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Bc. Frantǐsek Trebuňa
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Introduction
In recent years, the field of dialogue systems has seen significant advancements,
particularly in the area of end-to-end dialogue modeling based on pretrained neu-
ral language models [Wolf et al., 2019, Zhang et al., 2020, Adiwardana et al., 2020],
including the latest large language models [Wei et al., 2022, Ouyang et al., 2022,
OpenAI, 2023]. This thesis focuses on open-domain non-task-oriented dialogue,
i.e., on a general social conversation between a dialogue model and a human that
does not follow any particular goal except entertainment (Table 1).

Who Turn
A hello how are you this gorgeous day ?
B i’m great ! how are you ?
A fairly good . just trying to decide what i’m going to cook tonight
B i see . what do you like to eat ?
A i am a gourmet cook so i make everything

Table 1: An excerpt from a dialogue from the ConvAI2 dataset [Dinan et al.,
2020]. See Chapter 2 for more details on the data.

While neural end-to-end dialogue models can produce very fluent outputs and
are able to produce previously unseen sentences, they often generate incoherent
responses and do not maintain a consistent personality [Zhang et al., 2018, Li
et al., 2016c]. This thesis aims to overcome these problems by finetuning small
language models and engineering a prompt for large language models to perform
well on the popular ConvAI2 dataset [Dinan et al., 2020], a common benchmark
for non-task-oriented dialogue.

We aim to answer the following research questions:

1. Can the performance of small language models finetuned on the ConvAI2
dataset be improved through a two-stage approach, where the finetuned
model generates several response candidates in the first stage, and a ranking
model selects the final response in the second stage?

2. Is it possible to improve the finetuned models by more sophisticated training
schemes, such as applying direct preference optimization [Rafailov et al.,
2023] on a preference dataset?

3. How do prompted large language models compare to finetuned small lan-
guage models on the ConvAI2 dataset?

Chapter 1 introduces the reader to dialogue modeling with neural networks.
We follow by presenting the ConvAI2 dataset (Chapter 2) and evaluation meth-
ods that are used to evaluate the performance of open-domain dialogue models
(Chapter 3). We show other approaches that were used for dialogue modeling on
the ConvAI2 dataset in Chapter 4, and finally, we discuss our own experiments
and provide a short summarizing conclusion in Chapter 5.
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1. Theoretical Background
This chapter introduces the reader to several concepts which are necessary to
understand to follow our experiments. We begin with a general introduction to
neural networks (Section 1.1). We follow by discussing neural network architec-
tures that are commonly used for natural language generation (Section 1.2) and
introducing the reader to the dialogue modeling task (Section 1.3).

For several years, the pretraining and finetuning discussed in Section 1.4, was
the approach that was the most effective for natural language generation. How-
ever, recently a prompting approach, where a pretrained large language model is
instructed to solve a task by natural language, emerged as a viable alternative to
pretraining and finetuning. We discuss prompting in Section 1.5. We conclude by
introducing the reader to the problematic of training of ranking models (Section
1.6) that we use in our experiments in Chapter 5.

1.1 Neural Networks
We do not intend to explore the theoretical properties of neural networks in
this text. Hence, this section only presents a few basic concepts from neural
networks that are needed to understand concepts related to training of neural
neural networks which we conduct in Chapter 5. The text in this section is
heavily inspired by [Goodfellow et al., 2016].

Definition of a Neural Network A neural network is a mapping y = f(x; θ),
where x is an input of the neural network (e.g., a sequence of words), and y is
the output (e.g., probability that the sequence is of positive sentiment). The
parameterized function f represents the architecture of the network and has to
be specified manually.1 The choice of f affects the class of functions that can be
approximated by altering the parameters θ. E.g., by using f(x, θ) = θ⊤x only
linear functions can be approximated.

Supervision In the most common case, the true function that we want to
learn is either not known or is intractable and we only have access to a dataset
of examples. Based on the examples in the dataset, we distinguish two types of
training methods.

• Unsupervised learning algorithms experience a dataset D = {xi}N
i=1. The

goal of an unsupervised method is to learn properties of this dataset, e.g.,
the probability distribution that generated the dataset.

• Supervised learning algorithms make use of datasets D = {(xi, yi)}N
i=1,

where xi are inputs and yi are target outputs. A supervised method learns
to predict the target from a feature.

In the following text we only discuss only supervised methods, since in this
thesis we do not make use of any unsupervised method.

1While approaches that automatically optimize the network architecture exist, this is outside
the scope of this thesis.
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Multi-Layer Perceptron The multi-layer perceptron is the simplest neural
network architecture. The computation of each layer is composed of an affine
transformation controlled by learned parameters, followed by a nonlinear activa-
tion function. The output of layer n serves as an input to layer n + 1. Equation
1.1 shows a computation of a two layer perceptron. Since the information about
the input can only go from layer n to layer n + 1, the multi-layer perceptron is
sometimes called feed-forward network.

f(x; θ) = a2(bθ,2 + Wθ,2 · a1(bθ,1 + Wθ,1 · x)) (1.1)
The activation function at the outer-most layer is chosen to complete the task

that the network must perform. Here, we list the most common output activation
functions:

• linear: commonly used to produce the mean of a conditional gaussian dis-
tribution

• sigmoid: estimation of a Bernoulli distribution

σ(x) = 1
1 + e−x

(1.2)

• softmax: estimation of a Multinoulli distribution (an extension of a Ber-
noulli distribution to multiple classes)

softmax(z)i = ezi∑︁N
j=1 ezj

(1.3)

There are other more complex neural network architectures such as convolu-
tional neural networks [LeCun et al., 1989], recurrent neural networks [Rumelhart
et al., 1986] (discussed in Section 1.2.3), or the transformer architecture [Vaswani
et al., 2017] (presented in Section 1.2.7).

Maximum Likelihood Estimation In order to find parameters θ which min-
imize the dissimilarity between the estimated distribution pmodel(y|x; θ) and the
distribution pdata(y|x) we use the maximum likelihood principle. The maximum
likelihood principle refers to an optimization problem where we search for param-
eters θML such that the estimated conditional probability of the dataset D given
θML is maximized (Equation 1.4).

θML = arg max
θ

pmodel(Dy|Dx; θ) (1.4)

Assuming that examples in the dataset are identically distributed (i.e., there
is a single a distribution pdata such that (xi, yi) ∼ pdata∀i) and independent from
each other (i.e., pdata(D) = ∏︁N

i=1 pdata(xi, yi)), we can describe the data-generating
process (i.e., probability distribution over datasets) with a probability distribution
over single example pdata(yi, xi).

Therefore, we can reformulate the estimated probability of the dataset
pmodel(Dy|Dx; θ) as a product of estimated conditional probabilities of samples
(Equation 1.5).
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θML = arg max
θ

N∏︂
i=1

pmodel(yi|xi; θ) (1.5)

Taking a logarithm of likelihood does not change the optimization problem
(since logarithm is a monotonic function) and summation has better properties
with respect to numerical underflow. Moreover multiplication by -1 allows the
use of a minimization formulation (Equation 1.6).

θML = arg min
θ

−
N∑︂

i=1
log pmodel(yi|xi; θ) (1.6)

Since minimization does not change with scaling by a positive number, a
division by N allows us to formulate the problem as minimization of negative
expectation with respect to the data-generating distribution. The function L
in Equation 1.7 is commonly named negative log likelihood, or cross-entropy H
between distributions pdata and pmodel.

L(θ) = − E
(x,y)∼pdata

log pmodel(yi|xi; θ)

θML = arg min
θ

L(θ)
(1.7)

Gradient Descent The optimization problem in Equation 1.7 is intractable
for real-world data-generating distributions, i.e., it is not possible to calculate
its closed-form solution. To solve, or approximate a solution of Equation 1.7 a
numerical computation algorithms are used.

Gradient-descent-based optimization algorithms make use of an observation
that we can solve the minimization problem in an infinitesimally small local
neighborhood of θ. In this neighborhood, the minimum is attained at θ∗ =
θ − limα→0 α∇θf(θ), i.e., by taking an infinitesimally small step in the direction
opposite to the direction of gradient.

During one iteration of gradient descent, the parameters of the network are
updated by taking a small step in the direction opposite to gradient. The size of
the step is controlled by a hyper-parameter ϵ, the learning rate.

θ ← θ − ϵ∇θf(θ) (1.8)
There exists a wast array of different gradient-descent-based optimization

algorithms, such as Stochastic Gradient Descent (SGD) [Bottou, 1999], SGD
with momentum [Polyak, 1964], SGD with Nesterov momentum [Sutskever et al.,
2013], AdaGrad [Duchi et al., 2011], or Adam [Kingma and Ba, 2015] that uses
the estimates of first and second moments of gradients (mean and variance of
gradients) to optimize neural network training. In this thesis we use only the
Adam optimizer as it is a widely accepted standard choice.
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1.2 Deep Learning in Natural Language Gener-
ation

Deep neural networks have achieved success in various tasks, with image classifi-
cation being one of the first notable applications. Architectures such as AlexNet
[Krizhevsky et al., 2012], VGG [Simonyan and Zisserman, 2015] and ResNet [He
et al., 2016] have achieved state-of-the-art performance in image recognition and
classification tasks.

In order to use deep neural networks for natural language generation (NLG),
several key concepts had to be explored. In this section, we discuss some of the
most important ideas that lead to the success of neural networks, including large
language models, in this task. First, we explore how a text is transformed into
continuous vectors processable by a neural network (Sections 1.2.1, 1.2.2. Then,
we discuss the basics of language modeling with neural networks (Sections 1.2.3-
1.2.5). We conclude with an overview of architectures that are used for language
modeling (Sections 1.2.6, 1.2.7).

1.2.1 Tokenization
Due to combinatorial explosion, it is infeasible to process texts as atomic units.
Tokenization refers to splitting a text into smaller units – tokens. Two natural
tokenization schemes, i.e., tokenization to words and to individual characters have
numerous problems.

Word-level tokenization is ineffective for compounds (e.g., in the case of com-
paratives, separate vocabulary entries are needed for adjective, comparative and
superlative form, while a simpler composition of adjective and “er” / “est” is
more effective). Since a neural network learns a separate representation of each
unique token (see Section 1.2.2), its vocabulary size is typically limited to 30-
60,000 entries in practice [Radford and Narasimhan, 2018, Radford et al., 2019].
Hence, special treatment is needed for rare words (e.g., substitution of new words
unseen at training time by a special <UNK> token). Lastly, word-level language
models cannot generate new, unseen words.

On the other hand, while a character-level model can process rare words with
a smaller vocabulary, sequences of character-level tokens are much longer than
sequences of word-level tokens and hence more computation and ability to model
longer dependencies in text is needed compared to word-level models.

Sub-word tokenization [Sennrich et al., 2016, Kudo and Richardson, 2018]
overcomes all these issues by splitting the text into subwords. In Byte Pair
Encoding (BPE) tokenization [Sennrich et al., 2016] the process of splitting text is
learned. Initially, the vocabulary contains solely of individual characters. During
training, the most frequently adjacent tokens in the text are iteratively merged
into single tokens, expanding the vocabulary. Sennrich et al. [2016] note that with
the BPE tokenization scheme, any word can be expressed (similarly to character-
level tokenization) while the number of tokens is reduced five-fold compared to
character-level representation.
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1.2.2 Embeddings
The first step in processing a sequence of tokens with a neural network is trans-
forming each token into an embedding, i.e., a vector or a point in a high-dimensio-
nal space.

Neural language models discussed in this thesis use an embedding layer, a
mapping of token indices to embeddings [Bengio et al., 2003]. While it is possible
to initialize the embedding layer with pretrained embeddings [Dai and Le, 2015]
(examples of pretrained embeddings include Word2vec [Mikolov et al., 2013],
GloVe [Pennington et al., 2014], or FastText [Bojanowski et al., 2017]), a common
practice is to initialize them to random vectors and pretrain them jointly with
the model [Radford and Narasimhan, 2018, Radford et al., 2019]. In comparison
to the vocabulary size of tokenizers, embeddings are low-dimensional (a typical
embedding has between 768 and 12288 dimensions [Devlin et al., 2019, Brown
et al., 2020]). Embeddings have some interesting properties, e.g., the embeddings
of words of words commonly used in the same context tend to be nearby in the
embedding space [Li et al., 2016a].

1.2.3 Neural Language Models
Sutskever et al. [2014] note that “Deep neural networks can only be applied to
problems whose inputs and targets can be sensibly encoded with vectors of fixed
dimensionality.” Models such as multi-layer perceptron (discussed in Section 1.1)
cannot be used for estimating probability of sequences of unknown length. We
first show a general formalization of language modeling, then its application in a
recurrent neural network paradigm.

Formalization: A language model represents a probability distribution over
sequences of tokens x1, ..., xN [Jurafsky and Martin, 2024, Chap.-3].

p(x1, ..., xN) = p(x1:N) (1.9)
Using the chain rule of probability, we can decompose the distribution of

the sequence of tokens to the product of conditional next token distributions
p(xi|x1:i−1), where x1:0 = ∅

p(x1:N) = p(xN |x1:N−1)p(xN−1|x1:N−2)...p(x1)

=
N∏︂

i=1
p(xi|x1:i−1)

(1.10)

Recurrent Neural Networks A recurrent neural network [Rumelhart et al.,
1986] processes input tokens (by their embeddings) one-by-one. At each step, two
representations of already processed tokens are produced: (1) the hidden state
ht refers to a state that is kept and updated during the whole processing of a
sequence and stores a latent representation of the sequence which is passed on
as an input to the next computation step. The hidden state h0 is initialized to a
zero vector. (2) the output representation ŷ (and the output activation function
ay) is task specific (e.g., for language models ay = softmax).
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ht+1 = ah(Whhht−1 + Whxxt + bh)
ŷt = ay(Wyhht + by)

(1.11)

A standard RNN, composed of a single sigmoid/tanh layer, was superseded
by more robust cells such as LSTM [Hochreiter and Schmidhuber, 1997], or GRU
[Cho et al., 2014]. The whole RNN paradigm for language modelling has been
later replaced by a non-recurrent transformer architecture [Vaswani et al., 2017]
(discussed in Section 1.2.7).

RNN RNN

Figure 1.1: Computation of an RNN cell. Weights are shared between two RNN
cells in the image.

Training Neural language models are trained to estimate the conditional next
token distribution p(xi|x1:i−1). During training, the cross-entropy between the
estimated distribution pLM(xi|x1:i−1) and the true, one-hot, token distribution
p∗(xi|x1:i−1) (discussed in Section 1.1) is used as loss function.

Inference During inference, when the neural language model is utilised for
generation, it has no access to the gold input tokens. Therefore a so-called auto-
regressive generation process is used where the language model estimates the dis-
tribution of the next token conditioned on already generated tokens x̂1:i−1 (Figure
1.2). The choice of output token based on the distribution by the language model
is discussed in Section 1.2.4.

1.2.4 Generation Methods
Several problems need to be addressed in order to use a language model for text
generation. Firstly, it is not obvious how to choose the length of the decoded
sequence. A common method is to generate new tokens until a special token with
a meaning “end of text” is generated. Secondly, searching for a sequence that
exactly maximizes the estimated conditional probability in Equation 1.12 is not
feasible as the complexity of searching for all possible sequences with a model
with vocabulary size |V | grows exponentially with length O(|V |T ).

ŷ1:T̂ = arg max
y1:T

p(y1:T ) (1.12)

Therefore, various approximation schemes that trade-off speed and approxi-
mation precision are used in practice. We list the ones that we use in our exper-
iments (see Chapter 5).
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Greedy decoding In the greedy decoding scheme, a token with highest esti-
mated conditional probability is selected at each step. While simple, this method
is suboptimal with respect to Equation 1.12 and it has been shown that this
methods leads to generation of sequences that are repetitive [Vijayakumar et al.,
2018].

Beam search decoding The beam search decoding [Graves, 2012] addresses
the suboptimality of greedy search by keeping B most likely hypotheses at each
time step and eventually choosing the hypothesis that has the overall highest
probability. A beam search decoding finds sequences with higher estimated prob-
ability than greedy decoding and many state-of-the-art methods use it [Edunov
et al., 2018, Yang et al., 2019].

Vijayakumar et al. [2018] compared the B hypotheses returned by a beam
search decoding and found that these are “nearly identical sequences that differ
only slightly from each other.” To counteract this Vijayakumar et al. [2018]
developed the diverse beam search. Here, the hypotheses are split into several
groups and receive a penalty if the groups are too similar.

Sampling Holtzman et al. [2020] note that “maximization-based decoding
methods such as beam search lead to output text that is bland, incoherent, or
gets stuck in repetitive loops.” Generation by sampling next token is an effec-
tive way of producing more diverse text. Since there is a non-zero probability of
generating text that is ungrammatical, several methods of more guided sampling
are proposed. Radford et al. [2019] propose the top-k sampling method, where a
constant k ∈ N is selected and the selected token is sampled from the distribution
of top-k most probable tokens. Holtzman et al. [2020] propose the top-p sampling
method, where a constant p ∈ (0, 1] is selected and the next token is sampled
from the smallest subset of vocabulary V ′ ⊆ V such that ∑︁

t∈V ′ pLM(t|x<) >= p.
Wolf et al. [2019] use a combination of sampling and beam search, a beam

search with sampling, where at each timestep instead of selecting the top-B hy-
potheses, the B hypotheses are sampled from the estimated sequence distribu-
tions.

1.2.5 Conditional Language Modeling
Conditional language modeling refers to estimation of a probability distribution
of sequences of tokens y1:M conditioned on input sequence of tokens x1:N . If the
input sequence is an English source text and the target sequence is its French
translation, such a conditional language model can be trained for machine trans-
lation [Sutskever et al., 2014]. If the prefix contains preceding dialogue context
and the target is a next utterance in the dialogue, the language model can perform
dialogue response generation (see Section 1.3).

