve into the theoretical background of network science 

with a focus on language networks and psycholinguistic research of word processing. The 

chapters will also introduce word embeddings, a method of representing words as numerical 

representations that capture their meanings and relationships based on how they are used in 

large collections of text. Finally, a detailed findings of this study based on the analysis of the 

semantic network and data from psycholinguistic word retrieval experiments will be 

introduced, setting the stage for a discussion about the implications of semantic network 

structures for word processing and practical applications in cognitive science. 

2. Theoretical background 

2.1. Network Science 

Network science, originally a field within mathematics, focuses on the study of 

complex systems represented as networks composed of nodes and the connections between 

them. It allows researchers to model and analyse the structure of various phenomena, enabling 

the identification of previously unrecognized properties, structures, or behaviours. Many real-

world phenomena can often be conceptualized as networks; for instance, the World Wide Web 

can be represented with webpages as nodes and hyperlinks as links, power grids can be 

modelled with power plants and transformers as nodes and cables as links, and academic 
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papers can be linked by citations, with the papers themselves serving as nodes (Barabási & 

Pósfai, 2016). Similarly, language can be represented as a network, where linguistic units, 

such as words, act as nodes, and the connections between them are defined by relationships 

such as phonological similarity (Chan & Vitevitch, 2009) or semantic similarity (Steyvers & 

Tenenbaum, 2005). 

The idea of treating elements of language as nodes in a network is not novel, as it can 

be traced back at least to Saussure’s structuralist perspective on language (Saussure, 1956). 

However, Saussure merely suggested the concept without formalizing it. Modern linguistic 

theories, such as Construction Grammar, or Cognitive Linguistics have also adopted the 

notion of a language network (Goldberg, 2009; Croft & Cruse, 2004), though these 

approaches often concentrate on the analysis of specific phrases instead on the broader picture. 

Furthermore, these approaches are typically embedded within comprehensive theoretical 

frameworks that include certain assumptions about the underlying mechanisms and principles 

of language. In contrast, the current study seeks to apply network science principles in a non-

theoretical manner, focusing on empirical data and the statistical properties of language 

networks. This approach allows for the exploration of new insights into language without the 

necessity of engaging in theoretical debates or choosing an appropriate theoretical framework. 

Consequently, network science becomes a tool for the precise measurement and description of 

language data. 

Network analysis provides a framework for understanding the structural characteristics 

of networks, which can be studied at different levels of detail. By analysing networks from 

various levels of detail, researchers can gain insights into both local and global properties. At 

the micro level, network analysis focuses on individual components, such as nodes and links, 

examining specific metrics pertaining to individual elements of the network. In the domain of 

social networks, an example of micro-level network analysis could involve examining 

individual users of social media. We can calculate network metrics that indicate the 

importance or influence of a particular node within a network. For instance, in a social media 

network, a metric known as “degree centrality” can be measured by assessing how many 

direct connections (or “friends” or “followers”) a user has. Another micro-level metric could 

be “betweenness centrality,” which measures the extent to which a particular user acts as a 

bridge between other users in the network. A user with high betweenness centrality would be 

crucial for connecting disparate parts of the network, as they lie on the shortest path between 

many other nodes. Analyzing these specific metrics for individual users helps to identify key 
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influencers or pivotal connectors within the social network. This granular approach allows for 

the exploration of the behavior and role of specific elements within the network. 

Conversely, at the macro level, analysis shifts to a broader view, considering the 

overall structure and organization of the network. This involves calculating aggregate 

measures, such as average values, that characterize the network as a whole. These macro-level 

metrics provide a comprehensive understanding of the network’s global properties, including 

its connectivity, robustness, and overall topology. In the domain of language networks, macro-

level analysis can be particularly useful in studying the overall connectivity and organization 

of a speaker’s mental lexicon, which is the network of words inside speakers mind acting like 

a mental dictionary (Aitchison, 2012). For instance, when examining individuals with aphasia, 

a language impairment often resulting from brain injury or as a neurodegenerative disorder, 

researchers can analyze the global properties of language networks constructed from a corpus 

of aphasic speech. 

A specific example could involve comparing the language networks of individuals 

with aphasia to those of healthy speakers. By analyzing metrics such as network density (the 

ratio of actual connections to possible connections) and average path length (the average 

number of steps it takes to connect any two nodes in the network), researchers can assess the 

overall connectivity and structure of the language network. In individuals with aphasia, the 

network may show reduced connectivity, indicated by a lower density and longer average path 

lengths, reflecting the loss of access to certain words and weakened associations between 

them. Such macro-level analysis can reveal significant differences in the robustness and 

organization of the language networks between impaired and non-impaired speakers. Such 

differences in the overall topology of the network could potentially help distinguish between 

different types of aphasia or reveal minute changes to the mental lexicon that would otherwise 

be left unnoticed in raw speech or basic corpus analysis. By employing both micro and 

macro-level analyses, researchers can obtain a nuanced understanding of networks, capturing 

both detailed and overarching patterns within the data.  

Measurement Definition Comparison between Higher and Lower Values 

Degree 

centrality 

The number of links 

of a node relative to 

the overall network 

size. 
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Shortest path 

length 

The shortest route 

between two nodes 

which equals the 

number of links it 

contains. 

  

Clustering 

coefficient 

A measure of local 

clustering which 

signals how often 

the neighbours of a 

node tend to be 

neighbours of each 

other. 

  

Closeness 

centrality 

A measure 

signalling how 

close a node is to 

all other nodes. 
  

Table 1 Summary of relevant basic network measures 

Table 1 introduces some of the basic metrics relevant for the present work that 

network analysis employs to understand the structure and dynamics of networks, both at the 

level of individual nodes and across the entire network. One fundamental metric is degree 

centrality, which indicates the number of direct connections (links) a node has. This metric 

can highlight influential nodes within a network, such as central figures in social networks 

who are connected to many others. The concept extends to the network macroscopic level 

through the calculation of the average degree, which represents the average number of 

connections per node in the entire network, providing an overview of its general connectivity. 

Another critical measure is the shortest path length, which refers to the minimum 

number of links required to connect two nodes. The network-wide macroscopic equivalent, 

the average shortest path length, is determined by calculating the shortest paths between all 

pairs of nodes and averaging these values. This metric offers insights into the overall 

efficiency of the network’s structure, indicating how quickly information or resources can be 

transmitted throughout the network depending on what the network models. 
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The clustering coefficient further enriches the understanding of networks by 

quantifying the extent to which nodes in a network tend to form tightly-knit groups or 

communities. Defined as the degree to which neighbours of a node are interconnected, the 

clustering coefficient measures the presence of local clustering. A high average clustering 

coefficient, computed for the entire network, suggests that the network is composed of 

numerous small groups where most neighbours of a node are also neighbours of each other. 

Clustering coefficients range from 0 to 1, where 1 indicates that all neighbours of a node are 

fully interconnected, and 0 indicates no such interconnections among neighbours (Watts & 

Strogatz, 1998). 

Closeness centrality is another relevant metric that helps identify key nodes, 

particularly in the so-called small-world networks that are introduced further below. It is 

defined as the reciprocal of the sum of the shortest-path lengths from one node to all other 

nodes in the network. In practice this means that nodes with high closeness centrality can be 

reached quickly from all other nodes, making them crucial for efficient information flow. In 

small-world networks, nodes that serve as hubs often exhibit high closeness centrality, in 

addition to a high degree centrality (Barabási & Pósfai, 2016). These hubs play a critical role 

in maintaining the network’s overall connectivity and functionality. 

By employing these metrics, whether at the microscopic level of individual nodes or 

across the network as a whole, researchers can obtain a nuanced understanding of both the 

local and global connectivity patterns. This comprehensive analysis enables the identification 

of structural features, such as tightly-knit communities or critical hubs, and provides valuable 

insights into the resilience, efficiency, and overall topology of the network. This work’s scope 

lies mainly in the macroscopic domain; therefore, the average values of the relevant metrics 

will be analysed in the practical part. 

So-called small-world networks are a distinctive type of network characterized by high 

local clustering and short path lengths, allowing for efficient information transfer and robust 

connectivity. This network structure is commonly found across a variety of social and 

cognitive phenomena, including social networks and language. In these contexts, small-world 

networks facilitate efficient communication and quick access to information, making them 

well-suited for complex, interconnected systems (Watts & Strogatz, 1998). For instance, in 

social networks, this structure enables rapid dissemination of information and fosters strong 

community ties, while in cognitive systems, it supports efficient processing and retrieval of 

information. The emergence of small-world networks in these domains underscores their role 

in maintaining functional and adaptive systems. 
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Small-world networks are characterized by specific structural properties that can be 

identified through metrics such as the average degree, clustering coefficient, closeness 

centrality, and average shortest path length. A high clustering coefficient indicates significant 

local clustering, meaning that nodes are densely interconnected within localized areas of the 

network. This is complemented by lower average shortest path lengths relative to a random 

graph and relatively high closeness centrality, which suggest efficient global connectivity. In 

such networks, it is possible to traverse the entire network by passing through a relatively 

small number of links, facilitating quick access from any node to any other (Watts & Strogatz, 

1998). Additionally, small-world networks typically exhibit a higher average degree, 

reflecting a generally well-connected and clustered structure (Barabási & Pósfai, 2016). These 

networks usually have efficient connectivity and are resilient to damage (Watts and Strogatz 

1998). For example, a small-world network representing a power grid would be resilient to 

cable damages avoiding blackouts with electricity spreading efficiently to all subscribers. In 

the context of understanding language as a dynamic cognitive system that can be represented 

as a small-world network, being a resilient network with efficient connectivity translates into 

speakers who can efficiently communicate, retrieve words instantaneously in a conversation, 

and effectively form thoughts, as well as such speakers whose communicative abilities are 

resilient to language impairments involving changes in the brain such as aphasia. 

Figure 1 below contrasts a predominantly small-world network with a predominantly 

scale-free network to illustrate how can other types of networks differ from a small-world 

network. Scale-free networks are characterized by a power-law distribution in their degree 

centrality. This means that while most nodes have relatively few connections, a few nodes—

known as hubs—have a disproportionately high number of connections. The presence of these 

highly connected hubs is a prominent feature of both scale-free networks and small-world 

networks (Barabási & Albert, 1999). The networks are not mutually exclusive. In fact, many 

real-world networks exhibit properties of both. For instance, a network can have a small-

world structure with a high clustering coefficient and short path lengths, while also having a 

power-law degree distribution indicative of a scale-free structure. For example, in the context 

of semantic networks, Steyvers and Tenenbaum discuss that both small-world and scale-free 

properties have been observed in networks based on word associations, Wordnet and Roget’s 

Thesaurus (for details see chapter 2.4). The small-world structure is indicated by the 

combination of high local clustering and short average path lengths, while the scale-free 

nature is seen in the power-law distribution of node connections, where a few words or 

concepts serve as hubs with many connections. The difference between the two networks in 
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figure 1 lies in the fact that the second network has only the scale-free characteristics with no 

local clusters while the first one also has small-world characteristics. 

 
 

Figure 1 A comparison between small-world network and scale-free network 

Small-world networks also contain hubs, but due to the high overall clustering of the 

network, they are less vulnerable to targeted attacks. Even if a hub is compromised, other 

well-connected nodes can compensate and handle the additional load, maintaining the 

network's stability. The uneven distribution of links results from preferential attachment, a 

process where new nodes are more likely to connect to already highly connected nodes, 

reinforcing the connectivity of hubs (Albert & Barabási, 2002). This concept can be related to 

children’s vocabulary acquisition, where children are more likely to learn new words that are 

similar to or associated with words they already know. This phenomenon suggests that the 

acquisition of new vocabulary often builds upon existing knowledge, creating a network 

where frequently used or familiar words serve as hubs, facilitating the integration of new 

words. 

Research in language acquisition supports this analogy. For example, Hills et al. (2009) 

found that children are more likely to acquire new words that are semantically related to their 

existing vocabulary. This process, often referred to as “semantic clustering,” indicates that 

new words with connections to known words are learned more easily because they can be 

integrated into the child's existing mental lexicon. The existing words act as anchors, making 

it easier for children to relate new information to what they already understand. 

It is crucial to note that small-world characteristics of a network are not categorical 

features; instead, they are represented by continuous values of metrics like average degree, 
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clustering coefficient, and closeness centrality; hence a network can have more or less of 

small-world characteristics. Both network types are pervasive in real-world systems but cater 

to different dynamics and resilience strategies within these systems with small-world 

networks being typically found in language networks. 

Finally, weighted networks provide a more nuanced representation of relationships 

between nodes by assigning a value, or weight, to each link. This weight reflects the strength 

or intensity of the connection, adding depth and detail to the analysis of the network's 

structure. The use of weighted networks allows researchers to capture variations in the 

significance or influence of relationships, thereby enriching the dataset with more precise 

information (Barabási & Pósfai, 2016). The method for determining these weights varies 

depending on the type of relationship being represented. For example, in a social network of 

phone calls, the weight of a connection between two individuals can be represented by the 

total number of minutes they spend talking. This measure not only indicates that a relationship 

exists but also provides insight into the strength of the connection, as longer call durations 

suggest a stronger or more significant relationship. Similarly, in language networks, weights 

can be assigned to connections based on specific criteria relevant to the study’s focus. For 

instance, in a semantic network where nodes represent words, the weight of an edge might 

reflect the degree of semantic similarity between the words, which can be quantified using 

various measures such as cosine similarity in vector space models. The inclusion of weights in 

network analysis enhances the ability to discern subtle differences and complexities within the 

network. 

