
BACHELOR THESIS

Volodymyr Sahan

Spectrum of the density operator

Department of Mathematical Analysis

Supervisor of the bachelor thesis: prof. RNDr. Jiří Spurný, Ph.D.,
DSc.

Consultant: doc. Mgr. Šanda František, Ph.D.
Study programme: Obecná matematika

Prague 2024



I declare that I carried out this bachelor thesis on my own, and only with the
cited sources, literature and other professional sources. I understand that my
work relates to the rights and obligations under the Act No. 121/2000 Sb., the
Copyright Act, as amended, in particular the fact that the Charles University has
the right to conclude a license agreement on the use of this work as a school work
pursuant to Section 60 subsection 1 of the Copyright Act.

In . . . . . . . . . . . . . date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Author’s signature



Title: Spectrum of the density operator.

Author: Volodymyr Sahan.

Department: Department of Mathematical Analysis.

Supervisor: prof. RNDr. Jiří Spurný, Ph.D., DSc.

Abstract: This thesis investigates the properties of the spectrum of an operator
defined by a density matrix in the context of quantum statistical physics. The
focus is on the operator Tµ, given by

Tµ =
∫︂

SH

x⊗ x dµ(x),

where µ is a probability measure on the unit sphere in a complex Hilbert space.
The study demonstrates that Tµ is a positive nuclear operator with a trace of
one. Two examples illustrate the operator’s spectral properties under different
measures. The thesis primarily covers known properties and examples involving
nuclear operators.

Keywords: Nuclear operators, The trace of an operator, Hilbert space, Spectrum
of an operator, Bochner integration, Probability measure

Název práce: Spetrum operátoru daného maticí hustoty.

Autor: Volodymyr Sahan.

Katedra: Katedra matematické analýzy.

Vedoucí bakalářské práce: prof. RNDr. Jiří Spurný, Ph.D., DSc.

Abstrakt: Tato práce zkoumá vlastnosti spektra operátoru definovaného pomocí
hustotní matice v kontextu kvantové statistické fyziky. Zaměřuje se na operátor
Tµ, daný jako

Tµ =
∫︂

SH

x⊗ x dµ(x),

kde µ je pravděpodobnostní míra na jednotkové sféře v komplexním Hilbertově
prostoru. Studie ukazuje, že Tµ je pozitivní nukleární operátor s stopou rovnající
se jedné. Dva příklady ilustrují spektrální vlastnosti operátoru pro různé míry.
Práce se primárně zabývá známými vlastnostmi a příklady zahrnujícími nukleární
operátory.

Klíčová slova: Jaderní operátoři, Stopa operátoru, Hilbertův prostor, Spektrum
operátoru, Bochnerova integrace, Pravděpodobnostní míra



Contents

Introduction 5

1 Positive Operators on a Hilbert Space 6

2 Rank-one operators 7

3 Nuclear operators 9

4 Bochner integration and measures 16

5 Definition of Tµ and its properties 18

6 Examples of Tµ 21
6.1 Discrete measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2 Continuous measures . . . . . . . . . . . . . . . . . . . . . . . . . 21

Conclusion 23

Bibliography 24

4



Introduction
This thesis aims to investigate the properties of the operator Tµ, defined as

Tµ =
∫︂

SH

x⊗ x dµ(x),

where µ is a probability measure on the unit sphere with respect to weak Borel
sets. Specifically, we will show that Tµ is a positive nuclear operator with trace
equal to 1, and explore various examples for different measures µ.

Understanding the properties of Tµ is crucial for advancing our knowledge in
quantum mechanics, as it provides a statistical description of quantum states.

We will employ advanced techniques in operator theory and functional analysis
to examine the properties of Tµ. Various examples will be considered to illustrate
the properties of its spectrum under different measures.

This thesis is structured as follows:
Chapter 1 to Chapter 4 provide the necessary background and theoretical

framework. Chapter 5 delves into the properties of the operator Tµ. Finally,
Chapter 6 presents examples of Tµ for different measures.

With this foundation laid, we now turn our attention to a detailed exploration
of the operator Tµ and its intriguing properties.
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1 Positive Operators on a
Hilbert Space

Throughout this work, we will use H to denote a separable Hilbert space with
an inner product ⟨·, ·⟩ over the field of complex numbers.

Definition 1.0.1. Let A ∈ L(H). The adjoint of A, denoted as A∗ ∈ L(H), is
an operator satisfying ∀x, y ∈ H, ⟨Ax, y⟩ = ⟨x,A∗y⟩. The proof of existence and
uniqueness can be found in [1, p. 31].

Definition 1.0.2. The operator A ∈ L(H) is called self-adjoint, if A∗ = A.

Definition 1.0.3. A self-adjoint operator on H is called a positive operator,
denoted as A ≥ 0, if for all x ∈ H, we have ⟨Ax, x⟩ ≥ 0.

Definition 1.0.4. For every A ∈ L(H), there exists a unique positive operator
|A| ∈ L(H), also denoted as

√
A∗A and called the absolute value of the operator A,

that satisfies |A|2 = A∗A. The proof of existence and uniqueness can be found in
[1]. As a consequence of these definitions, for positive operators, we have |A| = A.