Encoder-Decoder architecture Sutskever et al. [2014] use an encoder stack
of LSTM cells to process the input sequence and keep only the last hidden state of
the encoder, which we denote hx,n, as a latent representation of the input sequence
(Figure 1.2). A decoder stack of LSTM cells estimates conditional probabilities
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of target sequences conditioned on the latent representation hx,n (i.e., the initial
hidden state of the decoder hy,0 is initialized to hx,n).

Encoder Encoder Decoder DecoderEncoder

Figure 1.2: Computation of a sequence-to-sequence model. The transformation
ŷt → ŷ∗

t is guided by a decoding procedure (discussed in Section 1.2.4). Dashed
line represents the input choice at the inference time.

Training and inference of the encoder-decoder RNN architecture is conducted
in the same way as the training and inference of a plain neural language model
(see Sections 1.2.3, 1.2.4), except for not modeling the input sequence.

1.2.6 Attention
In the encoder-decoder architecture discussed in Section 1.2.5, all the information
about the source sequence is compressed into a fixed-length latent vector hx,n.
Bahdanau et al. [2014] note that “this may make it difficult for the neural network
to cope with long sentences, especially those that are longer than the sentences
in the training corpus.”

The proposed solution is to allow the decoder to access all the previous hidden
states of the encoder hx,1, ..., hx,n for the update of the hidden vector hy,t → hy,t+1.
A score si is computed for each pair (hx,i, hy,t) and softmax is used to normalize
these scores so that ∑︁N

i=1 s′
i = 1. A context vector is a sum of encoder hidden

states weighted by the normalized scores ct = ∑︁N
i=1 s′

ihx,i. The next hidden state
hy,t+1 is computed as a function of the context vector ct, current hidden state hy,t

and the decoder input yt. Hence when predicting the token distribution ŷt+1, the
network has access to all the hidden states from the encoder, effectively removing
the bottleneck discussed above.

There are several approaches to computation of the unnormalized score si.
Bahdanau et al. [2014] use a jointly trained a multi-layer perceptron, while Luong
et al. [2015] show that using simple dot product h⊤

x,iht is similarly effective.2

1.2.7 Transformer Architecture
The transformer architecture [Vaswani et al., 2017] is the latest major archi-
tectural advancement in the field of natural language generation that became
mainstream. The model is built on the concept of the self-attention which takes
the computational advantage of GPU by parallel processing of a sequence instead

2Luong et al. [2015] introduce several other changes that we consider out of scope of this
thesis.
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Encoder Encoder DecoderEncoder

Figure 1.3: Attention model of Bahdanau et al. [2014].

of sequential processing, which is required in RNN architectures. The computa-
tional advantage concerns only training and processing of the input sequence, the
decoding is still done in auto-regressive way.

In this section we discuss the layers used in the transformer encoder-decoder
model. Transformer model is composed of several transformer blocks organized to
encoder and decoder stacks. Similarly to RNNs, transformer model operates on
sequences of embeddings; however, since transformer blocks do not model position
explicitly, a separate positional embedding is added. The hidden representation
from the decoder stack is transformed by a linear layer with softmax to produce
an estimation of the distribution of the next token.

Figure 1.4: Diagram of the transformer architecture. Figure taken from Vaswani
et al. [2017]

Positional Encoding While in the recurrent architectures, such as the enco-
der-decoder with attention (Section 1.2.6), the information about position is im-
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plicitly modeled (e.g., hidden state hx,n is computed from hx,n−1, hence the net-
work can learn that token xn−1 is before token xn), in transformer blocks, the
position information is not taken into consideration.

Since the information is not modeled inside the transformer, the information
is added in the form of a positional embedding. The positional embedding ep is
summed with the word embedding ew to produce the final embedding e used in
the transformer model (Equation 1.13).

e = ew + ep (1.13)
Vaswani et al. [2017] propose a positional encoding which statically encodes

the information about position (Equation 1.14). However, Gehring et al. [2017]
propose to replace these with learned representations (initialized randomly and
trained jointly with the rest of the model). This approach was later adopted in
all the pretrained models discussed in this thesis (Section 1.4).

ep
i ∈ Rdmodel

ep
i,2j = sin( i

10, 000
2j

dmodel

)

ep
i,2j+1 = cos( i

10, 000
2j

dmodel

)

(1.14)

Transformer Block Each encoder block is composed of two sub-layers, multi-
head attention and a feed-forward network. Each decoder block is composed of
three sub-layers, multi-head attention over the decoder inputs, multi-head cross-
attention, and a feed-forward network. Residual connections [He et al., 2016] (the
outputs of a layer are summed with its inputs) and layer normalization [Ba et al.,
2016] are employed around each sub-layer to stabilize training.

Self-Attention The self-attention layer is at the core of the transformer layer.
The inputs of the layer (vectors x1, ..., xN , xi ∈ Rdmodel) are linearly projected to
three different representations, called queries qi ∈ Rdk , keys ki ∈ Rdk and values
vi ∈ Rdv .

Similarly to the dot-product attention (Section 1.2.6), for each query vec-
tor qi a score representing significance of all the key vectors kj with respect to
the query is computed and an updated representation yi ∈ Rdv of the input is
produced (Equation 1.15). The dimensionality of the output is different to the
dimensionality of the input due to a multi-head attention formulation.

si,j = q⊤
i kj√
dk

s′
i,∗ = softmax(si,1, ..., si,N)

yi =
N∑︂

j=1
vjs

′
i,j

(1.15)

Multi-Head Attention Instead of using a single attention mechanism as was
standard for RNNs (Section 1.2.6), h self-attention layers produce output repre-
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sentations yi,1, ..., yi,h for each input xi. These representations are concatenated
to a vector yi,∗ ∈ Rhdv and linearly projected to a vector yi ∈ Rdmodel . Vaswani
et al. [2017] note that “multi-head attention allows the model to jointly attend
to information at different positions, while in a single attention head, averaging
inhibits this.”

Position-wise Feed-Forward Network A two-layer feed-forward network
(Equation 1.16) transforms each input xi into an output representation yi.

yi = ReLU(xiW1 + b1)W2 + b2 (1.16)

Masking In the decoder stack of transformer layers masking is used in the self-
attention layers in order to prevent the model from attending to “future” positions
(to the right of the current one) so that the model can be used for decoding in
an auto-regressive manner (see Section 1.2.3).

sdecoder
i,j =

⎧⎨⎩
q⊤

i kj√
dk

if i < j

0, otherwise
(1.17)

Cross-Attention The decoder transformer layer contains one additional cross-
attention layer. The computation of this layer is the same as in the standard
multi-head self-attention layer. The encoder outputs are transformed to keys and
values, while the outputs of previous decoder layer are transformed to queries.
The cross-attention mimics the attention in RNN-based encoder-decoder models
(Section 1.2.6).

Decoder-Only Models While the original transformer model is based on the
encoder-decoder architecture, subsequent work often focuses on the usage of ei-
ther encoder-only [Devlin et al., 2019, Liu et al., 2019, Conneau et al., 2020], or
decoder-only models [Radford and Narasimhan, 2018, Radford et al., 2019, Brown
et al., 2020]. The decoder-only model has the same architecture as the encoder
part of the original transformer with the auto-regressive masking scheme from
the decoder part. It can be used for conditional language generation in the same
way as the encoder-decoder transformer by not training with language modeling
objective on the input sequences.

1.3 Dialogue Modeling
As described in the introduction, the main task explored in this thesis is the end-
to-end dialogue modeling on the ConvAI2 dataset. In this section we provide
the necessary definitions for applying neural language models to this task. We
loosely follow definitions of Jurafsky and Martin [2024, Chap.-15].

Open-Domain Dialogue A dialogue is a sequence of turns. A turn is an
utterance contributed by one speaker to the dialogue, hence a turn may consist
of one or more sentences (the dialogue in Table 1.1 contains 5 turns). In this text
we use term “turn” and term “utterance” interchangeably. Based on the outcome
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Who Turn
A hello how are you this gorgeous day ?
B i’m great ! how are you ?
A fairly good . just trying to decide what i’m going to cook tonight
B i see . what do you like to eat ?
A i am a gourmet cook so i make everything

Table 1.1: An excerpt from a dialogue from the ConvAI2 dataset [Dinan et al.,
2020]. See Chapter 2 for more details on the data.

of the conversation we distinguish two kinds of dialogue systems. In this thesis, we
are concerned with open-domain, non-task-oriented dialogue, i.e., general social
conversation, which can span any possible topic of interest to the two conversation
participants (hence open-domain) and does not follow a particular goal, other
than entertainment (hence non-task-oriented).

Dialogue Modeling End-to-end dialogue modeling is a direct application of
conditional language modeling discussed in Section 1.2.5. An end-to-end dialogue
model is trained with a standard language modeling objective (Section 1.2.3),
where all preceding utterances u1, ..., un−1 in the dialogue (dialogue history) are
used as context and the model predicts the words from the following utterance
auto-regressively. This objective is commonly named next utterance prediction.

L =
|un|∑︂
i=1

(ln pLM(un,i|un,1:i, u1:n−1)) (1.18)

1.4 Pretrained Language Models
As Weiss et al. [2016] note: “Acquiring large-enough dataset, which captures
the data distribution of testing data can be difficult and expensive.” Due to
expensiveness of acquiring a training dataset matching the distributions of real-
world tasks, the paradigm of training deep neural networks slowly changed from
random initialization to using transfer learning, or pretraining and finetuning (in
the particular sense we are discussing here) [Liu et al., 2023].

Transfer learning can be loosely defined as a technique in which “knowledge
learned from a task is re-used in order to boost performance on a related task.”
[West et al., 2007]. Based on the relation between the source and the target task
we distinguish two types of transfer learning.

In transductive transfer learning, the source task is the same as the target task;
however, the domains are different. As an example, Blitzer et al. [2007] transfer a
sentiment classification model trained on book product reviews dataset to DVDs
product review dataset.

In inductive transfer learning the target task is different from the source task.
E.g., in computer vision, the models are pretrained on the image classification
task on the ImageNet [Deng et al., 2009] dataset and then finetuned to image
segmentation, or object detection tasks on the COCO [Lin et al., 2014] dataset
[Girshick, 2015, Qiao et al., 2021].
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1.4.1 Transfer Learning in Natural Language Processing
Inductive transfer learning is the most used transfer learning method in the NLP
[Liu et al., 2023]. In the beginning, the transfer learning is used as a regulariza-
tion method to stabilize the training of RNN-based sequence to sequence models
[Dai and Le, 2015], later it is shown that pretraining on a large language modeling
dataset improves downstream finetuning performance on numerous text classifi-
cation tasks.

Transfer Learning as a Regularization Method

The training procedure of the seq2seq network [Sutskever et al., 2014] introduced
in Section 1.2.5 starts with random initialization of weights in the encoder and
the decoder LSTM cells. However, training of the randomly initialized LSTM
networks is very unstable [Kolen and Kremer, 2001]. The instability of training
made it difficult to increase the capacity of the model (e.g., use deeper stack
of LSTM cells, or greater dimension of the hidden vectors), or to increase the
number of backpropagation-through-time steps, effectively limiting the modeling
of long-range relationships in text. To mitigate the instability of the training of
the LSTM-based neural network for sentiment classification, Dai and Le [2015]
experiment with two different pretraining objectives.

The sequence autoencoding task (Figure 1.5) [Dai and Le, 2015] consists of
recreating the input sequence from the latent vector representation produced by
the encoder.

Figure 1.5: Sequence autoencoding task, where the decoder predicts the input of
the encoder (encoder is highlighted). Figure taken from Dai and Le [2015].

The language modeling task [Mikolov et al., 2010] consists of predicting the
next token based on the previous context (the decoder part of Figure 1.5).

The pretraining is done on the same dataset as the downstream task. E.g.,
first, the model was pretrained to recreate Rotten Tomatoes movie reviews from
the input (sequence autoencoding task) and then the pretrained model was fine-
tuned to predict the sentiment class of a review.

Finetuning of pretrained models proves to be more stable and shows better
generalization properties, which allows the practitioners to use deeper architec-
tures and model longer dependencies in the text [Dai and Le, 2015, Howard and
Ruder, 2018]. Therefore Dai and Le [2015] were able to use deeper models and
model longer dependencies in the text (i.e., they could increase the number of
steps in the backpropagation-through-time).
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Transfer from a General Domain Dataset

The transfer discussed in the previous section is between two tasks (language mod-
eling / sequence autoencoding and sentiment classification) on the same dataset.
Dai and Le [2015] have shown that the transfer is also possible between two dif-
ferent classification tasks and two datasets (language model is pretrained on the
Amazon movie reviews sentiment classification dataset [McAuley and Leskovec,
2013] and finetuned for sentiment classification on the Rotten Tomatoes sentiment
classification dataset [Pang and Lee, 2005]).

Howard and Ruder [2018] hypothesized that with a general and large enough
pretraining dataset, it is possible to transfer to any domain. In their experi-
ment an LSTM-based model is pretrained on the Wikitext-103 dataset [Merity
et al., 2017] (about 100 million tokens) with the language modeling objective.
This model is then finetuned on several text classification datasets. Howard and
Ruder [2018] report that their method has two major benefits. 1) The method
“significantly outperforms the state-of-the-art on six text classification tasks.” 2)
This approach is data-efficient, where the pretrained model requires ten times
less data to match the performance of a model trained from scratch on the same
dataset.

Howard and Ruder [2018] concluded that a possible future direction is to
improve the language model pretraining. Raffel et al. [2020] note that thanks to
the abundance of language modeling data on the internet, “better performance
is achievable simply by training a larger model on a larger dataset.”

1.4.2 Pretrain and Finetune
Radford and Narasimhan [2018] build on the results above. Firstly, a language
model with the transformer decoder architecture (Section 1.2.7) is used, which
extends the idea that with better language model architectures, the performance
on downstream tasks improves. The 124M-parameters pretrained model is named
GPT. Moreover, the pretraining is conducted on the BooksCorpus dataset [Zhu
et al., 2015] which contains high quality text (about one billion tokens) from
unpublished books, thus extending the idea of improvement of downstream results
by pretraining on better datasets.

Task Representation While Howard and Ruder [2018] experiment only with
the text classification task, the goal of Radford and Narasimhan [2018] is to
“learn a universal representation that transfers with little adaptation to a wide
range of tasks.” Therefore, they reduce all downstream tasks to a setup where a
text is fed into the model and the model returns a one dimensional real valued
vector. The transformer decoder creates a representation of the text input and
then the model’s representation of a special <extract> token is fed to a linear
layer (Figure 1.6). Hence during the finetuning phase, only the linear layer needs
to be randomly initialized (as it is not pretrained) and the remainder of the model
is initialized from the pretrained weights. With such a setup, the finetuned GPT
model reached the contemporary state-of-the-art performance in 9 of 12 studied
tasks.
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Figure 1.6: Representation of different tasks for finetuning GPT. Figure taken
from Radford and Narasimhan [2018]

Zero-Shot Transfer Citing the results above, Radford and Narasimhan [2018]
investigated the effectiveness of the language modeling pretraining for transfer to
downstream tasks. With the aim of observing the performance of the GPT model
in different stages of pretraining, several heuristics were designed to extract task
predictions without any change to model parameters. This sort of experiments is
called a zero-shot experiment [Palatucci et al., 2009], as the model is not finetuned
for the task (finetuned on zero examples).

“The performance of these heuristics is stable and steadily increases suggesting
that generative pretraining supports the learning of a wide variety of task relevant
functionality” [Radford and Narasimhan, 2018]. The experiments also show that
the transformer architecture is indeed more performant and more stable (smaller
variance in downstream task metrics) than the LSTM architecture (Figure 1.7).

Figure 1.7: Progression of performance on target tasks during pretraining. The
solid line depicts the performance of the transformer model, the dashed line
depicts the performance of an LSTM model. Figure taken from Radford and
Narasimhan [2018].

Library of Pretrained Models Due to large pretraining cost, the paradigm
shifts from training a custom task-specific model to pretraining a general fixed
architecture on a large language modeling dataset (where it learns general pur-
pose language features), introducing additional task-specific parameters to it and
finetuning the model for many different tasks [Liu et al., 2023]. When considering
a specific application of a language model, one can inspect a library of pretrained
models, such as HuggingFace [Wolf et al., 2020] and choose a pretrained language
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models such as GPT (discussed above) [Radford and Narasimhan, 2018], GPT-2
[Radford et al., 2019], BART [Lewis et al., 2020], or T5 [Raffel et al., 2020] and
finetune it for the downstream task.

1.4.3 Increasing the Capacity of Language Models
The pretraining of GPT-2 model [Radford et al., 2019] was another extension of
the two ideas (increase in model capacity and increase of size of the pretraining
dataset) discussed in Section 1.4.1. Firstly, a WebText language modeling dataset
was collected, which is about 10 times larger than the BooksCorpus dataset used
to pretrain the previous GPT model [Radford and Narasimhan, 2018]. Further-
more, language models with larger capacity in comparison to the original GPT
model are used. Four sizes of the model are trained, with 124M (GPT-2-small),
355M (GPT-2-medium), 774M (GPT-2-large), 1558M (GPT-2) parameters.

Zero-Shot Performance The experiments conducted by Radford et al. [2019]
focus on the zero-shot downstream performance of the GPT-2 family of models.
A task-specific input template (e.g., to use the pretrained language model for
question answering task, this input template was used: “Q:<context>A:”) is used
in order to use a language model for a downstream task (search for a templatized
model input with which the model achieves the best downstream performance is
called prompt engineering and is further discussed in Section 1.5). Similarly to the
findings presented in Section 1.4.2, it is shown that over the course of pretraining,
the language model improves in solving various downstream tasks.3 Moreover,
with the same templatized input, the downstream performance improves as a
function of model size (Figure 1.8).