As we have explored, network science provides a powerful framework for 

understanding the structure and dynamics of complex systems, including language. The next 

chapter will delve into the psycholinguistic research of word processing and mental lexicon 

and follow up with the introduction of relevant phonological network research where network 

science meets psycholinguistics. By combining these disciplines, we can uncover meaningful 

insights into the cognitive architecture of language, offering a deeper understanding of how 

words are processed and interconnected in the human mind. 

2.2. Psycholinguistics and Word Processing 

Network science enables us to formalize and describe patterns in language use that 

reveal its internal organization. However, meaningful insights into the cognitive architecture 

of language emerge when these network models are combined with psycholinguistic research. 

Network science is particularly well-suited for modelling the mental lexicon, which is 
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generally understood in psycholinguistic research to have a structure akin to an interconnected 

network (Aitchison, 2012; Vitevitch, 2008). For instance, by analysing the mental lexicon as a 

network, researchers can explore how words are stored and retrieved, how phonological or 

semantic relationships influence word recognition, and how frequency and context affect 

word processing (Steyvers & Tenenbaum, 2005).  

Word processing in psycholinguistics refers to the understanding and production of 

words by speakers. This inherently involves the mental lexicon, which is a theoretical 

repository of a speaker’s units of language. These units can encompass a wide range of 

elements, including concepts, morphemes, words, phrases, or even longer segments. The 

precise nature of the mental lexicon remains a topic of ongoing debate within linguistics, with 

questions surrounding the size and nature of these items, as well as whether the lexicon 

includes the rules or patterns of use and combination of these units (Aitchison, 2012). Despite 

the importance of this debate, it is beyond the scope of this work. In accord with the tradition 

of network research in language, this study conceptualizes the units of language within 

networks as words. This choice is primarily motivated by convenience and practicality, and 

the study remains neutral regarding the exact nature of the mental lexicon’s units. However, 

there is substantial evidence to support the significant role that words play in language 

processing. 

This work focuses on the processing of words. In relation to the mental lexicon, this 

encompasses the mechanisms by which speakers retrieve words from their lexicon for 

production, as well as how they identify and process words for understanding. In 

psycholinguistics, word processing is typically studied through various experimental methods. 

Some of the relevant designs include word identification tasks, where participants are asked to 

recognize and identify words presented to them; lexical decision tasks, which involve 

determining whether a string of letters is a real word or a non-word; and naming tasks, where 

participants are asked to produce the name of an object or read aloud a word (Chan & 

Vitevitch, 2009; Siew & Vitevitch, 2016). Additionally, more general psychological 

experimental designs, such as free recall and cued recall tasks, are employed to study memory 

and retrieval processes. In free recall tasks, participants are asked to recall as many items as 

possible from a previously presented list, while in cued recall tasks, they are provided with 

cues to aid their recall. These experimental tasks can be administered in different modalities, 

typically involving either visual or auditory language stimuli. For instance, in visual word 

recognition tasks, participants might read words presented on a screen, while in auditory tasks, 

they would listen to spoken words and respond accordingly. 



11 
 

In a word identification task, participants are instructed to identify words played to 

them with various degrees of noise distortion added. Typically, the words belong to different 

groups that share a common feature, the independent variable, such as high frequency or low 

frequency. Researchers examine the influence of this independent variable on the participants’ 

ability to correctly identify the words, which serves as the dependent variable. This dependent 

variable reflects the ease of word processing. For example, words of higher frequency are 

generally processed more quickly and accurately than words of lower frequency, which 

provides insights into the cognitive mechanisms underlying word recognition (Goldinger, 

1996). Naming tasks, on the other hand, can be either auditory or visual. In these tasks, a 

word is presented to participants either on a screen (visual modality) or through auditory 

means (auditory modality). Participants are then required to repeat the word as quickly and 

accurately as possible. Researchers measure two primary dependent variables in this task: the 

reaction time from the presentation of the word to the participant’s production of the word, 

and the accuracy of the participant’s response. Similar to word identification tasks, the words 

used in naming tasks are categorized into different groups based on a common feature, which 

serves as the independent variable. The influence of this feature on reaction time and accuracy 

is analysed to understand its impact on the ease of word processing. For instance, researchers 

might compare reaction times and accuracy rates for high-frequency words versus low-

frequency words. High-frequency words are generally recognized and named more quickly 

and accurately, reflecting their easier and more efficient processing within the mental lexicon. 

This helps in understanding how different factors, such as word frequency, influence the 

cognitive processes involved in word retrieval and production (Jescheniak & Levelt, 1994). 

Moreover, the independent variable can also be one of the network measures, such as degree 

centrality or clustering coefficient, which link language network measurements such as degree 

centrality or clustering coefficient with psycholinguistic experiment results. These network 

measures can influence word processing. For example, words with higher degree centrality 

may be retrieved more quickly due to their extensive connections, while words with a higher 

clustering coefficient may benefit from being part of tightly knit semantic or phonological 

clusters (Kenett et al., 2014). By incorporating network measures as independent variables, 

researchers can bridge language network measurements with psycholinguistic experiment 

results 

The lexical decision task can be administered in either auditory or visual modalities. In 

this task, participants are presented with pairs of stimuli – one being a real word and the other 

a non-word. The non-word is crafted to resemble a real word but contains distortions or 
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alterations that prevent it from being a legitimate word. Participants must quickly and 

accurately determine which of the two stimuli is the real word. the word and non-word pairs 

are categorized into different groups based on a common feature, which serves as the 

independent variable. This feature could be something like word frequency, orthographic 

neighbourhood size, or network measures such as degree centrality or clustering coefficient. 

Researchers measure two primary dependent variables in this task: reaction time, which is the 

time it takes for participants to make their decision, and accuracy, which is the correctness of 

their response. These dependent variables provide insights into the ease and efficiency of 

word processing. For example, higher frequency words are generally recognized faster and 

more accurately, reflecting more efficient processing within the mental lexicon. By 

manipulating the independent variable, researchers can examine its influence on reaction time 

and accuracy. This allows them to test hypotheses about how different linguistic and network 

properties affect word processing. For example, if words with higher degree centrality are 

processed more quickly and accurately, this would suggest that network connectivity plays a 

significant role in lexical access and retrieval. 

Finally, cued recall is a psychological experimental design used to examine how 

people remember information. Unlike tasks that are directly linked to linguistic knowledge, 

cued recall can be applied to a broad range of memory contexts. In a cued recall experiment, 

participants are presented with a cue or hint that helps them recall a previously learned item or 

association. This method contrasts with free recall, where participants must remember 

information without any cues, and recognition tasks, where they must identify previously 

learned information from a list of options. In cued recall, the cue can be a word, phrase, or any 

form of hint related to the target memory. For example, if participants were previously shown 

a list of paired associates like “dog-bone” and later given the cue “dog”, they are expected to 

recall the associated word “bone”. The primary measure in cued recall experiments is the 

percentage of accurately recalled items. This measure reflects the effectiveness of the cue in 

aiding memory retrieval and provides insights into the cognitive processes underlying 

associative memory. Cued recall experiments are particularly valuable for uncovering the 

associative cognitive networks that influence word retrieval. By analysing how different types 

of cues (semantic, phonological, or contextual) affect recall performance, researchers can 

infer the structure and strength of associations within the mental lexicon. For instance, 

semantic cues (words related in meaning) might be more effective in aiding recall than 

phonological cues (words that sound similar), suggesting stronger semantic associations in the 

mental lexicon (Anderson, 2013). Furthermore, cued recall tasks can reveal how different 
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variables, such as the type of cue or the length of the retention interval, impact memory 

retrieval. These experiments could potentially be designed to explore the role of network 

measures like degree centrality or clustering coefficient in word retrieval. For instance, words 

with higher centrality in a semantic network might be recalled more easily when given 

appropriate cues, indicating the importance of network connectivity in memory processes 

(Kenett et al., 2017). 

One way to combine these psycholinguistic experimental designs with network 

science is to use network measurements as the independent variable and examine its influence 

on word processing as was suggested throughout this chapter. For example, researchers can 

conduct a lexical decision task with two groups of words distinguished by their clustering 

coefficients and examine how this network measure affects reaction time and accuracy in 

word recognition. Experiments that integrate network science and psycholinguistics have 

already been conducted with phonological networks. These studies utilize network metrics 

such as degree centrality and clustering coefficient to explore network structure impacts word 

retrieval and recognition (Vitevitch & Goldstein, 2014). By using these rigorous network 

science formalisms together with psycholinguistic experiments, researchers can uncover 

valuable insights into the cognitive underpinnings of language. 

The following chapter delves into this intersection by focusing on phonological 

networks. It argues that the combination of network science methodologies with 

psycholinguistic research on lexical retrieval can be useful to investigate the mental lexicon’s 

organization and functionality. The chapter 2.3 presents relevant studies that combine 

phonological network analysis with psycholinguistic experiments, demonstrating how these 

interdisciplinary approaches can advance our understanding of language processing. 

2.3. Phonological networks 

 Network science has proven fruitful in numerous domains of scientific inquiry, but it 

remains a relatively young field within linguistics, despite the implicit recognition of the 

“networkness” of the language system dating back to at least Saussure’s structuralist theories 

(Saussure, 1956). The idea that language can be conceptualized as a network is not new, but 

its formal application using network science methodologies has only recently gained traction. 

There are various ways to operationalize the nodes and edges within a linguistic 

network for meaningful analysis. In phonological networks, which have garnered 

considerable attention, nodes typically represent individual words, while edges denote some 

form of phonological similarity between these words. A significant body of work has been 
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conducted on phonological networks, particularly by Michael S. Vitevitch and his colleagues, 

who defined the relationship between words in these networks by the substitution, addition, or 

deletion of a single phoneme to form what is known as a “phonological neighbor.” For 

example, the words “hat,” “cut,” “cap,” “scat,” and “_at” are considered phonologically 

similar to the word “cat” (Vitevitch, 2008: 3). In the network, all of these words would be 

linked based on this defined phonological relationship. Phonological networks constructed 

using such criteria display small-world characteristics, a property observed in many naturally 

occurring networks. Small-world networks are characterized by a high clustering coefficient 

and short average path lengths, meaning that most nodes (words) are not neighbours of one 

another but can be reached from one another by a small number of steps.  

An example of such a network with small-world properties is illustrated in Figure 2, 

which depicts the phonological neighbourhood of the words “peach” and “speak.” In this 

example, we can visually observe at least three distinct clusters around “peach,” with “peach” 

itself acting as a hub—a node with a high degree centrality. This network’s clustering 

coefficient and closeness centrality are higher than those of a random graph, indicating the 

presence of significant local clustering and efficient overall connectivity (Watts & Strogatz, 

1998). These characteristics suggest that phonological networks, like other small-world 

networks in other social and cognitive domains, may be a relevant component in the cognitive 

processes underlying language. 
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Figure 2 Example phonological network from Vitevitch et al. (2023) 

While it is interesting and aesthetically pleasing to observe a structure emerge within a 

network, it is essential to question how such a language network contributes to our 

understanding of language. A network is more than just a visual representation; it is a robust 

data structure that enables the representation and analysis of complex relationships within a 

dataset. In the context of language, networks provide a rigorous framework for modelling the 

connections between words, phrases, or concepts, allowing researchers to quantify and 

analyse these relationships through various network metrics. These network-based approaches 

reveal patterns and structures that are often obscured in traditional linear representations of 

language, making networks not only valuable for visualization but also for deeper analytical 

insights. For instance, centrality measures can identify key words or concepts that serve as 

hubs within the mental lexicon, while clustering coefficients can reveal the degree to which 

words group together based on phonological or semantic similarities (Newman, 2018), 

providing insights into how language is organized and processed. 

As a data structure, a network can also be represented as an edge list. In an edge list, 

the network is defined by listing all the connections (or edges) between the nodes. Each row 

in an edge list typically contains two elements – the two nodes that are connected. Optionally, 

a third element can be included to represent the weight of the connection, indicating the 

strength or importance of the relationship between the nodes. Table 2 compares a simple edge 
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list and network for the phonological neighbourhood of the word “cat” mentioned above. In 

this example, the edge list provides a clear and concise way to enumerate all phonological 

connections between “cat” and its neighbours. When visualized as a network, these 

connections reveal the structure of the phonological neighbourhood, with “cat” acting as a 

central node. 

 

Source Target 

cat hat 

cat cut 

cat cap 

cat scat 

cat _at 

 

Table 2 Edge list and network of phonological neighbourhood of “cat" 

Vitevitch and his colleagues have extensively researched phonological networks from 

a cognitive perspective, demonstrating how network science can illuminate various aspects of 

language processing. For instance, in his 2008 work, Vitevitch argues that graph theory—a 

mathematical framework used to study networks—can significantly enhance our 

understanding of word learning by mapping words and their phonological similarities into a 

network. Vitevitch highlights that the connectivity within these phonological networks plays a 

crucial role in language acquisition. Specifically, he suggests that words with a higher degree 

centrality, meaning they are phonologically similar to many other words, may be learned 

earlier during acquisition. These highly connected words, hubs in the network, can facilitate 

the acquisition of new words by providing multiple phonological pathways for learners to 

explore and reinforce (Vitevitch, 2008). Such network growth mechanism is called 

preferential attachment and was identified in other language acquisition studies (in children 

but also adults learning new words). For example, Storkel & Morrisette (2002) found that 

preschool children learn words with common sound sequences (i.e., words in dense 

phonological neighbourhoods with high degree centrality and clustering coefficient) faster 

than those with more rare sound sequences. Similarly, Storkel, Armbrüster, and Hogan (2006) 

found that university students learn new words from dense phonological neighbourhoods 

more quickly too. 

