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Introduction

Natural Language Processing (NLP) is an interdisciplinary field that merges lin-
guistics and mathematics, where the quantitative aspects are delivered through
algorithmic thinking and computation, which enables machines to understand,
interpret, and generate human language. The usage of NLP-inspired methods
for the manipulation of data has proven pivotal in recent years, with meth-
ods grounded in linguistic theories gaining prominence. For instance, research
into cross-lingual transfer across languages considers language similarity as a key
feature for effective transfer, even demonstrated by Wu et al. [2019] that for
multilingual-BERT [Devlin et al., 2018] and other multi-lingual models, transfer
performance drops as the language pairs become linguistically distant.

NLP uses statistical, rule-based, and machine learning methods to deal with
data. Since data is only as useful as the methods used to extract relevant infor-
mation from it, without effective analytical and processing techniques, even large
data sets can fail to provide meaningful insights. Towards this end, an important
sub-field of the NLP space was formulated, which is, Information Extraction (IE).
Succinctly defined by Wang et al. [2021], IE is the task of extracting structured
information from unstructured sources. Effectively, this composes the information
into a format that is ideal for querying, analyzing, and organizing data. Infor-
mation in this structured format can then be used for tasks such as knowledge
graph construction [Muhammad et al., 2020], knowledge base population [Angeli
et al., 2015], etc.

The process of extracting relevant information from data is nuanced and not
as straightforward as it may initially seem. Not all data is the same; hence,
it cannot be treated uniformly. An intuitive way to present, store, and extract
information from a piece of textual data can be to convert it into a set of n-ary
tuples, such that each tuple (in the case of a ternary tuple) could be a separate
subject-predicate-object combination.

Given two text entities in a sentence (which is part of a larger corpus), defining
a set of relations/predicates that would fit each entity pair in the corpus seems like
an impossible and imprudent task. Hence, there is a need for Open Information
Extraction (OpenIE). As defined by Liu et al. [2022],

Open Information Extraction targets extracting structured information
from unstructured text without limitations on the relation type or the
domain of the text.

The first known mention of OpenIE was by Yates et al. [2007]. The researchers
mention a couple of key features that set OIE apart from other information
extraction paradigms, which are scalability, efficiency, and the fact that it
is a relatively domain-agnostic automated way of extracting relations and its
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entities. Over the last decade, significant advancements have been made in this
area.

Large Language Models (LLMs) have demonstrated an innate understanding
of language by capturing complex linguistic patterns and structures through ex-
tensive training on diverse, multilingual data. For example, Hewitt and Manning
[2019] show that entire syntax trees are embedded in a language model’s word
representation space. LLMs have also proven their ability in various downstream
tasks, most importantly, OpenIE, for this thesis.

Wang et al. [2021] describe DeepEx, an LLM-based method, as a translation
framework, translating text to triples for three tasks, which are: OpenIE, relation
classification, and factual probe. The system is divided into two steps: generation
of the triples and ranking of the triples to extract top-k triples for evaluation.
DeepEx professes state-of-the-art performance across datasets and tasks using its
unique method of utilising the attention mechanism to choose relation phrases
that are relevant for any two entities in the sentence. The analysis by Wang et al.
[2021] suggests that it is possible to transfer the inherent knowledge learned by a
pre-trained LM to downstream tasks. Wang et al. [2021] have graciously provided
the code required to reproduce their results here 1. The codebase makes it easy to
extract the triples after the generation step and substitute the contrastive model
used by DeepEx for ranking with other mechanisms.

Given a sentence, it is natural for humans to intuitively extract triples from
it that strictly fit the subject-predicate-object pattern. For example, in the
following sentence:

Mary had a little lamb and a goldfish

Two subject-predicate-object triples can be retrieved. The first is Mary -
had a - little lamb and the second is Mary - had a - goldfish. Upon joining
the tuple, due to the SVO word-order property of the English language [Tomlin,
1986], two coherent and grammatically correct/linguistically acceptable sentences
are formed. Hence, a question arises:

To what extent does the syntactic accuracy and coherence of the sen-
tence (formulated by joining the subject-predicate-object triple)
correlate with the ranking of the retrieved triple (for the OpenIE task)
and further the F1 score of the OpenIE system?

“Linguistic acceptability” was a phrase first introduced by Noam Chomsky
to “...use the term acceptable to refer to utterances that are perfectly natural
and immediately comprehensible without paper-and-pencil analysis, and in no way
bizarre or outlandish,” [Chomsky, 1965]. Since the 1960s, it has been a heavily
researched topic, with a lot of the discussion bleeding into the areas of compu-
tational linguistics. The broader discussion around linguistic acceptability and
the relationship between the acceptability of a sentence and its probability of
occurrence (according to a Language Model (LM)) has been discussed in detail
in Section 1.2.

Merging the areas of OpenIE and linguistic acceptability is the highlight of
this document, which also covers the “syntactic” part of this thesis. In short,

1https://github.com/wang-research-lab/deepex/
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triples for OpenIE will be obtained and then ranked according to their linguistic
acceptability. The “semantic” part is covered by the use of SRL (Semantic Role
Labelling) approach.

To summarize, the main contributions of this thesis consist of testing a hy-
pothesis regarding the relation between the acceptability of a joined triple and
its effect on the F1 score of the OpenIE task. Since LMs technically do “model
languages” as spoken and written by humans, attempting to use LMs to extract
entities and their corresponding relations in a way a human would is one of the
primary aims of this thesis. Additionally, since linguistic acceptability covers a
syntactic approach, a semantic approach using two entities and their connecting
roles/relations for the task of OpenIE is another element of this thesis.

A number of prominent evaluation benchmarks, each from a different do-
main/evaluation method, are used. The proposed method performs as well as
most other approaches for most of the evaluation datasets, surpassing DeepEx
by a small margin for the OIE2016 dataset [Stanovsky and Dagan, 2016]. The
performance on other datasets, such as PENN [Xu et al., 2013], is impressive.
Compared to the ranking methodology used by DeepEx, the proposed method
uses a dataset that is a fraction of the size of the dataset used to train the DeepEx
ranker.

Dedicated to the open-source cause, this thesis is also focused on contributing
to the DeepEx code-base, one of the contributions being the addition of evaluation
using the CaRB [Bhardwaj et al., 2019] dataset. The pull request 2 is currently
under review. The code for the approaches tried in this thesis is available here. 3

2https://github.com/wang-research-lab/deepex/pull/20
3https://github.com/amrtanair/master_thesis
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Chapter 1

Background

This chapter identifies the relevant literature and describes the concepts that are
used in this document. The key ideas and debates in the fields of OpenIE and
linguistic acceptability are presented to support the arguments made throughout
the rest of the thesis.

This literature survey focuses on a number of topics, starting with a section
on Large Language Models (LLMs). The salient features of LLMs are de-
scribed, especially the ones that are relevant to the content of this thesis. This is
followed by a brief background on the main topic of this thesis, which is Open
Information Extraction (OpenIE). Furthermore, and most importantly, pre-
vious work on the central topic of this thesis, that is, systems that use LLMs
for OpenIE are described.

The concept that is most referred to in this thesis, that is, apart from strictly
computational Natural Language Processing (NLP) concepts, is linguistic ac-
ceptability. Section 1.2 elaborates on the meaning of the concept. Additionally,
arguments directly relevant to the topic of this thesis are discussed, and the po-
sition taken by this thesis is stated and defended.

Section 1.3 details the concept of Word Order and its relevance to the core
idea of the hypothesis that is central to this thesis.

Tying together these areas, the hypothesis of the thesis is stated in Sections
2.2 and 2.3. Further chapters are devoted to testing the hypothesis and analysing
the results.

1.1 A short insight on Large Language Models
Shanahan [2024] simply define Large Language Models (LLMs) as “...generative
mathematical models of the statistical distribution of tokens in the vast public
corpus of human-generated text, where the tokens in question include words, parts
of words, or individual characters—including punctuation marks.”

LLMs have revolutionized the field of NLP by changing how machines un-
derstand and generate language. As is apparent in the name, these models are
characterised by their large size [Zhao et al., 2023] and sophisticated architec-
ture. LLMs are adept at utilizing deep learning architectures like Transformers
(described in Section 1.1.2), which makes them capable of understanding the sta-
tistical properties of language, capturing nuances and complexities. This also
makes them excel in dealing with various tasks like summarization [Jin et al.,
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2024], question answering [Yang et al., 2020], text generation [Topal et al., 2021],
and text classification [Tezgider et al., 2022].

BERT [Devlin et al., 2018], GPT-2 [Radford et al., 2019], and T5 [Roberts
et al., 2019] are LLMs that have been incredibly popular for their versatility in
a variety of tasks. Each LLM is trained in a distinct manner, with a distinct
combination of datasets. One of the best ways to leverage the power of LLMs
is through fine-tuning. Radford et al. [2018] presented the concept of first pre-
training a model on large amounts of general language data and the fine-tuning
for specific tasks on their specific datasets. For example, text classification is
a significant task in NLP and is also the task that is performed extensively in
this thesis. Fields et al. [2024] mention numerous methods, datasets, and models
to accomplish this task in various flavours, ranging from sentiment analysis and
question answering to syntactic parsing.

Understanding the architecture of most LLMs requires two essential concepts:
Transformers and the attention mechanism. The attention mechanism is
described in Section 1.1.1, while the Transformer architecture is presented in
1.1.2.

1.1.1 Attention Mechanism
This concept, introduced by Bahdanau et al. [2014], is essential to popular neural
network architectures and, more importantly, to the Transformer architecture.
The core idea of the mechanism is that, for a particular sentence, certain other
parts of the sentence are “more” important and need to be given “attention,”
which provides context for the name. Focusing on certain phrases that have
already been generated while generating the next word enables better learning of
relationships and dependencies within the data.

The attention mechanism seeks to combat the problem of fixed-length encod-
ing performed by the encoders, which deprives the decoder of the opportunity
to generate a sufficiently accurate result. The mechanism proposed allows the
decoder to “look” at certain parts of the sentence that are relevant to predicting
the target word. The authors Bahdanau et al. [2014] note that the parts of the
sentences that the decoder attends to agree with their intuition.

The attention mechanism used by the transformer architecture has certain
differences compared to the one introduced by Bahdanau et al. [2014]. The trans-
former uses a scaled dot-product attention mechanism, which calculates attention
scores by calculating a weighted sum of values V , where the weights are deter-
mined by the similarity between queries Q and keys K. The formula for the
attention mechanism is as follows:

Attention(Q, K, V ) = softmax
(︄

QKT

√
dk

)︄
V

Here, Q, K and V represent the query, key, and value matrices respectively.
The process of calculating the attention matrix involves the following steps.

The input sequence is transformed into query, key, and value vectors using linear
transformations. The similarity between the query and key vectors is then com-
puted through dot products. To stabilize training, the dot products are scaled
by dividing them by the square root of the key vector dimension. The scaled dot

7



products are passed through a softmax function, producing attention weights.
These weights determine the contribution of each value vector to the final out-
put. The attention matrix is formed by the pairwise attention weights between
the query and key vectors.

Next, the attention weights are applied to the value vectors using element-wise
multiplication, and the results are summed. This step generates a context vector
that captures relevant information based on the attention weights. The context
vector is then utilized in subsequent layers for further processing or serves as the
output for the task at hand1.

By calculating the attention matrix, the Transformers architecture is able to
capture dependencies and focus on significant segments of the input sequence.

The attention matrix is a key component of this thesis, as will be described
in future chapters, especially the description of the DeepEx system [Wang et al.,
2021] in Section 2.1.

1.1.2 Transformers
The Transformer architecture, introduced by Vaswani et al. [2017], is an integral
part of most LLMs. It is quite efficient in processing sequential data in parallel
through the attention mechanism.

This architecture is used chiefly for sequence-to-sequence tasks (shorthand:
seq2seq). A short description of how an input sequence generates output is pre-
sented below:
Encoder phase: An encoder processes input sequences to transform its con-
textual and semantic information into a high-dimensional representation, that
is, each word in an input sequence is converted into a high-dimensional embed-
ding vector. The embedding vector for each input word is modified by adding
it (element-wise) to a positional encoding vector of the same length, which in-
troduces positional information. The vectors are passed to the encoder, which
includes two sub-layers. The first sub-layer includes the self-attention mecha-
nism. The second layer is a fully connected feed-forward neural network. The
bidirectional nature of the encoder allows it to consider all words in the input
sequence, regardless of their position relative to the word in focus.