Figure 1.8: The zero-shot performance of GPT-2 family of models as a function
of the number of parameters in the model. Figure taken from [Radford et al.,
2019].

Effect of Model Size Kaplan et al. [2020] explore that the language modeling
performance (measured by the validation cross-entropy loss) depends on the scale
of the dataset and the number of model parameters. Moreover the transfer im-
proves with the model size, as larger models are more efficient (fewer optimization
steps and smaller task-specific datasets are needed for effective transfer).

3The tasks evaluated by Radford et al. [2019] are question answering, summarization of text
and reading comprehension. For an introduction to these tasks, we refer the reader to the
original paper by Radford and Narasimhan [2018].
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The development in subsequent years further focused on increasing the ca-
pacity of language models by training models with greater parameter count on
greater amount of data (e.g., from 1.5B parameters GPT-2 [Radford et al., 2019]
to 8B parameters MegaTron [Shoeybi et al., 2019] to 11B parameters T5-XL
[Raffel et al., 2020]).

1.5 Prompting
While the developments in transfer learning discussed above lead to better fine-
tuning performance on many downstream tasks, the language model applicability
is still limited by the need of a large labeled in-domain dataset for finetuning
(approximately thousands of labeled examples are typically needed for sufficient
performance according to Brown et al. [2020]).

In this section we discuss an idea of a general purpose language model that
can solve any task formulated in language (Section 1.5.1) and present the GPT-3
model [Brown et al., 2020] that outperforms finetuned state-of-the-art models
in a zero-shot setting on several well studied tasks (Section 1.5.2). Next, we
explore the prompt engineering and prompt tuning approaches that leverage the
pretrained language model on a downstream task with little to no finetuning
(Sections 1.5.3, 1.5.4). Then we discuss instruction tuning and reinforcement
learning from human feedback, where the pretrained language models are adapted
to follow human instructions more effectively (Sections 1.5.5, 1.5.6).

1.5.1 General Purpose Language Models
First, we illustrate the difference between a general purpose model and a task spe-
cific model. A task-specific model is trained to infer the probability
ptask(output|input) and hence the input does not need to contain information
about the task to be performed. A general purpose model can estimate the
probability of the output text conditioned on the input text and a task specifi-
cation. E.g., for the input text “Who is the American president?” the output
text “Asked my professor at the university” should be much more probable for
the text continuation prediction task than for the question-answering task.

McCann et al. [2018] show a simple approach to this problem by using a train-
ing dataset of triples (question, context, answer), where the seq2seq model
is fed with the concatenation of question (which contains the task specification)
and the context and should produce the answer. Radford et al. [2019] hypothe-
size that a large-enough language model can learn to solve any text-to-text4 task
without explicit supervision (i.e., without finetuning the model on a task-specific
dataset), as long as the prompt (the model input) is constructed in such a way
that the model can recognize the task to be solved (see Section 1.4.3).

1.5.2 GPT-3
Brown et al. [2020] follow the ideas of increasing the model capacity and size
and improving the quality of the pretraining dataset. The GPT-3 model has

4A task where both input and output can be formulated in text.
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175B parameters, which is two orders of magnitude larger than the GPT-2 model
discussed in Section 1.4.3 and the pretraining dataset consists of 300B tokens,
i.e., 50 times more than the WebText dataset used for pretraining GPT-2.

While the zero-shot performance of GPT-2 “is still far from use-able” [Radford
et al., 2019], the GPT-3 model shows good results in the zero-shot setting and
in the few-shot setting (the prompt contains a few demonstrations of task solu-
tions, e.g., for translation task, the prompt may contain several pairs “<English
sentence>=<French sentence>”) and in the few-shot setting it even achieves
state-of-the-art performance on several datasets. In this section we focus on the
intuition behind the zero-shot and few-shot model performance, the downstream
performance of the model and the implications of using models with more than
100B parameters.

Intuition Behind Zero-Shot and Few-Shot Performance

Brown et al. [2020] present a simple intuition behind the zero-shot and few-shot
prompting. In the zero-shot prompting (i.e., the prompt contains only the natural
language description of the task and the task input), the model should recognize
a pattern that was already seen during training (e.g., adding the prefix TL;DR:
induces a summarization behavior). In the few-shot prompting, the model should
recognize a question-response pattern in the input and continue the pattern.

Implications

Based on the empirical findings by Brown et al. [2020], a new way of using lan-
guage models emerged. Instead of the transfer learning approach (pretrain and
finetune), one can easily use a pretrained language model by simply instruct-
ing it with a prompt, e.g., “Correct grammar in this sentence: <english
sentence>:”

However, due to the number of GPT-3 model parameters (175B), the hard
drive requirements to store weights (about 700GB for full 32-bit float weights)
are so large that finetuning the model for many downstream tasks is infeasible.
Similarly, as of June 2024, there is still no single GPU with a large-enough memory
to run even the inference of the model. Therefore several model parallelism
strategies [Shoeybi et al., 2019] need to be employed to distribute the computation
onto several GPUs.

To conclude, while the GPT-3 model is a display of great zero-shot and few-
shot capabilities, due to its sheer size, the infrastructure cost associated with
deploying it is so large that models of this size are deployed only by a few large
companies. Nowadays, several smaller models display zero-shot and few-shot ca-
pabilities exceeding the GPT-3 performance [Touvron et al., 2023, Bai et al.,
2023]; however, in order to deploy them on a single GPU, advanced model quan-
tization techniques are still needed [Dettmers et al., 2022a, Wu et al., 2023].

1.5.3 Prompt Engineering
As the new wave of language models is able to follow instructions, naturally one
wants to find the instruction that maximizes the performance on the given task.
Wei et al. [2022] use 10 different prompts on several common benchmarks and
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show that the best prompt on a held-out development dataset can improve the
test set zero-shot performance of the LAMDA-PT model [Thoppilan et al., 2022]
with 137B parameters by up to 5%.

Prompt engineering is an optimization method aiming to find a templatized
input that results in the most effective performance of the model on a downstream
task. While manual search of prompts is possible, Liu et al. [2023] cite several
automatic discrete prompt search methods such as mining examples similar to
the task from the pretraining dataset, paraphrasing, or generating a prompt with
another (presumably smaller) language model.

1.5.4 Prompt Tuning
The prompt engineering approach presented above has a big downside; it is not
a differentiable optimization technique. Assuming that there exists a task prefix,
i.e., a sequence of discrete tokens that improves model’s performance on a task,
which can be found by prompt engineering, we may relax the discreteness con-
straint and search for the so called soft tokens. Lester et al. [2021] and Li and
Liang [2021] add soft tokens to the embedding layer, or to all transformer layers
of the model and use a training regime where the remainder of the model is frozen
and only the soft tokens are optimized.

Prompt tuning techniques make it possible to improve the performance of the
model on a specific downstream task while keeping all the pretrained weights
frozen. Effectively, the problem with storage requirements outlined in Section
1.5.2, is fought as only a single copy of the pretrained model and a small set of
task-specific finetuned parameters has to be stored.

Prompt tuning techniques are part of a large family of techniques called PEFT
(parameter efficient finetuning), where only a small fraction of pretrained model
weights is finetuned on the downstream task [Hu et al., 2022, Dettmers et al.,
2023].

1.5.5 Instruction Tuning
Another line of improvements of the pretraining procedure is the instruction
tuning, where the language model is explicitly finetuned to follow instructions.

Wei et al. [2022] take a pretrained 137B language model LAMDA-PT [Thop-
pilan et al., 2022] and finetune it on a combination of 60 datasets which are
described via instructions. Finetuning on this combined dataset “substantially
improves zero-shot performance on unseen tasks,” beating even the few-shot per-
formance of the GPT-3 model [Wei et al., 2022].

It is shown that the zero-shot performance on unseen tasks improves with the
number of tasks on which the model is finetuned and with the size of the model
[Chung et al., 2024, Longpre et al., 2023].

1.5.6 Reinforcement Learning from Human Feedback
Pretrained and instruction tuned language models show an ability to solve tasks
described by instructions. However, these models may still produce generations
with unwanted properties, which can pose risks when deployed to uncontrolled
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environments. Reinforcement learning from human feedback (RLHF) [Ouyang
et al., 2022] is another step in improving the zero-shot prompting performance of
language models that partially mitigates the probability of generation of toxic or
biased content.

After pretraining on a huge language modeling dataset and finetuning on a
large instruction tuning dataset, Ouyang et al. [2022] add another stage, where
the model is aligned to human preferences through reinforcement learning.5

Risks Posed by Language Models

Lucy and Bamman [2021] show that when the GPT-3 model is prompted to create
a fictional story, “feminine characters are more likely to be discussed in topics
related to family, emotions and body parts, while masculine ones are more aligned
to politics, war, sports and crime.” These implicit gender and sociopolitical biases
may cause harm to humans, as e.g., model prompted to analyse a CV may be less
likely to recommend historically discriminated groups to recruiters [Weidinger
et al., 2022]. Ouyang et al. [2022] try to mitigate the risk of producing such
utterances by finetuning the language models to produce more truthful text,
without being “biased, toxic, or otherwise harmful.”

Training Procedure

The RLHF procedure is conducted on a pretrained and instruction-tuned base
model. A dataset of generations by the base model is sampled and human evalu-
ators rank these generations considering criteria such as truthfulness, helpfulness
and harmlessness. A copy of the base model that is called a reward model is
trained in the same way as pairwise ranking models discussed in Section 1.6.2.
The reward model is used as a proxy to human preferences during the reinforce-
ment learning stage.

Another copy of the base model, which we call the RLHF model, is then
trained with the proximal policy optimization algorithm [Schulman et al., 2017].
The reward, which specifies the weights update of the RLHF model, is composed
of the score assigned by the reward model and of the KL-divergence between
the distributions estimated by the RLHF model and the base model. The KL-
divergence should encourage the RLHF model to explore new regions instead of
collapsing to a single mode and to not learn to produce outputs that are too
different from those that the reward model has seen during training [Stiennon
et al., 2020].

Results

The generations by the RLHF model, are preferred by human evaluators con-
sidering the same criteria as above in comparison to outputs from either only
pretrained, or pretrained and instruction-tuned model.

5For an introduction to reinforcement learning we refer the reader to Sutton and Barto [2018]
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GPT-3.5, GPT-4, GPT-4o

The large-scale human evaluation benchmark ChatBot Arena [Chiang et al., 2024]
(further discussed in Section 3.2) suggests that proprietary models GPT-4 and
GPT-4o are among the most capable language models, while GPT-3.5 is more
price-effective and still ranks in the upper half of their leaderboard. These mod-
els are trained with the RLHF; however, due to their proprietary nature, there
is no official information on neither the architecture nor the number of model
parameters, or a training dataset. We experiment with these models in Section
5.6.

1.5.7 Direct Preference Optimization
Rafailov et al. [2023] note that “RLHF is a complex and often unstable proce-
dure,” and propose a “new parametrization of the reward model in RLHF that
enables extraction of the corresponding optimal policy in closed form.”

Instead of using reinforcement learning, they propose to align the language
model to human preferences by optimizing a specially crafted binary cross-entropy
loss (Equation 1.19) on the same dataset that is used to train the reward model in
the RLHF setup. During training, the gradient of the loss increases the likelihood
of the preferred completions yw and decreases the likelihood of the dispreferred
completions yl, while accounting for the KL-divergence.

LDPO(RL; SFT) = − E
(x,yw,yl)∼D

[︄
β log RL(yw|x)

SFT(yw|x) − β log RL(yl|x)
SFT(yl|x)

]︄
. (1.19)

1.6 Learning to Rank
In the ranking problem, we consider a dataset of pairs (x, y), where y ∈ Nn is
the ranking of candidates {x1, ..., xn} and the task is to train a model that would
learn to reproduce this ranking [Fürnkranz and Hüllermeier, 2010, Chap.-1].

Ranking cannot be directly modeled with neural networks since sorting is
not a differentiable operation. We explore two methods of training of a neural
ranking model, namely pointwise ranking (Section 1.6.1) and pairwise ranking
(Section 1.6.2).6 In our experiments (see Section 5.4), we train ranking models
for a two-stage dialogue models. In the first stage a generation model generates
several response candidates and in the second stage the candidate ranked highest
by a ranking model is selected as the final response.

1.6.1 Pointwise Ranking
Pointwise ranking [Caruana et al., 1995] is implementation-wise the simplest form
of ranking, which transforms the ranking problem into a regression problem. The
dataset of rankings is transformed to a dataset of pairs (x, y), where x is the

6There is a vast array of other possibilities that we do not discuss nor experiment with,
such as gradient-boosting ranking [Burges, 2010], list-wise methods [Cao et al., 2007], or soft
ranking [Taylor et al., 2008]. Our main reasons for not selecting these methods are the ease of
experiments and implementation.
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candidate and y is its score. The ranking model r is trained with mean squared
error loss to estimate a score of input x which is close to the gold score y (Equation
1.20).

L =
∑︂

(x,y)∈D
(y − r(x))2 (1.20)

The main difficulty of this approach lies in transforming a dataset of rankings
into a dataset of artificial scores.

1.6.2 Pairwise Ranking
In contrast to pointwise ranking, the main idea of pairwise ranking is to model the
ranking problem as a binary classification problem, where the task is to choose
which candidate out of a pair should be ranked higher without explicitly providing
scores of candidates. Hence, the difficulty of an artificial transformation from a
dataset of rankings to a regression dataset discussed above is overcome. However,
the raw dataset of rankings still has to be transformed to a dataset, where each
sample consists of a pair of candidates (x1, x2) and their respective ranks (y1,
y2).

We experiment with two different training schemes for the pairwise ranker
which are inspired by RankNet [Burges et al., 2005] and LambdaRank [Burges
et al., 2006].

Pairwise Ranking as Binary Classification

In both pairwise training schemes, during training the ranking model is fed with
two inputs, (x1, x2), which are associated with target ranks (y1, y2). If the first
input is higher in the ranking (y1 < y2), then the ranking model r should assign it
higher score (r(x1) > r(x2)). It follows that if we treat the indicator [[y1−y2 ≤ 0]]
as a label and difference (r(x1) − r(x2)) as a model prediction, we can model
the ranking problem as a binary classification over pairs of inputs. Binary cross
entropy (Equation 1.21) is a natural choice of loss function for this task.

ŝ = sigmoid(r(x1)− r(x2))
s = [[y1 − y2 ≤ 0]]

LRankNet = −s log(ŝ)− (1− s) log(1− ŝ)
(1.21)

RankNet

RankNet [Burges et al., 2005] is trained exactly in the way explained above.
During training, pairs of inputs are fed into the network and binary cross-entropy
is used as a loss function. During inference, raw model scores are predicted for
individual candidates, then the candidates are simply ranked according to the
predicted scores, with the top-scoring one coming first.

We note that in the reinforcement learning from human feedback (discussed
in Section 1.5.6) the reward models are trained with the same pairwise ranking
loss from Equation 1.21.

The main deficiency of the RankNet optimization scheme is that it directly
optimizes the pairwise correct metric (percentage of correctly ordered pairs) and
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the full ranking is only optimized indirectly. We illustrate the deficiency on
an artificial example. Suppose there are two pairs of incorrectly ordered input
candidates (x11 , x21), (x12 , x22) and their corresponding orders are (2, 3), (1, 8).
Intuitively, the loss should punish the model much more for making an error in
ranking of the second pair. However, the RankNet training loss punishes both
pairs exactly the same way.

LambdaRank

Intuitively, errors in pairs where the difference of target ranks is greater should
produce a stronger optimization signal. Burges et al. [2006] introduce Lamb-
daRank which is an approach that aims to optimize more effectively the perfor-
mance of a ranking model in any metric over rankings and relies on the same
intuition.

In the LambdaRank optimization scheme, the RankNet loss of each input pair
is multiplied by a scaling factor, which is greater if reordering of the pair causes
greater difference in target metric (Equation 1.22).

LLambdaRank = −|∆switch(x1, x2)|LRankNet (1.22)
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2. ConvAI2 Dataset
In this thesis, we focus on open-domain dialogue modeling. We have chosen the
ConvAI2 dataset [Zhang et al., 2018] for end-to-end dialogue model training as it
is a popular benchmark on non-task-oriented open-domain chat, with a specific
accent on maintaining consistent personality, which is one of this thesis aims.
This chapter begins with a list of other open-domain dialogue modeling datasets
(Section 2.1). We follow with an introduction to the ConvAI2 dataset (Section
2.2). We discuss the dialogue collection (Section 2.3) and the dataset statistics
(Section 2.4). Lastly, we manually analyze the dataset and discuss some issues
in the dataset samples (Section 2.5).

2.1 Open-Domain Dialogue Datasets
To train open-domain conversational systems, various datasets have been col-
lected, each focusing on different aspect of human conversation. To provide
further context for our own work, we introduce some of the most influential
open-domain dialogue datasets.

Empathetic Dialogues The Empathetic Dialogues dataset [Rashkin et al.,
2019] is composed of triples (emotion, situation, dialogue). In each dialogue, one
of the speakers describes the situation while expressing an emotion, while the
other speaker, called a listener responds in empathetic way. The dialogue model
is trained for the listener role and it should implicitly learn to respond in an
empathetic way.

Wizards of Wikipedia Dinan et al. [2019] focus on knowledge grounding of
open-domain dialogue. The Wizards of Wikipedia is a crowdsourced dataset
composed of triples (topic, knowledge, dialogue). The interlocutors discuss a
topic. One of the interlocutors is called a wizard and has access to the knowledge
- a set of sentences from Wikipedia articles - The other interlocutor is called an
apprentice and they play a role of “a curious learner, eager to chat”. The dialogue
model is trained for the wizard role, where the model should use the information
in the knowledge to respond to the apprentice.