Lemma 1.0.5. From the definitions, it is easy to obtain the following useful facts:

1. For A and B positive operators in L(H), the operator A+B is also positive.

2. For A ≥ 0 and λ a positive real number, we have λA ≥ 0.
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2 Rank-one operators
Notation 2.0.1. A rank-one outer product operator x ⊗ y : H → H, when
x, y ∈ H, is defined as (x⊗ y)(z) = ⟨z, y⟩x, z ∈ H.

Now we are able to formulate some properties of outer product operators,
which we will need later.

Lemma 2.0.2. Let x and y be non-zero elements of the Hilbert space H. Then
the following properties hold.

1. The adjoint of the rank-one outer product operator x⊗ y is y ⊗ x.

2. The operator x⊗ x is a positive operator.

3. The square root of the operator x⊗ x is 1
∥x∥x⊗ x.

4. For a non-zero element z from H, the composition of the operators y ⊗ x
and x⊗ z is equal to the operator ∥x∥2y ⊗ z.

5. The absolute value of the operator x⊗ y is ∥x∥
∥y∥y ⊗ y.

Proof. The proof consists of simply checking the definitions.

1. From the definition of the rank-one outer product, we obtain for T = x⊗ y:

⟨(x⊗ y)z, t⟩ = ⟨⟨z, y⟩x, t⟩ = ⟨z, y⟩⟨x, t⟩
= ⟨z, ⟨t, x⟩y⟩ = ⟨z, (y ⊗ x)t⟩, z, t ∈ H.

Thus, T ∗ = y ⊗ x.

2. The fact that x⊗ x is self-adjoint is a consequence of the first property. Let
us check that it is also positive. For every non-zero element z in H the
following holds:

⟨(x⊗ x)z, z⟩ = ⟨⟨z, x⟩x, z⟩ = ⟨x, z⟩⟨z, x⟩ = ⟨x, z⟩⟨x, z⟩ ≥ 0.

3. We will check that the operators
√
x⊗ x and 1

∥x∥x ⊗ x coincide on all
elements of H. For an arbitrary z ∈ H, we have:

(︄
1

∥x∥
x⊗ x

)︄(︄
1

∥x∥
x⊗ x

)︄
z = 1

∥x∥2 (x⊗ x)⟨z, x⟩x

= 1
∥x∥2 ⟨z, x⟩⟨x, x⟩x = ⟨z, x⟩x = (x⊗ x)z.

Since 1
∥x∥x⊗ x ≥ 0, we can conclude, that

√
x⊗ x = 1

∥x∥x⊗ x.

4. For an arbitrary t ∈ H we have:

(y ⊗ x)(x⊗ z)t = (y ⊗ x)⟨t, z⟩x = ⟨x, x⟩⟨t, z⟩y = ∥x∥2(y ⊗ z)t.

This proves the equality of the operators.
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5. The last thing we need to verify is that |x ⊗ y| = ∥x∥
∥y∥y ⊗ y. This holds

because:

|x⊗ y| =
√︂

(x⊗ y)∗(x⊗ y) =
√︂

(y ⊗ x)(x⊗ y) =
√︂

∥x∥2y ⊗ y = ∥x∥
∥y∥

y ⊗ y.

Hence, we have verified all the stated properties.
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3 Nuclear operators
Theorem 3.0.1. The operator A ∈ L(H) is compact, if there exists 1 ≤ NA ≤
+∞, a non-increasing sequence of non-negative numbers (sn : 1 ≤ n ≤ NA) with
zero limit in case where NA = +∞ and two orthonormal basis {φn : 1 ≤ n ≤
+∞}, {ψn : 1 ≤ n ≤ +∞} in H, such that A = ∑︁NA

n=1 snψn ⊗ φn, with the sum
being in L(H).

Lemma 3.0.2. The set of all compact operators in H is closed in norm operator
topology.

Lemma 3.0.3. For A = ∑︁NA
n=1 snψn ⊗φn from Theorem 3.0.1, we have ∥A∥ = s1.

Proof. Let x ∈ H. Since {φn : 1 ≤ n ≤ +∞} is an orthonormal basis, there exists
a sequence {an : 1 ≤ n ≤ ∞} of numbers, such that x = ∑︁∞

n=1 anφn. Then we
have:

Ax =
∞∑︂

n=1
snψn ⊗ φnx =

∞∑︂
n=1

sn⟨x, φn⟩ψn =
∞∑︂

n=1
snanψn,

∥Ax∥ =
⌜⃓⃓⎷ ∞∑︂

n=1
s2

na
2
n ≤ s1

⌜⃓⃓⎷ ∞∑︂
n=1

a2
n = s1∥x∥.

So, ∥A∥ ≤ s1. For x = φ1 we have Ax = s1ψ1 so ∥Ax∥ = s1. Thus ∥A∥ = s1.

Notation 3.0.4. Denote the trace of a positive operator A ∈ L(H) as TrA =∑︁dim(H)
i=1 ⟨Aei, ei⟩, where {en : 1 ≤ n ≤ dim(H)} is an orthonormal basis. It can be

shown that TrA does not depend on the choice of the orthonormal basis.

Lemma 3.0.5. The trace Tr of an operator A does not depend on the choice of
orthonormal basis.

Proof. Let N := dim(H) ∈ N ∪ {∞}. To show that the trace is independent of
the choice of basis, we will first show that Tr(T ∗T ) = Tr(TT ∗) for every fixed
orthonormal basis {en : 1 ≤ n ≤ N}.

