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Introduction
This thesis aims to investigate the properties of the operator 7),, defined as

T.u = /SH z ® l’d/L(iIf),

where p is a probability measure on the unit sphere with respect to weak Borel
sets. Specifically, we will show that 7}, is a positive nuclear operator with trace
equal to 1, and explore various examples for different measures pu.

Understanding the properties of 7T), is crucial for advancing our knowledge in
quantum mechanics, as it provides a statistical description of quantum states.

We will employ advanced techniques in operator theory and functional analysis
to examine the properties of 7},. Various examples will be considered to illustrate
the properties of its spectrum under different measures.

This thesis is structured as follows:

Chapter 1 to Chapter 4 provide the necessary background and theoretical
framework. Chapter 5 delves into the properties of the operator 7),. Finally,
Chapter 6 presents examples of T}, for different measures.

With this foundation laid, we now turn our attention to a detailed exploration
of the operator T, and its intriguing properties.



1 Positive Operators on a
Hilbert Space

Throughout this work, we will use H to denote a separable Hilbert space with
an inner product (-, -) over the field of complex numbers.

Definition 1.0.1. Let A € L(H). The adjoint of A, denoted as A* € L(H), is
an operator satisfying Vr,y € H, (Az,y) = (x, A*y). The proof of existence and
uniqueness can be found in 1}, p. 31].

Definition 1.0.2. The operator A € L(H) is called self-adjoint, if A* = A.

Definition 1.0.3. A self-adjoint operator on H is called a positive operator,
denoted as A > 0, if for all z € H, we have (Az,x) > 0.

Definition 1.0.4. For every A € L(H), there exists a unique positive operator
|A| € L(H), also denoted as v A*A and called the absolute value of the operator A,
that satisfies |A|? = A*A. The proof of existence and uniqueness can be found in
[1]. As a consequence of these definitions, for positive operators, we have |A| = A.

Lemma 1.0.5. From the definitions, it is easy to obtain the following useful facts:
1. For A and B positive operators in L(H ), the operator A+ B is also positive.

2. For A > 0 and \ a positive real number, we have AA > 0.



2

Rank-one operators

Notation 2.0.1. A rank-one outer product operator r ® y : H — H, when
z,y € H, is defined as (z ® y)(z) = (2,y)z,2 € H.

Now we are able to formulate some properties of outer product operators,
which we will need later.

Lemma 2.0.2. Let  and y be non-zero elements of the Hilbert space H. Then
the following properties hold.

1.
2.

D.

The adjoint of the rank-one outer product operator z ® y is y ® x.

The operator x ® z is a positive operator.

1

X xZ.
T ®

The square root of the operator r ® x is

For a non-zero element 2z from H, the composition of the operators y ® x
and T ® z is equal to the operator ||z||%*y ® 2.

The absolute value of the operator x ® y is %y X Y.

Proof. The proof consists of simply checking the definitions.

1.

From the definition of the rank-one outer product, we obtain for T' =z ® y:

(z®@y)z 1) = ((z,y)z,1) = (z,y)(z,1)
(z,(t,x)y) = (2, (y@2)t), =z,teH.

Thus, T" =y ® z.

The fact that x ® z is self-adjoint is a consequence of the first property. Let
us check that it is also positive. For every non-zero element z in H the
following holds:

(z@x)z,2) = ((2,2)x, 2) = (2, 2)(2,2) = (x,2)(x,2) > 0.

We will check that the operators y/z ® x and ﬁm ® x coincide on all
elements of H. For an arbitrary z € H, we have:

<1$®SB> <1x®x>z— ! (x @ z)(z,x)x

] |l
1

= W(z,@(x,@x = (z,1)z = (T ® )z

Since ﬁw ® x > 0, we can conclude, that /x ® = = ﬁx .
For an arbitrary t € H we have:

o)z @)t = (y@a)(t,2)z = (z,2)(t, 2)y = [[z]*(y ® 2)t.
This proves the equality of the operators.