BlendedSkillTalk Responding in an engaging way, empathetically, with a con-
sistent persona and using knowledge are all desirable properties of an open-
domain dialogue model. Smith et al. [2020] note that these properties are mod-
eled on separate datasets and “a good open-domain conversational agent should
be able to seamlessly blend them into one cohesive conversational flow.” In or-
der to train a model to blend the aforementioned skills, the BlendedSkillTalk
dataset is collected, where each sample contains a dialogue, persona description
and a Wizards-of-Wikipedia-like unstructured knowledge text. In the dialogues,
the interlocutors should maintain a consistent persona and be empathetic, while
grounding their responses in the provided knowledge.
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Dialogue Utterances per Dialogue
ConvAI2 14.7
Wizards of Wikipedia 9.0
Empathetic Dialogues 2.6
BlendedSkillTalk 11.2
Multi-Session Chat 43.0

Table 2.1: Average number of utterances in the discussed datasets.

Multi-Session Chat Dialogues from all datasets mentioned above are rela-
tively short (Table 2.1). Xu et al. [2022] cite this as a major shortcoming and
collect a dataset, where crowd workers talk in long dialogues spanning over mul-
tiple sessions. A session is a sub-dialogue consisting of at most 14 utterances.
After a number of hours, the crowd workers are paired again, while having access
to all the previous sessions, i.e., they may address knowledge from past sessions,
which creates dialogues, which are on average three times longer than dialogues
from the ConvAI2 dataset.

2.2 ConvAI2 Dataset
ConvAI2 dataset [Zhang et al., 2018] contains multi-turn conversations, each
between two humans. The interlocutors are provided with a character description
composed of 3 to 5 sentences (these descriptions are called personas) and are asked
to play this character in the conversation. In the dialogues, the interlocutors
discuss their characters and try to find out information about the other person
(Table 2.2).

2.2.1 Motivation
Zhang et al. [2018] note that at the time of collection of the dataset, the main
problems of sequence-to-sequence generative dialogue models were lack of speci-
ficity (for instance, instead of answering the question or providing an opinion,
the bot simply states “I don’t know.”) and lack of consistent personality. (for
instance, at the start of the conversation, the bot is an avid reader while at the
end it does has never read a single book). Similar cases of inconsistencies have
previously been demonstrated by Li et al. [2016c] on a conversation between a
human and a contemporary state-of-the-art dialogue model, where the model
answers the same question with three contradictory responses (Table 2.3).

Zhang et al. [2018] create the PersonaChat dataset to tackle both of these
issues by including profile information. In Table 2.4 we can see an excerpt from a
sample from the dataset. A model trained on this sample should learn to use the
relevant information from the persona. E.g., when generating the third utterance
“cool, i am currently studying and enjoy going fishing in my spare time ,” the
model should learn to reuse the information from its persona.
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(a) Persona A
No. Trait
1 i’m a christian.
2 my father used to work for

microsoft.
3 my favourite band is kings

of leon.
4 i work in the it industry.

(b) Persona B
No. Trait
1 i go visit them sometimes.
2 my mother is a social

worker for the school sys-
tem.

3 my best friend lives in a big
city.

4 i work at a grocery store.
5 she likes to grow plants in

her garden.

(c) Dialogue
Who Turn
A good morning . how is everything ?
B hello there . it is good . i just had work at a grocery
A sales is difficult in my opinion . i . t . is what i do .
B i love gardening . and growing plants in the garden
A bless your heart ! flowers are beautiful
B thank you . just like living in a big city
A i live off of the bible .
B oooh . that’s good . have you eaten it
A why would i eat the old testament ? that’s kinky
B maybe . it tastes good . or well . bread
A wut ? lol changing the topic . kings of leon is an awesome

band
B oh yea ? i visit them sometimes

Table 2.2: Sample 4528 from the training split of the dataset.
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Who Turn
User Where do you live now ?
Model I live in Los Angeles.
User In which city do you live now ?
Model I live in Madrid.
User In which country do you live now ?
Model England, you ?

Table 2.3: Inconsistent responses generated by a 4-layer Seq2Seq LSTM model.
Conversation snippet taken from Li et al. [2016c]

No. Trait
... ...
5 i watch foreign movies and

tv shows.

(a) Persona B

No. Trait
... ...
3 i am a student.
4 i like to go fishing.

(b) Persona A
Who Turn
A hi , tell me a little about yourself !
B hi i love watching spanish movies and tv shows
A cool , i am currently studying and enjoy going fishing in my

spare time .
... ...

Table 2.4: Sample 4564 of the training split of the ConvAI2 dataset.

2.2.2 Dataset Versions
There are two official versions of the dataset. The PersonaChat dataset [Zhang
et al., 2018]1 and the ConvAI2 dataset [Dinan et al., 2020].2 The ConvAI2 dataset
is a preprocessed version of the PersonaChat dataset, used in the ConvAI2 shared
task competition.3 From our analysis, the preprocessing only includes contracting
long verb forms (“I have” → “I’ve”) and no data filtering is applied (the number
of dialogues and utterances, as well as persona descriptions is the same in both
datasets). Moreover, the ConvAI2 dataset does not contain the test split, which
was made private for the competition and was not released afterward.

We use the ConvAI2 dataset so that our measured results are comparable
to related works (see Chapter 4) which report their evaluation on the ConvAI2
version of the dataset, in line with the previous competition. As automatic met-
rics used in the evaluation (see Chapter 3) are sensitive to subtle preprocessing,
metrics measured on the PersonaChat version of the dataset are not comparable.

1The PersonaChat dataset can be downloaded from http://parl.ai/downloads/
personachat/personachat.tgz (accessed: 07/07/2024)

2The ConvAI2 dataset can be downloaded from http://parl.ai/downloads/convai2/
convai2_fix_723.tgz (accessed: 07/07/2024)

3http://convai.io/2018/
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2.3 Data Collection
The dataset collection process by Zhang et al. [2018] ran in two stages on Amazon
Mechanical Turk [Crowston, 2012]. In the first stage, the crowd workers were
asked to create a character description, consisting of 5 sentences, at most 15
words each. They were specifically told to invent fictional information and not to
include any personal information about themselves. An example persona collected
in the first stage is displayed in Table 2.5.

I am a vegetarian.
I like swimming.
My father used to work for Ford.
My favorite band is Maroon5.
I got a new job last month, which is about advertising design.

Table 2.5: Example persona provided to the crowd workers.

In the second stage, the crowd workers were randomly paired, each crowd
worker was provided with a persona and asked to “chat with the other person
naturally and try to get to know each other” [Zhang et al., 2018].

Zhang et al. [2018] noticed that the crowd workers tend to talk only about
the given character description and additionally instructed them to “Both ask
questions and answer questions of your chat partner.” The crowd workers were
prevented from copying from their persona by a simple regular-expression-based
filtering implemented in the crowdsourcing chat environment.

For each true utterance in the dataset, a set of additional 19 negative candi-
dates is included as a mean of evaluating retrieval based dialogue models (these
models do not generate new text but pick the best response from a set of can-
didates [Lowe et al., 2015]). These candidates are randomly sampled from other
dialogues in the training dataset.

2.4 Statistics of the PersonaChat Dataset
The ConvAI2 dataset contains 9,939 dialogues composed of 147,040 utterances,
divided into the training and validation splits.

Split # Dialogues # Utterances
Training 8,939 131,438
Validation 1,000 15,602

Table 2.6: Number of samples in dataset splits

2.4.1 Personas
Zhang et al. [2018] state that during the crowd sourcing of the dataset, a set of
1055 personas was collected, 955 of which are used for the training split of the
dataset and a hundred for the validation split.

After several preprocessing steps, working with the ConvAI2 version of [Dinan
et al., 2020] (we remeasured the results on the PersonaChat version of the dataset,
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and found out that these two versions of the dataset do not differ in this regard),
we arrive at almost the same numbers, counting 956 different personas for the
training set and a hundred for the validation set. In this section, we look at
the differences between the statistics measured on the ConvAI2 dataset and the
statistics published by Zhang et al. [2018].

Length of Personas Contrary to the claim that each persona consists of five
sentences, personas in the available dataset contain any number between three
to five profile sentences (Figure 2.1). There are 5962 distinct sets of persona
descriptions in the training set, 541 in the validation set, but they are based on
overlapping subsets of five sentences. To get to the same statistics as reported in
the original paper, we applied the preprocessing steps listed below.
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Figure 2.1: Total number of personas of specified length, where each occurrence
of persona in the dataset is counted separately.

Persona Subsets We counted all the subsets of a longer persona as one occur-
rence (see Table 2.7).

No. Trait
1 i work for an architect firm.
2 i love to cook.
3 i am looking for someone.
4 i have three dogs.
5 i enjoy fishing.

(a) Sample 2226.

No. Trait
1 i enjoy fishing.
2 i work for an architect firm.
3 i am looking for someone.
4 i love to cook.

(b) Sample 2227.

Table 2.7: Two persona sets from the training split of the dataset. To get to
the same statistics as reported by Zhang et al. [2018], we count both of these
personas as a single unique instance.

Typographical Differences If two personas differ only by one of these differ-
ences in the character description sentences, we count them as a unique instance:

1. contractions (its/it is/it’s)
2. typographical errors (participaed/participated)
3. typographical errors in proper nouns (nightfish/nightwish)
4. possesives (“lawyer s office”/“lawyers office”/“lawyer’s office”)
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We used regular expressions to correct for these kinds of differences and after
the corrections we count 956 unique personas in the training dataset, a number
which is almost the same as the number reported by the authors (955). In our
experiments in Chapter 5 we use the original version of the dataset.

2.4.2 Dialogues
Automatic metrics that are commonly reported on this dataset are computed at
the word-level, hence an analysis of word level statistics may give us insight on
what the models could learn on the dataset. We use the official ConvAI2 tokenizer
for counting words (the tokenizer specifics are further discussed in Section 3.1.1).

Statistic Training Validation
Mean Word Length 9.64 9.83
Median Word Length 9 10
Word Entropy 6.12 6.03
Percentage of Questions 31.27% 30.09%

Table 2.8: Word-Level Dataset Statistics

The distributions of lengths of the training and validation splits are similar
(Table 2.8). It is insightful to look at the examples with minimum and maximum
number of words. The example with the minimum number of words (Table 2.9)
contains a dialogue with a bizarre situation, where person A does not know what
they do for living. In the example with the maximum number of words (Table
2.10) person B is overly specific.

Who Turn
B what do you do for a living ?
A not sure .
B ? ?
A what about you ?
B you do not know what you do ?

Table 2.9: Sample 8395 from the training split. Highlighted row contains the
shortest utterance in the dataset with 0 words as counted by the ConvAI2 tok-
enizer [Dinan et al., 2020].

Who Turn
A hi , can i paint you ?
B sure ! but do not paint me with a cat , i hate cats .
A why ? i was going to paint you with taylor swift .
B i do not like taylor swift , my dad is always listening to her music

and i do not get along with my dad .

Table 2.10: Sample 240 from the validation split. Highlighted row contains the
longest utterance in the dataset with 23 words.
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2.5 Data Quality
During our experiments, we examined hundreds of randomly picked samples from
the training split of the dataset. This made it apparent to us that the data has
some quality issues that may make tranining models more challenging. We list
the issues below, with examples.

Ordering of Personas It is clear that personas were written sequentially, i.e.,
individual sentences do not make sense without context. However, sometimes
personas in the dataset come in erroneous order (Table 2.11).

No. Trait
4 i work at a grocery store.
2 my mother is a social worker for the school system.
5 she likes to grow plants in her garden.
3 my best friend lives in a big city.
1 i go visit them sometimes.

Table 2.11: Persona from sample 4528 from the training split of the dataset. The
values in the first column display the original ordering of the persona

Grounding Common ground refers to the set of facts known to both interlocu-
tors in the dialogue that they agree on [Jurafsky and Martin, 2024]. Some of
conversations from the dataset are entirely based on outside-world events. E.g.,
in Table 2.12 the interlocutors discuss events in Florida. Without the context (in
2017, during the data collection, there was hurricane Irma in Florida), sentences
like “living in florida so it is difficult not to worry .” do not make much sense.

Who Turn
A good afternoon , how are you today ?
B it is a good afternoon . i am fine , how bout yourself ?
A ok , just worried about this hurricane .
B ya it is very scary . but god is in control
A true . living in florida so it is difficult not to worry .
B oh no ! i am so sorry . are you evacuating ?
A no , we aren’t in an evacuation zone yet so we are ok
B that’s good . hope you and your family are ok
A we should be . just worried about power outages . i love to cook good

meals .

Table 2.12: Sample 890 from the train dataset, where interlocutors make a refer-
ence to a hurricane in Florida, which is not mentioned anywhere in the context.

Situations when the crowd worker is asked about preferences or personal back-
ground that is not mentioned in the persona is another instance of introduction
of not grounded responses to the dataset dialogues. In these situations crowd
workers face a dilemma whether to come up with some ungrounded fact, or re-
spond unspecifically. We have already seen an example of an unspecific response
which completely confused the conversation partner (Table 2.9).
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In Table 2.13 the crowd worker chooses to come up with ungrounded fact
(neither the information about food preferences nor music preferences is in the
persona description of person A).

Who Turn
B that sounds fun ! what would you have for dinner ? i had italian . i

love it !
A i was in the mood for some hamburgers tonight
B yum ! who your favorite band ? mine is iron maiden .
A i actually have been listening to old jazz lately . whats your favorite

music ?

Table 2.13: Sample 3279 from the training dataset, where person A answers with
completely unfounded facts.

Since the average length of a dialogue is only 15 turns (Table 2.1), the dialogue
does not contain opportunities to further discuss mentioned facts. Hence the
objective of making open domain dialogue systems more consistent (Section 2.2.1)
may not be fully achieved.

Language Quality The dialogue collection was conducted in a social-network-
like conversation setting. The crowd workers used an informal language common
to social networks (Figure 2.2).

whats twats the name an location of your favorite place ?
oh you married ? you farm ? i love swimming have since a child
i am waiting on my personal trainer to arrive we are going to ride bikes

Figure 2.2: Ungrammatical social-network-like utterances from the ConvAI2
dataset.

Unsafe Data No safety measures were put in place during the dataset collec-
tion. We list two issues that we found during manual analysis of the dialogues
in the dataset: 1) harmful advice (Tables 2.14, 2.15), and 2) aggressive language
(Table 2.16)

Who Turn
A i am a middle school teacher for 8th grade students .
... ...
B oh sounds fun . i heard that kids behave well when you give them

sedatives .

Table 2.14: Sample 2873 from the training split of the dataset, where person B
advises middle school teacher to give sedatives to their kids.

World Knowledge The facts mentioned in the persona should serve as conver-
sation starters. However, if a crowd worker happens to not know any additional
information about these facts and if their conversation partner asks further, they
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Who Turn
B nice ! i have never done drugs before
A drugs are the best . i highly recommend advil
B i do not know where you buy drugs at
A walgreenshas the best prices . and a good rewards card
B i think there is one nearby me !

Table 2.15: Sample 830 of the training split of the dataset, where person A
recommends drug buying options.

Who Turn
A i have two dogs now , they are better than most people .
B not better than my two sons . meet me outside how about that ?

Table 2.16: Sample 7914 of the training split of the dataset, where person B
wants to start a fight.

have to reveal that they do not know anything about their personality (Table
2.17).

Who Turn
B funny ! do you like music ? the muggers is my favorite band
... ...
A what kind of music is muggers ?
B it is the assigned character to the left haha i have no idea

Table 2.17: Sample 5468 from the training split of the dataset, where person A
reveals that they are chatting in the Amazon Mechanical Turk environment.
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3. Metrics
In this chapter, we discuss metrics that assess the quality of open-domain dia-
logue systems. Automatic metrics discussed in Section 3.1 can be computed fast
and without any explicit supervision; however, their effectiveness in comparing
different dialogue models is limited. On the other hand human evaluation of a
dialogue model (Section 3.2) is our target measure of model quality, but prepar-
ing and conducting it is difficult, time-consuming and expensive. Both methods
are therefore combined in practice. Automatic evaluation is favored for model
development, but the final product is verified using human evaluation.

3.1 Automatic Metrics
We discuss three sets of automatic metrics in this section. The first set are
metrics which were selected by Dinan et al. [2020] to evaluate the performance
of models on the ConvAI2 dataset, namely perplexity per token (Section 3.1.1),
word-level F1 score (Section 3.1.2) and hits@1 on next utterance classification
(Section 3.1.3). We adopt all the ConvAI2 metrics for this thesis. The second
set are additional metrics that we use in this thesis to explain the generation
performance of the model (Section 3.1.4). Lastly, to provide a broader context,
we discuss other open-domain dialogue metrics that were not used (Section 3.1.5).

3.1.1 Perplexity per Token
Language models are trained by minimizing the cross-entropy loss H between a
target one-hot distribution of tokens p∗(xt|x1:t−1) and the estimated distribution
of tokens pLM(xt|x1:t−1) (as discussed in Section 1.2.3). The perplexity per token
[Jelinek et al., 1977] of a probability model refers to exponentiated cross-entropy
between a data distribution and an estimated distribution by a language model
(Equation 3.1).

H(p∗, pLM) = 1
N

N∑︂
i=1

∑︂
x∈V

p∗(x|x1:i−1) ln pLM(x|x1:i−1)

= 1
N

N∑︂
i=1

ln pLM(xi|x1:i−1)
(3.1)

Hence, it is a metric that is directly optimized during the training of a language
model. Intuitively, if a language model has perplexity per token P , it can be
thought of as selecting uniformly and independently among P possibilities for
each token.