Decoder phase: A decoder generates output sequences from encoded input
representations, that is, it takes its own predicted output at the previous time
step as input. Similar to the encoder, the decoder’s input is modified with posi-
tional encoding. The augmented decoder input undergoes three sub-layers in the
decoder block, with masking in the first sub-layer to prevent attention to sub-
sequent words. In the second sub-layer, the decoder incorporates the encoder’s
output, enabling it to attend to all words in the input sequence. Next is a fully
connected layer, after which a softmax layer [Bridle, 1989] is used to generate
predictions for the next word in the output sequence.

The LLM used most prominently in this thesis is BERT (Bidirectional Encoder
Representations from Transformers) [Devlin et al., 2018], explained in Section
1.1.3. BERT utilizes only the encoder, focusing on capturing the contextual
relationships between words in a sentence through bidirectional attention, while
the decoder is omitted.

1https://machinelearningmastery.com/the-attention-mechanism-from-scratch/
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1.1.3 BERT
BERT is a Pre-Trained Language Model (PLM) developed by Google in 2018 [De-
vlin et al., 2018]. As described by the authors, BERT is “...designed to pre-train
deep bidirectional representations from the unlabeled text by joint conditioning on
both left and right context in all layers”. The most important feature of BERT
is in its bi-directionality. This bi-directionality contrasts with earlier models
that processed text in one direction, hence providing BERT with a more compre-
hensive understanding of language nuances and dependencies.

BERT is a Masked Language Model (MLM), specifically, it masks certain
words in sentences and tasks the system with predicting those masked words
based on their context within the sentence. It is pre-trained on a large amount
of unlabelled data (English Wikipedia and Book Corpus [Zhu et al., 2015]).

Figure 1.1: The Transformer architecture, as presented by Jia [2019]. The BERT
architecture uses only the encoder component.

The BERT model is a very essential part of this thesis. First, the DeepEx
model [Wang et al., 2021] uses it for the generation of the triples, as well as for the
contrastive ranking model. Later, this thesis substitutes the contrastive ranking
model with a linguistic acceptability model that ranks the triples on the basis
of their acceptability for the OpenIE task. Further analysis is also performed on
this model.

1.2 What is Linguistic Acceptability?
The proposed methodology in this thesis heavily depends on the concept of lin-
guistic acceptability and its relation with subject-verb-object triples. The
Linguistic Acceptability task is defined in many places as: “...the task of deter-
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mining whether a sentence is grammatical or ungrammatical.” 2. However, this
is a very computational view of the situation. A linguistic view of the situation
defines the situation of a sentence being classified as acceptable when “...human
subjects rate a sentence as acceptable” [Lau et al., 2017]. This view does not
consider the inherent “correctness” of a sentence, based on grammatical rules: it
values only the opinions of human judgments. The grammatical correctness of a
sentence is a factor in the judgment; however, it is not the only factor.

“Colourless green ideas sleep furiously” is a popular example of a
sentence that is grammatically accurate but semantically does not make sense.
This example was introduced by Noam Chomsky [1975].

The sentence is meaningless because ideas cannot sleep; neither can an idea
be colourless, nor can it be green. However, syntactically, the sentence is gram-
matically correct according to the rules of the English language; it follows a
subject-verb-adverb structure where “colorless” serves as an adjective modifying
“ideas.”

This sentence demonstrates that the rules of syntax can be separate from the
rules of semantics. Despite being grammatically correct, the sentence fails to
communicate anything meaningful, hence proving a certain level of independence
of syntax from semantics.

In this thesis, the distinction between linguistically acceptable and grammat-
ically correct is particularly important for the following two reasons.

Firstly, the core idea of this thesis is to parrot the way a human would extract
triples from a sentence. Intuitively, a human would extract triples from a sentence
in the form of a clause that is linguistically acceptable. Secondly, in later chapters,
due to the scarcity of data (for the linguistically acceptable task), over-sampling
(a technique used to address class imbalance by increasing the number of instances
of a particular class to achieve a more balanced dataset) was a method that was
considered. One of the ways of implementing this would be to add noise to the
existing linguistically acceptable samples by adding/swapping/removing words
in the sentence, similar to the methods used by Feng et al. [2020]. This would
potentially create grammatically incorrect sentences; however, their linguistic
unacceptability would not be guaranteed unless a human would judge it so.

Hence, a clear distinction between these two concepts is necessary, which is
provided in Section 1.2.1.

1.2.1 Linguistic Acceptability v/s Grammatical correct-
ness

Lau et al. [2017] provide the following definitions.

Grammatically Correct

Grammaticality refers to the faithfulness of a sentence to the syntactic rules
of a language. Grammaticality represents the theoretical construct.

2https://paperswithcode.com/task/linguistic-acceptability
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Linguistically Acceptable

Linguistic Acceptability covers factors beyond grammaticality, focusing on
semantic coherence, processing ease, and human judgment.

1.2.2 Ordinal versus binary acceptability judgments
Ordinal acceptability judgments refer to a sliding scale of acceptability where one
end of the spectrum certifies the sentence as linguistically unacceptable, while
the other declares the sentence as linguistically acceptable based on human judg-
ments.

Binary acceptability judgments refer to a sentence falling into the acceptable
or unacceptable class with no flexibility.

This thesis deals with two linguistic acceptability datasets. One is the Corpus
of Linguistic Acceptability (CoLA) [Warstadt et al., 2019], and the other is the
MegaAcceptability dataset [An and White, 2019]. The former contains binary ac-
ceptability judgments, while the latter contains ordinal acceptability judgments.

The literature regarding ordinal versus binary judgment leans either toward
one direction or the other. The work done by Lau et al. [2017] leans towards
acceptability being better represented in an ordinal format but does not discount
the value of binary judgments. In their paper, An and White [2019] replace the
ordinal judgments with binary judgments and then perform further analysis.

This thesis uses binary acceptability judgments for both datasets. This is
because the CoLA dataset uses the same, and for parity’s sake, the MegaAccept-
ability dataset was also adapted to reflect binary acceptability judgments.

1.3 Word Order in the English Language
As the phrase implies, word order is the pattern in which the syntactical con-
stituents of a sentence generally appear in a language, as defined by Dryer [2007].
Further, the authors state that “word order refers more generally to the order of
any set of elements, either at the clause level or within phrases, such as the order
of elements within a noun phrase.”

Primarily, word order in a language concerns itself with the position of the
subject, verb, and object in a sentence. A loose definition of the terms subject,
verb, and object is provided here, paraphrased from a text that deals with word
order literature by Tomlin [1986].

Subject (S) refers to the primary syntactic relation borne by an NP (noun
phrase) with respect to the verb.

Object (O) refers to the secondary grammatical relation borne by an NP with
respect to the verb.

Verb (V) refers to the verb root, and any bound morphemes may include
tense, aspect, agreement markers, pronominal clitics, directional markers, and so
on.

The work in this thesis hinges on the premise that English is a SVO language
[Tomlin, 1986]. Applying the proposed method to languages that do not form a
strict word order or that do not follow the SVO word order might be challenging.
This is identified as a limitation of the proposed method.
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Chapter 2

Foundations of the Thesis

The previous chapter established the current research in the fields of OpenIE and
linguistic acceptability. This chapter describes the basis of the thesis, identify-
ing potential arguments for the primary conjecture of the thesis: the linguistic
acceptability of a triple may be used to rank it for the OpenIE task. A rigorous
description of the DeepEx framework (which provides the triples) is followed by a
justification as to the reasons that this conjecture could be valid. Further, testing
this conjecture involves bridging the gap between the OpenIE task and linguistic
acceptability. Finally, a refined problem statement and the contributions of the
thesis will be discussed.

2.1 About DeepEx
According to Wang et al. [2021], DeepEx utilizes a text-to-triple translation
framework for information extraction tasks. In contrast to conventional meth-
ods relying on task-specific datasets and models, DeepEx approaches the task
as a translation between task-specific input text and output triples. This design
enables task-agnostic translation by leveraging the inherent knowledge within a
pre-trained language model, enhancing adaptability and efficiency in managing
diverse information extraction tasks.

The tasks DeepEx deals with are OpenIE, relation classification, and factual
probe. It treats language models as zero-shot information extractors. Since LLMs
seem to store relational information [Petroni et al., 2020], the inspiration for this
paper was to leverage this relational knowledge. The authors utilize the power of
the self-attention mechanism for this purpose.

2.1.1 Generation of triples
The architecture of this approach is shown in Figure 2.1. Noun phrases are
extracted using Spacy [Honnibal et al., 2015–]. Each pair of noun phrases is
treated as an argument pair for which the predicate needs to be extracted. The
pairs are considered only in one direction at a time, but the algorithm is run in
both directions since some triples are often in reverse order. The predicate is
extracted using the combination of words in the sentence that give the highest
attention scores.
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Figure 2.1: Wang et al. [2022]

An example is provided in figure 2.2. The example phrase Dylan was born
in Minnesota and was awarded Nobel Prize is used where “Dylan,” “Min-
nesota” and “Nobel Prize” are the noun phrases that have been extracted by
Spacy.

Consider the sub-phrase Dylan was born in Minnesota. Here, “Dylan” and
“Minnesota” are the noun phrases whose predicate has to be extracted. The right
part of Figure 2.2 shows the attention matrix for this sub-phrase. Let “Dylan”
be ARG1 and “Minnesota” be ARG2. In the attention matrix, the word with the
highest attention score while attending to ARG1 is “born.” This word is added
to the predicate phrase, and the next step is to look at the attention scores for
the word “born.” The next word is “in,” with an attention score of 0.3. Then,
“in” is added to the predicate phrase, and the total score for this computation is
increased by 0.3. The algorithm can be followed using the table that is on the
right in Figure 2.2. The algorithm stops upon encountering ARG2, at which point
the total score is 0.7.

Computing a score for every potential sequence proves to be computation-
ally expensive, especially when dealing with long sequences. Consequently, the
exhaustive search approach becomes awkward to manage due to the size of the
sequences increasing as the sentences get longer.

To tackle this issue, the authors adopted beam search as an approximate
strategy to efficiently explore the search space. Beam search operates by main-
taining the k-best candidates, enabling more manageable computation and re-
ducing the complexity of the search process. Using beam search, the process is
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Figure 2.2: Wang et al. [2022]

dependent on the beam size and not on the size of the sequence. This concludes
the generative process.

2.1.2 Ranking of triples
In the generating stage, k candidate triples are generated for each argument pair.
In the ranking stage, the task-specific relevance of triples is determined using a
contrastive ranking model that is trained on a relational corpus that is not spe-
cific to the task at hand. However, it is crucial to note that the sequences within
these candidates pertain not only to the relational aspect but also to the argu-
ment pairs themselves. The primary objective of the ranking stage is to identify
triples that explicitly convey the relational information between the argument pair.

Method F1 AUC
DeepEx 70.9 57.4
No ranking model 39.6 13.8

Table 2.1: From Wang et al. [2021].
Ablation of DEEPEX on OIE2016
dev set.

The model is trained on batches of N
sentence-triple pairs, predicting which actu-
ally appeared among N2 possibilities.

An example for the process would be as
follows. Consider a sentence A with triples
A1, A2 and A3, each triple being of the for-
mat subject-predicate-object. Another sen-
tence B has triples B1, B2 and B3 in a sim-

ilar format. The positive sentence-triple pairs would be formed among sentence
A and its triples in the following manner:

[CLS] sentenceA [SEP] A1 [SEP]
[CLS] sentenceA [SEP] A2 [SEP]
[CLS] sentenceA [SEP] A3 [SEP]

Sentence B would also have three sentence-triple pairs. These would constitute
the positive pairings.

For the negative pairings, we would combine sentence A with the triples of
sentence B like so: [CLS] sentenceA [SEP] B1 [SEP]. Hence there would be 6
negative pairings too (for sentence A and sentence B).

The ranking system uses BERT as a base encoder, learning a shared space for
sentence and triple embeddings in the [CLS] sentence [SEP] triple [SEP]
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BERT format. The goal is to maximize similarity for correct pairs and minimize
it for incorrect ones, optimizing a cross-entropy loss.

The authors of DeepEx train the system on T-REx [Elsahar et al., 2018], a
dataset aligning Wikipedia abstracts with Wikidata triples.

The task-agnostic ranking model has a consistent input format for all tasks.
During testing, input text and candidate triples are ranked using contrastive loss,
and the top-n candidates become the output—e.g., top-2 triples for OIE.

The authors of DeepEx note that the ranker works very well, with nearly
perfect top-1 accuracy. This finding is also supported by the results in Table
2.1. The triples from the generation stage account for around 39 F1 score points,
while the addition of the ranking model significantly bumps up the score to 71
points. Hence, it can be concluded that the contrastive ranking model is crucial
to the success of DeepEx.