In their 2009 study, Chan and Vitevitch conducted two lexical retrieval experiments to 

investigate whether clustering coefficients affect the accuracy and speed of word retrieval. In 

the first experiment, a perceptual identification task, participants were asked to identify words 
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that were played to them with added white noise distortion. The words were divided into two 

groups: one with a high clustering coefficient and one with a low clustering coefficient. To 

ensure the validity of the results, the words were controlled for various confounding factors, 

such as word frequency, subjective familiarity, and phonotactic probability. The results 

showed that the identification accuracy for words with a low clustering coefficient was 58% 

(sd = 8.4), while the accuracy for words with a high clustering coefficient was 72% (sd = 8.2). 

An ANOVA was performed on the accuracy rates between the two groups, revealing that the 

difference was statistically significant. 

The other experiment conducted by Chan and Vitevitch was a lexical decision task, 

where participants were presented with words (without white noise) from two groups: real 

English words and non-words. The task was to correctly identify which items were real words 

and which were non-words. This experiment used the same set of real words as the previous 

experiment, along with additional non-words. The main variable of interest was the reaction 

time with which participants correctly identified the words. The results showed that 

participants responded more slowly to words with a high clustering coefficient (mean = 900 

ms, sd = 86.6) compared to words with a low clustering coefficient (mean = 888 ms, sd = 

82.1). Although the difference was small, it was still statistically significant. 

The overall results from both experiments suggest that the clustering coefficient 

affects not only the accuracy of word retrieval but also its speed, reflecting overall word 

processing. These findings are open to interpretation as they may seem surprising or 

counterintuitive. On one hand, high-clustering words were identified more accurately in the 

first experiment, which might suggest that they are easier to process. However, in the second 

experiment, participants responded to high-clustering words more slowly, which appears to 

contradict the first result. My interpretation is that a high clustering coefficient might enhance 

accuracy under noisy conditions by leveraging the strong interconnections among neighbours, 

but it might slow down retrieval in tasks requiring quick, unambiguous decision-making due 

to increased competition among similar word forms. Conversely, a low clustering coefficient 

appears to support faster and more efficient retrieval by reducing this competition, particularly 

in situations where speed is crucial. 

Another study specifically focused on the influence of clustering coefficient on word 

processing managed to replicate the finding that words with lower clustering coefficients are 

processed more easily (Vitevitch et al., 2011). Vitevitch et al. (2011) conducted a 

computational simulation of spreading activation within a phonological network, showing that 

word nodes with lower clustering coefficients were more activated than those with higher 
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clustering coefficients. Greater activation in word processing models suggests faster retrieval 

from mental lexicon supporting the interpretation mentioned above. Overall, the studies show 

that listeners are sensitive to clustering coefficients of words, and that the role clustering 

coefficient and other network metrics in word processing is multifaceted. 

Recent studies have increasingly focused on how phonological networks can be 

applied to the study of language acquisition and impairments. For instance, Siew and 

Vitevitch (2020) explored network growth principles, offering insights into how language 

networks evolve and adapt over time. Their work highlights the dynamic nature of 

phonological networks, demonstrating how connections between words develop as 

individuals acquire new vocabulary and how these networks might reorganize in response to 

learning or cognitive changes. Building on this, Vitevitch et al. (2023) examined the resilience 

of phonological networks, illustrating how these networks maintain language functionality 

despite potential disruptions, such as damage to the brain or cognitive decline. Their findings 

emphasize the robustness of phonological networks, suggesting that even when some 

connections are lost or weakened, the overall structure remains functional, which has 

important implications for understanding language recovery following impairments like 

aphasia. 

Furthermore, other recent approaches have suggested the potential of using language 

networks as supplementary diagnostic tools for language and other psychological impairments. 

Kennett and Faust (2019), in their contribution to Vitevitch’s edited volume, propose that 

analysing the structure and connectivity of language networks could help identify early signs 

of cognitive decline or other neurological issues. These approaches represent a promising 

intersection between theoretical research and clinical application, indicating that network 

science could play a role in both understanding and diagnosing language-related disorders. 

Collectively, these studies underscore how network science provides a robust framework for 

modelling language and its cognitive underpinnings. By applying network principles to the 

study of language, researchers can gain deeper insights into how language is acquired, 

maintained, and sometimes impaired, offering new avenues for both theoretical research and 

practical applications in clinical settings. 

Up to this point, I have primarily focused on phonological networks, as this work 

builds on their application in the study of word processing. Previous research has provided 

substantial evidence that individuals are sensitive to various network metrics, such as degree, 

clustering coefficient, and potentially others, during word processing. Notably, the role of 

clustering coefficient in phonological networks appears to be complex and multifaceted. The 
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next chapter shifts the focus to semantic networks, which are the central topic of this work. It 

will provide a similar overview of how semantic networks have been constructed and explore 

whether the network metrics that have proven relevant in phonological networks—such as 

clustering coefficient and degree—are also significant in the context of word processing 

within semantic networks. 

2.4. Semantic networks 

 In phonological networks, the edges between nodes represent phonological similarities 

between words. However, edges can also represent other types of relationships, such as 

semantic ones. Semantic relationships between words or phrases have been quantified in 

different ways in language network science. Engelthaler and Hills (2019) distinguish four 

general approaches to quantifying these semantic relationships. I have adopted and presented 

the approaches from Engelthaler and Hills (seen in Vitevitch (2019: 167)) in table 3. 

Table 3 An overview of different edge types in semantic networks, adopted from Engelthaler and Hills in Network Science in 

Cognitive Psychology, Vitevitch (2019), p. 167. 

Edge type basis Description Reference 

Perceptual and functional 

features 

Edges are based on shared 

features. 

(McRae et al., 2005, 

Preininger, Brand & Kříž, 

2022, Vinson & Vigliocco, 

2008) 

Free associations 

Edges are based on cue-target 

relationships in the free 

association task. 

(Nelson, McEvoy, & 

Schreiber 2004, Lakhzoum et 

al. (2021)) 

Semantic and conceptual 

categorization 

Edges are based on 

theoretically derived 

semantic and conceptual 

categorization of words. 

Miller, G. A. (1995), Jarmasz, 

M., & Szpakowicz, S. (2003) 

Natural language corpora 
Edges are based on word co-

occurrence. 

(Church, K. W., & Hanks, P. 

1990, Mikolov, T., Sutskever, 

I., Chen, K., Corrado, G. S., 

& Dean, J. 2013, Pennington, 

J., Socher, R., & Manning, C. 

D. 2014) 
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One approach to constructing semantic networks involves creating edges based on the 

perceptual or functional features of words. In these networks, nodes typically represent 

individual lexemes, and the edges reflect the semantic proximity between these lexemes based 

on shared perceptual attributes (e.g., “is large,” “has fur”) or functional roles (e.g., “used in 

cooking,” “is a vehicle”). This approach is informed by semantic feature norms, such as those 

developed by McRae et al. (2005), Vinson & Vigliocco (2008), and more recently by 

Preininger, Brand, & Kříž (2022). In these studies, adult participants generate or evaluate lists 

of features along specific semantic dimensions for a given word. 

For example, “dog” and “cat” might be connected within the network due to their 

commonalities in perceptual features (e.g., “having four legs”) or functional attributes, or 

through an overall statistic that computes their similarity across a set of these features and 

attributes. This methodological approach allows for the creation of a rich semantic landscape 

where the strength of associations between words is not merely based on direct lexical co-

occurrence or syntactic proximity, but rather reflects conceptual schemas that inform human 

categorization and cognitive processing. 

Unlike edges based on free associations or natural language corpora, the semantic 

dimensions used to define edges based on perceptual and functional features are clearly 

defined and grounded in a broader theoretical framework, which makes them easier to 

interpret. For instance, in the work of Preininger, Brand, and Kříž (2022) on quantifying 

socio-semantic features for Czech, participants evaluated words along dimensions such as 

gender, location, politics, valence, and age. Participants might be presented with a word like 

“dog” or “beard” and asked to rate it on a Likert scale for attributes like “urban”, “feminine”, 

or “positive”. The edges between words are then computed by calculating the similarity 

between pairs of words based on their overall scores within these dimensions. 

 The second approach to constructing semantic networks is basing the edges between 

words on the results from the free association task, which capture the spontaneous and often 

unpredictable links between words that can be elicited from people. In these networks, nodes 

represent individual words or concepts, while edges are drawn based on the immediate, 

unmediated responses elicited by cue words in participants. This approach is grounded in the 

methodology of free association norms, where participants are prompted with a cue word (e.g., 

“angry”) and respond with the first word that comes to mind (e.g., “furious”, “red”), as seen in 

studies by Nelson, McEvoy, & Schreiber (2004).  

Despite the seemingly random and spontaneous nature of participants’ responses, free 

association tasks have proven to be a reliable experimental method with consistent results. A 
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key metric derived from these responses is the free association response probability for pairs 

of words, which indicates the likelihood that presenting one word will trigger the response of 

another. The strength and directionality of these connections reflect the associative depth 

between the words, revealing the context-free priming paths within the mental lexicon. 

However, it is important to note that free associations measure relative associative strength 

between words rather than absolute strength. For example, knowing that the cue word “book” 

primes the response “read” from 43% of participants tells us that this response is more 

strongly associated than "study," which was produced by 5.5% of participants (Nelson, 

McEvoy, & Schreiber, 2004: 406). However, it does not provide absolute insight into their 

overall association within the mental lexicon. This data can be used to create a network with 

directed edges to reflect the direction of priming. 

 The study by Lakhzoum et al. (2021) applied semantic network analyses to explore 

norms of French word associations for concrete and abstract concepts. Through network 

analyses and metrics, they found that both concrete and abstract networks exhibited 

characteristics of a small-world structure, such as high clustering coefficients, sparse density, 

and small average shortest path lengths. Moreover, they observed differences in overall 

structural organization between abstract and concrete concepts, with concrete concepts 

showing denser connectivity. This work highlights the utility of semantic network analyses 

and visualization in understanding the organization of word associations in the mental lexicon. 

Interestingly, in figure 3, a node with the highest degree was the word for love amour and one 

with one of the fewest was the word for boredom ennui (Lakhzoum et al. 2021: 10). 
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Figure 3 Visualisation of a portion of the network made by Lakhzoum et al. (2021) where the node size and colour intensity 

reflect its degree 

Another approach to the construction of semantic networks Engelthaler and Hills 

labelled as Semantic-Conceptual Networks, where edges are based on conceptual and 

semantic relationships between words. In such networks, nodes still represent individual 

lexemes; however, the links between these nodes are established based on conceptual 

similarities, synonymy, antonymy, and hierarchical super-subordinate categorizations. These 

relationships are typically drawn from structured lexical databases like WordNet or Roget’s 

Thesaurus. The information and structure of these meticulously constructed databases are 

informed by various linguistic theories and analyses. The types of relationships represented in 

these databases depend on the specific database and the kind of linguistic analysis and 

terminology it employs. Generally, researchers constructing networks from these databases 

compute a measure of semantic similarity between pairs of words. For example, in a network 

derived from WordNet, words grouped into synsets share a common concept, thereby 

establishing a connection between them based on conceptual similarity. The edges in such a 

network, therefore, reflect the similarity between words and phrases along these conceptual 
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and semantic dimensions1. Figure 4 displays visualization of WordNet’s immediate semantic 

neighbours of “cat” that illustrates different conceptual kinds of semantic relationships that 

the database contains. 

 

Figure 4 An example of a visualization of Wordnet's network for the word 'cat' made by Visuwords educational project 

 Similarly, Roget’s Thesaurus organizes words into categories and subcategories based 

on their meanings. A thesaurus, in general, is sometimes called a synonym dictionary where 

words are grouped according to some abstraction of synonymy relationship. Moreover, the 

overall organization of these groups can follow a certain logic or philosophy. The organization 

of Roget’s Thesaurus, for instance, is rooted in philosophical rather than purely linguistic 

principles. Despite its extensive scope, with the most recent edition containing 443,000 words 

(Kipfer, 2022) and continuing to grow with regular updates, there is a notable limitation when 

using it as a source for constructing linguistically relevant and representative language 

networks. The main drawback is that the word classification in Roget’s Thesaurus is the work 

of a single individual, based on rational and philosophical, rather than empirical, approaches 

to linguistic categorization. As a result, when using Roget’s Thesaurus to construct a semantic 

network, the classifications might not align with those derived from empirical linguistic data. 

Overall, the ‘semantic-conceptual’ approach to constructing semantic networks relies heavily 

on decisions made within specific linguistic theories and analyses by the researchers. 

Additionally, these networks are language-specific. Ideally, each language would have its own 

WordNet and thesaurus based on universally agreed-upon theoretical foundations, but this is 

not currently the case. 

 
1 An example of an online tool visualizing relationships from Wordnet as a network: https://visuwords.com/ 
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Finally, semantic networks predicated on similar patterns of usage in natural language 

embody an empirical model for delineating semantic relationships, anchoring the connections 

between nodes not on explicit participant responses, perceptual similarities, or theoretically 

driven linguistic analysis but on the contextual co-occurrence and usage patterns observed 

within vast corpora of text. This makes the approach primarily data-driven constructing the 

semantic relationships between words in a bottom-up fashion. In this framework, nodes again 

signify individual words or concepts, while links are established based on the proximity, 

frequency, but usually other more intricate statistical means that operationalize how closely 

different words appear within natural language texts, capturing the implicit semantic 

connections inferred from linguistic context. This approach leverages the power of either 

word co-occurrence measures, semantic space models or the combination of both, which 

avoid the need for words to be directly associated or share explicit features, focusing instead 

on their emergent semantic similarity through common patterns of use across diverse 

linguistic contexts. 