P (pLM) := eH(p∗,pLM ) (3.2)
However, perplexity per token cannot be used for comparison of two models

which use different tokenizers. We show the drawbacks of such an approach on an
artificial example by Sabrina J. Mielke.1 We consider two different subword tok-
enizations of the phrase “the deforestation,” t1 = [the, de@@, forest@@, ation,

1https://sjmielke.com/comparing-perplexities.htm; accessed: 06/07/2024.

38

https://sjmielke.com/comparing-perplexities.htm


<EOS>] and t2 = [the, defor@@, estation, <EOS>] and two corresponding lan-
guage models trained with these tokenizations. Let us assume that the per-token
perplexities indicate that the model trained with tokenization t1 is better.

pplt1 = 19
pplt2 = 24

(3.3)

We compute the per-token negative log likelihood by taking natural logarithm
of the per-token perplexity. Afterward we multiply the per-token negative log
likelihood by the number of tokens to get phrase-level negative log likelihood.
We see that the phrase-level negative log likelihood H1 is higher than H2, i.e.,
the ordering of models is the opposite.

H1 = ln pplt1 · 5 ≈ 14.7
H2 = ln pplt2 · 4 ≈ 12.7

(3.4)

Therefore when using perplexity per token to compare models with different
tokenizers, either the per-dataset negative log likelihoods must be used, or a
common tokenizer must be agreed upon. E.g., if we agree on a tokenizer that
would split the sentence into t3 = [the, deforestation, <EOS>], then we get the
same order of the two models as with phrase-level negative log likelihood.

pplw
1 ≈ exp

H1

3 = 134.4

pplw
2 ≈ exp

H2

3 = 68.9
(3.5)

Perplexity-per-word can be computed either in the micro-average or the mac-
ro-average setting. In the macro-average setting, we accumulate the total un-
normalized cross-entropy and the number of tokens and at the end we compute
the perplexity ppl = exp H

#tokens . In the micro-average setting, we compute the
perplexity for each sample and then at the end we take the mean of all the
perplexities.2

ConvAI2 Tokenization The perplexity per token on the ConvAI2 dataset
[Dinan et al., 2020] is calculated by a published tokenizer in the macro-average
setting. The ConvAI2 tokenizer operates on a word-level (see Section 1.2.1) and
stores a vocabulary of common words. 0.49% of all words in the ConvAI2 dataset,
which do not fit the tokenizer’s vocabulary, are mapped to an unknown token.
Words mapped to unknown token, as well as the end-of-sequence token are not
considered when computing the perplexity.

3.1.2 Word-Level F1 Score
Word-level F1 score refers to a modification of a commonly used binary classifi-
cation metric which is computed on the model-generated word sequences. First,
we present the F1 score computation for a binary classifier, then we extend the
definition to generated word sequences.

2We mention the micro-average setting as it is a common measure in frameworks such as
HuggingFace, where the cumulative cross-entropy in training is reported as an average of per-
batch cross-entropies.
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The predictions of the binary classifier are divided into four categories (false
and true positives, abbreviated to FP and TP respectively and false and true
negatives, abbreviated to FN and TN) depicted in Table 3.1. First, precision (the
proportion of correct predictions among all predictions) and recall (the proportion
of correctly identified positive instances among all actual positive instances) are
computed. The F1 score is then calculated to combine these metrics (Equation
3.6).

Prediction
True Label True False

True TP FP
False FN TN

Table 3.1: Types of errors of a binary classifier.

Precision = #TP
#TP + #FP

Recall = #TP
#TP + #FN

F1 = 2 · Precision · Recall
Precision + Recall

(3.6)

The word-level F1 measure is based on the general F1 measure defined above,
comparing a generated text (word sequence) to a reference human-written se-
quence (label). It uses specific definitions for true positive, false positive and
false negative based on matching the reference, which we explain via the follow-
ing examples:

Example 1 Let us assume that the word “word” occurs in both the reference
and the prediction (see Table 3.2). Since it occurs three times in the reference,
the first three occurrences in the prediction are counted as true positives, any
other occurrences in the prediction are counted as a false positive.

Prediction: “word word word word”
True Label: “word word word”

Table 3.2: There are more occurrences of “word” in the prediction than in the
reference.

Example 2 Now, let us look at the prediction in Table 3.3. The first three
occurrences of word “word” in the prediction are counted as true positive. The
one occurrence that is missing from the prediction is counted as a false negative.

Prediction: “word word word”
True Label: “word word word word”

Table 3.3: There are more occurrences of “word” in the reference than in the
prediction.
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3.1.3 Next Utterance Classification
Given a dialogue context, next utterance classification is a binary classification
task to distinguish the positive candidate (the true next response in the dialogue
from the dataset) from negative candidates (which may be randomly sampled
from other dialogues in the dataset or some other source). For instance, each
sample in the ConvAI2 dataset is accompanied by 19 negative candidate responses
sampled from other dialogues in the dataset (see Section 2.3).

We assume that a dialogue model either directly produces a ranked list of all
the candidates within the example, or assigns each candidate a score and we can
sort the candidates by the score assigned. The performance of a dialogue model
is measured by the hits@1 metric. If the positive example is ranked at the top of
the list, then classifier receives one point, otherwise it receives zero points. The
final result is the average over the entire dataset.

3.1.4 Other Employed Metrics
While the word-level F1 score (Section 3.1.2) gives some information about the
dialogue model generation performance, we used several other simple metrics to
further analyse the generations of the model. These focus more on the basic prop-
erties of the generated texts and do not need comparison to reference responses
from the dataset.

Distinct-1, Distinct-2 The Distinct-13 and Distinct-2 metrics [Li et al., 2016b]
compute the degree of diversity in generated outputs. They are defined as
the fraction of the number of unique generated tokens (Distinct-1) or bigrams
(Distinct-2) and the total number of words in the generated sentence (Equation
3.7).

distinct-n = # distinct n-grams
# total tokens (3.7)

Persona-Copying The persona-copying metric is a ConvAI2 dataset [Dinan
et al., 2020] specific metric that measures the average number of 4-grams per
generation that are copied from sentences in the persona (see Section 2.2).

Fraction of Questions Fraction of questions is the proportion of the number
of generated outputs containing a question mark to the total number of generated
outputs.

Average Length in Words Average length in words indicates the average
number of words in generated outputs as measured by the ConvAI2 tokenizer
[Dinan et al., 2020] discussed in Section 3.1.2.

3The Distinct-1 metric measures the same quantity as the type-token ratio.
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3.1.5 Alternative Metrics
In this section we list several other metrics that are used to evaluate open-domain
dialogue models. For brevity, we present only an example for each whole class of
similar metrics.

Word overlap metrics Word overlap metrics measure the co-occurence of
characters, words or n-grams in the generation and the ground truth response,
similarly to the word-level F1 metric discussed in Section 3.1.2. The BLEU score
[Papineni et al., 2002] is a good example, focusing on n-gram precision. In Equa-
tion 3.8, the pn refers to the n-gram precision, which is calculated similarly to
the word-level precision discussed in Section 3.1.2. Since precision favors shorter
sequences (when fewer tokens are produced, fewer false positive n-grams are pro-
duced) a separate term, the brevity penalty BP is introduced to penalize short
sentences.

BP = emin(1− |true response|
|generation| ,0)

BLEU = BP · exp(
N∑︂

n=1
wn log pn)

(3.8)

Other word-overlap metrics used include ROUGE [Lin, 2004], METEOR [Ba-
nerjee and Lavie, 2005] or ChrF [Popović, 2015]. We do not use any of these
metrics since they are generally stricter than word-level F1 and hence not partic-
ularly well suited for a task as open-ended as open-domain dialogue generation
(most of these were designed for machine translation, where the range of possible
responses is much lower) [Novikova et al., 2017].

Consistency Scores Consistency scores are based on natural language infer-
ence. Madotto et al. [2019] train a BERT model [Devlin et al., 2019] on the
DNLI dataset [Welleck et al., 2019] (further discussed in Section 4.4.1), to pre-
dict whether the generation of the model directly follows (entails), contradicts
or is neutral to any sentence in the persona description. Each contradiction con-
tributes -1 to the metric, each entailment contributes +1 and neutral relationship
does not contribute anything.

NLI(g, pi) ∈ {−1, 0, 1}

C(g) =
|P |∑︂
i=1

NLI(g, pi)
(3.9)

Models with higher scores generate utterances that follow the persona descrip-
tions more and contradict them less. Madotto et al. [2019]’s metric is related to
similar metrics for other tasks [Dziri et al., 2019, Dušek and Kasner, 2020]. We
stick to more basic metrics in our own experiments due to their implementation
simplicity and speed.

Classifier Metrics Another set of metrics uses classifiers, typically based on
pretrained models. Mehri and Eskenazi [2020] finetune the RoBERTa model [Liu
et al., 2019] on the next utterance classification task (discussed in Section 3.1.3)
on the PersonaChat dataset [Zhang et al., 2018]. Afterwards the finetuned model
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is used to estimate the probability of generated sequences. It is shown that such
judgments correlate well with human annotators. Other examples of this class of
metrics are ADEM [Lowe et al., 2016], or RUBER [Tao et al., 2018].

Besides a more complex implementation and higher computation costs, these
metrics may not generalize well to different models or datasets [Sai et al., 2019].

Evaluation Based on Large Language Models The most recent trend is
evaluating chat models using LLMs. Mendonça et al. [2023] use ChatGPT (dis-
cussed in Section 1.5.6) in an ensemble with XLM-RoBERTa [Conneau et al.,
2020] to evaluate generations of models at the DSTC 11 competition [Rodŕıguez-
Cantelar et al., 2023]. This ensemble provides evaluations which are best cor-
related with human evaluation across all the submissions to the competitions.
However, the correlation still remains relatively low (0.4-0.5 range) and these
metrics incur even higher computation costs than the previous types.

3.2 Human Evaluation
As discussed in Section 3.1.5, correlation of automatic metrics with human judg-
ments on open-domain dialogue is still relatively low. On the other hand, human
evaluation is the ultimate way of determining whether a given dialogue model is
good. Human evaluation setups for dialogue are not standardized. The evalua-
tion may consider the overall quality, or assess specific criteria such as readability,
coherence, naturalness, or engagement [Santhanam and Shaikh, 2019], however,
Howcroft et al. [2020] show that researchers attribute different meanings to these
terms, and hence e.g., results in readability are not comparable across papers.
We discuss the most general division into single-turn and multi-turn evaluation
and into direct rating and relative ranking on a few examples.

Single-Turn Rating In the single-turn rating setting, the evaluator is pre-
sented with a dialogue context (the dialogue context may be complemented by
additional information such as persona information for evaluation of systems on
the ConvAI2 dataset [Dinan et al., 2020]), and a response to evaluate. For in-
stance, the human evaluation of the P2 Bot [Liu et al., 2020] is conducted in
a setting where the evaluator is presented with the dialogue context, bot’s per-
sona and a generated response by a single model and assesses the quality of the
generation on a Likert scale from 1 to 4.

Single-Turn Ranking In the single-turn ranking setting, the evaluator ranks
responses from several models. In the ChatBot Arena [Chiang et al., 2024], an
online evaluation tool, the evaluator asks a question and is presented with two
generations by anonymised dialogue models. Their task is to evaluate which
generation answers their question better and can choose from four possibilities:
“A is better”, “B is better”, “Tie”, “Both are bad”. These pairwise evaluations
are aggregated across model pairs and an ELO ranking is used to determine the
best model. We use the single-turn ranking setting for evaluation of our models
(see Section 5.7).
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Multi-Turn Rating In the multi-turn rating setting, the evaluator may chat
with the model for few turns and afterwards assess the quality of the whole
dialogue. The multi-turn setting evaluates a dialogue model on its true designated
task.

A multi-turn human evaluation was conducted in the ConvAI2 competition
[Dinan et al., 2020] and the results decided the overall winner of the competition.
The human annotator is paired with a model and instructed to “chat and get to
know their partner.” After a short conversation (up to 8 utterances) the evaluator
is asked “How much did you enjoy talking to this user?” on a scale of 1-4.
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4. Related Work
In this chapter we discuss selected models previously reported on the ConvAI2
dataset. In Section 4.1 we review the results of automatic metrics reported on
the ConvAI2 dataset. We follow with a discussion of selected models which
inspired us for our experiments conducted in Chapter 5. We experiment with
multi-task finetuning conducted by [Wolf et al., 2019] that we discuss in Section
4.2. The decoding scheme used in this approach inspired us to train a separate
ranking model. Liu et al. [2020] use reinforcement learning to improve their
model (Section 4.3), which inspired us to try the direct preference optimization
finetuning. Lastly, we discuss the LMEDR model, which reaches the state-of-
the-art performance in all the automatic metrics on the ConvAI2 dataset [Dinan
et al., 2020]. We directly compare to LMEDR in our experiments, and use the
model’s outputs as basis for further reranking.

4.1 Results of Automatic Metrics
In Table 4.1 we see the reported performance of various models on the ConvAI2
dataset. We only briefly describe BART [Lewis et al., 2020] and DialogueDodeca
[Shuster et al., 2020] below, since except for pretraining on a different dataset,
they do not introduce any specific dialogue modeling related novelty. The rest of
the models is described in detail in the following sections.

BART Lewis et al. [2020] introduce the transformer encoder-decoder (see Sec-
tion 1.2.7) BART model and reach the contemporary state-of-the-art perplexity
and F1 score by finetuning with language modeling objective.

DialogueDodeca Shuster et al. [2020] train a transformer encoder-decoder
model (see Section 1.2.7) on 12 different dialogue modeling datasets including
the ConvAI2 dataset.

Model #Params F1 score PPL hits@1
TransferTransfo [Wolf et al., 2019] 124M 19.09% 17.51 82.1%
P2 Bot [Liu et al., 2020] 124M 19.77% 15.12 81.9%
BART [Lewis et al., 2020] 406M 20.72% 11.85 -
DialogueDodeca [Shuster et al., 2020] 87M 21.3% - -
LMEDR [Chen et al., 2023] 406M 21.99% 10.99 89.5%

Table 4.1: Performance of models on automatic evaluation on the ConvAI2
dataset [Dinan et al., 2020].

4.2 TransferTransfo
The TransferTransfo approach [Wolf et al., 2019] is the winner of the automatic
metrics part of the ConvAI2 competition [Dinan et al., 2020]. Wolf et al. [2019]
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finetune the pretrained GPT model [Radford and Narasimhan, 2018] (see Sections
1.4.1-1.4.2).

In addition to standard token and position embeddings a separate set of di-
alogue state embeddings is trained so that the model could learn to distinguish
parts of the input corresponding to the persona description, the past dialogue
context and the response (Figure 4.1).

I    like    to    ski    Hello    !    How    are    you    today    ?    I    am    good    thank    youWord
Embeddings

Dialog state
Embeddings

Tokens
Embeddings

Positional
Embeddings

persona tokens past dialogue context tokens response tokens

Figure 4.1: The final embedding that is processed by the GPT backbone model
is a sum of three separate embeddings. Dialog state embeddings are randomly
initialized at the start of finetuning. Figure taken from Wolf et al. [2019].

The finetuning is conducted in a multi-task setup, where the loss is a weighted
sum of multiple components. In Section 2.3 we mentioned that for each utter-
ance a set of 19 negative candidates is randomly sampled for the next utterance
classification task, where the model should distinguish between the true response
and negative candidates. Wolf et al. [2019] add a linear layer with a sigmoid
activation on top of the transformer decoder’s representation of the <eos> token
(Figure 4.2) and jointly train the model for the classification task.

Transformer
Decoder

<eos>

Linear Layer
with Sigmoid

Figure 4.2: In order to use a transformer decoder for classification, Wolf et al.
[2019] add a linear layer with sigmoid activation and train it on the next utterance
classification task.

The language modeling loss is computed only for positive candidates and the
next utterance classification is modeled with binary cross-entropy (Equation 4.1).
The best results are obtained by setting λ = 2, i.e., making the language modeling
loss two times more important.
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is positive ∈ {0, 1}
LCLS = BCE(c, is positive)
L = LCLS + λ · is positive · LLM

(4.1)

4.2.1 Decoding Scheme
For decoding, Wolf et al. [2019] use the generate-and-rank approach [Challa et al.,
2019]. In this method, one model (or model component) is used to generate can-
didates and another model (or model component) is used to rank the candidates.
The best ranked response is selected as the response of the system.

Wolf et al. [2019] generate candidate utterances using beam search with sam-
pling with a beam size of 4 (Section 1.2.4). The candidates are ranked by a
weighted sum of the length-normalized negative log likelihood SLM assigned by
the language model and the score SCLS assigned by the classification head.

S = SLM + λ · SCLS (4.2)
Wolf et al. [2019] note that when λ is higher the utterance with the high-

est score “sticks more closely to the provided personality,” but it “reduces the
diversity of the dialogue.”

4.3 P2 Bot
Similarly to the TransferTransfo model, the Persona Perception Bot (P2 Bot) [Liu
et al., 2020] is a finetuned version of the GPT model [Radford and Narasimhan,
2018]. Contrary to TransferTransfo discussed in above, the P2 Bot makes use of
reinforcement learning.

The finetuning process is conducted in a two-stage manner. In the first stage,
the GPT model is finetuned on the ConvAI2 dataset [Dinan et al., 2020] in the
same multi-task setup as TransferTransfo (Section 4.2).

In the second stage, two copies of the model, Afrozen and AFT communicate
in a dialogue setting and the AFT is finetuned through reinforcement learning.1

While the used reinforcement learning algorithm (REINFORCE, [Williams,
1992]) and its application to the NLG are standard, the contribution of Liu et al.
[2020] lies in the so-called reward shaping, i.e., specifying the reward for the agent
AFT after a dialogue, which specifies its weights update.

