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Abstract
Value at risk is a standardized measure of downside portfolio risk, required by
financial regulators, which measures financial institution’s exposition to losses.
There are several different ways how to estimate and forecast VaR, which de-
veloped since its introduction 30 years ago. One approach is utilizing models
of conditional volatility. In this thesis, we focus on the comparison of mod-
els from the family of Generalized autoregressive conditional heteroskedastic-
ity (GARCH) which are well known and used for volatility forecasting for the last
40 years, with realized volatility models, a new stream of methods used only
in the recent years due to the availability of high frequency data. While other
similar studies typically use stock indices, this thesis studies the performance
of selected methods on individual stocks. We estimate several different volatil-
ity models for all time series, use them to create one-step-ahead forecasts and
evaluate them in the context of value at risk using standardized backtests. The
study shows that based on hit ratio and the p-values of backtests, the models
utilizing realized volatility in general provide more accurate VaR forecasts than
the baseline GARCH model.
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Abstrakt
Value at risk je standardizovaná metoda měření rizika portfolia, a je vyžadován
finančními regulátory. Měří pozici finanční instituce vůči ztrátám. Existuje
několik rozdílných způsobů, jak VaR odhadovat a předpovídat, které byly
vyvinuty od jeho uvedení před 30 lety. Jeden z přístupů je pomocí modelů
podmíněné volatility. V této práci se zaměřujeme na srovnání modelů gen-
eralizované autoregresivní podmíněné heteroskedasticity (GARCH), které jsou
známy a používány pro předpověď volatility již 40 let, s modely realizované
volatility, které jsou předmětem studia v posledních letech díky dostupnosti
vysokofrekvenčních dat. Zatímco ostatní podobné studie typicky používají
akciové indexy, v této práci zkoumáme výkonnost zvolených metod na jed-
notlivých akciích. Využijeme několik různých modelů volatility, pomocí kterých
provedeme předpovědi o jeden krok, a hodnotíme je v kontextu value at risk po-
mocí standardizovaných backtestů. Práce ukazuje, že podle poměru překročení
levelu VaR a p-hodnot backtestů modely využívající realizovanou volatilitu
poskytují lepší předpovědi value at risk než základní GARCH model.
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Chapter 1

Introduction

Value at risk (VaR) is a commonly used statistic for measuring potential risk
of economic losses in financial markets (So & Yu 2006). It is one of the most
important measures of market risk and has been used by banks, investment
funds, financial institutions and portfolio managers to mitigate risk by ensuring
holding of sufficient capital reserves to cover potential losses. VaR gives a clear
gauge of risk exposure by providing a probabilistic estimate of the potential
loss in value of a portfolio due to market movements. Understanding and
effective estimation of VaR is vital for stability of financial systems due to its
direct influence on portfolio management and regulatory compliance. Basel II
allows banks to use internal models such as VaR to estimate market risk capital
requirements, subject to regulatory approval. The risk estimates of a given
model must be reliable and accurate, for which specific criteria are given. These
models need to be regularly tested against actual outcomes.

The RiskMetrics model for measuring VaR has become a benchmark for
measuring market risk since its development in 1994 by J. P. Morgan’s risk
management group. Other methods have also been developed such as those
based on extreme value theory, as studied, among others, by Danielsson &
De Vries (2000) and Ho et al. (2000), high frequency data, as studied by for
example Beltratti & Morana (1999) or GARCH conditional moments, as stud-
ied by Wong & So (2003). The RiskMetrics model assumes that returns of a
financial asset follow a conditional normal distribution with zero mean and vari-
ance being expressed as an exponentially weighted moving average (EWMA)
of squared returns. These assumptions are problematic and introduce a sig-
nificant loss of accuracy to the forecasted values. First, it is well documented
that a return distribution usually has heavier tails than normal distribution.
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Therefore, the normality assumption may generate a significant bias, mainly
concerning the tail properties of the return distribution. Secondly, recent em-
pirical studies, for example Ding et al. (1993), among others, show that return
series may exhibit long memory or long-term dependence on market volatil-
ity, which was found to have a significant influence on derivative pricing and
volatility forecasting (So & Yu 2006). Measuring and forecasting latent volatil-
ity has many important applications in many areas of finance including asset
allocation, option pricing and risk management (Brownlees & Gallo 2009). For
the past 40 years, several methods were successfully utilized for this purpose
within the (G)ARCH framework, developed by Engle (1982) and further ex-
panded by Bollerslev (1987), Engle & Bollerslev (1986), Zakoian (1994), Engle
et al. (1987), Nelson (1991) and others. Alternative measurements based on
different assumptions and different information sets have been in use for some
time, some of them use historical variances, range or implied volatilities.

The idea of using proxies of volatility obtained from intra-daily data sam-
pled at high frequency has been proposed by Merton (1980), but it was only
two decades later until databases containing detailed information of transac-
tions in financial markets became available (Brownlees & Gallo 2009) and were
subject to studies by authors including Andersen & Bollerslev (1998), Andersen
et al. (2001a), Barndorff-Nielsen & Shephard (2002), Bollerslev et al. (2003).
Under suitable assumptions, these volatility proxies converge with increasing
sampling frequency to the integrated variance, i. e. the integral of an instanta-
neous or spot volatility of an underlying continuous time process over a short
period. An open question is how to forecast volatility on the basis of existing
information and the relationship to the latent underlying process (e. g. with
or without jumps). In theory, it is possible to construct ex-post measures of
return variability with arbitrary precision (Brownlees & Gallo 2009).

The objective of this thesis is finding the model which gives the most accu-
rate forecasts of VaR for individual stocks. This deviates from many already
existing papers where the analysis is conducted on simulated data or on global
indices. To be able to average the performance of a method regardless of spe-
cific stock, we perform all the estimations on a set of 76 stocks selected from the
stocks with highest traded volume. Results suggest that models implementing
realized volatility are able to provide more precise forecasts than the standard
GARCH model.

The rest of this work is structured as follows: In the first chapter, we present
an overview of theory related to VaR estimation, then we discuss the methods
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for observing conditional volatility which is used in VaR estimation, then we
discuss forecasting and in the end the evaluation of performance of forecasting
models. In the second chapter, we present the empirical methodology and
comment on the empirical results obtained from our estimations. A conclusion
follows with an overview of limitations of this study and possible ideas for
future research in this field.



Chapter 2

Overview of theory

2.1 Value at risk
VaR is defined as the maximum loss over a given time horizon at a given level
of probability. It can be used to get a sense of the minimum amount that
a financial institution is expected to lose with a small probability p = 1 − α

over a given time horizon k. For example an α = 95% 1-day VaR of $10 million
states that in 1

20 days, a realized loss of at least $10 million can be expected, or
the other way around, in 19

20 days, the maximum expected loss is $10 million.
Let Pt be the price of a financial asset on day t. A k-day VaR on day t is
defined by

P (Pt−k − Pt ≤ V aR (t, k, α)) = 1 − α

Given a distribution of return, VaR can be determined and expressed in terms of
percentile qα of the return distribution, as shown by Dowd (1998) and Jorion
(2006). This implies that good VaR estimates can only be produced with
accurate forecasts of the percentiles qα, which realized on appropriate volatility
modeling. Since this volatility is time-varying, we need to use appropriate
econometric models to incorporate it.

Since 1998, banks with substantial trading activity have been required to
set aside capital in order to insure for the case of extreme portfolio losses. The
set-aside capital, also called the market risk capital requirement, is linked to
a measure of portfolio risk. Currently, portfolio risk is measured with the use
of its VaR, which is defined to be the loss which is expected to be exceeded
only with α% probability, i. e. only α% of the time over a fixed time interval.
Current regulatory framework requires that financial institutions use their own
internal risk models to calculate and report a 1% value-at-risk, the VaR(99%)
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over a 10-day horizon (Campbell 2005). The VaR is defined as

V aRt (α) = −F−1 (α|Ωt)

where F−1 (·|Ωt) represents the quantile function of the profit and loss distri-
bution which varies over time as market conditions and the portfolio’s compo-
sition, represented by Ωt change. Accurate means of examining whether the
reported VaR represents an accurate measure of actual risk level are necessary
since financial institutions use their own internal risk models to determine the
specific level of VaR, based on which they adhere to risk-based capital require-
ments (Campbell 2005).

2.1.1 Estimating VaR

There are multiple ways of estimating VaR, based on different mathematical
constructions. For estimating VaR, we need to define the corresponding quan-
tile of the assumed distribution. There is empirical evidence showing that if we
assume normality, the produced results are often weak (Jorion 2007). We can
test the Jarque-Bera test to test the hypothesis that the stock returns follow
normal distribution. Since financial time series tend to have heavy tails (Cont
2010), it is natural to use the Student’s t-distribution instead. While many
returns exhibit skewness, the t-distribution is still used as a reasonable approx-
imation. We can fit the number of degrees of freedom of this distribution by
Maximum likelihood estimation (MLE) so that it fits our data the best.

The Delta-normal approach in estimating VaR assumes normality of stock
returns. Longerstaey & Spencer (1996) define VaR with the use of variance of
returns as

V aR (α) = µ+ σ ·N−1 (α)

where µ is the mean stock return, σ is the standard deviation of returns, α
is the selected percentile and N−1 is the inverse PDF function generating the
corresponding quantile of a normal distribution given a.

In some literature we can also find

V aR (α) = σ ·N−1 (a)

but there should be a minimal difference since the mean of returns of a financial
time series is close to zero.
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This original model is rarely used in practice today since the results of such
a model are often very poor due to the assumptions of normality of returns and
constant daily variance which are typically false.

In order to account for time-varying volatility, we can use conditional vari-
ance given as the output of one of our models. For this approach, VaR is
expressed as

V aRt (α) = µ+ σt · F−1 (α)

(Angelidis et al. 2004), where σ̂t|t−1 is the conditional standard deviation given
the information at t − 1 and F−1 is the inverse PDF function of a given dis-
tribution. Typically, Student’s t-distribution is used due to heavy tails and of
financial return series. Analogously as for the delta-normal approach, we can
use the version without mean

V aRt (a) = σt · F−1 (α)

but the difference in results should be negligible.

2.1.2 Forecasting VaR

There is a wide variety of methods for forecasting VaR, the performance of
many of them is compared by Kuester (2005). Giot & Laurent (2004) propose
a following approach for forecasting VaR using realized volatility: Let rt be the
daily (close-to-close) return at time t on a single asset. Then we assume that

rt =
√︂
ht · νt, νt ∼ F

where ht is the conditional variance of the daily return art time t and νt is an
i.i.d. unit variance and possibly skewed and leptokurtic random variable from
a cumulative distribution F. The one-day-ahead 100 · (1 − p) % VaR is defined
as the maximum one day ahead loss, that is

V aRp
t|t−1 = −F−1 (p)

√︂
ht|t−1

assuming that ht is known, conditional on the information available at time
t− 1. This is equivalent to

V aR (α) = µ+ σ̂t|t−1 · F−1 (α)
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In a GARCH framework, we can predict the one-day-ahead forecast of the
conditional variance of returns and use a distributional assumption on F to
provide the proper quantile of the distribution of the standardized residuals.
We can depart from this procedure if a series for a return variance proxy is
directly available. LetRV(m,θ)·t denote such a generic proxy computed according
to definition m using intradaily data sampled at frequency θ on day t and let
RV(m,θ)·t|t−1 denote its expectation conditional on the information available
at time t − 1, using suitable model specification. Then we assume that the
conditional variance of returns is some function of RV(m,θ)·t|t−1 and a vector of
parameters ϕ, for example, ht = f

(︂
RVm,θt|t−1|ϕ

)︂
. To be able to work within

this framework, we need to first specify a model capturing the dynamics of the
volatility measures to obtain the conditional expectations of volatility, second
a model that maps the conditional variance of returns with the conditional
expectation of the volatility measures and third an appropriate distribution for
the standardized return distribution.

2.1.3 Statistical framework of VaR backtests

A variety of tests have been proposed since 1990’s in order to measure the
accuracy of a VaR model. Many of these focus on a particular transformation
of the reported VaR and realized profit or loss. We may consider the event that
the loss on a portfolio exceeds its reported VaR, that is, V aRt (α). Denoting
the daily profit or loss on the portfolio over a fixed time interval, we can define
the hit function as follows:

It+1 (α)

⎧⎪⎨⎪⎩1, if xt,t+1 ≤ −V aRt (α)

0, if xt,t+1 > −V aRt (α)

Christoffersen (1998) reduces the problem of determining the accuracy of a VaR
model to determining whether the hit sequence

[It+1 (α)]t=T
t=1

satisfies two properties:

1. The unconditional coverage property states that the probability of real-
izing a loss in excess of the reported VaR must be precisely α%. If the
losses in excess of the reported VaR occur more frequently, then it is
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a suggestion that the VaR measure systematically understates the port-
folio’s actual level of risk and vice versa, finding too few VaR violations
may signal a systematic overstating of the risk level. ‘

2. The independence property places a restriction on the ways in which these
violations may occur. Specifically, any two elements of the hit sequence
must be independent from each other. This condition requires that the
previous history of VaR violations must not convey any information about
whether an additional VaR violation will occur. If previous VaR viola-
tions presage a future VaR violation, it suggests a general inadequacy
in the reported VaR measure. An example of such inadequacy may be
bunching, that is, the occurrence of violations of VaR is cumulated to-
gether. This represents a violation of the independence property that
signals a lack of responsiveness in the reported VaR measure as changing
market risks fail to be fully incorporated into the reported VaR measure
which makes successive runs of VaR violations more likely.

These two properties are separate and distinct and must be both satisfied by
an accurate VaR model. Only hit sequences that satisfy both properties can
be described as evidence of an accurate VaR model. The two properties of the
hit sequence, [It+1 (α)]t=T

t=1 , are often combined into a single statement:

It (α) i.i.d∼ B (α)

i. e. the hit sequence is identically and independently distributed as a Bernoulli
random variable with probability α.

2.1.4 Tests of VaR accuracy

There is an intense academic debate on the validity of risk measures in general
and VaR in particular (Dumitrescu et al. 2012). Since VaR is unobservable,
we have to rely upon the testing of the violations to test its validity. Three
main issues need to be addressed when evaluating VaR sequences: First, the
power, or the specificity of the model. It plays a key role especially in small
samples, as in 250 or 500 observations, i. e. 1-year or 2-years ahead. It has
been shown by Hurlin & Tokpavi (2007) that VaR tests generally have lower
power as the backtesting procedure is too optimistic in terms of rejecting the
validity of a model. Second, the backtesting methodology has to be model-free.
Third, estimation risk must be taken into account, i. e. testing procedures can
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successfully answer the question of VaR validity only by taking into account
estimation error, as the risk of estimation error as the risk of estimation error
present in the estimates of the parameters pollutes VaR forecasts. Conditional
on allowing for these errors, we should observe neither under-rejecting nor over-
rejecting.

Unconditional coverage tests

The earliest proposed VaR backtests focus only on the first property, that is,
unconditional coverage. These tests test only whether the reported VaR level
is violated more or less than α% of the time.

The commonly used proportion of failure (POF) test developed by Kupiec
(1995), has a null hypothesis of simple the probability of an exception being
equal to the significance level. The Kupiec tests statistic has the form

POF = 2 ·

⎛⎝(︄1 − α̂

1 − α

)︄T −I(α)

·
(︄
α̂

α

)︄I(α)
⎞⎠

α̂ = 1
T

· I (α)

I (α) =
T∑︂

t=1
It (α)

where T is the sample size. The POF is assumed to have a χ2 (1) distribution.
We can see that if the proportion of VaR violations is exactly equal to α%, then
the POF test statistic is equal to zero. As the proportion differs from α%, the
POF test statistic grows, indicating an evidence that the portfolio’s underlying
level of risk is either systematically underestimated or overestimated by the
proposed VaR measure.

Other tests also exist to assess the unconditional coverage property of
a given VaR model. One alternative is to simply base a test directly on the
sample average of the number of VaR violations over a given time period,
α̂. Under the assumption that the VaR under consideration is accurate, then
a scaled version of α̂,

z =
√
T · (α̂− α)√
α · (1 − α)

has an approximate N (0, 1) distribution and since the exact finite distribution
of z is known and so hypothesis tests can be conducted in exactly the same
way that hypothesis tests are conducted in the case of Kupiec’s POF statistic.
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The tests of unconditional coverage, while useful in providing a benchmark
for assessing the accuracy of a given VaR model, have two disadvantages: First,
they are known to have difficulty to detect VaR measures which systematically
under report risk. (Kupiec 1995). Second, they focus exclusively on the uncon-
ditional coverage property of an adequate VaR measure and do not examine
the extent to which the independence property is satisfied. Therefore, they
may naturally fail to detect VaR measures that exhibit correct unconditional
coverage but dependent VaR violations, which may result in losses that exceed
the reported VaR in clusters or streaks, which may result in even more stress
on a financial institution than large unexpected losses that occur somewhat
more frequently than expected but are spread out over time.

It is safe to say that as dependent VaR violations signal a lack of respon-
siveness to changing market conditions and inadequate risk reporting, relying
solely on unconditional coverage tests appears problematic. (Campbell 2005)

Independence tests

Since the unconditional coverage tests fail to detect violations of the indepen-
dence property of an accurate VaR measure, new tests have been developed to
examine the independence property. An early test of this type is the Markov
test developed by Christoffersen (1998), which examines whether or not the
likelihood of a VaR violation depends on whether or not a VaR violation oc-
curred on the previous day. Its null hypothesis is that the exceedances of VaR
level are independently distributed over time. If the VaR measure accurately
reflects the underlying portfolio risk then the change of violating today’s VaR
should be independent of whether or not yesterday’s VaR was violated (Camp-
bell 2005). This test utilizes the fact that if VaR violations are completely
independent then the amount of time that elapses between VaR violations
should be independent of the amount of time from the previous violation. In
this sense, the time between VaR violations should not exhibit any kind of du-
ration dependence. Performing the test requires estimating a statistical model
for the duration of time between violations by maximum likelihood using nu-
merical methods. The test creates a 2 × 2 contingency table which records
violations of the institution’s VaR on adjacent days. If the VaR measure accu-
rately reflects the portfolio’s risk then the proportion of violations that occur
after a day in which no violation occurred. If these proportions differ greatly
from each other, then the validity of the VaR measure comes under question.
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Christoffersen (2004) provide evidence that this test is more powerful than the
original Christoffersen’s test.

One main drawback of independence tests is that they all start from the
assertion that any accurate VaR measure will result in a series of independent
hits [It (α)]t=T

t=1 . Accordingly, any test of the independence property must fully
describe the way in which violations of the independence property arises, such
as in the case of the Christoffersen’s test, by allowing for the possibility that the
change of violating tomorrow’s VaR depends on whether or not yesterday’s VaR
was violated. However, there are many other ways in which the independence
property may be violated, for example, the likelihood of violating tomorrow’s
VaR may depend on violating or not violating the VaR a week ago rather than
yesterday. In such situation, the Markov tests will not be able to detect this
type of independence property violation.

In statistical terms, the alternative hypothesis that the independence prop-
erty is being tested against needs to be completely specified by any indepen-
dence test. Intuitively, an independence test must describe the anomalies that
it is looking for while examining whether or not the independence property
is satisfied. Other types of violations will not be systematically detected by
the given test. Therefore, independence tests can only detect inaccurate VaR
measures to the extent that they are designed to identify violations of the inde-
pendence property in ways that are likely to arise when internal risk models fail
to provide accurate VaR measures. This information may come from a thor-
ough understanding of when and how common risk models fail to accurately
describe portfolio risk. Thus, even though these models may not perform the
best in terms of changing market conditions, tests that examine the amount of
clustering in VaR violations such as the Markov test may be useful in identify-
ing inaccurate VaR models (Campbell 2005).

Joint tests of unconditional coverage and Independence

Since an accurate VaR measure must exhibit both independence and uncondi-
tional coverage property, tests that examine these properties jointly provide an
opportunity to detect VaR measures which are deficient in one way or another.
Both the Markov test (Christoffersen 1998) and duration test (Christoffersen
2004) can be extended to test independence and unconditional coverage jointly.
For a Markov test, this is simple: The joint Markov test examines whether there
is any difference in the likelihood of a VaR violation following a previous VaR
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violation or non-violation and at the same time determines whether these pro-
portions are significantly different from α. The ability of joint tests to detect
the VaR measure which violates either of the two properties, their ability to
detect a measure which only violates one of the properties is decreased, com-
pared to tests which test only independence or unconditional coverage. This
drawback comes down to the fact that as one of the properties is satisfied, it
is more difficult for the fact to detect the inadequacy of a VaR measure. This
fact indicates that either conditional coverage or independence tests alone are
preferable to joint tests when prior considerations are informative about the
source of the VaR measure’s potential inaccuracy (Campbell 2005).

Tests based on multiple VaR levels-α

The above discussed tests attempt to determine the adequacy of a VaR measure
at a single level, α. However, there is no reason to restrict the attention at
a single VaR level, since the unconditional coverage and independence property
of an accurate VaR measure should hold for any level of α. Several backtests
based on multiple VaR levels were suggested. They utilize the fact that a α%
VaR should be exploited α% times and also VaR violations at all levels should
be independent from each other.

Regression-based tests

Engle & Manganelli (2004) propose a novel approach to quantile estimation:
Instead of modelling the whole distribution, they model the quantile directly.
The volatility clustering may be translated to saying that the distribution of
it is autocorrelated. Consequently, the VaR, which is tightly linked to the
standard deviation, must exhibit similar behavior. A natural way to formalize
this characteristic is to use some type of autoregressive specification. They in-
troduced the Conditional autoregressive quantile specification (CAViAR) with
the null hypothesis of the number of exceedances being equal to the confidence
level of the VaR model and the timing not exhibiting clustering.

This test relies on a linear model with the general idea to project VaR
violations onto a set of explanatory variables and test different restrictions on
parameters of the regression model that corresponds to the consequences of
the martingale assumption. Both linear and non-linear regression models can
be considered. The Dynamic quantile (DQ) test of Engle & Manganelli (2004)
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consists in testing linear restrictions in a linear model that links the violations
to a set of explanatory variables, with a binary dependent variable.

2.2 Methods used for estimating volatility
The goal of this thesis is to demonstrate and compare the efficiency of respective
methods which can be used for volatility forecasting. For that, we will use to
commonly used families of methods: The GARCH models which are being
used for more than 4 decades, and methods based on realized volatility, which
undergone a recent development in the last few years due to the availability of
high-frequency trading data.

2.2.1 GARCH family models

The GARCH model was introduced by Bollerslev (1987) as a generalization
of the earlier Autoregressive conditional heteroskedasticity (ARCH) model de-
fined by Engle (1982) and since then, it has been widely used for studying the
volatility of time series.

A common way to build a GARCH model is to remove linear dependencies
in the data by an ARMA model and use residuals from this model for testing
the GARCH effects, using either the Ljung-Box test, autocorrelation func-
tion (ACF) or partial autocorrelation function (PACF), or by the Lagrange
multiplier test. If the test statistic is significant, that is, a conditional het-
eroskedasticity of the error term is detected, we can use the ACF and PACF of
the residuals to determine the GARCH order. Or we can estimate models of
multiple orders and use information criteria to select the best model. The most
common orders are low, such as GARCH(1,1), GARCH(1,2) or similar. Since
we are using the residuals from an ARMA model for volatility estimation, we
can call this model an ARMA-GARCH model.

The original general specification of the GARCH model was

rt = ϕ0 + ϕ1 · rt−1 + at

at = σt · ϵt

σ2
t = α0 +

m∑︂
i=1

αi · a2
i−1 +

s∑︂
j=1

βj · σ2
t−j
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for general GARCH(p,q), or for the commonly used GARCH(1,1)

σ2 = α0 + αi · a2
t−1 + β1 · σ2

t−1d

The weakness of the standard GARCH is that it models volatility effect as
symmetric for both negative and positive returns. However, this is not necessar-
ily true. It has been shown that the leverage effect tends to be present in stock
time series and therefore asymmetric models which take the leverage effect into
account tend to perform better than the symmetric ones (Reinhard Hansen &
Lunde 2003) as negative shocks tend to have bigger effects on volatility due to
irrational risk aversion of investors.

Furthermore, long memory is an issue: financial time series may exhibit
long memory which is not taken into account in the baseline GARCH model.
It has been shown that the models which take it into account tend to perform
better than models which compute short memory only (Ding et al. 1993).

As the last issue, the baseline GARCH assumes that error terms are nor-
mally distributed. This is not necessarily true as the error term may exhibit fat
tails or skewness which cannot be captured by normal distribution, thus leading
to an underestimation of extreme events. This can be solved by selecting skew
normal distribution, Student’s t-distribution or skew Student’s t-distribution
instead of the standard normal.

Several extensions to the base GARCH were proposed by other authors
later to address the above described weaknesses. Examples include:

The GARCH in mean (GARCH-M) model which connects the return of an
asset to its volatility was introduced by Engle et al. (1987)

rt = µ+ c · σ2
t + at

at = σt · ϵt

σ2
t = α0 +

m∑︂
i=1

αi · a2
i−1 +

s∑︂
j=1

βj · σ2
t−j

The integrated GARCH (IGARCH), defined by Engle & Bollerslev (1986)
model which is a unit-root integrated GARCH model in which the past squared
shock is persistent:

rt = ϕ0 + ϕ1 · rt−1 + a

at = σt · ϵt
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σ2
t = α0 +

m∑︂
i=1

(1 − βi) · a2
i−1 +

s∑︂
j=1

βj · σ2
t−j

Zakoian (1994) introduces the threshold autoregressive GARCH (TAR-GARCH),
which is able to take into account the asymmetric response in the volatility
equation to the sign of a shock, which is supported empirically:

rt = ϕ0 + ϕ1 · rt−1 + a

at = σt · ϵt

σ2
t =

⎧⎪⎨⎪⎩α0 + α1 · a2
t−1 + β1 · σ2

t−1, at−1 ≤ 0

α2 + α3 · a2
t−1 + β2 · σ2

t−1, at−1 > 0

The Glosten-Jagannathan-Runkle GARCH (GJR-GARCH), which is a simple
version of a threshold GARCH, as defined by Glosten et al. (1993):

σ2
t + α0 + β1 · σ2

t−1 + α1 · a2
t−1 + α1 · a2

t−1 + γ · I (at−1 ≤ 0) · a2
t−1

I (at−1 ≤ 0) = 0 if at−1 ≤ 0 and I (at−1 ≤ 0) = 1 if at−1 > 0,

The Exponential GARCH (EGARCH) model as defined by Nelson (1991):

at = σt · ϵt

log
(︂
σ2

t

)︂
= ω +

q∑︂
k=1

βk · g (Zt) +
p∑︂

k=1
αk · log

(︂
σ2

t−k

)︂
g (Zt) = Θ · Zt + λ · (|Zt| − E (Zt))

where Zt is a standard normal variable, so g (Zt) allows the sign and the mag-
nitude of Zt to have separate effects on the volatility, which is especially useful
in asset pricing context.

Since it has been shown that stock returns and volatility tend to exhibit long
memory (Ding et al. 1993), models which take this stylized fact into account
have been developed:

The fractionally integrated GARCH model, or FIGARCH(m,d,s) is defined
by Baillie et al. (1996) as

ϕ (L) · (1 − L)d · a2
t = α0 + (1 − β (L)) ·

(︂
a2

t − σ2
t

)︂
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where
ϕ (L) =

s−1∑︂
i=1

= ϕi · Li

is of order s − 1. For d = 1 this is equivalent to the IGARCH model. It has
been shown for example by So & Yu (2006) that IGARCH and FIGARCH
outperform the baseline GARCH as well as the original RiskMetrics in the
context of VaR estimation.

Similarly as for the previous models, the long memory models may be con-
structed so that they account for asymmetries, one of the possibilities is the
Fractionally integrated exponential GARCH (FIEGARCH), defined by Baillie
et al. (1996), which is able to capture the long memory simultaneously with
the leverage effect.

GARCH models are frequently used in estimating volatility for estimating
the Value-at-risk, as summarized by Duffie & Pan (1997) or Jorion (2007),
among others.

The GARCH family models are estimated via maximum likelihood estima-
tion. The estimation of GARCH, GARCH-M, IGARCH, TAR-GARCH, GJR-
GARCH, EGARCH and several other commonly used model specifications are
included in most statistical software. The estimation of the FIGARCH and
FIEGARCH models is nontrivial due to the infinite memory and a truncation
at a certain lag is necessary to evaluate the log-likelihood. We will not discuss
this issue any more since the FIGARCH or FIEGARCH models are not used
in the empirical analysis, details may be found for example in the work of So
& Yu (2006).

2.2.2 Realized volatility

Initial work on realized volatility includes Zhou (1996) who first used it to
study foreign-exchange rates, Andersen & Bollerslev (1998), who used realized
volatility for studying financial markets and has shown their accuracy or An-
dersen et al. (2001a), who studies the distribution of realized volatilities and
demonstrates their temporal dependence. Recently, the early results have been
refined and extended by Bandi & Russell (2008), Hansen & Lunde (2006), and
Zhang (2006) who study the noise and noise correction in intraday data or
Oomen (2005) who searches for the optimal sampling frequency. Stylized facts
on equity ultra high frequency data (UHFD) are described by Andersen et al.
(2001b), Ebens (1999) and Hansen & Lunde (2006).
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Modelling of different frequencies in the evolution of volatility is an alterna-
tive to traditional approaches which take long-range dependence into account
in the ARFIMA models and regression models mixing information at different
frequencies, e. g. the so-called Heterogeneous AR (HAR) model as developed
by Corsi (2009).

The intra-daily prices are used as building blocks of the UHFD volatility.
The intra-daily price series are constructed using either Tick Time Sampling
(TTS) or Calendar Time Sampling (CTS). In TTS, the series is sampled every
d ticks. In CTS, we take the last recorded tick-by-tick price every θ units of time
starting from an initial time of the day (typically the opening) until market
closing. Overnight information is not included in these series and this may
have a consequence, as studied by Gallo (2001) who shows that the overnight
squared return has a significant impact when used as a predetermined variable
in a GARCH for the open-to-close returns. This problem is similarly present for
realized volatility measures, as demonstrated by Martens (2002), Fleming et al.
(2001) or Hansen & Lunde (2001), among others. The realized volatility has
become the benchmark UHFD volatility measures, commonly used in applied
work (Brownlees & Gallo 2009). Under appropriate assumptions, including the
absence of jumps and microstructure noise, the RV converges to the latent
volatility as the sampling frequency increases.
Realized variance (RV) can be computed as

RVi,t =
m∑︂

j=1
r2

i,t−1+j·n

and realized volatility as
RVol =

√
RVar

This variance or volatility is daily. We can further aggregate the daily realized
variance to a longer period of time. This aggregated realized variance will be
used in the Heterogeneous autoregression (HAR). The weekly realized variance
is equal to:

RV w
t = 1

5
(︂
RV d

t +RV d
t−1 + . . .+RV d

t−4

)︂
or monthly realized variance:

RV m
t = 1

22
(︂
RV d

t +RV d
t−1 + . . .+RV d

t−21

)︂
We can further decompose the realized variance into positive semivariances
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which may be used in the asymmetrical HAR model, as proposed by Barndorff-
Nielsen et al. (2010). The RVt = RS−

t +RS+
t are defined as

RS−
i,t =

m∑︂
j=1

r2
i,t−1+j·n, if ri,t−1+j·n < 0

RS+
i,t =

m∑︂
j=1

r2
i,t−1+j·n, if ri,t−1+j·n > 0

In the same fashion, we can compute higher order realized moments: realized
skewness as

RSkewi,t =
√
m
∑︁m

i=1 r
3
i,t−1+j·n

RV
3
2

t

and realized kurtosis as

RKurti,t =
√
m
∑︁m

i=1 r
4
i,t−1+j·n

RV 2
t

Using the realized measures, we can estimate several types of models.

Autoregressive model of realized volatility

As the simplest model utilizing realized variance for estimating conditional
volatility, we can use the AR(p) process of realized variance. This can be
constructed simply as

RVt = β0 +
p∑︂

i=1
βi ·RVt−i + ϵt

or for realized variance as

RVol t = β0 +
p∑︂

i=1
βi ·RV olt−i + ϵt

Similarly, we could extend the AR(p) model to ARMA(p,q) model with the
same logic as for the original returns. The problem of this approach is that
a simple ARMA model neglects long-time memory. This could be dealt with
using some fractionally integrated ARMA (ARFIMA) model, in which the frac-
tional integration accounts for long memory. However, different models have
been developed to better address this problem specifically in the context of
realized volatility.
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Heterogeneous autoregression

Another method which we can use for studying conditional heteroskedasticity
with the use of realized volatility is the Heterogeneous Autoregression (HAR),
introduced by Corsi (2009). This is a simple regression in which we use realized
variance or volatility aggregated over various periods of time, typically daily,
weekly and monthly:

RVt = α0 + β1 ·RVt−1 + β2 ·RV (5)
t−1 + β3 ·RV (22)

t−1 + ut

where the RV (h)
t−1 is h-period realized variance, so RV (5)

t−1 corresponds to realized
volatility over 1 week andRV (22)

t−1 corresponds to realized volatility over 1 month,
and ut is a normally distributed error term.

To this baseline HAR model, we can add the realized semivariances, as
proposed by Patton & Sheppard (2015):

RVt = α0 + β+
1 ·RS+

t−1 + β−
1 ·RS−

t−1 + β2 ·RV (5)
t−1 + β3 ·RV (22)

t−1 + ut

or analogously with semivariances also over the longer periods.
We can also add realized skewness and kurtosis, as proposed by Amaya

et al. (2015):

RVt = α0 +β·
1RVt−1 +β2 ·RV (5)

t−1 +β3 ·RV (22)
t−1 +βs ·RSkewt−1 +βk ·RKurtt−1 +ut

or

RVt = α0 + β+
1 ·RS+

t−1 + β−
1 ·RS−

t−1 + β2 ·RV (5)
t−1 + β3 ·RV (22)

t−1 + . . .

. . .+ βs ·RSkewt−1 + βk ·RKurtt−1 + ut

There are several other more complex HAR models which are out of scope
of this thesis, such as the HAR-J mode developed by Andersen et al. (2003)
which includes the jump component in the HAR model or the HAR-CJ model
developed by Andersen et al. (2007) which includes jump and continuous com-
ponents separately.

Alternative approaches for realized measures are being developed. Exam-
ples include the realized kernels proposed by Hansen et al. (2008) or for example
the research by Martens & van Dijk (2007) and Christensen & Podolskij (2007)
who propose realized range as a novel and more efficient estimator.
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2.2.3 Realized GARCH

The realized GARCH model is a crossover between the traditional GARCH
family models and models utilizing realized volatility. It was introduced by
Hansen et al. (2012) and can be constructed as

rt =
√︂
ht · zt

log (ht) = ω +
p∑︂

i=1
βi · log (ht−i) +

q∑︂
j=1

γ · log (xt−j)

log (xt) = ξ + ϕ · log (ht) + ut

or
log (xt) = ξ + ϕ · log (ht) + τ (zt) + ut

where τ (z) = τ1 · z + τ2 · (z2 − 1) is the leverage function which captures the
joint dependence between stock returns and volatility shocks, z is the error term
which has either N (0, 1) or Student t-distribution, depending on the specific
setting, rt represents the return series, ht = V ar (rt|Ft−1) is the conditional
volatility and xt is the selected realized volatility measure.

Adding the realized volatility into the GARCH model improves fit, since the
effect of realized volatility helps the model to react more quickly and adjust
the value of conditional variance based on recent information.

The realized GARCH models can be extended in two ways: First, we can
add higher realized moments, similarly to the HAR model. Wang et al. (2022)
show that including realized skewness and kurtosis in the RGARCH model
improves fit and provides more accurate results for Var than the standard
RGARCH model:

rt = E (rt|It−1) +
√︂
ht · zt

ht = α0 + α1 · ht−1 + α2 ·RVt−1

RVt = ω0 + ω1 · ht + τ (zt) + ut

where rt is the log return, ht is its conditional variance, and RVt is the real-
ized variance constructed from intraday returns. Following Leon et al. (2005),
we assume that zt follows the transformed GCE distribution with the density
function

gce (zt|st, kt) = ϕ (zt) · ψ2 (zt)
Γt
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where
ψ (zt) = 1 + st

3!
(︂
z3

t − 3 · z
)︂

+ kt − 3
4!

(︂
z4

t − 6 · z2
t + 3

)︂

Γt + 1 + st

3! + (kt − 3)2

4!
The original GCE formula is ψ (zt)ϕ (zt) with the four first moments equal
to (0, 1, st, kt), where st and kt are related, even though not equal, to the
conditional skewness and kurtosis and can be formulated with the use of higher
realized moments as:

st = β0 + β)1 · st−1 + β2 ·RSt−1

kt = γ0 + γ1 · kt−1 + γ2 ·RKt−1

where RS and RK denote the realized skewness and realized kurtosis calculated
with intraday returns.

Second, the model also can be extended to a more advanced model in a sim-
ilar fashion like the standard GARCH. One motivation behind this may be
capturing the leverage effect, which can be done for example using the realized
exponential GARCH (REGARCH), developed by Hansen & Huang (2016):

rt = E (rt|It−1) +
√︂
ht · zt

log (ht) = ω + β · (ht−1) + δ (zt−1) + γ · ut−1

log (xt) = ξ + ϕ · log (ht) + τ (zt) + ut

where δ (zt) is the leverage function given by δ (zt) = δ1 · zt + δ2 · (z2
t − 1)

Next model is the realized HAR RGARCH, which combines the concept of
the HAR and GARCH models. It was proposed by Hansen & Huang (2016) as

rt =
√︂
ht · zt

log (ht) = ω+β · log (ht−1)+γd · log (xt−1)+ γw

4 ·
5∑︂

i=2
log (xt−i)+ γm

17 ·
22∑︂

i=6
log (xt−i)

log (xt) = ξ + ϕ · log (ht) + τ (zt) + ut

The main difference between the HAR RGARCH and the base RGARCH is the
introduction of the HAR model structure for the realized measures, i. e. build-
ing a simple regression model for xt and then adding a new realized measure
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to the original RGARCH model. By indirectly elongating the time axis to ac-
count for long memory, this model captures the market-related structure. The
HAR RGARCH model focuses on potential volatility on a day-to-day basis, as
opposed to the HAR model which focuses on intra-day realized measure. The
HAR RGARCH can automatically adjust for overnight information through the
measurement equation, a feature that the standard HAR model is not capable
of.

The most recent addition to the family of realized GARCH models is the
fractional integrated realized GARCH model (FIRGARCH), which takes into
account the long memory of financial time series. Xiao et al. (2023) define the
FIRGARCH as

rt =
√︂
ht · zt

(1 − β (L)) · log (ht) = ω +
(︂
1 − β (L) − ϕ (L) · (1 − L)d

)︂
· . . .

. . . ·
(︄
γd · log (xt−1) + γw

4

5∑︂
i=2

log (xt−1) + γm

17 ·
22∑︂

i=6
log (xt−i)

)︄

log (xt) = ξ + ϕ · log (ht) + τ (zt) + ut

where the specfic assumptions of the model are consistent with the RGARCH
and HAR RGARCH models, d is the long memory parameter which indicates
a significant long memory in the market as it gets close to 0.5 and a short
memory process as it gets close to −0.5. γd, γw and γm are the daily, weekly
and monthly realized measures coefficients, respectively.

2.3 Forecast
In the VaR framework, volatility forecasting is an interesting discipline for
comparing different volatility measures (Bollerslev et al. 2003). Although in
this thesis the topic is limited to a single asset at time, it can be extended into
a multivariete problem.

In order to be able to make decisions related to future, we need to forecast,
i. e., extrapolate into future with the use of currently available values. In
general, for an observed value X forecasted by a model M one-period-ahead,

Xt = M (Xt−1)
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the forecasting is
X̂ t+1|t = M (Xt)

where X̂ t+1|t is the conditional expectation of Xt+1 given the information avail-
able at time t.

Since forecasts from any model will not be perfect, we need to consider the
forecast error, which is the difference between the true value and the forecasted
value:

et+1|t = Xt+1 − X̂ t+1|t

which is
et+1|t = Xt+1 −M (Xt)

The forecast is unbiased if
E
(︂
et+1|t

)︂
= 0

These errors can be transformed by a loss function such as mean square error
or mean absolute error and used for comparing the performance of a model in
forecasting. This is discussed in more detail in the next sections.

2.3.1 Rolling forecast

For assessing the forecasting performance of a method, we typically do not
perform an out-of-sample forecast over a long horizon, because the accuracy
of a forecast necessarily deteriorates over longer horizon. Instead, we perform
a pseudo-out-of-sample rolling forecast. This is done in the following way:

Let w represent the length of training window, h the length of a forecast,
n the observations per model refitting. We estimate the model on w observa-
tions and for dates w + 1, . . . , w + h forecast values using the training data.
Then we forecast for dates w + h + 1, . . . , w + 2 · h using the model fitted on
the observations 1, . . . , w of the training data set and observations 1, . . . , w+h

as model entries. After getting to the observation w+n, we refit the model on
the new training window and continue until the desired number of forecasted
observations is reached.

There are several ways how to approach the model refitting. First is the
rolling window scheme. For a fixed rolling window size, we estimate the model
and forecast the future values and then roll the window of observations to be
used in the estimation of the model, so for the first estimation, the training set
contains the observations 1 to w where w is the width of the window, for the
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second estimation the training dataset contains the data from 1 +n, . . . , w+n,
for the third refitting the training dataset contains the data from 1+2·n, . . . , w+
2 · n and so on.

Second is the expanding scheme. We start with a given number of obser-
vations w and after estimating the model and forecasting the new values, we
expand the window of observations used in estimating the next model to the
newly forecasted value. In other words, we first fit the model on the observa-
tions 1 to w, second on 1 to w + n, third on 1 to w + 2 · n and so on.

Third, in a fixed window scheme, we estimate the model on the available
data and keep it estimated for the whole rolling forecast without refitting. This
is a naive approach and is not commonly used.

For both rolling and expanding window, we can refit the model with different
frequency. The more straightforward and most accurate way is to refit the
model for every single forecasted value. However, this comes at the cost of
high computational power necessary, especially with computationally intensive
models and long time series. Therefore, we may choose to refit only after
a certain period (e. g. monthly, that is, every 21 forecasted observations),
weekly (every 5 observations) or similar in order to decrease running time.

2.4 Model evaluation
Several methods can be used to judge model fit. First, in order to build
a GARCH model, we need our time series to exhibit ARCH effects. This
can be tested using the Ljung-Box test for serial autocorrelation in residuals,
the Score test or by the autocorrelation or partial autocorrelation functions.
We use the Ljung-Box test, developed by Ljung & Box (1978) to test the serial
correlation of residuals of and ARMA model. This test has the null hypothe-
sis of independent distribution (i. e. no autocorrelation), and the alternative
hypothesis of autocorrelation being present. The test statistic is equal to

QLB = n · (n+ 2) ·
h∑︂

k=1

ρk̂
2

n− k

where n is the sample size, ρ̂k is the sample autocorrelation at lag k and h is
the number of lags being tested. Under H0, QLB ∼ χ2

h, so the critical region
for rejection of the hypothesis of randomness is Q > χ2

1−α,h. There is no exact
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rule for setting the size of h, but Tsay (2005) recommends, based on simulation
studies, that h = log (n).

A simplified earlier test with the same purpose is the Box-Pierce test, de-
veloped by Box & Pierce (1970) which has the test statistics

QBP = n ·
h∑︂

k=1
ρ̂2

k

and uses the same critical region as the Ljung-Box test. However, it was shown
by simulation studies that the distribution of the Ljung-Box test statistic is
closer to χ2

(h) than that of Box-Pierce test for all sample sizes including small
ones. (Ljung & Box 1978)

Similarly, we need to check whether the ARMA model has normally dis-
tributed residuals, which would show homoskedasticity and thus would not
leave any space for the modelling of (generalized autoregressive) conditional
heteroskedasticity. This can be done either by graphical representation using
the Q-Q plot or formally by the Jarque-Bera test, developed by Jarque & Bera
(1980) with the null hypothesis of normal distribution. The test statistic of the
Jarque-Bera test is:

JB = n

6

(︃
S2 + 1

4 (K − 3)3
)︃

where n is the number of observations, or degrees of freedom, S is the sample
skewness:

S = µ̂3

σ̂3 =
1
n

∑︁n
i=1 (xi − x)3(︂

1
n

∑︁n
i=1 (xi − x)2

)︂ 3
2

and K is the sample kurtosis:

K = µ̂4

σ̂4 =
1
n

∑︁n
i=1 (xi − x)4(︂

1
n

∑︁n
i=1 (xi − x)2

)︂2

where
JB ∼ χ2 (2)

in case that the data is normally distributed. Rejecting the null hypothesis for
residuals of an ARMA states that the residuals are not normally distributed.
This is one hint that ARCH effects may be present, however, we still need to
perform the tests for autoregressive relationship in them since the Jarque-Bera
test does not say anything about what is the inner structure of the non-normally
distributed residuals.
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2.4.1 Forecast evaluation

Several metrics can be used to evaluate the forecasting performance. Since
the true conditional variance is latent, it needs to be substituted by some ex-
post estimator based on observed quantities as they become available. Possible
candidates to serve as unbiased proxies for volatility are, for example, the daily
squared returns or realized volatility. Since we have the realized volatility
available and use it elsewhere in our computations, we also utilize it as the
estimator of latent volatility.

We can utilize the loss function which measures the difference between re-
alization and the forecast. Some of the commonly used loss functions are the
absolute error:

LAE

(︂
RVt+1, RV̂ t+1|t

)︂
=
⃓⃓⃓
RVt+h −RV̂ t+h|t

⃓⃓⃓
squared error:

LSE

(︂
RVt+1, RV̂ t+1|t

)︂
=
(︂
RVt+h −RV̂ t+h|t

)︂2

or quasi-likelihood (QLIKE):

LQLIKE

(︂
RVt+1, RV̂ t+1|t

)︂
=
⎛⎝log (︂RVt+h|tˆ

)︂
+ RVt+h

RV̂ t+h|t

⎞⎠
These can be used on its own as Mean absolute error (MAE):

MSE = 1
n

n∑︂
i=1

⃓⃓⃓
RVt+h −RV̂ t+h|t

⃓⃓⃓

and Mean squared error (MSE):

MSE = 1
n

n∑︂
i=1

(︂
RVt+h −RV̂ t+h|t

)︂2

Alternatively, loss functions may used in the Diebold-Mariano (DM) test, de-
fined by Diebold & Mariano (2002) for pairwise comparison of accuracy of two
different. The test statistic of the DM test is equal to

DM − T =

√︂
(T ) · d√︂

(ω)
a∼ N (0, 1)
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where dt = L1,t − L2,t is the loss differential which we assume is stationary
and L is the loss function which is nonnegative and increasing in size with
increasing error, and equal to zero when no error is made. Typically the MSE
or MAE are used as this loss function. The he null hypothesis of the DM test
is

H0 : E (dt) = 0

i. e. both forecasts perform equally well. If the null is rejected, we can tell
either that there is a difference in forecasting performance between these two
tests or that one of the tests is better than the other, depending on whether
we use the one-sided or two-sided test.

The Mincer-Zarnowitz (MZ) regression, developed by Mincer & Zarnowitz
(1969) is a different method of comparing the accuracy of the forecast for
a single model by regressing the forecasted values on true (proxy) values and
checking the regression coefficients. The use of the Mincer-Zarnowitz regression
in the context of volatility forecasting was demonstrated by Bollerslev et al.
(2003) or Aït-Sahalia & Mancini (2008).

For our case of forecasting volatility and using realized volatility as the
proxy of the true value, this is

RVt+h = α + β ·RV̂ t+h|t

The null hypothesis is H0 : α = 0 & β = 1 which is tested by a joint test and
is equivalent to the estimate being unbiased. If the null is rejected, we observe
a bias in our forecast, therefore the Mincer-Zarnowitz regression allows us to
test the presence of systematic overpredictions or underpredictions. Also the
R2 of the regression can be used as an evaluation criterion of the accuracy of
the forecast.

Other measures can also be used to evaluate the performance of forecasts,
for example implied volatility measures such as VIX, as studied by Engle &
Gallo (2006), or it can be studied within a risk management framework, the
quality of the derived Value-at-risk (VaR) or Expected Shortfall (ES) which
have emerged as prominent measures of market risk (Giot & Laurent 2004).

The process of comparing the models will be by following steps for each
model: First, a full-sample size model will be used for fitting the in-sample
model.

Second, we compare the out-of-sample forecasting performance of the se-
lected models using different forecasting schemes: Expanding window, in which
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the sample used to estimate the parameters of the model grows as the forecaster
makes predictions for successive observations, and rolling window, in which the
sequence of forecasts is based on parameters estimated using a rolling sample
of fixed size.

Third, the results from the models described in the previous section shall
be summarised and we will observe whether the comparison of results of per-
formance of respective models is consistent across time series, or whether they
differ. If they differ, we will discuss what may be determining the performance
of respective models for each respective time series.



Chapter 3

Empirical study

3.1 Data
To be able to observe the performance of each model across specific stock series,
we are using a set of daily data for several stocks. We selected the 100 most
traded US stocks. The data is extracted from the Kibot.com database. All
the realized measures time series use the 5-minute intra-day returns between
9:30am and 17:00pm and uses calendar time sampling. For each stock we have
the following values for every date:

• Close price

• Realized variance

• Realized positive semivariance

• Realized negative semivariance

• Realized skewness

• Realized kurtosis

We use close price to compute returns as simply

ri,t =
P close

i,t − P close
i,t−1

P close
i,t

Each of the time series has a different starting point, depending on the
availability of data, the earliest starting point being 5th January 1998. The
last day of the time series is the 12th December 2022. From this set, we
eliminated these which had a long break of missing value in the middle. From
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February to April 2020, there was a period of extraordinarily high volatility
on the markets due to the start of the covid-19 pandemics and the related
stock crash which occurred on 20th February 2020. Since we want to see how
our volatility measures are performing in periods of extraordinary volatility, we
decided to include these months into the forecasting periods. Therefore, we will
perform the forecasts on the period starting from 27th May 2019 and ending on
26th May 2020. As the training dataset, we will use all the data available prior
to this period. For a GARCH model, we should use at least 1000 observations
in the training dataset, as Ng & Lam (2006) show. Therefore, we will use only
these variables which have at least 1000 observations prior to 27th May 2019.
This leaves us with a subset of 76 stock time series. The training set for each
stock begins with the beginning of the available data and ends on the 24th of
May 2019. The used stocks and their basic properties are shown in Table 3.1,
including the beginning of respective series and number of observations w in
each training data set.

Figure 3.1 plots the mean and standard deviation of return for all used
stocks. It is clearly visible that the general asset pricing assumption holds,
assets with higher volatility tend to have higher returns, but we can see that
there is some variance among these and it would be an interesting task to try
to construct an optimized portfolio from these stocks, possibly also using the
results from the VaR estimation which follows. However, this is beyond the
scope of this thesis.
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Figure 3.1: Mean and standard deviation of returns for each stock

For each stock, we ran the Augmented Dickey-Fuller (ADF) test for presence
of unit root in the returns. For all stocks, the ADF p-value is < 0.01 as
expected, thus rejecting the null hypothesis of unit root in the return time
series. We also performed a Jarque-Bera test on returns also with < 0.01
for all stocks, thus rejecting the null hypothesis of normality of returns, as
expected. Therefore, we will assume Student’s t-distribution to model the
expected returns.

3.2 Model estimation and evaluation
We estimate the following models, described above1:

• AR(1)-RV: the first-order autoregressive model of realized volatility

RV = α + β1 ·RVt−1 + ϵt, ϵt ∼ N
(︂
0, σ2

)︂
where RV is the realized variance.

1The text in bold at the beginning of each item specifies how the model will be referred
to henceforth
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• HAR, heterogeneous autoregression, specified as

RVt = α0 + β1 ·RVt−1 + β2 ·RV (5)
t−1 + β3 ·RV (22)

t−1 + µt

where RV (h)
t−1 is a h-period realized variance, i. e. RV (5)

t−1 is weekly realized
variance and RV

(22)
t−1 is monthly realized variance.

• HAR-AS, asymmetric heterogeneous autoregression, specified as

RVt = α0 + β+
1 ·RS+

t−1 + β−
1 ·RS−

t−1β2 ·RV (5)
t−1 + β3 ·RV (22)

t−1 + µt

where RS+
t−1 is the positive realized semivolatility and RS−

t−1 is the neg-
ative realized semivolatility.

• HAR-RSV - heterogeneous autoregression with realized skewness, spec-
ified as

RVt = α0 + β1 ·RVt−1 + β2 ·RV (5)
t−1 + β3 ·RV (22)

t−1 + β4 ·RSkewt−1 + µt

where RSkew is the realized skewnes.

• HAR-RSRK, heterogeneous autoregression with realized skewness and
realized kurtosis, with the specification

RVt = α0+β1·RVt−1+β2·RV (5)
t−1+β3·RV (22)

t−1 +β4·RSkewt−1+β5·RKurtt−1+µt

where RKurt is the realized kurtosis.

• RGARCH: realized GARCH(1,1), specified as

ht = ω + α · r2
t−1 + β · ht−1 + γ · xt−1

where xt represents the noisy measurement of realized volatility.

• GARCH: ARMA(1,1)-GARCH(1,1), the baseline GARCH with the spec-
ification

rt = ht · ϵt

ht = ω + α · r2
t−1 + β · ht−1

where ϵt is the error from an ARMA model.
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For both baseline GARCH and realized GARCH, we choose to use simply the
ARMA(1,1)-GARCH(1,1) model without using the autocorrelation function,
partial autocorrelation function or information criteria, because the results us-
ing these methods may be different for each stock and we want to use a single
model for all stocks to be able to compare among models easily. Therefore
we stick to the ARMA(1,1)-GARCH(1,1) which is among the most common in
financial applications due to its parsimony and the fact that if a higher order
model performs better, the improvement tends to be only marginal (Hansen &
Lunde 2001).

For the sake of parsimony, we chose not to include any more advanced
GARCH-family models. However one needs to keep in mind that it has been
shown that these models in general outperform the base GARCH(1,1) in fore-
casting volatility due to asymmetries and long memory of financial time series.
(So & Yu 2006) Therefore they should be included in a more extensive study
as the optimized representatives of the GARCH family models.

Each of the models will be fitted separately on each of the selected 76 times
series, their performance will be judged one by one and we will see whether
there is a trend in performance among the models across all time series.

We performed the Jarque-Bera test on the residuals of the ARMA(1,1)
model for each stock and its p-values are always < 0.01, so we can reject the
null hypothesis of normality of residuals. We also perform the Ljung-Box test
for autocorrelation on the residuals of the ARMA(1,1) model to check whether
they exhibit ARCH effects and it makes sense to try and construct a GARCH
models on this data with number of lags equal to log (n) where n is the number
of observations, as recommended by Tsay (2005). The results are shown in
Figure 3.2. We can clearly see that for the majority of stocks the returns are
autocorrelated, i. e. they exhibit ARCH effects.

3.2.1 Forecasting VaR

The out-of-sample VaR forecasting is performed with both rolling and expand-
ing windows using the whole time series from its beginning until the start of
forecast, which is assumed to be the information set as of time t at each step.
Then the one-day-ahead VaR prediction at time t+ 1 is derived as

V ar (a) = µ+ σ̂t|t−1 × F−1 (a)
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Figure 3.2: p-values of the Ljung-Box test for serial correlation on
returns

where σ̂t|t−1 is the conditional standard deviation given the information at
t− 1 and F−1 is the inverse PDF function of a t-distribution since we rejected
normality by the Jarque-Bera test.

The prediction is based on the inverse of the cumulative distribution func-
tion of the Student’s t distribution with the degrees of freedom estimated in
order to fit the most appropriate distribution. We move the estimation win-
dow ahead by one day and repeat the procedure until we gather the series of
one-day-ahead predictions, across 252 days as out-of-sample.

3.3 Volatility forecasting
We perform fitting and forecasting of each model for all the available stocks
with the length of forecast ahead equal to h = 1. The rolling forecast is
performed with both expanding and rolling window so that we are able to
compare whether there are different results depending on the selected refitting
scheme. For GARCH and RGARCH model, we refit every n = 21 observations,
i. e. monthly, because these models are very computationally intensive. For
all the other models, we refit for every observation (n = 1).

Table 3.2 shows an overview of how many forecasts of respective stocks
perform better with expanding or rolling window for each model according to
mean absolute error. Table 3.3 shows an overview of how many forecasts of
respective stocks perform better with expanding or rolling window for each
model according to mean square error. From these tables we can see that there
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are only small nuances and we cannot observe a clear pattern stating that
one type of forecasting window performs better for a specific type of model,
the only exception being the HAR-RSRK, in which rolling forecasting scheme
outperforms expanding forecasting scheme for all the stocks we study.

AR(1)-RV HAR HAR-AS HAR-RS HAR-RSRK RGARCH GARCH
Rolling 47 41 64 63 76 42 62

Expanding 29 35 12 13 0 34 14

Table 3.2: Better performing forecasting scheme for each model ac-
cording to MAE

AR(1)-RV HAR HAR-AS HAR-RS HAR-RSRK RGARCH GARCH
Rolling 36 24 62 59 76 32 59

Expanding 40 52 14 17 0 44 17

Table 3.3: Better performing forecasting scheme for each model ac-
cording to MSE

Figure 3.3 shows the distribution of mean square error and mean absolute
error for both forecasting windows. The lower the error, the better the forecast-
ing accuracy. We can clearly see that in terms of predicting accuracy, RGARCH
outperforms all the remaining models, the standard GARCH and autoregres-
sive models perform the worst and all the HAR models perform similarly, just
in between. The errors of RGARCH model are relatively concentrated around
the median value. For the other models it seems that the worse the forecasting
performance of a model, the more spread the results are among different time
series. All of these conclusions hold for both MAE and MSE and the difference
between rolling and expanding forecasting scheme is negligible.

Figure 3.4 shows the p-values of the joint hypothesis test on the Mincer-
Zarnowitz regression. The null hypothesis is joint α = 0 and β = 1. From
the results we can see that at the 5 % significance level we safely reject the
null hypothesis of unbiasedness, therefore, we must consider our estimates to
be biased.

We can see that the rejection is the most clear for the AR(1)-RV and
GARCH models while for RGARCH, the null is not rejected in a non-negligible
number of cases.

Looking at the R2, we can see that it is the highest for the RGARCH and
surprisingly for the AR(1)-RV and the lowest for GARCH with the HAR models
in between.
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Figure 3.3: Distribution of mean square error and mean absolute error
for both forecasting schemes

For both the p-value and R2, we can clearly see that the conclusions are
identical for rolling and expanding forecasting window and the differences in
results for these two schemes are only marginal.

Figure 3.5 shows the p-values of the Diebold-Mariano test comparing the
methods with each other, using the one-sided variant with absolute error as the
loss function. The null hypothesis of the one-sided Diebold-Mariano test states
that the method in title of each graph is more accurate than the respective
method at the x-label of the graph.

In the first plot, we can see that the AR(1)-RV is being outperformed by
all models with the exception of the HAR model where the median p-value
is slightly above 0.05, so we cannot say anything about the comparison of
performance of HAR and AR(1)-RV model on the 5% significance level.

In the second plot, we can see that HAR outperforms the ARMAGARCH
model whereas the result for the comparison of AR(1)-RV and HAR are in-
conclusive at the 5% significance level and all the remaining models perform
better than the HAR model.
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Figure 3.4: p-values of the joint hypothesis test on the coefficients of
the Mincer-Zarnowitz regression and its R2

In the third plot, we can see that the HAR-AS model outperforms all the
remaining models with the exception of RGARCH.

In the fourth plot, we can see that the HAR-RSV outperforms AR(1)-RV,
HAR and ARMAGARCH model and on the other hand it is outperformed by
the HAR-AS and RGARCH models, whereas the results of comparison between
HAR-RSV and HAR-RSRK are inconclusive.

In the fifth plot, we can see that the HAR-RSRK outperforms AR(1)-RV,
HAR and ARMAGARCH models but it is outperformed by HAR-AS and
RGARCH whereas the results of comparison between the HAR-RSRK and
HAR-RSV are inconclusive.

The sixth plot clearly shows the clear dominance of the RGARCH model
above all other.

The seventh plot shows that the baseline ARMAGARCH models is the
weakest in terms of forecasting error.

Together, we can say that the order of models in forecast performance,
according to one-sided Diebold-Mariano test on the 5% significance level with
the mean absolute error used as the loss function is (from the best to the worst):
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1. RGARCH

2. HAR-AS

3. HAR-RSV together with HAR-RSRK

4. HAR together with AR(1)-RV

5. ARMAGARCH

An especially interesting finding is that the HAR-RSRK, which is equiva-
lent to the HAR-RSV model, extended by realized volatility, does not perform
significantly better (even though the distribution of p-values suggests slightly
better performance). Thus, it shows us that more information in the model
does not necessarily have to lead to better results or that realized skewness is
not a good explanatory variable for realized skewness.

3.4 Value at risk forecasting
In this thesis we use the VaR equation which includes the mean of returns:

V aR (α) = µ+ σ̂t|t−1 · F−1 (α)

For our stocks, the mean of returns is typically approximately 1
100 of the

σ̂t|t−1 · F−1 (α) term and the exceedance rate is the same for both situations
except for a very few situations in which the true return is just above or just be-
low the forecasted VaR level, therefore the choice of including or not including
the mean in the VaR equation does not make any difference.

Figures 3.6 and 3.7 show the results of several backtesting procedures of
our forecasted VaR levels. All the results are almost identical for rolling and
expanding forecasting scheme. In all the tests, the null hypothesis states that
the estimates correctly represent the VaR for the specific level, with differing
methodology what and how is specifically tested. Therefore, a low p-value
means a VaR estimate which does not correctly represent the VaR for the
specific α level, and a high p-value means a VaR estimate which represents the
VaR for the specific α level fairly.

On the 90% VaR level, we can see that the results of all tests suggest that
the forecasts from AR(1)-RV and GARCH models estimate VaR falsely, with
the exception of the DQ test where the median p-value is just above 5%. The
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RGARCH is the best with median p-values for all tests convincingly above 5%.
The HAR models are just around the 5% rejection threshold.

On the 95% VaR level, the situation is similar: For Kupiec’s and Christof-
fersen’s tests the median p-values for the GARCH and AR(1)-RV tests are
below the 5% threshold, so the VaR forecasts generated by these models are
considered false. For the HAR models and the RGARCH model, the p-values
are above the 5% threshold, so we may assume that the forecasted VaRs are cor-
rect. However, the results of the DQ test show that for GARCH and RGARCH,
the p-values are above the rejection threshold, whereas for all the remaining
models the median p-values are just around 5%.

For both 90% and 95% VaR level, the hit rate, which should be equal to
the VaR level, is lower than the VaR level, approximately one half of it in
both cases. This suggests that all our models systematically forecast the VaR
intervals too wide. The hit rate is the closest to the respective VaR level in
case of the RGARCH model and the furthest from it in case of the AR(1)-RV
and GARCH models with the HAR models in between.

The results for the 99% VaR level suffer from small sample problem. Since
we performed 252 out-of-sample t + 1 predictions, the estimated number of
exceedances on the 99% VaR level is 1% ·252 = 2.52 which is too low a number
for performing any reasonable tests. Therefore, we must completely disregard
the results of tests and hit rate for the 99% VaR as not representative.
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Figure 3.5: This figure shows the p-values of the Diebold-Mariano test
with one sided alternative. The null is that the method
in the title of each plot is more accurate than the method
in the respective x-label of the plot. The 0.05 and 0.95
levels are shown with dashed line for better orientation in
the intervals of rejection or non-rejection.
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Figure 3.6: Backtesting results for expanding forecasting scheme for
different VaR levels. First row contains the p-values of
Kupiec’s test, second row the p-values of Christoffersen’s
test, third row shows the p-values of Engle and Man-
ganelli’s dynamic quantile test, the fourth row shows the
hit rate. The dashed lines show the 0.05 significance level
for tests and expected hit rate.
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Figure 3.7: Backtesting results for expanding forecasting scheme for
different VaR levels. First row contains the p-values of
Kupiec’s test, second row the p-values of Christoffersen’s
test, third row shows the p-values of Engle and Man-
ganelli’s dynamic quantile test, the fourth row shows the
hit rate. The dashed lines show the 0.05 significance level
for tests and expected hit rate.



Chapter 4

Conclusion

In this thesis, we explored the forecasting of volatility and VaR for individual
stocks with different methods and compared their performance. In the empir-
ical part, we focus on three percentiles, α = 99%, α = 95%, α = 90%. The
results for the out-of-sample forecasting of volatility were in general consistent
with the results of forecasted VaR backtesting. For both, tt was shown that the
RGARCH has the best performance. On the other hand the baseline GARCH
model was shown to be the weakest of all, which clearly confirms that the
use of realized volatility has a big potential to improve volatility forecasts and
in turn VaR forecasts. However, using realized volatility does not necessarily
promise the best performance in any model, as was shown with the example
of the AR(1)-RV model the performance of which was typically as wrong or
only slightly better than that of the baseline GARCH model. The HAR models
clearly overperformed the GARCH and AR(1)-RV models, but were not able to
compete with the RGARCH. There are some clear differences in the accuracy
of each of the multiple HAR model, notably the asymmetrical effect seems to
improve performance relatively significantly.

4.1 Limitations, areas for further study
For the sake of parsimony, we used only the base GARCH(1,1) model. How-
ever, since it has been shown that other more complex GARCH-family models
outperform GARCH in both simple volatility forecasting as well as in VaR fore-
casting, we should also include these models for a more reliable comparison. It
has been shown that financial time series express long memory, therefore our
focus should also aim towards long memory models such as the FIGARCH or
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FIEGARCH. For the same reason, rather than using the simple AR(1) model
of realized volatility, which we used in our study, we could attempt to study
an ARFIMA-RV model which addresses the long memory property of financial
time series.

As the next point, for the realized volatility, we only used the data computed
on single time granularity (5-minutes). There is a relevant literature which
compares the performance of volatility models, depending on the granularity
which the realized volatility is computed with. Therefore, we can also take this
approach and check whether there is a difference in results depending on the
selected granularity (Brownlees & Gallo 2009).

In this thesis, we used a subsample of 76 stocks. For a more reliable out-
come, we could perform the same study on stock indices like for example So &
Yu (2006), since stock indices better capture the overall behavior of market and
are more resistant to shocks in individual stocks. Alternatively, we could use
data on all available stocks to study the whole market. However, this would
be computationally very intensive which is why only a subsample was selected
for the purpose of this study.

We took all the data without any smoothing for jumps or outlier values.
A common method when studying financial time series is to use jump-corrected
data using e. g. MedRV or Bipower variation in order to mitigate the influence
of these outliers on results.

In the GARCH and RGARCH model, we chose monthly refitting scheme
due to high computational intensity. It would be interesting to study each
model in terms of how the results change with different refitting frequencies.

For the HAR models, two findings may be of interest: First, the asymmetric
HAR-AS model performed better than the baseline model and both models
utilizing higher moments. Second, we found out that there is not a statistically
significant difference in forecasting performance between the HAR-RSV and
HAR-RSRK models. Therefore, it would be interesting to try to estimate all
possible specifications of a HAR model. Combining the previously mentioned
findings, it is expected that the asymmetric HAR model utilizing higher order
moments should perform at least as well as any HAR model studied in this
thesis.

Some effort could be also put into studying the possibilities of incorporating
asymmetric realized semivolatility inside a modified RGARCH model, similar
to Xu (2023).

The results of the Mincer-Zarnowitz regression clearly state that most our
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volatility forecasts are biased. The hit ratio shows that the calculated VaR
levels were exceeded fewer times than they should be. From this we can see that
the VaR intervals are too wide. Together this may suggest that the estimated
volatilities which we use in the computation of VaR are too large, i. e. the
forecasts are biased upwards. We should study more what is this caused by
and how to improve our models so that this bias is reduced.

An interesting result in parameter testing (which was not included in the
main body of the thesis) is that in many cases, the VaR forecasting performance
was better when assuming normal distribution of returns, which contradicts the
stylized facts in time series and the result of Jarque-Bera test on returns which
clearly states that the returns are not normally distributed. Therefore, we
should try to dive deeper into the distributional assumptions of returns and
fit a “perfect” distribution, possibly using the Stable Lévy distribution rather
than Student’s t-distribution.

There were striking differences in the computational intensity among re-
spective methods. This was not discussed in detail in the main part of the
thesis, but it would be very interesting to study this problem systematically.
First, a very accurate method is not suitable for practical use if it is so com-
putationally intensive that an ordinary computer is not able to compute it
in reasonable time. Second, there may be some changes (such as changing
the assumed distribution within the MLE) which have only marginal effect on
the results but significantly determine the computing intensity. It would be
interesting to perform some sensitivity analysis and try to identify these.

Our backtesting results suffered from a small sample problem. With 252
predictions, there are expected 2.52 exceedances of the VaR levels at α = 99%.
This number is too small and therefore the results of backtesting are inconclu-
sive and in further studies we should forecast over a longer period in order to
have data that can be backtested also on the α = 99% with a reasonable degree
of credibility.

A more novel downside risk measure which is gaining popularity in the re-
cent years is the expected shortfall which can also be estimated in various ways
using estimated conditional volatility, so new research can focus on estimating
the expected shortfall rather than VaR so we can see if the ranking of com-
parable methods is similar or it changes depending on what risk measure we
use.
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