7



5. The last thing we need to verify is that |z ® y| = %y ® y. This holds
because:

]

eyl =@oy oy =Jyon) oy =/lyoy = ey

Hence, we have verified all the stated properties. O



3 Nuclear operators

Theorem 3.0.1. The operator A € L(H) is compact, if there exists 1 < Ny <
+00, a non-increasing sequence of non-negative numbers (s, : 1 <n < Ny) with
zero limit in case where Ny = +o00 and two orthonormal basis {¢, : 1 < n <
+00}, {1y : 1 < n < 400} in H, such that A = >N, 5,9, ® ¢,,, with the sum
being in L(H).

Lemma 3.0.2. The set of all compact operators in H is closed in norm operator
topology.

Lemma 3.0.3. For A = >4, 5,1, ® ¢, from Theorem 3.0.1, we have || A|| = s.

Proof. Let x € H. Since {¢,, : 1 <n < 400} is an orthonormal basis, there exists
a sequence {a, : 1 <n < oo} of numbers, such that x = >°°, a,¢,. Then we
have:

o o

Ar = Z Sn@/Jn X ¢n$ = Z Z Snanwna

[Az|| =, ZS%@% < 51, Za2 = s1|z]-
n=1 n=1

So, ||A|| < s1. For & = ¢; we have Az = 519 so ||Az|| = s;. Thus ||A]| =s;. O

Notation 3.0.4. Denote the trace of a positive operator A € L(H) as Tr A =

s3I A, e;), where {e, : 1 < n < dim(H)} is an orthonormal basis. It can be
shown that Tr A does not depend on the choice of the orthonormal basis.

Lemma 3.0.5. The trace Tr of an operator A does not depend on the choice of
orthonormal basis.

Proof. Let N := dim(H) € NU {co}. To show that the trace is independent of
the choice of basis, we will first show that Tr(7*7T) = Tr(TT™*) for every fixed
orthonormal basis {e, : 1 <n < N}.

I
M=

N N
Te(T*T) (T*Ten,en) = Y (Tey, Ten) = > ||Te,|?
n=1 =

3
Il
—

|<T€n7€m>‘2 = Z Z |<€an*€m>‘2

I
™=
™ =

3
I
~
3
I
A
S
I
=
3
I
~

N N
|<T*emaen>|2 = Z Z |<T*emven>|2

I
M=
™=

3
l‘
3
ﬂ‘
3
ﬂ‘
3
ﬂ‘

|T*em||* = Te(TT).

I
M=

3
I

Since all elements in the sums are nonnegative, we can freely change the order
of summation. Thus, we have shown that Tr(7*T") = Tr(T'T™).

Now, let us consider two orthonormal bases {e, : 1 <n < N} and {f,: 1<
n < N}. Define an operator U : H — H on the elements of the basis {e,} as



Ue, = f,. It is easy to see that U* f,, = e,, for all n € N, and thus the operator U
is unitary (U*U = UU* = I).

For all n € N, we have (UTU*f,, f,) = (Te,,e,). From the fact that
Tr(V*V) = Te(VV*) for every positive operator V, with respect to the {f, :
1 <n < N}, we have:

Te(UTU*) = Te(UTV*TY2U*) = Te(TY2U*UTY?) = Te(T).

Combining all together, we have shown that the trace Tr is indeed independent
of the choice of orthonormal basis. [

Lemma 3.0.6. For a compact operator A = ZnN;‘I Spn @ ¢y, where s, ¢,, and
¥, are from Theorem 3.0.1, we have |[A| = >N, 5,0, @ ¢y

Proof. Firstly, because the adjoint operator * : L(H) — L(H) is linear and
bounded (||A*|| = ||A]| for all operators in L(H)), we also have that it is continuous,
and we are allowed to swap the sum and the operator. Thus, from Lemma 2.0.2,
we obtain A* = ij;‘l Snbn @ Py,

It can be easily checked that A*A = N4 s26, @ ¢,,. To prove that |A| =
T .= 27]:721 Sn®n @ ¢, it is enough to verify that T' is a positive operator and that
T? = A*A.

