
MASTER THESIS

Nikola Kalábová

Evolutionary Algorithms for Multi-Stage
Transcriptomic Data Analysis

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the master thesis: Martin Pilát
Study programme: Computer Science - Artificial

Intelligence

Prague 2024

I declare that I carried out this master thesis on my own, and only with the
cited sources, literature and other professional sources. I understand that my
work relates to the rights and obligations under the Act No. 121/2000 Sb., the
Copyright Act, as amended, in particular the fact that the Charles University has
the right to conclude a license agreement on the use of this work as a school work
pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

I would like to thank in the first place my supervisor Martin Pilát, for providing
many insightful comments during the development of the algorithm and the
thesis writing and being cheerful even when I was stressed. Huge thank you to
my consultant Hajk-Georg Drost, for helping me with the biological side of the
project, welcoming me in his lab and supporting me endlessly ever since. Next, I
would like to thank all my friends in Tübingen, who made this place feel like a
second home in such a short time. Thanks for keeping me fed during the stressful
times. Last but not lease I would like to thank my family for being always there
for me.

Title: Evolutionary Algorithms for Multi-Stage Transcriptomic Data Analysis

Author: Nikola Kalábová

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: Martin Pilát, Department of Theoretical Computer Science and
Mathematical Logic

Abstract: Uncovering genes that are involved in development has proven to be
a problem, where experimental and in-silico methods often fall short. In this
work, we look at development from the perspective of multi-stage transcriptomic
data and genomic phylostratigraphy and try to identify a small set of genes that
shape the transcriptome age index (TAI) pattern over the developmental stages.
For this purpose, we develop a multi-objective island model genetic algorithm
GATAI. By exploring the identified gene sets, we show that our algorithm was
indeed able to identify genes involved in development. We further generalize our
genetic algorithm, to be able to select a minimal subset of a any set of elements,
optimizing user defined set of fitness functions.

Keywords: developmental transcriptomics, genomic phylostratigraphy, evolution-
ary algorithms, multi-objective optimization

Název práce: Evoluční algoritmy pro analýzu multi-stage transkriptomických dat

Autor: Nikola Kalábová

Katedra: Katedra teoretické informatiky a matematické logiky

Vedoucí diplomové práce: Martin Pilát, Katedra teoretické informatiky a matem-
atické logiky

Abstrakt: Identifikace genů, které se podílejí na vývoji jedince, je problém, kde
experimentální a in-silico metody často selhávají. V této práci se na vývoj
díváme z pohledu multifázových transkriptomických dat a genomické fylogenetické
stratigrafie a snažíme se identifikovat malou sadu genů, které formují pattern
indexu věku transkriptomu (TAI) napříč vývojovými stádii. Za tímto účelem jsme
vyvinuli genetický algoritmus GATAI založený na více kriteriální optimalizaci a
modelu ostrovů. Analýzou identifikovaných sad genů ukazujeme, že náš algoritmus
skutečně dokázal identifikovat geny zapojené do vývoje. Dále jsme náš genetický
algoritmus zobecnili tak, aby byl schopen vybrat minimální podmnožinu libovolné
sady prvků a optimalizovat uživatelsky definovanou sadu fitness funkcí.

Klíčová slova: vyvojová transkriptomika, genomická fylogenetická stratigrafie,
evoluční algorithmy, vícekriteriální optimalizace

Contents

Introduction 7

1 Evo-Devo transcriptomics 9
1.1 Transcription . 9
1.2 Transcriptomics . 9

1.2.1 Bulk and single-cell transcriptomics 10
1.3 Genomic Phylostratigraphy . 10
1.4 Transcriptome age index . 11

1.4.1 Significance of the TAI pattern 12

2 Identification of development-driving genes 14
2.1 In-vivo methods . 14

2.1.1 Genetic screens . 14
2.1.2 Knockout, knockdown or overexpression 14
2.1.3 Problems of standard approaches 14

2.2 In-silico methods . 15
2.2.1 Transcriptome analysis . 15
2.2.2 Cross-Species Comparison 15

3 Data 16
3.1 Input data . 16
3.2 Collapsing replicates . 16
3.3 Signal prefiltering . 16
3.4 Data transformations . 17

4 Problem setting 18
4.1 Assumptions . 18
4.2 Optimization criteria . 18

4.2.1 Optimization Objective 1: Pattern significance 18
4.2.2 Optimization Objective 2: Number of identified genes . . . 20

4.3 Optimization limitations . 20
4.4 Additional criteria . 21

5 Optimization strategies 22
5.1 Linear or constraint programming 22
5.2 Simulated annealing . 22
5.3 Graph neural networks . 23
5.4 Evolutionary algorithms . 23

6 Evolutionary algorithms 24
6.1 Simple genetic algorithm . 24
6.2 Multi-objective optimization . 25

5

7 GA for subset minimization 27
7.1 GA architecture . 27
7.2 Libraries used . 27
7.3 Initialization . 28
7.4 Island model . 28
7.5 Mating . 28
7.6 Logging . 29
7.7 One generation . 29
7.8 Solution aggregation . 29
7.9 Usage . 30

8 GA for transcriptomics 31
8.1 Fitness evaluation . 31
8.2 Mating . 32
8.3 Integration with SetGA . 34
8.4 Final solution . 35
8.5 Postprocessing . 35
8.6 Usage . 36
8.7 Single cell . 36

8.7.1 Sparse encoding . 36

9 Results 38
9.1 Datasets . 38
9.2 GATAI statistics . 39

9.2.1 p-value . 39
9.2.2 GATAI importance . 43
9.2.3 Number of permutations needed 46
9.2.4 Stability of solutions . 47
9.2.5 Influence of different genetic operators 47

9.3 Biological results . 48
9.3.1 Function of the identified genes 49
9.3.2 Homology . 50
9.3.3 Gene age and expression 51
9.3.4 Dataset transformation . 52

9.4 Single cell datasets . 53

Conclusions 58

Bibliography 59

List of Figures 63

List of Tables 65

List of Abbreviations 66

A Attachments 67
A.1 Identified genes: . 67

6

Introduction
Already 200 years ago, scientists noticed that the embryos look very similar

during the mid-developmental stages. However, a more rigid approach was re-
quired, because ones perception of morphological features is highly subjective.
The progress in the sequencing techniques allowed researchers to capture all RNA
transcripts in a tissue (transcriptome) at a given time point. It also allowed for
phyostratigraphy (study of the age of the genes) to emerge. All these efforts came
together in the definition of the transcriptome age index (TAI) [1]. The TAI is able
to estimate the average age of the transcriptome for a given developmental stage.
This can give us an idea if the evolutionary older or the evolutionary younger
genes are active during the particular stage. Indeed, the mid-developmental stages
showed lower TAI values, signifying older genes being more active than young ones,
than the early and late developmental stages. The evolutionary older genes are
common for many species, because they emerged before their differentiation. This
supports the morphological similarity of species during the mid-developmental
stages. The fact that TAI is able to predict the transition from uni-cellular to
multi-cellular development was shown in [1, 2, 3]. Fascinatingly, similar TAI
patterns emerge across kingdoms, from bacteria and fungi to plants and animals.

We can go beyond this idea and ask what are the genes that are driving these
patterns. We presume, the genes driving the TAI patterns are those which play
a key role in development. Hence uncovering those could have a major impact
on the developmental biology field, as finding genes which play a key role in
development presents an ongoing challenge for scientists. Standard methods often
fail because developmental defects often prove to be lethal or such individuals are
infertile. Moreover, for lethal mutations, it cannot be established with certainty,
that a studied gene indeed plays a key role in development, as it might be, that
the gene is simply very high in the regulatory hierarchy and hence might cause
off-target effects. The in-silico methods do not yield satisfying results either. Not
many methods are known for completely unknown genes without any homologs
(genes with high sequence similarity) with a known function, that could at least
identify candidate genes for a further analysis.

We make an assumption that the genes that are creating the TAI pattern are
the ones that when removed from the dataset, the entire pattern is destroyed.
However, finding just a small set of such genes between tens of thousands of
genes in the dataset poses a hard problem. A similar problem was tried to be
solved in [4] with very limited success. However, we presume that by choosing a
different approach, we might come up with a method strong enough to dissect
this problem. Hence, the main goal of this thesis is to explore available methods
that can identify a small subset of genes that define the TAI pattern and select
and optimize the best preforming one of such methods. After having those genes
at hand, we would like to see, if those are conserved across the tree of life or at
least for closely-related species.

Having such an optimisation method for gene removal to destroy TAI patterns

7

at hand, we want to test, if our method can be applied to other problems, which
require to identify key drivers of a pattern created by computing a non-linear
summary metric on a set of elements over multiple (time) stages. Furthermore
we aim to test if our method can be used for a wide range of set minimization
or maximization problems, where the target set is given by set of arbitrary
optimization functions.

8

1 Evo-Devo transcriptomics
To understand the biological methods and techniques we used to uncover the

developmentally important genes, we first present a short introductory overview.

1.1 Transcription
In the central dogma of molecular biology, transcription is a key step in the

process of transforming segments of DNA (molecular information) into proteins
(molecular function). For that reason, transcription can be seen as the expression of
an organism’s genome into a molecular phenotype. More specifically, transcription
is the process of transcribing segments of double-stranded DNA to single-stranded
mRNA (messenger RNA). These mRNA transcripts are then further translated
to proteins or act as non-coding RNA, which appear to control gene expression in
physiology and development [5].

Figure 1.1 Central dogma of molecular biology. DNA gets transcribed to RNA which
is translated to proteins.

1.2 Transcriptomics
As the name hints, transcriptomics studies the transcriptome, which is the

set of all RNA transcripts on a given time point. In developmental biology,
transcriptomics captures which genes are highly active (expressed) during specific
events happening in the tissue and thus might be responsible for those. Its
necessary to mention that for protein-coding mRNA, there is not a one to one
correspondence between the abundance of transcripts of a gene and the amount
of protein produced, because there are other factors, such as the mRNA stability,
localization or degradation-inhibiting sequence attachment, which influence how
long will the transcript persist in the cell and be transcribed and also how often
it will be transcribed. Measuring the gene expression (abundance of transcripts
of given genes) is preformed by extracting the RNA from a tissue, filtering for
mRNA, amplifying the number of mRNAs for sequencing methods to be able to
capture it, and finally sequencing those mRNAs [6].

9

1.2.1 Bulk and single-cell transcriptomics
For around 35 years, molecular biologists have been able to apply high-

throughput technologies to sequence RNA transcripts in bulk [7]. That meant
taking all transcripts found in a particular tissue, containing different cell types
and sequencing all the transcript that were found. As the technology progressed,
around 15 years ago, researchers were able to preform the first single-cell sequenc-
ing [8], which enabled looking at the expression on a level of one particular cell of
a particular type at a particular time.

Figure 1.2 Single cell vs. bulk sequencing. Source: missionbio.com

1.3 Genomic Phylostratigraphy
Genomic Phylostratigraphy is a computational alignment method based on

evolutionary assumptions to trace back genes to their point of origin within the
taxonomy of life and assign them a putative origination age (the lowest detectable
taxonomic node which is referred to as phylostratum), relative to all other genes
[9]. To infer a relative gene age, the protein sequence of the gene is compared
against a sequence database to find the most distantly related sequence hit which
could potentially be a homolog (gene with shared ancestry, thus similar sequence).
Moreover, homologs throughout all the nodes between the studied species and the
most distant homolog are taken into account and a gene age is assigned only if
we can trace homology across the whole path in the phylogenetic tree from the
studied species to the most distant homolog [10].

10

https://missionbio.com/capabilities/why-single-cell/

Figure 1.3 Gene age assignment. For each gene, homologs are searched for on every
node of the phylogenetic tree. The resulting age is the minimal node value, where
homology was detected, if homologs are detected on most of the nodes with higher value.
Source: [10]

1.4 Transcriptome age index
Once the expression of the genes and the gene assignment for every gene in a

dataset is known, the average age of the transcriptome can be estimated. This
approach reveals, whether mainly evolutionary older or evolutionary younger
genes are utilized at a given developmental stage. Such a summary metric can be
computed as a transcriptome age index (TAI), as proposed in [1], where the TAI
is the average age of the genes in the dataset, weighted by their expression.

TAIs =
|G|∑︂
i=1

pi · eis∑︁|G|
i eis

(1.1)

11

Where:

TAIs is the TAI value at developmental stage s

pi is the gene age (phylostratum) of the
gene i

eis is the expression level of gene i during the
developmental stage s

G gene set

When computing TAI over multiple developmental stages, a TAI pattern is
obtained. This pattern identifies developmental stages in which the evolutionary
younger genes are more transcribed and stages in which the evolutionary older
genes are more transcribed. The highly expressed genes potentially have higher
influence on the resulting phenotype.

Figure 1.4 Transcriptome age index over the whole life cycle of Danio Rerio. Younger
genes are more expressed in the early and late stages puling the TAI up, older genes are
more expressed in the middle stages, lowering the TAI. Source: [1]

1.4.1 Significance of the TAI pattern
Before starting to infer anything from this pattern, we need to first test its

statistical significance compared to a pattern obtained from a random gene age
assignment. For this purpose, the flat-line test was developed [11, 12].

Flat-line test

To compute the flat-line test, first the phylostrata are permuted and randomly
assigned to genes. Afterwards, the TAI pattern is recomputed with the newly

12

assigned phylostrata and the variance is measured. This is preformed enough
times to get a representative distribution of variances. At the end, the parameters
of a gamma distribution are estimated. Having now a distribution at hand, the
p-value of the variance of the original TAI pattern being drawn from the gamma
distribution can be measured. If the p-value is not significant, the variance was
most likely obtained by chance. If it is on the other hand significant, there is a
high probability, that the pattern didn’t occur by chance and is worth looking into.