By substituting the contrastive ranking model with a simpler linguistic ac-
ceptability model, this thesis attempts to replicate similar results as obtained by
DeepEx using far fewer data points.

Another tentative hypothesis here is that, since the contrastive ranking model
uses a large amount of data to minimize the distance between triples that “ac-
tually appear in the sentence” in the contrastive embedding space by optimizing
a cross-entropy loss over the similarity scores, the triples that score higher are
probably going to form cohesive and grammatically correct clauses, since these
clauses “actually appear in the sentence” together. This is another hypothesis
that can be substituted for the contrastive ranking model with the linguistic ac-
ceptability model. The next section justifies the substitution in more practical
terms.

The ranking model has been published by the authors of DeepEx at the URL
1.

2.2 The conjunction of OpenIE and Linguistic
Acceptability

OpenIE and linguistic acceptability seem like two disparate fields: one deals with
extracting relevant information in an unsupervised manner. At the same time,
the other addresses the vague and broad question of the quantity (on an ordinal
scale)/class (in a binary interpretation) of linguistic acceptability a piece of text
exhibits. However, an indirect relationship can be derived between the two.

ClauseIE [Del Corro and Gemulla, 2013] is a clause-based approach to Ope-
nIE. The authors mention an example:

A. Einstein, who was born in Ulm, has won the Nobel Prize

This extraction of information, which has no predefined relations, is not just un-
supervised, domain-agnostic, and scalable but also a low semantic representation
of large amounts of natural language [Christensen et al., 2010]. The expected
results from an OIE system would be:

1https://huggingface.co/Magolor/deepex-ranking-model/
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A. Einstein, has won, the Nobel Prize
A. Einstein, was born in, Ulm

This extraction can be used to answer queries and other use cases and can
also be considered as two clauses of the sentence.

It is remarkably similar to how a human would compile information from a
given sentence, allowing these extractions to solve shallow semantic queries like
Who won the Nobel Prize?.

ClauseIE utilizes the SVO (Subject-Verb-Object) word order property of the
English language to recognise and extract clauses from sentences. Using de-
pendency parsing and a domain-independent lexicon, the system detects clauses
based on their grammatical structure, which involves identifying clauses that fol-
low the SVO word order property.

A similar approach could be followed. Consider the two NPs extracted by
Spacy to be a subject and an object and the relation between them, which is
collected based on maximum attention scores as a possible verb phrase. Joining
the triple would result in a clause [Langacker, 2015], which follows SVO word
order property and, hence, would probably be a linguistically acceptable entity.

English follows SVO ordering and exhibits little flexibility [Downing and Noo-
nan, 1995], [Tomlin, 1986]. A significant number of languages in the world follow
this word-ordering. Further descriptions of the SVO word order property are
provided in Section 1.3.

The cornerstone of this thesis is the idea that, in general, English adheres to
the SVO word order and hence simply joining the triples generated by DeepEx
should typically generate a linguistically acceptable sentence.

Now that there is a fair connection between these two fields, a question arises:
What methods would be used to assess this relationship? Chapter 3 describes the
different ways that this relationship could be explored by creating systems that
rank triples based on their acceptability. The next section defines the objectives
of this thesis and mentions the methods used to achieve them.
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2.3 Problem Statement
One of the subtle aims of this thesis is to use simple architectures, methods and
datasets to achieve the same results as larger and heavier models. The work done
in this thesis is encapsulated in this section.

Objectives

1. Investigate the relationship between the linguistic acceptability of
joined triples and the performance on the OpenIE task.

2. Evaluate the influence of augmenting the probability scores of the
joined OpenIE triples with acceptability measures. The study in-
cludes the assessment of various model types, ranging from standard
versions of large language models (LLMs) to versions that have been
fine-tuned on datasets of varying sizes. Results from these fine-tuned
models, trained with different amounts of data, will be documented
and analyzed.

3. Evaluate the performance of the proposed system on diverse bench-
marks, including NYT, OIE2016, PENN, WEB, and CaRB. Conduct
studies and analysis to determine the specific contributions of linguis-
tic acceptability measures to the overall performance in the OpenIE
task.
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Chapter 3

Linguistic Acceptability for
OpenIE

This chapter describes the approaches used, elaborating on the different concepts,
methods, and datasets used to achieve the results.

Section 3.1 introduces the various datasets used in this thesis, which includes
datasets used for training and testing the fine-tuned linguistic acceptability model
as well as datasets used for the evaluation of the OpenIE task. This section also
includes a deep dive into the different datasets used, with a detailed analysis of
their contents.

Section 3.2 lays out the connection between the probability of a sentence and
its acceptability, also mentioning the changes needed to adapt the probability of
a sentence to reflect estimate acceptability judgments.

Section 3.3 describes the experiments conducted in detail, with the deviation
in standard approaches and the reasoning behind implementation decisions. The
section also details the overall strategy of the system, describing the process from
start to end.

3.1 About the datasets
Two datasets are used for fine-tuning the models for acceptability, the Cor-
pus of Linguistic Acceptability (henceforth referred to as the CoLA dataset)
[Warstadt et al., 2019] and the MegaAcceptability dataset [An and White,
2019]. Furthermore, five datasets will be used for evaluating the resulting OpenIE
system, which are: OIE2016 [Stanovsky and Dagan, 2016], CaRB [Bhardwaj
et al., 2019], NYT [Riedel et al., 2010], WEB [Mesquita et al., 2013] and PENN
[Xu et al., 2013]. Each dataset is chosen for certain characteristics, elaborated
below.

3.1.1 Linguistic Acceptability Datasets
A detailed description and history of research in the area of linguistic acceptability
is provided in Section 1.2. Choosing appropriate datasets for a fine-tuning task
is of utmost priority as most machine learning models are affected by the data
provided to them. Inaccurate, inappropriate, or inadequately pre-processed data
would inevitably lead to a model that does not perform well on its intended task.
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The principle of garbage in, garbage out (GIGO) is proven appropriate here.
Hence, a detailed description of both datasets is presented in this section.

This section also presents a detailed analysis of the two datasets, comparing
and contrasting the basic attributes of the datasets, including attributes that
would influence their efficiency in being used to fine-tune LLMs, such as class
imbalance. The associated code is available at the URL 1.

The CoLA dataset

The CoLA dataset is part of the GLUE (General Language Understanding Eval-
uation) benchmark [Wang et al., 2018], which was created to encourage the de-
velopment of models that would be able to complete a range of tasks, such as
sentiment analysis and question answering across a range of domains. Wang et al.
[2018] specify that the datasets included in the benchmark were chosen “...because
they have been implicitly agreed upon by the NLP community as challenging and
interesting.”

The GLUE benchmark uses the CoLA dataset as the standard for linguis-
tic acceptability, along with the Matthews Correlation Coefficient MCC) being
specified as the metric to be used to compare linguistic acceptability models. A
longer description of the metric is provided in Section 3.3.1.

Label Sentence

1 The dancing chorus line of elephants broke my television set.
1 Gilgamesh is not reading the cuneiform tablets.
0 the logs piled the barge high.
1 Bill alleged that Roger had eaten the cake.
0 They can happy.

Table 3.1: A snapshot of the CoLA dataset

One of the primary reasons for choosing the CoLA dataset for these sets of
experiments is that it is widely regarded as one of the most prominent and reliable
datasets for assessing linguistic acceptability. The dataset is limited in its size:
it contains around 10,500 sentences (8,500 for the train-spilt) from 23 different
linguistic publications annotated for linguistic acceptability by its authors.

The dataset is fairly diverse, topics include negative polarity, verb alterna-
tions, dative alternations, comparatives and so on. Considering the limited size
of the CoLA dataset, it would be interesting to compare the ranking performance
(on the downstream OpenIE task) of an acceptability model trained on the CoLA
dataset against one that is trained on a larger dataset.

Dataset Analysis

Table 3.1.1 presents an initial, rudimentary analysis of the data, specifically the
train-spilt of the dataset. It is fairly obvious that the dataset skews towards
linguistically acceptable sentences. This imbalance is significant because models
that are trained on such skewed data without any class imbalance mitigation

1https://github.com/amrtanair/master_thesis
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Table 3.2: Basic Statistics of the CoLA dataset
Statistic Value

Number of Sentences 8,551
Shortest Sentence Length 2
Longest Sentence Length 42
Average Sentence Length 7.70
Median 7.0
Number of linguistically acceptable sentences 6,023
Number of linguistically unacceptable sentences 2,528

Figure 3.1: Statistical analysis of the CoLA dataset. From left to right, (a)
Frequency vs. Sentence Length for the CoLA dataset, (b) Distribution of labels
across sentence lengths, (c) Q-Q Plot of Sentence Lengths

techniques are likely to develop a bias toward labeling sentences as acceptable.
Addressing this issue is essential for building an accurate classifier model.

The sentence lengths vary between 2 and 42, with the median being around
7 words. Figure 3.1(a) shows the variation in sentence length and the frequency
associated with each sentence length interval. Figure 3.1(b) shows the proportion
of labels against all values of sentence lengths.

The Shapiro-Wilk test [Shapiro and Wilk, 1965] for assessing the normality of
distribution provided a statistic of 0.887 and a p-value of 0.0, which indicates a
significant deviation from normal distribution in the sentence lengths. This shows
that the sentence lengths do not follow a normal distribution. Since the Shapiro-
Wilk test is unreliable for larger datasets (>5000 data points) [Field, 2009], this
result is supported by the Q-Q plot, 3.1(c).

To assess differences in sentence lengths between the acceptable correct and
unacceptable samples, the Mann-Whitney U test [Mann and Whitney, 1947] was
performed, resulting in a U-statistic of 7629584.5 and a p-value of 0.873. The
high p-value suggests that there is no statistically significant difference in the
distributions of sentence lengths between grammatically correct and incorrect
samples. Thus, despite the non-normality of the sentence lengths, they do not
significantly differ across the labels.

Another aspect of the dataset pertains to the type of grammatical errors
present in the unacceptable sentences. A basic understanding of the errors would
provide insight as to the kind of linguistic acceptability the model will be exposed
to and will help in the downstream OpenIE task. Using the language-check
library LanguageTooler [n.d.], the errors analysed are listed in table 3.3
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Error(no. of occurrences) Example
AGREEMENT SENT START(10) The men doctors of

medicine.
MD BASEFORM(13) He has will seeing his chil-

dren.
TWO CONNECTED MODAL VERBS(6) Kim must will bake a cake.

Table 3.3: Snapshot of errors in the CoLA dataset (from LanguageTooler
[n.d.]). The description of the errors can be found at https://community.
languagetool.org/rule/list.

The MegaAcceptability Dataset

The MegaAcceptability dataset was first introduced by White and Rawlins [2016]
as a way to address the task of studying the effect of a word’s semantic charac-
teristics on its syntactic usage pattern. Another reason for creating this dataset
was to study the acceptability judgments of clause-embedding verbs.

Towards this end, a dataset was curated, which contained 50,000 sentences
constructed by taking 1,000 verbs and 50 different syntactic frames. Each sen-
tence contains a acceptability judgment between 1-7. The judgments were pro-
vided by native English speakers who rated the sentence on the basis of how
“natural” or “acceptable” each syntactic construction was perceived.

Later, An and White [2019] extended the dataset to enhance its scope to
understand and include the range of variability in neg-raising inferences across
different contexts. Negation-raising inferences can be simply understood as the
phenomenon where a negation applied to a verb can imply an application of the
negation on the subordinate clause as well. Hence, a large number of acceptability
judgments on negation-raising inferences were collected for English verbs that
could embed clauses.

Version 1 of the MegaAcceptability dataset (MegaAcceptability-v1) con-
tained sentences only in the past tense. Since the variability in negation-raising
inferences is influenced by the tense of the clause-taking verb, the second version
(MegaAcceptability-v2) modified some sentences by changing their verbs to the
present tense to include examples of both tenses in the dataset. Any mentions of
the MegaAcceptability dataset in this thesis refer to
MegaAcceptability-v2.

The authors of MegaAcceptability chose sentences that were rated 4 (out
of 7) or higher for their experiment. Similarly, for the purposes of this thesis,
all sentences that are rated as less than or equal to 4 are tagged as 0 while
sentences above this threshold are rated as 1. The arguments for/against binary
acceptability judgments are clarified in section 1.2.2. Further, each sentence was
originally annotated for acceptability by a number of annotators. The judgments
were averaged and then classified as 1 or 0 if they were >4 or <=4, respectively.