Liu et al. [2020] design a reward that is a sum of three separate terms. The lan-
guage modeling loss estimated by the Afrozen model rewards producing a human-
like response. The discourse coherence loss estimated by the classification head of
Afrozen rewards “establishing links in meaning with context.” Finally the Mutual
Persona Perception score, is a score evaluated by a separate BERT model [Devlin
et al., 2019] finetuned to discriminate utterances produced by a specific persona.

1For a detailed introduction into reinforcement learning see Reinforcement Learning: An
Introduction [Sutton and Barto, 2018].

47



4.4 LMEDR
According to our knowledge the LMEDR model [Chen et al., 2023] is the best
scoring model on all automated metrics commonly measured on the ConvAI2
dataset [Dinan et al., 2020]. Chen et al. [2023] use a two-stage finetuning of the
BART-Large model [Lewis et al., 2020].

In the first stage, the model is trained on a modification of a dialogue natural
language inference task (see Sections 4.4.1), in the second stage the model is
trained with a multi-task setup similar to TransferTransfo discussed in previous
section (see Section 4.4.2). The training is cyclical, where the first and second
stage are iterated until convergence.

Chen et al. [2023] use task-specific architecture augmentations, dubbed Entail-
ment Relation Memory and Dialogue Discourse Memory. Architecturally, each
memory is a set of learned vectors together with a linear attention layer over
the learned vectors (see Section 1.2.6 and Figure 4.3). The Entailment Relation
Memory is hypothesized to learn “to store entailment relations for persona consis-
tency,” i.e., thanks to this module, the model should generate utterances which
are less contradictory with respect to the persona description. The Dialogue
Discourse Memory is a component that is hypothesized to “ensure discourse co-
herence,” i.e., thanks to the module, the model should generate utterances which
are less contradictory with respect to the past dialogue context.

4.4.1 LMEDR: First Stage of Training
During the first stage, Chen et al. [2023] train on the DialogueNLI (Dialogue
Natural Language Inference) dataset [Welleck et al., 2019].

NLI NLI [Williams et al., 2018] is a task where the model should predict
whether a provided pair of texts, commonly called a premise and a hypothesis
is in the relation of entailment (hypothesis logically follows from premise), con-
tradiction (hypothesis contradicts premise), or neutrality (premise and hypothesis
are not in any relation).

Dialogue NLI In Dialogue NLI [Welleck et al., 2019], all persona description
sentences from the PersonaChat dataset [Zhang et al., 2018] are used as premises.
A hypothesis is either another sentence from persona descriptions or an utter-
ance from a dialogue in the dataset. By default, all sentences are assumed to
be in a neutral relation. Welleck et al. [2019] crowdsource annotations for dia-
logue utterances and persona description sentences in form of triples (<category>,
<relation>, <category>) e.g. (i, have pet, dog). A hypothesis entails a premise
if they are annotated with the same triple.

It is much harder to annotate the contradiction. Barring the obvious cases of
logical contradictions such as sentences “I have a dog.” and “I do not have a dog.”
Welleck et al. [2019] note that one should also consider a pair of sentences “not
likely to be said by the same persona.” to be a contradiction. For example pairs
(“I’m looking forward to going to the basketball game this weekend!”, “I don’t
like attending sporting events.”) and (“I’m a lawyer.”, “I’m a doctor.”) are also
annotated as contradictions. A set of heuristics is designed either to find such
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Figure 4.3: Diagram of the LMEDR model. The highlighted area displays the
task-specific architectural changes. Figure taken from Chen et al. [2023].

pairs in the dataset, or to generate them. The generation is done by replacing
numerical information (“I am 40 years old.” → “I am 50 years old”).

LMEDR: First Stage of Training Chen et al. [2023] finetune the BART
model on pairs with entailment relation for conditional generation of hypotheses
conditioned on premises.

4.4.2 LMEDR: Second Stage of Training
In the second stage, the ConvAI2 dataset[Dinan et al., 2020] is used for finetuning.
The Entailment Relation Memory is frozen (i.e., no weight updates on this module
are done).

Chen et al. [2023] follow the multi-task setup from TransferTransfo (discussed
in Section 4.2) and use several additional tasks, e.g., bag of words loss [Zhao
et al., 2017] where a classifier is trained to predict which words should be in the
generation conditioned on the latent variable from Dialogue Discourse Memory
and correlation loss between Dialogue Discourse Memory and Persona Entailment
Memory (Figure 4.3).

During inference, a standard beam search with beam size 2 is used, i.e., unlike
TransferTransfo (Section 4.2), only the language model score is used and the
classification head is not involved in the ranking.
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5. Experiments
In Chapter 4, we explored different strategies for training small language models
on the ConvAI2 dataset. In this chapter, we build on these findings and conduct
our own experiments on this data, using both finetuning (for smaller models) and
prompting for LLMs.

In Sections 5.1 and 5.2, we establish baseline performance and improve it with
more efficient decoding methods. Afterward, in Sections 5.3 and 5.4, we explore
a multi-task learning setup similar to TransferTransfo (discussed in Section 4.2)
and build a two-stage generation pipeline. Then we explore direct preference
optimization (Section 5.5), a method similar to the reinforcement learning setup
of P2 Bot (see Section 4.3). We conclude our experiments by prompt engineering
GPT-3.5 (Section 5.6). To complement the evaluation by automatic metrics,
we choose the prompt-engineered GPT-3.5 and our best models according to
the F1 score for a round of human evaluation, where three annotators evaluate
generations by three selected models (Section 5.7). In Section 5.8 we discuss the
results of all the experiments in this chapter.

5.1 Baseline
We are interested in the effects of individual modifications of training and infer-
ence pipeline to the downstream performance of the model on our task. Therefore,
we start with a very simple baseline and come up with modifications inspired by
the literature. First, we discuss the selection of the GPT-2 family of models
for the majority of experiments in this chapter (Section 5.1.1) and the model
input format that we use throughout the experiments (Section 5.1.2). We fol-
low by an assessment of performance on different automatic metrics, namely the
model-internal perplexity on the validation data (Section 5.1.3), hits@1 on next
utterance classification (Section 5.1.4) and generation performance in terms of
F1 reference match and other text properties (Section 5.1.5). Lastly, we further
analyse the generated responses (Sections 5.1.6, 5.1.7), and discuss the selection
of the model for further experiments (Section 5.1.8).

5.1.1 Baseline Models
To establish a baseline, we use the pretrained checkpoints of the following mod-
els: GPT-2-small,1 GPT-2-medium and GPT-2-large [Radford et al., 2019]. The
models are trained to predict the next utterance conditioned on the input. We
use the standard conditional language modeling loss (see Section 1.2.5).

Due to available resources (GPUs with 12GBs of memory) the biggest model
that is feasible to train without any quantization is GPT-2-medium (about 355M
parameters). GPT-2-large (about 762M parameters) is the biggest model that
we could fit in the GPU memory with 8-bit optimizer quantization [Dettmers
et al., 2022b] and gradient checkpointing [Chen et al., 2016]. While it may be
feasible to train bigger models using LoRA [Hu et al., 2022] and QLoRA [Dettmers

1GPT-2 model according to naming on HuggingFace (https://huggingface.co/
openai-community/GPT-2)
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et al., 2023] approaches, we decided to not experiment with these approaches due
to shortage of time. While we could have placed more emphasis on comparing
finetuning performance of a bigger range of models, we are more interested in the
effects of different finetuning approaches than effects of using different pretrained
models.

We expect bigger models to produce more dialogue responses that score higher
in automatic evaluation, as increasing the capacity of the language model “im-
proves performance in a log-linear fashion accross tasks.” Radford et al. [2019]

We optimized the final hyper-parameters for training based on analysis of
validation negative log likelihood over several experiments. We found that using
the Adam optimizer [Kingma and Ba, 2015], learning rate of 1.5·10−6 and a batch
size 16 yields good enough results for all the model sizes that we experiment with.

5.1.2 Model Input Format
Similarly to Liu et al. [2020], we add three new tokens to the model’s vocabulary.
These tokens are put at the beginning of different sections of model’s input. Each
sentence in the persona description is prepended with the <persona> token.
Each sentence in the dialogue is prepended either with the <bot> token (if it’s
produced by the bot’s persona) or with the <partner> token. Figure 5.1 shows
an example input of the model.

<persona>i read twenty books a year. <persona>i’m a stunt double as my
second job. <persona>i only eat kosher. <persona>i was raised in a single
parent household. <partner>hello what are doing today? <bot>i am good,
i just got off work and tired, i have two jobs. <partner>i just got done
watching a horror movie <bot>i rather read, i’ve read about 20 books
this year.<|endoftext|>

Figure 5.1: Example input of the model. The language modeling loss is calculated
only on the bold text. The shading is added only for better readability.

5.1.3 Evaluation of Perplexity
As expected, larger models reach lower perplexities (Table 5.1). We note that
the performance of GPT-2-small roughly matches the reported performance of
the TransferTransfo model (see Section 4.2); however, it is more than two points
worse than the performance reported by P2 Bot (see Section 4.3). The perplexity
measured on GPT-2-medium beats the perplexity of the P2 Bot; however, the
used model has three times more parameters (124M vs 355M).

Neither of our models matches the reported perplexities of BART and
LMEDR models. However, upon inspection of the code of the LMEDR model,2
we found that in fact they compute perplexity per token with the BART tok-
enizer and that they include the predicted probability of the end of sequence

2Chen et al. [2023] released their code and model at https://github.com/Chenrj233/LMEDR
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Model PPL-T PPL-W
TransferTransfo - 17.51∗

P2 BOT - 15.12∗

BART - 11.95∗

LMEDR - 10.99∗

GPT-2-small 15.82 17.53
GPT-2-medium 12.94 14.32
GPT-2-large 12.41 13.71

Table 5.1: Perplexity per word using the ConvAI2 tokenizer (PPL-W, Section
3.1.1) and perplexity per token of the GPT-2 tokenizer (PPL-T) [Radford et al.,
2019], for our baseline methods and models discussed in Chapter 4. “*” = as
reported by the respective paper.

token in the computation of the final perplexity (we show drawbacks of compar-
ing per-token perplexities for models with different tokenizers in Section 3.1.1).
Using LMEDR’s public model checkpoint, we remeasured the perplexity of the
LMEDR model using our code (Table 5.2) and found that in terms of perplexity,
the GPT-2-medium model of the same size (355M vs 406M) slightly beats the
performance of the LMEDR model.

As Lewis et al. [2020] do not publish the finetuned checkpoints of BART,
we can only hypothesize about the used tokenization method when measuring
the perplexity of the BART model. While they claim to have used the ConvAI2
tokenizer for the measurement, in our informal experiments with the BART model
and the ConvAI2 tokenizer, the perplexity per word was roughly on par with
GPT-2-medium.

Method PPL
Reported Perplexity 10.99
BART Tokenizer + </s> 10.95
BART Tokenizer 12.59
ConvAI2 Tokenizer 15.59

Table 5.2: Perplexity per token of the LMEDR model [Chen et al., 2023] as
measured by different tokenizers.

5.1.4 Evaluation of Next Utterance Classification
The next utterance classification task (described in Section 3.1.3) consists of
discriminating 19 negative candidates from the true response in the dataset.

Baseline models are not explicitly trained for the next-utterance classification.
We rank all candidates by the length-normalized negative log likelihood (Equation
5.1) and the candidate with the highest score from 20 candidates is taken as the
prediction of gold utterance.

S = 1
|T |

T∑︂
t=1

log p̂(xt) (5.1)

In Table 5.3 we see that this method is inferior to using a ranking head
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explicitly trained for the next utterance classification task that is used in the
related work.

Model Hits@1
TransferTransfo 82.1%
P2 Bot 81.9%
LMEDR 89.5%
GPT-2-small 24.53%
GPT-2-medium 29.56%
GPT-2-large 31.57%

Table 5.3: Performance of baseline models on hits@1 on next utterance classifi-
cation.

5.1.5 Evaluation of Generations
The F1 score is the only automatic metric commonly measured on the ConvAI2
dataset [Dinan et al., 2020] that measures the generation performance of models
(see Section 3.1). In order to better explain the F1 score, we include additional
metrics, namely persona-copying, fraction of questions, distinct-2 and average
length in words (discussed in Section 3.1.4). We generate with greedy decoding
(Section 1.2.4). In Section 5.2 we use more advanced decoding methods with the
best checkpoint of the GPT-2-medium model.

In Table 5.4 we see that the finetuned GPT-2-small scores 0.3 points under
the performance of TransferTransfo, while the performance of GPT-2-medium is
similar to the performance of P2 Bot. We note that the results of GPT-2-small
and GPT-2-medium are measured on greedy-decoded generations, while all the
methods from related work (see Chapter 4) make use of more advanced decoding
methods.

Method F1 score
TransferTransfo 19.09%
P2 Bot 19.77%
LMEDR 21.99%
GPT-2-small 18.72%
GPT-2-medium 19.80%
GPT-2-large 20.11%

Table 5.4: Performance of baseline models and models from related work on F1
score.

Over the course of the training, the F1 score plateaus at 18.5 for GPT-2-small,
19.7 for GPT-2-medium and 19.9 for GPT-2-large (see Figure 5.2a).

At the beginning of the training, models “cheat” by copying long chunks
of text from the persona. As the training progresses, models copy less from the
persona (Figure 5.2b), learn to ask more questions (Figure 5.2c), use more diverse
language (Figure 5.2d) and produce slightly longer utterances (Figure 5.2e).

Larger models use a more varied vocabulary (Figure 5.2d) and copy fewer
facts from the persona (Figure 5.2b).
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Figure 5.2: Evolution of different metrics measured on the validation set over the
course of training of the GPT-2-family models with handpicked hyper-parameters.

5.1.6 Manual Analysis of Generations
We picked 10 random samples and evaluated the quality of generated outputs on
these 10 samples by each model in all the training epochs in detail. In general,
models learn to include facts from personas in their responses. However, it seems
that models mention these facts excessively, i.e., almost all the responses gener-
ated by models contain a fact from the persona. We prefer responses from larger
models as they are less repetitive and they react better to the dialogue partner.

Problems with Structure of the Input In order to be successful in the
task, the model needs to understand the structure of the input. As explained in
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Section 5.1, the parts of the input have different meanings and are distinguished
by special prepended tokens (<persona>, <bot>, or <partner>).

It seems that the models are prone to confuse an utterance from the dialogue
history in the form “I like <activity>” to a persona fact. E.g., after a dialogue
partner says that they like something, the bot starts responding that it likes the
mentioned thing too.

5.1.7 Generations by Length of Dialogue History
During manual analysis (Section 5.1.6) we observed that the model responses
are of worse quality when the dialogue history is longer. In order to verify this
observation we split generations according to the length of the dialogue history
and we measure metrics for each length separately (Figure 5.3).

Firstly, there is a visible step between the measured quality of the first re-
sponse of GPT-2-medium (length of dialogue history 1) and the remaining re-
sponses. Usually the first and second utterances in the dialogue follow the same
pattern. Firstly the partner asks “Hi, how are you?” and then the bot responds
“I’m fine, thank you. I do <activity> as a hobby, what about you ?” This ob-
servation is supported by the reduced vocabulary of first responses (Figure 5.3c)
and increased fraction of questions (Figure 5.3b).
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Figure 5.3: Metrics measured on outputs generated by GPT-2-medium which are
split by the history length.

In Figure 5.3a, we see that with progressing dialogue length, the F1 score gets
smaller; however, we cannot explain this phenomenon with the other measured
generation metrics. Intuitively we attribute the decrease to lower predictability of
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later utterances. After a relatively repetitive conventional politeness expressions
in the first few turns, the remainder of the dialogue is very open.

5.1.8 Conclusion
We showed that a baseline without extensive hyper-parameter tuning initialized
from GPT-2 family of models matches or exceeds the performance of models ini-
tialized from the older GPT model, i.e., we confirm the importance of pretraining.
We analyse the quality of generations by the baseline model and discuss what the
models learn over the course of training and how they react to different lengths
of dialogue history.

In the following sections, we use only the GPT-2-medium model, since in our
conditions it offers the best tradeoff between speed of training and performance
in the inference among the models from the GPT-2 family [Radford et al., 2019].

5.2 Advanced Decoding Methods
Up until now, we only used the greedy decoding method for generating utterances
with trained models. In Section 1.2.4 we discussed several other generation meth-
ods that approximate more closely the maximum likelihood objective in Equation
5.2. In this section we use these generation methods with the GPT-2-medium
checkpoint that scored highest in the F1 score (discussed in Section 5.1).

ŷ1:T̂ = arg max
y1:T

p(y1:T |persona, x1:N) (5.2)

In the following sections our goal is to find a method that results in the highest
validation F1 score. For achieving this goal we explore the beam search decod-
ing with several beam sizes (Section 5.2.1) and experiment with other decoding
methods such as diverse beam search, or beam search with sampling (Section
5.2.2).

5.2.1 Beam Search
We explore the performance of the GPT-2-medium model with 5 different beam
sizes {1, 2, 3, 4, 8, 16}. In Figure 5.4a, we see that the best F1 score (20.57%) is
reached with beam size two and that only beam sizes lower than or equal to four
outperform the greedy decoding (greedy decoding corresponds to beam search
with beam size 1). Yang et al. [2018] call this phenomenon a beam search curse.
While the larger beam size surely finds a result with higher or equal likelihood,
the measured performance of word-overlap metrics deteriorates.

With larger beam sizes, the generations are longer (Figure 5.4d), contain more
4-grams from personas (Figure 5.4b) and their vocabulary is less rich (Figure
5.4c).