1. Positive definiteness. From Lemma 2.0.2 and the fact that for all n € N,
sp, > 0, we have that s,¢, ® ¢, is positive for all n € N. Thus, T" > 0
because it is the sum of positive operators.

2. We will check that 72 = A*A on elements of H. For all x € H,

Ny Ny
k=1 n=1

And we are done.
O]

Lemma 3.0.7. For a compact operator A = Z 1 Snn @ ¢p, where s, ¢,, and
Y, are from Theorem 3.0.1, we have Tr|A| = iVAl Sn.-

Proof. From Lemma 3.0.6 we obtain |A| = 4, s,¢,, @ ¢,. Thus, computing
the trace with the orthonormal basis {¢,}52 ;, we have

Na Np Ny Na Na
Tr |A| = Z(‘A|¢n7¢n> = Z<Zsk<¢n7¢k Qbkuqsn Z ¢n7¢n Z Sn-
n=1 n=1 k=1 n=1 n=1

]

Now we are ready to introduce the main concept of this section — Nuclear
operators.

Definition 3.0.8. The operator A € L(H) is nuclear, when || - ||; := Tr|A| < co.
The set of all nuclear operators we will denote by Ny (H).

Lemma 3.0.9. Every nuclear operator is compact

10



Proof. Proof can be found in 2, p 5-6]. O
Lemma 3.0.10. For A € N;(H), the following inequality holds: ||A| < ||A]|1-

Proof. For A € Ny(H), we know that A is compact. Therefore, there exists a
sequence of non-increasing non-negative numbers (s,) such that ||A|| = s; and
|A|l1 = 329 s,. Thus, the inequality ||Al| < [|Al]; is clear. O

To prove that the space of nuclear operators is a normed vector space, we need
the following lemma.

Lemma 3.0.11. For a compact operator A € L(H), the following holds:

(1) = max {3 (e )]

n=1

where the maximum is taken over all orthonormal bases {e, : n > 1} and
{gn :n>1}.

Proof. Since A is compact, from Theorem 3.0.1, it can be written in the form
A= Z;V*:“l Sptn @ ¢y, for some orthonormal bases {1, }, {¢,} and positive real
numbers s,,1 <n < Ny < +o0.

Consider any two orthonormal bases {e,, : n > 1} and {g, : n > 1}. Thus, for
every k we have the following inequality:

NA NA
|<A6k7 gk>| = <Z Sn<ek7 ¢n>wm gk> = Z 3n<ek7 ¢n><¢na gk>
n=1 n=1
Na
S Z 3n’<€k> ¢n>”<wn7 gk)’
n=1
Using the AM-GM inequality, we obtain:
o) co Nap
Z A@n,gn | < ZZS"| €n7¢k ||<77Z)k7g7l>|
n=1 n=1k=1
Na 00
= Sk Z |<€n7¢k>||<wk7gn>|
k=1 n=1
Ny [e%e] 2 2
k=1 n=1 2
A el + NIl
L
k=1

Na
= Z Sk
k=1

Equality holds, for example, when {e, : n > 1} = {¢, : n > 1} and {g,, : n >
1} ={¢p:n>1}. O

Lemma 3.0.12. (Ny(H),| - ||1) is a normed vector space.

11



Proof. To prove that (Ny(H), | - |[1) is a normed vector space, we need to verify
its four axioms.

1. Non-negativity. It follows from || A||; > ||A|| > 0.

2. Positive definiteness: We need to check that for A € Ny(H), ||Al; =0 <~
A=0:

[Ali=0 = 0< A <AL =0 = [|[A][=0 — A=0.
The converse is straightforward from the definitions.