Dataset Analysis

One of the primary reasons for choosing this dataset is its size, but also because
of the linguistic information included in the dataset, such as the syntactic frame
of the sentence and the verb around which the sentence is centered. The basic
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statistics of the dataset are presented in table 3.4

Table 3.4: Basic Statistics of the MegaAcceptability dataset
Statistic Value

Number of Sentences 74,827
Shortest Sentence Length 2
Longest Sentence Length 10
Average Sentence Length 5.63
Median Sentence Length 6.0
Number of linguistically acceptable sentences 30,646
Number of linguistically unacceptable sentences 44,181

Exploring the nature of the syntactic information can be crucial in the analysis
of the performance of the linguistic acceptability task, which further affects the
downstream OpenIE task’s results, too. Figure 3.1.1 describes the distribution of
the syntactic frames across the dataset.

Figure 3.2: Number of samples for each syntactic frame

The NP V NP syntactic frame has the highest number of rows, followed by
the NP V frame. An example, from the dataset, of the former syntactic frame is
Someone abhorred something, while the latter frame is Someone abhorred.

One potential drawback of using this dataset is that, during its creation,
the focus was entirely on the verbs, and hence, paraphrasing from An and White
[2019], “...the lexical content was kept minimal to avoid typicality effects, ensuring
that the acceptability judgments reflect the syntactic frames and the tested verbs
rather than the influence of specific lexical items.”

Figure 3.1.1 shows the mean response and the standard deviation for the top 5
and the bottom 5 syntactic frames. The frames here are sorted by their count. An
elaborated version of the same is presented in Figure A.1. Having the syntactic
frame NP V NP identified and present so prominently in the dataset is particularly
beneficial for our use case since the DeepEx system extracts two NPs and then tries
to use an attention-based mechanism to extract the relation between them, which
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Figure 3.3: Distribution of acceptability judgments across syntactic frames. From
left to right, (a) Top 5 frames, (b) Bottom 5 frames

fits neatly into the NP V NP frame. Using this dataset to fine-tune the linguistic
acceptability model would present the model with positive and negative examples
for this particular syntactic frame, which may improve the performance on the
downstream OpenIE task. Further information about the dataset can be found
in the Appendix.

3.1.2 OpenIE datasets

Dataset Domain #Sents
OIE2016 News, Wiki 3,200
WEB News, Web 500
NYT News, Wiki 222
PENN Mixed 100

Table 3.5: Statistics for datasets.
The dataset for the CaRB bench-
mark is the same as OIE2016.
Source: Wang et al. [2021]

The following evaluation benchmarks were
chosen for one of two reasons: either the
benchmark was used by the authors of
DeepEx to evaluate the system, or the
dataset/evaluation script brings forward a
new facet upon which the extractions could
be judged. It is essential to understand the
motivations behind the creation of each mo-
tivational benchmark so that the scores pro-
duced make sense in the context of the pro-
posed system.

OIE2016

Published in 2016, this benchmark was the
first labelled corpus created for the evaluation of OpenIE systems [Stanovsky
et al., 2018b]. It is an automatically generated corpus; it uses the QA-SRL cor-
pus [He et al., 2015], translating the samples to OpenIE-relevant samples. The
authors of the benchmark clearly defined the guidelines they consider appropri-
ate for the definition of an OpenIE task, which are assertedness ((Sam; suc-
ceeded in convincing; John) versus (Sam; convinced; John)), minimal propo-
sitions(condensing a sentence into small meaningful chunks that still convey all
the information) and completeness and open lexicon.

PENN

This dataset was created by Xu et al. [2013] because they noticed a gap in the lit-
erature, where datasets which included “all kinds of relations” were scarce. This
dataset for OpenIE was created using the PENN treebank [Marcus et al., 1993].
The paper whose by-product this dataset focused on relations and proposed two
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sub-tasks to the concept of OpenIE, the first being to check if a given sentence
contains a relation between two entities and the second was to “...confirm explicit
relation words for two entities”.

NYT and WEB

Mesquita et al. [2013] created the WEB and NYT datasets using WEB-500 and
NYT-500. WEB-500 was developed by Banko and Etzioni [2008] and the authors
mention that the WEB-500 data is “...often incomplete and grammatically un-
sound, representing the challenges of dealing with web text” while NYT-500 has
“...formal, well written new stories from the New York Times Corpus”, [Sand-
haus, 2008].

Mesquita et al. [2013] manually annotate the datasets by marking two en-
tities, as well as defining a span of tokens that encompass relevant modifiers
and connecting prepositions for each sentence. The dataset is collected from the
Stanovsky et al. [2018a] repository.

CaRB

This evaluation benchmark did not introduce a new dataset, it simply refactors
the OIE2016 dataset in a couple of different ways. The dataset is re-annotated
using human judgments, and the scorer is updated to rectify certain drawbacks
the authors of Bhardwaj et al. [2019] noticed in the OIE2016 scorer. This evalu-
ation provides a contrast to the datasets above as they all used the same scorer
as the one used by Stanovsky and Dagan [2016] even though the datasets are
from different domains. For CaRB, however, the scorer is different, but the test
sentences are the same as the one used by OIE2016.

The authors of CaRB note that OIE2016 has been known not to penalize long
extractions or misidentifications of relations in argument slots, favoring systems
that may produce trivial but high-scoring outputs. It also allows multiple occur-
rences of the same word in an extraction, which may result in a higher precision
score.

These drawbacks of OIE2016 prompted the creation of the CaRB benchmark.
The CaRB scorer use structured tuple matching and multi-match recall, allowing
gold tuples to match multiple extractions while penalizing redundancy. Struc-
tured tuple matching aims to evaluate the semantic coherence and structural
integrity of extracted information.

Chapter 4 presents the results across all benchmarks, which bring to light the
various idiosyncrasies of each dataset and benchmark, highlighting the elements
that the proposed system performs better or worse with.

3.2 Acceptability and Probability
Section 2.2 lays out the conjecture that the linguistic acceptability of a triple
could be related to the OpenIE task. Assessing the linguistic acceptability of a
triple is the main task of this section. From here on, linguistic acceptability will
be referred to as acceptability for the sake of brevity.

24



An LLM is trained in an unsupervised manner on a large amount of text, with
the model containing millions or even billions of parameters [Zhao et al., 2023]. In
some situations, the corpus used to train the LLM is basically a large portion of
the internet (for example, Common Crawl [Crawl]). The corpus contains, in gen-
eral, linguistically acceptable sentences from various sources, such as Wikipedia,
books, Reddit forums, and so on. Hence, it would be reasonable to assume that
the probability of a sentence would provide some measure of its acceptability.
However, the situation is not as straightforward. The authors Lau et al. [2017]
put forward a couple of arguments to discuss the statement that the probability
of a sentence according to a language model is not an exact comparison to its
acceptability.

• The sum across all possible sentences for a probabilistic model would be 1,
which would result in very low probabilities for most sentences, disregarding
any notion of acceptability.

• If the probability of a sentence according to a language model would be
considered similar to its acceptability, sentences with rare words would rate
far lower than sentences with common words despite no apparent difference
in the acceptability of the two. Lau et al. [2017] mention an easy example
of this situation: the two sentences I saw a yak and I saw a cat should
ideally not differ in acceptability, however, since yak is a much rarer word,
the assigned probability for the first sentence would be lower than that for
the second sentence.

• The factors that could potentially influence probabilities, such as sentence
length and the probability of the constituent words, are different from the
ones that determine acceptability. A sentence would be acceptable irre-
spective of its length or the uniqueness of its constituent words while these
factors would influence probability. This highlights that the probability and
acceptability of a sentence are measured in distinct ways.

However, these factors do not completely discount the role of probability for
acceptability judgments. Due to the sheer quantity of data the LLMs are trained
on, it is definitely possible that acceptable sentences are more likely to be as-
signed higher probabilities. Hence, it can be said that the relationship between
probability and acceptability of a sentence is not direct but is influenced by other
factors.

3.2.1 Acceptability Measures
Lau et al. [2017] introduce the concept of Acceptability Measures, which are
basically normalisations/augmentations to the probability of a sentence according
to a language model that would attempt to reflect its acceptability. Applying
these normalization techniques to the probability of a sentence according to a
language model may equate to its acceptability judgment. This section elaborates
on the different acceptability measures employed in this thesis.
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Log Probability (LogProb)

LogProb = log pm(s)
Calculates the logarithm of the probability pm(s) assigned to the sentence s by
the language model m. The language model here can be the base model provided
by HuggingFace [Wolf et al., 2019] or a fine-tuned linguistic acceptability model.

Mean Log Probability (Mean LP)

Mean LP = log pm(s)
|s|

Normalizes the probability of the sentence s w.r.t its length. Here, |s| represents
the length of sentence s, where the length is the number of characters in the
sentence.

Normalized Log Probability (Division) (Norm LP(Div))

Norm LP (Div) = log pm(s)
log pu(s)

Calculates the ratio of the log of the probability of the sentence s according to
the model m to the log of the unigram probability of the sentence s. In the
case of fine-tuned models, the numerator is the log of the probability assigned by
the model that the sentence is linguistically acceptable. The denominator is the
unigram probability of the model upon which fine-tuning has been conducted.

Normalized Log Probability (Subtraction) (Norm LP (Sub))

Norm LP (Sub) = log pm(s) − log pu(s) = log pm(s)
pu(s)

Computes the difference between the log probability of the sentence s under the
model m and the log of the unigram probability of the sentence s. The notations
used here as similar to the ones used in Norm LP (Div).

Sentence Log Odds Ratio (SLOR)

SLOR = log pm(s) − log pu(s)
|s|

This measure, introduced by Pauls and Klein [2012] calculates the log odds ratio,
which attempts to adjust for the frequency of individual tokens and provides a
metric that can approximate fluency. Kann et al. [2018] describe SLOR as a “...a
normalized language model score, as a metric for referenceless fluency evaluation
of natural language generation output at the sentence level.”
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3.3 Experiments
The experiments apply sentence-level acceptability measures to the probabili-
ties obtained from different models. Applying word-level measures, as defined
by Lau et al. [2017], could present a relevant and potentially insightful approach
for further exploration.

However, given the extensive scope of experiments (evaluation of five OpenIE
benchmarks across multiple models, each producing results for five normalization
schemes in addition to a non-trivial analysis of the results) conducted in this
thesis, adding word-level measures would significantly exceed the practical limits
of this study.

Focusing on selected methods would help maintain a manageable quantity
of experiments. Therefore, experiments around word-level measures are left for
future work.

The experiments are divided into two modes: the type of model used and the
amount of data used to fine-tune the models. This approach demonstrates the
impact different types of language models and dataset sizes have on the linguistic
acceptability task, which may translate to an impact on the task of ranking
OpenIE triples.

Three variants of bert-large will be used. The first being a basic bert-large
model, both cased and uncased. The second is the bert-large model (uncased
and cased) fine-tuned on the CoLA dataset. Finally, the third is the bert-large
models (uncased and cased) fine-tuned on the MegaAcceptability dataset, which
brings the total number of models to six. Hence, we end up with the following
groups of experiments:

• Group A:

1. The basic bert-large-uncased model,
2. The basic bert-large-cased model,

• Group B:

1. The bert-large-uncased model fine-tuned on the CoLA dataset ,
2. The bert-large-cased model fine-tuned on the CoLA dataset.

• Group C:

1. The bert-large-uncased model fine-tuned on the MegaAccept-
ability dataset,

2. The bert-large-cased model fine-tuned on the MegaAcceptabil-
ity dataset.

The results of each of these models will be passed through the five normaliza-
tion methods and then evaluated on each of the five evaluation datasets mentioned
in section 3.1.2.

A natural question would be the usage bert-large-* and not the base ver-
sions of the model (bert-base-* ). This is simply because it was easier to obtain
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unigram probabilities for the larger model due to the work done by Lau et al.
[2020] in the paper How furiously can colorless green ideas sleep? sen-
tence acceptability in context. The code for the same is available at the
URL2.

Obtaining unigram probabilities for the base models either through a litera-
ture survey or by building the dataset is earmarked as future work.

Two versions of the bert-large model are chosen, the cased and the uncased
version. The reasoning behind this decision is that the impact of casing on ac-
ceptability is non-trivial. The entities named apple and Apple could signify two
different concepts: the first refers to the fruit, and the second could either be
the first word in a sentence about the fruit (hence, capitalized) or it could be a
reference to the tech company.

One of the reasons for choosing BERT as the model that drives the methodology
of this thesis was due to the constraint imposed by the availability of the unigram
probabilities. This still leaves two other models that could be considered, the
GPT2-medium and XLNet. Choosing BERT here was purely due to parity with the
original DeepEx system as the generation of triples was through the BERT-large
model while the ranking system was built using the BERT-base model.