After preforming the flat-line test, we can safely say for most of the studied
datasets, that the observed pattern is indeed significant and the high variance is
not observed purely by chance.

Figure 1.5 Histogram of variances of TAI patterns obtained by permuting the gene
ages and recomputing TAI for every developmental stage. Gamma distribution is
estimated from the sampled variances and p-value of the variance of the original TAI
pattern (red) computed.

13

2 Identification of
development-driving genes

Assigning a function to a gene remains a hard problem for biologists. Finding
genes involved in development poses additional challenges mentioned below. Only
through tedious experimental designs new function can be revealed which remains
a slow and not easy to scale procedure.

2.1 In-vivo methods
In-vivo refers to methods and experiments that are performed or take place

within living organisms.

2.1.1 Genetic screens
One option to determine the putative function of genes involved in develop-

ment is by inducing mutagenesis in individuals of a population. That means
forcing a high mutation rate in an organism by genetic engineering, chemicals or
radiation [13, 14]. Afterwards, individuals are mated, their offspring sequenced
and individuals with developmental defects are compared to the wild type.

2.1.2 Knockout, knockdown or overexpression
To test if a gene is indeed active in development, it can be knocked out

[15, 16] or knocked down [17, 16], that is permanently or temporarily inacti-
vated. With the introduction of the CRISPR technology [18, 19], these methods
gained on precision and scalability. A developmentally defect phenotype in an
individual suggests that there may be a key role of such gene in development.
Recent methods made it also possible to knock out a gene in a tissue-specific or
time-specific manner, to study its role during particular stages of development [20].

Another way to test a specific gene is to cause its overexpression by inserting
more copies of such gene into the organism [21]. Afterwards screening for altered
growth, morphology, and timing of developmental stages is performed.

2.1.3 Problems of standard approaches
To create a living system robust to mutation effects, many developmental

processes involve redundant genes, where multiple genes can compensate for
the loss of one another, making it difficult to identify critical genes through
knockout or knockdown screens. Moreover, genes involved in development often
have multiple functions (pleiotropy), and disrupting them can cause a range of
unrelated phenotypes, complicating the interpretation of results. Third problem
is that interactions between genes (epistasis) can obscure the effects of individual
mutations, making it challenging to determine the role of a specific gene [22].

14

Many mutations in developmental genes also result in embryonic lethality,
preventing the study of later stages of development or adult phenotypes. Em-
bryonic lethality also causes some developmentally defect phenotypes where the
true function can never be observed and thus genes behind such defect are hard
to study. There is also a sizable number of mutants, which are able to live but
fail to procreate, complicating breeding and further genetic analysis [23]. Genes
mutated in those individuals hence remain undetected and unannotated with
their respective function in development. If a gene set is enriched in an unknown
function, it might be hence development related.

2.2 In-silico methods

2.2.1 Transcriptome analysis
Another way to uncover genes involved in development is to study expression

profiles over multiple developmental stages and identify genes that are differentially
expressed between stages [2]. Unfortunately, simulating the same environment
every time the gene expression is measured is deemed impossible, moreover tested
organism are often killed before taking their tissue samples, hence the data do
not even come from the same organism for all the developmental stages. For
this reason, many genes are differentially expressed because of some external or
internal events unrelated to development.

Another option is to study gene co-expression. Co-expressed genes are genes
that follow a similar temporal expression profile and thereby might be regulated
by the same regulators and thus contribute to relevant developmental and other
pathways [24]. With this assumption the genes are clustered by similar expression
profiles and claimed to possibly be involved in development if some of the co-
clustered ones are experimentally known to be involved in development [7]. The
new candidate genes can then be tested by some of the methods introduced above.
However, for such approach it is necessary for the expression data to span a large
number of developmental stages, for the correlations to be considered significant
[25].

2.2.2 Cross-Species Comparison
Given that a closely-related species with more detailed gene annotations exists,

candidate genes can be identified by searching for genes in the target species, that
are orthologous to genes (sharing common descent) that have been proven to be
involved in development in the closely-related species [26].

15

3 Data
To guide the search for developmentally important genes, we would like to

develop a method, that could preselect possible candidate genes given a common
and easily accessible omics (genomic, transcriptomic or proteomic) method. We
would also like such method to be usable for a broad range of different species
across the tree of life.

3.1 Input data
In general, having as much information from different omics experiments would

give us stronger tools to identify the genes that play a key role in development.
However, having a method that does not require data from multiple potentially
expensive and time-consuming experiments broadens the potential applicability
of a method. It also enables the usage of already present datasets on which
different downstream analyses have been done. This way, previous knowledge can
be combined with new findings, to gain deeper insight.

For this reasons we focused on inferring the key regulators of development
solely from the gene expression data over multiple developmental stages, along-
side the phylostrata (gene ages). The phylostrata can be inferred from the gene
sequences, thus no additional information apart from gene expression and protein
sequence is required.

The input data are thus a tsv file with first two columns being the phylostrata
and the gene ids, followed by columns with the measured expression in the
particular developmental stage for the respective genes.

3.2 Collapsing replicates
Many datasets contain replicates for the developmental stages. These need to

be collapsed meaningfully for every developmental stage. Following the example
of myTAI [11], we computed the geometric mean for all replicates belonging to
the same developmental stage. The geometric mean is a good way to combine
multiple measurements of the same event because it handles well multiplicative
effects common in biological data, reduces the impact of outliers and accurately
reflects the average for proportional changes. These properties of the geometric
mean aggregation hold only for untransformed data, hence the replicates should
be collapsed before further transforming the dataset.

3.3 Signal prefiltering
We found that a lot of genes have close to zero expression over the develop-

mental stages. Such genes are very unlikely to be genes that play a key role in
development. However, they make the search space in which we will be searching
for genes involved in development larger. For this reason we first remove those

16

genes that are lowly expressed in all stages, that is their expression is close to
zero in every developmental stage.

3.4 Data transformations
The datasets were obtained from various developmental expression studies.

Those studies used different methods to measure the expression over multiple
stages. In some studies the microarray, in others the RNASeq technology was
used. For that reason, different transformations needed to be used and due to the
different data sampling methods, the results might not be comparable between
species.
For the RNASeq data, we transformed the raw data to Transcripts Per Million
(TPM). TPM is a normalization method for RNA-Seq data that accounts for
sequencing depth and gene length. It involves normalizing read counts by gene
length (RPK), then scaling these values so that the sum of all TPM values in a
sample equals one million, which enables an accurate comparison of gene expres-
sion levels between samples.

In gene expression studies, expression data are often first transformed to either
log scale or square root scale to achieve variance stabilization. This might however
make the identification of pattern driving genes harder as these transformations
tend to remove strong signals and make the expression patterns of genes more
uniform. Such transformations might also remove some important biological
signal. On the other hand, such transformations might be beneficial for very
noisy datasets, where just a handful of genes dominate the overall expression
and variance of the whole dataset. We will discuss the influence of different
transformations in following chapters.

The raw phylostrata values represent an ordinal scale, without capturing the
actual phylogenetic distance between species within and across taxonomic nodes.
This creates an analysis bias, due to the absence of uniform intervals between
values, making arithmetic operations hard to interpret meaningfully. Thus we
applied a quantile-rank transformation to the phylostratum assignments of genes.
This allows us to convert ordinal phylostratum assignments into a continuous
numerical scale, where arithmetic operations are meaningful. Yet, the true phylo-
genetic distance between species within and across taxonomic nodes is still not
captured.

17

4 Problem setting
To be able to decide for a suitable algorithm to uncover developmentally

meaningful genes, we first need to exactly define the requirements, we set on the
algorithm and identify possible problems.

4.1 Assumptions
Having not much information at hand, we decided to try to infer develop-

mentally interesting genes from the TAI pattern. Given a TAI over multiple
developmental stages, as presented in the previous chapter, our task is to identify
genes, that are driving this pattern. Here, we make a bold assumption, that such
genes are those, which if removed from the dataset, make the pattern disappear.
We presume, this way we might actually be able to extract valuable information
because of the statistical significance of the TAI pattern as shown in the previous
chapter. One could think that we achieve the pattern destruction simply by
removing the most variant genes from the dataset, which would clearly not bring
much biological insight. In following chapters we show that this approach would
not work if we aim to remove just a small subset of genes.

4.2 Optimization criteria
We define two optimization criteria, that need to be optimized in parallel and

a good trade-off between these criteria needs to be found.

4.2.1 Optimization Objective 1: Pattern significance
Given the fact that TAI patterns can have various shapes and are sometimes

defined just over a few developmental stages, it is hard to say what is a non-random
pattern and thus hard to define what it means for a pattern to be ”destroyed”.
That is why, instead of some more intricate metrics of an overall pattern shape,
we simply consider the variance, which have been shown by the flat-line test to be
significant for TAI patterns. Thus, inspired by the flat-line test, we optimize for a
low variance of the TAI pattern. Let the average TAI over stages after removing
a subset of genes be defined as:

E(TAIs,I) =
∑︁

s(
∑︁

i∈G∧i/∈I pi · eis∑︁
i

eis
)

|S|
(4.1)

18

Where:

I is the set of indices of the removed genes
TAIs,I is the TAI value in developmental stage s

after removing genes on indices in I

pi is the gene age value (phylostratum) of the
gene i

eis is the expression level of gene i during the
developmental stage s

G gene set

Then the variance after removing genes with indices i ∈ I is computed as:

varI = E(TAI2
s,I) − E(TAIs,I)2 (4.2)

Such optimization criterion would be easily pushed to 0 simply by removing
all the genes. However, this is clearly not the solution we are looking for. In
general, larger sets of genes could remove more variance, however might include
genes, that are not contributing much to the overall variance decrease. Thus, we
introduced a second optimization criterion which is the size of the identified gene
set.

Minimal variance

Without removing all genes from the dataset, the variance will never reach 0.
Moreover, not even random pattern have close to zero variance. Thus we need a
good estimate for the target variance. This will prevent wasting computational
power and time on trying to push the variance lower than necessary.

To estimate a target variance, we once again utilize the idea of the flat-line
test. Instead of minimizing the variance directly, we developed a metric inspired
by p-value.

In the original flat-line test, the phylostrata are permuted, and the variance
is computed from the TAI pattern. After a large number of permutations, a
distribution of variances of TAI is obtained. For such distribution, the parameters
of a gamma distribution are estimated. Afterwards, the p-value of the original
TAI pattern variance is computed from that gamma distribution. During our
experiments we found that gamma distribution does not approximate the distri-
bution of variances well enough.

For the optimization, not a proper statistical measure is needed. Some op-
timization methods can work with a function, that just assigns order to the
candidate solutions. Other require some measure of how much a solution is better
than another. However, usually not a high precision is required.

To make the optimization function simple and easily interpretable, we de-
cided to simply take the ratio of the sampled variances that are smaller than

19

the optimized one to the total number of sampled variances. This creates an
approximation of a one-tailed p-value test. We call the resulting metric an empiri-
cal p-value. During the optimization, we would like to maximize the empirical
p-value, because we want the resulting variance to be in the range or the randomly
sampled variances.

p(k) = 1
|V |

∑︂
v∈V

δv≥k (4.3)

Where:
k is the value we want to estimate the p-value for

|V | is the total number of variances of the random
TAI patterns

V is the set of variances of the random TAI patterns
δv≤k is the Kronecker delta function

p-value relaxation

Rigorously, we would need to recompute the sampled variances from a dataset
created by removing the candidate genes, to test if the resulting TAI pattern is
indeed insignificant. However, this would be computationally very demanding.
Given the fact, that our goal is to identify just a small subset of genes, we assume
that the sampled variances computed from the data after removing the candidate
genes, do not differ significantly from the variances sampled from the original
dataset. That is why during the optimization, the variances sampled from the
original dataset will be used.

However, after the optimization terminates, the variance should be sampled
from the dataset with the identified genes removed and the statistical significance
should be recomputed to confirm that the resulting pattern has indeed become
insignificant also when the sampled variances are computed from the dataset with
the identified genes removed.

4.2.2 Optimization Objective 2: Number of identified
genes

Removing a higher number of genes generally leads to a lower variance. Thus,
to satisfy the first optimization criterion, we could simply remove a large portion
of the dataset. Clearly, this would not be very informative. That is why we try
to minimize the number of identified genes. This will ensure that only the genes,
that influence the TAI pattern significantly are captured. That is why we choose
the second optimization objective to be the number of identified genes, which we
would like to minimize.

4.3 Optimization limitations
These optimization criteria have a couple of limitations. The first limitation

lies in the computation of the pattern itself. The transcriptome age index (TAI)

20

is a very simple metric (summary statistic), hence it might not be able to capture
fine relationships between genes. Measuring the significance of the pattern simply
by its variance is also a major simplification. Unfortunately, since some of the
datasets have as little as 7 developmental stages, we weren’t able to come up with
a metric that captures the randomness better.

Given the fact that we are trying to find a minimal set of genes that reduce the
variance of the overall pattern the most while maintaining biological relevance, we
are introducing a bias towards highly variant, thus highly expressed genes. Highly
expressed genes are usually located at the lower levels of biological pathways
(are regulated by a long cascade of regulators and perform a highly specialized
function). However, we would like to capture key regulators across all levels of
pathways, ideally all the way up to lowly expressed transcription factors (protein
controlling the rate of transcription).