3. Absolute homogeneity: For all A € C and A € Ni(H), ||AA|1 = |A||| Al
This follows directly from the definitions.

4. Triangle inequality: Let A and B be nuclear operators. From Lemma 3.0.9
we have that these operators are compact. From the triangle inequality and
the previous lemma, we obtain:

4+ Bl = e {3104+ Bl }
€ n=1

nJ n

< max Z ([(Aen, gn)| + [(Ben, gn)|)
{en}.{gn}
< max (Aen, gn)| ¢ + max €ns 9n
{en}ilon} {ZN g } e} Lon} {2—:| ! }
= [|Alls + | B][1-

Therefore, all axioms hold, and Ny(H) is indeed a normed vector space.

O

Lemma 3.0.13. For compact operators A, B € L(H), we have that for all positive
integers n:

sn(A) = sn(B)| < [|A = B].

Proof. Proof can be found in (3} ex. 12.37]. O
Theorem 3.0.14. (Ny(H),| - ||1) is a Banach space.
Proof. From Lemma 3.0.11 we have that (N1(H), || -||) is a normed vector space.

It remains to prove that it is complete.

Let {A, : n > 1} be a fundamental sequence in Ny(H). Thus, from ||A] <
|All1, we obtain that {A,, : n € N} is fundamental in the operator norm. Since
the operator norm is complete and the set of compact operators is closed, there
exists a compact operator A € L(H) such that A, — A in L(H).

1. We need to check that A € N;(H). Using the triangle inequality, for every
positive integers n and m, we have:

12



s1(A) 4+ ...+ s,(A) < Xi: |sk(A) — si(Am) + sk(Am)]

< i [5e(A) — si(A Z

nHA Al + 1Al

In the last inequality, we used the previous lemma and Lemma 3.0.6, which
states that || An|l1 = X2y Sk(Am) = 2r_q sk(Am).

By assumption, {A, : n > 1} is fundamental in N;(H). From the norm
inequality |||Al|1 — || B||1] < ||A — Bl|1, we obtain that {||A,||; : » > 1} is
fundamental in R. Since R is complete, we conclude that this sequence has
a limit and is therefore bounded, which means that there exists a constant
C > 0 such that for all m > 1, ||A,]1 < C. Since A, — A in operator
norm as n — oo, we have that for all n > 1, there exists m > 1 such
that n||]A — A,,|| < 1. Combining all of this, we obtain that for all n > 1,
the following holds: s1(A) + ...+ s,(A) < 1+ C. Taking the limit as n
approaches infinity, we obtain ||Al|; < 1+ C, and therefore A € Ny(H).

2. It remains to show that the sequence {A,, : n > 1} converges to the operator
A in the || - [|; norm.

Let € > 0 and n € N be fixed. Using the same inequalities as above, we
obtain that for all m and k being positive integers:

s1(A— Ap) + oo+ su(A— Ay < nllA— A+ [ A — Aglls.

From the fundamentality of the sequence {A,, : n > 1} in N;(H ), there exists
no € N such that for all positive integers k, m > ng, we have ||A,, — Ag||1 < e.
By the same argument used in the proof that A € Ny(H ), we have that for
all n € N, there exists k > ng satisfying n||A — Ax|| < e. Therefore, for all
m > ng, we obtain:

s1(A—Ap) + ..+ s,(A—Ay) <nl|A— Al + || Am — Aglls < 2e.
Thus, ||[A — A, |1 < 2¢, and finally A, — A in Ny(H).
[
Lemma 3.0.15. The operator z ® y is a nuclear operator and ||z @ y||; = ||=]|||y||-

Proof. 1f y =0, then x ® y = 0, and thus ||z ® y||; =0 = ||z||||y||-

Now, consider the case y # 0. From Lemma 2.0.2, we have [z ®y| = llel

¥ ©Y-
Let us calculate Tr(y ® y). Let {e, : n > 1} be an orthonormal basis in H, and in
this basis, y = >-7°; y;e;, where the coeflicients y; are complex numbers.

o e}

Tr(y ®y) = Zy®yez,ez=2<eu y,e Zly,ez ? = |ly|]* < oo.