Another reason was due to feasibility: running exhaustive fine-tuning on a
variety of models is computationally expensive and tedious. Though Lau et al.
[2020] have provided unigram probabilities for other models, due to the cost of
running such computations and the manageability of diverse types of LLMs, only
the bert-large-* models have been used for experiments. However, results for
the GPT2-medium model has been reported, using acceptability measures, for the
OIE2016 benchmark, in an effort to demonstrate the results obtained when not
using a masked language model like BERT.

3.3.1 General Approach
Each experiment follows a similar strategy, with slight changes to reflect the
differences in the experiments.

The intention behind the first two experiments (bert-large-uncased and
bert-large-cased) is to set up a baseline. The computation of baseline results
is essential to the task since they set up a foundation upon which further ex-
perimentation can be compared. Any improvements in the results can then be
attributed to the changes made to the system and not due to inherent differences.

The next two experiments demonstrate the effect of fine-tuning each variant
of bert-large on the acceptability task (with CoLA dataset) and then using
the logits (the probability of being linguistically acceptable) obtained to rank
the OpenIE triples. The logits are transformed into acceptability measures by
using the normalization scheme described in section 3.2.1. The reasoning behind
fine-tuning here would be to test the impact of providing the model with clear
examples of linguistic acceptability and then assessing the results on the OpenIE
task.

Finally, the last two experiments demonstrate the usage of a larger dataset
for fine-tuning the linguistic acceptability model. MegaAcceptability is nearly

2https://github.com/jhlau/acceptability-prediction-in-context/tree/master/
code
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10 times larger than the CoLA dataset. The hope here is that fine-tuning on
a larger dataset would result in a higher score for the acceptability task, which
would, in turn, translate to a higher score for the downstream OpenIE task.

This sequence of experiments attempts to find a relation (if one exists) between
the linguistic acceptability of a triple and its ranking in the OpenIE task. The
overall strategy is as follows:

• Step 1, Setup: Prepare the DeepEx system by installing all relevant li-
braries and frameworks. Download evaluation datasets and choose a beam-
size. If fine tuning a linguistic acceptability model, collect the dataset and
the LLM.

• Step 2, Generate triples: Run the DeepEx system (until the generation
step) on the chosen evaluation dataset.

• Step 3, Training the linguistic acceptability classification model:
This step is skipped for the first two experiments. For the rest, based on the
dataset and LLM combination, fine tune the model through hyperparameter
fine tuning to achieve the best evaluation score possible for the linguistic
acceptability task. The evaluation metrics used for the task are adapted
from the GLUE benchmark.

• Step 4, Running inference on the fine-tuned model: Pass all triples
for each sentence as input to the fine-tuned model. Depending on the ex-
periment type, either the probability of the triple is used for calculations
regarding the normalization methods or the logits obtained from the linguis-
tic acceptability model, which signify linguistic acceptability are used.

• Step 5, Evaluate the results Run the evaluation script for each evaluation
benchmark, for each model, fine-tuning dataset and normalization method
combination. Record and compare the results.

Group A: Experiments on the bert-large-cased model and
bert-large-uncased model

For every experiment, the most important value that needs to be calculated is
the probability of the sentence according to the language model. Calculating
the probability for a sentence is especially challenging for the BERT model since
it is designed for masked language modelling and hence is not available, out-of-
the-box, for probability computations. Additionally, and more importantly, the
bi-directional nature of BERT makes probability computations tricky, since it
considers both left and right directions simultaneously.

The code provided by Lau et al. [2020] at the following URL3 was adapted to
calculate the probability of each triple accurately. The code masks each token in
the input sentence, one at a time, allowing the model to predict the masked token
based on the context from both directions, and then sums up the log-probabilities
of the correct predictions. For each normalization measure, evaluation dataset

3https://github.com/jhlau/acceptability-prediction-in-context/blob/master/
code/compute_model_score.py
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and model, the evaluation files were created and the results are presented in Table
4.2 and Table 4.3.

This sets the baseline upon which the results for the OpenIE task should
ideally improve.

Group B: Experiments on the bert-large-cased model and
bert-large-uncased model fine-tuned on CoLA

BERT has been one of the most popular LLMs in the NLP space, and its perfor-
mance on the text classification task is one of its strengths [González-Carvajal
and Garrido-Merchán, 2020], [Garg and Ramakrishnan, 2020]. The decision to
fine-tune the BERT model on the CoLA dataset and not use the models available
on the HuggingFace hub was due to a few factors, the foremost being control
over the fine-tuning process. To demonstrate and validate the conclusions drawn
in this thesis, it was necessary to have investigated at least one model(in this
case, BERT) thoroughly and have no confounding/unknown factors regarding the
training procedure associated with the analysis.

Another core reason for choosing to fine-tune and not use a ready-made model
is the freedom to analyse the model by taking it apart to perform studies, as has
been demonstrated in table 4.10.

Finally, experimenting on the differences between using a cased versus an
uncased model is interesting from the point of view of the linguistic accept-
ability task due to the differences in tokenization, as described in section 3.3.
GPT2-medium models are available only in the cased format4 and further, the
availability of unigram probabilities for both cased and an uncased model drove
this decision.

The fine-tuning procedure was conducted using bayesian search, the starting
hyper-parameters being the values mentioned in the BERT [Devlin et al., 2018]
paper, which are:

• Batch size: 16, 32

• Learning rate (Adam): 5e-5, 3e-5, 2e-5

• Number of epochs: 2, 3, 4

Slight deviations were made from the above hyper-parameters. The batch-
size recommendations were by-and-large maintained, however, another optimizer
was added to the search space, including Adam [Kingma and Ba, 2014], which is,
AdamW [Loshchilov and Hutter, 2017]. The learning rate values were maintained.

Early in the experimentation, the loss function supplied by the
BertForSequenceClassification for binary classification is cross entropy loss5

was used. However, it was quickly apparent that, thought the training loss re-
duced, validation and training accuracy increased as the training progressed, the
validation loss ballooned to very high values. This could perhaps be due to the
class imbalance in the CoLA dataset, as demonstrated in the data analysis of

4https://github.com/huggingface/transformers/issues/2314#
issuecomment-571059380

5https://github.com/huggingface/transformers/blob/9aeacb58bab321bc21c24bbdf7a24efdccb1d426/
src/transformers/modeling_bert.py#L1354
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the CoLA dataset in section 3.1.1, which could cause over-fitting and result in
such training behaviour.

To rectify this, several techniques were considered, two of them being under-
sampling and oversampling. Under-sampling was dismissed as a viable tech-
nique due to the scarcity of the linguistically unacceptable sentences. Under-
sampling would have halved the dataset.

Oversampling would involve generating linguistically unacceptable (negative)
samples. Initially, this approach was seriously considered, however, the reasoning
by Lau et al. [2017] regarding the differences between grammatically unacceptable
sentences being linguistically acceptable (described in section 1.2.1) holds true
and hence, instead of modifying the dataset, other class imbalance methods were
considered.

One such method was changing the loss function. Focal loss function, in-
troduced by Lin et al. [2017] is specially designed to combat class imbalance.
Replacing the cross entropy loss with focal loss stabilised the training process,
and the acceptability task produced better results.

Another measure taken against over-fitting would be early stopping, specif-
ically, early stopping based on validation loss. Hence, no epochs were defined
in the search space, instead, training would run until the validation loss did not
decrease significantly, or if the validation loss remained unchanged. Experimen-
tation with a penalty mechanism was also implemented, such that, a penalty was
applied when the validation loss did not decrease from one epoch to the next, but
training was stopped only when the number of penalties rose to 2.

Finally, dropout in the model configuration and weight decay in the optimizer
was set between the large interval of the default value (0.1 for both) to 0.3, to
provide a large space for the Bayesian search.

Five-fold cross-validation technique was employed to evaluate all models, en-
suring robust performance scores. Each model was also trained and tested using
5 different random seeds to account for variability in initialization and training
processes.

A fixed number was not set for the number of runs conducted using Bayesian
search, primarily due to computational restraints. The search was stopped once
there was a significant amount of runs (at least 10) and until there was only a
minute improvement in the MCC (Section 3.3.1).

Finally, the following hyper-parameters were chosen:

Model Batch Size Epochs Learning Rate Optimizer MCC Accuracy
uncased 16 5 5e-05 AdamW 53.49 81.01
cased 16 3 5e-05 AdamW 56.11 81.97

Table 3.6: Fine-tuning the bert-large models on the CoLA dataset.

Group C: Experiments on the bert-large-cased model and
bert-large-uncased model fine-tuned on MegaAcceptability

Similar training techniques as described for Group B were used for the MegaAc-
ceptability dataset as well. The results of the experiment are presented below:
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Figure 3.4: Bayesian search visualised for the CoLA-BERT-large-uncased model

Model Batch Size Epochs Learning Rate Optimizer MCC Accuracy
uncased 32 3 3e-05 AdamW 67.30 83.76
cased 32 3 2e-05 AdamW 68.51 84.13

Table 3.7: Fine-tuning the bert-large models on the MegaAcceptability dataset.

Evaluation Metric: Matthews correlation coefficient

The metric most often used for a variety of tasks would be the accuracy or the F1
score. However, for a binary text classification task, and specifically according to
the GLUE benchmark, Matthews correlation coefficient (MCC), Matthews [1975]
is used.

The coefficient takes into account both (true and false) positives and negatives
while the F1 score ignores the true negatives in its calculation. Equation (3.1)
shows the formula for MCC which can be compared against equation (3.2).

MCC = TP × TN − FP × FN√︂
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

(3.1)

F1 = 2tp
2tp + fp + fn (3.2)

The MCC coefficient provides a value between -1 and 1. The MCC score and
accuracy will be taken into account while evaluating the fine-tuned model.

3.3.2 Running inference on the fine-tuned models
First, a short definition of the evaluation metrics used for the OpenIE task is
defined below. Next, the method of inference is described.
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Figure 3.5: Bayesian search visualised for the
MegaAcceptability-BERT-large-uncased model

Evaluation Metric: Precison, Recall, F1 scores, AUC and PR-curves

Standard evaluation metrics are used for the OpenIE tasks. The metrics are
defined below.

Precision: ratio of true positive predictions to the total number of positive
predictions made by the model.

Precision = TP

TP + FP

Recall: ratio of true positive predictions to the total number of actual
positive instances.

Recall = TP

TP + FN

F1 score: harmonic mean of precision and recall, providing a balance between
the two for evaluating a model.

F1 = 2 · Precision · Recall
Precision + Recall

(Precision-Recall) PR-curves: plots the trade-off between precision and
recall across different threshold settings.

(Area under the curve) AUC: refers to the area under the PR curve that
measures the overall ability of the model to discriminate between positive and
negative classes.

Based on the requirements of each of the models, once the acceptability model
is ready, the generated triples for each of the benchmarks are joined together and
then passed to the fine-tuned/base model.
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For the base model, the probability of the joined triple is calculated (depending
on the type of model, probability calculations will differ), and then acceptability
measures are applied to provide approximate acceptability judgments. For the
fine-tuned models, the softmax’ed logits, which provide the probability of the
triple being linguistically acceptable, are used and modified by the acceptabil-
ity measures. Finally, the F1 scores and AUC are generated for each (model,
acceptability-measure, benchmark) combination and compared in the next chap-
ter.

As is the case with OpenIE research, P-R curves are generated by analysing
the performance of the model across various confidence thresholds. The F1 score
presented for each system is determined by an optimal confidence threshold de-
rived from the development set.

The next chapter details the results and analysis of the experiments performed
in this chapter.
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Chapter 4

Results and Analysis

This chapter is dedicated to the reporting of results from all the experiments as
well as an analysis of the results. This includes ablation studies, error analysis
and comparison against current State-of-the-art (SoTA) and other established
systems in the OpenIE space.

OIE2016 WEB NYT PENN CaRB
F1/AUC F1/AUC F1/AUC F1/AUC F1/AUC

ClausIE 58.8/37.6 44.9/40.1 29.6/22.9 34.6/28.4 45.0/22.4

OpenIE4 59.6/41.7 55.7/40.5 38.3/24.0 42.6/28.1 48.8/27.2

PropS 55.6/33.8 58.9/48.0 37.2/22.1 39.1/27.7 31.9/12.6

DeepEx 72.6/58.6 91.2/82.4 85.50/72.5 88.5/81.5 22.3/4.60

C-N-s 73.11/55.48 92.29/87.04 93.28/88.39 97.07/94.70 24.20/9.20

M-N-s 73.10/54.00 92.74/87.25 92.61/88.49 95.14/90.40 24.5/9.20

Table 4.1: F1 and AUC scores across systems. C-N-s stands for CoLA-NormLP-sub
model. The same pattern is followed for M-NormLP-sub.