5.2.2 Beam Search Modifications
In this section we explore two other decoding methods, diverse beam search [Vi-
jayakumar et al., 2018] and beam search with sampling [Wolf et al., 2019] dis-
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Figure 5.4: Beam Search Results measured on outputs generated by the best
performing checkpoint of the GPT-2-medium model under greedy decoding.

cussed in Section 1.2.4.
The intuition behind both the diverse beam search and the beam search with

sampling is that by exploring more diverse generations, a better (according to
maximum likelihood) generation may be found. Indeed that is the case as both
beam search modifications with beam size 4 find solutions that achieve better F1
score than the basic beam search with the same beam size.

5.2.3 F1 Score Potential
We hypothesise that better F1 scores can be reached with a two-stage system. In
the first stage a standard decoding algorithm (such as beam search, or modifica-
tions of beam search presented in Section 5.2.2) is used for generating candidate
outputs. In the second stage a ranking model ranks the candidate outputs and
the highest ranked candidate is selected as the output of a system.

Decoding Method F1 score
Max Min NLL-Selected Random

Beam Search 24.96% 16.03% 20.07% 20.37%
Diverse Beam Search 27.94% 12.27% 20.36% 19.63%

Beam Search with Sampling 24.79% 16.49% 20.46% 20.48%

Table 5.5: Comparison of different rankings of candidates generated by beam
search modifications with beam size 4.
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Figure 5.5: Metrics measured on candidates generated by the GPT-2-medium
model checkpoint that performs the best according to F1 score under greedy
decoding, discussed in Section 5.1
Note: B = Beam Search, DB = Diverse Beam Search, SB = Beam Search with Sampling
Note: Number on the right of the hyphen is the beam size

To verify this hypothesis we store four candidates for each validation example,
disregarding the default ordering given by length-normalized negative log likeli-
hood. We then rerank the samples by F1 score (either min or max), or randomly.
We observe three interesting phenomena:

1. The default length-normalized negative log likelihood ordering is far from
optimal with respect to F1 (about 5-7 points below the upper bound for beam
size 4). More interestingly, random sampling outperforms the length-normalized
negative log likelihood ordering for beam search and beam search with sampling
(Table 5.5).

2. The candidates produced by diverse beam search are the most differing,
since the range between oracle minimum and oracle maximum performance is the
largest. Manual analysis of 10 randomly selected samples confirms this finding.
While candidates produced by beam search and beam search with sampling have
the same syntactical structure and meaning and differ only by few words, the
candidates produced by diverse beam search differ in meaning.

3. A ranking model can reach significantly higher F1 score than any method
presented in the literature (the SoTA is 21.98% by the LMEDR model [Chen
et al., 2023] discussed in Section 4.4).

5.3 Next Utterance Classification
Following the TransferTransfo [Wolf et al., 2019] (Section 4.2), we add a sigmoid
layer that processes the language model’s representation of the <eos> token to
produce the ranking score. In the following text we call this layer the ranking head
(Figure 5.6). We train a model with a ranking head and a language modeling
head jointly with language modeling and next utterance classification objectives.
We investigate three hypotheses.

Firstly, models that train the ranking head for the next utterance classifica-
tion objective (see Section 5.3.1) reach about three times better score than our
baselines on the hits@1 metric for next utterance classification (Table 5.3 ). We
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Figure 5.6: Schema of a transformer decoder model with a ranking head.

hypothesise that all of this improvement can be attributed to the joint training
of the language model and a ranking head.

Next, the multi-task learning could help to optimize the other metrics as well.
Lastly, we use the generate-and-rank approach, where the utterances gener-

ated by the model are subsequently ranked by the ranking head. Following the
estimation of the potential of such a system that we made in Section 5.2.3, we
hypothesise that it may reach higher F1 score than the generation model alone.

5.3.1 Multi-Task Learning
The dataset contains 19 randomly sampled negative candidates for each positive
gold utterance (Section 2.3).

To prevent overt imbalance in training data, the model is randomly fed with
positive and negative utterances. In our experiments, we used a setting with 25%
positive and 75% negative utterances, i.e., using only three randomly selected
negative candidates per each positive candidate. When the model is fed with a
positive input, we train both the language modeling head and the ranking head
by summing the loss functions for bot tasks similar to Wolf et al. [2019] (see
Section 4.2) (Equation 5.3). Otherwise we train only the ranking head.

L = Lcls · λcls + LLM (5.3)
The value of λcls specifies how much weight to put on the classification loss.

Since the dataset contains more negative samples than positive, Wolf et al. [2019]
use values between (0.0, 1.0], after some tuning we found out that value λcls = 0.5
gives the best results for all the measured automatic metrics.

Next-Utterance Classification Results Our hypothesis of joint training im-
provement is confirmed by the results, as the hits@1 score of the jointly-trained
model exceeds the score of TransferTransfo [Wolf et al., 2019] and P2 bot [Liu
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et al., 2020] and is close to the performance of the state of the art LMEDR [Chen
et al., 2023] (Table 5.6).

Model Hits@1
TransferTransfo 82.1%
P2BOT 81.9%
LMEDR 89.5%
GPT-2-medium (LM-only) 30.41%
GPT-2-medium (ranking head) 89.32%

Table 5.6: Hits@1 on next utterance classification task.

Response Generation Results On the other hand, the model trained in the
multi-task setup either matches or slightly under-performs the GPT-2-medium
model trained only with the language modeling objective. Hence, it seems that
the multi-task training does not increase the performance of the model on the
response generation task, according to automatic metrics.

Model perplexity F1 Score
TransferTransfo 17.51 19.09%
P2 BOT 15.12 19.77%
LMEDR 10.99 21.99%
GPT-2-medium (LM-only) 14.32 19.8% (20.57%)
GPT-2-medium (ranking head) 14.85 19.8% (20.43%)

Table 5.7: Perplexity and F1 score measured on our models compared to reference
models from the literature. Numbers in brackets refer to F1 score under beam
search decoding with beam size two.

5.3.2 Two-Stage Generation
We use the GPT-2-medium model with ranking head to generate four candidate
utterances for each sample with the diverse beam search decoding and we evaluate
several methods of selecting of the resulting utterance.

The ranking head trained on the next utterance classification objective is not
a good predictor of F1 score as the two-stage system with ranking head as a
ranker scores lower than the selection according to length normalized negative
log likelihood (Table 5.8).

Following TransferTransfo [Wolf et al., 2019] we also use a weighted combina-
tion of the score from the ranking head Srank and the length-normalized negative
log likelihood SLM (Equation 5.4).

S = λC · Srank + λLM · SLM (5.4)
The improvement found using an extensive grid search over values of λC and

λLM is only marginal (see Table 5.8). The ranking head trained on negative
candidates drawn from other dialogues does not prove to be a good ranker in a
two-stage setup. We hypothesise that the reason is the difference between training
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Method F1-Score
Random (averaged over 20 runs) 19.58%
Ranking Head Selection 19.87%
Length-Normalized NLL 20.24%
Weighted Combination 20.30%
Oracle Max F1 27.97%

Table 5.8: Comparison of different ranking methods for a setup where for each
sample, four candidate utterances are generated by the GPT-2-medium model
with ranking head and a ranking method is used to rank the utterances.

and validation tasks. In training, the classification head learns to discriminate one
positive candidate from 19 candidates sampled from other dialogues. Therefore,
we think that it learns to look for inconsistencies and contradictions between a
candidate and either the past dialogue context, or the persona description. In
the two-stage setup, the classification head is used to rank utterances which are
produced by a model which in itself is trained (in a semi-supervised way) to not
generate inconsistencies and contradictions (see Section 2.2.1).

These utterances differ much less than the set of 19 negative candidates and a
true positive utterance and all of them either react to the past dialogue content,
or present some fact from the persona description. Therefore instead of training
the ranking head with the next utterance classification objective, a ranker of
candidates generated by a single model may be able to improve the overall F1
score.

5.4 Learning to Rank
In Section 5.3, we hypothesized that a generate-and-rank approach may improve
the performance of a dialogue model in terms of F1 score. However, the GPT-2-
medium model with a jointly trained ranking head and language modeling head
does not prove so (Section 5.3.2).

In this section, we conduct another round of experiments with the generate-
and-rank approach. However, this time, we only focus on developing a better
model for the second stage. We train a separate GPT-2 model with a ranking
head (Figure 5.6) to predict the ranking of utterances according to the F1 score,
contrary to the joint training setup described in Section 5.3.2. The preliminary
experiments are conducted with the GPT-2-small model to speed up the devel-
opment, and the final experiment is evaluated with the GPT-2-medium model.

We only train the model for ranking using the learning-to-rank approaches.
Namely, we train in a pointwise way [Caruana et al., 1995], where the ranking
model is trained to estimate the F1 score of the candidate response, and in a
pairwise way. We experiment with two approaches to pairwise training, RankNet
[Burges et al., 2005] and LambdaRank [Burges et al., 2006]. In both these meth-
ods, the ranking model is trained to select a response with a higher F1 score
from a pair of responses. While RankNet uses vanilla classification loss, in Lamb-
daRank, the classification loss is weighted by the absolute value of the difference
of F1 scores of the pair. All learning-to-rank approaches are further described in
Section 1.6.
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We first discuss the dataset used for training and validating the ranking model
(Section 5.4.1). Afterward, we describe the results of preliminary experiments,
where we train the GPT-2-small ranking model (Section 5.4.2), and the results
of final experiments where we train the GPT-2-medium ranking model (Section
5.4.3).

5.4.1 Data
A generation model is used to generate 4 candidate outputs for each of the
first 30,000 utterances3 from the training split of the ConvAI2 dataset. Out
of them, the first 20,000 are used for training a ranking model (we call them the
Training-Rank dataset) and the remaining 10,000 are used for validation (Valid-
Rank dataset). The generation model is then used in the same way to generate
candidates for the whole validation split of the ConvAI2 dataset (for clarity, in
the following text we call it ConvAI2 Valid dataset). In our evaluations, we test
the combination of a generation model and a ranking model, where a perfect
ranking model would select the candidate with highest F1 score for each sample.

Distribution Shift

First, we use the GPT-2-medium checkpoint, which scores highest in the F1 score
(discussed in Section 5.1) for the first stage, i.e., as a generator. For clarity, we
use the name GPT-2-mediumfull for this model. The generation is done with
diverse beam search since a perfect ranking model could reach the highest F1
scores with this decoding method (Table 5.5).

However, the GPT-2-mediumfull model is trained on the full training dataset
of the ConvAI2 dataset, i.e., also on the Training-Rank and Valid-Rank datasets.
This causes a shift of distribution of F1 scores between the Training-Rank and
Valid-Rank datasets on one side and the ConvAI2 Valid dataset on the other side,
e.g., oracle maxima and minima are about two points higher for Training-Rank
and Valid-Rank datasets which were seen by the model during training (see Table
5.9).

Dataset F1 score
Max Min NLL-Selected Random

GPT-2-mediumfull Training-Rank 30.12% 12.68% 22.06% 20.97%
GPT-2-mediumfull Valid-Rank 30.80% 13.02% 22.66% 21.54%
GPT-2-mediumfull ConvAI2 Valid 27.94% 12.27% 20.36% 19.63%
GPT-2-medium -30k Training-Rank 27.93% 11.70% 20.04% 19.30%
GPT-2-medium -30k Valid-Rank 28.15% 11.80% 20.30% 19.55%
GPT-2-medium -30k ConvAI2 Valid 27.44% 11.46% 19.63% 18.95%

Table 5.9: F1 score potential for candidates generated by the GPT-2-medium
model (discussed in Section 5.1) and the GPT-2-medium-30k model with diverse
beam search with beam size 4.

3We choose the size of 30,000 utterances since it offers a reasonable ratio between speed of
experimenting and validation performance. With our code, the speed of training is about 10
minutes per epoch.
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Therefore we train another generation model, the GPT-2-medium -30k with
the same hyper-parameters using all but the first 30,000 utterances from the
training split of the dataset. Thanks to this retraining, there is no significant F1
score distribution shift between the candidates generated by GPT-2-medium -30k
on Training-Rank, Valid-Rank and ConvAI2 Valid data; however, we see a perfor-
mance drop of about 0.8 points compared to generations by the GPT-2-medium
model trained on the full dataset (Table 5.9). We conduct the preliminary exper-
iments on generations by the GPT-2-mediumfull model, and the final experiment
on generations by both models.

Training Dataset for Pairwise Methods The pairwise ranking methods
are trained on pairs of examples (Section 1.6.2). Burges et al. [2005] train the
RankNet model only on pairs whose target scores differ more than a chosen
threshold. We follow this approach and train a ranking model on all pairs of
generations by the selected models whose F1 scores differ by more than 3%.4

5.4.2 Results of Preliminary Experiments
In this section we discuss results of preliminary ranking experiments, which are
done with GPT-2-small ranking models operating on generations by the GPT-2-
mediumfull model (see Section 5.4.1).

All ranking methods trained in this section improve the performance of the
two-stage system. Similarly to results of Burges et al. [2005] and Burges et al.
[2006], the performance of both pairwise methods exceeds the performance of
the pointwise method. However, while the ranking models improve the resulting
F1 score, the gap to the oracle maximum (i.e., a ranker that always selects the
candidate with the highest F1 score) is still large (7 points), and the improvements
compared to a single-stage generation are small.

Decoding Method F1
Oracle 27.94%
Diverse Beam Search, beam size 4 20.36%
Beam Search, beam size 2 20.57%
Pointwise Ranker (GPT-2-small) 20.64%
Pairwise RankNet Ranker (GPT-2-small) 20.87%
Pairwise LambdaRank Ranker (GPT-2-small) 20.94%

Table 5.10: Comparison of different decoding methods on ConvAI2 Valid data.
Oracle, and rankers all operate on candidates generated by the GPT-2-mediumfull
model (see Section 5.4.1).

5.4.3 LambdaRank with GPT-2-medium
Based on the results of experiments in Section 5.4.2, we conclude that Lamb-
daRank is the most promising method on our data. In this section, we train the

4This number was selected with an overfitting experiment, i.e., overfitting a dataset of only
100 examples was fastest. Removing all samples where there is no pair of generations whose
F1 scores differ by more than 3% shrinks the dataset by 15%.
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GPT-2-medium LambdaRank ranking model on the response candidates gener-
ated by the GPT-2-medium -30k model and compare the performance of combina-
tions of three generator models (GPT-2-mediumfull, GPT-2-medium -30k, LMEDR
[Chen et al., 2023]) and two ranking models (GPT-2-small LambdaRank and
GPT-2-medium LambdaRank).

Method F1
GPT-2-mediumfull (diverse beam search) 20.36%
GPT-2-mediumfull (diverse beam search oracle) 27.94%
GPT-2-mediumfull + GPT-2-small LambdaRank 20.94%
GPT-2-mediumfull + GPT-2-medium LambdaRank 21.13%
GPT-2-medium -30k (diverse beam search) 19.63%
GPT-2-medium -30k (diverse beam search oracle) 27.44%
GPT-2-medium -30k + GPT-2-small LambdaRank 20.18%
GPT-2-medium -30k + GPT-2-medium LambdaRank 20.32%
LMEDR (diverse beam search) 22.05%
LMEDR (diverse beam search oracle) 29.55%
LMEDR + GPT-2-small LambdaRank 22.08%
LMEDR + GPT-2-medium LambdaRank 22.34%

Table 5.11: The comparison of F1 scores of single-stage generators and GPT-2-
small and GPT-2-medium LambdaRank ranking models on the ConvAI2 Valid
dataset. LMEDR refers to the state-of-the-art model by Chen et al. [2023].

In Table 5.11 we can see that for all generation models, the GPT-2-medium
LambdaRank ranking model scores about 0.2 points higher than the GPT-2-small
LambdaRank ranking model.

The most interesting result is that both ranking models learn features that
generalize to generations produced by the LMEDR model with BART backbone
[Lewis et al., 2020] (i.e., to a generation model which was pretrained on different
data than the GPT-2 family of models). Both two-stage systems consisting of
LMEDR generator and LambdaRank ranker outperform the plain LMEDR gen-
erator. Moreover LMEDR generator paired with GPT-2-medium LambdaRank
reaches the new state of the art on ConvAI2 dataset on the F1 metric.

5.5 Direct Preference Optimization
Direct Preference Optimization (DPO, [Rafailov et al., 2023], Section 1.5.7) is
an optimization algorithm for finetuning a language model to preference data.
Similarly to previous section, we conduct experiments with the baseline GPT-
2-medium model (Section 5.1) and the pairwise ranking dataset introduced in
Section 5.4.1, where the pairs of response candidates are generated by the afore-
mentioned GPT-2-medium model. We use an implementation of the DPO algo-
rithm from the Huggingface trl library [von Werra et al., 2020].

Training Setup We find it interesting that contrary to learning rates in the
range [1e-5, 1e-4] successfully used for previous experiments, the learning rates
required for DPO to not diverge (range [1e-7, 1e-6]) are two orders of magnitude
lower. The model needs just a few hundred steps to reach its lowest loss and
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then starts overfitting. The model which reached the highest validation F1 score
trained for just 4000 steps, with an aggressive learning rate decay from 5e-7 to
1e-10. In the following text, we call this model GPT-2-mediumDPO

Results Results for DPO are given in Table 5.12. Contrary to training with
language modeling loss (Section 5.1), or joint training of language modeling and
next utterance classification (Section 5.3), greedy search is the best performing
decoding method according to F1 score for the DPO-finetuned model and beam
search deteriorates the score for all tested beam sizes {2, 4, 8, 16}.