Tr(T ∗T ) =
N∑︂

n=1
⟨T ∗Ten, en⟩ =

N∑︂
n=1

⟨Ten, T en⟩ =
N∑︂

n=1
∥Ten∥2

=
N∑︂

n=1

N∑︂
m=1

|⟨Ten, em⟩|2 =
N∑︂

n=1

N∑︂
m=1

|⟨en, T
∗em⟩|2

=
N∑︂

n=1

N∑︂
m=1

|⟨T ∗em, en⟩|2 =
N∑︂

m=1

N∑︂
n=1

|⟨T ∗em, en⟩|2

=
N∑︂

m=1
∥T ∗em∥2 = Tr(TT ∗).

Since all elements in the sums are nonnegative, we can freely change the order
of summation. Thus, we have shown that Tr(T ∗T ) = Tr(TT ∗).

Now, let us consider two orthonormal bases {en : 1 ≤ n ≤ N} and {fn : 1 ≤
n ≤ N}. Define an operator U : H → H on the elements of the basis {en} as
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Uen = fn. It is easy to see that U∗fn = en for all n ∈ N, and thus the operator U
is unitary (U∗U = UU∗ = I).

For all n ∈ N , we have ⟨UTU∗fn, fn⟩ = ⟨Ten, en⟩. From the fact that
Tr(V ∗V ) = Tr(V V ∗) for every positive operator V , with respect to the {fn :
1 ≤ n ≤ N}, we have:

Tr(UTU∗) = Tr(UT 1/2T 1/2U∗) = Tr(T 1/2U∗UT 1/2) = Tr(T ).

Combining all together, we have shown that the trace Tr is indeed independent
of the choice of orthonormal basis.

Lemma 3.0.6. For a compact operator A = ∑︁NA
n=1 snψn ⊗ φn, where sn, φn, and

ψn are from Theorem 3.0.1, we have |A| = ∑︁NA
n=1 snφn ⊗ φn.

Proof. Firstly, because the adjoint operator ∗ : L(H) → L(H) is linear and
bounded (∥A∗∥ = ∥A∥ for all operators in L(H)), we also have that it is continuous,
and we are allowed to swap the sum and the operator. Thus, from Lemma 2.0.2,
we obtain A∗ = ∑︁NA

n=1 snφn ⊗ ψn.
It can be easily checked that A∗A = ∑︁NA

n=1 s
2
nφn ⊗ φn. To prove that |A| =

T := ∑︁NA
n=1 snφn ⊗ φn, it is enough to verify that T is a positive operator and that

T 2 = A∗A.

1. Positive definiteness. From Lemma 2.0.2 and the fact that for all n ∈ N,
sn ≥ 0, we have that snφn ⊗ φn is positive for all n ∈ N. Thus, T ≥ 0
because it is the sum of positive operators.

2. We will check that T 2 = A∗A on elements of H. For all x ∈ H,

T 2x =
NA∑︂
n=1

sn

⟨︄
NA∑︂
k=1

sk⟨x, φk⟩φk, φn

⟩︄
φn =

NA∑︂
n=1

s2
n⟨x, φn⟩φn = A∗Ax.

And we are done.

Lemma 3.0.7. For a compact operator A = ∑︁NA
n=1 snψn ⊗ φn, where sn, φn, and

ψn are from Theorem 3.0.1, we have Tr |A| = ∑︁NA
n=1 sn.

Proof. From Lemma 3.0.6 we obtain |A| = ∑︁NA
n=1 snφn ⊗ φn. Thus, computing

the trace with the orthonormal basis {φn}∞
n=1, we have

Tr |A| =
NA∑︂
n=1

⟨|A|φn, φn⟩ =
NA∑︂
n=1

⟨
NA∑︂
k=1

sk⟨φn, φk⟩φk, φn⟩ =
NA∑︂
n=1

sn⟨φn, φn⟩ =
NA∑︂
n=1

sn.

Now we are ready to introduce the main concept of this section — Nuclear
operators.

Definition 3.0.8. The operator A ∈ L(H) is nuclear, when ∥ · ∥1 := Tr |A| < ∞.
The set of all nuclear operators we will denote by N1(H).

Lemma 3.0.9. Every nuclear operator is compact
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Proof. Proof can be found in [2, p 5-6].

Lemma 3.0.10. For A ∈ N1(H), the following inequality holds: ∥A∥ ≤ ∥A∥1.

Proof. For A ∈ N1(H), we know that A is compact. Therefore, there exists a
sequence of non-increasing non-negative numbers (sn)+∞

n=1 such that ∥A∥ = s1 and
∥A∥1 = ∑︁+∞

n=1 sn. Thus, the inequality ∥A∥ ≤ ∥A∥1 is clear.

To prove that the space of nuclear operators is a normed vector space, we need
the following lemma.

Lemma 3.0.11. For a compact operator A ∈ L(H), the following holds:

Tr(|A|) = max
{︄ ∞∑︂

n=1
|⟨Aen, gn⟩|

}︄
,

where the maximum is taken over all orthonormal bases {en : n ≥ 1} and
{gn : n ≥ 1}.

Proof. Since A is compact, from Theorem 3.0.1, it can be written in the form
A = ∑︁NA

n=1 snψn ⊗ φn for some orthonormal bases {ψn}, {φn} and positive real
numbers sn, 1 ≤ n ≤ NA ≤ +∞.