Experimental Setup

Before presenting the results, a short note on the experimental setup is necessary.
Each benchmark was collected from its source and the models were collected

from the HuggingFace Hub [Wolf et al., 2019]. The triples were collected us-
ing the bert-large-cased model, batch size was set to 4 and the beam search
was over 6 tokens. The linguistic acceptability model was trained on a NVIDIA
A100-SXM4-40GB GPU. The generated triples were joined and then passed to the
linguistic acceptability model where they were ranked on the basis of the logits
obtained for acceptability. If the model in use was a basic bert-large-* model,
the probability of the triple according to the language model was calculated. The
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probability was normalized using the acceptability measures. Finally, the results
for each model was reported.

4.1 Results
Table 4.1 presents the best overall results of the proposed system and compares
against other popular systems in the OpenIE space. The proposed system sur-
passes DeepEx by a 0.5 margin for the OIE2016 benchmark, despite using a
much smaller amount of data compared to DeepEx for ranking the triples; the
proposed system uses 8.5k sentences while DeepEx uses 6.2M sentences. It per-
forms exceptionally well on other evaluation benchmarks as well. However, it
does fall behind on the CaRB benchmark, which shall be discussed in section 4.3.

Is there a relation between the length of a sentence and its probability?

Section 3.2 discusses that the length of a sentence may influence its probability,
however, the acceptability of a sentence is not influenced by this factor. Looking
at the results in Section 4.1.1, it appears that this is the case almost across all
benchmarks, hence, normalizing the probability by length seems like a step in the
right direction.

Figure 4.1: |s| versus MeanLP, after removing outliers

To further corroborate this result, the relationship between the MeanLP and
the sentence length was investigated, for the OIE2016 test set (model used is
MegaAcceptability-bert-large-uncased), revealing a moderately positive cor-
relation. To better visualise the relationship, outliers were removed, the result
being in Figure 4.1. Outlier detection was first performed using the Inter-Quartile
Range (IQR) method1.

Spearman’s rank correlation coefficient [Zar, 2005] was utilized instead of
Pearson’s correlation [Cohen et al., 2009] due to its ability in handling non-
parametric data. Spearman’s correlation is particularly suited for this task be-
cause it does not assume a linear relationship between variables, nor does it

1https://www.geeksforgeeks.org/interquartile-range-to-detect-outliers-in-data/
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require the data to follow a normal distribution. It measures the strength and di-
rection of a monotonic relationship, which is more flexible and further, applicable
in this case.

The Spearman’s correlation coefficient is 0.55461856, with a p-value of
4.969 × 10−15. This indicates a moderately positive monotonic relationship be-
tween the variables. The extremely small p-value confirms that this correlation
is highly significant and unlikely to have occurred by chance. Consequently, the
results validate a meaningful monotonic association between the variables, sup-
porting the use of Spearman’s correlation in this context.

Further, the relationship between sentence length and probability revealed a
weak negative correlation (Spearman’s = -0.1188, p < 0.001). This indicates
that as sentence length increases, there is a slight tendency for the probability
assigned by the model to decrease. The statistical significance of the correlation
coefficient suggests that this finding is unlikely to be due to random chance.

Figure 4.2: Visualization of a positive, negative and absence of a monotonic
relationship. Source in footnote.

4.1.1 Results across all tasks
Each of the tables in section 4.1.1 detail the results of experiments conducted
for the five benchmarks, across the five normalization methods, with different
flavours of the bert-large model. The first two tables reflect different variants
of the base bert-large models, to demonstrate the differences in the results for
cased versus uncased tokenization.

Tables 4.2 and 4.3 show that augmenting probability scores with acceptability
measures are enough to reach competitive scores for the OIE2016 task, even for
the basic bert-large models. Scores for other benchmark, except for CaRB, are
promising as well.

Simply normalizing log probability with the length of the sentence improves
the score significantly almost doubling the value, as demonstrated by the score
difference between LogProb and MeanLP for the OIE2016 task in table 4.2. This is
true across evaluation benchmarks and models. The score may not double, how-
ever, there is a clear jump, even with CaRB. Hence, normalizing the probability
with sentence length definitely seems to improve the scores.

NormLP-sub is the star of the show, when using this normalization method,
the score on the OpenIE task jumps up significantly across most benchmarks

1https://www.scribbr.com/statistics/correlation-coefficient/#spearmans-rho
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OIE2016 CaRB NYT PENN WEB
F1/AUC F1/AUC F1/AUC F1/AUC F1/AUC

LogProb 33.27/11.44 16.50/3.00 21.47/5.38 46.60/16.81 48.75/22.77

MeanLP 64.68/36.33 26.8/8.2 64.4/36.95 69.90/41.46 77.09/53.90

NLP
(sub)

72.21/49.38 25.50/9.60 95.30/92.86 95.04/92.05 92.74/87.69

NLP
(div)

63.04/34.27 26.2/7.50 63.08/33.30 69.90/40.255 75.96/52.64

SLOR 50.14/21.38 21.20/4.80 48.99/19.60 71.844/40.13 64.85/38.44

Table 4.2: Results of ranking triples for the downstream OpenIE task
on their acceptability by transforming the probabilities obtained from the
bert-large-cased model into acceptability judgements

OIE2016 CaRB NYT PENN WEB
F1/AUC F1/AUC F1/AUC F1/AUC F1/AUC

LogProb 34.91/13.44 16.6/2.9 21.73/5.63 48.93/22.15 49.65/26.04

MeanLP 65.98/38.91 26.9/8.2 65.10/36.44 67.96/42.33 80.27/61.04

NLP
(sub)

72.55/46.46 25.4/9.2 95.30/92.82 95.14/92.45 91.15/84.58

NLP
(div)

64.51/36.42 26.0/7.4 63.75/33.59 67.96/42.51 79.59/60.52

SLOR 53.65/25.51 21.9/5.1 51.00/21.80 60.19/31.02 69.16/45.53

Table 4.3: Results of ranking triples for the downstream OpenIE task
on their acceptability by transforming the probabilities obtained from the
bert-large-uncased model into acceptability judgments

and models. Here, too, CaRB is an exception. NormLP-sub normalizes the log
probability of the sentence against the log unigram probability of the sentence.
This measure attempts to discount the affect that more common words have on
the probability of sentence. Basically, it tries to bring the sentences to a common
ground by not allowing the influence of more/less popular words in the vocabulary.
As Lau et al. [2017] comment ...it is a key element in any model that attempts to
account for the confounding effect of lexical frequency on acceptability.

The unigram probability of the sentence does not consider the word order or
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OIE2016 CaRB NYT PENN WEB
F1/AUC F1/AUC F1/AUC F1/AUC F1/AUC

LogProb 46.43/22.35 24.5/7.8 40.40/17.13 51.54/26.98 60.15/34.79

MeanLP 60.32/34.63 28.9/10.9 63.75/41.75 79.611/63.1 78.09/59.57

NLP
(sub)

73.06/53.98 24.3/9.5 92.92/88.1 95.14/93.19 92.74/8701

NLP
(div)

59.79/34.17 28.6/10.8 59.73/35.5 81.55/70.53 76.73/57.29

SLOR 24.84/5.80 8.50/1.20 21.09/5.32 39.58/20.29 44.92/21.99

Table 4.4: Results of ranking triples for the downstream OpenIE task on their
acceptability by transforming the probabilities obtained from the CoLA fine-
tuned bert-large-uncased model into acceptability judgements

OIE2016 CaRB NYT PENN WEB
F1/AUC F1/AUC F1/AUC F1/AUC F1/AUC

LogProb 47.60/24.26 22.3/6.3 42.42/21.44 60.19/42.30 66.66/46.06

MeanLP 64.68/41.39 27.7/1.0 77.18/57.38 83.49/69.49 81.85/67.81

NLP
(sub)

73.11/55.48 24.2/9.2 93.28/88.39 97.07/94.70 92.29/87.04

NLP
(div)

63.80/40.10 27.1/9.6 78.52/56.75 87.37/74.95 81.40/67.34

SLOR 24.16/6.33 8.40/0.8 21.67/5.03 37.89/15.09 43.63/22.68

Table 4.5: Results of ranking triples for the downstream OpenIE task on their
acceptability by transforming the probabilities obtained from the CoLA fine-
tuned bert-large-cased model into acceptability judgements

context, it simply multiplies the probabilities of the individual words together.
By contrast, the probability according to the language model adds in extra in-
formation such as context, word dependencies and syntactic and semantic rela-
tionships in the sentence. So, a higher score on this metric would mean that
the base/fine-tuned model has a more complex/richer understanding of the de-
pendencies between the words in the sentence and further points towards a more
acceptable sentence by virtue of the data used to train the model.

CaRB benchmark proves to be an outlier in these experiments since it is no-
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OIE2016 CaRB NYT PENN WEB
F1/AUC F1/AUC F1/AUC F1/AUC F1/AUC

LogProb 55.69/34.15 27.7/9.7 57.85/34.10 58.25/25.25 63.11/37.88
MeanLP 69.34/49.25 29.5/11.4 85.23/68.92 93.20/80.21 85.94/70.50
NLP
(sub)

73.03/54.83 24.6/9.4 93.28/89.30 97.08/94.44 92.29/87.23

NLP
(div)

69.19/48.76 29.3/11.1 85.90/70.84 93.20/79.93 86.39/71.47

SLOR 24.78/6.82 8.7/1.2 22.14/5.59 38.29/18.03 45.30/24.53

Table 4.6: Results of ranking triples for the downstream OpenIE task on their
acceptability by transforming the probabilities obtained from the MegaAccept-
ability fine-tuned bert-large-cased model into acceptability judgements

OIE2016 CaRB NYT PENN WEB
F1/AUC F1/AUC F1/AUC F1/AUC F1/AUC

LogProb 56.38/35.31 29.4/10.9 50.67/23.75 60.78/28.83 65.38/42.11

MeanLP 69.69/49.32 29.7/12.1 82.55/66.96 89.32/69.16 86.16/69.35

NLP
(sub)

73.10/54.00 24.5/9.2 92.61/88.49 95.14/90.40 92.74/87.25

NLP
(div)

69.73/49.53 29.7/12.2 83.22/67.33 89.32/68.99 87.07/71.34

SLOR 25.54/6.73 8.8/1.6 22.31/5.80 38.29/18.05 46.40/22.81

Table 4.7: Results of ranking triples for the downstream OpenIE task on their
acceptability by transforming the probabilities obtained from the MegaAccept-
ability fine-tuned bert-large-uncased model into acceptability judgments

ticeable that NormLP-div or MeanLP has higher scores compared to NormLP-sub.
The score might be marginally better, but there is always a clear improvement.

SLOR as an acceptability measure should have ideally been the best since it
uses both the length of the sentence and the normalized log unigram probability.
Further, SLOR is widely regarded as a fluency metric. Surprisingly, SLOR performs
better for the base models, with the F1 score nearly halving for fine-tuned models.
For the CaRB benchmark, the scores on the SLOR metric are abysmal for all
models except the based models.

Considering the formula used for SLOR: since the normalized log unigram
probability and the length of the sentence remains the same, this indicates that
the base model does a better job at ranking sentences higher (by assigning higher
probabilities) of those examples which would perform better on the OpenIE task.

A curious observation is the similarity between the scores of MeanLP and
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NormLP div across many benchmarks and models. MeanLP is the probability of
a model normalized by its length while NormLP div is the probability of a model
normalized by the unigram probability of the sentence according to the model.
The reason for this similarity is unclear.

In general, the trend seems to be that fine-tuning on CoLA or the MegaAc-
ceptability dataset does seem to have positive/neutral impact across most nor-
malization measures (except for SLOR) and datasets. For example, looking at
the scores produced by the PENN dataset, the F1 score consistently increases
as more linguistically acceptable data is provided to the model. This largely
holds true for the OIE2016 task as well except for two notable exceptions: SLOR
and NormLP sub. For the former, the F1 score gets halved, while for the later,
despite more data, better fine-tuning, the score hits a ceiling of 73.xx. This is
the case even after conducting an ablation study that removes most layers of the
fine-tuned model, described in Section 4.2

The CaRB evaluation benchmark is a special case, it does not use the same
evaluation script as the other four benchmarks, but it uses the same dataset(with
different annotations) as the OIE2016 dataset. The low scores of the DeepEx
model and of the proposed system on the CaRB benchmark need further inves-
tigation, which is discussed in section 4.3.