4.4 Additional criteria
Since we already know that the TAI metric is sub-optimal and a different

metric might be needed for single-cell data, developing an algorithm that can
easily work with a different optimization function seems important. Moreover, the
number of genes that should be identified is not known beforehand. This number
might as well vary significantly across datasets and so far not a good heuristics
is known. For those reasons, having an algorithm that is able to determine the
optimal number of identified genes would pose a big advantage.

21

5 Optimization strategies
A first naive idea would be to construct some iterative greedy algorithm.

However, especially for a higher number of stages, the relationship between the
expression levels of the genes are highly intertwined. Thus, trying to push the
TAI closer to the average TAI for one stage might result in increasing the variance
between other stages. Another idea would be to try removing random sets of
genes. However, since the datasets tend to have around 30000 genes, randomly
stumbling upon a good solutions is improbable. If we assume to extract at most
300 genes, the number of different combinations is:

num_combs =
300∑︂
k=1

(︄
n

k

)︄
(5.1)

Where:

n is the number of genes in the dataset
k is the number of genes to select

For this reasons a more sophisticated method needs to be invented.

5.1 Linear or constraint programming
For linearly encoded constraints and equalities we could use a linear optimiza-

tion solver or a constraint solver. The first problem with this approach is, that
our problem, as it is defined now is not linear. While we would possibly be able
to redefine the problem to a similar problem with linear constraints, it would be
hard to later add arbitrary additional constraints if necessary. Another problem
is, that we would need to bound the number of extracted genes before every run,
without any knowledge on what the bound should be. Hence, we would need to
run the optimization multiple times with different bounds on the number of genes.
Another way to extract a reasonable trade-off between the two criteria would be
to introduce a hard constraint on the quality of the solution.

In general, we would miss the opportunity for a post-hoc selection of a suitable
trade-off between the number of extracted genes and the quality of the solution.

5.2 Simulated annealing
As presented in [4] another option to consider is to use simulated annealing

[27]. This could be done by generating a random solution, slightly modifying
it in every iteration and accepting the modification based on the temperature,
according to the simulated annealing algorithm. Due to the wide and complex
optimization landscape of this problem, such optimization method might easily
get stuck in local optima and might not be able to converge. In [4] a similar,
yet very much simplified problem was being solved with suboptimal results. The

22

method was suitable only for patterns that can be approximated by a parabola
and had many other constrains.

5.3 Graph neural networks
Graph neural networks[28] are neural networks used for regression or classifi-

cation working on graph structured data. Using GNNs might seem not intuitive
at a first sight, because our problem as defined is inherently not a graph problem.
However, we can speculate that whether a gene is selected, highly depends on other
genes with similar expression pattern, or an opposite expression pattern, because
such genes could be co-regulated. From such relationships, we can construct a
graph comprising of nodes and edges to learn on. We can then get a classification
for every node in the graph, hence for every gene, if it belongs to the development
related genes or not. One pitfall might be the contradicting objectives, that need
to be combined into one loss function. There are two clear and possibly deep local
optima, that the algorithm can easily get stuck in. One being simply selecting
all genes to achieve zero variance and the other one being selecting no genes to
achieve the minimal possible number of selected genes. Again, the result would
be just one solution, hence we cannot post-hoc select the best trade-off between
the two objectives.

5.4 Evolutionary algorithms
Evolutionary algorithms[29] were designed to hold many candidate solutions at

once and to combine them in a way that can generate better solutions. They also
offer a simple encoding and high freedom for the optimization function. We have
a simple binary encoding at hand for our problem, which signifies the presence or
absence of a particular gene in the solution. We can then optimize the solutions
either by a simple genetic algorithm with a fitness function being a weighted
combination of the two objectives, or we can utilize a multi-objective optimization.
With this approach, the fitness function is easily exchangeable and if we opt for the
multi-objective optimization approach, we can select the best trade-off post-hoc.
Given all these advantages, we decide to optimize the two objectives presented
above using evolutionary algorithms. If we find a better metric than TAI in
the future, we will be able to easily swap them. Moreover, with multi-objective
optimization, we can decide if we want to identify a possibly larger amount of
genes, that make the pattern almost flat, or just a couple of genes that play a key
role in the TAI pattern, while removing just part of the overall variance of the
TAI pattern.

23

6 Evolutionary algorithms
Evolutionary algorithms [30] take inspiration in the evolutionary processes in

nature. Just as in nature, they keep a pool of individuals (solutions), which are
then mated between each other, mutated and their offspring undergo selection and
only the strong ones make it to the following generation. An individual usually
consist of an array of values, where every element of the array usually corresponds
to one variable that we want to optimize.

6.1 Simple genetic algorithm
For a problem that allows for a binary encoding a subclass of evolutionary

algorithms called genetic algorithms can be utilized. The simplest genetic algo-
rithm proceeds as follows. First a population of solutions is generated. Then
random pairs of solutions are crossed over and the new individuals are mutated.
This gives a rise to a new population. For this population a fitness function for
every individual is computed. A final population that enters the next generation
is selected based on the fitness from either these solutions or also the parental
solutions are included [30].

An evolutionary algorithm optimizes a fitness. A fitness defines how good the
solution is. The fitness function doesn’t have any limitations on the function type,
but it needs to be computable in a short time, as it will be computed for many
solutions over many generations. Usually the fintess is maximized, however the
problem can also be defined in a way that the fitness is minimized.

For classic evolutionary algorithms, two mating operators are defined. First
is mutation, which takes a random part of the individual and randomly changes
their values. For genetic algorithms, usually a bit-flip mutation is chosen, which
takes random indices in the solution array and flips the bit value on those positions.

Second is a crossover. An idea behind a crossover is to select two good solutions
and combine them so, that possibly an even better solution is created as conse-
quence. One option is to use a uniform crossover. Just as for bit-flip mutation,
random positions are selected and the values on those positions in the two solutions
chosen for crossover are exchanged.Another option is to use a one-point crossover,
where one index is picked on all position higher than this index, the respective
values are exchanged between the two solutions. Similarly, we can define a two
point crossover, where the positions between the two crossover points are swapped.

Selection is a procedure where good solutions are retained from either the
current generation, or also the parental generation. Not only the fitness but also
the overall diversity of the next population can be a criterion. A slightly worse
solution can be included to promote diversity.One selection method, that can
be used is the roulette-wheel selection, where the probability of a solution to be
chosen to appear in the next generation is proportional to its fitness. In this way,
a predefined number of solutions can be sampled.Another way to select solutions

24

for the next generation is to use a tournament selection, where in each round
two solutions are chosen randomly and the one with higher fitness gets to the
next generation.For problems with multiple objectives a multi-objective selection
can be used. Here, the selection should ensure that good solutions with different
trade-offs between the objectives are selected.

6.2 Multi-objective optimization
For problems with two or more objectives, we can utilize multi-objective evolu-

tionary algorithms (MOEA), which keep a set of solutions with different trade-offs
between the objectives. Usually, we are interested in solutions on the Pareto front.
A Pareto front consists of so called non-dominated solutions. Those are solutions,
that are better than every other solution in at least one objective.

Figure 6.1 Pareto front of non-dominated solutions (red dots), where both of the
objectives are maximized. All of these points have higher value in an objective than all
other solutions

One of the oldest and most used MOEA algorithms is the Non-dominated
Sorting Genetic Algorithm II (NSGA2) [31]. This algorithm first sorts the solutions
into Pareto fronts, where the solutions in the second Pareto front are those which
would be non-dominated after the removal of the first Pareto front. Analogically
for the following Pareto fronts. Afterwards, it fills the next population with pareto
fronts one by one starting from the first Pareto front. If a whole front doesn’t fit
into the next population, the solutions are ranked by their crowding distance and
just the amount needed to fill the next generation is selected based on increasing

25

crowding distance. The crowding distance is computed by sorting the solutions in
all objectives and for every index i computing the distance between solution i − 1
and i + 1 and taking the average over all objectives.

Later, its new version NSGA3[32] was published. NSGA3 takes reference points as
an argument, where each reference point specifies the importance of one objective
over the others. All those points lie on a hyperplane, where the sum of their
coordinates is always equal to 1 and the value for each coordinate is greater or
equal to 0. For example point (0.5,0.5,0) would try to find a point, that completely
disregards the third objective and gives equal importance to the first two.

The main difference between NSGA2 and NSGA3 is the selection of the solutions
from the first Pareto front that didn’t completely fit into the population of the
next generation. For NSGA3, the solutions already selected to the next generation
are associated to the closest reference point. For each reference point the number
of associated solutions is computed. Each solution from the last Pareto front (the
one that didn’t completely fit into the next generation) is then also associated
with a reference point. Until the next generation is filled a reference point with the
least amount of associated solutions (those already selected to the next generation)
is picked and a random solution from the last Pareto front, that is associated
with that reference point is added to the next generation. In this way the next
generation is populated.

Another widely used algorithms is (SPEA)[33]. The idea of Strength Pareto
Evolutionary Algorithm (SPEA)[33] is having an externally stored all-time Pareto
individuals that are updated every generation. Moreover, to not fill-up the whole
population just by non-dominated solutions, SPEA reduces the number of Pareto
individuals by performing a clustering algorithm on those and selecting just one
centroid for each cluster. If the next population is not filled with the non-dominated
solutions, all current solutions are given a ranking. The Pareto-solutions in the
current generation are ranked by how many of the all-time Pareto solutions they
cover (are better in all objectives). The dominating solutions are ranked by how
many solutions from the all-time Pareto set covers them, where less is better. By
this metric the solutions are then selected to the next generation. Looking at the
coverage instead of just a pure fitness in all objectives makes the solutions more
distributed over the optimization space, thus enhancing diversity.

26

7 GA for subset minimization
We realized that selecting a minimal subset of genes which are involved in

temporal development from a set of genes based on an optimization function can
be easily generalized to selecting a subset from a set of elements based on an
arbitrary set of optimization functions. To make our tool as general as possible,
we developed a general subset minimizer, which minimizes the cardinality of the
selected subset as one objective and optimizes a set of further objectives given by
the user.

After developing this tool, we simply input the set of genes and the variance
minimizing optimization function and we get our target algorithm. Details are
described in the following chapter.

Our solution is based on the DEAP library [34]. DEAP provides a simple frame-
work and a plethora of pre-made crossover, mutation and selection functions
alongside full evolutionary algorithms.

7.1 GA architecture
First, we implemented a simple genetic algorithm with uniform crossover and

bit-flip mutation. We implemented the fitness to minimize as the sum of the
objectives. We tested this approach on our transcriptomic problem. The weighted
fitness yielded fairly good and fast results for most of the non-transformed dataset,
but for the log and square root transformations this solution was rather slow and
sometimes struggled to converge. We also found that the solutions are not very
stable between runs. This we tried to solve by utilizing multiple solutions with
a good fitness from one run and combining the results. However, we found that
those solutions are almost identical, thus don’t cover the space of possible good
solutions very well. To tackle all above mentioned problems, we decided to use
a multi-objective optimization strategy. This allows us to select solutions in a
particular section of the Pareto front. Moreover, such approach enables us to
easily add additional constrains and optimization objectives in the future.

7.2 Libraries used
We started with the pyGAD library [35]. Once we found, that using a multi-

objective optimization approach could be advantageous, we switched to pymoo
[36] which is a Python library optimized for multi-objective optimization (MOO).
While having now a wide range of multi-objective selection operators at hand
was a big benefit, we otherwise found the library to be rather slow. That is why
we finally switched to DEAP[34] that had some multi-objective selection operators
pre-implemented as well and had proven to be a fast, general and user-friendly
interface for our problem. Though we did not find a good enough implementation

27

of an island model and early stopping. Nonetheless, for implementing those most
of the DEAP code could be reused and only slightly extended.

7.3 Initialization
We kept the encoding simple, with 1 on index i if i-th element of the set

belongs to the selected set and 0 otherwise. Since we want to minimize the size
of the selected subset, we initialize the solutions to have just a small amount of
values set to 1. The fraction of the total number of elements, that should be set
to 1 in the first generation is a tunable hyperparameter. The user can also input
their custom function that creates an individual. This function is then used to
create all individuals.

To define the set of the fitness functions a user defined set of fitness functions
is taken and the set size is added as the first parameter. By default all parameters
are minimized, but the user can specify which objectives to minimize and which to
maximize by passing a tuple of −1 and 1 with length corresponding to the number
of objectives as optional argument min_max„ where −1 on index i means the
i-th objective will be minimized and 1 on index i means the i-th objective will be
maximized. This follows the standard minimization/maximization definition for
the DEAP library. SetGA then takes this tuple and adds a −1 on the beginning
to signify, that the size of the identified subset should be minimized.

7.4 Island model
We found that in order for the final solution to be robust enough, we need to

aggregate solutions from various niches and positions on the Pareto front. While
pareto front, novelty[37] or niching[38] based algorithms are partially able to find
diverse solutions, we found that we can achieve better results faster with an island
model. An island model is a model where multiple independent populations of
solutions are optimized at the same time and once every n generations, some
solutions are moved from one island to another. This approach enhances diversity
of solutions during the optimization as different islands can cover different parts
of the optimization space. Moreover, the islands still share information so that
a good solutions combining two niches can emerge. While DEAP supports some
form of island model, it didn’t seem general enough for our purposes. That is
why we modified the original algorithm that preforms the general GA cycle to
suit the island model better. We allow for a custom number of islands. Those are
also able to have different mutation types and rates. The information between
islands is shared by ring-migration every x generations. Where x is a tunable
hyparparameter.