=1 =1

In the last equality, we used Parseval’s identity. Now, we are able to compute
Tr(jz @ y|):

13



=]l [l
Iyl 1yl
This implies z ® y € Ni(H). O

Iyl = ll=[Hyll < oo

|z @yl = Tr(y®y) =

For simplicity of notation, series with a lower bound greater than the upper
bound will be defined to be equal to zero.

Theorem 3.0.16. The Banach space N;(H) is separable.

Proof. Consider any nuclear operator A. Since it is compact, it can be written in
the form A = Zf:[;‘l SnGn @ Py, where ngl s, < 00. It can be approximated by

Ak = 22:1 Sn¢n ® ¢n

NA NA
| A — Alls = Z Sntn @ On Z s, — 0 as k — oo.
n=k+1 1 n=k+1

This means that the set of all such operators Ay, for all k and for all A € N,(H),
which we will denote as F'(H), is dense.

By the initial assumption, H is separable, so there exists a countable dense set
X in it. We want to approximate the operators in F'(H) by elements of a countable
subset of N;j(H). Let € > 0 be a fixed positive number. Consider any operator
A=Yk 5.1, ®¢, € F(H), where {t, : 1 <n <k} and {¢, : 1 <n <k}

form orthonormal sets in H. For every n € {1,...,k}, there exist x,,y, € X
satisfying ||¢n —ynl| < 5, |[¥n—20| < W and ¢n € Q such that |s, —gy| < 5.
Consequently, ¢, < s, + 5 < s1 + 5 =: C. For every n, we can write:

||¢n®¢n_$n®yn”1: ||¢n®¢n_¢n®yn+¢n®yn_xn®yn||1
< “¢n® (an _yn)Hl + ||<¢n _xn) ®yn||1
= [Unllllon — ynll + 1900 — zull[ynl

= ||¢n - ynH + ||¢n - 337L||||yn||

¢
4 4 2

Thus, we have:

[$nYn ® Pn — @nTn @ Ynllt < [[$0Vn @ dn — @b @ Gully
+ “Qn¢n®¢n _ann@)ynul
= |30 — @ull|n @ Gnll1 + |gullltn @ dn — 20 @ ynllr
< e+ Cllthy @ ¢n — Tn @ ynlln
<e+Ce
= (C'+1)e

And finally, from the subadditivity of the norm, we obtain:

k

n=1

k
n=1

k(C+1)e — 0as e — 0.



So, we have shown that every operator from F'(H) can be arbitrarily closely
approximated by an operator from the set

k
UH) := {an:r;n@yn:keN, Ty Yn EX}.
n=1

Since F'(H) is dense in N;(H), we conclude that U(H) is also dense. It is also

easy to see that U(H) is countable, so finally, N;(H) is separable.
[

Theorem 3.0.17. The operator ¢ : H — N;(H) defined by ¢(z) = 2 ® z is
continuous.

Proof. Let us consider an arbitrary xo € H and prove that ¢ is continuous at this
point. Let ¢ > 0. For some § > 0, which we will choose later, for all x € H such
that || — zo|| < J, we can write:

lo(z) —d(xo)|i =[x @ —20 Q0|1 = [t @ — 2 @0+ 2@ 2o — 2o @ To|1
= |lz ® (2 — o) + (v — 20) ® 202
< |lz @ (x —z0) |1 + [[(z — 20) @ 201

[z @ (2 = zo)[ly + [|(z = 20) @ o[l = [[#[[[|2 = ol + ||z = wol[[lo]-

From ||z — x¢|| < d, we have ||z|| < § + ||zo||. Therefore:

[z llllz = zoll + llz = @ollllzoll < (6 + llzol[)6 + 8|0
=0(0 +2||zo||) < e for some 0 <& < [|zo]l.

Thus, ¢ is continuous at xy, and consequently, it is continuous on H.