What could be the reason for NYT and PENN performing so well?

The results of NYT and PENN are very impressive, surpassing DeepEx, the
current SoTA (according to URL2). The initial hypothesis was that, for some
sentences, the entire sentence was being predicted as a triple. As in, the sub-
ject and object noun phrases that were ranked the highest were periphery noun
phrases, basically, noun phrases at the beginning and the end of the sentence.
The relation that was picked for this pair of noun phrases was the entirety of
the sentence between them.

Acceptability Measure (matched triples, total sentences)

SLOR (0.0, 52.0)
MeanLP (11.0, 52.0)
LogProb (3.0, 52.0)
NormLP div (11.0, 52.0)
NormLP sub (8.0, 52.0)

Table 4.8: Fuzzy matching of joined triples against sentences for the
CoLA-bert-large-cased model on the PENN evaluation benchmark. The results
for this benchmark-model combination are presented in Table 4.5

A small experiment was performed to check this hypothesis. The
CoLA-bert-large-cased model was chosen, since the performance is one of the
highest for this variant (F1: 97.07/ AUC: 94.70). The evaluation benchmark
chosen is PENN. Fuzzy matching using the fuzzywuzzy [SeatGeek, 2024] library
was used to compare the joined triple with the original sentence. The fuzz-ratio
threshold was set to 95. This threshold was chosen on the basis that, a higher

2https://paperswithcode.com/task/open-information-extraction
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threshold may not capture all triples that are very similar to their sentences,
while a lower threshold might catch triples that are relevant. Keeping a high
threshold seems reasonable, after all, the triples are parts of the sentence.

From Table 4.8 it is clear that nearly 15% of triples for the best performing
normalization method (NormLP sub) are very similar to their sentences. Hence,
there is a non-significant number of triples that are similar to the sentences they
are extracted from.

What is the performance of non-BERT acceptability models (on the
OpenIE task) like?

An interesting question would be assessing the performance of non-BERT mod-
els. Lau et al. [2020] have provided unigram probabilities for the GPT2-medium
[Radford et al., 2019] model. GPT2-medium is not bi-directional like BERT and
so, the probability calculations were pretty straightforward. The results for the
OIE2016 benchmark, across all acceptability measures is presented below.

Acceptability Mea-
sures

F1 AUC

LogProb 17.03 2.15
SLOR 46.63 17.98
NormLP div 61.51 39.20
MeanLP 64.08 44.16
NormLP sub 72.90 61.25

Table 4.9: Performance of GPT2-medium model on the OIE2016 benchmark for
each acceptability measure.

Even for GPT2-medium, which is a generative model and not a masked language
model, the results for the NormLP sub acceptability measure are the highest, again
surpassing the result obtained by DeepEx. These results provide evidence that the
proposed method can be replicated for other LLMs while maintaing performance.

The Wang et al. [2021] paper on DeepEx reports scores for only the OIE2016,
NYT, PENN and WEB benchmarks. The score on the CaRB dataset was dele-
gated to future work. This has been completed and a PR has been opened in the
DeepEx codebase. The pull-request can be accessed here3.

The results for the OIE2016 and CaRB benchmarks are the scores when the
top-3 triples are chosen, while for the rest of the benchmarks, it is the top-1 triple
that is chosen. The choice for k in top-k is partly due the DeepEx’s preference
for the same and partly due to the best results presenting for these benchmarks
on using k = 1/k = 3.

4.2 Studies
Based on the results tabulated in section 4, it can be inferred that despite the
simplicity of the system, which consists of a linguistic acceptability dataset that

3https://github.com/wang-research-lab/deepex/pull/20
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has just 8500 data points, it is possible to achieve performance that is competitive
with, and in some cases, surpasses the results obtained by the DeepEx contrastive
ranking model. It would be interesting to conduct an ablation study (Section
4.2.1) to identify the components of this system that impact the performance or
that can be pruned to either achieve a comparable score or a better score. This
study is further essential, since Table 4.2 also shows that simple acceptability
measures applied to probability values generated by the base bert-large model
were also competitive.

In general, ablation studies are also essential to the development of systems
since they provide an insight into the reliability, robustness and necessity of var-
ious components. In the case of the proposed system, the component with the
most variability (in terms of performance) is the fine-tuned linguistic acceptability
model.

Combinations of different kinds of datasets (in terms of size, domain, linguistic
variability) and different models (pre-training objectives, number of parameters,
pre-training data) would perform in their own unique manner, which is further
influenced by the fine-tuning methods used. The work in this thesis has been
intentionally kept simple, in terms of the model and the fine-tuning procedures,
to showcase the performance of a minimal system. Therefore, dissecting the fine-
tuned model would be an insightful form of ablation study, in part, to see exactly
what component of the system contributes to the results, but also, to see if the
system could be further simplified.

The next study (Section 4.2.2) in this section involves the connection between
SRL (Semantic Role Labelling) and OpenIE. SRL performs a very similar task to
OpenIE, so much so that, an algorithm was used to convert a QA-SRL dataset to
an OpenIE one (OIE2016). Both methods extract two entities and the relation
between them. A significant difference between the two would be the fact that
SRL explicitly labels the semantic relationships for each entity extracted.

To add a semantic aspect to this thesis, a small study is conducted, which
showcases an alternative method of extracting OpenIE triples using the results
of a pre-trained SRL model.

4.2.1 Study 1: Freezing layers of the linguistic acceptabil-
ity model

This is an ablation study. Lee et al. [2019] in their paper What Would Elsa
Do? Freezing Layers During Transformer Fine-Tuning perform experiments to
demonstrate the effect of freezing different layers of the pre-trained model on
various downstream tasks, one of them being the linguistic acceptability task
(CoLA dataset). They freeze the embeddings and weights upto the 0th, 18th
and 24th layer and compare the performance of each of these systems to the full-
version where no layers are frozen. Their results mention a substantial drop in
the MCC score across the experiments for the CoLA dataset while other tasks
seem to retain a significant amount of performance, sometimes even upto 90% of
the score of the fully fine-tuned model. This brings up a relevant question for our
experiment:

How would freezing different layers in the linguistic acceptability model
affect the performance of the OpenIE task?
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To answer this, the MegaAcceptability-bert-large-cased model is used
as a guinea pig. The reason this model is chosen among the 4 that have been
fine-tuned in this thesis is due to the fact that this model has the best overall per-
formance across all normalization methods for the OIE2016 dataset. Moreover,
performing these experiments for all the four models would prove computation-
ally infeasible. Also, since the CoLA dataset has been examined in Lee et al.
[2019], it would be interesting to see if the MegaAcceptability dataset follows a
similar trend (regarding the drop in performance).

Five experiments are conducted: for each model, 0, 6, 12, 18, 24 layers are
frozen, in addition to the embedding layer. The fine-tuning hyper-parameters
were kept the same, following the same methodology as Lee et al. [2019].

The results for the NormLP sub method is reported, since this method gener-
ally has the highest F1 score across datasets and models. The F1 and AUC for
the OIE2016 evaluation dataset is reported in table 4.10.

Frozen upto layer- MCC F1/AUC
no freezing 68.51 73.03/54.83
0th 68.46 73.06/54.74
6th 69.01 73.03/55.10
12th 67.73 73.14/55.20
18th 64.18 73.08/55.35
24th 47.71 73.12/54.69

Table 4.10: MCC score after freezing layers of the
MegaAcceptability-bert-large-cased model, the parameters that were
activated for each model and the corresponding F1 score on the OIE2016
OpenIE task. The embedding layer is frozen for all experiments.

Results

As table 4.10 shows, there isn’t substantial change in the MCC score when 0, 6,
12 layers are frozen, the score remains relatively stable. A notable decrease in
the MCC score is observed only when 18 layers are frozen. Freezing all the layers
does affect the MCC, the drop of 20 points is significant.

What could be the reason that most layers are not necessary to match the
results (on the linguistic acceptability task) as the entire model for the MegaAc-
ceptability dataset? One guess could be the fact that the MegaAcceptability
dataset is far more homogeneous in nature, with no specific domain defined,
while the OOD (out-of-domain) dev set in the CoLA dataset is quite diverse. The
homogeneity of the MegaAcceptability dataset is due to the fact that the focus of
each sentence in the dataset is around its verb and the lexical content is minimal.
This is further described in Section 3.1.1. The diversity of the OOD CoLA dev
set is mentioned in Warstadt et al. [2019].

Hence, for the CoLA dataset,more layers are required to truly understand the
task. However, we can also discount the difference in the MCC’s, the drop from
the 0th-18th layer in the CoLA dataset is of around 10 points, while for the same
interval, the drop in MCC for the MegaAcceptability dataset is about 4 points.
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The difference is still significant, but could possibly be explained by the similarity
of domain in the MegaAcceptability dataset.

The F1/AUC barely changes even after freezing all layers. This result is
somewhat expected since the results in tables 4.3 and 4.2, where no task-specific
fine-tuning occurs are comparable with the results after fine-tuning on the CoLA
and MegaAcceptability dataset. These results further strengthen the analysis that
fine-tuning on more data doesn’t necessarily co-relate to a much higher OpenIE
task score, specifically for the NormLP sub measure .

As mentioned in the previous sections, it seems that despite more data, the
F1 score reaches a ceiling beyond which it doesn’t seem to increase. Of course,
this could be possibly rectified by better/more complex models/better fine-tuning
strategies than the one employed, but for the parameters of the experiment within
this thesis, the F1 score does not seem to increase beyond 73.xx.

4.2.2 Study 2: Semantic Role Labelling for OpenIE
Semantic Role Labelling (SRL) picks the predicate-argument structure and fixes
“labels” to them that identifies if they are the doer, the action or the receiver
in a given sentence. Considering this succinct definition, and the relation to the
OIE2016 dataset (the dataset is created using another QA-SRL dataset), it would
be interesting to see an application of SRL for OpenIE. OpenIE is supposed to
extract relevant triples and sort them, while SRL labels the subject, verbs and
object.

The implementation of this study is quite simple: use a pre-trained SRL-
BERT (base) [Shi and Lin, 2019] model supplied by AllenNLP [Gardner et al.,
2018] to identify verbs and their surrounding arguments within sentences, then
collect context information for each identified verb and finally extract specific
argument types and construct triples comprising the left context, verb, and right
context.

The results are reported for all the 5 evaluation datasets. All extracted triples
are chosen for CaRB/OIE2016 while one triple is chosen for the rest of the evalu-
ation datasets. Unfortunately, there is a gap in this method: that of the ranker.
The AllenNLP model does not provide any metric by which to judge one extrac-
tion as more efficient than another. So, for now, all triples are chosen in random
order. The number of triples extracted generally number around 3 or < 3, so this
is not a significant issue yet.

The results for this task are displayed in table 4.2.2. The fact that OIE2016
performs well is trivial, the dataset was built by applying an algorithm over a
QA-SRL dataset, it is expected that a model that extracts semantic labels would
do a good job on this dataset+scorer combination.

The CaRB benchmark uses the same dataset, however, the annotations are
performed by humans and the scorer is also different. Here, the score drops as
compared to OIE2016, but the system still performs better than DeepEx and the
proposed system’s performance on CaRB.

For the rest of the benchmarks, the results are competitive with most systems
in the OpenIE space.
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Evaluation benchmark F1 AUC
OIE2016 73.86 61.35
CaRB 35.2 28.8
NYT 66.01 54.48
PENN 72.78 62.16
WEB 84.04 75.20

Table 4.11: Results for the study in section 4.2.2. This table displays the results
of adapting the results of the BERT-SRL model for the OpenIE task.

4.3 Error Analysis
The errors in the DeepEx model would propagate to any derivative of its system,
in this case, the errors from the generation step would be present in the proposed
system as well. The authors of Wang et al. [2021] do not mention errors concerning
the ranking step, most of the error analysis in the paper was devoted to the
generation step.

Specifically for OpenIE, DeepEx identifies that the majority of the errors in
this step were due to the incorrect assignment of arguments by the Spacy noun-
chunker, while 10% of the errors are due to long sentences. The errors mentioned
due to long sentences are taken to mean that the input sentence was long, while
the triple extracted only focused on a single small part of the sentence. This can
be inferred from the example presented in the appendix of the paper.

However, DeepEx does not perform as well as expected on the CaRB bench-
mark, despite stellar performance on the other benchmarks, including on OIE2016.

What could be the possible reason for this result?
One of the differences between the two evaluation benchmarks is the scorer.

The authors of CaRB have put forward the drawbacks they notice in the OIE2016
scorer, some of them are listed below. It would be interesting to draw a contrast
between the proposed system and DeepEx on the CaRB benchmark, since this is
the benchmark on which both of the systems fail to achieve competitive scores.