7.5 Mating
For crossover and mutation we allow all functions that would make sense

for a binary EA. For mutation, that is bit-flip mutation and inversion. A user

28

can also define their own mutation, or pass a list of different mutation functions
or names of mutations functions (bit-flip or inversion) of the same size as the
number of islands. This way, different mutations can be defined for different islands.

For crossover we allow the user to choose from uniform, one-point, two-point,
partially matched, ordered and uniform partially matched crossover. All these
function were taken from the DEAP library. We also allow for a custom crossover
function to be given.

For selection, we let the user choose from SPEA2, NSGA2, NSGA3. We recommend
the user tries the NSGA3 first, because the NSGA3 is the fastest of these three. We
by default distribute the k reference points uniformly across the space, where k is
the number of solutions in an island divided by 10. The reference points can also
be passed to the tool as an argument.

7.6 Logging
Every 10 generations, statistics for the current generation are stored into the

logbook for every island and if the verbose parameter is not set to False, printed
out. The user gives the names of the objectives as an argument. Given statistics
are printed only of one solution from every island, the user defines based on which
optimization objective, the current best solution will be selected. The logbook is
at the end returned to the user.

7.7 One generation
We took the eaMuPlusLambda algorithms as implemented in the DEAP library

and modified it so that it suits the island model and allows for early stopping, if
the model converged. First the next generations population is created by calling
the VarOr algorithm as its implemented in DEAP, only enabling different mutation
functions for different islands. Afterwards, solutions are selected from the new
population and the parental population with a chosen selection algorithm. If
the values of the first user specified optimization objectives did not change for
n generations, where n can be specified by the user, the optimization is stopped
and the current population returned. Every 5 generations, some solutions are
migrated from one island to the next one.

7.8 Solution aggregation
At the end of the optimization, the whole population of all the islands is

returned and can be further post-processed. We implemented a function, that
will take all the solutions from all the islands, filter out the ones, with a too low
fitness according to custom criteria and then take all the elements of the set that
have strong enough representation throughout all the good solutions.

29

7.9 Usage
Using the minimizer is straightforward. The library is available on pypi

and can be installed by calling pip3 install setga. The minimizer is then
called from python by setga.select_subset.run_minimizer(). The mandatory
parameters are only the number of elements in the set, the fitness function to be
minimized, the names of the objectives and the number of the objective to pick
the best solution according to for logging. The complete documentation can be
found in the github repository1.

1https://github.com/lavakin/setga

30

https://github.com/lavakin/setga

8 GA for transcriptomics
Having an algorithm, that minimizes a selected subset of a set of elements

while optimizing a list of optimization functions, we simply input the gene set as
the set of elements and the variance minimization function introduced in chapter
three as the fitness function. Afterwards we selected the most fitting genetic
operators and the best selection function and optimize the hyper-parameters to
return a minimal set of genes in the best possible time. By the definition of the
SetGA optimization, a 1 in the solution on the index i represents selecting the
gene gi to the set of genes being involved in development.
We name our tool, that is able to extract a small subset of genes, that are driving
the TAI pattern GATAI.

8.1 Fitness evaluation
To compute the fitness, we first need to compute the variance. We can easily

sum the expression over the genes for a particular stage while selecting just the
genes, that are not present in the solution by taking the dot product of the expres-
sion matrix with the negation of the solution array. In this way we compute the
product of sum over the age-weighted expression and the sum over the expression.
This way, we efficiently retrieve the TAI value for every stage and compute the
variance over the stages.

Weight expression by phylostrata for every gene
expression_data.age_weighted = exps.mul(expression_data["

Phylostratum"], axis=0).to_numpy()

def get_distance(solution):
Swap 0 and 1 in solution
solution = np.logical_not(solution).astype(int)
Sum expression columnwise only for genes not selected
age_weighted = solution.dot(expression_data.age_weighted)
total_exp = solution.dot(expression_data.expressions_n)
avgs = np.divide(age_weighted , total_exp)
return np.var(avgs)

Figure 8.1 Python code for calculating the distance based on the solution and
expression data.

To compute the p-value of the solution, we first need to compute the sampled
variances. For that we need to permute the gene ages, recompute that TAI pattern
and its variance. After testing different number of permutations, we decided to set
the permutation parameter to 100000, because the computation of this number of
sampled variances does take under 3 minutes for all of the datasets we tried and
the optimization converges without problems. From these sampled variances and
the variance of the solution, the p-value is computed as described in the previous

31

sections. To make the p-value easily integrateable with the second part of the
fitness, we would like to define the reformulate the p-value to a metric in the
range between 0 and 1, where 0 is the best. For this reason, instead of the p-value,
we take 1 − p-value. To prevent minimizing the 1 − p-value to a necessary low
value, we set the whole fitness to 0 if the p-value reaches the value 0.8, that is
1 − p-value is lower than 0.2.

The above described approach would work, if the starting variance would
be close to the variances of permuted TAI patterns, from which is the p-value
computed. Unfortunately, that is often not the case and in such cases, there would
be nothing to guide search until we reach a value, that is below one of the sampled
variances. Furthermore we would possibly need way more permutations to guide
the search properly. For this reason, the second part of the fitness is simply the
current variance divided by the variance of the original TAI. This metric is roughly
between 0 and 1 as well. These two metrics are then added together.

fitness(var) =

⎧⎨⎩
var

tai_var + 1 − p-value(var) if p-value(var) < 0.8
0 otherwise

(8.1)

Where:

var is the variance of the solution
tai_var is the variance of the original TAI pattern

8.2 Mating
For genetic operators we found that regular bit flip mutation and uniform

crossover yield satisfactory results, however the optimization is rather slow. That
is why we implemented weighted crossover and mutation, where the probability
for an index to be selected for a mutation or crossover is proportional to it’s
square root of variance of the TAI pattern over the stages. First we thought this
sped up the process heavily, because the highly variant genes are good candidates
for genes that are influencing the TAI pattern heavily. Later we found that the
significant speed up for mutation was mostly due to much faster implementation
than the default DEAP implementation of bit-flip mutation, but for the crossover,
we could see a clear difference in the number of generations needed.

At the end we decided for our implementation of the weighted uniform crossover
for the crossover operator and for the mutation, we use our implementation of
the standard bit-flip mutation for half of the islands and the weighted bit-flip
mutation for the other half. Such mutation setting enables fast convergence to the
correct highly variant key drivers of the pattern, while making the identification
of the less variant genes driving the pattern faster.

For the weighted mutation or weighted crossover, we originally used the
numpy.random.choice function. However, after running cProfile and vizualiz-

32

ing the bottle necks of the optimization, we found out that one of the major bottle
necks is the numpy.random.choice function. We used the fact that the weights do
not change throughout the whole optimization and based on the weights computed
the cumulative distribution function of the normalized weights, by creating an
array by for every index of the normalized weights array summing the values on
all indices smaller than the current one. Notice, that an array created this way is
sorted. We compute the CDF array only once and then reuse it every time the
mutation function is called. Every call of the mutation (crossover) function, we
generate mutation rate times lenght of the solution random numbers between 0
and 1. And for every random number we search for the last index of the CDF
array, where the value is smaller than the random number. This search can
be done in logarithmic time, thus if we have the CDF array precomputed, the
mutation runs in logarithmic time, compared to the DEAP mutation implemen-
tation, that scales linearly. Moreover, we implemented the function in numpy,
which does the computation internally in C, which brings further speed up. We
integrate the weighted mutation and crossover and the optimized version of the
bit-flip mutation and uniform crossover also to the general set minimization library.

Weight expression by phylostrata for every gene
expression_data.age_weighted = exps.mul(expression_data["

Phylostratum"], axis=0).to_numpy()

def weighted_random_choice(weights):
Compute the cumulative distribution function (CDF)
cum_weights = np.cumsum(weights/np.sum(weights))

def random_numbers(size):
Generate random numbers uniformly in [0, 1)
random_values = np.random.rand(size)
Find the indices where random values fall in the

CDF
indices = np.searchsorted(cum_weights ,

random_values)
return indices

return random_numbers

Figure 8.2 Python code for calculating the distance based on the solution and
expression data.

For this reason we reimplemented the classic bit-flip mutation simply by run-
ning this weighted bit-flip mutation with uniform weights. Analysis of the runtime
of the different implementations is provided in the results section. After trying
different setups, we found out the setting crossover rate to 0.02 and mutation rate
to 0.005 yields the best results.

For selection, we tried all the multi-objective selection methods that the DEAP
library offers. NSGA2 showed to be quite fast, but failed to converge for a lot of
datasets. SPEA2 did mostly converge without problems, however was significantly

33

slower. NSGA3 with uniformly distributed reference points had similar issues as
NSGA2. It mostly first pulled the p-value criterion all the way to 0 (that is to
p-value higher than 0.2), but then while further optimizing the number of ex-
tracted genes, the p-value started to grow again and GATAI often failed to converge.
This problem was first solved by distributing most of the reference points so that
the search often prioritizes low p-value over a low number of extracted genes.
Later, we tried to reproduce the divergent behaviour of NSGA3 with the uniformly
distributed reference points, but find out that due to speeding up the whole
computation and as a result enlarging the population size, GATAI behaves well
also under those circumstances. Moreover, having too many reference points with
high values for the p-value objective, GATAI takes longer to reduce the number
of identified genes, possibly because less solutions with less identified genes, that
have a lower p-value are kept in the population. These could be later crossed over
with solutions with a higher p-value to create solutions with less genes identified
and a high p-value. To prevent the possible divergent behaviour of the algorithm
on some datasets that GATAI has not been tested on, while not slowing down the
computation significantly, we decided to generate only few extra reference points
prioritizing the p-value objective. In total, we generated 10 uniformly distributed
reference points and another 3 with prioritizing the p-value objective.

Figure 8.3 Reference points used by the NSGA3 selection algorithm. More points are
centered around the high importance value for the p-value.

8.3 Integration with SetGA
The integration with SetGA is seamless, because SetGA was originally part

of GATAI and only later developed in a stand alone library. To run the SetGA
minimizer, we call the SetGA function setga.select_subset.run_minimizer()
with number of elements equal to the number of genes, the fitness function

34

presented above, ”Variance” as the name of the optimization objective, variance
as the optimization objective to select the best solution in every generation for
the log book, mutation and crossover rates (probability of an index to be mutated
(crossed over)), population size of 150 and 4 islands. These parameters were
experimentally determined to make every generation be computed fast, while
keeping the number of generations reasonably low. Mutation and crossover and
selection function were selected as described above, with the custom reference
points for the NSGA3 selection. We set the number of generations without any
change in the number of number of selected genes to 200.

8.4 Final solution
Final solution is extracted by first combining the populations from all islands

and then pre-selecting those solutions, with p-value lower than 0.4, as the TAI
patterns of the datasets with the genes identified by those solutions are at least
based on variance unrecognizable from the TAI patterns of the datasets with
randomly permuted gene ages. We set the threshold intentionally fairly low,
because we compute the p-value from the sampled variances (as described in
chapter 4) of all the genes in the original dataset. As explained, this approach
is slightly inaccurate. We suspect based on empirical trials that for the dataset
without the identified genes, the sampled variances will be slightly lower, thus
the p-value slightly higher. Finally only those genes are kept in the final solution,
which occur in more than 0.9 of the solutions. All these parameters are tunable.

8.5 Postprocessing
Genes which we identify with the help of our multi-objective optimization

algorithm are mainly highly expressed genes which can be placed downstream of
the true key regulators within a hierarchical gene regulatory network. However,
because they are up or down-regulated by those upstream regulators, they might
show similar expression patterns, only with different magnitudes. That is why as
followup analysis, we identify correlated genes by computing the Pearson index
for each of the identified gene expression profiles with all of the other gene expres-
sion profiles in the dataset. As a result, we return for each the associated ones
with correlation coefficient higher than 0.95. We allow running this correlation
procedure only for datasets with more than 30 developmental stages, because for
a lower number of stages the probability of genes being correlated simply by small
pattern space grows rapidly [25].

For a lot of downstream analyses, such as homology detection or common
domain (functional unit of a protein) identification, we need to know the sequences
of the identified genes. Those we usually have stored in one fasta file (standard
format to store biological sequences) for the whole dataset. This function creates
a fasta file with sequences only of the identified gene set.

35

8.6 Usage
GATAI can be installed by pipy by calling pip3 install gatai. The user is

provided with a commandline interface. By running gatai -h all options are
displayed. The most important command is select_genes, which will take the
input dataset and name of the output folder and run the main algorithm that
finds the set of genes minimizing the variance of the TAI pattern.

Having the resulting gene set at hand, one can run gatai find_coexpressed
which searches for genes with similar expression patterns to some of the identified
ones. Assuming a fasta file with the sequences of all genes is present, the user
can also get a fasta file with only the sequences of the selected genes by running
gatai get_fastas.

A help for all functions is provided by adding the -h or --help flag. The
complete documentation can be found in the github repository1.

8.7 Single cell
We decided to extend GATAI to be able to work with single cell datasets. So

far, we have been focusing on the bulk transcriptomics case as we considered such
datasets to be easier to work with, because of the vastly lower number of stages.
The bulk datasets tend to have between 5 and 50 number of developmental stages,
while the single cell ones can reach up to tens of thousands of cell differentiation
or developmental stages. This adds not only computational complexity, but with
so many stages it might be difficult to disentangle just the few key regulators of
the whole developmental process.

8.7.1 Sparse encoding
Fortunately, for single cell expression data, the genes tend to have zero signal

for most of the stages. For that reason, we tried to utilize the sparse matrix
encoding implemented in scipy [39]. We implemented a sparse matrix optimized
version of the computation of the sampled variances. By using just operations
that were able to handle sparse matrices, we were able to speed up the variance
computation significantly. However, we were not able to match the speed of
the computation of the bulk case. Due to the slower variance computation, we
were forced to decrease the number of permutations. Luckily, our experiments
(presented in the results section) showed that this does not seem to harm the
optimization.