15



4 Bochner integration and
measures

Let (A, 0, 1) be a measurable space, and X a Banach space.

Definition 4.0.1. A function f: A — X is called simple if there exist pairwise
disjoint measurable sets Ay,..., Ay in A and z1,...,zy € X such that f =

N
21:1 1A¢1’i-

Definition 4.0.2. A function f : A — X is called strongly measurable if
there exists a sequence {f,}°°; of simple functions such that for all x € A holds
f(z) = limy, o0 fu(z).

The function f is called measurable if, for every measurable set in X, the
preimage of this set is also measurable.

The function f is called weakly measurable if Vz* € X*, the composition
x* o f is measurable.

We will need the following well-known theorem and its consequence.

Theorem 4.0.3 (Pettis’ Theorem). A function f : A — X is strongly measurable
if and only if f is weakly measurable and f(A) is contained in a separable
subspace of X. As a consequence, for every separable Banach space, these notions
of measurability coincide.

Definition 4.0.4. For a simple function f = >7;'_; 14,2, define the Bochner
integral of f as [, fdu = >}_; n(Ag)zr € X. It is straightforward to show that
this integral for a simple function does not depend on the particular representation
of the function.

Definition 4.0.5. For a strongly measurable function f: A — X and {f,}22, - a
sequence of simple functions from A to X such that Vo € A, f(z) = lim,,_, fn(x),
we define the Bochner integral as

[, £ =l [ fdp

when

J 1@ = @l dp@) 50 as 0 ox.

Further, we will need the following properties of Bochner integration.
Theorem 4.0.6 (Basic properties of the Bochner integral).

1. For a Bochner integrable function f : A — X, the value of the integral
[4 [ dp does not depend on the choice of the sequence {f, : n > 1} from
the definition.

2. Characterization of Bochner integrable functions. A strongly mea-
surable function f: A — X is Bochner integrable if, and only if,

[ 15@)l dn(z) < oo

16



3. For a Bochner integrable function f : A — X and every T' € L(X,Y), where
Y is a Banach space, we have that T'f is also Bochner integrable and

T(/Afdu> :/Ade’“"

Proof. The proofs for the first two statements can be found in [4, Chapter 1].
To prove the third statement, note that since for all z € H, we have | T f(x)| <
IT°[[]].f ()|, we obtain:

[T @ dute) < T [, 17 @) dita) < oc.

Thus, T'f is also Bochner integrable.

Let {f, : n > 1} be a sequence of simple functions such that f(z) = lim, . f.(z).
Then T'f is the limit of T'f,, and T'f, are also simple functions. For simple
functions, it is straightforward to see that we can swap the integral and 7.
Therefore:

T ([ @) du@)) = lim T ([ fulw) duia))
= lim [ Th(@)du(e) = [ Tf(@) dpz).

n—o0

This completes the proof. O
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5 Definition of 7}, and its
properties

Definition 5.0.1. The weak topology on a Banach space X is the smallest
topology Tywear such that Vz* € X* the map z* : (X, Tyeax) — K is continuous,
where K denotes the field of scalars (either R or C).

Notation 5.0.2. By denotes the unit ball in X, and Sx denotes the unit sphere
in X, where X is a metric space.

Theorem 5.0.3 (A consequence of Kakutani’s theorem). The unit ball By is
weakly compact in the Hilbert space H.

Proof. Since Hilbert spaces are reflexive, by Kakutani’s theorem, the unit ball
By is weakly compact. [

Theorem 5.0.4. For every separable Hilbert space, the Borel sigma-algebras
generated by the weak topology and by the norm topology coincide.

Proof. Let H be a separable Hilbert space. Since H is separable, every open set
in the norm topology can be generated by no more than a countable union of
open balls. Thus, the Borel sets with respect to the norm topology are generated
by open balls. Since the weak topology is coarser (i.e., smaller) than the norm
topology, it is enough to prove that every open ball in the norm topology can be
generated by weak Borel sets.