Table 4.3 details a partial list of the errors that could have been the cause
of the drop in results on the CaRB benchmark as compared to OIE2016. The
second column is paraphrased from the CaRB paper. Additional notes on the
errors follow:

• For the first error, another reason as to why the DeepEx system falls behind
is that, there is a possibility of ”nesting” of NP pairs, that is, one NP pair
is contained within another. If the gap between the NP pairs is not too
large, this could lead to redundant extractions.

• For the second error, lexical matching also favours the proposed system
greatly. A system that optimizes for linguistic acceptability would favour
sentences or clauses that would be complete units. This tends to result in
longer sentences. Longer sentences would translate to better lexcial match-
ing, since more words would be matched to a particular tuple on aver-
age. This error is circumvented by the CaRB benchmark using exact tuple
matching.
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Index Difference b/w OIE2016
and CaRB scorer

Is DeepEx affected? Is the pro-
posed system
affected?

1 “...By single matching for
precision, CaRB penalizes
Open IE systems that pro-
duce several very similar
and redundant extractions.”

Yes, since the beam size is
set to 6, for a given triple, 6
samples are possibly passed
to the ranker. If the ranker
chooses more than one from
the 6 samples, it is possible
to have more than one top-
3 triples with the same ARG1
and ARG2.

Yes, since the
proposed system
simply joins
the triples and
does not concern
itself with the
ARG1 and ARG2.
It simply sorts
by acceptability.

2 “...Another significant
change from OIE2016
scorer is in the use of tuple
match instead of lexical
match.”

Yes, since the noun-chunker
is a fault line that has been
already identified, it is pos-
sible that lexically matching
the whole triple as a sen-
tence might be more lenient
than strict tuple matching.

This error prop-
agates here as
well.

3 “...This scorer has been
identified to not penalize
long extractions.”

Yes. The relations are cho-
sen based on highest atten-
tion scores between two ar-
guments. This encourages
the addition of more words
to a triple, since more the
number of words, higher the
attention score. So for a
given argument pair, it is
likely that all the words be-
tween the two of them may
be chosen as the relation,
since choosing more words
might potentially lead to
higher score.

Yes. An accept-
ability model
will sort well-
formed clauses
and sentences
higher. It is not
unlikely for a
longer sentence
to be favoured
more here.

4.4 Discussion
As a final note, the proposed system performs fairly well across diverse domains
and benchmarks, with lesser amount of data points. Further, the experiments
also suggest that converting the probability scores to acceptability judgements
do produce better results for the OpenIE task, even on out of the box models.
It might be possible to draw the conclusion that acceptability has an effect on
OpenIE triples, and this factor can be used as one of the extraction methods for
future OpenIE systems.

This work also brings to light the drawbacks of various evaluation benchmarks,
particularly that of OIE2016. Comparing OIE2016 and the CaRB benchmark is
a particularly interesting case due to the similarity in the test sentences and
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the dissimilarity in the scorer as well as the annotation methodology. Human
annotation is considered superior to the one derived through an algorithm, as is
the case with OIE2016. Further, the authors of CaRB, Bhardwaj et al. [2019]
meticulously critique the leniency of the OIE2016 scorer. Considering these two
points, comparing the scores between OIE2016 and CaRB provide precious insight
into the quality of the extractions.

DeepEx and the proposed system perform well on the scorer implemented by
Stanovsky et al. [2018a], but the results on CaRB are not competitive with other
models.

Some of the errors that the proposed method has could be attributed to the
triples generated by DeepEx. It is possible that triples generated by another
method could produce better performance.

The performance on the PENN and NYT benchmarks is admirable, however,
around 15% of the joined triples are at least 95% similar to the sentence. Hence,
adding a filter that would remove joined triples that are similar to the sentence
may subdue the results.

Overall, a faithful study on the relation between the linguistic acceptability of
a triple and its impact on the OpenIE F1 score has been conducted. The results
have been reported and analysed.

There are some potential points of failure here, one of them could be the
methods used to create the acceptability models. There is always a chance of
better, bigger architectures with better data quality producing more linguistically
acceptable sentences.

4.5 Limitations and Future Work
The primary limitation of this method is that it can only be applied to languages
that follow the SVO word order. Modifications need to be made to the application
to other languages. The thesis is also limited by the quality of the generated
triples. If the generated triples have flaws, this trickles down to affect the ranker,
too. Finally, the availability of unigram probabilities also restricts the scope of
this thesis. The creation of unigram probabilities for other LLMs is earmarked
for future work.
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Conclusion

OpenIE is a relevant and challenging task. There is an ever growing need for
better tuple extraction from large amounts of text in an unsupervised manner.
The applications using such tuples range across fields and domains, and as such,
better models, methods and systems are always in high demand.

The method proposed in this thesis shows promising results across benchmarks
and datasets, despite using a very small amount of training data. The results
obtained using the proposed method have been thoroughly analysed on various
models as well, providing evidence that the method can be used in a model
agnostic manner.

The drawbacks concerning the method have been demonstrated using error
analysis and ablation studies.
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Alexander H Miller, and Sebastian Riedel. How context affects language mod-
els’ factual predictions. arXiv preprint arXiv:2005.04611, 2020.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improv-
ing language understanding by generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya
Sutskever, et al. Language models are unsupervised multitask learners. OpenAI
blog, 1(8):9, 2019.

Sebastian Riedel, Limin Yao, and Andrew McCallum. Modeling relations and
their mentions without labeled text. In Machine Learning and Knowledge Dis-
covery in Databases: European Conference, ECML PKDD 2010, Barcelona,
Spain, September 20-24, 2010, Proceedings, Part III 21, pages 148–163.
Springer, 2010.

Adam Roberts, Colin Raffel, Katherine Lee, Michael Matena, Noam Shazeer,
Peter J Liu, Sharan Narang, Wei Li, and Yanqi Zhou. Exploring the limits of
transfer learning with a unified text-to-text transformer. Google, Tech. Rep.,
2019.

53

http://dx.doi.org/10.1016/0005-2795(75)90109-9


Evan Sandhaus. The New York Times Annotated Corpus, 2008. URL https:
//hdl.handle.net/11272.1/AB2/GZC6PL.

SeatGeek. fuzzywuzzy: Fuzzy string matching in python, 2024. URL https:
//github.com/seatgeek/fuzzywuzzy. Accessed: 2024-07-17.

Murray Shanahan. Talking about large language models. Communications of the
ACM, 67(2):68–79, 2024.

Samuel Sanford Shapiro and Martin B Wilk. An analysis of variance test for
normality (complete samples). Biometrika, 52(3-4):591–611, 1965.

Peng Shi and Jimmy Lin. Simple bert models for relation extraction and semantic
role labeling. arXiv preprint arXiv:1904.05255, 2019.

Gabriel Stanovsky and Ido Dagan. Creating a large benchmark for open informa-
tion extraction. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing. Association for Computational Linguistics, 2016.
doi: 10.18653/v1/d16-1252. URL https://doi.org/10.18653/v1/d16-1252.

Gabriel Stanovsky, Julian Michael, Luke Zettlemoyer, and Ido Dagan. Supervised
open information extraction. In Proceedings of The 16th Annual Conference of
the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (NAACL HLT), page (to appear), New Orleans,
Louisiana, June 2018a. Association for Computational Linguistics.

Gabriel Stanovsky, Julian Michael, Luke Zettlemoyer, and Ido Dagan. Supervised
open information extraction. In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers), pages 885–895, 2018b.

Murat Tezgider, Beytullah Yildiz, and Galip Aydin. Text classification using
improved bidirectional transformer. Concurrency and Computation: Practice
and Experience, 34(9):e6486, 2022.

Russell S Tomlin. Basic word order: Functional principles: Croom helm
london. NCls–Noun Classifier NNum-Noun Numeral Nom-Nominative Rel-
Relative NRel-Noun Relative RelN-Relative Noun, 1986.

M Onat Topal, Anil Bas, and Imke van Heerden. Exploring transform-
ers in natural language generation: Gpt, bert, and xlnet. arXiv preprint
arXiv:2102.08036, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. Advances in neural information processing systems, 30, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and
Samuel R Bowman. Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint arXiv:1804.07461, 2018.

54

https://hdl.handle.net/11272.1/AB2/GZC6PL
https://hdl.handle.net/11272.1/AB2/GZC6PL
https://github.com/seatgeek/fuzzywuzzy
https://github.com/seatgeek/fuzzywuzzy
https://doi.org/10.18653/v1/d16-1252


Chenguang Wang, Xiao Liu, Zui Chen, Haoyun Hong, Jie Tang, and Dawn Song.
Zero-shot information extraction as a unified text-to-triple translation. arXiv
preprint arXiv:2109.11171, 2021.

Chenguang Wang, Xiao Liu, and Dawn Song. Ielm: An open information
extraction benchmark for pre-trained language models, 2022. URL https:
//arxiv.org/abs/2210.14128.

Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Neural network ac-
ceptability judgments. Transactions of the Association for Computational Lin-
guistics, 7:625–641, 2019.

Aaron Steven White and Kyle Rawlins. A computational model of s-selection. In
Semantics and linguistic theory, pages 641–663, 2016.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Fun-
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Appendix A

Additional Material

Table A.1: Syntactic Frames, Means, and Counts for the
MegaAcceptability dataset

Frame Mean ± Std Count
NP V NP 5.67 ± 1.36 2479
NP V 5.5 ± 1.37 2338
NP be V 5.45 ± 1.65 2236
NP V that S 4.89 ± 1.66 1948
NP V that S[+future] 4.83 ± 1.64 1930
NP V whether S[+future] 4.52 ± 1.61 1816
NP V VPing 4.48 ± 1.57 1780
NP V NP VPing 4.41 ± 1.58 1780
NP V about NP 4.72 ± 1.74 1772
NP V NP to NP 4.55 ± 1.71 1768
NP be V about NP 4.62 ± 1.85 1762
NP V whether S 4.54 ± 1.66 1749
NP V whichNP to VP 4.46 ± 1.66 1742
NP be V to VP[+eventive] 4.41 ± 1.74 1702
NP be V to VP[-eventive] 4.19 ± 1.55 1684
NP V whichNP S 4.26 ± 1.66 1678
NP V about whether S 4.3 ± 1.68 1630
NP V whether to VP 4.23 ± 1.62 1626
NP V to VP[+eventive] 4.21 ± 1.69 1586
NP V to NP that S[+future] 4.02 ± 1.81 1552
NP V S 4.0 ± 1.83 1522
NP V for NP to VP 3.96 ± 1.63 1520
NP V NP to VP[+eventive] 4.17 ± 1.78 1516
NP V to NP that S 4.01 ± 1.88 1508
NP be V about whether S 3.83 ± 1.8 1468
NP V to VP[-eventive] 3.87 ± 1.61 1448
NP V to NP whether S[+future] 3.31 ± 1.48 1404
NP be V that S 3.67 ± 1.92 1402
NP V NP to VP[-eventive] 3.62 ± 1.55 1394

Continued on next page
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Frame Mean ± Std Count
NP V that S[-tense] 3.48 ± 1.31 1382
NP be V that S[+future] 3.54 ± 1.79 1366
NP V to NP whether S 3.51 ± 1.67 1360
NP V NP VP 3.43 ± 1.55 1314
NP V so 3.19 ± 1.29 1272
NP be V S 3.03 ± 1.71 1262
NP be V whether S[+future] 3.13 ± 1.61 1252
NP be V whether to VP 3.2 ± 1.55 1244
NP be V whether S 3.08 ± 1.56 1227
NP V to NP that S[-tense] 2.97 ± 1.39 1212
S, I V 3.16 ± 1.46 1170
NP be V so 2.85 ± 1.16 1162
NP V NP that S 2.76 ± 1.51 1136
NP be V whichNP to VP 2.7 ± 1.39 1134
NP be V that S[-tense] 2.64 ± 1.24 1130
NP V NP that S[+future] 2.77 ± 1.52 1120
NP V NP whether S[+future] 2.59 ± 1.34 1098
NP V NP whether S 2.5 ± 1.32 1094
NP be V whichNP S 2.34 ± 1.24 1072
NP V NP whichNP S 2.12 ± 1.05 1042
NP V NP that S[-tense] 2.23 ± 1.0 1038

Figure A.1: Acceptability Judgements of Syntactic Frames for MegaAcceptability
dataset
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Figure A.2: For the MegaAcceptability dataset: Frequency versus sentence length

Figure A.3: For the MegaAcceptability dataset: The distribution of unacceptable
and acceptable sentences across sentence lengths
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