Consider any two orthonormal bases {en : n ≥ 1} and {gn : n ≥ 1}. Thus, for
every k we have the following inequality:

|⟨Aek, gk⟩| =

⃓⃓⃓⃓
⃓⃓
⟨︄

NA∑︂
n=1

sn⟨ek, φn⟩ψn, gk

⟩︄⃓⃓⃓⃓
⃓⃓ =

⃓⃓⃓⃓
⃓⃓NA∑︂
n=1

sn⟨ek, φn⟩⟨ψn, gk⟩

⃓⃓⃓⃓
⃓⃓

≤
NA∑︂
n=1

sn|⟨ek, φn⟩||⟨ψn, gk⟩|.

Using the AM-GM inequality, we obtain:

∞∑︂
n=1

|⟨Aen, gn⟩| ≤
∞∑︂

n=1

NA∑︂
k=1

sn|⟨en, φk⟩||⟨ψk, gn⟩|

=
NA∑︂
k=1

sk

∞∑︂
n=1

|⟨en, φk⟩||⟨ψk, gn⟩|

≤
NA∑︂
k=1

sk

∞∑︂
n=1

|⟨en, φk⟩|2 + |⟨ψk, gn⟩|2

2

=
NA∑︂
k=1

sk
∥φk∥2 + ∥ψk∥2

2

=
NA∑︂
k=1

sk.

Equality holds, for example, when {en : n ≥ 1} = {φn : n ≥ 1} and {gn : n ≥
1} = {ψn : n ≥ 1}.

Lemma 3.0.12. (N1(H), ∥ · ∥1) is a normed vector space.
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Proof. To prove that (N1(H), ∥ · ∥1) is a normed vector space, we need to verify
its four axioms.

1. Non-negativity. It follows from ∥A∥1 ≥ ∥A∥ ≥ 0.

2. Positive definiteness: We need to check that for A ∈ N1(H), ∥A∥1 = 0 ⇐⇒
A = 0:

∥A∥1 = 0 =⇒ 0 ≤ ∥A∥ ≤ ∥A∥1 = 0 =⇒ ∥A∥ = 0 =⇒ A = 0.

The converse is straightforward from the definitions.

3. Absolute homogeneity: For all λ ∈ C and A ∈ N1(H), ∥λA∥1 = |λ|∥A∥1.
This follows directly from the definitions.

4. Triangle inequality: Let A and B be nuclear operators. From Lemma 3.0.9
we have that these operators are compact. From the triangle inequality and
the previous lemma, we obtain:

∥A+B∥1 = max
{en},{gn}

{︄ ∞∑︂
n=1

|⟨(A+B)en, gn⟩|
}︄

≤ max
{en},{gn}

{︄ ∞∑︂
n=1

(|⟨Aen, gn⟩| + |⟨Ben, gn⟩|)
}︄

≤ max
{en},{gn}

{︄ ∞∑︂
n=1

|⟨Aen, gn⟩|
}︄

+ max
{en},{gn}

{︄ ∞∑︂
n=1

|⟨Ben, gn⟩|
}︄

= ∥A∥1 + ∥B∥1.

Therefore, all axioms hold, and N1(H) is indeed a normed vector space.

Lemma 3.0.13. For compact operators A,B ∈ L(H), we have that for all positive
integers n:

|sn(A) − sn(B)| ≤ ∥A−B∥.

Proof. Proof can be found in [3, ex. 12.37].

Theorem 3.0.14. (N1(H), ∥ · ∥1) is a Banach space.

Proof. From Lemma 3.0.11 we have that (N1(H), ∥ · ∥) is a normed vector space.
It remains to prove that it is complete.

Let {An : n ≥ 1} be a fundamental sequence in N1(H). Thus, from ∥A∥ ≤
∥A∥1, we obtain that {An : n ∈ N} is fundamental in the operator norm. Since
the operator norm is complete and the set of compact operators is closed, there
exists a compact operator A ∈ L(H) such that An → A in L(H).

1. We need to check that A ∈ N1(H). Using the triangle inequality, for every
positive integers n and m, we have:
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s1(A) + . . .+ sn(A) ≤
n∑︂

k=1
|sk(A) − sk(Am) + sk(Am)|

≤
n∑︂

k=1
|sk(A) − sk(Am)| +

n∑︂
k=1

sk(Am)

≤ n∥A− Am∥ + ∥Am∥1.

In the last inequality, we used the previous lemma and Lemma 3.0.6, which
states that ∥Am∥1 = ∑︁∞

k=1 sk(Am) ≥ ∑︁n
k=1 sk(Am).

By assumption, {An : n ≥ 1} is fundamental in N1(H). From the norm
inequality |∥A∥1 − ∥B∥1| ≤ ∥A − B∥1, we obtain that {∥An∥1 : n ≥ 1} is
fundamental in R. Since R is complete, we conclude that this sequence has
a limit and is therefore bounded, which means that there exists a constant
C > 0 such that for all m ≥ 1, ∥Am∥1 ≤ C. Since An → A in operator
norm as n → ∞, we have that for all n ≥ 1, there exists m ≥ 1 such
that n∥A − Am∥ ≤ 1. Combining all of this, we obtain that for all n ≥ 1,
the following holds: s1(A) + . . . + sn(A) ≤ 1 + C. Taking the limit as n
approaches infinity, we obtain ∥A∥1 ≤ 1 + C, and therefore A ∈ N1(H).