Semantic space models are a well-established technique in computational linguistics 

and natural language processing (NLP). These models use algorithms to transform words or 

phrases from text into vectors within a high-dimensional vector space, where the semantic 

similarity between words is represented by the spatial relationships between their 

corresponding vectors. The basic idea behind this approach is that words appearing in similar 

contexts tend to have similar meanings. By analysing large corpora of text, NLP researchers 

use algorithms to generate vector representations that capture semantic properties of words, 

typically interpreted as semantic similarity and associations (Lund & Burgess, 1996; Gastaldi, 

2021). To create an edge list for a semantic network, researchers can calculate the Euclidean 

distance or cosine similarity between the vectors. Both measures reflect the closeness between 

two vectors, which can be interpreted as semantic similarity. Semantic space models and their 

applications are further elaborated in chapter 2.5. 

Although there is some overlap between representing and analysing meaning through 

word co-occurrence measures and semantic space models, they differ in how word meaning is 

modelled, and the computational techniques and algorithms used to operationalize semantic 

relationships. Word co-occurrence measures focus on the frequency with which words appear 

together within a specified context or window in a text corpus. These measures are in accord 

with the premise formulated by Firth (1957) that words that frequently co-occur in similar 

contexts tend to have related meanings. Co-occurrence can be represented in matrices where 

rows and columns represent words, and each cell contains the frequency or a derived statistic, 
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e.g., Pointwise Mutual Information (PMI), indicating how often two words co-occur. These 

high-dimensional matrices reflect the directly observed co-occurrences within a relatively 

narrow context window, usually just a few words. However, this method may miss some 

semantic or pragmatic relationships that manifest over longer text spans, such as sentences, 

paragraphs, or larger discourse units. Despite these limitations, Church and Hanks (1990) 

proposed the creation of a measure association ratio that estimates word association norms 

directly from language corpora using information theoretic PMI and other statistic approaches. 

The motivation was to avoid the then prevailing method of deriving those norms from 

participants in psycholinguistic experiments which was laborious, costly and unreliable. It 

helped to pave the way for the development of further corpus linguistic methods and 

quantitative computational processing of language for linguistic research. 

These developments eventually led to the creation of more complex semantic space 

models, such as Latent Semantic Analysis (LSA), Word2Vec, GloVe, and more recently, 

BERT. These models utilize machine learning to represent word meanings in continuous 

vector spaces, among other capabilities. While these models often begin with word co-

occurrence data, they go beyond simple co-occurrence by applying sophisticated algorithms 

to compute multi-dimensional word vector representations, known as embeddings, for each 

word. These embeddings capture more context-sensitive semantic information, allowing the 

models to represent not just immediate co-occurrence relationships, but also implicit semantic 

connections that span broader contexts. For example, words that are used in similar contexts 

will have vectors that are close together in the semantic space, even if they do not frequently 

co-occur. The underlying basis for these embeddings can indeed start with co-occurrence data, 

but the transformation into a semantic space typically involves advanced computational 

techniques including the recent neural network-based models. Neural network-based models, 

such as Word2Vec, GloVe, and BERT, abstract away from raw co-occurrences to capture more 

nuanced semantic similarities and relationships. In Word2Vec, the training process involves 

predicting a word from its context (the Continuous Bag of Words model) or predicting the 

context from a word (the Skip-gram model). This process effectively learns vector 

representations that capture a wide array of semantic and syntactic relationships (Mikolov et 

al., 2013). GloVe, on the other hand, starts with the co-occurrence matrix but aims to learn 

vector representations by modelling the ratios of co-occurrence probabilities, which are 

believed to encode important semantic information (Pennington, Socher, & Manning, 2014). 

BERT (Bidirectional Encoder Representations from Transformers) represents a more recent 

and sophisticated approach, using deep learning techniques based on transformers. BERT 
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differs from previous models by considering the context of a word bidirectionally, meaning it 

takes into account both the preceding and following context when learning word embeddings. 

This results in a richer and more accurate representation of word meanings in various contexts, 

significantly improving performance on a wide range of NLP tasks (Gastaldi 2021). 

Constructing a network from word co-occurrence data or semantic space models based 

on embeddings involves selecting and calculating a value for all pairs of words from the 

corpus that reflects their semantic similarity based on usage patterns in the text. Word nodes 

are then connected by edges, with the weight of each edge corresponding to this similarity 

value, thus forming a semantic language network. This methodology, which leverages large-

scale textual data to represent semantics based on authentic, unmediated language output, 

provides a robust model for understanding meaning in language. It reflects how human 

cognition might be sensitive to usage patterns that are not immediately apparent. 

It seems that research in semantic networks does not place as much emphasis on the 

role of specific network metrics, such as clustering coefficient, in word processing as 

Vitevitch’s work (2009, 2011) did in the study of phonological networks. This work; therefore, 

aims to contribute to this research gap in semantic networks. Most examples of the semantic 

networks predicated on similar patterns of usage in natural language do not explicitly engage 

with the network science tools or visualize networks. These approaches mainly focus on 

computing matrices of co-occurrence values or, in the case of semantic spaces, compute and 

plot word vectors. Both can compute some measure representing similarity between two 

words such as Church and Hanks’ (1990) association ratio, but measures of this kind have 

generally not been used to construct a proper semantic network. 

Large language models like Word2Vec or BERT, which plot word vectors based on 

similarity, are not formal networks in the strict sense used in network science. While they are 

powerful tools developed for commercial applications like machine translation or chatbot 

assistants, a proper network requires a defined set of nodes and their explicit connections, 

which these models do not inherently provide. However, we can transform embeddings into a 

network by calculating the distance between every pair of embeddings in the semantic space 

and defining a link between them based on a cutoff value for that distance. Given the 

widespread success and unprecedented language capabilities of these large language models, 

this work aims to leverage the way they represent language for the purposes of language 

network research. Specifically, the goal is to construct a semantic network based on the BERT 

language model and then apply the tools of network science to identify meaningful 

correlations between network measurements from this constructed network and results from 
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lexical retrieval experiments obtained from The Massive Auditory Lexical Decision (MALD) 

database. This research is relevant for two main reasons. First, it builds on previous research 

in phonological networks by attempting to replicate the significant correlations found between 

certain network measures (e.g., clustering coefficient) and word processing within semantic 

networks. Second, depending on the results, it could either support or challenge the relevance 

of current large language models for linguistic and cognitive science. 

The following chapter introduces word vectors, also known as embeddings, which are 

how large language models represent word meanings. Understanding these large language 

models and their word vectors is crucial for interpreting the types of relationships encoded 

between the word nodes in the semantic network constructed in this work. 

2.5. Large Language Models and Word Vectors 

The rapid development of machine learning techniques in the 2010s and 2020s has 

introduced new methods for quantitatively representing meaning and language using vector 

representations of words, embeddings, based on broad patterns in which the words appear in 

text. One of the foundational algorithms in this field is Word2Vec, introduced by Mikolov et 

al. (2013a). Word2Vec transforms words into high-dimensional vectors, assigning each word a 

set of numerical values that capture its meaning based on its contextual usage in large corpora 

of text. 

Word2Vec operates by representing words as numerical vectors in a multi-

dimensional space, where each dimension corresponds to a certain aspect of the word’s 

meaning as abstracted from the text (Mikolov et al., 2013a). Multidimensional word vectors 

are arrays of numbers assigned to words, representing their positions in a high-dimensional 

semantic space. A common way to visualize these vectors is by applying dimension-reducing 

statistical methods such as t-distributed stochastic neighbor embedding (t-SNE) or principal 

component analysis (PCA), which allow for the plotting of these vectors in a 2D space.2 

These vectors are learned through neural network models trained on vast amounts of text data. 

The central idea behind Word2Vec is the distributional hypothesis, proposed by Harris 

(1954), which posits that words appearing in similar contexts tend to have similar meanings. 

As a result, words with patterns of use in text have vectors that are close to each other in the 

vector space. 

 
2 An on-line tool for visualizing 2D and 3D word vectors can be found at https://projector.tensorflow.org. 
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Word2Vec has several practical applications, such as computing semantic similarity 

between pairs of words, understanding word analogies (often referred to as ‘word 

mathematics’), and text classification. For example, we can quantify the semantic similarity 

between words by measuring the cosine similarity or Euclidean distance between their word 

vectors (Mikolov et al., 2013b). Beyond analogies, these vectors are also used in machine 

translation, text classification (e.g., sorting texts into genres), and sentiment analysis, which 

evaluates whether a text is positive, negative, or neutral. 

For linguistics, the development of word vectors represents an opportunity to explore 

semantic analysis in new, quantitative, empirical, and data-driven ways, complementing 

traditional theoretical frameworks. Models like Word2Vec and its successors provide 

researchers with tools to analyze the semantic nuances of language at a level of detail that was 

previously unattainable. By examining word vectors and their relationships, linguists can 

uncover subtle shades of meaning, polysemy, and semantic shifts over time. Moreover, by 

analysing historical texts and corpora, researchers can track the evolution of language, 

identifying semantic changes, lexical innovations, and shifts in usage patterns, offering 

insights into the dynamics of language change. These computational models also offer 

valuable insights into how language might be processed and represented in the human mind. 

By correlating the representations of language in these models with human data, researchers 

can test theories of language processing and the organization of the mental lexicon. 

Since the development of Word2Vec in 2013, more advanced language models have 

emerged. This work specifically utilizes BERT (Bidirectional Encoder Representations from 

Transformers), a state-of-the-art natural language processing model introduced by Devlin et al. 

(2018). Unlike Word2Vec, BERT’s word vectors are highly sensitive to context. BERT 

employs a deep learning architecture known as Transformers, which captures long-range 

dependencies and contextual relationships within text. 

One of the key distinctions between BERT and Word2Vec lies in their approach to 

contextual understanding. While Word2Vec generates fixed-length vectors for individual 

words based on a linearly parsed context, BERT processes text bidirectionally, taking into 

account the entire context of a sentence by analysing both the words that precede and follow a 

given word. This bidirectional processing allows BERT to capture more nuanced meanings 

that could be overlooked by models that analyse text in a linear fashion, either from left to 

right or vice versa (Gastaldi, 2021). 

Despite the advancements of models like BERT, there are still limitations to their 

current capabilities, and they should not be assumed to provide complete and accurate 
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representations of language. Research by Ettinger (2020) delves into the linguistic capacities 

of BERT, revealing both strengths and areas for improvement. For example, while BERT is 

generally effective at distinguishing straightforward semantic relationships and has shown 

robustness in tasks like retrieving noun hypernyms, it struggles with more complex inferences 

and understanding logical implications, such as negation. Furthermore, Bender et al. (2021) 

raise important ethical considerations regarding the use of large language models like BERT. 

They highlight the risks of perpetuating social biases that these models may learn from their 

training data, as well as the environmental impact of training such large models, given the 

significant electricity consumption of the data centers where these models are trained. 

Figure 5 shows a visualization of embeddings that were reduced to two dimensions so that 

they could be plotted, showing how similar categories of words, such as numerals or inflected forms 

of the same word, tend to cluster together. In a 2D visualization, the x and y axes represent abstract 

dimensions that encapsulate compressed information from the original high-dimensional space. The 

goal of this representation is to preserve the relative distances between words, reflecting their 

similarities in meaning or context. However, the axes themselves do not have specific meanings 

beyond this spatial representation. 

 

Figure 5 T-SNE two-dimensional projection of the word2vec vectors representing a selection of the most frequent words in its 

training corpus. Credit: Gastaldi (2021) 

An interesting property of word vectors is that the relative distances between them 

appear to reflect more than just semantic similarity. A famous example by Mikolov et al. 

(2013c) is analogies through “word arithmetics”. As word vectors are arrays of numbers, we 

can perform mathematical operations on them. Mikolov and colleagues noticed, for example, 
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that they could take a word vector for “man”, subtract it from the vector for “king”, add the 

vector for “woman” and the resulting closest vector in the vector space would be “queen”. 

1) Man – King + Woman = Queen 

 

Geometrically speaking, this means that the same distance and direction between pairs 

of word vectors can be interpreted as similar kind of semantic relationship, e.g. gender in 

example 1. This logic is illustrated in figure 6 where we see various pairs of words distinguished 

by their grammatical gender. The word vector pairs are plotted so that relatively similar distance 

and direction is between them. In this sentence, the distance in the semantic space is able to encode 

semantic similarity in general and other linguistically relevant distinctions in particular as well. 

 

Figure 6 Offset representing the gender relation, revealed in the embedding space by a PCA projection. Credit: Gastaldi 

(2021) 

Different kinds of mainly semantic analogies have been discovered within semantic spaces 

made with Word2Vec but also syntactic patterns such as verb tenses or adjectival 

comparatives plotted in figure 7 and 8. Figure 7 shows how the Word2Vec identifies the 

pattern between adjectives and their comparative forms, grouping words like “strong”, 

“stronger” and “strongest” together in the vector space. Figure 8 illustrates how Word2Vec 

recognizes relationships between different forms of irregular verbs, such as “give”, “gave” 

and “given”. The consistent patterns in these selected triads demonstrates the ways in which 

special representation can be used to encode linguistic relationships and how distance in space 

can serve as a basis for determining links between pairs of words in a network. 
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Figure 7 Pattern in the embedding space (word2vec) corresponding to the comparative category (base, comparative and 

superlative forms). Credit: Gastaldi (2021) 

 

Figure 8 Pattern in the embedding space (word2vec) corresponding to conjugation of irregular verbs. Credit: Gastaldi (2021) 

Finally, word vectors are also able to track diachronic language change when computed on 

texts from different times. Figure 9 shows a plot from Hamilton et al. (2018) in which the 

development of the words “gay”, “broadcast”, and “awful” was studied. For instance, “gay” 

transitioned from meaning “cheerful” in the 1900s to being associated with sexual orientation 

by the 1990s. Similarly, “broadcast” shifted from an agricultural term to one related to media, 

and “awful” changed from meaning “awe-inspiring” to “terrible”. This demonstrates the 

capability of word vectors to capture and represent changes in word meanings over time. 
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Figure 9 Visualization of semantic change based on word2vec. Credit: Hamilton et al. (2016). 