Interestingly, it seems that DPO and LambdaRank ranking are complemen-
tary, since generating candidates with GPT-2-mediumDPO and ranking them with
GPT-2-medium LambdaRank ranking model reaches the top F1 score observed
with systems composed only from our models (Table 5.12), i.e., excluding LMEDR
+ GPT-2-medium LambdaRank discussed in Section 5.4.

Model Decoding Method F1

GPT-2-medium

greedy 19.8%
beam-2 20.57%

diverse-beam-4 20.36%
GPT-2-medium LambdaRank (diverse-beam-4) 21.13%

GPT-2-mediumDPO

greedy 21.15%
beam-2 20.99%

diverse-beam-4 20.97%
GPT-2-medium LambdaRank (diverse-beam-4) 21.51%

Table 5.12: Comparison of the model finetuned with DPO algorithm to models
from our previous experiments.

5.6 Prompt Engineering with GPT-3.5
According to Chatbot Arena, an online large-scale human evaluation framework
Chiang et al. [2024], at the time of writing, models by OpenAI (GPT-3.5, GPT-
4, GPT-4o) [Ouyang et al., 2022, OpenAI, 2023] are among the top performing
open-domain chat models.5 Therefore, we decided to use these models with a
simple prompting strategy, to compare to our finetuned models from previous
sections.

First, we run a preliminary experiment to test the capabilities of the OpenAI
models on a few dialogues from the ConvAI2 dataset. Since responses from all
the models look human-like, we choose the cheapest available option, the GPT-
3.5 for our experiments (which is 10-60 times cheaper per-token in comparison to
other OpenAI models).

The experiment is conducted in two stages. First, we utilize a small subset of
the ConvAI2 training data (1000 randomly selected samples) as a development
set for prompt engineering, with the aim to improve the outputs’ F1 score. Then
we apply the best-performing prompt and hyper-parameters on the validation
dataset and measure the final scores.

5As of June 22, 2024, GPT-4o is on the first place, GPT-4 models rank between 4th and 6th
place and GPT-3.5 models are between 40th and 50th place out of 108 registered models.
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5.6.1 Prompt Engineering on the ConvAI2 Training Data
As a baseline, we provide only the following prompt to the model: “You are
a chatbot and you have the following traits: <numbered traits>. Continue the
dialogue.” Here, <numbered traits> lists the persona sentences (see Figure 5.8).
We spot that the model generates responses containing 19 words on average,
which is 10 more than the average number of words in the dataset (cf. Section
2.4.2).

Therefore we added an instruction to “follow the style of the dialogue. If long
sentences are used in the dialogue continue with using long sentences, if short
sentences, then continue with short.” Since the model answers are decoded using
multinomial sampling (see Section 1.2.4), we experience a lot of noise. Runs 2-6 in
Figure 5.7 are ran with a small variations of instructions to use shorter sentences
and the score varies between 17.8% and 18.5%

Run 1 Runs 2 - 6 Runs 7 - 11 Runs 12 - 18 Runs 19 - 24
0.175

0.180

0.185

0.190

0.195

0.200

0.205

F1
 S
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Figure 5.7: F1 scores of GPT-3.5 model on the selected development subset of
ConvAI2 training data for all the prompts that we explored during the prompt
engineering process.

To further improve the F1 score, we measure the precision and recall for indi-
vidual words in GPT-3.5’s outputs. We found few candidates with low precision
(i.e., the gold answers do not contain these words, while the model’s responses
do) and instructed the model to “not use words ’some’, ’can’, ’also’, ’on’, ’so’ ”.
This lead to an improvement of about 0.5 F1 points (18.0 → 19.1, runs 7-11).
Then we examined words with low recall and instructed the model that it “may
use some of these words: ’am’, ’are’, ’what’, ’do’, ’of’, ’like’, ’is’, ’have’,” which
resulted in another small improvement in F1 score (19.1 → 19.3, runs 12-18).

To reduce the variance in model performance, we used top-p nucleus sampling
(see Section 1.2.4). This not only reduced variance, but also improved the results
in terms of F1 score (runs 19-24). Figure 5.8 contains the final prompt, which we
use along with the top-p parameter set to 0.5.

5.6.2 Final Results
While the prompt engineering improved the F1 score performance of the GPT-3.5,
the performance still lags even behind the greedy-decoding performance of the
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You are a person with following traits: 1: ’you have entered into many violin
competitions before and have placed in a few of them .’ 2: ’you ’ ve a
pomeranian .’ 3: ’your older sister plays clarinet .’ 4: ’your mom is a music
teacher at the elementary school .’. Try to follow the style of the dialogue
(formal or chatty). Do not use words ’some’, ’can’, ’also’, ’on’, ’so’, ’with’,
’yeah’, ’time’. You may use some of these words: ’am’, ’are’, ’what’, ’do’, ’of’,
’like’, ’is’, ’have’. Use at most 14 words in your answers.

Figure 5.8: Example system prompt for sample 106528 from the training split of
the ConvAI2 dataset.

baseline finetuned GPT-2-medium (Table 5.13). However, upon manual inspec-
tion, GPT-3.5’s outputs are natural and consistent. We believe that this is more
of an issue with the F1 metric or potentially the reference responses themselves.
This further motivates us to perform human evaluation in Section 5.7.

Model F1
GPT-3.5 - baseline prompt 18.78%
GPT-3.5 - prompt engineered 19.62%
GPT-2-medium - baseline, greedy 19.8%
GPT-2-mediumDPO + GPT-2-medium LambdaRank 21.51%
LMEDR + GPT-2-medium LambdaRank 22.34%

Table 5.13: Comparison of our best performing models to GPT-3.5 in terms of
F1 score.

5.7 Human Evaluation
As the F1 results do not conform to our manual checks for the results (and
automatic metrics are known to correlate weakly with human judgements, see
Section 3.1.5), we conduct a small-scale human evaluation experiment. Following
the setup of ChatBot Arena [Chiang et al., 2024] (discussed in Section 3.2), we
opt for single-turn ranking human evaluation, where annotators assess the overall
quality of provided responses.

We conduct two experiments. First, when manually examining generations of
GPT-3.5, we found that the responses generated by GPT-3.5 are more grammat-
ical than gold responses from the dataset and do not contain other data quality
issues discussed in Section 2.5. We conduct a round of human evaluation to verify
whether generations by GPT-3.5 are preferable to the gold responses from the
dataset (Section 5.7.1). In the second round of human evaluation, we compare
the performance of three selected models (Section 5.7.2).

The human evaluation is conducted in-house through the VisuaLLM web
framework [Trebuňa and Dusek, 2023]. Three annotators participate in each
round. First, the evaluation task is explained to the evaluators (Figure A.1 in
the appendix). During the evaluation, the evaluator is presented with a dialogue,
a persona of the bot and two candidate responses generated by anonymous mod-
els (Figure A.2 in the appendix). The evaluator may either select one of the
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candidate responses as preferred, or “Tie” (both responses are equally good), or
“Both are bad” (neither response is adequate).

5.7.1 GPT-3.5 is Preferred to Gold Responses
To compare GPT-3.5 to human references in ConvAI2 data, we collect 155 pair-
wise comparisons by three annotators.6 Pairs to be compared are randomly drawn
with replacement from the validation dataset. The results of this evaluation con-
firm our intuition. Counting ties as half point and discarding bad ties, the gener-
ations of the GPT-3.5 model are preferred in 63.3% of pairs (see details in Figure
5.9).
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Annotator Opinions on Model Performance

Options
GPT-3.5 is Better Tie Gold Answer is Better Both are bad

Figure 5.9: Annotator preference between human references and GPT-3.5-gene-
rated answers on the validation split of the ConvAI2 dataset.

5.7.2 Human Evaluation Results
We use the same setting as in previous section for comparing the quality of our
model outputs. We collect 352 pairwise comparisons by three annotators.7

Generations of three models are compared, namely the prompt-engineered
GPT-3.5 (see Section 5.6), our best model according to the F1 score (see Section
5.5) and the state-of-the-art LMEDR + GPT-2-medium LambdaRank (Sections
4.4, 5.4). Again, the pairs to be compared are randomly drawn with replacement
from the validation dataset. We present the results as a heat-map of win rates of
these models (Figure 5.10).

We compare the ordering induced by validation F1 scores and the ordering
induced by win rates according to human evaluation. We see that the GPT-
3.5 model that scores the lowest on the F1 score is actually the most preferred
by humans. The ordering of both models finetuned on the ConvAI2 dataset
according to human evaluation stays the same as the ordering according to the
F1 score (Table 5.14).

6155 pairwise comparisons by three annotators in total. The annotators provided respec-
tively 42, 77 and 36 comparisons.

7352 pairwise comparisons by three annotators in total. The annotators provided respec-
tively 139, 105 and 108 comparisons.
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Model Win Rate F1 Score
GPT-2-mediumDPO + GPT-2-medium LambdaRank 46% 21.51%
LMEDR + GPT-2-medium LambdaRank 58% 22.34%
GPT-3.5 75% 19.62%

Table 5.14: Win rates and F1 scores of evaluated models.
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Figure 5.10: Win rates of selected models against each other.

5.8 Discussion
In this chapter we conducted several experiments on the ConvAI2 dataset [Dinan
et al., 2020]. Firstly, in Sections 5.1, 5.2 we finetuned models from the GPT-2
family [Radford et al., 2019] on the ConvAI2 dataset [Dinan et al., 2020] and
explored their decoding performance. Later, in Section 5.3, we explored the
multi-task finetuning setup proposed by TransferTransfo [Wolf et al., 2019] and
stemming from the conclusions of this section we followed the idea of a two-stage
generate-and-rank approach in Section 5.4. We finetuned the GPT-2-medium
model with the direct preference optimization algorithm [Rafailov et al., 2023]
which showed that DPO and two-stage setup are complementary and bot lead
to F1 score improvements (Section 5.5). At the end, we engineered a prompt
that improves the F1 score of generations by the GPT-3.5 model, but still lags
behind the previously produced finetuned models, despite the outputs appearing
better quality (Section 5.6). We then conducted a small scale human evaluation
to counterbalance the F1 metric (Section 5.7).

With our extensions, we were able to improve the performance of the GPT-2
model in terms of F1 score (Table 5.15) and hits@1 (Table 5.6). Our two-stage ap-
proach combined with the previous state-of-the-art LMEDR model [Chen et al.,
2023] even reached the new state-of-the-art in F1 score (Table 5.11). Ultimately,
despite the ranking of models based on the F1 score, the human evaluation indi-
cated that the GPT-3.5 model outperformed the others (Figure 5.10). According
to another round of human evaluation the generations by the model are even
preferred to the gold responses in the dataset (Section 5.7.1), i.e., the GPT-3.5
model solves the task better than paid crowd workers.
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Model F1 Score
GPT-2-medium (greedy) 19.80%
GPT-2-medium (beam search, beam size = 2) 20.57%
GPT-2-medium (GPT-2-medium LambdaRank, diverse beam search) 21.13%
GPT-2-mediumDPO (GPT-2-medium, diverse beam search) 21.51%

Table 5.15: F1 scores of different versions of finetuned GPT-2-medium model.
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Conclusion
In this thesis, we explored end-to-end open-domain dialogue modeling on the
ConvAI2 dataset [Dinan et al., 2020].

First, we established a baseline performance by finetuning models from the
GPT-2 family [Radford et al., 2019] on the ConvAI2 dataset. We showed that
evaluating model perplexity is non-trivial and even figures reported in peer-
reviewed works may be incomparable to each other. In the subsequent experi-
ments we focused on two metrics, the F1 score, and the hits@1 on next utterance
classification. We improved the measured F1 score by exploring variants of beam
search. We then further extend the setup following our research questions:

Can we improve generation using a two-stage setup with ranking? We
showed that the default ranking of candidates based on length-normalized nega-
tive log likelihood is not optimal, and we explored a two-stage approach where a
ranking model is used to rank multiple generated-candidate responses. First, fol-
lowing Wolf et al. [2019], we added a ranking head (i.e., a linear layer with sigmoid
activation) to the GPT-2-medium model and trained it for the next utterance
classification objective. While this lead to an improvement in the performance
on hits@1 on next utterance classification, it did not improve the generation per-
formance as measured by the F1 score. We then trained separate ranking models
by following learning-to-rank approaches [Burges et al., 2006]. We showed that
a two-stage system where the GPT-2-medium generates several candidate re-
sponses and a separately trained GPT-2-medium LambdaRank ranking model
ranks these responses, improves the performance as measured by the F1 score.
When using the GPT-2-medium LambdaRank ranking model to rank candidate
responses generated by the state-of-the-art LMEDR model [Chen et al., 2023],
we even reached a new state-of-the-art F1 score on this task.

Can we improve generation using direct preference optimization? We
then used direct preference optimization (DPO, [Rafailov et al., 2023]) to further
finetune the GPT-2-medium generation model. We showed that the DPO and
LambdaRank ranking are complementary since a two-stage system where GPT-
2-medium finetuned with DPO generates candidate responses which are ranked
by GPT-2-medium trained with LambdaRank reaches the top F1 score observed
with systems composed only from our own models.

How does finetuning compare to prompting LLMs? While finetuning
language models is a common method of improving performance of a pretrained
model on a downstream task, prompting approaches [Liu et al., 2023] seem to
be a viable alternative. We engineer a prompt that improves the F1 score of
the GPT-3.5 large language model [Ouyang et al., 2022, OpenAI, 2023] on the
ConvAI2 dataset. While GPT-3.5 under-performs even our simplest baseline in
terms of F1 score, upon manual checking of the generated responses, we found
out that we actually prefer the responses generated by GPT-3.5 to the responses
generated by other models, and also to the gold responses from the dataset. We
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conducted a small-scale human evaluation, which confirmed that the GPT-3.5-
generated responses are preferred by the annotators compared to our models, but
also compared to the gold responses from the dataset.

Future Work There are several interesting extensions to our work, which we
did not follow due to shortage of time. Due to memory constraints of available
GPUs, the GPT-2-large model was the largest model that we trained. However,
with LoRA [Hu et al., 2022], and QLoRA [Dettmers et al., 2023] approaches (or
even with prompt tuning approaches described in Section 1.5.4) we could be able
to train larger and hence potentially better-performing models, such as LLama-2
[Touvron et al., 2023], Qwen [Bai et al., 2023], or other open-source large language
models.

We only used the simplest learning-to-rank methods to train ranking models.
The list-wise methods mentioned in Section 1.6 are a natural extension to our
experiments. Experiments with a larger number of generated candidates (i.e.,
generating more than four candidates), and candidates generated by other de-
coding methods are another natural extension to our work.

Lastly, we only used a single iteration of DPO finetuning. An approach where
a model finetuned by DPO would generate more preference data, which would
in turn be used for another round of DPO finetuning, is an experiment that we
would have definitely tried if not for the shortage of time.
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A. Attachments

A.1 Human Evaluation
In this section we show the instructions presented to each annotator at the be-
ginning of human evaluation (Figure A.1), and the screenshot of the evaluators
screen (Figure A.2).

Welcome to the Human Evaluation of Generations on the ConvAI2 dataset.

ConvAI2 dataset contains samples, each consisting of a dialogue between two persons who meet
each other for the first time.

Each sample from the dataset consists of a dialogue and a description of the persona the bot
represents. For example, the bot may represent a persona who identifies with the following trait: “I
love cooking”

The bot solves the task of so-called next utterance prediction. In this task, the bot has access to the
dialogue history (what was said by each interlocutor) and the description of the bot’s personality.
The bot then generates an answer to the last utterance produced by its dialogue partner.

You will help us evaluate the individual bots. You will be presented with two tables; in one
table, there will be the description of the bot’s personality, and in the other table, there will be the
dialogue history.

You will see two generations by two different bots at the bottom of the page, and you will have 4
options. You can either select the generation of the first model, of the second model, or that both
generations are equally good (this option is named “Tie”), or that both generations are similarly
bad (this option is named “Both are bad”).

Figure A.1: Instructions presented to the evaluators.

Figure A.2: Screenshot of the evaluators screen.
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A.2 User Documentation for Attached Code
In the attachment to this thesis, we include the code that was used for our
experimentation as well as csv files with generations of selected models. The code
is split into parts which correspond to individual experiments. In the following
sections we show the instructions to run the dataset browser (Section A.2.1), to
conduct finetuning experiments (Section A.2.2).

A.2.1 Exploration
The user can use the command in Figure A.3 to browse through the ConvAI2
dataset [Dinan et al., 2020]. The browser is based on the VisuaLLM library
[Trebuňa and Dusek, 2023] and a screenshot of the browser is in Figure A.4.

flask --app src.experiments.explore.app run

Figure A.3: Command that starts the backend server with a dataset browser.

Figure A.4: Screenshot of the dataset browser screen
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A.2.2 Experiments
Code for all the experiments discussed in Chapter 5 is written ad-hoc., i.e., the
hyper-parameters are hard-coded and to use the code a thorough inspection is
needed. In the following files, the user may find commands and documentation
for the conducted experiments:

• Finetuning experiments: src/experiments/experiment training/READ-
ME.md

• Prompting experiments: src/experiments/chat gpt prompting/READ-
ME.md

Human Evaluation

In order to run human evaluation in the setup described in Section 5.7, the user
can run the command in Figure A.5. In the attachment, we also include the csv
tables with collected human annotations. These can be found in:

• src/experiments/human evaluation comparing/
data chat gpt better than humans

This directory contains generations of GPT-3.5 as well as collected pairwise
comparisons for the experiment described in Section 5.7.1.

• src/experiments/human evaluation comparing/
data model comparison

This directory contains generations of three models selected for human eval-
uation as well as collected pairwise comparisons for the experiment de-
scribed in Section 5.7.2.

flask --app src.experiments.human evaluation comparing.app run

Figure A.5: Command that starts the backend server with an app in which
annotators evaluate pairs of anonymous generations.
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