2. It remains to show that the sequence {An : n ≥ 1} converges to the operator
A in the ∥ · ∥1 norm.
Let ϵ > 0 and n ∈ N be fixed. Using the same inequalities as above, we
obtain that for all m and k being positive integers:

s1(A− Am) + . . .+ sn(A− Am) ≤ n∥A− Ak∥ + ∥Am − Ak∥1.

From the fundamentality of the sequence {An : n ≥ 1} in N1(H), there exists
n0 ∈ N such that for all positive integers k,m ≥ n0, we have ∥Am −Ak∥1 ≤ ϵ.
By the same argument used in the proof that A ∈ N1(H), we have that for
all n ∈ N, there exists k ≥ n0 satisfying n∥A− Ak∥ ≤ ϵ. Therefore, for all
m ≥ n0, we obtain:

s1(A− Am) + . . .+ sn(A− Am) ≤ n∥A− Ak∥ + ∥Am − Ak∥1 ≤ 2ϵ.

Thus, ∥A− Am∥1 ≤ 2ϵ, and finally An → A in N1(H).

Lemma 3.0.15. The operator x⊗ y is a nuclear operator and ∥x⊗ y∥1 = ∥x∥∥y∥.

Proof. If y = 0, then x⊗ y = 0, and thus ∥x⊗ y∥1 = 0 = ∥x∥∥y∥.
Now, consider the case y ̸= 0. From Lemma 2.0.2, we have |x⊗y| = ∥x∥

∥y∥y⊗y.
Let us calculate Tr(y⊗ y). Let {en : n ≥ 1} be an orthonormal basis in H, and in
this basis, y = ∑︁∞

i=1 yiei, where the coefficients yi are complex numbers.

Tr(y ⊗ y) =
∞∑︂

i=1
⟨(y ⊗ y)ei, ei⟩ =

∞∑︂
i=1

⟨⟨ei, y⟩y, ei⟩ =
∞∑︂

i=1
|⟨y, ei⟩|2 = ∥y∥2 < ∞.

In the last equality, we used Parseval’s identity. Now, we are able to compute
Tr(|x⊗ y|):
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∥x⊗ y∥1 = ∥x∥
∥y∥

Tr(y ⊗ y) = ∥x∥
∥y∥

∥y∥2 = ∥x∥∥y∥ < ∞.

This implies x⊗ y ∈ N1(H).

For simplicity of notation, series with a lower bound greater than the upper
bound will be defined to be equal to zero.

Theorem 3.0.16. The Banach space N1(H) is separable.

Proof. Consider any nuclear operator A. Since it is compact, it can be written in
the form A = ∑︁NA

n=1 snφn ⊗ ψn, where ∑︁NA
n=1 sn < ∞. It can be approximated by

Ak = ∑︁k
n=1 snψn ⊗ φn.

∥Ak − A∥1 =

⃦⃦⃦⃦
⃦⃦ NA∑︂

n=k+1
snψn ⊗ φn

⃦⃦⃦⃦
⃦⃦

1

=
NA∑︂

n=k+1
sn → 0 as k → ∞.

This means that the set of all such operators Ak for all k and for all A ∈ N1(H),
which we will denote as F (H), is dense.

By the initial assumption, H is separable, so there exists a countable dense set
X in it. We want to approximate the operators in F (H) by elements of a countable
subset of N1(H). Let ϵ > 0 be a fixed positive number. Consider any operator
A = ∑︁k

n=1 snψn ⊗ φn ∈ F (H), where {ψn : 1 ≤ n ≤ k} and {φn : 1 ≤ n ≤ k}
form orthonormal sets in H. For every n ∈ {1, . . . , k}, there exist xn, yn ∈ X
satisfying ∥φn −yn∥ < ϵ

4 , ∥ψn −xn∥ < ϵ
4(∥yn∥+1) , and qn ∈ Q such that |sn −qn| < ϵ

2 .
Consequently, qn < sn + ϵ

2 ≤ s1 + ϵ
2 =: C. For every n, we can write:

∥ψn ⊗ φn − xn ⊗ yn∥1 = ∥ψn ⊗ φn − ψn ⊗ yn + ψn ⊗ yn − xn ⊗ yn∥1

≤ ∥ψn ⊗ (φn − yn)∥1 + ∥(ψn − xn) ⊗ yn∥1

= ∥ψn∥∥φn − yn∥ + ∥ψn − xn∥∥yn∥
= ∥φn − yn∥ + ∥ψn − xn∥∥yn∥

<
ϵ

4 + ϵ

4 = ϵ

2 .

Thus, we have:

∥snψn ⊗ φn − qnxn ⊗ yn∥1 < ∥snψn ⊗ φn − qnψn ⊗ φn∥1

+ ∥qnψn ⊗ φn − qnxn ⊗ yn∥1

= |sn − qn|∥ψn ⊗ φn∥1 + |qn|∥ψn ⊗ φn − xn ⊗ yn∥1

< ϵ+ C∥ψn ⊗ φn − xn ⊗ yn∥1

< ϵ+ Cϵ

= (C + 1)ϵ

And finally, from the subadditivity of the norm, we obtain:⃦⃦⃦⃦
⃦

k∑︂
n=1

(snψn ⊗ φn − qnxn ⊗ yn)
⃦⃦⃦⃦
⃦

1
≤

k∑︂
n=1

∥snψn ⊗ φn − qnxn ⊗ yn∥1

< k(C + 1)ϵ → 0 as ϵ → 0.
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So, we have shown that every operator from F (H) can be arbitrarily closely
approximated by an operator from the set

U(H) :=
{︄

k∑︂
n=1

qnxn ⊗ yn : k ∈ N, xn, yn ∈ X

}︄
.

Since F (H) is dense in N1(H), we conclude that U(H) is also dense. It is also
easy to see that U(H) is countable, so finally, N1(H) is separable.

Theorem 3.0.17. The operator φ : H → N1(H) defined by φ(x) = x ⊗ x is
continuous.

Proof. Let us consider an arbitrary x0 ∈ H and prove that φ is continuous at this
point. Let ϵ > 0. For some δ > 0, which we will choose later, for all x ∈ H such
that ∥x− x0∥ < δ, we can write:

∥φ(x) − φ(x0)∥1 = ∥x⊗ x− x0 ⊗ x0∥1 = ∥x⊗ x− x⊗ x0 + x⊗ x0 − x0 ⊗ x0∥1

= ∥x⊗ (x− x0) + (x− x0) ⊗ x0∥1

≤ ∥x⊗ (x− x0)∥1 + ∥(x− x0) ⊗ x0∥1.

∥x⊗ (x− x0)∥1 + ∥(x− x0) ⊗ x0∥1 = ∥x∥∥x− x0∥ + ∥x− x0∥∥x0∥.

From ∥x− x0∥ < δ, we have ∥x∥ < δ + ∥x0∥. Therefore:

∥x∥∥x− x0∥ + ∥x− x0∥∥x0∥ < (δ + ∥x0∥)δ + δ∥x0∥
= δ(δ + 2∥x0∥) < ϵ for some 0 < δ < ∥x0∥.

Thus, φ is continuous at x0, and consequently, it is continuous on H.

15



4 Bochner integration and
measures

Let (A, σ, µ) be a measurable space, and X a Banach space.

Definition 4.0.1. A function f : A → X is called simple if there exist pairwise
disjoint measurable sets A1, . . . , AN in A and x1, . . . , xN ∈ X such that f =∑︁N

i=1 1Ai
xi.

Definition 4.0.2. A function f : A → X is called strongly measurable if
there exists a sequence {fn}∞

n=1 of simple functions such that for all x ∈ A holds
f(x) = limn→∞ fn(x).

The function f is called measurable if, for every measurable set in X, the
preimage of this set is also measurable.

The function f is called weakly measurable if ∀x∗ ∈ X∗, the composition
x∗ ◦ f is measurable.

We will need the following well-known theorem and its consequence.

Theorem 4.0.3 (Pettis’ Theorem). A function f : A → X is strongly measurable
if and only if f is weakly measurable and f(A) is contained in a separable
subspace of X. As a consequence, for every separable Banach space, these notions
of measurability coincide.

Definition 4.0.4. For a simple function f = ∑︁n
k=1 1Ak

xk, define the Bochner
integral of f as

∫︁
A fdµ = ∑︁n

k=1 µ(Ak)xk ∈ X. It is straightforward to show that
this integral for a simple function does not depend on the particular representation
of the function.

Definition 4.0.5. For a strongly measurable function f : A → X and {fn}∞
n=1 - a

sequence of simple functions from A to X such that ∀x ∈ A, f(x) = limn→∞ fn(x),
we define the Bochner integral as∫︂

A
f dµ = lim

n→∞

∫︂
A
fn dµ

when ∫︂
A

∥f(x) − fn(x)∥ dµ(x) → 0 as n → ∞.

Further, we will need the following properties of Bochner integration.

Theorem 4.0.6 (Basic properties of the Bochner integral).

1. For a Bochner integrable function f : A → X, the value of the integral∫︁
A f dµ does not depend on the choice of the sequence {fn : n ≥ 1} from

the definition.

2. Characterization of Bochner integrable functions. A strongly mea-
surable function f : A → X is Bochner integrable if, and only if,∫︂

A
∥f(x)∥ dµ(x) < ∞.
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3. For a Bochner integrable function f : A → X and every T ∈ L(X,Y ), where
Y is a Banach space, we have that Tf is also Bochner integrable and

T
(︃∫︂

A
f dµ

)︃
=
∫︂

A
Tf dµ.

Proof. The proofs for the first two statements can be found in [4, Chapter 1].
To prove the third statement, note that since for all x ∈ H, we have ∥Tf(x)∥ ≤

∥T∥∥f(x)∥, we obtain:∫︂
A

∥Tf(x)∥ dµ(x) ≤ ∥T∥
∫︂

A
∥f(x)∥ dµ(x) < ∞.

Thus, Tf is also Bochner integrable.
Let {fn : n ≥ 1} be a sequence of simple functions such that f(x) = limn→∞ fn(x).
Then Tf is the limit of Tfn, and Tfn are also simple functions. For simple
functions, it is straightforward to see that we can swap the integral and T .
Therefore:

T
(︃∫︂

A
f(x) dµ(x)

)︃
= lim

n→∞
T
(︃∫︂

A
fn(x) dµ(x)

)︃
= lim

n→∞

∫︂
A
Tfn(x) dµ(x) =

∫︂
A
Tf(x) dµ(x).