These examples provide evidence that word vectors can capture various kinds of 

semantic relationships from raw text. Figures 5 – 9 present visualizations of word vectors 

using statistical techniques that reduce the dimensions of the original vectors so that they 

could be plotted which also leads to loss of some of the information contained in them. 

Chapter 3 describes the material and method of the current work that was used to train BERT 

to acquire the word vectors which were finally transformed into a network and analysed in 

combination with psycholinguistic data from word processing. The construction of a network 

prevents the reduction of dimensionality of the vectors, conserving as much of the semantic 

information as possible. 

3. Material and Method 

This work integrates machine learning techniques to compute word vectors and 

transform them into a semantic network of English with network science to analyse the 

network in the light of psycholinguistic research of word processing. There are two general 

research questions: 

1. Are word vectors a relevant source for a cognitively insightful semantic 

network? 

2. If so, are there any significant correlations between the structure of such 

network and word processing efficiency? 

Therefore, one goal of this work is to test the relevance of creating semantic network 

based on word vectors for psycholinguistic and cognitive research. Meaningful semantic 
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network would have small-world characteristics found in other social and cognitive 

phenomena modelled by networks. Another goal would be to find significant correlations 

between measures of such network and results of word processing experiments for individual 

words. We can ‘measure’ or describe the structure of a semantic network by computing the 

network measures for all the words contained in the network. We can also measure the 

efficiency of word processing by measuring the reaction times of words in lexical decision 

task, for example. By correlating the network measures and reaction times for the same 

words, we can investigate whether there is a relationship between the two. If so, this would 

answer the second research question and suggest that the network is able to capture a 

cognitively meaningful representation of semantics. There are two sources of data for this 

work – a text sample from the TV Corpus that served as the training data for BERT and 

reaction times for the words contained in the resulting semantic network from The Massive 

Auditory Lexical Decision (MALD) database. Both sources of data and their analysis is 

described in detail in the following sections. As an overview of the practical part of this work, 

main steps are presented below: 

1. Training BERT on a sample from The TV Corpus 

2. Outputting word vectors from BERT 

3. Creating edge list by computing cosine similarity between every pair of word vectors 

4. Visualizing the network with GEPHI 

5. Obtaining reaction times from lexical retrieval experiments in MALD database 

6. Correlating reaction times with network measurements 

3.1. Computation of the Semantic Network 

I trained the open-source language model BERT in the python programming language 

from which the model is accessible through the ‘transformers’ library. BERT can be trained on 

tokenized text data to output word vectors. I trained it on a sample from The TV Corpus 

which is freely available for downloading in its raw-text form at english-corpora.org/tv/. The 

TV Corpus contains subtitles of tv shows from the 1950’s to the present time. I chose this 

corpus for its greater proximity to authentic spoken language which I wanted to model with 

the resulting network. I downloaded the raw text and tokenized it on sentences which is the 

necessary input form for BERT. The training of BERT itself is computationally demanding so 

I used the computational infrastructure of MetaCentrum VO, a catch-all virtual organization 
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of the Czech National Grid Organization, which operates and manages distributed computing 

infrastructure which is available to use for academic purposes at metavo.metacentrum.cz/. 

The output of training BERT was a list of word vectors for each token. In total, there 

was 9683 tokens each of which was represented by 768 dimensional vectors. To ensure a 

meaningful representation of semantic similarity between word vectors, I excluded vectors 

containing non- alphabetic characters, thus eliminating punctuation, special symbols, and 

numbers. This reduced the number of word vectors to 6664. Table 4 contains a snapshot of 

the table with the filtered word vectors. 

 

Table 4 A part of the table containing 6664 word vectors with 768 dimension computed by BERT 

 

The first column contains word labels, the rest are values of the multidimensional vectors with 

768 dimensions. The rows are the individual words. 

Next, I calculated cosine similarity between every pair of word vectors which reflects 

how similar the vectors are based on the angle between them and the origin point of the vector 

space. The cosine similarity value ranges from -1 to 1. 1 indicates that the two vectors are 

identical in orientation. In the context of word vectors, this would mean that the two tokens are 

semantically very similar or nearly identical. 0 implies orthogonality of vectors, suggesting no 

semantic similarity between the two tokens. -1 is less common in word vectors but 

theoretically would indicate completely opposite meanings (Sidorov et al., 2014). However, 

interpreting these values can be somewhat opaque and context-dependent as there are no 

universally agreed-upon thresholds. Generally, higher values (closer to 1) indicate greater 
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similarity. Often-used values for considering two vectors similar include 0.5 and 0.7 (Zhou et 

al., 2021). Figure 10 displays a histogram of the distribution of the cosine similarity values 

calculated between word vectors computed by BERT for the sample from the TV Corpus. 

 
Figure 10 Cosine similarity distribution 

The distribution follows a normal pattern, with most cosine similarity values 

clustering around 0.3. Since values above 0.7 are rare, a threshold of 0.5 is used to establish 

connections between nodes in the network. In the resulting semantic network, each node 

represents a token, and a weighted link is created between any pair of nodes where the cosine 

similarity exceeds 0.5. The weight of each link corresponds to the cosine similarity value 

between the respective word vectors. This process generates the final edge list for the network 

construction, which is further refined by retaining only nouns (excluding proper names) and 

verbs (excluding abbreviated verb forms, like ‘re’) to ensure a semantic network that can be 

interpreted as conveniently as possible. 

3.2. Word Processing Data 

The final step was to include the data from lexical decision task from The Massive 

Auditory Lexical Decision (MALD) database. MALD database is a freely available auditory 

and production data set for speech and psycholinguistic research that contains time-aligned 

stimulus recordings for 26,793 words and 9592 pseudowords, and response data for 227,179 

auditory lexical decisions from 231 unique monolingual English listeners. It is a valuable 

source of reaction times for different words from the auditory lexical decision task. The word 

reaction times from MALD database were extracted to match the words in the semantic 



36 
 

network. Reaction time values under 200ms and over 4000ms were excluded to avoid 

erroneous data and outliers. The rest of the reaction time values were averaged for each 

unique word (as a single unique word may have multiple reaction times assigned to it from 

multiple experimental trials). The final step of this study is to do a regression analysis between 

the word reaction times and network measures of the words to test if there are any statistically 

significant correlations. In the end, three basic network measures were chosen for the 

analysis: closeness centrality, clustering coefficient, and degree centrality. While the whole 

network contained 869 unique words, 238 were not present in the MALD database so the 

regression analysis was conducted on 631 unique words for which there is both the mean 

reaction time and the three network measures. Appendix contains a full list of those words 

with their values of average reaction time from MALD and their values of degree centrality, 

closeness centrality and clustering coefficient. This table was the bases for the regression 

analysis. Next section presents the results. 

4. Research 

Figure 11 shows a visualization of the semantic network produced in the network 

visualization software GEPHI. It contains a total of 869 nodes (i.e. unique words) connected 

by 3196 edges. Edge thickness reflects its weight – the thicker, the higher the cosine similarity 

signaling semantic similarity. Furthermore, node size reflects its degree, therefore; the bigger 

the node, the higher its degree is, meaning the number of links. The layout of nodes does not 

reflect anything. Visual inspection of the semantic network reveals small-world characteristics 

with clusters of high-degree hub nodes and more scarcely connected low-degree nodes. 

Another small-world characteristic is that despite the fact that the network contains almost a 

thousand of nodes, its diameter, i.e. the longest path, is 11 which means that the semantic 

network is relatively compact. Table 5 displays basic macroscopic measures of the network. 
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Figure 11 Semantic network based on cosine similarity measures of word vectors computed by BERT from a sample of The 

TV Corpus 

Table 5 Relevant macro measures of the semantic network 

Mean degree 7.36 

Network diameter 11 

Mean clustering coefficient 0.15 

Mean path lengths 4.15 

 

The three network measures were computed for individual word nodes for which the 

MALD database also contained the reaction times; namely, degree centrality, closeness 

centrality, and clustering coefficient. Figure 12 shows box plots of the distribution of these 

network measures together with the distribution of the mean reaction times for each word. 
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Figure 12 Box plots of mean word reaction times and network measures 

A multiple linear regression model was computed to analyse how the three network 

measures relate to the mean reaction time (MeanRT), with all variables being transformed using 

the natural logarithm. The model predicts the natural logarithm of MeanRT as a function of the 

natural logarithms of degree centrality + 1, closeness centrality + 1, and clustering coefficient 

+ 1. The “+1” in the formula ensures that there are no issues with taking logarithms of zero. 

The model suggests there may be a negative relationship between degree centrality and 

MeanRT, meaning that nodes with higher degree centrality scores tend to have lower reaction 

times, possibly indicating more efficiency or priority in word processing, but it is not 

statistically significant. The overall fit of the model is quite weak, as indicated by the low R- 

squared value, meaning that other variables not included in the model might be influencing 

MeanRT. Table 6 shows summary of the regression model. 
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Table 6 Summary of the regression model 

Added-variable plots are used to show the relationship between a given independent 

variable (each network measure) and the dependent variable (average reaction time), while 

accounting for the presence of other independent variables in the model. From these plots in 

figure 13, we can conclude that degree centrality has a slight negative impact on MeanRT, 

even after accounting for the other variables in the model. Meanwhile, closeness centrality 

and clustering coefficient do not seem to have a strong independent effect. 

 

Figure 13 Added-variable plots 
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5. Conclusion 

The results provide cautious optimism for using word vectors combined with network 

science to build semantic networks for psycholinguistic research. The semantic network 

created using BERT word vectors exhibited a small-world structure, similar to other social 

and cognitive phenomena modelled with networks. This finding, related to the first research 

question, suggests that word vectors can capture cognitively relevant information when 

transformed into a network. Regarding the second research question, degree centrality was 

found to influence reaction times in a lexical retrieval experiment from the MALD database, 

with results approaching statistical significance. Specifically, the data suggest that as the 

number of word’s neighbours increases, its reaction time decreases. It could be understood 

that more neighbours tend to speed up word processing, suggesting that mental lexicon 

leverages semantic proximity in a sense that it is able to recognize words faster when they are 

semantically similar to many others. However, clustering coefficient and closeness centrality 

did not show a clear relationship with reaction time. Overall, this means that there is not 

enough evidence in the present work to conclusively answer the second research question. 

Although the overall model fit was weak, future research could focus on improving it by 

exploring additional network measurements of which there are many or other control 

variables such as word frequency. Another potential direction for studying semantic networks 

based on word vectors could involve using different training data sources or alternative 

language models. While this study used a sample from the TV Corpus reflecting spoken 

language, other sources like spoken language corpora or experimentally elicited narration 

from individual speakers should be considered. Future research might also explore more 

advanced models beyond BERT. 

Research in both phonological (Kennet & Faust 2019) and semantic networks 

(Colunga & Sims 2017, de Boer et al. 2018, Hadley et al. 2019) is increasingly focusing on 

practical applications, such as studying language acquisition and language impairments. By 

accurately capturing and analysing the structure and dynamics of semantic networks, this 

research could aid in developing supplementary tools for diagnosing cognitive impairments. 

These tools could help detect subtle, incremental changes in language that occur in the early 

stages of conditions like dementia or delayed language development. Therefore, I believe that 

semantic networks based on word vectors specifically and language network in general 

promise a new direction in linguistic research that can not only bring new insights about the 

structure and dynamics of language but also practical application in various domains in which 
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language as a cognitive faculty of the human mind is relevant. 
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7.  Résumé 

Cíl této diplomové práce bylo vytvořit sémantickou síť angličtiny založenou na 

slovních vektorech a prozkoumat zdali struktura takto vytvořené sítě odráží některé 

kognitivně relevantní vztahy mezi slovy. Taková práce na jedné straně zkoumá možnosti 

využití současných metod strojového učení, které vytváření vektory slov, pro lingvistický 

výzkum. Na straně druhé straně se angažuje v relativně nové a dynamické disciplíně 

jazykových sítí, která vytváří síťové modely různých aspektů jazyka a analyzuje je s pomocí 

formálních nástrojů vědy o sítích. Celá práce má ambici přispět k poznání o tom, jak mluvčí 

zpracovávají slova ve své mysli, a proto je výsledná sémantická síť konfrontovaná s výsledky 

psycholingvistických experimentů na zpracování slov s cílem otestovat, zdali struktura takové 

sémantické sítě, měřená skrze vybrané síťové metriky, má vliv na efektivitu zpracování slov 

mluvčími, měřenou skrze reakční časy pro daná slova ve výše zmíněných experimentech. Jde 

tedy o interdisciplinární práci, která kombinuje komputační postupy pro vytvoření slovních 
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vektorů a jejich transformaci do sítě, formální nástroje vědy o sítích pro analýzu struktury 

výsledné sítě a výsledky psycholingvistických experimentů pro porovnání se síťovými 

metrikami. 

Kapitola 2 postupně představuje nezbytnou teorii od vědy o sítích, psycholingvistický 

výzkum zpracování slov, konkrétní aplikace vědy o sítích pro lingvistický výzkum v podobě 

fonologických a sémantických sítích a nakonec velké jazykové modely a vektory slov. 