We also needed to reimplement the fitness computation. In difference to the
bulk dataset, every operation that iterates over all the developmental stages is
expensive for the single cell case. That is why we precomputed a column wise sum
of the expression matrix and of the age-weighted expression matrix, to obtain the
age-weighted total expression for every stage and the total expression for every

1https://github.com/lavakin/gatai

36

https://github.com/lavakin/gatai

stage. In the TAI computation, these two matrices are divided to get the TAI for
every stage. To compute the total expression of the current solution, we simply
go over the selected genes (those with 1 in the solution), for every stage sum their
expressions and subtract those stage-wise from the precomputed total expression.
Analogically for the age-weighted expression.

def compute_distance(expression_data , solution):

Stage -wise sum of expression of selected genes
a_w_result = solution @ expression_data.age_weighted
a_result = solution @ expression_data.expressions_n

"Removing" the selected genes from the dataset
numerator = expression_data.weighted_sum - a_w_result
denominator = expression_data.exp_sum - a_result

division_result = np.divide(numerator , denominator)

distance = np.var(division_result)

return distance

Figure 8.4 Python function to compute distance based on expression data and
solution.

We tried to implement this approach also for the bulk datasets, but it proved
to be slower than the previous matrix-operation approach possibly effectively
optimized by numpy.

After these optimizations, one generation for single cell case is still significantly
slower than for the bulk one, but luckily the single cell datasets seem easier to
optimize, thus don’t require that many generations to converge, which makes the
optimization fairly quick. All analysis can be found in the results section.

37

9 Results
Having an algorithm that can identify a set of genes that drive the TAI pattern,

we need to test, if the algorithm performs well on various datasets. That is, if it
indeed optimizes the given objectives (p-value and number of genes), finishes in a
reasonable time and outputs a gene set that is stable over multiple runs of the
algorithm.

9.1 Datasets
We were fortunate to be able collect many published datasets across the tree of

life. The datasets come from different studies and the expression was measured by
different experimental setups. We collected even more datasets than listed below,
unfortunately some of those didn’t show significant TAI pattern even before the
optimization. We take 0.1 as the minimal significance level. When running GATAI
on datasets that do not show a significant TAI pattern, usually just a couple of
genes are identified, which can destroy the whole pattern. For this reason we
think that such patterns are caused by a measurement error, thus the identified
genes might not hold much biological relevance, hence we do not consider those
datasets for testing the tools functionality.

Kingdom Species Technol-
ogy

Normal-
ization

Study

Plants Arabidopsis thaliana Microarray [40]

Plants Brassica rapa RNA-seq TPM [41]

Plants Brassica nigra RNA-seq TPM [41]

Plants Brassica juncea RNA-seq TPM [41]

Plants Brassica napus RNA-seq TPM [41]

Bacteria Bacillus subtilis RNA-seq RAW

Fungi Coprinopsis cinerea Microarray [42]

Animals Mnemiopsis leidyi RNA-seq RAW [2]

Animals Drosophila melanogaster RNA-seq RAW [2]

Animals Caenorhabditis elegans RNA-seq RAW [2]

Animals Platynereis dumerilii RNA-seq RAW [2]

Animals Schmidtea polychroa RNA-seq RAW [2]

Table 9.1 Summary of datasets, methods and sources

38

For the datasets from the levin study [2], no normalization is required, because
of the specific experimental setup.

For each dataset, GenEra was run on the protein sequences to retrieve the
gene ages.

9.2 GATAI statistics
The main requirements on the algorithm were to optimize well the two opti-

mization criteria, the p-value and the set size and to identify a stable set of genes.
In this section, we will test how well GATAI can fulfill all these requirements.

9.2.1 p-value
First, we look at the p-value before and after and the time needed for the

optimization. The p-value as computed in the fitness function outputs 1 for any
TAI pattern whose variance is higher than all sampled variance, thus it does not
give us any information on how much higher the variance is than the sampled
ones. For this reason, we use the myTAI [11] function FlatLineTest with 100000
permutations. The FlatLineTest function first estimates a gamma distribution
from the sampled variances and computes the p-value of the TAI pattern variance
belonging to this distribution afterwards.

39

Species p-
value
before

p-
value
after

Optim.
time

Num.
genes

Min.
genes
in sol.

Num.
genera-
tions

A. thaliana 0.0002 0.782 73.01 s 45 58 672

B. rapa 4.38e-6 0.429 223.85 s 62 105 2771

B. nigra 0.062 0.118 114.24 s 28 49 1431

B. juncea 0.031 0.227 151.41 s 29 49 1591

B. napus 8.85e-8 0.43 22 min 649 1473 12000

B. subtilis 3.5e-11 0.471 125.21 s 32 47 1001

C. cinerea 1.80e-20 0.51 324.58 s 458 473 5351

M. leidyi 0.00026 0.191 105.95 s 32 45 1101

D. melanogaster 4.16e-12 0.328 10 min 54 93 1222

C. elegans 0.00014 0.569 440.60 s 24 30 1041

P. dumerilii 1.8e-7 0.473 13 min 50 68 1421

S. polychroa 0.00183 0.616 30.74 s 8 9 421

Table 9.2 GATAI statistics for all available datasets capturing the p-value of the
original TAI pattern, the p-value after removing the identified genes, time spend on
the optimization (excluding the time needed to compute the permutations) and on
generating the variances by permuting the gene ages. Number of genes in the final
identified gene set, minimum number of genes identified between all good solutions from
population and number of generations.

40

(a) (b)

(c) (d)

Figure 9.1

41

(a) (b)

(c) (d)

Figure 9.2 TAI pattern before and after removing the identified genes alongside
their respective p-values for representative datasets. Plots generated by myTAI function
PlotSignatures

From the Table 9.2 and Figures 9.1, 9.2 is apparent, that GATAI was indeed
able to make the TAI pattern of all the datasets insignificant after removing the
identified genes. Again, we are taking 0.1 as the significance threshold. We can see
that for some datasets, the significance is not very high, even-though in GATAI we
set the optimization threshold for the p-value (threshold after which we manually
set the p-value 1) to 0.8. We think, that the relatively low significance can be
caused by two things.
First case is, if the original TAI pattern is significant, but its p-value is close to 0.1,
like in the case of Brassica Nigra and Brassica Juncea. In those cases the pattern
is heavily influenced by just a couple of genes and removing those influences not
only the pattern heavily, but also the sampled variances. From the Figure 9.3 we
see that the variance distribution is shifted right, which causes the same variance
to have higher p-value under this distribution compared to the original distribution.

Second case is, if a pattern can be destroyed by many different combinations
of genes. Since we at the end of the optimization take just the genes, that appear

42

Figure 9.3 Distribution of variances of the TAI pattern after permuting the gene ages
for the original dataset (light blue) and for the dataset after removing the identified
genes (dark blue). The variance of the TAI pattern after removing the identified genes
(blue dashed line) is very insignificant for the light blue distribution, but less insignificant
for the dark blue, thus having a lower p-value after recomputing the sampled variances.

in at least three quarters of the solutions, in such case many of the genes that
were taking part on destroying the pattern are not included in the final solution.
This factor might also contribute to the low p-value of the TAI pattern of the
aforementioned Brassicas.

9.2.2 GATAI importance
An important question is, do we really need a sophisticated optimization?

Wouldn’t we achieve the same result just by removing the most variant genes
from the dataset? Doesn’t GATAI at the end capture exactly those? This would
mean, that the extracted genes do probably not hold much biological relevance
and using a GA to tackle the problem is not necessary.

43

(a) (b)

(c) (d)

Figure 9.4 TAI pattern of the Arabidopsis Thaliana (a) original dataset, (b) the
dataset after removing the genes identified by GATAI, (c) the dataset after removing
n of most variant genes, where n is the number of genes identified by GATAI, (d) the
dataset after removing n random genes, where the probability of a gene to be selected
is proportional to its variance.

44

(a) (b)

(c) (d)

Figure 9.5 TAI pattern of the Bacillus Subtilis(a) original dataset ,(b) the dataset
after removing the genes identified by GATAI, (c) the dataset after removing n of most
variant genes, where n is the number of genes identified by GATAI, (d) the dataset after
removing n random genes, where the probability of a gene to be selected is proportional
to its variance.

From the Figures 9.4, 9.5 its apparent that removing the most expressed genes,
or random genes, where the probability of a gene being selected is proportional
to its variance does reduce the variance slightly, but the pattern is still far from
being insignificant.

45

Figure 9.6 Genes of A. Thaliana and B. Subtilis sorted by variance. Genes identified
by GATAI marked in blue. Zoom-in on the range of the plot, where the identified genes
are present.

From the Figure 9.6 we see that the extracted genes are indeed the highly
variant one, but the subset of the genes destroying the TAI pattern needs to be
carefully selected from those.

9.2.3 Number of permutations needed
To estimate the p-value needed for the fitness computation, we need to first

compute the sampled variances, that is permute the gene ages and recompute the
variance of the TAI pattern. We need to look at how many sampled variances
do we need. In other words how many permutations of the gene ages, from
which the sampled TAI values are computed, are necessary. There might be two
problems with computing too little variances and thus having not many variances
to estimate the p-value from. First is that the selection of the solution for the
next generation of the genetic algorithm is partially based on the p-value, thus the
algorithm has less guidance on which solutions to prefer. However, second part of
the fitness is purely the variance of the solution, which might guide the search if
two solutions have variance between two sampled variances. The other problem
might be not approximating the true variance distribution well. This might result
in stopping the optimization while the true p-value is still not yet satisfyingly low.

Permutations p-value Num. genes Optim. time

10 0.596 42 61.49

100 0.763 47 79.68

1000 0.741 44 77.94

10000 0.793 43 76.44

100000 0.837 43 77.65

Table 9.3 p-value, number of identified genes and the optimization time for different
number of permutation (sampled variances).

From the Table 9.3 is apparent that the optimization runs well even for a low
number of permutations, but the final p-value gets worse because of the insufficient

46

estimation of the true distribution of the sampled variances. This hints toward a
further speed up opportunity of the algorithm by not computing the p-value of
the TAI pattern for every solution during the optimization and guiding the search
only by the variance and just computing the variance, which has a p-value of 0.8
and setting such variance as the optimization threshold, where any lower variance
is automatically set to 0. In such case, we would not need to compute the number
of sampled variances that are higher than the variance of the solution for every
solution in a population in every generation. While this is not a costly operation,
it would still speed up the computation slightly.

9.2.4 Stability of solutions
To test if the identified set of genes vary significantly between the GATAI runs,

we ran the tool multiple times and examined the resulting gene sets. We performed
this test for the microarray dataset of Arabidopsis Thaliana and the RNA-Seq
dataset of Bacillus Subtilis, to span different methods and kingdoms.
If the set of identified genes would not be stable across the runs, we would need
to make the criteria for the optimization stricter, for example rise the p-value
threshold or rise the threshold for in how many percent of solutions a gene needs
to appear to be included in the final gene set.

1
(1)

1
(1, 2, 3, 4)

27
(1, 2, 3, 4, 5)

1
(2, 4, 5)

1
(2, 3, 5)

1
(1, 3, 4, 5)

1
(3, 4, 5)

1
(1, 2, 4, 5)

1
(5)

Run 1

Run 2

Run 3

Run 4

Run 5

(a)

1
(1)

1
(1, 2)

1
(1, 2, 3, 4)

30
(1, 2, 3, 4, 5)

2
(2)

1
(2, 3, 4)

1
(2, 3, 4, 5)1

(2, 4, 5)

1
(3)

2
(1, 3, 4, 5)

1
(3, 4) 1

(3, 5)

1
(1, 3, 5)

1
(4)

1
(1, 4)

1
(1, 2, 4, 5)

1
(5)

3
(1, 2, 3, 5)

Run 1

Run 2

Run 3

Run 4

Run 5

(b)

Figure 9.7 Euler diagrams of the overlapp of the gene sets identified by different runs
of GATAI with identical parameters, for A. Thaliana (right) and B. Subtilis (left). The
diameter of the circles is proportional to the size if the overlap.

As we see from the Figure 9.7 for both datasets, most of the identified genes
are stable across the runs of the algorithm.

9.2.5 Influence of different genetic operators
Next we test, if our custom mutation and crossover operators tailored for

this specific problem, where the probability for a given index to be mutated
(crossed over) is proportional to the square root of variance of the gene on that
index, performs better than other available operators. For A. Thaliana and
D. Melanogaster, we test the differences in runtime and number of generations
between the different operator combinations.

47

Dataset Mutation Crossover Num.
genera-
tions

Optim.
time

A. Thaliana Half weighted Weighted 672 73.01 s

A. Thaliana Half weighted Uniform opt. 1072 113.63 s

A. Thaliana Bit-flip opt. Weighted 782 83.70 s

A. Thaliana Bit-flip opt Uniform opt. 1011 105.38 s

A. Thaliana Bit-flip Uniform 1251 612.08 s

D.
Melanogaster

Half weighted Weighted 1222 10 min

D. Melanogaster Half weighted Uniform opt. 1487 13 min

D. Melanogaster Bit-flip opt. Weighted 1392 12 min

D. Melanogaster Bit-flip opt. Uniform opt. 1782 15 min

D. Melanogaster Bit-flip Uniform 1662 27 min

Table 9.4 Table of the number of generations and the optimization time (excluding
the time needed to compute the permutations) for A. Thaliana and D. Melanogaster for
different combinations of mating operators, where opt. means the optimized version
of the original DEAP operator. Half weighted mutation means half of the islands are
mutated by the weighted mutation and half by the optimized version of bit-flip mutation.
The operators combination that GATAI uses are marked in bold.