From the previous theorem, it is easy to conclude that any closed ball B,.(xg) :=
{r € H:|z—uxzo|| <r}, where zg € H and r > 0, is compact in the weak topology,
and thus closed. Therefore, we can obtain that any open ball in the norm topology
is in the Borel sets generated by the weak topology, since for every » > 0 and
xo € H, we have:

Bi(zo)={z € H: ||z — x| <r} = J B, _1 ().

neN
Therefore, the Borel sigma-algebras indeed coincide. [

To define the density operator, we first need to define a probability measure
on a Hilbert space. We will consider only so-called inner regular measures.

Definition 5.0.5. A measure i on a topological space X is called inner regular
if for every measurable set A C X,

w(A) =sup{u(K): K C A, K is compact}.

In other words, p is inner regular if the measure of any measurable set A can be
approximated from within by the measures of compact subsets of A.

As topology, we choose the weak topology on the unit ball By, because in
this topology the unit ball is compact, thus we are able to consider inner regular
measures on it. Moreover, we want the measure to be concentrated on the sphere,
which means that the measure of Sy is equal to 1. We will denote the set of all
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such probability measures by M*!(Sy, weak).

We already had that ¢(z) = 2 ® x is continuous in the norm topology. As a
consequence, this operator is measurable with respect to Borel sets generated by
the norm topology. From the last theorem, the Borel sets generated by the weak
and norm topologies coincide, which means that ¢ is also measurable with respect
to weak Borel sets. Since N;j(H) is separable, from Pettis’s theorem we obtain
that ¢ is strongly measurable.

Let p be a probability measure from M!(By,weak). Then we will denote
the Bochner integral [,cq. ¢(2)du(z) = [,es, © ® xdu(x) as T, or T, when the
measure is clear from the context.

Lemma 5.0.6. For the measure ;i defined above, the Bochner integral 7}, is

well-defined, and moreover, it is a positive definite, nuclear operator with ||T’||; =
T =1.

Proof. Firstly, we will show that 7}, is well-defined. From Lemma 3.0.15, we
have that Vz € Sy : ||¢(z)|1 = |[x @ x| = ||z||* = 1 and

e el due) = u(Su) =1 < o0,

Since ¢ is strongly measurable, by the characterization theorem of Bochner inte-
grable functions, we obtain that 7}, is a well-defined Bochner integral. Additionally,
because the operator ¢ maps to Ny(H), we have that T, € N,(H).

To prove that T is a positive operator, we need to show that for all z € Sy,
(T'z,z) > 0.

Consider a bounded linear functional ¢, € (N1(H))* defined as 1. (S) = (Sz, 2)
for S € N1(H). The linearity of 1, is evident, and its boundedness follows from
the Cauchy-Schwarz inequality and Lemma 3.0.10:

[(Sz, 2)| < IS2llll=ll < [IST=]* = ISIF < S]]

Since for all x € Sy, the operator x ® z is positive, we have ((x ® z)z,2z) >0
for all x € Sy. Using the property that we can swap the operator and the Bochner
integral, we obtain:

(Tz2) = .(T) = | (e ® ) du(z) = /. (@@ )z 2) dplx) 2 0.

Thus, T), is positive definite.
Finally, since u(Sy) =1 and Tr € Ny(H)*, we have:

TrT = Tr(z ® x) du(z) = / ldu(z) = 1.
TESYH €Sy

Thus, |T]; =TeT = 1. O

So, we obtained that T is nuclear and thus compact. Because T is positive
definite, there exists a sequence or a finite set of eigenvalues that are positive and
sum to 1. Since T is compact, we have o = {0} U 0,,, where ¢ is the spectrum
and o), is the point spectrum of the operator T'.
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Lemma 5.0.7. For an operator T}, defined above, where u € M*'(Sy, weak):
T,z = / r®@xdu(r), ze€H.
Su

Proof. Let z € H be fixed. Consider a bounded linear operator y : Ny(H) — H
defined as x(7') = Tz for T' € Ny(H). The proof that the operator y is well-defined
is the same as above, and by the same argument, we are allowed to swap y and
the integral. Finally, we obtain:

Lz=x(T) = [ x@@)du@) = [ (2 2)zdn(a).
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6 Examples of T},

6.1 Discrete measures

Let n be a positive integer, x1,...,x, € Sy are linearly independent and
aq, ..., 0, be positive real numbers such that Y} ; o, = 1. Consider a measure
= 10, + -+ a,0,,, where 4. is a Dirac measure.