V kapitole 2.1 o vědě o sítích jsou stručně nastíněny její aplikace v jiných výzkumných 

odvětvích jako sociální sítě, které zkoumají struktury společenských vazeb. Je zde také 

představen koncept struktury malých světů (small-world structure), která je typická pro různé 

sociální a kognitivní fenomény reprezentované jako síť, např. sociální sítě mapující síť 

známostí mezi lidmi. Hlavní část je věnována představení relevantních síťových metrik jako 

degree centrality, closeness centrality a clustering coefficient, které byly potom využité pro 

porovnání struktury sémantické sítě a psycholingvistických výsledků. Kapitola 2.3 představila 

konkrétní aplikaci vědy o sítích v lingvistickém výzkumu fonologických sítí. Propojení mezi 

slovy ve fonologické síti je typicky založeno na vztahu fonologické podobnosti. V takové síti 

je pár slov propojen právě tehdy, liší-li se právě jedním fonémem.  Jde převážně o výzkum 

Michaela S. Vitevitche a jeho kolegů, na který má diplomová práce převážně navazuje. 

Vitevitch a kol. ve svém výzkumu často propojovali výzkum fonologických sítí 

s psycholingvistickými experimenty, ve kterých se ukázala nejasná a komplikovaná role 

clustering coefficient na rychlost zpracování slov (Vitevitch 2009, 2011). To byla hlavní 

inspirace pro to, zkusit prozkoumat roli různých síťových metrik v sémantických sítích a 

využít přitom současného rozvoje metod strojového učení pro zpracování jazyka. Kapitola 2.4 

představila současný výzkum sémantických sítí. Propojení využívaná ve 

studiích sémantických sítích jsou založena na širším spektru sémantických vztahů. Takový 

vztah je typicky kvantifikován a od určité hranice blízkosti dvou slov jsou propojeny v rámci 

sémantické sítě. Tyto sémantické vztahy v sítích mohou být rozděleny do různých skupin na 

základě dat, ze kterých je takový sémantický vztah určen. Tato diplomová práce využívá 

vektory slov pro výpočet sémantické podobnosti na základě které jsou slova propojena do 

sémantické sítě. Tímto postupem spadá sémantická síť v mé diplomové práci do kategorie 

sémantických sítí založených na jazykových korpusech a kookurenci slov, na základě které 

algoritmy strojového učení využité v této práci vytváří vektory slov. Vektory slov a velké 

jazykové modely jsou tak poslední teoretickou částí, kterou je pro správnou interpretaci mé 

sémantické sítě nutné představit v kapitole 2.5. Jsou zde uvedeny některé současné jazykové 

modely jako BERT, které mohou být natrénovány textem na základě kterého vytvoří vektory 
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slov. Kapitola se snaží nezabíhat do příliš technických detailů a postupně představuje hlavně 

příklady relevantních využití slovních vektorů a tzv. sémantických prostorů, ve kterých slovní 

vektory zachycují různé hlavně sémantické vztahy mezi slovy. Hlavním cílem této kapitoly je 

na konkrétních příkladech ukázat, proč je vzdálenost mezi slovními vektory definičním 

kritériem pro vytvoření propojení v mé sémantické síti. 

 Kapitola 3 a 4 potom představují praktickou část mé diplomové práce. Kapitola 3 

explicitně formuluje dvě základní výzkumné otázky, které jsem chtěl ve své práci zodpovědět. 

První je, zdali mohou být vektory slov relevantním základem pro vytvoření sémantické sítě, 

která poskytne vhled do kognitivních procesů jazyka. Tato otázka může být kladně 

zodpovězena, pokud bude mít výsledná síť strukturu malých světů. Navazující výzkumnou 

otázkou je, že pokud taková sémantická síť bude mít strukturu malých světů, zdali bude 

možné identifikovat konkrétní strukturní vlastnosti, které budou ovlivňovat efektivitu 

zpracování slov. Pro zodpovězení takové otázky je třeba statisticky otestovat vztah mezi 

síťovými proměnými pro slova v síti a reakčními časy pro stejná slova z psycholingvistických 

experimentů. Kapitola 3 také zmiňuje dva zdroje dat mé práce, kterými je vzorek 1000 vět 

z TV Corpus, který jsem využil pro natrénování jazykového modelu BERT, abych získal 

vektory slov pro sémantickou síť. Druhým zdrojem jsou reakční časy pro jednotlivá slova 

v mé síti z psycholingvistických experimentů lexical decision task, které jsem získal z MALD 

databáze. Reakční časy odrážejí efektivitu zpracování slov a mohou tak být porovnána se 

síťovými metrikami pro stejná slova. Kapitola 3.1 popisuje detailněji postup a okolnosti 

vytváření sémantické sítě z výše uvedených zdrojů. Kapitola 3.2 potom podobně popisuje 

získání a vlastnosti psycholingvistických dat z databáze MALD. Kapitola 4 prezentuje 

výsledky mé práce, kterými jsou vizualizace sémantické síťe a lineární regrese. Ta zkoumala 

tři vybrané síťové metriky vypočítané pro každé slovo v sítí - degree centtrality, clustering 

coefficient a closeness centrality - jako nezávislé proměnné a jejich vliv na průměrný reakční 

čas pro stejná slova z lexical decision task. Regresní analýza ukázala potenciálně negativní 

vztah mezi clustering coefficient a průměrným reakčním časem. U zbylých dvou proměnných 

se neukázal jasný vztah. Nicméně výsledné vztahy se neukázaly jako statisticky signifikantní, 

jen negativní vztah mezi clustering coefficient a průměrným reakčním časem se blížil 

statistické signifikanci. 

 Kapitola 5 interpretuje výsledky a uvádí je do kontextu. Výsledná sémantická síť má 

strukturu malých světu, takže první výzkumná otázka může být zodpovězena kladně – slovní 

vektory mohou zachytit kognitivně relevantní sémantické vztahy mezi slovy. Druhá otázka je 

zodpovězena spíše negativně tím, že mezi vybrannými síťovými proměnnými a reakčním 
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časem, který reflektuje efektivitu zpracování slov, se neukázal statisticky signifikatní vztah. 

Závěr je i přesto optimistický, protože se nabízí různé možnosti, jak na výzkum v mé 

diplomové práci přímo navázat a statisticky signifikatní vztah mezi strukturou takové 

sémantické sítě a zpracováním slov prokázat. Budoucí výzkum může zkoumat možnosti 

využítí jiných textů pro tréning jazykového modelu – nabízí se třeba korpusy mluvenného 

jazyka, nebo experimentální elicitované vyprávění jednotlivých mluvčí. Je také možné se 

zaměčit na jiné, nebo komplexnější síťové metriky, než ty vybranné pro mou práci. Posledně 

je také možné prozkoumat možnosti využití jiných jazykových modelů, než je BERT. Celkově 

jsou jazykové sítě rostoucím odvětvím lingvistického výzkumu s potenciálním využitím 

například pro diagnostické účely jazykových poruch, které vyžadují zachycení a popis často 

subtilních změn řeči. Takovým požadavkům nahrává současný rozvoj metod strojového učení, 

který třeba skrz slovní vektory nově zvládne kvantitativně zachycovat semantické vztahy 

mezi slovy. Má práce snad zvládla demonstrovat užitečnost jak sémantických sítí, tak 

slovních vektorů pro lingvistický výzkum. 

8.  Apendix 

Item meanRT DegreeCentrality ClosenessCentrality ClusteringCoefficient 

abuse 910.9091 0.003128 0.001043 0.166667 

academy 931.6667 0.002086 0 0 

advanced 1019.2 0.005214 0.054697 0.15 

affects 879.1111 0.002086 0 0.5 

agents 792 0.005214 0.002781 0.15 

aggression 1040.25 0.003128 0.026561 0.5 

agreement 824.4444 0.003128 0.014175 0 

air 799.875 0.014599 0.034306 0.090909 

animals 984.875 0.006257 0.024453 0.1 

answer 716 0.016684 0.049623 0.126374 

ape 857 0.003128 0 0.166667 

approach 737.1111 0.004171 0.019123 0.166667 

area 847.875 0.004171 0 0.083333 

army 693.1111 0.006257 0.002781 0.066667 

arts 828.3333 0.002086 0.001854 0 

ask 836.3333 0.017727 0.047786 0.17619 

asked 874.4 0.020855 0.004965 0.111111 

assassins 883 0.007299 0.022942 0.02381 

assignment 1010.273 0.004171 0.007764 0.25 

auction 910.625 0.004171 0.030269 0 

audience 986.3333 0.003128 0.02881 0.333333 

aunt 1032.875 0.002086 0.018142 0 

authorities 958 0.003128 0.010991 0.5 
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authorized 1080.556 0.006257 0.042137 0.166667 

baby 751.5 0.013556 0.009675 0.118182 

bag 918 0.006257 0.029155 0.166667 

barriers 890.8889 0.002086 0.019287 0 

based 941.3333 0.002086 0 0.5 

bastard 814.1111 0.004171 0.032392 0.166667 

bathroom 809.5 0.004171 0.011606 0 

beam 813 0.004171 0.02523 0.166667 

bear 736.1818 0.009385 0.02887 0.119048 

bed 805 0.001043 0 0 

behave 794.7778 0.006257 0.027876 0.366667 

belief 847.5556 0.005214 0.012976 0.1 

believe 1037.5 0.031283 0.016224 0.137566 

belong 785 0.003128 0.001043 0 

bidding 1024.125 0.002086 0 0 

birthday 797.875 0.002086 0.017716 0 

bit 843.6667 0.010428 0.069121 0.142857 

body 864 0.01147 0.00139 0.013889 

book 606.8889 0.005214 0.024962 0.05 

boss 816.5556 0.03024 0.022092 0.432266 

bother 772.7143 0.004171 0.003128 0 

bottom 909.5556 0.002086 0 0.5 

brake 810.8 0.008342 0.024522 0.142857 

bride 806.625 0.001043 0 0 

broken 839.25 0.002086 0 0 

brother 729.6667 0.014599 0.033456 0.181818 

brought 773.6667 0.003128 0.018394 0.333333 

bubble 798.6667 0.003128 0.003926 0.166667 

building 856.3 0.009385 0.00237 0.02381 

built 895 0.003128 0.002208 0.166667 

bunch 896.625 0.005214 0.014251 0.1 

business 773.125 0.003128 0.002897 0.333333 

buy 861.625 0.012513 0.020691 0.188889 

call 783.25 0.039625 0.00393 0.096825 

called 963.875 0.014599 0.024199 0.106061 

calls 1058.25 0.007299 0.008854 0.261905 

came 1057.5 0.025026 0.06233 0.151515 

camp 905 0.007299 0.039379 0.190476 

captain 924.875 0.003128 0.001564 0.166667 

car 694.5 0.009385 0.01604 0.238095 

care 767.3333 0.009385 0.037857 0.166667 

careless 810.5556 0.002086 0 0 

cartoon 919.5556 0.002086 0.001043 0.5 

case 766.2222 0.009385 0.032086 0.111111 

catching 822.2222 0.005214 0.014523 0.25 

cell 779.5 0.007299 0.009511 0.3 

century 947.75 0.007299 0.0275 0.2 

challenge 924.75 0.001043 0 0 
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chance 1048.667 0.003128 0 0 

charge 904.875 0.017727 0.044726 0.25 

charity 828.125 0.002086 0 0 

check 769.5 0.005214 0.020311 0.15 

checked 808.625 0.003128 0.015541 0.166667 

chest 774.3333 0.002086 0.017727 0 

chief 870 0.002086 0.00139 0.5 

child 823.25 0.007299 0.02562 0.35 

children 879.25 0.006257 0.023693 0.033333 

chocolate 784.1429 0.006257 0.019728 0.366667 

choking 831.3636 0.007299 0.02213 0.404762 

chose 966.2222 0.003128 0.011014 0.5 

chuck 982.2 0.035454 0.066298 0.369875 

church 744.25 0.001043 0 0 

cinema 831 0.003128 0.015851 0 

civilians 1053.556 0.005214 0.028376 0 

claims 760.4444 0.003128 0.025547 0.333333 

cleaning 1011.875 0.006257 0.017529 0.166667 

client 931 0.008342 0.056758 0.053571 

close 801.5 0.004171 0.024193 0.5 

coconut 833.7273 0.003128 0 0.5 

code 640 0.001043 0 0 

coins 776.875 0.002086 0.00139 0 

collection 1000.444 0.002086 0.011924 0 

collections 841.2857 0.003128 0.010757 0 

come 768 0.092805 0.015448 0.105319 

coming 790 0.045881 0.085166 0.317653 

commitment 940.5 0.010428 0.041713 0.1 

company 949.25 0.047967 0.045315 0.289372 

computer 850.1111 0.01147 0.016526 0.027778 

concerned 921.625 0.006257 0.010707 0 

conditions 839.1 0.001043 0 0 

consider 777.875 0.004171 0.002503 0 

consultant 1022.667 0.002086 0 0 

continues 941 0.008342 0.022803 0.339286 

control 871.875 0.012513 0.04836 0.033333 

cook 910.25 0.01147 0.025936 0.136364 

cooler 835.5714 0.001043 0 0 

cop 859.125 0.006257 0.011068 0.233333 

cops 909.5455 0.012513 0.013106 0.144444 

corner 874.375 0.001043 0 0 

costume 840.7778 0.004171 0.034322 0 

coughing 859.3 0.007299 0 0.404762 

council 895.625 0.001043 0 0 

country 779.75 0.003128 0.019789 0.333333 

couple 815.75 0.007299 0.018269 0.142857 

course 789.8889 0.005214 0.005178 0 

court 858.1 0.005214 0.001043 0.166667 
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cousin 806.5 0.012513 0.005035 0.144444 