Lower number of generations generally signify better mating operators, because
the algorithm is able to converge faster because of them. Higher optimization
time by similar number of generations signifies higher computational complexity
of computing the operators (by otherwise identical setup).

From the Table 9.4 we see that the genetic operators GATAI is using have the
lowest run time and number of generations needed to converge, although for A.
Thaliana we can speculate that there is not a significant difference to using the
optimized version of bit-flip mutation. Mainly, we see a very significant difference
between using the optimized versions of the operators we developed and the ones
DEAP provides.

9.3 Biological results
Apart from showing that GATAI behaves well on our data and optimizes well

both of the optimization objectives, we need to show, that the identified genes
are biologically meaningful. This part is just a small portion of the analysis that

48

needs to be done, but in this work we want to focus more on the algorithmic
side of the problem. We put identified gene sets for a selection of datasets in the
attachments A.1.

9.3.1 Function of the identified genes
After extracting the gene sets from the datasets, we can examine the identified

genes. The easiest way to find out, which functions are enriched is to look at
the Gene Onthology (GO) annotations. For this purpose, we used the panther
database [43] and gprofiler [44]. Unfortunately, for most of these species, no
reference annotations are provided. For the datasets, for which the tools provided
the reference, we quickly found that for most of them a big part of the identified
genes lack any annotation (unknown function). We tried to use the eggnogmapper
[45], which searches for known function also for orthologous genes (genes which
originated from the same gene). Here, we got at least some annotation for a big
portion of the identified genes for the plant datasets, but for the other datasets,
not many annotations have been found. Even though substantial amount of
annotations for the plant datasets are development related, we cannot claim it to
be significant, because we lack any information on the background distribution of
the biological functions.

The lack of annotations might be caused by the lack of interest in those genes
by the scientific community, but it may also signify the lethality of mutations in
those genes. The latter case would make them not appear in a candidate gene
set after mutagenesis, hence their function would not be uncovered. The latter
case would also support our claim that the identified genes are development related.

We report interesting results in Figure 9.8 for the Drosophila Melanogaster
dataset. This may be due to Drosophila being one of the ten most annotated
species [46] and having a very significant TAI pattern. For the Danio Rerio dataset,
the set of identified genes is enriched in development related GO categories as
well, however the TAI pattern on the dataset is not significant, hence we do not
report the extracted genes.

Form the Figure 9.8 we see that all the GO categories that the extracted genes
were enriched in are related to development with a very significant p-value, except
for one, which is also the one with the lowest p-value. This supports our claim
that we are indeed capturing genes involved in development.

We could definitely perform a more detailed analysis, for example look into
the gene families or the single protein domains. However, this work is focused
more on the algorithm and proper analysis of the identified gene sets will be done
in future works.

49

Figure 9.8 GO categories enriched in the identified gene set for Drosophila
Melanogaster. Most of the categories (except for the second one) are development
related.

9.3.2 Homology
One could ask if the identified genes of different species are related in some

way. To answer this question, we used the pairwise sequence alignment tool
diamond2 [47], which when provided with database and a set of queries, can for
each query identify a list of similar sequences and output their identity score. We
ran diamond2 for every pair of the identified gene sets of the datasets from the
Levin study [2] and every pair of the identified gene sets of the Brassicas [41].
Each time using the sequences of one gene set as database and the sequences of
the other gene set as query and other way around.

We set the identity threshold to 50% and searched for the homologous genes.
We found no homologs between the gene sets of the Levin datasets, however,
we found clusters of homologs for the Brassica datasets, some spanning all the
Brassica gene sets. To confirm our results, we ran OrthoFinder [48] (which also
runs diamond2 internally), on the sequences of the identified genes of Brassicas, to
find the clusters of genes that share evolutionary origin and confirmed our results.
We then ran eggnogmapper on the sequences of the cluster to find the function of
the genes in each cluster.

For the cluster spanning the largest number of genes, that is 27, all of the genes
were annotated to code a 2S seed storage protein. The fact that we were able to
identify orthologous genes across closely related species supports the claim that
we are indeed not capturing just random highly expressed and higly variant genes.
The biggest orthologous cluster extracted being annotated with a development
related function brings another strong proof that GATAI is truely capturing what
it is supposed to. Unfortunately, that was the only annotated cluster, but it would
be very interesting to test if the genes in the other big cluster have a development
related function.

50

9.3.3 Gene age and expression
We look into what are the gene ages of the genes that are captured by GATAI.

Given the fact that we are capturing the highly expressed genes, we would think
that we capture more of the evolutionary younger genes, because these tend to be
lower in the gene regulation network hierarchy and such genes tend to be more
expressed, than older genes which are possibly transcription factors, which tend
to be lowly expressed [49].

(a) (b)

(c) (d)

Figure 9.9 Distributions of gene ages (phylostrata) of the identified gene sets for
dataset across the kingdoms.

Indeed, in the Figure 9.9 we see, that most of the genes are evolutionary
younger. This might also be the reason why we did not find and homologs for
species that are not closely related.

Another interesting property to look at is how the TAI pattern comes together.
We expect that the evolutionary older identified genes have peaks in their ex-
pression pattern in the minima of the TAI pattern and the evolutionary younger
ones have peaks at the maxima of the TAI. This would rise the TAI value for
the stages where the identified older genes are highly expressed and lower the

51

TAI value where the identified younger genes are highly expressed. To examine
this behaviour, we look at the expression patterns for Arabidopsis Thaliana and
Brassica Rapa. These are one of the few species that have small enough number
of stages and small enough number of extracted genes for a nice visualization.

(a) (b)

(c) (d)

Figure 9.10 (a,b):Expression patterns for the gene sets identified by GATAI for A.
Thaliana (a) and B. Rapa (b). Genes with phylostratum at most 3 colored pink, genes
with higher phylostratum colored blue. (c,d): TAI pattern for A. Thaliana (c) and B.
Rapa (d).

As we see from the Figure 9.10, the expression patterns are as expected for
both gene sets. The older genes are more expressed in the minima of the TAI
pattern and the younger genes are more expressed in the maxima.

9.3.4 Dataset transformation
So far we focused on untransformed datasets. However, users might want to

run GATAI after transforming the dataset by one of the common transformations
used for expression data. Hence, we look into how square root and logarithm
(being the most common transformations) influence the runtime of GATAI and the
identified gene sets.

From the Figure 9.5 we see that significantly more genes are extracted from
the transformed datasets. This is caused by reducing the impact of the highly
variant genes on the overall pattern. This results in overall more candidate genes,

52

Dataset Num. genes Num. gen-
erations

Optim.
time

A. Thaliana 45 672 73.01 s

A. Thaliana - sqrt 180 1501 154.23 s

A. Thaliana log 591 6201 634.37 s

D. Melanogaster 56 1222 10 min

D.Melanogaster - sqrt 456 7131 38 min

D.Melanogaster - log 896 7971 33 min

Table 9.5 Table of the number of genes, number of generations and the optimization
time (excluding the time needed to compute the permutations) for A. Thaliana and D.
Melanogaster under different transformations.

which makes the optimization more complicated thus the optimizer needs more
time to converge.

From the Figure 9.11 we see that with the transformations, we capture many
more evolutionary older genes. This might be because evolutionary older genes
include transcription factors which tend to be less expressed than the young genes
[7] and with the transformations, the differences become less significant.

9.4 Single cell datasets
The interpretability of the TAI metric has not been tested for single-cell data.

Once more studies of the single-cell case will be made, better optimization function
might be invented. Thus, our aim now is to show that our tool can handle such a
huge datasets, but the identified gene set will not and in our opinion shall not
be interpreted. In this section we thus test the tool just in terms of the time
complexity, not the biological interpretation.

We took four single cell datasets for Arabidopsis Thaliana from [50], with very
different number of stages. For all the datasets the expression of the same 22487
has been measured.

During some preliminary analyses we found that most of the single cell datasets
are easy to optimize, but each generation takes significantly more time than in
the bulk case. That is why we run the optimization with 3 islands only and 70
individuals in every island.

First we look into how the number of stages influences the runtime of the
algorithm. We hope, that the algorithm will scale well due to the utilization of
sparse matrices.

53

(a) (b)

(c) (d)

(e) (f)

Figure 9.11 Histogram of the phylostrata distribution for A. Thaliana and D.
Melanogaster with different transformations (logarithm and sqare root).

The total runtime of the algorithm is influenced by the significance of the original
TAI pattern and by the contribution of each gene. To mitigate this bias, we
compute the average time needed to preform one generation of the algorithm.

Acknowledging not having enough data to do proper analysis, we still measure
the total time needed for the minimization for all the single cell datasets and the
number of generations required. This give us some idea, if for datasets with more
stages it is harder to find a small set of genes creating the TAI pattern.

54

Dataset Stages Optim.
Time

Perm.
Time

Genera-
tions

Time.
per gen.

Ident.
genes

5 19603 57.45 s 161.13 s 59 0.97 s 2

17 9676 546.55 s 40.84 s 361 1.51 s 29

21 4459 125.26 s 11.98 s 261 0.48 s 16

31 339 104.43 s 2.54 s 831 0.13 s 101

Table 9.6 Comparison of the time of the optimization (excluding the time needed
to compute the permutations), permutation time, number of generations, time per
generation and the identified number of genes between the single-cell datasets.

Based on the Table 9.6 we can clearly see that the total runtime of the op-
timization is not dependent on the number of stages the dataset captures, but
rather on the expression patterns of the single genes. We can also see that single
cell datasets have the same problem as bulk data of the whole pattern being
created only by a improbably small number of genes. We also observe, that the
time needed for one generation is not dependent only on the number of stages
but also probably on the sparsity of the sparse matrix the expressions are stored in.

Next, we are going to look at the influence of the number of permutations on
the identified gene set. From the permuted gene ages, the sampled TAI patterns
and their variance are computed. The variances sampling might be a major bottle
neck if a lot of permutations are required. For this reason we will examine the
behaviour of the optimization with different number of sampled variances.
For our analysis we chose the dataset 17. As presented in Table 9.6, this dataset
spans almost 10000 stages. We will also show that the pattern is significant.

Because of the high number of stages, we cannot use myTAI to compute the
p-value of the dataset before and after removal of the identified genes. That is
why we compute the empirical p-value the same way as during the optimization.
For this computation, we take all 50000 variances computed for the GATAI run
with 5000 permutations. We did not recompute the p-value after actually re-
moving the identified genes from the datasets, as we are more interested by the
tendency of the p-values for different number of permutations than the actual value.

Similarly to the bulk datasets we see, that the number of permutations does
not have much influence on the optimization time and number of identified genes.
Yet again we see that the p-value of the solutions tends to get lower with lower
number of permutations.

We also look if the identified gene sets are different for different number of
permutations. We compare the identified gene sets from the GATAI runs with
different number of permutations to the same number of runs with the same

55

Permuta-
tions

Perm.
Time

Optim.
Time

Genera-
tions

Ident.
genes

p-value

100 4.13 s 541.55 s 361 29 0.73

1000 40.84 s 546.55 s 361 29 0.71

10000 407.43 s 653.57 s 431 30 0.78

50000 2046.29 s 586.57 s 381 28 0.80

Table 9.7 Permutation time, optimization time (excluding the time needed to compute
the permutations), number of generations, number of identified genes and the empirical
p-value for the different number of permutations, meaning different number of sampled
variances.

parameters.

2
(1)

2
(1, 2)

2
(1, 2, 3)

17
(1, 2, 3, 4)

1
(2)

3
(2, 3)

2
(2, 3, 4)

2
(3)

2
(1, 3, 4)

2
(3, 4)

1
(4)

2
(1, 4)

2
(1, 2, 4)

100

1000

10000

50000

1
(1)

1
(1, 2)

17
(1, 2, 3, 4)2

(2)

2
(2, 3)

2
(2, 4)

1
(3)

2
(1, 3)

2
(1, 3, 4)

1
(4)

1
(1, 4)

2
(1, 2, 4)

Run 1

Run 2

Run 3

Run 4

Figure 9.12 Euler plots capturing the overlap of the gene sets for (a) different number
of permutations and (b) different runs of GATAI with the same parameters

From the Figure 9.12 we see that the number of permutation does not seem to
influence the final solution. The identified gene sets do not seem to be significantly
more different that gene sets identified by running GATAI with the same parameters
every time.

Finally, we test how much faster the single cell solution is compared to not
using sparse matrices and operations that are optimized for those. For this analysis,
we again choose the dataset 17, which spans large number of stages and seems to
have a significant TAI pattern.

As apparent from the Table 9.8, without the sparse solution, the optimization
takes 10 times longer, hence for datasets that would require more generations the
optimization could be infeasible.

56

Algorithm Permutation time Time 10 generations

ScGATAI 82.268 s 24.093 s

Standard GATAI 550.2 s 262.2 s

Table 9.8 Comparison of the runtime between the standard GATAI algorithm and the
single-cell optimized version (ScGATAI).

57

Conclusion
Finding genes that play a key role in development has been a hard problem

for the field of developmental biology for many years. Experimental methods
are expensive and have a long list of limitations and the effectiveness of in-silico
methods is limited due to capturing a lot of technical noise and the inability to
filter out background effects.