This completes the proof.
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5 Definition of Tµ and its
properties
Definition 5.0.1. The weak topology on a Banach space X is the smallest
topology τweak such that ∀x∗ ∈ X∗, the map x∗ : (X, τweak) → K is continuous,
where K denotes the field of scalars (either R or C).

Notation 5.0.2. BX denotes the unit ball in X, and SX denotes the unit sphere
in X, where X is a metric space.

Theorem 5.0.3 (A consequence of Kakutani’s theorem). The unit ball BH is
weakly compact in the Hilbert space H.

Proof. Since Hilbert spaces are reflexive, by Kakutani’s theorem, the unit ball
BH is weakly compact.

Theorem 5.0.4. For every separable Hilbert space, the Borel sigma-algebras
generated by the weak topology and by the norm topology coincide.

Proof. Let H be a separable Hilbert space. Since H is separable, every open set
in the norm topology can be generated by no more than a countable union of
open balls. Thus, the Borel sets with respect to the norm topology are generated
by open balls. Since the weak topology is coarser (i.e., smaller) than the norm
topology, it is enough to prove that every open ball in the norm topology can be
generated by weak Borel sets.

From the previous theorem, it is easy to conclude that any closed ball Br(x0) :=
{x ∈ H : ∥x−x0∥ ≤ r}, where x0 ∈ H and r > 0, is compact in the weak topology,
and thus closed. Therefore, we can obtain that any open ball in the norm topology
is in the Borel sets generated by the weak topology, since for every r > 0 and
x0 ∈ H, we have:

Br(x0) = {x ∈ H : ∥x− x0∥ < r} =
⋃︂

n∈N
Br− 1

n
(x0).

Therefore, the Borel sigma-algebras indeed coincide.

To define the density operator, we first need to define a probability measure
on a Hilbert space. We will consider only so-called inner regular measures.

Definition 5.0.5. A measure µ on a topological space X is called inner regular
if for every measurable set A ⊆ X,

µ(A) = sup{µ(K) : K ⊆ A,K is compact}.

In other words, µ is inner regular if the measure of any measurable set A can be
approximated from within by the measures of compact subsets of A.

As topology, we choose the weak topology on the unit ball BH , because in
this topology the unit ball is compact, thus we are able to consider inner regular
measures on it. Moreover, we want the measure to be concentrated on the sphere,
which means that the measure of SH is equal to 1. We will denote the set of all
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such probability measures by M1(SH ,weak).

We already had that φ(x) = x⊗ x is continuous in the norm topology. As a
consequence, this operator is measurable with respect to Borel sets generated by
the norm topology. From the last theorem, the Borel sets generated by the weak
and norm topologies coincide, which means that φ is also measurable with respect
to weak Borel sets. Since N1(H) is separable, from Pettis’s theorem we obtain
that φ is strongly measurable.

Let µ be a probability measure from M1(BH ,weak). Then we will denote
the Bochner integral

∫︁
x∈SH

φ(x) dµ(x) =
∫︁

x∈SH
x⊗ x dµ(x) as Tµ or T , when the

measure is clear from the context.

Lemma 5.0.6. For the measure µ defined above, the Bochner integral Tµ is
well-defined, and moreover, it is a positive definite, nuclear operator with ∥T∥1 =
TrT = 1.

Proof. Firstly, we will show that Tµ is well-defined. From Lemma 3.0.15, we
have that ∀x ∈ SH : ∥φ(x)∥1 = ∥x⊗ x∥1 = ∥x∥2 = 1 and∫︂

x∈SH

∥x⊗ x∥1 dµ(x) = µ(SH) = 1 < ∞.

Since φ is strongly measurable, by the characterization theorem of Bochner inte-
grable functions, we obtain that Tµ is a well-defined Bochner integral. Additionally,
because the operator φ maps to N1(H), we have that Tµ ∈ N1(H).

To prove that T is a positive operator, we need to show that for all z ∈ SH ,
⟨Tz, z⟩ ≥ 0.

Consider a bounded linear functional ψz ∈ (N1(H))∗ defined as ψz(S) = ⟨Sz, z⟩
for S ∈ N1(H). The linearity of ψz is evident, and its boundedness follows from
the Cauchy-Schwarz inequality and Lemma 3.0.10:

|⟨Sz, z⟩| ≤ ∥Sz∥∥z∥ ≤ ∥S∥∥z∥2 = ∥S∥ ≤ ∥S∥1.

Since for all x ∈ SH , the operator x⊗ x is positive, we have ⟨(x⊗ x)z, z⟩ ≥ 0
for all x ∈ SH . Using the property that we can swap the operator and the Bochner
integral, we obtain:

⟨Tz, z⟩ = ψz(T ) =
∫︂

SH

ψz(x⊗ x) dµ(x) =
∫︂

SH

⟨(x⊗ x)z, z⟩ dµ(x) ≥ 0.

Thus, Tµ is positive definite.
Finally, since µ(SH) = 1 and Tr ∈ N1(H)∗, we have:

TrT =
∫︂

x∈SH

Tr(x⊗ x) dµ(x) =
∫︂

x∈SH

1 dµ(x) = 1.