cracking 782.25 0.005214 0.021491 0.2 

crew 981.625 0.008342 0.04072 0.133333 

cross 902.125 0.006257 0.023212 0.2 

crying 862.9 0.003128 0.006763 0.333333 

curse 896.5455 0.001043 0 0 

cute 800 0.002086 0.001043 0 

dad 683.3333 0.013556 0.006703 0.181818 

dale 1027.818 0.001043 0 0 

date 707.75 0.006257 0.001043 0.066667 

dawn 861.7778 0.002086 0 0.5 

day 729 0.009385 0.024684 0.261905 

days 649.125 0.017727 0.020627 0.138095 

deal 788.625 0.007299 0.039951 0.142857 

death 671.5556 0.013556 0 0.045455 

decide 860 0.006257 0.025861 0.2 

decided 832.1429 0.006257 0.01435 0.1 

delivery 923.6667 0.004171 0.022864 0.083333 

demonstrate 940.5 0.001043 0 0 

department 964 0.005214 0.020944 0 

depends 1057 0.006257 0.026822 0.066667 

detective 1064.222 0.006257 0.001043 0.266667 

determine 906.2 0.008342 0.017631 0.267857 

did 825.5 0.055266 0.01437 0.101961 

died 897.875 0.006257 0.003128 0.083333 

dinner 687.875 0.014599 0.044425 0.098485 

discount 854.5 0.004171 0.027069 0.333333 

diversified 850.1111 0.002086 0.001043 0.5 

do 945.7143 0.119917 0.004171 0.08573 

doctor 774 0.01147 0.018863 0.097222 

documents 928.7778 0.01147 0.04313 0.036364 

does 782.0909 0.027112 0.027083 0.141304 

doing 876.125 0.046924 0.001043 0.070321 

done 733.875 0.017727 0.030192 0.138095 

doubt 723.4444 0.003128 0.010548 0.166667 

drag 823.9 0.013556 0.008009 0.072727 

drained 935.625 0.008342 0.019968 0.125 

draw 773.2222 0.012513 0.056194 0.128788 

dressed 987.5556 0.010428 0.039667 0.107143 

drink 812.3333 0.004171 0 0.333333 

drive 780.375 0.009385 0.003193 0.138889 

driving 912.25 0.013556 0.014271 0.102564 

drop 822.125 0.007299 0.053466 0.333333 

drug 677.3333 0.006257 0.032477 0.033333 

dude 928.75 0.009385 0.06307 0.486111 

dust 760.75 0.002086 0.019173 0.5 

embrace 1209 0.01147 0.023381 0.181818 

employment 805.4444 0.004171 0.009155 0.166667 
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end 826 0.004171 0 0 

energy 791.5 0.014599 0.026816 0.045455 

engine 945.5556 0.009385 0 0.138889 

enjoy 806.6667 0.002086 0 0.5 

events 919 0.003128 0.01155 0 

exist 816 0.015641 0.050783 0.160256 

expect 864.3333 0.007299 0.007861 0.2 

experiment 793.25 0.005214 0.002681 0.05 

explain 948.875 0.003128 0 0 

expression 1001.375 0.006257 0.019668 0.066667 

eyes 872 0.007299 0.016722 0.05 

face 950.8333 0.005214 0.008112 0.1 

faced 881.4444 0.007299 0.019051 0.071429 

faith 794.2222 0.005214 0.013407 0.1 

fall 905.2222 0.003128 0 0 

family 766.1429 0.01147 0.008274 0.109091 

feel 869.6 0.056309 0.079338 0.189291 

feelings 987.875 0.007299 0.00237 0.15 

fellow 1028.875 0.007299 0.033043 0.166667 

felt 1059 0.007299 0.018853 0.2 

fence 894.2 0.006257 0.033687 0.1 

fiance 838.2222 0.027112 0.083399 0.332308 

field 1050.667 0.006257 0.022988 0.133333 

fig 878.3333 0.002086 0.001043 0 

fight 779 0.028154 0.040275 0.058333 

fighting 1075.375 0.003128 0.031595 0 

figured 1082.875 0.012513 0.046895 0.136364 

file 850 0.007299 0.040714 0.071429 

find 754.5 0.046924 0.013968 0.084164 

fingers 884.5 0.002086 0.001043 0 

finish 918.5455 0.006257 0.03695 0.266667 

fire 793.4444 0.015641 0.01086 0.032051 

firing 1149.9 0.003128 0.009159 0.166667 

fits 1001 0.002086 0 0.5 

flap 997 0.006257 0.01484 0.133333 

flowers 819.6364 0.003128 0.013609 0.166667 

flows 1112.667 0.01147 0.028767 0.166667 

food 768.125 0.015641 0.05075 0.166667 

fought 832.5 0.002086 0 0 

found 966 0.003128 0.018734 0.166667 

friend 742.1111 0.015641 0.041864 0.147619 

friends 978.5 0.016684 0.009385 0.071429 

game 769 0.007299 0.008596 0 

garage 799.5 0.010428 0.028351 0.122222 

gather 956.5 0.006257 0.062945 0.1 

gave 865.875 0.014599 0.03131 0.203297 

gentlemen 776.4444 0.007299 0.010896 0.095238 

get 844.25 0.090719 0.017794 0.112745 
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gets 892.5556 0.008342 0.001877 0.410714 

getting 782.4444 0.012513 0.066821 0.122222 

girl 830.125 0.020855 0.00139 0.088235 

girls 815.5556 0.003128 0.007886 0.166667 

give 743.6 0.070907 0.026994 0.163636 

giving 805.625 0.002086 0.00237 0 

glass 1122 0.008342 0.005735 0.233333 

go 696.1 0.06048 0.01165 0.08539 

gods 796.5556 0.002086 0.001043 0 

goes 884.5556 0.016684 0.044112 0.25 

goin 1116.6 0.006257 0.008874 0.4 

going 718.375 0.035454 0.036283 0.104839 

gone 991.3333 0.014599 0.013651 0.121212 

got 791.625 0.062565 0.025777 0.086207 

grabbed 1000.667 0.013556 0.049297 0.141026 

grant 787.1429 0.006257 0.031595 0.166667 

grew 1147.778 0.006257 0.022118 0.233333 

group 892 0.003128 0.007108 0 

growing 837.8889 0.004171 0.002781 0 

guess 803.75 0.013556 0.029778 0.136364 

gunfire 830.625 0.01877 0.02297 0.116667 

guys 772 0.017727 0.007008 0.071429 

had 858.7778 0.043796 0.036227 0.051923 

hand 881.8889 0.006257 0 0 

hands 735.25 0.001043 0 0 

has 866 0.031283 0.021873 0.113757 

hate 689.875 0.016684 0.014998 0.225275 

hats 929.7778 0.005214 0.030096 0.15 

have 834 0.070907 0.007678 0.074825 

having 748.2 0.015641 0.002781 0.044872 

head 834.375 0.005214 0.026802 0 

health 857 0.006257 0 0.083333 

hear 789.1111 0.019812 0.065814 0.231618 

heard 790.125 0.016684 0.032518 0.093407 

heart 893.1667 0.007299 0.022946 0 

help 712.2222 0.032325 0.049015 0.124384 

history 886.2222 0.002086 0.01602 0.5 

hit 801.75 0.040667 0.04415 0.345479 

hits 790.625 0.004171 0.001668 0.083333 

hold 1009 0.019812 0.012101 0.055147 

hole 882 0.001043 0 0 

home 870.375 0.017727 0.026507 0.071429 

homework 809.1 0.008342 0.027428 0.107143 

honest 830.1111 0.003128 0.016803 0.166667 

honey 893.875 0.002086 0 0 

hope 821 0.032325 0.034347 0.386022 

horn 831.6667 0.004171 0.018835 0.416667 

hospital 825.3636 0.007299 0.020869 0.119048 
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hours 878.375 0.007299 0.022464 0.3 

house 690.125 0.021898 0.019705 0.038012 

humiliated 906.625 0.003128 0.030411 0.166667 

hurt 909 0.03024 0.055639 0.111111 

husband 722.375 0.015641 0.006757 0.108974 

ice 954.6667 0.005214 0.008002 0.15 

idea 838.7273 0.003128 0 0 

idiot 727.25 0.002086 0 0 

imagination 938.1111 0.002086 0.00139 0 

invites 1082.2 0.005214 0.01723 0.2 

job 740.6667 0.013556 0.00958 0.090909 

join 787.1 0.002086 0.024962 0 

joints 1168 0.003128 0.00139 0 

joke 733.6364 0.005214 0.023944 0 

keep 735.3636 0.009385 0 0.152778 

kept 961.5556 0.002086 0.001043 0.5 

kid 795 0.016684 0.026762 0.098901 

kidding 784.3333 0.004171 0.006763 0 

killed 796.625 0.021898 0.049739 0.104762 

killer 806.25 0.01147 0.055249 0.127273 

kind 930.1111 0.005214 0.026872 0.15 

knew 754.6667 0.021898 0.057085 0.116959 

know 904 0.051095 0.007422 0.094357 

known 923.3 0.005214 0.018307 0.1 

knows 1068.5 0.015641 0.027812 0.173077 

lab 945.4444 0.006257 0.04045 0.066667 

labyrinth 996.7778 0.001043 0 0 

lack 821 0.001043 0 0 

lake 840.2222 0.002086 0 0 

laugh 872 0.002086 0.001043 0 

laughs 732.875 0.008342 0 0.285714 

lawyers 792.7 0.001043 0 0 

leaked 1060.111 0.01147 0.01956 0.145455 

learn 778.875 0.008342 0.04315 0.232143 

leave 808.5 0.059437 0.00869 0.224579 

left 840.3333 0.013556 0.004965 0.1 

let 945.625 0.085506 0.004171 0.122468 

letting 876.3636 0.004171 0.004965 0.083333 

liar 786.4444 0.002086 0 0 

lieutenant 802.2222 0.006257 0.012054 0.166667 

life 840 0.028154 0.020341 0.026667 

lift 938.2222 0.002086 0.018142 0 

lifted 734.8889 0.001043 0 0 

list 955.1 0.004171 0.053553 0 

listen 717.375 0.025026 0.047438 0.186147 

live 914.5 0.003128 0.017963 0.166667 

lives 711.1111 0.006257 0.024347 0.2 

living 736.875 0.009385 0.03673 0.055556 
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lobby 869.5714 0.005214 0.01573 0.15 

looking 1246.833 0.008342 0.022637 0.160714 

lose 808.4444 0.014599 0.029197 0.142857 

loser 833.1111 0.002086 0.014573 0 

lot 907.6364 0.014599 0.009067 0.068182 

love 756.125 0.025026 0.024977 0.0671 

lunch 745 0.004171 0.035838 0.083333 

lying 957.3333 0.005214 0.03883 0 

madame 884.4444 0.004171 0.008174 0.166667 

made 936.3 0.034411 0.024025 0.107955 

magazine 810.625 0.002086 0 0 

maintaining 1106.5 0.003128 0.038123 0.166667 

make 999.1 0.042753 0.033648 0.107287 

making 664.6667 0.004171 0.036004 0.166667 

male 756 0.003128 0.001043 0.333333 

males 880.8 0.003128 0 0.333333 

man 791 0.028154 0.041217 0.066667 

manager 991.8889 0.005214 0.034997 0.166667 

mark 928.6667 0.006257 0.00139 0 

market 894.5556 0.006257 0.035861 0.083333 

mean 994.625 0.01877 0.016918 0.195833 

memory 839.625 0.003128 0.041081 0.166667 

men 707.375 0.009385 0.034893 0.125 

mention 859.5556 0.002086 0.018142 0.5 

milk 693.5 0.010428 0.024767 0.2 

mind 808.25 0.004171 0.001043 0 

minute 873.375 0.002086 0 0 

miss 967.5714 0.012513 0.01068 0.188889 

mistake 929.875 0.005214 0.017379 0.1 

mixed 1014.727 0.002086 0.001877 0 

model 777.8889 0.004171 0.034152 0.25 

mom 718.8571 0.015641 0.006257 0.102564 

money 632.25 0.003128 0.001043 0 

monitor 865.5714 0.019812 0.068188 0.040936 

month 784.5 0.01147 0.018654 0.208333 

months 768.625 0.003128 0.014469 0.333333 

morning 768.5556 0.014599 0.024456 0.143939 

mother 879.1111 0.016684 0.025297 0.10989 

motor 595 0.003128 0.012574 0.5 

move 790.875 0.020855 0.024219 0.104575 

moving 815.6667 0.012513 0.032673 0.066667 

music 748.5455 0.015641 0.001043 0.102564 

name 862.2 0.019812 0.051442 0.069853 

names 907.6 0.005214 0.047017 0.1 

needs 850.3636 0.007299 0.023752 0.15 

news 858.2222 0.015641 0.028491 0.108974 

night 848 0.010428 0.021389 0.071429 

object 763.625 0.007299 0.002897 0.1 
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ocean 953.5556 0.003128 0.006282 0 