Then we can easily compute the corresponding 7™:

T = T @ xdp(x) = orr ®

€Sy k=1
Then for every z € H:
n
Tz=> ay(z,z)z) € span{zy, ..., T}
k=1

So, we will look at eigenvectors in the form fyxy + ... + B,z,. Let A € R,
A > 0, be an eigenvalue of the operator 7" and z = fyz; + ... + Bz, be the
corresponding eigenvector.

A (Xn: 5kxk> =Xz=Tz= Zn: ar(z, Tp)xy
k=1

k=1
n n n n
= 3o (S e )an = 3w 3 G
k=1 j=1 k=1 j=1
where Gy; = (xy, z;) form the Gram matrix of vectors xy,xs, ..., y.

So, for every k € {1,2,...,n}:
A = > B;Grj.
j=1

This can be rewritten in a more compact form as A5 = diag(a)Gf, or equiva-
lently as (diag(a)G — AI)5 = 0. This means that we need to find the eigenvectors
and eigenvalues of the matrix diag(«)G.

In the special case where all x are pairwise orthogonal, we have G = I, and
thus the eigenvalues in this case are equal to the a’s, which is true also when
n = oo.

6.2 Continuous measures
Let H be an infinite-dimensional separable Hilbert space with basis {e, : n >
1}. Consider the set Se, ¢, = {cos(t)e; + sin(t)ey : t € [0,27]}. Then, the measure

of a set in B(H) is defined as the measure (length) of the projection of the set
onto the circle S, .,. We will denote this measure as .
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Firstly, let us consider an arbitrary vector z € H orthogonal to both e; and
es. From Lemma 5.0.7, we have:

T,z = /SH (x @ x)zdp(x) = / (z,x)xdu(x) =0=0"z.

e1,e9

Hence, 0 is in the point spectrum.

All other vectors can be written in the form z = xie; + x9es + 2/, where 2/
is orthogonal to S, Suppose such a vector is an eigenvector with eigenvalue
A>0.

1,62

Tz =x1Te; + xsTeq = N(1161 + 905 + 2').

If there are no eigenvectors inSe, .,, then
r1Te; + xoTey # Nx1e1 + z963), Vo1, 29 € R.

If we fix 21,25 € R and modify 2’ € H, we obtain that every real number is an
eigenvalue. This contradicts the fact that the number of eigenvalues is no more
than countable.

So, there is at least one eigenvector that lies in S, .,. Due to symmetry,
any vector from S, ., is an eigenvector with the same unknown eigenvalue A.
Therefore, for any vector z € H written in the form z = x1e; + x2e5 + 2/, where
2! # 0, we have that it cannot be an eigenvector because 2" # 0.

Since the trace of the operator 7}, is 1, and the dimension of S, ., is 2, we
have 2\ = 1, which implies A\ = % Therefore, the spectrum of this operator is

0= {07 %}
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Conclusion
This thesis investigated the properties of the operator 7),, defined as

T“:/ x @ xdu(z),
Su

where p is a probability measure on the unit sphere with respect to weak Borel
sets. We demonstrated that T}, is a positive nuclear operator with a trace equal
to 1.

While the analysis focused on specific probability measures, extending this
work to more general measures on Hilbert spaces would be a valuable direction
for future research.

In conclusion, this thesis provides foundational insights into the operator 7,
contributing to the broader field of quantum mechanics.
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