In this work, we studied development from the perspective of transcriptomic
and genomic phylostratigraphy and utilize the pattern of the transcriptome age
index (TAI) to infer candidate genes, that are involved in development. We devel-
oped a multi-objective island model genetic algorithm GATAI that is able to find a
small set of genes which when removed from the dataset, make the original TAI
pattern disappear, where we define disappearing in terms of variance. To achieve
an effective optimization, we introduced a novel mutation operator tailored for
our problem and created an optimized implementation of the crossover operator.
Moreover, we show that due to the island architecture, the identified gene set is sta-
ble over multiple runs. While we mostly focused on the bulk transcriptomics case
where the TAI metric is established, we also implemented a version of GATAI that
works well with the vastly larger single-cell dataset. Due to not having any con-
straints on the fitness function except for the speed of its computation, once a good
single-cell metric is invented, the tool can be easily used for the single-cell datasets.

We test GATAI on many different dataset and by analyzing the resulting gene
sets we show that our tool is indeed able to identify genes that are involved in
development. Creating an easy to use command line tool that can be installed
from pypi, enables the wide community to use our tool as a powerful pre-screening
tool, that can identify a small gene sets to be experimentally tested, or validated
by other in-silico methods.

Furthermore, we generalized our tool that is able to identify a smallest possible
gene set that destroys the TAI pattern to a multi-objective genetic algorithm,
that is able to minimize the size of a set of any elements that optimizes a user
defined set of fitness functions. Again, we published the code to pypi to make it
easily usable.

The field of developmental and evolutionary biology is a fast evolving field
with genomic phylostratigraphy gaining more traction in the recent years. With
development of the field, novel metrics and constraints may arise for bulk and
single cell transcriptomics, that replace the very simplifying TAI metric. Such
innovations can be easily integrated in GATAI by simply changing the fitness
function, or adding additional ones.

Having a general subset minimizer at hand, we can explore the possibility of
applying it to other multi-stage pattern problems, where the value for every stage
of the pattern is computed as a summary metric over values of a set of elements.

58

Bibliography
1. Domazet-Lošo, Tomislav; Tautz, Diethard. A phylogenetically based

transcriptome age index mirrors ontogenetic divergence patterns. Nature.
2010, vol. 468, no. 7325, pp. 815–818.

2. Levin, Michal; Anavy, Leon; Cole, Alison G; Winter, Eitan; Mostov,
Natalia; Khair, Sally; Senderovich, Naftalie; Kovalev, Ekaterina; Sil-
ver, David H; Feder, Martin, et al. The mid-developmental transition
and the evolution of animal body plans. Nature. 2016, vol. 531, no. 7596,
pp. 637–641.

3. Quint, Marcel; Drost, Hajk-Georg; Gabel, Alexander; Ullrich, Kristian
Karsten; Bönn, Markus; Grosse, Ivo. A transcriptomic hourglass in plant
embryogenesis. Nature. 2012, vol. 490, no. 7418, pp. 98–101.

4. Gabel, Alexander. Development of a simulated annealing algorithm for
uncovering the phylotranscriptomic hourglass pattern. 2013.

5. Mattick, John S; Makunin, Igor V. Non-coding RNA. Human molecular
genetics. 2006, vol. 15, no. suppl_1, R17–R29.

6. Simon, Stacey A; Zhai, Jixian; Nandety, Raja Sekhar; McCormick,
Kevin P; Zeng, Jia; Mejia, Diego; Meyers, Blake C. Short-read sequencing
technologies for transcriptional analyses. Annual Review of Plant Biology.
2009, vol. 60, no. 1, pp. 305–333.

7. Klepikova, Anna V; Kasianov, Artem S; Gerasimov, Evgeny S; Lo-
gacheva, Maria D; Penin, Aleksey A. A high resolution map of the Ara-
bidopsis thaliana developmental transcriptome based on RNA-seq profiling.
The Plant Journal. 2016, vol. 88, no. 6, pp. 1058–1070.

8. Tang, Fuchou; Barbacioru, Catalin; Wang, Yangzhou; Nordman, Ellen;
Lee, Clarence; Xu, Nanlan; Wang, Xiaohui; Bodeau, John; Tuch, Brian B;
Siddiqui, Asim, et al. mRNA-Seq whole-transcriptome analysis of a single
cell. Nature methods. 2009, vol. 6, no. 5, pp. 377–382.

9. Domazet-Lošo, Tomislav; Brajković, Josip; Tautz, Diethard. A phy-
lostratigraphy approach to uncover the genomic history of major adaptations
in metazoan lineages. Trends in Genetics. 2007, vol. 23, no. 11, pp. 533–539.

10. Barrera-Redondo, Josué; Lotharukpong, Jaruwatana Sodai; Drost,
Hajk-Georg; Coelho, Susana M. Uncovering gene-family founder events
during major evolutionary transitions in animals, plants and fungi using
GenEra. Genome Biology. 2023, vol. 24, no. 1, p. 54.

11. Drost, Hajk-Georg; Gabel, Alexander; Liu, Jialin; Quint, Marcel; Grosse,
Ivo. myTAI: evolutionary transcriptomics with R. Bioinformatics. 2018,
vol. 34, no. 9, pp. 1589–1590.

12. Drost, Hajk-Georg; Gabel, Alexander; Grosse, Ivo; Quint, Marcel.
Evidence for active maintenance of phylotranscriptomic hourglass patterns
in animal and plant embryogenesis. Molecular biology and evolution. 2015,
vol. 32, no. 5, pp. 1221–1231.

59

13. Witkin, Evelyn M. Ultraviolet mutagenesis and inducible DNA repair in
Escherichia coli. Bacteriological reviews. 1976, vol. 40, no. 4, pp. 869–907.

14. Haffter, Pascal; Granato, Michael; Brand, Michael; Mullins, Mary C;
Hammerschmidt, Matthias; Kane, Donald A; Odenthal, Jörg; JM van
Eeden, Fredericus; Jiang, Yun-Jin; Heisenberg, Carl-Philipp, et al. The
identification of genes with unique and essential functions in the development
of the zebrafish, Danio rerio. Development. 1996, vol. 123, no. 1, pp. 1–36.

15. Capecchi, Mario R. Altering the genome by homologous recombination.
Science. 1989, vol. 244, no. 4910, pp. 1288–1292.

16. Strumpf, Dan; Mao, Chai-An; Yamanaka, Yojiro; Ralston, Amy;
Chawengsaksophak, Kallayanee; Beck, Felix; Rossant, Janet. Cdx2 is
required for correct cell fate specification and differentiation of trophectoderm
in the mouse blastocyst. 2005.

17. Nasevicius, Aidas; Ekker, Stephen C. Effective targeted gene ‘knock-
down’in zebrafish. Nature genetics. 2000, vol. 26, no. 2, pp. 216–220.

18. Ran, FAFA; Hsu, Patrick D; Wright, Jason; Agarwala, Vineeta; Scott,
David A; Zhang, Feng. Genome engineering using the CRISPR-Cas9 system.
Nature protocols. 2013, vol. 8, no. 11, pp. 2281–2308.

19. Joung, Julia; Konermann, Silvana; Gootenberg, Jonathan S; Abu-
dayyeh, Omar O; Platt, Randall J; Brigham, Mark D; Sanjana, Neville
E; Zhang, Feng. Genome-scale CRISPR-Cas9 knockout and transcriptional
activation screening. Nature protocols. 2017, vol. 12, no. 4, pp. 828–863.

20. Liu, Pentao; Jenkins, Nancy A; Copeland, Neal G. A highly efficient
recombineering-based method for generating conditional knockout mutations.
Genome research. 2003, vol. 13, no. 3, pp. 476–484.

21. Mu, Jinye; Tan, Helin; Hong, Sulei; Liang, Yan; Zuo, Jianru. Arabidopsis
transcription factor genes NF-YA1, 5, 6, and 9 play redundant roles in male
gametogenesis, embryogenesis, and seed development. Molecular plant. 2013,
vol. 6, no. 1, pp. 188–201.

22. Mackay, Trudy FC; Anholt, Robert RH. Pleiotropy, epistasis and the
genetic architecture of quantitative traits. Nature Reviews Genetics. 2024,
pp. 1–19.

23. Perez-Garcia, Vicente; Fineberg, Elena; Wilson, Robert; Murray,
Alexander; Mazzeo, Cecilia Icoresi; Tudor, Catherine; Sienerth, Arnold;
White, Jacqueline K; Tuck, Elizabeth; Ryder, Edward J, et al. Placenta-
tion defects are highly prevalent in embryonic lethal mouse mutants. Nature.
2018, vol. 555, no. 7697, pp. 463–468.

24. Serin, Elise AR; Nijveen, Harm; Hilhorst, Henk WM; Ligterink, Wilco.
Learning from co-expression networks: possibilities and challenges. Frontiers
in plant science. 2016, vol. 7, p. 185898.

25. Bonett, Douglas G; Wright, Thomas A. Sample size requirements for
estimating Pearson, Kendall and Spearman correlations. Psychometrika.
2000, vol. 65, pp. 23–28.

60

26. Kriventseva, Evgenia V; Kuznetsov, Dmitry; Tegenfeldt, Fredrik;
Manni, Mosè; Dias, Renata; Simão, Felipe A; Zdobnov, Evgeny M. Or-
thoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial
and viral genomes for evolutionary and functional annotations of orthologs.
Nucleic acids research. 2019, vol. 47, no. D1, pp. D807–D811.

27. Kirkpatrick, Scott; Gelatt Jr, C Daniel; Vecchi, Mario P. Optimization
by simulated annealing. science. 1983, vol. 220, no. 4598, pp. 671–680.

28. Scarselli, Franco; Gori, Marco; Tsoi, Ah Chung; Hagenbuchner,
Markus; Monfardini, Gabriele. The graph neural network model. IEEE
transactions on neural networks. 2008, vol. 20, no. 1, pp. 61–80.

29. Holland, John H. Genetic algorithms. Scientific american. 1992, vol. 267,
no. 1, pp. 66–73.

30. Back, Thomas. Evolutionary algorithms in theory and practice: evolution
strategies, evolutionary programming, genetic algorithms. Oxford university
press, 1996.

31. Deb, Kalyanmoy; Pratap, Amrit; Agarwal, Sameer; Meyarivan, TAMT.
A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transac-
tions on evolutionary computation. 2002, vol. 6, no. 2, pp. 182–197.

32. Deb, Kalyanmoy; Jain, Himanshu. An evolutionary many-objective opti-
mization algorithm using reference-point-based nondominated sorting ap-
proach, part I: solving problems with box constraints. IEEE transactions on
evolutionary computation. 2013, vol. 18, no. 4, pp. 577–601.

33. Zitzler, Eckart; Laumanns, Marco; Thiele, Lothar. SPEA2: Improving
the strength Pareto evolutionary algorithm. TIK report. 2001, vol. 103.

34. De Rainville, François-Michel; Fortin, Félix-Antoine; Gardner, Marc-
André; Parizeau, Marc; Gagné, Christian. Deap: A python framework
for evolutionary algorithms. In: Proceedings of the 14th annual conference
companion on Genetic and evolutionary computation. 2012, pp. 85–92.

35. Gad, Ahmed Fawzy. Pygad: An intuitive genetic algorithm python library.
Multimedia Tools and Applications. 2023, pp. 1–14.

36. Blank, Julian; Deb, Kalyanmoy. Pymoo: Multi-objective optimization in
python. Ieee access. 2020, vol. 8, pp. 89497–89509.

37. Lehman, Joel; Stanley, Kenneth O. Abandoning objectives: Evolution
through the search for novelty alone. Evolutionary computation. 2011, vol. 19,
no. 2, pp. 189–223.

38. Mahfoud, Samir W. Niching methods for genetic algorithms. University of
Illinois at Urbana-Champaign, 1995.

39. Virtanen, Pauli; Gommers, Ralf; Oliphant, Travis E; Haberland, Matt;
Reddy, Tyler; Cournapeau, David; Burovski, Evgeni; Peterson, Pearu;
Weckesser, Warren; Bright, Jonathan, et al. SciPy 1.0: fundamental
algorithms for scientific computing in Python. Nature methods. 2020, vol. 17,
no. 3, pp. 261–272.

61

40. Xiang, Daoquan; Venglat, Prakash; Tibiche, Chabane; Yang, Hui;
Risseeuw, Eddy; Cao, Yongguo; Babic, Vivijan; Cloutier, Mathieu;
Keller, Wilf; Wang, Edwin, et al. Genome-wide analysis reveals gene
expression and metabolic network dynamics during embryo development in
Arabidopsis. Plant Physiology. 2011, vol. 156, no. 1, pp. 346–356.

41. Gao, Peng; Quilichini, Teagen D; Yang, Hui; Li, Qiang; Nilsen, Kirby
T; Qin, Li; Babic, Vivijan; Liu, Li; Cram, Dustin; Pasha, Asher, et al.
Evolutionary divergence in embryo and seed coat development of U’s Triangle
Brassica species illustrated by a spatiotemporal transcriptome atlas. New
Phytologist. 2022, vol. 233, no. 1, pp. 30–51.

42. Cheng, Xuanjin; Hui, Jerome Ho Lam; Lee, Yung Yung; Wan Law, Patrick
Tik; Kwan, Hoi Shan. A “developmental hourglass” in fungi. Molecular
biology and evolution. 2015, vol. 32, no. 6, pp. 1556–1566.

43. Mi, Huaiyu; Poudel, Sagar; Muruganujan, Anushya; Casagrande,
John T; Thomas, Paul D. PANTHER version 10: expanded protein families
and functions, and analysis tools. Nucleic acids research. 2016, vol. 44, no.
D1, pp. D336–D342.