offer 902.8889 0.003128 0.019032 0 

offering 848 0.006257 0.002902 0 

office 851 0.003128 0.00721 0.166667 

officer 911.6667 0.009385 0 0.095238 

online 660.6667 0.002086 0 0 

operation 967.25 0.004171 0.035129 0.083333 

ounce 916.875 0.003128 0 0.166667 

package 855.8889 0.004171 0.024621 0.166667 

page 791.4444 0.004171 0.001043 0 

paint 693.9 0.002086 0 0 

palm 884.8889 0.001043 0 0 

part 895.1111 0.002086 0.001877 0 

party 1062.25 0.014599 0.028906 0.022727 

passionate 900.5 0.002086 0.018668 0.5 

past 795.6667 0.001043 0 0 

path 803.1 0.009385 0.009584 0.069444 

patient 877.5556 0.012513 0.01852 0.083333 

patterns 1029.857 0.003128 0.038566 0 

peace 697.8889 0.001043 0 0 

people 688.3333 0.069864 0.006527 0.15024 

perform 908.5 0.014599 0.058757 0.137363 

person 779.125 0.009385 0.032456 0.095238 

pets 807.3333 0.004171 0.020992 0.083333 

phone 975.625 0.01147 0.019446 0.125 

photo 759 0.01147 0.043644 0.097222 

photon 970.25 0.001043 0 0 

pick 630.6 0.002086 0.019614 0 

picked 691.6 0.004171 0.020732 0.166667 

picking 820.125 0.004171 0.024236 0.083333 

picture 818 0.014599 0.017756 0.098485 

pictures 788.5 0.006257 0.044007 0.066667 

pie 748.4545 0.008342 0 0.321429 

place 1069.833 0.015641 0.016455 0.038462 

places 1040.333 0.006257 0.015082 0.066667 

planned 960.2857 0.004171 0.011494 0 

play 738.1111 0.01147 0.050151 0.081818 

pole 949.5 0.037539 0.089843 0.42381 

police 784.4 0.009385 0.043332 0.119048 

pop 944.125 0.001043 0 0 

practices 869.2222 0.010428 0.001877 0.188889 

preparatory 1105.8 0.006257 0.055459 0.166667 

press 909.625 0.009385 0.051586 0.180556 

priority 609 0.003128 0.018142 0 

prisoner 807.7778 0.003128 0.034282 0.166667 

privileges 904.7778 0.005214 0.024684 0.15 

procedures 986.1818 0.009385 0.053927 0.069444 

program 797.5 0.005214 0.002086 0.1 
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programming 987.6667 0.004171 0.034959 0.083333 

protect 799.625 0.021898 0.021352 0.102339 

pull 952.8889 0.009385 0.011215 0.142857 

purse 766.5 0.003128 0.035398 0 

pursued 988.125 0.01147 0.054256 0.145455 

put 777.2222 0.03024 0.045095 0.122507 

puts 812.2857 0.010428 0.025719 0.155556 

question 847 0.007299 0.036357 0.25 

race 866.3333 0.006257 0.022775 0.2 

radio 1044.2 0.004171 0.025004 0.25 

rage 767.5556 0.003128 0.001043 0 

raise 863.625 0.027112 0.090807 0.281538 

ran 867.1429 0.003128 0.009346 0.333333 

re 860.7778 0.043796 0 0.105128 

realized 993 0.007299 0.01155 0.214286 

rebuild 1105.667 0.002086 0.002208 0 

received 831.7778 0.002086 0 0 

recognize 1065.667 0.017727 0.023497 0.095238 

record 993.6667 0.004171 0 0.166667 

relationship 799 0.014599 0.017331 0.083333 

relax 886.8333 0.003128 0.017963 0.166667 

remains 978.3333 0.001043 0 0 

remember 757.1111 0.007299 0.015704 0.2 

researchers 868.8889 0.005214 0.032735 0.1 

resembling 782.125 0.001043 0 0 

restraining 858.375 0.002086 0 0 

results 1044.5 0.01147 0.039634 0.490909 

return 893.75 0.003128 0.028816 0 

roast 872.7273 0.002086 0.019614 0 

rock 741.3333 0.008342 0.028583 0.089286 

room 806.1818 0.016684 0.019326 0.06044 

rose 766 0.004171 0.01604 0.166667 

route 763 0.003128 0.032794 0.166667 

ruled 851.875 0.001043 0 0 

run 658.6667 0.01147 0.027784 0.081818 

sacks 1100.375 0.001043 0 0 

safety 981.5 0.006257 0.063869 0.2 

said 956.5556 0.025026 0.023554 0.127706 

sale 1104.25 0.002086 0 0.5 

saved 952.1429 0.019812 0.029661 0.121324 

saw 822.5 0.009385 0.033797 0.190476 

say 849.25 0.04171 0.056629 0.139403 

saying 922.75 0.014599 0.00139 0.121212 

says 973.6667 0.046924 0.033544 0.243939 

scene 976.8 0.005214 0 0.05 

school 945.125 0.012513 0.008833 0.05303 

scramble 833.875 0.002086 0.00139 0 

sea 811.625 0.005214 0.007499 0.1 
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secluded 934.1111 0.007299 0.037308 0.166667 

seconds 798.4545 0.006257 0.022905 0.25 

security 922 0.007299 0.03831 0.190476 

see 973.875 0.036496 0.023325 0.08428 

seed 891.5 0.001043 0 0 

seemed 958 0.013556 0.029879 0.154545 

seems 920.2857 0.026069 0.048217 0.13834 

seen 1016.875 0.015641 0.050054 0.089744 

sell 886.25 0.036496 0.045127 0.274621 

sells 855.5455 0.01877 0.054223 0.160131 

senator 799.8571 0.002086 0 0.5 

send 1129.222 0.006257 0.032296 0.1 

sending 863.1667 0.010428 0.037507 0.1 

sent 1004.375 0.006257 0.021583 0.266667 

sentence 932.7778 0.004171 0.027581 0.333333 

service 886.8889 0.003128 0.015404 0.333333 

serving 1047.7 0.002086 0.001877 0.5 

set 861.8 0.015641 0.042955 0.147619 

setting 657.5 0.013556 0.08294 0.070513 

shape 795.375 0.002086 0.002503 0 

shaped 821 0.004171 0.031491 0.416667 

share 847.6667 0.008342 0.02615 0.428571 

sharks 904.3333 0.001043 0 0 

shock 833.5 0.005214 0.028989 0.05 

shoot 1022.125 0.033368 0.031563 0.392137 

shotgun 828.5 0.003128 0 0.166667 

show 954.875 0.009385 0.011638 0.047619 

shows 1041.25 0.002086 0.00958 0 

shut 864.2 0.017727 0.022354 0.352381 

side 1100.3 0.005214 0 0 

sighs 1192 0.013556 0.003128 0.236364 

sight 934.25 0.004171 0.024224 0.166667 

singing 931.125 0.010428 0.03148 0.133333 

sirens 996 0.006257 0 0.466667 

sister 925.625 0.007299 0.005735 0.142857 

sit 773.75 0.006257 0.021902 0.166667 

slaves 1033.75 0.003128 0.004985 0.333333 

sobs 944.3333 0.005214 0.003337 0.45 

sold 1145.222 0.005214 0.035985 0.05 

sort 1015.111 0.037539 0.034543 0.180036 

soul 887.375 0.003128 0 0 

soup 905.7778 0.012513 0.025992 0.189394 

spaghetti 829.25 0.001043 0 0 

speak 818.8889 0.007299 0.001043 0.05 

speech 1007 0.009385 0.029712 0.111111 

sperm 934.875 0.001043 0 0 

spit 849.2222 0.009385 0.02157 0.222222 

splendid 826.7778 0.002086 0.005456 0.5 
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spot 1115.25 0.010428 0.033887 0.1 

spotted 871.5 0.008342 0.050161 0.089286 

stabbed 931.8 0.002086 0.038688 0 

staff 960.25 0.004171 0.049308 0 

stain 1115.375 0.003128 0.002086 0 

stand 892.6667 0.005214 0.005214 0.15 

standing 954 0.01147 0.036483 0.055556 

start 939.75 0.012513 0.025236 0.122222 

started 1236.375 0.015641 0.001043 0.07619 

statement 976.1 0.001043 0 0 

stations 1101.909 0.006257 0.06675 0.133333 

stay 1082.6 0.063608 0.069704 0.191993 

stealing 887.7143 0.002086 0 0 

step 933.7143 0.001043 0 0 

stink 915.3 0.002086 0 0 

stole 1103 0.008342 0.044071 0.178571 

stop 801.875 0.047967 0.017772 0.250529 

stopped 927.5 0.002086 0 0 

stops 986.5 0.005214 0.019662 0.5 

store 1120.6 0.002086 0 0 

strained 1151 0.001043 0 0 

students 916.4444 0.006257 0 0.033333 

study 968.25 0.009385 0.024092 0.111111 

stuff 873.6667 0.020855 0.021132 0.071895 

summer 908.5 0.002086 0 0.5 

supply 919.5 0.007299 0.023401 0.05 

surface 1038 0.005214 0.004011 0.2 

surge 969.6667 0.007299 0.001043 0.095238 

surprises 972.3333 0.001043 0 0 

surround 991.4444 0.005214 0.039273 0.35 

surveillance 926.8333 0.005214 0.024709 0.05 

sweep 1016.375 0.002086 0.025442 0 

swept 943.4444 0.007299 0.022888 0.071429 

swim 889.8889 0.003128 0.004965 0 

tables 807.8889 0.003128 0.035791 0.166667 

take 912.375 0.027112 0.02696 0.144928 

taking 830.5 0.008342 0.024402 0.053571 

talk 741.625 0.04171 0.031283 0.128734 

talking 770.2222 0.027112 0.008874 0.072464 

tape 566.7143 0.008342 0.054286 0.089286 

tapes 956.5556 0.006257 0.014645 0.066667 

teach 754 0.016684 0.051004 0.153846 

team 935.4286 0.013556 0.00237 0.027273 

teenagers 779.2222 0.005214 0.018242 0.15 

tells 941.5 0.008342 0.038579 0.339286 

terrorist 779.25 0.005214 0 0.2 

thank 985.3333 0.040667 0.036725 0.361862 

thanks 937 0.013556 0.023814 0.1 
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theory 828.2222 0.003128 0.002086 0 

thing 929.25 0.015641 0.003259 0.083333 

things 837.875 0.025026 0.052535 0.080087 

think 909 0.044838 0.001043 0.119512 

thinks 808 0.014599 0.054742 0.208791 

thought 960.5 0.022941 0.01535 0.078947 

thrust 886.75 0.003128 0.01155 0.5 

thunder 952.5 0.003128 0.002383 0.166667 

tickets 838.25 0.001043 0 0 

times 1008.429 0.009385 0.041628 0.047619 

tires 1112 0.010428 0.021063 0.222222 

today 715.6667 0.042753 0.065916 0.283537 

told 752.625 0.03024 0.017498 0.08547 

tomorrow 826.8571 0.010428 0.015593 0.267857 

ton 792.1667 0.001043 0 0 

tonight 885.375 0.010428 0.03481 0.107143 

tons 794.1429 0.007299 0.020752 0.190476 

took 999.3333 0.01877 0.011237 0.183333 

track 869.2222 0.005214 0.002208 0.05 

train 877.3333 0.003128 0 0 

travel 975.7 0.004171 0.036104 0 

treat 731.25 0.020855 0.007508 0.110526 

tricked 737.25 0.004171 0.001043 0.083333 

trophy 931.2 0.005214 0 0 

truck 745.7778 0.004171 0.031351 0.083333 

trust 730.375 0.002086 0.013338 0.5 

try 937.7 0.005214 0.022016 0.333333 

trying 843.2222 0.013556 0.021216 0.118182 

tumor 771.5 0.040667 0.011216 0.376518 

tutor 918.1111 0.003128 0.007008 0.333333 

uncle 756.875 0.007299 0.033975 0.190476 

understand 936 0.001043 0 0 

uniform 965.125 0.003128 0.013909 0.166667 

union 783.1111 0.004171 0.020209 0.25 

units 953.1667 0.002086 0.01637 0 

used 738.7778 0.014599 0 0.071429 

vacancy 1076.1 0.003128 0 0.166667 

versions 990.4 0.002086 0.028007 0.5 

victim 783.3333 0.017727 0.018004 0.07619 

victims 892.5556 0.006257 0.04109 0.1 

volunteer 1068.889 0.008342 0.051885 0.125 

waist 724.4444 0.001043 0 0 

wait 825.7778 0.028154 0.021583 0.386667 

walk 786.1111 0.004171 0.015861 0.333333 

walking 995.4 0.008342 0.069009 0.178571 

want 906.8 0.03024 0.012066 0.176638 

wanted 810 0.017727 0.040969 0.104762 

wanting 875.3333 0.004171 0.031886 0.25 
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wants 970.375 0.010428 0.048494 0.311111 

war 819.25 0.009385 0.001043 0 

warrior 898.5 0.001043 0 0 

watch 985.625 0.002086 0.016471 0 

water 787 0.005214 0.024962 0.166667 

way 834.3333 0.020855 0.018248 0.144737 

weapon 757.25 0.008342 0.029299 0 

wearing 1003.111 0.009385 0.024128 0.142857 

week 711.3333 0.012513 0 0.177778 

weeks 973.5 0.006257 0.017554 0.2 

went 826.5 0.010428 0 0.232143 

whip 935.375 0.003128 0.002897 0.166667 

wife 814 0.01147 0.028282 0.097222 

window 840.2 0.006257 0.01643 0 

wine 982.4286 0.007299 0.024896 0.190476 

winning 716.3 0.004171 0 0.083333 

wishing 751.625 0.002086 0.002639 0 

witness 835.5556 0.004171 0.039665 0.416667 

woman 724.5556 0.012513 0.039082 0.188889 

won 786.6364 0.007299 0.04771 0.047619 

word 688.4545 0.003128 0.028926 0.166667 

work 717.3333 0.029197 0.06275 0.096923 

working 756.7 0.010428 0.008009 0.160714 

world 938.5 0.017727 0.033171 0.071429 

worry 805.5 0.002086 0.008258 0 

wrap 728.375 0.003128 0.021514 0 

wrapped 840 0.005214 0.025294 0.2 

yards 933 0.002086 0.021861 0.5 

year 752.375 0.013556 0.024199 0.109091 

years 937 0.012513 0.025784 0.122222 

yells 1055 0.014599 0.021984 0.214286 

yesterday 943.625 0.006257 0.003406 0.25 

 