Thus, ∥T∥1 = TrT = 1.

So, we obtained that T is nuclear and thus compact. Because T is positive
definite, there exists a sequence or a finite set of eigenvalues that are positive and
sum to 1. Since T is compact, we have σ = {0} ∪ σp, where σ is the spectrum
and σp is the point spectrum of the operator T .
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Lemma 5.0.7. For an operator Tµ defined above, where µ ∈ M1(SH ,weak):

Tµz =
∫︂

SH

x⊗ x dµ(x), z ∈ H.

Proof. Let z ∈ H be fixed. Consider a bounded linear operator χ : N1(H) → H
defined as χ(T ) = Tz for T ∈ N1(H). The proof that the operator χ is well-defined
is the same as above, and by the same argument, we are allowed to swap χ and
the integral. Finally, we obtain:

Tµz = χ(Tµ) =
∫︂

SH

χ(x⊗ x) dµ(x) =
∫︂

SH

(x⊗ x)z dµ(x).
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6 Examples of Tµ
6.1 Discrete measures

Let n be a positive integer, x1, . . . , xn ∈ SH are linearly independent and
α1, . . . , αn be positive real numbers such that ∑︁n

k=1 αk = 1. Consider a measure
µ = α1δx1 + · · · + αnδxn , where δ· is a Dirac measure.

Then we can easily compute the corresponding T :

T =
∫︂

x∈SH

x⊗ xdµ(x) =
n∑︂

k=1
αkxk ⊗ xk

Then for every z ∈ H:

Tz =
n∑︂

k=1
αk⟨z, xk⟩xk ∈ span{x1, . . . , xn}.

So, we will look at eigenvectors in the form β1x1 + . . . + βnxn. Let λ ∈ R,
λ ≥ 0, be an eigenvalue of the operator T and z = β1x1 + . . . + βnxn be the
corresponding eigenvector.

λ

(︄
n∑︂

k=1
βkxk

)︄
= λz = Tz =

n∑︂
k=1

αk⟨z, xk⟩xk

=
n∑︂

k=1
αk

⟨︄
n∑︂

j=1
βjxj, xk

⟩︄
xk =

n∑︂
k=1

αk

n∑︂
j=1

βjGkjxk,

where Gkj = ⟨xk, xj⟩ form the Gram matrix of vectors x1, x2, . . . , xn.
So, for every k ∈ {1, 2, . . . , n}:

λβk = αk

n∑︂
j=1

βjGkj.

This can be rewritten in a more compact form as λβ = diag(α)Gβ, or equiva-
lently as (diag(α)G− λI)β = 0. This means that we need to find the eigenvectors
and eigenvalues of the matrix diag(α)G.

In the special case where all x are pairwise orthogonal, we have G = I, and
thus the eigenvalues in this case are equal to the α’s, which is true also when
n = ∞.

6.2 Continuous measures
Let H be an infinite-dimensional separable Hilbert space with basis {en : n ≥

1}. Consider the set Se1,e2 = {cos(t)e1 + sin(t)e2 : t ∈ [0, 2π]}. Then, the measure
of a set in B(H) is defined as the measure (length) of the projection of the set
onto the circle Se1,e2 . We will denote this measure as µ.
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Firstly, let us consider an arbitrary vector z ∈ H orthogonal to both e1 and
e2. From Lemma 5.0.7, we have:

Tµz =
∫︂

SH

(x⊗ x)z dµ(x) =
∫︂

Se1,e2

⟨z, x⟩x dµ(x) = 0 = 0 · z.

Hence, 0 is in the point spectrum.
All other vectors can be written in the form z = x1e1 + x2e2 + z′, where z′

is orthogonal to Se1,e2 . Suppose such a vector is an eigenvector with eigenvalue
λ ≥ 0.

Tz = x1Te1 + x2Te2 = λ(x1e1 + x2e2 + z′).

If there are no eigenvectors inSe1,e2 , then

x1Te1 + x2Te2 ̸= λ(x1e1 + x2e2),∀x1, x2 ∈ R.

If we fix x1, x2 ∈ R and modify z′ ∈ H, we obtain that every real number is an
eigenvalue. This contradicts the fact that the number of eigenvalues is no more
than countable.

So, there is at least one eigenvector that lies in Se1,e2 . Due to symmetry,
any vector from Se1,e2 is an eigenvector with the same unknown eigenvalue λ.
Therefore, for any vector z ∈ H written in the form z = x1e1 + x2e2 + z′, where
z′ ̸= 0, we have that it cannot be an eigenvector because z′ ̸= 0.

Since the trace of the operator Tµ is 1, and the dimension of Se1,e2 is 2, we
have 2λ = 1, which implies λ = 1

2 . Therefore, the spectrum of this operator is
σ = {0, 1

2}.
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Conclusion
This thesis investigated the properties of the operator Tµ, defined as

Tµ =
∫︂

SH

x⊗ x dµ(x),

where µ is a probability measure on the unit sphere with respect to weak Borel
sets. We demonstrated that Tµ is a positive nuclear operator with a trace equal
to 1.

While the analysis focused on specific probability measures, extending this
work to more general measures on Hilbert spaces would be a valuable direction
for future research.

In conclusion, this thesis provides foundational insights into the operator Tµ,
contributing to the broader field of quantum mechanics.
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