44. Kolberg, Liis; Raudvere, Uku; Kuzmin, Ivan; Adler, Priit; Vilo,
Jaak; Peterson, Hedi. g: Profiler—interoperable web service for functional
enrichment analysis and gene identifier mapping (2023 update). Nucleic acids
research. 2023, vol. 51, no. W1, W207–W212.

45. Cantalapiedra, Carlos P; Hernández-Plaza, Ana; Letunic, Ivica;
Bork, Peer; Huerta-Cepas, Jaime. eggNOG-mapper v2: functional anno-
tation, orthology assignments, and domain prediction at the metagenomic
scale. Molecular biology and evolution. 2021, vol. 38, no. 12, pp. 5825–5829.

46. Crécy-Lagard, Valérie de; Amorin de Hegedus, Rocio; Arighi, Cecilia;
Babor, Jill; Bateman, Alex; Blaby, Ian; Blaby-Haas, Crysten; Bridge,
Alan J; Burley, Stephen K; Cleveland, Stacey, et al. A roadmap for the
functional annotation of protein families: a community perspective. Oxford
University Press UK, 2022.

47. Buchfink, Benjamin; Reuter, Klaus; Drost, Hajk-Georg. Sensitive pro-
tein alignments at tree-of-life scale using DIAMOND. Nature methods. 2021,
vol. 18, no. 4, pp. 366–368.

48. Emms, David M; Kelly, Steven. OrthoFinder: phylogenetic orthology in-
ference for comparative genomics. Genome biology. 2019, vol. 20, pp. 1–
14.

49. Davidson, Eric H. The regulatory genome: gene regulatory networks in
development and evolution. Elsevier, 2010.

50. Lee, Travis A; Nobori, Tatsuya; Illouz-Eliaz, Natanella; Xu, Jiaying;
Jow, Bruce; Nery, Joseph R; Ecker, Joseph R. A single-nucleus atlas of
seed-to-seed development in Arabidopsis. bioRxiv. 2023, pp. 2023–03.

62

List of Figures

1.1 Central dogma of molecular biology. DNA gets transcribed to RNA
which is translated to proteins. 9

1.2 Single cell vs. bulk sequencing. Source: missionbio.com 10
1.3 Gene age assignment. For each gene, homologs are searched for

on every node of the phylogenetic tree. The resulting age is the
minimal node value, where homology was detected, if homologs are
detected on most of the nodes with higher value. Source: [10] . . 11

1.4 Transcriptome age index over the whole life cycle of Danio Rerio.
Younger genes are more expressed in the early and late stages
puling the TAI up, older genes are more expressed in the middle
stages, lowering the TAI. Source: [1] 12

1.5 Histogram of variances of TAI patterns obtained by permuting
the gene ages and recomputing TAI for every developmental stage.
Gamma distribution is estimated from the sampled variances and
p-value of the variance of the original TAI pattern (red) computed. 13

6.1 Pareto front of non-dominated solutions (red dots), where both of
the objectives are maximized. All of these points have higher value
in an objective than all other solutions 25

8.1 Python code for calculating the distance based on the solution and
expression data. 31

8.2 Python code for calculating the distance based on the solution and
expression data. 33

8.3 Reference points used by the NSGA3 selection algorithm. More
points are centered around the high importance value for the p-value. 34

8.4 Python function to compute distance based on expression data and
solution. 37

9.1 . 41
9.2 TAI pattern before and after removing the identified genes along-

side their respective p-values for representative datasets. Plots
generated by myTAI function PlotSignatures 42

9.3 Distribution of variances of the TAI pattern after permuting the
gene ages for the original dataset (light blue) and for the dataset
after removing the identified genes (dark blue). The variance of
the TAI pattern after removing the identified genes (blue dashed
line) is very insignificant for the light blue distribution, but less
insignificant for the dark blue, thus having a lower p-value after
recomputing the sampled variances. 43

9.4 TAI pattern of the Arabidopsis Thaliana (a) original dataset, (b)
the dataset after removing the genes identified by GATAI, (c) the
dataset after removing n of most variant genes, where n is the
number of genes identified by GATAI, (d) the dataset after removing
n random genes, where the probability of a gene to be selected is
proportional to its variance. 44

63

https://missionbio.com/capabilities/why-single-cell/

9.5 TAI pattern of the Bacillus Subtilis(a) original dataset ,(b) the
dataset after removing the genes identified by GATAI, (c) the dataset
after removing n of most variant genes, where n is the number of
genes identified by GATAI, (d) the dataset after removing n random
genes, where the probability of a gene to be selected is proportional
to its variance. 45

9.6 Genes of A. Thaliana and B. Subtilis sorted by variance. Genes
identified by GATAI marked in blue. Zoom-in on the range of the
plot, where the identified genes are present. 46

9.7 Euler diagrams of the overlapp of the gene sets identified by different
runs of GATAI with identical parameters, for A. Thaliana (right)
and B. Subtilis (left). The diameter of the circles is proportional
to the size if the overlap. 47

9.8 GO categories enriched in the identified gene set for Drosophila
Melanogaster. Most of the categories (except for the second one)
are development related. 50

9.9 Distributions of gene ages (phylostrata) of the identified gene sets
for dataset across the kingdoms. 51

9.10 (a,b):Expression patterns for the gene sets identified by GATAI for
A. Thaliana (a) and B. Rapa (b). Genes with phylostratum at
most 3 colored pink, genes with higher phylostratum colored blue.
(c,d): TAI pattern for A. Thaliana (c) and B. Rapa (d). 52

9.11 Histogram of the phylostrata distribution for A. Thaliana and D.
Melanogaster with different transformations (logarithm and sqare
root). 54

9.12 Euler plots capturing the overlap of the gene sets for (a) different
number of permutations and (b) different runs of GATAI with the
same parameters . 56

64

List of Tables

9.1 Summary of datasets, methods and sources 38
9.2 GATAI statistics for all available datasets capturing the p-value of

the original TAI pattern, the p-value after removing the identified
genes, time spend on the optimization (excluding the time needed
to compute the permutations) and on generating the variances by
permuting the gene ages. Number of genes in the final identified
gene set, minimum number of genes identified between all good
solutions from population and number of generations. 40

9.3 p-value, number of identified genes and the optimization time for
different number of permutation (sampled variances). 46

9.4 Table of the number of generations and the optimization time
(excluding the time needed to compute the permutations) for A.
Thaliana and D. Melanogaster for different combinations of mating
operators, where opt. means the optimized version of the original
DEAP operator. Half weighted mutation means half of the islands
are mutated by the weighted mutation and half by the optimized
version of bit-flip mutation. The operators combination that GATAI
uses are marked in bold. 48

9.5 Table of the number of genes, number of generations and the
optimization time (excluding the time needed to compute the
permutations) for A. Thaliana and D. Melanogaster under different
transformations. 53

9.6 Comparison of the time of the optimization (excluding the time
needed to compute the permutations), permutation time, number
of generations, time per generation and the identified number of
genes between the single-cell datasets. 55

9.7 Permutation time, optimization time (excluding the time needed
to compute the permutations), number of generations, number of
identified genes and the empirical p-value for the different number
of permutations, meaning different number of sampled variances. . 56

9.8 Comparison of the runtime between the standard GATAI algorithm
and the single-cell optimized version (ScGATAI). 57

65

List of Abbreviations
TAI Transcriptome Age Index

GNN Graph Neural Network

MOO Multi-Objective Optimization

EA Evolutionary algorithm

GA Genetic algorithm

MOEA Multi Objective Evolutionary Algorithm

SPEA Strength Pareto Evolutionary Algorithm

NSGA Non-dominated Sorting Generic Algorithm

TPM Transcripts Per Million

RPM Reads Per Kilobase

CNF Conjunctive Normal Form

SAT Satisfiability problem

GO Gene Onthology

66

A Attachments
A.1 Identified genes:
Arabidopsis Thaliana:

AT1G31330 AT2G18340 AT4G36600 AT1G16730 AT4G30880
AT5G17460 AT5G42060 AT5G48350 AT5G52300 AT1G32560
AT1G44608 AT2G35300 AT2G42000 AT1G07985 AT4G20880
AT2G42560 AT1G12845 AT3G15280 AT5G65207 AT1G17510
AT1G56415 AT1G71470 AT2G20465 AT2G30560 AT2G43530
AT3G06090 AT3G17520 AT3G24510 AT3G50970 AT5G05060
AT5G23830 AT5G42235 AT5G54220 AT5G64900 AT2G41280
AT3G50980 AT4G30450 AT5G53880 AT1G03106 AT1G07500
AT1G16025 AT1G62240 AT2G04063 AT2G46390 AT3G47836

Drosophila melanogaster:

FBgn0000216 FBgn0001174 FBgn0003060 FBgn0003683
FBgn0028537 FBgn0028544 FBgn0028855 FBgn0030186
FBgn0030390 FBgn0030539 FBgn0032282 FBgn0032538
FBgn0032987 FBgn0033721 FBgn0033855 FBgn0033942
FBgn0034201 FBgn0034204 FBgn0034802 FBgn0034819
FBgn0034828 FBgn0035544 FBgn0035547 FBgn0035548
FBgn0035582 FBgn0035858 FBgn0036600 FBgn0036605
FBgn0036606 FBgn0036607 FBgn0036717 FBgn0037178
FBgn0037180 FBgn0037181 FBgn0037261 FBgn0037430
FBgn0038009 FBgn0039434 FBgn0039436 FBgn0039437
FBgn0039441 FBgn0039444 FBgn0039678 FBgn0040393
FBgn0040813 FBgn0040842 FBgn0050457 FBgn0050458
FBgn0051626 FBgn0051813 FBgn0052570 FBgn0052694
FBgn0260011 FBgn0260954

Bacillus Subtilis:
B4U62_01305 B4U62_02190 B4U62_02515 B4U62_04730
B4U62_04815 B4U62_05270 B4U62_05700 B4U62_06495
B4U62_06500 B4U62_06505 B4U62_06510 B4U62_06515
B4U62_06705 B4U62_07460 B4U62_07465 B4U62_09805
B4U62_09810 B4U62_10795 B4U62_11205 B4U62_11960
B4U62_12045 B4U62_13550 B4U62_14830 B4U62_15020
B4U62_15925 B4U62_16370 B4U62_16500 B4U62_18235
B4U62_19435 B4U62_21585 B4U62_22340

67

Brassica Rapa:

BraA01g004810 BraA01g004820 BraA01g004830 BraA01g004840
BraA01g009090 BraA01g017840 BraA01g017860 BraA01g017870
BraA01g017900 BraA01g020050 BraA01g029230 BraA01g030130
BraA01g042550 BraA02g010420 BraA02g014350 BraA02g014460
BraA03g001080 BraA03g004440 BraA03g008390 BraA03g010670
BraA03g018260 BraA03g022130 BraA03g022820 BraA03g022990
BraA03g030630 BraA03g041720 BraA03g046490 BraA04g010970
BraA04g011050 BraA04g021770 BraA04g024630 BraA04g029560
BraA04g030230 BraA04g030260 BraA05g002560 BraA05g010190
BraA05g017760 BraA05g040240 BraA06g001200 BraA06g001990
BraA06g014120 BraA06g039140 BraA06g039150 BraA06g040810
BraA07g018290 BraA07g023010 BraA07g037640 BraA08g003880
BraA08g013400 BraA08g023470 BraA08g031770 BraA09g005520
BraA09g006970 BraA09g007610 BraA09g015830 BraA09g027140
BraA09g035160 BraA09g048290 BraA10g014430 BraA10g014760
BraA10g026450 BraA10g032510

Caenorhabditis Elegans:

C01G6.1 C01G6.3 C02B10.4 C02E7.6 C02E7.7
C35E7.5 C50F4.6 EEED8.3 F14H12.1 F23A7.4
F23A7.8 F41F3.3 F52E1.1 F53F1.4 F53F1.5
F56G4.2 F56G4.3 K03B4.7 R12E2.7 T05E7.5
Y39G10AR.10 Y47D3B.6 Y47D7A.13 ZK180.5

68

	Introduction
	Evo-Devo transcriptomics
	Transcription
	Transcriptomics
	Bulk and single-cell transcriptomics

	Genomic Phylostratigraphy
	Transcriptome age index
	Significance of the TAI pattern

	Identification of development-driving genes
	In-vivo methods
	Genetic screens
	Knockout, knockdown or overexpression
	Problems of standard approaches

	In-silico methods
	Transcriptome analysis
	Cross-Species Comparison

	Data
	Input data
	Collapsing replicates
	Signal prefiltering
	Data transformations

	Problem setting
	Assumptions
	Optimization criteria
	Optimization Objective 1: Pattern significance
	Optimization Objective 2: Number of identified genes

	Optimization limitations
	Additional criteria

	Optimization strategies
	Linear or constraint programming
	Simulated annealing
	Graph neural networks
	Evolutionary algorithms

	Evolutionary algorithms
	Simple genetic algorithm
	Multi-objective optimization

	GA for subset minimization
	GA architecture
	Libraries used
	Initialization
	Island model
	Mating
	Logging
	One generation
	Solution aggregation
	Usage

	GA for transcriptomics
	Fitness evaluation
	Mating
	Integration with SetGA
	Final solution
	Postprocessing
	Usage
	Single cell
	Sparse encoding

	Results
	Datasets
	GATAI statistics
	p-value
	GATAI importance
	Number of permutations needed
	Stability of solutions
	Influence of different genetic operators

	Biological results
	Function of the identified genes
	Homology
	Gene age and expression
	Dataset transformation

	Single cell datasets

	Conclusions
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Attachments
	Identified genes:

