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Introduction
Advances in Natural Language Processing (NLP) transformed the way we

interact with computers. It became possible to progress from rigidly structured
control flows to communication in natural language. Programs that enable this
communication are called dialogue systems. Today’s most famous one is probably
ChatGPT, a chatbot based on Large Language Model (LLM).

While LLMs present unparalleled performance in many NLP tasks, they are
not a universal solution to all of them. One such area where they cannot be
utilized without further tweaks is voice-based Task-Oriented Dialogue (TOD).
These dialogues are aimed at specific domains or applications, such as travel
booking, restaurant reservations, or customer service. Task-oriented dialogue
systems typically follow a predefined dialogue flow, guiding users through a series
of prompts and responses to achieve specific tasks or objectives. LLMs cannot
directly handle text-based TODs well (Cao, 2024; Hudecek; Dusek, 2023; Heck
et al., 2023) and the need to process audio adds further complexity to the problem
(M. He; Garner, 2023). We will focus on the topic of voice-based TODs in this
thesis.

In standard voice-based systems, further processing relies on Automatic Speech
Recognition (ASR). While ASR also significantly improved in the last decades, its
performance is still far from perfect, especially when faced with a lot of background
noise or uncommon words. The so-called Spoken Language Understanding (SLU)

— interpreting the meaning of spoken user utterance (usually from its recording)
— thus becomes much more complex than the same task with textual input (Tur;
De Mori, 2011).1 The effectiveness of task-oriented dialogue systems depends on
their ability to comprehend user intents and extract relevant information from
their utterances. Robust SLU capabilities are therefore necessary. However, any
ASR error propagates through the processing pipeline and usually results in the
inability to fulfill the goal of the task.

The comprehension of user intent is usually called intent detection. It involves
assigning some primary meaning (or more of them) to the user utterance (Tür
et al., 2010). For example, when adding an event to a personal calendar, we could
detect that the user’s primary intent is to add an event and that they are also
informing us about its date. Since we decided not to focus on this part of SLU,
we will not discuss any more details.

The extraction of relevant information is usually performed in a process called
slot filling. A list of slots, specific pieces of information that need to be extracted
from a sentence, is defined to reach some goal of the conversation (Y. He; S. J.
Young, 2005). To continue our example with adding an event to a calendar, these
could include a name, date, time, and location for the event. The system then
tries to fill these slots with values extracted from the user utterances. Slot filling
in SLU will be the main focus of this thesis.

1When the input is textual instead of audio, the term Natural Language Understanding
(NLU) is usually used. This does not always hold true; these terms are often mixed in the
literature.
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Aims of This Thesis
Slot filling in SLU is especially prone to ASR errors mainly for two reasons.

Imagine a situation where the user tells the system he wants to start navigation
to a particular city. Names are often unique and obscure. Therefore, ASR is more
likely to make a mistake than with common words. Then, once a slot is filled with
the detected value, even a single wrongly transcribed letter can cause a failure
because the city will not be found in the database.

The main question we decided to target in this thesis can be formulated quite
simply:

How can we utilize prior knowledge of possible slot values (e.g., having
them in a database) to achieve robust slot filling in SLU with general
off-the-shelf ASR (without fine-tuning the ASR model)?

As we shall show later, answering this question is not simple at all.
The reason we opt not to fine-tune the ASR is straightforward. If we allow

ASR fine-tuning, the solution would be to fine-tune ASR for the given task and
teach it all the specific words. This way, we would achieve high-quality transcripts,
and widespread NLU methods could be used. However, this would mean we need
a specific fine-tuned ASR for every task. As ASR is a complex problem, it requires
fairly large models (Amodei et al., 2016). Therefore, fine-tuning and running
task-specific ASR would be computationally challenging and costly. Instead, we
aim to use general ASR with a task-specific SLU slot-filling module. Machine
learning models in this module should be lightweight compared to the ASR models,
resulting in lower overall costs.

We aim to review existing literature relevant to this question, draw some
inspiration from it, develop our own approach, and apply it to selected datasets.
As there is no suitable dataset in the Czech language for this problem, we create
one in the process.

Structure of This Thesis
The first three chapters aim to introduce the theory relevant to the problem in

question. Chapter 1 gives an overview of ASR methods and a general introduction
to the machine learning methods. We summarize the ASR architectures most
important for our work in Section 1.9. In Chapter 2, we introduce common
approaches to textual slot filling (in NLU). Building on this knowledge, Chapter 3
discusses ways to deal with ASR errors in SLU.

Then, we focus on our own approaches in Chapter 4. We present a slot-filling
dataset in Czech in Section 4.1. In Section 4.2, we describe a baseline system
and propose a novel SLU architecture. Section 4.3 details utilized training and
inference methods, and finally, in Section 4.4, we focus on the experimental results
and error analysis.
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1 Automatic Speech Recognition
Automatic Speech Recognition (ASR) is the first module of most voice-based

dialogue system pipelines, enabling machines to transcribe spoken language into
text. The text is then processed to extract meaning and form a response.

We start this chapter by covering the basics of audio processing in Section 1.1
followed by an introduction to language models in Section 1.2. This introduction
is useful for introducing machine learning fundamentals in Section 1.3. Neural
networks and their advanced architectures are discussed in Sections 1.4 and 1.6,
interleaved by Section 1.5 about input representations. In Section 1.7, we discuss
how neural networks are trained. Though focused on ASR, the description of
general machine learning methods serves as a basis also for later Chapters 2 and 3
focused on slot filling. A summary of traditional statistical ASR approaches is
presented in Section 1.8. Finally, Section 1.9 covers modern open-source pre-
trained ASR models essential for our later work.

1.1 Audio Data
Audio data is the raw input upon which transcription and understanding tasks

are based. In this section, we talk about how audio is recorded and saved on
computers, what fundamental properties influence the quality of the recording,
and what features we can extract from the recording for use in ASR.

1.1.1 Recording of Audio
Audio, as we know it, is the vibration of the air around us as the sound

waves propagate through space. The waves are generated by acoustic sources,
such as human speech, musical instruments, or ambient noise. To capture the
audio, acquiring these sound waves and transforming them into electrical signals
is necessary. These signals can then be stored and digitally processed (Gold
et al., 2011). The sound wave in the physical world is continuous; it theoretically
contains an infinite amount of information, which poses a challenge for recording
the audio. To store it on computers, we need to decide how to store the relevant
information from the sound wave in a limited memory.

Several components are involved in the recording process, including micro-
phones, analog-to-digital converters (ADCs), and recording devices. Microphones
are transducer devices that convert acoustic waves into electrical signals. As the
energy of a sound wave is usually very low, the generated electric current is also
low. Therefore, it needs to be amplified and only then measured. The measured
signal is then passed to an analog-to-digital converter (ADC), which converts the
continuous electrical signal into a digital signal. The ADC samples the signal
periodically, measures its amplitude, and stores this value.

The frequency at which the signal is sampled is called the sample rate and is
usually measured in Hertz (Hz), i.e., we measure how many measurements are
done in a second (Oppenheim, 1999). The number of bits used to represent the
amplitude of the signal is called the bit depth. Greater bit depth results in a more
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precise representation of the signal. The combination of the sample rate and bit
depth determines the quality of the recording.

Common sampling rates include 8 kHz, 16 kHz, 44.1 kHz (CD quality), and 48
kHz (DVD quality), but special equipment for certain applications today can get
up to hundreds or even thousands of kHz. Higher sampling rates capture more
detail but require more storage space and processing power. The sampling rate
determines the maximum frequency we can reconstruct from the digital recording.
This is known as the Nyquist limit since he was the first to imply this fact (Nyquist,
2002).

Frequencies below 10 kHz are essential in human speech. Therefore, a sampling
rate of 16 kHz is usually chosen as a compromise for use in ASR (Jurafsky; Martin,
2024). Sometimes, only an 8 kHz sampling rate is used, but recording captured
this way can represent only frequencies up to 4 kHz. Such recording thus may
sound muffled, and the missing features may pose a challenge for ASR systems.
Common values of the bit depth include 8-bit, 16-bit, and 24-bit. Higher bit
depths allow for more precise representation of audio signals but also result in
larger file sizes.

The digitized audio data is then stored using a recording device such as a
computer sound card. Factors such as background noise, microphone placement,
and microphone type can significantly affect the clarity and intelligibility of the
recorded speech.

Voice-based dialogue systems are often used in suboptimal conditions. These
can include smart speakers where the user speaks meters away from the microphone
or smartphone assistants used on the go in noisy surroundings. Understanding
the resulting low-quality recordings is challenging. A noisy recording is hard to
transcribe for ASR, and noisy transcription is, in turn, hard to process for NLU.

1.1.2 Input Features for Further Processing
Once audio data is recorded, it is typically stored as an array of amplitudes

representing the sound wave over time. We can visualize it in a graph called a
waveform, as shown in Figure 1.1. While waveforms provide basic information
about the audio signal, they may not be the best input for ASR tasks due to their
lack of frequency information. Therefore, various transformations are applied to
convert the raw audio data into feature representations that capture both spectral
and temporal characteristics of the signal.

Waveforms and Spectrograms

As we have already mentioned, the waveform by itself does not convey infor-
mation about the frequency content of the audio signal, a critical aspect of speech
comprehension. We use the Discrete Fourier Transform (DFT) (implemented
using Fast Fourier Transform (FFT) algorithms) to obtain the frequency spec-
trum at a specific point in time. DFT transforms a time-domain signal into its
constituent frequencies (Heideman et al., 1984).

The frequency spectrum provides a snapshot of the audio signal’s frequency
content at a particular moment, showing the presence and intensity of different
frequency components. However, speech signals change over time. We use the

11
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Figure 1.1 Example of a waveform plot. Image created by the authors using librosa
Python library.

Short-Time Fourier Transform (STFT) to capture these temporal variations
(Allen; Rabiner, 1977).

The STFT uses the Fourier Transform to allow us to analyze the frequency
content of signals over time. When computing STFT, we first divide the audio
signal into short, overlapping segments (windows), and then we compute the DFT
for each segment. As a result, we get a time-frequency representation of the signal,
known as a spectrogram.

The resulting spectrogram is a two-dimensional array with time represented
in one dimension and frequency in the other. When we plot these spectrograms,
we usually display time on the horizontal axis and frequency on the vertical axis,
using color to represent the magnitude of each frequency component according to
a predefined scale.

Mel-Frequency Spectrograms and Mel-Frequency Cepstral Coefficients
(MFCCs)

While spectrograms are useful for visualizing and analyzing speech signals,
they may still not be the best option for ASR processing due to their linear
spacing of frequency bins, which does not align with human auditory perception.
Mel-frequency spectrograms, where the frequency axis is transformed to match
the Mel scale (Stevens et al., 1937; Stevens; Volkmann, 1940; Siegel, 1965),
are often used to address these issues. The Mel scale was developed to better
capture properties of human hearing, where the same perceived difference between
pitches corresponds to a larger difference in frequencies when listening to higher
frequencies than when listening to lower frequencies.

The Mel scale is defined by the following approximate formula:

Mel(f) = 2595 · log10

(︄
1 + f

700

)︄
where f is the frequency in Hertz. The mel-frequency spectrogram is obtained by
applying a filter bank of triangular filters spaced according to the Mel scale to
the power spectrum of the STFT. This results in a spectrogram with frequency
bins distributed more densely in the lower frequencies, mimicking human auditory
perception. Figure 1.2 shows a log-mel spectrogram, where the frequency values
are processed by taking their logarithm.

12
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Figure 1.2 Example of a log-mel spectrogram plot. Image created by the authors
using librosa Python library.

To further reduce the dimensionality and extract compact features from the
mel-frequency spectrogram, we compute Mel-Frequency Cepstral Coefficients
(MFCCs). MFCCs are derived by taking the logarithm of the Mel-frequency filter
bank energies and then applying the Discrete Cosine Transform (DCT) (Xu et al.,
2004; Hossan et al., 2010).

MFCCs are widely used as input features for ASR systems due to their effec-
tiveness in capturing relevant acoustic information while reducing dimensionality.
According to Davis and Mermelstein (1980), in some cases, as little as six MFCCs
can be sufficient to capture most of the relevant information.

1.2 Language Models (LMs)
While the primary focus of ASR systems is on accurately transcribing spoken

language into text, Language Models (LMs) are crucial in enhancing transcription
accuracy by providing context and predicting the likelihood of word sequences.
Language models are used in conjunction with acoustic models to improve overall
system performance (Drugman et al., 2016; Hono et al., 2024). We will give a
quite thorough, intuitive introduction to these models because it will be beneficial
for the later description of machine learning methods.

Language modeling is usually probabilistic, i.e., the model assigns probabilities
to different possibilities. We will describe this on an example of a word n-gram
language model as it is probably the simplest class of language models.

Imagine we have a sequence of words, and we would like to predict (model)
what the next word is. That will, of course, depend on the context. There is
the language context available to the LM (the preceding sequence of words) and
other context unavailable to the LM (such as the surroundings of the speakers)
(Jurafsky; Martin, 2024). At the same time, there are multiple words that can
follow the sequence, which is why we model the probability distribution. If we
look at this from another point of view, we are modeling a function that takes
the context and a possible next word as inputs and returns the probability that a
given word follows the context.

We want the model to reflect the real world. Therefore, we collect a corpus
(a collection) of texts that we believe represent the real-world usage of language
(S. Young et al., 1999). From there, we obtain the vocabulary of all words that
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appear in the texts. Then, we record all the counts of possible contexts of different
lengths and the respective following words and estimate probabilities from these
counts.

We could call these estimated probabilities parameters as they help us evaluate
the function for different inputs. However, this becomes next to impossible for
longer contexts as the number of necessary parameters grows exponentially. For a
context of length seven and vocabulary of size |V |, there are already |V |7 possible
contexts. The probability distributions would also be very sharp as many such
long contexts will be found only once in the corpora.

Consequently, n-gram LMs learn and estimate the probability of a word based
on a previous context of a fixed size n − 1 words. For example, a bigram model
(n = 2) considers the previous word, while a trigram model (n = 3) considers the
two preceding words (see Figure 1.3 for an illustration). Even then, the resulting
probability distributions are often too sharp, and smoothing methods (S. F. Chen;
Goodman, 1999) are used.

what a beautiful day
n = 1 (unigram): what, a, beautiful, day

n = 2 (bigram): what a, a beautiful, beautiful day

n = 3 (trigram): what a beautiful, a beautiful day

Figure 1.3 Illustration of n-grams for n ∈ {1, 2, 3}. Image created by the authors.

The same n-gram LMs can then be used to estimate the probability of a word
sequence W = w1, w2, ..., wT using the chain rule of probability:

P (W ) =
T∏︂

t=1
P (wt|wt−n+1, ..., wt−1)

n-gram models have been widely used. They are both easy to implement and
efficient in terms of computation. However, they are severely limited by their
fixed context window and inability to capture long-range dependencies.

For further discussion of language models and their applications in ASR, refer
to foundational texts such as books by Jelinek (1998) or Manning and Schutze
(1999).

1.3 Machine Learning
We will introduce machine learning on the basis of n-gram LMs. The n-gram

model used its parameters to remember the values of the function for different
multidimensional inputs (the context of length |C| corresponds to C individual
inputs). We want the model to work with the parameters more efficiently and
truly model the function, not just remember its values for different inputs.

This leads us to the definition of a general machine-learning model. The
model approximates a function that, for some (usually multidimensional) input
x, returns a value y using some set of parameters θ (Goodfellow et al., 2016).
Different model architectures then provide different tools for how the inputs and
the parameters can be combined to obtain the prediction.
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For example, let us have a simple machine learning model that receives a
black-and-white photo on the input and decides whether it was taken during the
day or during the night. The input x are all the pixel values of the photo (the
lighter the pixel, the higher the numerical value). We allow the model only to sum
the inputs, and it has a single parameter θ. This parameter represents a threshold
under which the model predicts “night” and over which it predicts “day”.

In the training stage, we set the threshold so that it maximizes the model
accuracy on some training set of photos for which we know the correct prediction.
This brings in an important aspect and requirement. The model should truly
approximate the function, not just remember its values at different points. This
way, the model learns to generalize and produce correct outputs also for unseen
inputs (Bishop; Nasrabadi, 2006). Now, if we show the model a new photo, we
have a good chance that it correctly decides when it was taken, even though it
has never seen it. When we use the model after the training to make predictions,
we call it inference.

In order to make sure our model generalizes well, we need to test it on data it
has not seen during the training. The available dataset is, therefore, usually split
into three parts – training, validation (or development), and test sets (Goodfellow
et al., 2016). We use the train set to change the model parameters θ using a
specified training algorithm (we will explore some specifics in Subsection 1.7).
Then, when the performance of the model on the train set is satisfying, we test
the model performance on data it has not seen – on the validation set.

This can show us whether the model is overfitting, i.e., remembering too much
of the training data and not generalizing well (Hastie et al., 2001). Then, we can
change the hyperparameters (any parameters not changed during training, e.g.,
the number of trainable parameters |θ|) and train the model again. We cannot use
the validation set for the final model evaluation because we have been changing
the model to work on these data better. To make the final measurement of how
well the model generalizes, we evaluate it on the test set.

1.3.1 Modes of Training
During the training, the model should set its parameters θ to optimal values

so that it approximates the function as effectively as possible. The parameters are
changed using a training algorithm. The choice of the training algorithm depends,
among others, on the task at hand, the data available, and the model architecture.

The machine learning methods are usually divided into unsupervised and
supervised learning (some also put reinforcement learning into a separate category)
(Russell; Norvig, 2021). We focus on supervised learning and its variants, as these
are the only modes employed in this work.

Supervised Learning

In supervised learning, we have a dataset with inputs and corresponding
outputs (so-called gold labels or ground truth) available (Murphy, 2012). During
training, we give the model one sample from the dataset and let it make a prediction.
Then, we compare the prediction with the gold label and use a training algorithm
to change the model parameters θ so that next time, its prediction for the same
input is closer to the gold label.
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Labeled datasets are often hard to obtain. Therefore, an approach of pre-
training and later fine-tuning the model is very frequent (Devlin et al., 2019).
During the pre-training, we train the model on a bigger dataset we have available.
This dataset may deal with slightly different data or even with a different task.
The goal of the pre-training is for the model to learn to extract useful features
from the input and create effective inner representations (we will talk about them
in Subsection 1.5.2). Then, we fine-tune the model on a smaller dataset with
examples very similar to what we will test the model on. Extreme examples of
this are few-shot and zero-shot methods, where we fine-tune the model only on a
few or zero examples of the final task.

To further reduce the need for manually labeled datasets, weakly-supervised
and self-supervised approaches were proposed.

Weakly-supervised Learning This method’s main idea is that we do not need
the labels to be perfect for the model to be able to learn from it (Zhou, 2018). We
obtain the dataset, for example, by scraping the relevant input-output pairs from
the internet or by using a preliminary model to label previously unlabeled data.
As we cannot be sure the labels are correct, we usually call them pseudo-labels.

Self-supervised Learning When trained in a self-supervised manner, the
model is trained on huge datasets of unlabeled data by creating surrogate tasks,
such as predicting parts of the input from other parts (X. Liu et al., 2023). This
approach leverages the data’s inherent structure to learn inner representations
without requiring manually assigned gold labels. This technique proved very
effective in many fields, as large amounts of unlabeled data in different forms
(textual, audio, images, …) can be used to pre-train models that can later be
fine-tuned with smaller labeled datasets, significantly improving performance and
generalization.

1.4 Neural Networks
Neural Networks (NNs) as an architecture were widely theoretically studied

already in the 20th century (McCulloch; Pitts, 1990; Hopfield, 1982). They got
their name because their inner workings are inspired by a simplified understanding
of how neurons interact in the human brain when processing information. The
practical study of these structures was limited mainly by the lack of computational
power. These barriers were removed, and NNs were widely adapted for a wide
range of tasks.

1.4.1 Feed-Forward Networks
Perceptron (Rosenblatt, 1958) was one of the earliest forms of neural networks.

Later, it was extended to the multi-layer perceptron. This design serves as a basis
for today’s feed-forward networks. We describe it on an example with a single
layer.

To feed the idea of similarity with the brain, we represent it as a graph, as
shown in Figure 1.4. Each input value gets a node, so-called neuron. Each of
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Figure 1.4 Single-layer feed-forward neural network. Image inspired by Figure 1.2 of
the book by Du and Swamy (2013); adapted by the authors.

these input neurons is connected to a single output neuron using an edge. A
weight on each edge measures how much a given input neuron should influence the
final result. Each input neuron is multiplied by its corresponding weight, then we
sum these values, add a bias, and finally pass this through an activation function,
receiving the value of the output neuron. Formally:

y = a(
∑︂

i

xiwi + b)

where y is the value of the output neuron, xi are values of input neurons, wi are
their corresponding weights, b is bias and a is the activation function.

Bias is also a trainable parameter, and it allows the model to modify its
predictions independently of the inputs. The (nonlinear) activation function
allows the model to produce more than just linear combinations of the input
values, drastically widening what functions can be modeled.

We call the not interconnected (visualized in one column) neurons a layer.
The presented example has only the input layer and the output layer. However,
we could add another hidden layer of neurons in between, see Figure 1.5. In the
most basic form, this layer is fully-connected, meaning each neuron is connected
(using an edge with a weight) with each neuron from the previous layer. The value
of each neuron is computed exactly the same way as before; each has a bias and
an activation function. The more layers the model has, the deeper we call it.

1.4.2 Deep Neural Networks (DNNs)
Neural networks with multiple hidden layers are considered deep. Unlike

traditional approaches that rely on handcrafted features, thanks to the multiple
layers, DNNs can learn hierarchical representations of the input data directly.
This capability allows DNNs to capture more complex patterns in the inputs,
such as speech, leading to more accurate output (transcriptions). DNNs have
significantly improved the performance of ASR systems (Hinton et al., 2012).

DNNs proved to be powerful; however, they have several limitations. The
vanishing gradient problem is one of them (Hochreiter, 1998). Multiple methods
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Figure 1.5 Multi-layer feed-forward neural network. Image inspired by Figure 1.5 of
the book by Du and Swamy (2013); adapted by the authors.

were proposed to fight it (Hochreiter; Schmidhuber, 1997; K. He et al., 2016;
Basodi et al., 2020; Roodschild et al., 2020).

Another problem is that the basic feed-forward architectures with multiple
fully connected layers can accept only a fixed-sized input and process each part
of the input with separately trained neurons. The audio recordings (and many
other input types) have variable lengths, and we would also like to capture the
idea that the basic features are extracted in the same manner in different parts of
one input (Goodfellow et al., 2016).

Recurrent Neural Networks (RNNs)

RNNs are designed to work with sequential data by iteratively processing
small successive parts by a specific neural layer or set of layers (usually called
a cell) while maintaining a hidden state that retains information from previous
steps. In each timestep, the cell consumes one part of the input and the hidden
state from the previous timestep (Jurafsky; Martin, 2024). This method allows for
processing variable length input using a single model to handle different segments.
Additionally, it reduces the number of necessary parameters. In ASR, the input
sequence is an audio recording, and this approach ensures that the same word is
transcribed consistently in various parts of the recording.

As the single cell is “unrolled” over the sequence, the resulting network is very
deep. Unless explicitly targeted, it suffers severely from the vanishing gradient
problem. Long Short-Term Memory (LSTM) (Hochreiter; Schmidhuber, 1997)
networks address this issue by introducing memory cells and gating mechanisms
that regulate the flow of information. The gates are controlled by trained layers.
LSTMs can capture long-range dependencies in speech, leading to significant
improvements in ASR performance (Graves et al., 2013). The computationally
less intensive GRU (Cho et al., 2014) and other variants of memory cells were later
introduced. However, they are not generally superior to the LSTM cell (Chung
et al., 2014).

LSTMs (and RNNs in general) are often used bidirectionally. When consuming
the input with an RNN from one side to another, the context propagates only in
this direction. In other words, the hidden state produced after consuming the last
word depends on the first word but not vice versa. For these reasons, the input is
often consumed in one direction, then in the other, and the resulting hidden states
are concatenated (Graves; Schmidhuber, 2005). See illustration in Figure 1.6.
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Figure 1.6 Bidirectional RNN. Forward fi and backward bi representations are
concatenated to create the final representation. Image inspired by Figure 10.11 of the
Deep Learning book (Goodfellow et al., 2016); adapted by the authors.

Convolutional Neural Networks (CNNs)

Another type of architectures that target the idea that different parts of the
input should be processed in the same manner are Convolutional Neural Networks
(CNNs). CNNs use kernels to learn local patterns in the input data. Kernels are
small layers that process parts (windows) of the input. They are moved (usually
with an overlay) over the input, producing a more compact representation. By
stacking multiple convolutional layers, CNNs can learn increasingly abstract rep-
resentations of the input. CNNs also found their application in ASR, particularly
for extracting features from spectrograms (Abdel-Hamid et al., 2014; Gulati et al.,
2020; Baevski et al., 2020).

1.5 Representations
In this section, we explore how the text and other inputs are converted into

representations suitable for neural networks. All the input needs to be numeric.
To convert text into numeric representations, we first tokenize it. Then, we further
process the representations into dense vectors called embeddings that encode the
semantic meaning efficiently and simplify further modeling.

1.5.1 Tokenization
As language is comprised of smaller units, we say that the goal of language

models is to model sequences of tokens. By token, we refer to a unit that constitutes
the sequence, such as words, characters, or so-called subwords. We call the set of
tokens available a vocabulary.

Straightforward units in text are characters or words. Characters are too
granular; we would need many of them to represent a sentence, and they bear
little meaning by themselves. On the positive side, the vocabulary of characters
is small and easy to represent (at least with the Latin script). Words, on the
other hand, are too coarse. For many languages, there are hundreds of thousands
of words in the vocabulary. Furthermore, there are usually some morphological
processes present, and the meaning of a word depends on its parts.

For these reasons, words are usually split into parts (groups of characters), so-
called subwords (Kocmi; Bojar, 2016; Wieting et al., 2016). One of the widely used
methods of subword vocabulary creation is Byte Pair Encoding (BPE) (Sennrich
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et al., 2016). In BPE, we start with characters as initial tokens, and we set the
required vocabulary size. Then, based on our corpus, we iteratively merge the
pairs of tokens that appear next to each other the most often until the required
vocabulary size is reached. We end up with a vocabulary of tokens (with different
lengths) that are the most efficient in a sense (Gage, 1994).

1.5.2 Embeddings
We have talked about effective inner representations. The goal is to take the

input and process it in a way that results in representations that are easy to deal
with for the subsequent parts of the model. In other words, we need to project –
“embed” – the input into some descriptive feature space.

The simplest way to represent tokens is one-hot encoding. We get a vector
of the same size as vocabulary, fill it with 0 (zeros), and each word will have 1
(one) at one specific place of the vector. This representation is not efficient at all.
First, the required vectors are enormous. Second, different words have completely
different representations, no matter how similar or dissimilar the words are.

We want the vector representations to be continuous to allow for shorter
vectors. Ideally, we also want the embeddings to capture the syntactic and
semantic properties of the words so that similar words are represented similarly.
Such embeddings enable models to understand relationships between words based
on their contexts in large corpora.

The first famous approach to self-supervised embedding pre-training was
Word2Wec (Mikolov et al., 2013); other soon followed (Pennington et al., 2014;
Bojanowski et al., 2017). Word2Vec uses two main approaches to learn the
embeddings: Continuous Bag of Words (CBOW) and Skip-gram. With CBOW, a
word from a sequence is masked, and the model has to predict the best-fitting
word based on the context. On the opposite, with Skip-gram, the model has to
predict the context words from a target word. Both approaches aim to maximize
the likelihood of word-context pairs in a large corpus, resulting in embeddings
that capture word meanings effectively.

The idea of self-supervised training is crucial for efficient embeddings. It
allows us to use previously unparalleled amounts of text for the model training.
Similar approaches can be adapted for input modalities other than text. As such,
pre-trained embeddings became a new standard for many tasks (Dosovitskiy et al.,
2021), including ASR (Baevski et al., 2020). In ASR, we usually use segments of
the spectrogram (or raw waveform) and embed these.

1.6 Advanced Neural Network Architectures
A large part of NLP deals with sequence-to-sequence (seq2seq) tasks (or prob-

lems that can be formulated that way). Generally, seq2seq tasks involve consuming
some sequence as an input and producing another sequence on the output. ASR
is a prime example.

In this section, we discuss the encoder-decoder framework targeted specifically
at seq2seq tasks. Then, we talk about attention that improves the encoder-decoder
performance and about the Transformer model that builds on the idea of attention.
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1.6.1 Encoder-Decoder Framework and Attention
With RNNs, we have a tool to process variable-length sequences. Using the

intermediate hidden states, we can get embeddings of each segment of the sequence
and classify it. However, there is no straightforward method to handle seq2seq
tasks where input and output sequences have different structures or lengths. The
encoder-decoder architecture was proposed to address these tasks.

The encoder-decoder architecture was first proposed by Cho et al. (2014)
and further popularized by Sutskever et al. (2014). As the name suggests, this
architecture has two crucial parts – an encoder and a decoder. The encoder
processes the input sequence and compresses it into a fixed-size context vector.

This context vector ideally captures all the relevant information of the input
sequence. The decoder then usually generates the output sequence autoregressively.
First, it consumes the context vector and a special start of sequence token (usually
denoted <SOS>). Based on this, it generates the first output token and a new
context vector. The new context vector should reflect that the first output token
already expressed part of the information. In the next timestep, the decoder
consumes the first output token it generated, the new context vector, and generates
a second output vector. The decoding continues this way until the end of sequence
token (<EOS>) is generated. By separating the encoding and decoding processes,
the architecture allows for more flexibility and better handling of variable-length
input and output sequences.

Teacher Forcing During the training, we could feed the input into the encoder,
get the encoded context vector, pass it to the decoder, and let it generate the
output autoregressively. However, for such a model, it is tough to learn, as at the
start of the training, the first output of the decoder will be random. Consequently,
all the following output tokens will probably be wrong, as they are based on the
first output. To help the model learn, instead of training the decoder with its own
intermediate outputs, we feed it with the gold labels. This allows it to train at
each timestep properly.

Scheduled Sampling Teacher forcing can help the decoder, especially at the
start of the training. However, it also has drawbacks – the decoder is always
trained with all the preceding timesteps outputs correct. During inference, the
decoder can make a mistake at the beginning of the sequence and then cannot
recover from it, as it never saw such a mistake during the training. Scheduled
sampling (Bengio et al., 2015) suggests mixing the teacher-forced gold labels
with autoregressive decoding. At the start of the training, the learning is mostly
teacher-forced, but a gradually increasing proportion of the gold labels is replaced
by the current decoder outputs.

Attention Mechanism

Using a single context vector often led to a loss of information, especially for
long sequences. There is a bottleneck issue – the encoder has to save all the
information from the input into a fixed-size vector. The attention mechanism
(Bahdanau et al., 2015) was introduced to address this limitation. Instead of
relying on a single context vector, attention allows the model to focus dynamically
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on different parts of the input sequence during the generation of each output
element.

Figure 1.7 BiRNN-based Encoder-decoder with attention in autoregressive generation
timestep t. Image inspired by Figure 1 of the original work (Bahdanau et al., 2015);
adapted by the authors.

In the attention mechanism, a set of weights is computed for each output
timestep to determine the relevance of each input element, as illustrated in
Figure 1.7. The weights are utilized to generate a weighted sum of the encoder’s
hidden states, which acts as the context vector for that particular output step.
This way, the decoder can “attend” to different parts of the input sequence as
needed.

The introduction of the attention mechanism resolved the bottleneck issue.
However, another issue of RNNs is their speed. They work sequentially both
during inference and during training. Due to the sequential nature, the training
cannot be parallelized. The lack of parallelization is an issue, as it limits the use
of large training datasets.

1.6.2 Transformer Architecture
Building on the success of the attention mechanism, the Transformer archi-

tecture was introduced (Vaswani et al., 2017). Different models based on this
architecture achieved state-of-the-art results on many NLP tasks, including ASR,
see Section 1.9 (Baevski et al., 2020; Radford et al., 2023). It found its use also in
other fields, such as in computer vision (Dosovitskiy et al., 2021).

The Transformer architecture completely drops the recurrences that slow
down RNNs. Instead, it also utilizes the attention in the encoder to compute
the encodings. Because the encoder attends over its own input, this is called
self-attention. The decoder is then conditioned using attention both on its own
input (self-attention) and on the encoder output (cross-attention). Attention, in
combination with teacher forcing, allows for highly parallelizable computations
since the attention scores for all positions can be calculated simultaneously.

See Figure 1.8 for an illustration of the architecture. The encoder in the
Transformer model consists of multiple identical layers, each featuring two main
components: a multi-head self-attention mechanism and a position-wise fully
connected feed-forward network. Residual connections, i.e., direct connections
between two not directly neighboring layers, allow for better information retention.
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Figure 1: The Transformer - model architecture.

The Transformer follows this overall architecture using stacked self-attention and point-wise, fully
connected layers for both the encoder and decoder, shown in the left and right halves of Figure 1,
respectively.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum

3

Figure 1.8 The Transformer architecture. Note that both the encoder and the decoder
can consist of multiple identical layers, as suggested by the N×. Figure 1 of the original
work (Vaswani et al., 2017).

Multi-head attention computes multiple context vectors in parallel, concate-
nates them, and projects them into the resulting space. For this process to be
beneficial, the context vectors should differ from each other. This is achieved
through linear projection of the parameters into different spaces before computing
the attention scores. Multi-head attention allows the model to retain more context
information than just with a single head.

The decoder also consists of multiple identical layers, with an additional sub-
layer to attend to the encoder’s output. It utilizes: a multi-head self-attention
mechanism, a multi-head attention mechanism to attend to the encoder’s output,
and a position-wise fully connected feed-forward network. Similar to the encoder,
residual connections are used.

Unlike RNNs, the Transformer architecture does not inherently capture the
order of the sequence. The input embeddings are combined with positional
encodings to introduce the tokens’ positional information in the sequence. There
are multiple ways to compute positional encodings; they can be derived from
trigonometric functions but can also be learned (Gehring et al., 2017).

The Transformer networks can process only fixed-sized inputs because they
lack the recurrences. However, the parallelization and accurate context-aware
representations seem to outweigh this negative. Special padding tokens (<PAD>) are
utilized to account for variable-length sequences. These tokens are not considered
for attention or loss computation.

The Transformer encoder and decoder can also be used separately. BERT
(Bidirectional Encoder Representations from Transformers) (Devlin et al., 2019)
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represents the encoder-only, while GPT (Generative Pre-trained Transformer)
(Radford; Narasimhan, 2018; Brown et al., 2020) is decoder-only.

1.7 Neural Network Training
Now, we finally get to how the machine learning models, specifically neural

networks, are trained, i.e., how their parameters are updated to produce better
results on the training data. We need to discuss how to measure the size of errors
made by our models and how to update the parameters to reduce these errors.

1.7.1 Loss Function
To measure how far off the model is from the correct output, we define a loss

function (Goodfellow et al., 2016). Note that it is important not to mistake it
with the function the model is trying to approximate that describes the data.
Many loss functions have been defined; let us mention the ones most relevant to
our work.

Mean Squared Error

Probably the simplest loss function to start with is the mean squared error
(MSE) (Hastie et al., 2001). It is utilized for models that perform regression,
meaning they predict a single continuous numeric value. The mean squared error
of the model simply measures the average squared distance between the model
prediction and the gold label:

MSE = 1
n

n∑︂
i=1

(f(xi; θ) − yi)2

where f(xi; θ) denotes the output of the model for the input xi, yi is the corre-
sponding gold label and we compute the average over n samples.

Cross-Entropy Loss

Cross entropy loss is useful when the task of the model is classification, i.e.,
prediction of discrete class labels (Jurafsky; Martin, 2024). For example, when
performing next-word prediction, the model predicts a probability distribution
over possible next words. To assess the model’s error, we need to compute how
far the predicted distribution is from the gold label distribution. Cross entropy
loss serves exactly this purpose.

CTC Loss

We describe the CTC loss (Graves et al., 2006) on the ASR example. Let us
assume our model has audio as an input, and it creates embeddings of fixed-length
segments of the audio. Then, we would like to classify the embedding of each
audio segment into a character based on what was pronounced. However, we do
not know the alignment – sometimes a character can span over multiple segments;
sometimes, there was silence in the given segment.
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CTC loss introduces a new blank output character ϵ (Hannun, 2017), follow
along in Figure 1.9. The ϵ character denotes an empty segment. It also serves as
a boundary. CTC loss first merges all the repeating occurrences of one character
unless they are separated by ϵ (lines 1 and 2). Then, it removes the ϵ from the
sequence (lines 2 and 3) to receive the final reduced sequence (line 4).

Figure 1.9 Illustration of the CTC loss sequence reduction. Image inspired by
Sequence Modeling With CTC (Hannun, 2017); adapted by the authors.

The model then predicts a distribution over characters (including ϵ) for each
segment embedding. We can compute probabilities of different sequences, reduce
each sequence, and sum the original probabilities to obtain a probability of
each resulting sequence. This way, we can compute the probability of each
resulting sequence without an explicit alignment. CTC loss then uses a dynamic
programming algorithm (Bellman; Dreyfus, 2010) to efficiently compute how each
of the predicted segment probability distributions contributes to the results and
measure their error.

1.7.2 Stochastic Gradient Descent (SGD)
Now that we have defined how the model’s error is measured, we need to

determine how to improve its prediction. Stochastic gradient descent (Robbins;
Monro, 1951) serves exactly this purpose. We can evaluate the loss function at
one point using the current model parameters θ and one input sample x. Now,
we need to find how to change the parameters θ so that we minimize the loss
function (the error of our model).

There is no simple way to find parameters θ that minimize the loss function
directly. Thus, we will proceed iteratively. We compute the gradient (vector of
derivatives) of the loss function with respect to all the parameters θ to obtain
the direction in which the loss function changes the fastest. Then, we change the
parameters to move in the direction that gets us closer to the minimum of the
function.

Estimating the gradient based on one input sample x produces noisy results, as
this one sample can hardly accurately represent the whole dataset. On the other
hand, estimating it on the whole dataset would be computationally infeasible. As
a compromise, a batch of samples (more than one and less than the entire dataset)
is usually used to estimate the gradient.

1.7.3 Backpropagation
Backpropagation (Rumelhart et al., 1986) is used to obtain the exact partial

derivatives with respect to each model parameter. In a neural network, each
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neuron’s value in a subsequent layer is computed as a linear combination of the
previous layer’s neuron values, followed by an activation function. Therefore, the
value of an output neuron can be seen as a nested composite function of the
inputs and the weights (parameters) across multiple layers. When evaluating the
loss function based on the output neuron’s value, we can use the chain rule to
calculate the derivatives and propagate the error back through the network.

1.8 Traditional ASR Methods
Traditionally, ASR was dominated by methods based on Hidden Markov

Models (HMMs). An HMM consists of a set of states, each associated with a
probability distribution, and transitions between these states, again with their
respective probabilities (Rabiner, 1989). The states themselves are not directly
observable (hence “hidden”), but each state generates an observable output. In the
case of ASR, the hidden states can be represented by linguistic units (subwords,
phonemes, graphemes), and the observable output from each state corresponds to
the acoustic features extracted from the audio signal. To decode a sequence of
observed features (i.e., to determine the most likely sequence of hidden states),
we use algorithms such as the Viterbi algorithm (Viterbi, 1967).

HMMs were later combined with Gaussian Mixture Models (GMMs) (Gauvain;
Lee, 1994) to improve the modeling of acoustic features. GMMs are also proba-
bilistic models, but they make an assumption that the data is generated from a
mixture of several Gaussian distributions. During training, the parameters of the
GMMs and the HMM transition probabilities are estimated using the Expectation–
Maximization (EM) algorithm, which iteratively maximizes the likelihood of the
observed data. To be specific, the Baum–Welch algorithm (Baum et al., 1970) is
usually used when dealing with HMMs.

HMM-GMM models represented state-of-the-art ASR for a long time. However,
they rely heavily on handcrafted features and linear assumptions, which often do
not adequately capture the complexities of speech. Neural network methods were
initially used to estimate HMM model parameters (Hinton et al., 2012) and later
progressed to end-to-end (E2E) approaches that now dominate ASR. With the
E2E approach, the audio (possibly with some deterministic preprocessing) is input
into the neural network on one end, and transcription is output on the other.

1.9 Modern ASR Systems
The neural approaches presented in Sections 1.4 and 1.6 were successfully used

for ASR. Chorowski et al. (2014) utilized BiRNN encoder-decoder with attention,
Graves et al. (2013) explored the use of BiRNN encoder with CTC loss. Most of
today’s methods are Transformer-based.

In this section, we will explore two of the most prominent state-of-the-art
open-source Transformer-based ASR architectures: Wav2Vec 2.0 (we shall call it
only Wav2Vec2 for simplicity) (Baevski et al., 2020) and Whisper (Radford et al.,
2023). We have selected these architectures due to their exceptional performance,
availability of pre-trained models, and support for multiple languages, including
Czech. They are also interesting in their differences – while Wav2Vec2 utilizes
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large amounts of unlabeled data through self-supervised learning, Whisper relies
on weak supervision. Both of the architectures also reduce the dependency on
large labeled datasets, making them accessible for a broader range of applications.

1.9.1 Wav2Vec 2.0
Wav2Vec2, introduced by Baevski et al. (2020), utilizes self-supervised learning

to create robust speech representations (embeddings) of raw audio data. The
authors argue that this approach may pose great hope for low-resource languages,
where a very limited amount of labeled data is available for ASR training. We
will provide a short overview of the model architecture and the training process.

Architecture

The Wav2Vec2 model architecture has three main parts that we further
describe: feature extraction, context network, and quantization. An illustration
of the architecture can be seen in Figure 1.10.

Figure 1.10 Wav2Vec2 model architecture. The yellow tokens represent special
prompt tokens, and the blue tokens denote standard predicted text tokens. Image
inspired by Figure 1 of the original work (Baevski et al., 2020); adapted by the authors.

Feature Extraction The feature extraction stage of Wav2Vec2 uses a multi-
layer convolutional neural network to encode the raw audio input (the waveform)
into latent speech representations. These representations should capture various
aspects of the speech signal, such as phonetic and prosodic features.

Context Network Following feature extraction, the latent representations
are fed into a Transformer network, which builds contextualized representations.
This process involves masking spans of the latent speech representations, similar
to the Word2Vec. The Transformer network’s role is to model the long-range
dependencies in the speech data, enhancing the robustness of the representations.
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Quantization Predicting continuous speech representations would be compli-
cated. Therefore, Wav2Vec2 employs a quantization mechanism to discretize the
continuous latent representations into a finite set of learned speech units. This
step is crucial for the contrastive loss used during the model’s training.

Training

The main goal of Wav2Vec2 is efficient audio encoding, i.e., creating robust
embeddings. This is done using the self-supervised pre-training (with unlabeled
audio). To make the model usable for ASR itself, it needs to be fine-tuned using
labeled data.

Pre-Training with Contrastive Loss The primary training objective of
Wav2Vec2 is a contrastive task. Simply put, part of the created audio representa-
tion is masked, and the model needs to decide which quantized unit from those
offered originally was at the masked place. This self-supervised learning approach
enables the model to learn meaningful speech representations from vast amounts
of unlabeled audio data.

Fine-Tuning with CTC Loss After pre-training, Wav2Vec2 is fine-tuned
using labeled speech data. A randomly initialized linear layer is added on top of
the network. This layer is then trained using CTC loss to classify the embedded
parts of audio into vocabulary tokens.

1.9.2 Whisper
Whisper was introduced by Radford et al. (2023). They use an off-the-shelf

Transformer-based architecture, but the approach to training it is very much new
in the ASR field. Whisper has demonstrated remarkable performance in various
benchmarks, achieving state-of-the-art results in many speech recognition tasks. It
is strong, especially in the zero-shot settings, as it can be used without fine-tuning.

Architecture

The model architecture is presented in Figure 1.11. Whisper processes the
input audio (in the form of a Log-Mel spectrogram) with a block of Convolutional
layers and then adds sinusoidal positional encodings. This preprocessed input is
then fed into a Transformer encoder connected to a Transformer decoder with
learned positional encodings. The importance then lies in the large-scale, weakly
supervised training stage.

Training

The model is trained using weak supervision on a huge dataset. Furthermore,
the model is designed to handle multiple tasks directly instead of relying on other
supporting components.
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Figure 1.11 Whisper model architecture. The yellow tokens represent special prompt
tokens, and the blue tokens denote standard predicted text tokens. Image inspired by
Figure 1 of the original work (Radford et al., 2023); adapted by the authors.

Weak Supervision Weak supervision in Whisper involves training the model
on 680k hours of speech data in different languages. The authors state that the
previous largest dataset contained 30k hours of audio. Whisper dataset creation
started with well-known ASR datasets such as LibriSpeech (Panayotov et al., 2015).
Then, the researchers added a vast amount of audio scraped from the internet that
had some transcription available. This is classified as weak supervision because
the labels were not manually checked. The dataset was filtered using heuristics
in order to remove the noisiest data pairs (for example, automatically generated
transcriptions).

Multitask Setting Whisper’s architecture is designed to support multiple
languages and resolve multiple tasks. Of the 680k hours of training data, 117k
hours cover 96 languages other than English, and another 125k hours contain
audio in different languages with transcriptions translated into English. Where
the audio language was unknown, the language was pseudo-labeled using a model
trained on the VoxLingua107 dataset (C. Wang et al., 2021).

As such, the model is trained in a multitask setting and is able to perform the
following:

• voice activity detection (distinguishing parts of the audio with silence),

• language identification,

• audio transcription (i.e., ASR per se),

• direct audio translation from any language into English text,

• text-aligned transcription (interleaving the transcript with time information).

The task requirements are prepended as special tokens so that the Transformer
decoder can attend to them. Furthermore, some previous text tokens can be
prepended to the input so that the decoder can also take into account long-range
dependencies.
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2 Slot Filling in Text-Based
Systems

Slot filling in NLU involves identifying and extracting specific pieces of in-
formation from a given text input. This task is crucial for various applications,
including virtual assistants, chatbots, and information retrieval systems. Over the
years, slot-filling techniques have evolved significantly, transitioning from manually
crafted rule-based approaches to sophisticated machine learning-based methods.

We will start this chapter by introducing the most common metric for slot
filling in Section 2.1. Then, we will discuss different slot-filling approaches. We
have tried to split them into categories, mainly based on how they form their
outputs. Many specific methods are hard to classify as they often lie on a border
of the categories; many proposed methods can’t be classified into any of them.

Most of today’s research on slot filling uses RNN-based or Transformer-based
encoders to create contextualized embeddings of the input utterance, possibly
enriched with other contexts like previous utterances or dialogue states. Then, it
either classifies the whole sequence (we cover in Subsection 2.2.2) or individual
tokens (Subsection 2.3.2). Another possibility is to follow the encoder by a decoder
and take a generative approach (Subsection 2.3.3). We will not dive into many
specific architectures and improvements in this chapter; there are multiple surveys
and reviews available that cover them sufficiently (Zailan et al., 2023; Louvan;
Magnini, 2020).

Unrelated to the specific task formalization and model architecture, slot filling
can be performed jointly with intent detection. As often specific types of slots are
necessary to fulfill a specific intent (and vice versa), information about one helps
to predict the other (B. Liu; Lane, 2016; X. Zhang; H. Wang, 2016; Chao; Lane,
2019). Weld et al. (2023) provide a survey of joint NLU models.

2.1 Evaluation Metrics
In slot filling, the objective is to extract slot-value pairs from the input text.

The systems are usually evaluated based on the comparison of each of the predicted
pairs against some ground truth. Common metrics include:

• Precision: The ratio of correctly predicted slots (true positives) to the total
predicted slots (true positives + false positives). High precision indicates
that the system’s predictions are accurate.

• Recall: The ratio of correctly predicted slots (true positives) to the total
actual slots (true positives + false negatives). High recall signifies that the
system successfully identifies most of the true slots.

• F1-Score: The harmonic mean of precision and recall. This metric provides
a balanced measure that considers both precision and recall:

F1 = 2 · precision · recall
precision + recall
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In most of the benchmarks, F1-Score on slot-value pairs is used as the main
evaluation metric.

As there are usually multiple slot types, there are two ways to compute the
F1-Score. Micro-averaged F1 first collects the partial information (true and
false positives, false negatives) across all the classes, sums the partial values and
only then computes the F1-Score. Macro-averaged F1 computes the F1-Scores
separately for each class and only then averages them. Therefore, it assigns equal
weight to all the classes, no matter how many samples represented them.

The metric can be calculated on the token level instead of the slot-value pair
level (each value can consist of more tokens) for a more granular evaluation.
Conversly, slot filling can also be assessed in a more integrated manner. If the slot-
filling module is developed alongside a complete system, the ratio of successfully
completed dialogues can be measured as a performance of the whole system.

2.2 Slot Filling as Direct Classification
In the context of slot filling, direct classification approaches aim to identify

and extract slot-value pairs from the input text without directly considering the
sequential nature of the data. These methods usually return a set of slot-value
pairs based on the input sequence X. The primary techniques include string
matching and rule-based systems, which leverage predefined patterns or databases.
More advanced classification approaches use machine learning algorithms to assign
slot labels based on learned features. The main advantage of direct classification
is its simplicity and efficiency, particularly for structured and predictable inputs.

2.2.1 String Matching and Rule-Based
Early slot-filling systems relied heavily on string matching and rule-based

techniques. These methods, while effective for structured and predictable inputs,
require extensive manual effort.

In some applications, simple string matching is quite sufficient. Such a system
looks for exact matches of predefined keywords or phrases in the input text.
This can be the case, for example, when we need to fill only one slot that deals
with the names of cities. Fuzzy matching techniques, such as those based on
Levenshtein distance (Levenshtein, 1965), may be introduced to handle minor
variations and errors in the input text. For example, matching “San Francisco”
with “San Fransisco” or “San-Francisco.”

Rule-based systems then use handcrafted rules, often implemented as reg-
ular expressions, to identify and extract slots from the text. For instance, a
rule-based system for booking travel might use regular expressions to identify
departure and destination locations using phrases (templates) like from <value>
and to <value>. Although rule-based approaches can be very precise, they are
labor-intensive to develop and maintain. The number of such rules may grow
very fast, especially for inflectional languages with free word order like Czech. An
initial version of the system called Alex by Dusek et al. (2014) may serve as an
example.
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2.2.2 Statistical Classification
With advancements in machine learning, slot-filling approaches evolved to use

statistical classification models. As with all statistical models, a nontrivial amount
of training data is necessary. A possible approach to slot filling by classifying the
whole utterance is to make multiple predictions – one for each slot type. This is
usually done by embedding the utterance and then adding a prediction head for
each slot type. Each of these predictions classifies whether the user mentioned a
specific value for a given slot type. Values “none” and “don’t care” are usually
added for each slot type.

Issues with such an approach are apparent. First, we need to make a prediction
for each slot type separately, which is computationally expensive. Second, this
approach cannot detect multiple values for one slot type in one utterance. On
the other hand, it is possible to easily add a new slot type by adding a new
classification head (and training it), possibly without the need for retraining the
whole model.

Chao and Lane (2019) use a similar approach in their BERT-DST model. It
processes the dialogue context and utterance with BERT to create contextualized
embeddings. Then, a classification model takes the embedding token [CLS]
provided by BERT and predicts if slot value is present for each slot type. This
is then followed by a span prediction module. This module works already with
token embeddings and predicts a span where the slot value should be found.

2.3 Slot Filling as Sequence Labeling
Sequence labeling formalizes slot filling as a task where the input text is

processed token by token, and each token is assigned a label that denotes its role
within the slot structure. Formally, for a sequence of tokens X = x1, x2, . . . , xn, the
goal is to predict a sequence of corresponding categorical labels Y = y1, y2, . . . , yn.
This approach directly captures the sequential dependencies between tokens,
allowing for a more nuanced and accurate extraction of slot-value pairs.

The Inside-Outside-Beginning (IOB) format is commonly used to annotate
sequences, making it easier to identify which tokens of a sequence are at the
beginning, inside, and outside of slot values. Machine learning models (such as
neural networks with CRFs (Lafferty et al., 2001) or encoders with classification
layers) are then trained to predict these labels, ensuring that the slot-filling process
respects the order and context of the input tokens. Advanced machine learning
models are able to handle slot filling on complex input data without the need for
tedious formulation of rules. These approaches are widely prevalent in the current
research.

2.3.1 IOB Format
The Inside-Outside-Beginning (IOB) format, probably first introduced by

Ramshaw and Marcus (1995), is a widely used annotation scheme for sequence
labeling tasks, including slot filling. In the IOB format:

• B-slot_type marks the beginning of a value belonging to a slot_type,
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• I-slot_type indicates continuation of a value belonging to a slot_type,

• O denotes a token that is outside of any slots.

This format has become standard due to its simplicity and effectiveness in
capturing the structure of labeled sequences. With only (2 · number of slots + 1)
markers, we are able to exactly describe the sequence.

2.3.2 Sequence Labeling Through Classification
In classification-based sequence labeling, each token in the input sequence is

usually embedded into a vector representation. This vector is then fed into a
classifier to predict the corresponding slot label. Context-aware embeddings (from
RNNs or Transformers), as well as additional features, naturally lead to better
results. Sequence labeling models can capture dependencies between tokens and
provide more accurate slot labeling because they deal with the utterance on the
token level.

Z. Huang et al. (2015) use LSTMs and CRFs to address this task. Goo et al.
(2018) perform joint NLU using an attention-based RNN model with a slot-gated
mechanism trained to predict only corresponding slots and intents. Q. Chen et al.
(2019) use BERT to encode the sequence and add a fully connected layer to classify
each word.

2.3.3 Generative Sequence Labeling (seq2seq)
Rather than directly classifying each token, we can train the model to generate

a sequence of labels corresponding to each token in the correct order using a
seq2seq approach. This is typically done with an encoder-decoder architecture,
often Transformer-based for both components. The encoder embeds the input
sequence tokens and processes them into a fixed-sized sequence representation. The
decoder then (usually) autoregressively generates labels from this representation,
using attention to consider both the input token embeddings and the labels
generated up to the current timestep.

In comparison with the classification approach, autoregressive generation allows
the model to consider labels generated so far, possibly allowing for more coherent
output. At the same time, the model needs to learn all the dependencies so that
it generates the labels in the correct order. Multiple works utilize encoder-decoder
models with attention based on bidirectional LSTM for this task (B. Liu; Lane,
2016; Zhao; Z. Feng, 2018).

With generative models, we also return back in circle to the direct classification.
The models may be trained to generate basically arbitrary sequences. Instead of
labeling individual tokens, we can diverge from the sequence-labeling formalization
and train the models to output slot-value pairs directly. Some research takes this
approach (X. Li et al., 2023), and with the boom of LLMs, we believe it may be
perspective.
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3 Slot Filling in Voice-Based
Systems

As we have outlined in the introduction, the problem of extracting meaning
and important values from users’ utterances gets much more complicated when
faced with speech input. For these reasons, we have also witnessed the emergence
of different purely voice-based understanding benchmarks (Bastianelli et al., 2020;
Filice et al., 2021; L. Feng et al., 2021). Suboptimal experimental results of
the pipelined systems on these benchmarks prove that the problem requires new
solutions.

To reiterate, the pipelined systems consist of an ASR module to transcribe the
audio and an NLU module to perform the understanding of the transcribed text.
We refer to it as a basic approach because it does not make any changes to the
NLU module. While such an approach allows for fast and independent reiteration
of both modules, this independence also causes information loss. Errors in the
ASR transcription propagate through the pipeline and inevitably lead to poor
NLU results. Furthermore, some information is not contained in the text at all.
For example, for an emotion detection module, the information about the speed,
pitch, or volume of the speech can be irreplaceable.

On the other side of the spectrum lie end-to-end SLU systems. These systems
merge ASR and NLU into one module, taking audio as the input and producing
an understanding representation of the output. As the availability of data and
computing power grows, there is also plenty of work in this direction (Serdyuk
et al., 2018; Lugosch et al., 2019; P. Wang et al., 2020; Denisov; Vu, 2020; Desot
et al., 2022; Sun; C. Zhang; Woodland, 2023; Sun; C. Zhang; Vulic, et al., 2023).
However, as we have already mentioned, the barriers of data and computing power
availability are, in many cases, still significant. For these reasons, we will not
discuss these approaches here, as our goal lies elsewhere.

In this chapter, we have tried to split different methods of reducing the
boundaries between ASR and NLU into categories based on the aspect we consider
predominant. We have focused on slot filling, but not uniquely, because we believe
it is possible to draw inspiration also from methods aimed at other NLP tasks.
Especially Named Entity Recognition (NER) can often serve for the same purpose.
The presented overview is in no way exhaustive; its main purpose is to provide a
grasp of the ideas.

Section 3.1 discusses approaches utilizing multiple best ASR hypotheses, often
through reranking. Methods covered in Section 3.2 utilize the multiple hypotheses
and other ways to fix the ASR output along with understanding. Section 3.3
explores techniques that utilize phoneme representations as an additional model
input. Section 3.4 returns to purely textual inference-time input with a goal of
pronunciation-aware embeddings. Finally, in Section 3.5, we discuss methods
that utilize some intermediate representations to perform NLU joint with final
transcription decoding.
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3.1 Multiple ASR Hypotheses
One of the most straightforward ways to improve the accuracy of SLU is to

take into account multiple hypotheses proposed by the ASR. These hypotheses
are usually called n-best lists.

Morbini et al. (2012) work with a dataset of around 14k utterances collected
in a museum. The goal is domain classification into one of the 168 response
labels, i.e., very similar to intent detection. They first train a classifier on the
gold transcriptions with gold labels and then use it to generate pseudo labels for
different ASR hypotheses. Afterwards, they use this new dataset to train another
classifier. This classifier rescores the hypotheses along with their labels and picks
the best one.

They use three ASR engines to get three n-best lists (n = 30) of transcribed
audio. Two of the engines are off-the-shelf (one with a custom LM), and one
is trained on the dataset. Their WER on the test set is between 20 and 30
%. The NLU on the custom ASR transcriptions outperforms the other variants,
and reranking does not bring any improvements. However, for the off-the-shelf
ASR variants and their combinations, the reranking results in absolute accuracy
improvements of 1 to 10 %. The NLU accuracy on the reranked combined
off-the-shelf ASR transcriptions gets close to that on the custom ASR transcript.

M. Li et al. (2020) report that on their explored dataset, in 50 %, the correct
ASR transcription was in the 5-best list, but it was not the 1-best. They experiment
on a dataset of around 9 million utterances classified into 23 domains. Though not
explicitly stated, it is probably extracted from Alexa (Amazon virtual assistant),
as all of the authors are affiliated with the company.

Instead of rescoring, their goal is to utilize all the information available in the
different hypotheses. They try two versions; in the first one, they concatenate all
the hypotheses, separating them with a special token. BiLSTM is then utilized to
embed the sequences. In the second version, they embed each sequence separately
(again using BiLSTM) and then concatenate the embeddings. The latter version
proves more effective with 14% relative F1 improvement.

X. Liu et al. (2021) also perform domain classification on a dataset of around
10 million utterances extracted from Alexa, and their approach is quite similar.
They use all the hypotheses from the n-best list, pass them through a shared
decoder, and concatenate the representations. Using multiple CNNs, they then
extract the fused features and perform a classification of them. They report a
22 % relative classification error rate reduction on the part of the dataset where
NLU on the 1-best ASR hypothesis was erroneous. The absolute F1 improvement
on the full test set is 0.14 % only, but they argue this is largely because of the
size of the dataset.

Peris et al. (2020) look at n-best utilization as a summarization task with
the goal of extracting information from the hypotheses. They use a dataset from
Alexa again but in German and Portuguese (around 3 million utterances). Their
primary focus is domain classification, but they also experiment with joint indent
detection and named entity recognition. Especially their NER part deals basically
with slot filling.

They treat the task as a seq2seq problem. They separate the n-best list
with a special token, embed it with BERT, and concatenate the encodings. A
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decoder then generates either intent/slot boundaries or pointers to the input
sequence. They use semantic error rate as a metric and report around 10% relative
improvement for both languages on the part of the test set where the 1-best ASR
hypothesis is wrong. However, on the full test set, the results are significantly
worse than the baseline (19 % for Portuguese and 107 % for German).

Some works take this approach one step further, and instead of multiple
hypotheses, they utilize the whole graph of possible paths over tokens that
represent the audio sequence (Tür et al., 2013; Ladhak et al., 2016; Shivakumar
et al., 2019; C. Huang; Y. Chen, 2020b).

3.2 Fixing ASR Output
A second branch of work we identified focuses on fixing the ASR output.

There has been research on doing so independently on understanding (Tam et al.,
2014; Ogawa et al., 2018; Ogawa et al., 2019). However, our main interest lies in
methods that fix ASR in conjunction with understanding.

Schumann and Angkititrakul (2018) generate SLU dataset using an approach
utilized in many other studies. They start with a textual NLU dataset of Airline
Travel Information Systems (ATIS) (Hemphill et al., 1990). Using a text-to-speech
(TTS) engine, they generate spoken versions of the utterances and add artificial
noise. ASR transcriptions of such audio thus become erroneous, simulating real-
world scenarios. While this approach allows to obtain some simulated data when
only texts are available, it is still not quite realistic as it lacks some authenticity.

They propose an encoder-decoder model based on RNNs. They train the
model jointly for indent detection, slot filling, and ASR hypothesis correction. A
single encoder processes the ASR output. One decoder classifies the sequence
embedding into the intent category. This predicted intent is fed along with the
encoder representation to a second decoder, which autoregressively predicts the
corrected sequence. This sequence is again encoded by the same encoder and,
together with the predicted intent, passed to the third decoder. This decoder
autoregressively predicts slot labels.

The WER of the transcribed audio is around 14 %. The proposed joint model
surpasses the baselines by 1 to 3 % absolute slot F1 while reducing the absolute
WER by 4 %.

Weng et al. (2020) present the most exhaustive study of the ones discussed
so far. They use a slightly modified DSTC2 dataset (Henderson et al., 2014),
where the goal of the system is restaurant recommendation based on provided
user preferences. A 10-best list of ASR transcriptions is available.

Multiple approaches are proposed. Two of them perform n-best list reranking,
using LM-based GPT or hierarchical CNN/RNN, possibly joint with the under-
standing. Best slot F1 is achieved using the third approach. In this approach, the
ASR hypotheses are aligned using the word-level Levenshtein distance to obtain a
word confusion network. All possible words for each timestep are then embedded,
and these embeddings are concatenated and passed through a BiLSTM RNN. The
original embeddings are added using residual connections, and then multi-head
self-attention is applied to obtain the final predictions. For each of the input
timesteps, the model predicts slot IOB tag as well as corrected output word. This
approach achieves 2 % absolute slot F1 improvement over the baseline.
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3.3 Phoneme Representations
Another class of research focuses on exploiting phoneme representations. They

argue that ASR engines usually produce outputs whose pronunciation is similar to
the correct transcription. Here, we focus on methods that take phoneme sequences
as an input. As phonemes record the pronunciation, they should serve as a better
medium of representing speech. Fang et al. (2020) confirm this theory by showing
that the phoneme error rate (PER) of an ASR is considerably lower than WER
on multiple datasets.

They then proceed to train context-aware phoneme embeddings using algo-
rithms inspired by Word2Vec (Mikolov et al., 2013). These phoneme embeddings
are then plugged into CNN/RNN architectures and tested on domain classification
on multiple datasets. The reported results show consistent improvements over
using only word and/or character embeddings.

Kim et al. (2021) present a similar approach with their Speech-Text BERT
(ST-BERT) model. As the name suggests, they integrate the phoneme and
word embeddings into one BERT-like model and train it using masked language
modeling. They also incorporate the acoustic model, which produces phoneme
posteriors, into their architecture. Nevertheless, we place their method here, as
the phoneme posteriors could be produced by an external ASR. Improvement in
intent detection on multiple datasets over baselines is not surprising; their most
interesting feat is very competitive results when limiting the training to only 1 %
of the dataset.

Z. Wang et al. (2022) achieve good results using simple BiLSTM RNN encoders.
They encode the word sequence and the phoneme sequence separately and then
perform cross-attention over the two representations. Yenigalla et al. (2018) use
both spectrograms and phoneme sequences as an input for their model, placing
them nearly into the field of end-to-end systems. They find that their model
performs better on emotion classification when also supplied with the phoneme
sequences when compared to their and other models using spectrograms only.
We argue this result is not surprising since providing the model with phoneme
sequences allows it to focus on other speech features.

3.4 Pronunciation Robust Embeddings
Here, we get back to models that take ASR transcriptions in the form of words

as input. With contextual word embeddings, the goal is to embed words/sen-
tences with similar meanings into similar regions of the embedding space. The
focus of pronunciation (or ASR) robust embeddings is to further improve these
representations so that also similar sounding words are close in the embedding
space. The idea is that subsequent models processing the representations should
then be robust enough to swap similar-sounding words.

Sundararaman et al. (2021) present PhonemeBERT. Overall, the scheme is
very similar to the ST-BERT discussed in the previous section, but PhonemeBERT
does not include the acoustic model. The token embeddings and model weights for
the word transformer are initialized from RoBERTa (Y. Liu et al., 2019). During
training, the model gets both the phoneme sequence and the ASR transcript.
They train the model using masked language modeling, where both the words and
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the phonemes can be masked. The loss consists of three parts – word MLM loss,
phoneme MLM loss, and joint MLM loss – where the model can always attend
to the respective part of the input. They argue that this should encourage the
model to align the phoneme and word representations.

We include this model in this section because, as the authors show in the
experiments, PhonemeBERT can be pretrained and then used in a low-resource
scenario where only the ASR transcriptions (and not phoneme sequences) are
available. They test the model on indent detection on multiple datasets and report
that even when the phoneme sequence is not available during testing, the model
outperforms a version of the model trained on words only. The ability to process
erroneous ASR transcripts demonstrates that the learned word embeddings are
pronunciation-aware to some extent.

C. Huang and Y. Chen (2020a) take a very different approach. Instead of
expanding the input to the model, they propose radical changes to the fine-tuning
scheme. They start with ELMo (Peters et al., 2018) and finetune this language
model using word confusion networks.

These networks are extracted either supervised by aligning the ASR hypotheses
to the gold transcription or unsupervised by aligning ASR hypotheses to one
another using Levenshtein distance. Special confusion loss is added to the standard
language modeling loss. This confusion loss computes the cosine distance between
model embeddings of words that are likely to be swapped according to the word
confusion network. By minimizing this loss, the representations of words often
mistaken by the ASR should appear closer in the embedding space.

BiLSTM is then added on top for intent detection on three different datasets.
The model fine-tuned with the confusion loss outperforms the one fine-tuned using
language modeling only by around 2 %. Interestingly, for some datasets, the
supervised confusion network extraction outperforms the unsupervised; for some,
it is the other way around.

Ruan et al. (2020) focus both on intent detection and on NER/slot filling.
We will discuss the latter here. They propose to obtain ASR hypotheses for
the training audio and pseudo-label them according to the labels of the gold
transcriptions. Two methods are presented for pseudo-labeling – token exact
match and entity exact match. The former assigns the gold slot labels to all tokens
(words) from the ASR hypothesis that match the gold entity partially, while the
latter labels only the whole matching entities and assigns a special label to the
noncomplete matches.

This pseudo-labeled data is then added to the training dataset. The approach
brings close to no improvements over the baseline on the ATIS dataset. On their
private Alexa dataset, they report a 1 to 11 % relative improvement of slot F1
metric on different domains.

3.5 NLU Joint With Decoding
In this section, we will explore methods that use intermediate representations

from the ASR as input. These can include the encoded audio or phoneme sequences.
Performing NLU (or other tasks) on these representations then allows the models
to aid with final text transcription decoding.
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P. Wang et al. (2022) propose a framework composed of two parts. The first
part is an acoustic model that produces the phoneme sequence posterior. An
external acoustic model can be used, satisfying our condition to use a general
ASR module.

We are interested in the second part of the framework, dubbed Speech2Slot. It
is a Transformer-based encoder-decoder model. The encoder takes the utterance
phoneme posterior as an input and embeds it. A fully connected layer is added
on top to perform masked language modeling of the phoneme sequence during
training. This is added as a regularization technique to prevent overfitting.

The decoder then decodes the slot value, performing multi-head attention over
the encoder output. Additionally, gated attention is proposed to further attend
to the part of the encoded sequence where the slot value is predicted to lie. This
decoding is further constrained using a trie structure during the inference. The
trie holds available slot values. The authors try decoding the value from three
directions – forward, backward, and from the center to both sides. They argue
this should help when the audio is clearer in some parts than in others.

Speech2Slot shows big improvements over the baselines on a TTS-generated
noisy dataset of navigation prompts in Chinese. A big advantage of this framework
lies in the possibility of expanding the trie with new slot values without the need
for retraining the model. It also has some significant limitations, though. Mainly,
as far as our understanding goes, it is able to detect only one slot value in the
input.

Gaido et al. (2023) focus on NER in speech-to-text translation. As neural
methods struggle to correctly translate named entities, their goal is to detect them
in the input and translate them using a named entity dictionary. They report an
unsuccessful attempt to use Speech2Slot architecture, where their models failed
to converge. Instead, they utilize a different speech encoder and add a detector.
This detector consumes the encoder output and a named entity representation
and predicts whether this named entity is present in the input or not. While quite
successful, we argue this approach is very inefficient and next to impossible to use
with a database of thousands of named entities (or slot values, in our case).
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4 Our Approach
In this chapter, we present our own approach to slot filling in SLU. Our

contributions are mainly two-fold – first, we present a dataset for SLU slot filling
in the Czech language (Section 4.1); second, we propose a novel architecture for
slot filling joint with decoding (Section 4.2). We describe the details of training and
inference in Section 4.3. In Section 4.4 we document the results of our experiments,
notably in Section 4.4.3 we perform error analysis of our best architecture.

4.1 Dataset
The presented dataset deals with the public transport domain. The original

audio recordings with gold transcriptions (Plátek et al., 2016) come from the
Vystadial project.1 This section discusses how we have utilized the original data
to create a slot-filling dataset.

Data in Vystadial were collected using the Alex dialogue system (Dusek et al.,
2014). Users could call a specific telephone number to talk with the system in
Czech. Supported queries included weather, time, and mainly public transport
(initially in Prague only, later in Czechia in general). The users could query the
system for information about public transport connections between different places
in Czechia, specifying their departure or arrival stops/cities (we will refer to them
as locations), as well as intermediate travel points. Therefore, the original dataset
(Plátek et al., 2016) contains thousands of Czech spoken queries such as “I want
to travel from Brno to Prague,” together with their respective gold transcriptions.
As the system was able to ask clarifying questions, some user utterances included
only the name of a location. However, the released dataset is audio only, with no
NLU annotation.

4.1.1 Annotation
The original Alex rule-based NLU served as a basis for annotating the slot

values in the dataset. We annotate the golden transcriptions using a modified
version of the Alex NLU. Furthermore, we use original, previously unreleased
XML logs from the Alex system to restore the dialogue context. We keep only
utterances where the NLU detects a slot value of interest, resulting in roughly
30k utterances. For each of the utterances, we keep the previous system utterance
and its respective dialogue act (representation of the utterance meaning) based
on the dialogue context. As the user sometimes responds to the system’s question
(e.g., “What is your departure stop?”) with the stop’s name only, the previous
system dialogue act is necessary to determine which type of stop it is. We also
record whether this is necessary for a given utterance in our dataset. The caller
ID corresponding to the given sample is retrieved from the Alex logs.

We identify 8 slot types of interest in the Alex NLU. It originally worked with
additional slot types but we deem them not suitable for our task. The slot types of
interest include a combination of either a city or a specific stop, with their uses on

1https://ufal.mff.cuni.cz/grants/vystadial

40

https://ufal.mff.cuni.cz/grants/vystadial


the route: departure (from), intermediate (via), arrival (to), and unknown, which
appears when the dialogue context does not contain the information necessary to
determine any other type. In the dataset, we abbreviate these slot types as fc,
vc, tc, cc for cities and fs, vs, ts, ss for stops.

The Alex NLU is aided by a database of all the Czech cities and public transport
stops. Because Czech is an inflectional language, the database is enriched by
all the inflected forms of names using MorphoDiTa (Straková et al., 2014). We
include this database in the dataset as a .txt file.

Alex NLU marks all the segments of the user utterance that are found in the
database. Then, it uses rules implemented by regular expressions to determine
the slot type of the location. Although simple in its principles, this NLU was
iteratively tuned to handle dialogues it struggled with before, and the result is
quite robust.

We had to make certain improvements in the Alex NLU to adapt it for our
annotation goals. First and most importantly, the original NLU saved only the
lemmas of locations found in the utterance with their slot type. We adjust the
NLU to provide more information. We post-process this information further to
obtain the exact forms mentioned in the utterance, the spans where they appear
in the utterance, and their lemmas.

Second, the NLU worked with the outputs of a proprietary ASR that were all
lowercase. We adapt it to work with true-case data, as the gold transcriptions are
true-case, and lowercasing would lead to unnecessary data loss. We also remove
the normalization that the NLU did (some words were replaced for easier rule
application) and apply our own normalization, removing nonspeech tokens, like
(unint), from the transcriptions. We keep both the original transcription and
our normalization in the dataset.

The dataset splits are kept in separate .jsonl files. An example sample with
an explanation is shown in Figure 4.1. Here, we provide a detailed description of
the values saved for each sample:

• normalized: our version of normalized transcription; this sample translates
to roughly: “[I want to travel] from Hradec Králové to Litomyšl by bus on
Friday at twelve o’clock.”

• slot_values: a list of slot values present in the utterance, each with the
exact form that appears in the utterance (value), lemma for this form
(value_lemma), slot type (slot) and span that points to the normalized
version of the utterance.

• need_both: marks if the previous system utterance was necessary to deter-
mine the slot type.

• original: the original gold transcription.

• prev_sys_utt: the previous system utterance; here roughly translates to:
“Good morning, this is Alex, public transportation information. The call is
recorded. How can I help you?”

• prev_sys_da: the dialogue act semantic representation of the previous
system utterance.
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• path: relative path to the audio recording as saved in the dataset. Without
the split identification, it corresponds to the structure in the original dataset
(Plátek et al., 2016).

• caller_id: hashed telephone number that identifies the caller.

{"normalized": "Z Hradce Králové autobusem do Litomyšle
v pátek ve dvanáct hodin.",

"slot_values": [
{ "value": "Hradce Králové",

"value_lemma": "Hradec Králové",
"slot": "fc",
"span": [2, 16]},

{ "value": "Litomyšle",
"value_lemma": "Litomyšl",
"slot": "tc",
"span": [30, 39]}],

"need_both": false,
"original": "(hum) z Hradce Králové autobusem do Litomyšle

v pátek ve dvanáct hodin",
"prev_sys_ut": "Dobrý den, tady Alex, informace o veřejné dopravě.

Hovor je nahráván. Jak Vám můžu pomoci?",
"prev_sys_da": "hello()",
"path": "dev/part18/2015-04-20--19-33-00.830072-CEST-2204d2213de53dd9

/vad-2015-04-20--19-33-14.814678.wav",
"caller_id": "2204d2213de53dd9"}

Figure 4.1 A sample from our new dataset. Refer to Section 4.1.1 for detailed
description.

4.1.2 Dataset Splits
The original data contained user identification using hashed phone numbers

for privacy reasons, but this anonymization was not applied to a part of the data.
We have applied the anonymization consistently on all data and utilized the phone
number hashes to split the dataset properly into train, development, and test sets.
This means that the distinct data splits include non-overlapping sets of speakers.
The goal is to ensure the splits truly measure the generalization abilities and
that the test set is not contaminated by samples very similar to the ones used in
training.

The first step is to ensure two utterances (dialogue turns) from the same user
do not appear in different splits. We categorize the users into three groups: those
with more than 40 turns (we call this category many), those with between 15
and 40 turns (mid), and those with less than 15 turns in the data (few).2 Then,
we distribute the users of different categories into splits, aiming at a roughly

2The boundaries were selected after manual inspection of the data in order to produce
reasonably sized groups.
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60/20/20% split of the data. Detailed statistics of the dataset can be found in
Table 4.1.

Number of turns from user categories #users
many mid few Total

Train 14775 2472 1493 18740 474
Development 3001 1438 1492 5931 334
Test 2014 2127 2016 6157 449
Total 19790 6037 5001 30828 1257

Table 4.1 Number of turns from different user categories in the presented dataset
and its splits. #users refers to the number of unique users. Distribution of the users
into categories is discussed in Section 4.1.2.

4.2 Architecture Variants
In this section, we describe different architectures we evaluated in our experi-

ments. We present a straightforward baseline followed by our proposed architecture
and its iterative improvements. In all of our architectures, we use a version of
Whisper mikr/whisper-large-v3-czech-cv13 fine-tuned on the Czech part of
the Common Voice dataset (Ardila et al., 2020). Both the model3 and the dataset4

are publicly available on the HuggingFace hub (Wolf et al., 2019). From now on,
when we talk about Whisper, we refer to this fine-tuned version. We also always
prompt it with special tokens <|startoftranscript|><|cs|><|transcribe|>
<|notimestamps|> to specify the task.

In all of our experiments, we work only with 4 slot labels instead of the initial
8 identified in the Alex NLU. We argue that all methods, apart from rule-based,
have next to no chance of differentiating between stops and cities. Therefore, we
merge the respective pairs into a general location (such as departure stop and
departure city to departure location) and work only with 4 slot labels.

4.2.1 Baseline
We utilize the classic ASR + NLU pipeline as a baseline. We transcribe the

audio using the already mentioned fine-tuned Whisper. We choose a beam search
with a beam of size 3 to obtain more accurate ASR transcription. Then, we
annotate the transcriptions using the same Alex-based NLU used for dataset
annotation. Thus, this approach should yield perfect results if the ASR was
perfect. Because it is not, we obtain an interesting baseline to beat with more
integrated SLU methods, see Section 4.4.

4.2.2 Whisper-based Joint Architecture
We propose a novel Whisper-based architecture that joins slot filling with

decoding. As we have already mentioned in the introduction, the goal was to use
3https://huggingface.co/mikr/whisper-large-v3-czech-cv13
4https://huggingface.co/datasets/mozilla-foundation/common_voice_13_0
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an off-the-shelf ASR and possibly utilize its inner representations, as the final
output may be erroneous. Furthermore, we wanted to leverage the preliminary
knowledge of the slot value database.

From the approaches discussed in Chapter 3, Speech2Slot (P. Wang et al.,
2022) bears the most similarities. However, in theory, our architecture should
be able to handle multiple slot types as well as multiple slot values in a single
utterance.

We treat the task as a sequence labeling problem. The units of our sequence
are tokens generated by the Whisper decoder. As we describe in Section 1.9, the
Whisper decoder generates the audio transcription autoregressively (token-by-
token) on the level of subwords. In each timestep, Whisper is conditioned on
the audio encoding, prompt tokens, and tokens generated in previous timesteps.
Based on this, the Transformer-based part of the Whisper decoder produces the
output encoding for a given timestep. This output is then passed through a
fully connected layer to obtain a probability distribution over vocabulary tokens.
Further handling of this distribution depends on the specific decoding method.

See Figure 4.2 for an illustration of the architecture described in the following
paragraphs. We intentionally leave the diagram high-level here as we later propose
multiple approaches for how exactly the model should be connected. The main
idea is that we add a second decoder (referred to as Slot decoder) for slot labeling
that is conditioned on the encoded audio, the so far decoded transcription, and
on its own sequence generated in the previous timesteps.

Figure 4.2 High-level overview of the proposed architecture. The yellow tokens
represent special prompt tokens, the blue tokens denote standard predicted text tokens.
The grey tokens represent padding and the violet token the dialogue context. The token
probability distribution predicted by the Whisper Decoder represented by the vertical
rectangle is constrained by the Trie. Image inspired by Figure 1 of the original work
(Radford et al., 2023); adapted by the authors.
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Whisper Notation

Let us introduce a notation here for a better orientation in the following
descriptions. || denotes concatenation. Audio recording is the input to the
Whisper encoder, and we will denote its output WhisperEnc(x1, . . . , xn). In
timestep t, we generate a probability distribution over vocabulary tokens pt.
Tokens generated in the previous steps y1, . . . , yt−1 (together with the prompt
tokens; we will not consider them separately) are embedded by the Whisper
decoder embedding layer as WhisperEmb(y1, . . . , yt−1). These embeddings and
the audio encoding are consumed by the Transformer-based part of the Whisper
decoder to obtain its output for all the timesteps:

WhisperDecOut1,...,t = WhisperDec[WhisperEmb(y1, . . . , yt−1),
WhisperEnc(x1, . . . , xn)]

The resulting next-token logits are then obtained by passing the timestep t output
through the final fully connected layer pt = WhisperFFCL(WhisperDecOutt).5

Our Slot Decoder

We add a second decoder SlotDec with the same architecture to label the
tokens. The vocabulary of the Slot decoder is token slot labels in the IOB format,
i.e., whether a slot value starts on the given token, continues there, or this
token is out of any slot value (as we describe in Section 2.3). In all our model
versions, the Slot decoder receives the audio encoded by the Whisper encoder
WhisperEnc(x1, . . . , xn) as the encoder context vector. The decoding is then also
autoregressive. The Slot decoder outputs a distribution over token slot labels st

(for timestep t):
st = SlotFFCL(SlotDecOutt)

Based on this distribution, we choose the token slot label with the highest proba-
bility lt = argmax(st).

We utilize the same Transformer-based decoder architecture as the Whisper.
In preliminary experiments, we tested applying {1, 2, 4, 8, 16} of the decoder layers.
Utilizing a higher number of layers did not provide any improvements. Therefore,
our Slot decoder always has 1 Transformer-based decoder layer. The Slot decoder
has roughly 27M trainable parameters, compared to the 1543M of the Whisper
used for ASR.

Note that the tokens y1, . . . , yt−1 include the Whisper prompt tokens. We need
the sequences to be aligned, i.e., l1 be the token slot label of the token y1. We
label the Whisper prompt tokens with a token slot label representing padding and
do not mention this explicitly further.

Context Input As mentioned in the previous section, some utterances in the
dataset are not self-contained, and the prior context is necessary for slot type
determination. We encode the context into the same vocabulary, e.g., if the system
asked the user about the departure location, we use the token slot label that

5To obtain a proper probability distribution, we would need to apply softmax over the
output of the fully connected layer. This function, however, does not change the ordering of the
outputs, therefore we omit it here.
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represents the departure location. We prepend these tokens as an initial input
to the Slot decoder and denote it c1, . . . , cm (as the system may have queried
multiple slots).

Combining Whisper and Slot Representations In all of our versions, we
combine a part of the Whisper decoder representations with the embeddings of
the context and so far generated token slot labels SlotEmb(c1, . . . , cm, l1, . . . , lt−1).
We then sum these representations with the Whisper decoder representations, as
this is a common approach for combining representations (Vaswani et al., 2017).
In order to sum them, we need them to be the same shape. Therefore, we pad
the Whisper decoder representations using a sequence of Whisper pad tokens
a1, . . . , am to account for the Slot decoder prompt tokens.

Trie-Constrained Decoding Based on the available database, we build a trie
(Bodon; Rónyai, 2003) of all possible location names. Then, we use it together
with the token slot label predicted by the Slot decoder lt to modify the token
probabilities predicted by the Whisper decoder pt. If the token slot label signifies
that the given token belongs to a slot value lt ∈ {I, B}, we query the trie for all
the possible next tokens. Then, we set the probabilities of all other tokens in pt to
minus infinity. In the next timesteps t + 1, . . . , t + x, we do not allow the model
to stop decoding a slot value unless the trie indicates that the result produced so
far is valid. This way, we constrain the decoding so that once the Slot decoder
detects a slot value, the decoded tokens must form a valid location name.

Model Versions

Initial Version (Initial) In the initial version, the idea was to leverage as
much of Whisper’s inner representations as possible. Therefore, when predicting
the token slot label for timestep t, the Slot decoder receives the output of the
Transformer-based part of the Whisper decoder for timesteps 1, . . . , t. Using our
notation:

SlotDecOut1,...,t = SlotDec[((a1, . . . , am)||WhisperDecOut1,...,t)
+SlotEmb(c1, . . . , cm, l1, . . . , lt−1),

WhisperEnc(x1, . . . , xn)]

st = SlotFFCL(SlotDecOutt)

Correct Sequence Shift (Seq-Shift) During preliminary experiments, we
have realized that the initially proposed approach introduces a misalignment in the
sequences. The Whisper decoder output WhisperDecOut1,...,t already contains
the output for the timestep t. The approach, therefore, sums SlotEmb(lt−1)
with WhisperDecOutt, and the whole sequences are shifted, i.e., we combine a
Whisper decoder representation with the representation of the token slot label for
the previous token.

We decide to align the sequences, and because all the timesteps 1, . . . , (t − 1)
are already decoded, we use token embeddings WhisperEmb(y1, . . . , yt−1) instead
of the WhisperDecOut1,...,t. To still utilize the information from the Whisper
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decoder for the given timestep (WhisperDecOutt), we concatenate it to the input
of the final fully connected layer:

SlotDecOut1,...,t = SlotDec[WhisperEmb(a1, . . . , am, y1, . . . , yt−1)
+SlotEmb(c1, . . . , cm, l1, . . . , lt−1),

WhisperEnc(x1, . . . , xn)]
st = SlotFFCL(SlotDecOutt||WhisperDecOutt)

...

...

...

...

Figure 4.3 The details of model connection in our final architecture. The decoding
is constrained by the Trie, as shown in Figure 4.2 (we do not repeat it in this figure).
Again, the yellow tokens represent special prompt tokens, and the blue tokens denote
standard predicted text tokens. The grey tokens represent padding, and the violet token
the dialogue context. Image inspired by Figure 1 of the original work (Radford et al.,
2023); adapted by the authors.

No Decoder Output Concatenation (Final) We argue the Whisper de-
coder output WhisperDecOutt may be noisy during the autoregressive decoding.
Therefore, our final architecture illustrated in Figure 4.3 does not include it in
the last layer:

SlotDecOut1,...,t = SlotDec[WhisperEmb(a1, . . . , am, y1, . . . , yt−1)
+SlotEmb(c1, . . . , cm, l1, . . . , lt−1),

WhisperEnc(x1, . . . , xn)]
st = SlotFFCL(SlotDecOutt)

Ablation Versions

We perform two ablation experiments to assess the utility of different inputs
to the Slot decoder.

No Encoder (Final-NoEnc) In this variant, we want to determine whether
the Slot decoder benefits from the availability of audio encodings. Therefore, we
zero out the audio encoding, resulting in an equivalent of:

SlotDecOut1,...,t = SlotDec[WhisperEmb(a1, . . . , am, y1, . . . , yt−1)
+SlotEmb(c1, . . . , cm, l1, . . . , lt−1)]

st = SlotFFCL(SlotDecOutt)
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No Decoder (Final-NoDec) The goal of the second ablation experiment is
to evaluate how the Slot decoder uses the preceding text tokens. This version is
conditioned only on the audio encoding and the preceding token slot labels:

SlotDecOut1,...,t = SlotDec[SlotEmb(c1, . . . , cm, l1, . . . , lt−1),
WhisperEnc(x1, . . . , xn)]

st = SlotFFCL(SlotDecOutt)

4.3 Training and Inference Methods
We implement our model using PyTorch (Paszke et al., 2019) and HuggingFace

(Wolf et al., 2019) Python libraries. We train it on the ÚFAL AIC cluster using
NVIDIA GPUs.6 Our default training regime works with the common Transformer
teacher forcing for both the token slot labels and the text tokens. We use a batch
size of 2 samples because of GPU memory limitation and a learning rate of 0.0001,
as it worked well in our preliminary experiments. We train the models for 2 to 8
epochs while evaluating them on the development set every even epoch. We then
keep the model with the best development set results.

The default inference regime uses greedy decoding, i.e., it chooses only the
one most probable prediction at every timestep. We use a batch size of 1 during
inference to simplify the implementation. We also implement two extensions to
the default setup; we detail them in this section.

4.3.1 Pseudo Scheduled Sampling
Inspired by scheduled sampling (Bengio et al., 2015), we try to implement a

similar approach in order to better train the models for autoregressive decoding.
Unfortunately, there is no straightforward utilization of this technique in Trans-
former models with teacher forcing, as they compute all the attention scores in
parallel.

To bridge the gap between training and inference time, we first let the model
generate the label sequence (text tokens and token slot labels) without teacher
forcing. We sample from these generated sequences and intermix them with
the gold labels. Then, we use these mixed tokens as input for the standard
teacher-forcing method. We naturally compute the loss and gradients based on
the (non-mixed) gold labels. As we need to run the inference code here, we also
use the batch_size=1 for this training.

Following Bengio et al. (2015), we start with the mixing ratio of 0.5 of non-gold
tokens in the first epoch. We gradually increase it to 0.6, 0.7, 0.9, and 1.0 in the
next epochs. We experiment with two variants: first, we mix only the token slot
labels; second, we mix both token slot labels and the text tokens.

4.3.2 Beam Search
We implement a simplified version the a constrained beam search (Hokamp;

Q. Liu, 2017). Initially, we choose the most probable token slot label l1 and
6Based on current availability, one of GTX1080Ti, RTX2080Ti, RTX3090.
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accordingly constrain the text token probabilities p1. Then, we keep beam_width=3
(to correspond with the baseline) best text tokens and assign each of the tokens a
token slot label l1. This creates the initial set of hypotheses.

At every following timestep t, we expand each of the hypotheses independently.
Let us assume we work with hypothesis h. First, we predict the most probable
token slot label lt,h for the given hypothesis. We do not consider multiple token
slot labels as there is no straightforward way to score the combined hypotheses
later. Based on this label lt,h, we constrain the text token probabilities pt,h and
expand the hypothesis by every possible next token. Then, we compute the score
of the expanded hypotheses by summing the log probabilities.

We do this for each of the hypotheses in the beam and keep the beam_width
top-scoring expanded hypotheses for the next timestep. Once we close a hypothesis
in the beam, i.e., predict the end of sequence token, we reduce the beam width.
Therefore, we end up with beam_width closed hypotheses. We choose the top-
scoring one as the prediction.

4.4 Experimental Results
In this section, we present the results of the proposed architecture variants.

First, we explain the metrics we utilize. Next, we describe the results achieved on
the development set. We select the best architectures based on these results and
report their performance on the test set. Finally, we conduct an error analysis
and discuss the findings.

4.4.1 Metrics
As an intermediate metric to monitor the model training, we use an ad-hoc

metric dubbed token slot label F1 (TSL-F1). This is a straightforward metric,
where we simply compute the F1-Score across slot labels for all tokens (not
considering whether the recognized tokens, i.e., slot values, match the reference).
For simplicity, we also include the no-slot class (O) in this metric. We use a macro
average of F1 scores for all classes. Therefore, the prevailing no-slot class cannot
completely outweigh the slot classes.

This metric provides perfectly matched results only when paired with teacher
forcing. During autoregressive inference, the model may predict a slightly dif-
ferent transcription that has a different length when represented as a sequence
of Whisper tokens. This can introduce a shift in the sequence against the gold
label. Then, even though the prediction may be completely valid, TSL-F1 will
be low. Conversely, it may overestimate the performance when the sequence is
approximately correctly aligned, but the decoded tokens are wrong.

We employ slot F1 (Slot-F1) as the final representative metric (discussed in
Section 2.1). This metric works with the slot values detected in the utterance.
We consider a slot value correct only when the lemma is exactly equal to the gold
lemma and the predicted slot type is correct. We report both the micro-averaged
and the macro-averaged Slot-F1 variant over slot types described in Section 4.1.1.
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4.4.2 Results
The F1-score results on the development set of our different proposed archi-

tectures and the baseline are summarized in Table 4.2. The names correspond
to the architecture presentation in Section 4.2. “Sampling” denotes that pseudo
scheduled sampling was used to train the model, “BS” signifies beam search of
size 3 during inference (details of these techniques are discussed in Section 4.3).
We report the TSL-F1 of the inference mode without teacher forcing and without
beam search. With teacher forcing, the models (except for the Sampling variants)
ranged from 0.7 to 0.9.

TSL-F1 micro-Slot-F1 macro-Slot-F1
Baseline-BS — 0.59 0.58

Initial 0.38 0.11 0.09
Initial-BS — 0.18 0.14

Seq-Shift 0.39 0.17 0.13
Seq-Shift-BS — 0.24 0.18

Final 0.54 0.34 0.26
Final-BS — 0.46 0.36

Final-Sampling-Both 0.50 0.26 0.19
Final-Sampling-Both-BS — 0.33 0.25
Final-Sampling-Slot 0.51 0.32 0.23
Final-Sampling-Slot-BS — 0.42 0.30

Final-NoEnc 0.35 0.27 0.17
Final-NoDec 0.48 0.07 0.05

Table 4.2 F1-Score results on the development set. Model names correspond to the
architecture presentation in Section 4.2. “Sampling” denotes that pseudo scheduled
sampling was used to train the model, “BS” signifies beam search of size 3 during
inference (both discussed in Section 4.3).

Unfortunately, none of our proposed architectures managed to surpass the
baseline. As we have expected, the Initial version performs very poorly. We
believe this is due to the sequence misalignment.

Contrary to our initial theory, providing the Slot decoder with all the Whisper’s
inner representations does not benefit the model. The Final version that does
not utilize the last Whisper decoder output WhisperDect performs substantially
better than Seq-Shift. We theorize this happens because SlotFFCL in Seq-
Shift becomes too dependent on the last Whisper decoder output WhisperDect.
Then, during autoregressive decoding, Whisper may make a mistake early on in
the decoding, and the following Whisper decoder outputs WhisperDeci are noisy.

Pseudo-scheduled sampling does not bring any improvements. These models
struggled to converge, and the training was very slow. Mismatched tokens due to
different decoding lengths discussed in Section 4.4.1 may be part of the reason.
However, similar issues may be the reason why good teacher-forcing results do
not translate into a good autoregressive performance.

In ablation experiments, we find that the Final variant utilizes both the

50



audio encodings and the previous text token embeddings with benefit, as the
results of Final-NoEnc are poor. Interestingly, the TSL-F1 result of Final-NoDec
is good and its macro-Slot-F1 is very poor. We knew the TSL-F1 metric was
not conclusive, but in the other experiments, it usually aligned with the proper
metrics. We hypothesize this is caused by the fact that the Final-NoDec has no
way to align with the text tokens. Although the TSL-F1 is good, even a little
misalignment results in a completely erroneous decoded output.

We chose the Final-BS as it got the best results and evaluated it on the
test set. The test set results are summarized in Table 4.3. The results are very
similar, the baseline still performs better. The macro-Slot-F1 is much closer to
the micro-Slot-F1 than on the development set. We believe this is caused by the
via slot type. The whole dataset contains only tens of examples that contain this
slot type. Therefore, it is complicated for the model to learn its properties. For
future experiments, we recommend either omitting it completely or evaluating it
separately as a measure of few-shot learning.

micro-Slot-F1 macro-Slot-F1
Baseline-BS 0.60 0.59

Final-BS 0.46 0.45

Table 4.3 F1-Score results on the test set. Our final architecture with beam search of
size 3 during inference was chosen as it achieved the best results on the development set.

4.4.3 Error Analysis
In this section, we analyze the errors of our best Final-BS architecture on the

development set. We will discuss some more granular evaluation metrics and then
perform a manual error assessment.

Granular Metrics

First, let us explore the metrics of different slot types (discussed in Sec-
tion 4.1.1), as summarized in Table 4.4. As we can see, the poor result for the via
slot type draws the macro-Slot-F1 down a lot. The scores for from and to slots
are quite balanced, the result for the unknown slot is worse. Values of this slot
usually appear in less structured sentences, which probably makes the prediction
harder for the model.

Precision Recall F1-Score
from 0.50 0.41 0.45
to 0.52 0.51 0.51
via 1.0 0.08 0.15
unknown 0.35 0.32 0.33

Table 4.4 Detailed metrics for different slot types of the Final-BS on the validation
set.
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Next, we focus on an analysis of false positives. In total, we measure that the
model produced 3536 false positive predictions. Some of these false positives were
partially correct. First, we pair the true positives with the corresponding gold
values and exclude these from further inspection. Then, we try to match the false
positives to the remaining gold values in three ways:

• Correct lemma, wrong type: The predicted lemma exactly matches some
gold lemma. The predicted slot type is wrong.

• Lemma is a proper subset, any type: The predicted lemma is a proper subset
of some gold lemma. The predicted type can be right or wrong.

• Lemma is a proper superset, any type: The predicted lemma is a proper
superset of some gold lemma. The predicted type can be right or wrong.

Note that we cannot directly assign the false positive prediction to just one
of these classes. One prediction lemma could potentially be a subset of one gold
lemma and a superset of another. However, this is not probable, as the dataset
hardly ever contains more than two gold values in a single utterance. We can thus
assume that the overlap among our three classes will be negligible. The overview
of false positive predictions can be found in Table 4.5. When the false positive
prediction is at least partially correct, it is most often a proper subset of some
gold value. However, the amount of false positive predictions that are a proper
superset of a gold value is also not negligible.

#predictions % false positives
Correct lemma, wrong type 156 4.4 %
Lemma proper subset, any type 336 9.5 %
Lemma proper superset, any type 165 4.7 %

Table 4.5 Numbers and ratios of false positive predictions. Note that the classes are
not necessarily disjunct.

Manual Error Assessment

We manually explore a sample of the model predictions and compare them to
the gold labels. We identify certain classes of common mistakes and illustrate them
on examples. We always provide the gold transcription, the predicted transcription,
and then tokens annotated with token slot labels. We do not consider different
slot types and convert IOB to 108 for better readability.

Early Prediction The model predicts the start of slot value one token too
early and decodes a wrong value. An example is shown in Figure 4.4.

Hallucination The model recognizes further text that does not exist in the
recording; see an example in Figure 4.5. Usually, it is acoustically similar to what
was uttered. This is a documented behavior in Whisper (Koenecke et al., 2024).
It may be amplified by our added decoder, where whenever a start of slot value is
predicted, it restricts Whisper from predicting an end-of-sequence token.
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Gold: Do Brna.
Pred: Dobrná.
Gold: 0Do0 8 Br8 1na1 0.0
Pred: 8D8 1ob1 1r1 1n1 1á1 0.0

Figure 4.4 An example of early predicted token slot label. The slot value decoding
then leads to a wrong sequence.

Gold: Malostranská.
Pred: Malostranská. Mělice.
Gold: 8M8 1al1 1ost1 1rans1 1k1 1á1 0.0
Pred: 8M8 1al1 1ost1 1rans1 1k1 1á1 0.0 8 M8 1ě1 1l1 1ice1 0.0

Figure 4.5 An example of hallucination in predictions. The model produces a part of
the text that does not match the input recording.

No Slot Predicted In some cases, the slot predictor does not predict any slot
value, and the decoding is unconstrained. An example is shown in Figure 4.6.

Gold: Rád bych jel z Kladna města
Pred: Rád bych je skladna města
Gold: 0R0 0ád0 0 by0 0ch0 0 j0 0el0 0 z0 8 K8 1lad1 1na1 0 m0 0ě0 0sta0
Pred: 0R0 0ád0 0 by0 0ch0 0 je0 0 sk0 0lad0 0na0 0 m0 0ě0 0sta0

Figure 4.6 An example of a prediction where the model does not predict any value.
The decoding is then not constrained.

Correct Token Slot Label, Wrong Text Some errors are caused purely by
the speech recognition part. The Slot decoder correctly predicts the beginning of
a slot value and starts constrained decoding. However, the speech recognition part
assigns the highest probability to a wrong token, even though the set is already
limited. We show an example in Figure 4.7.

Gold: Ne, Hloubětín.
Pred: Ne, loubí čtyři! Konečná stanice!
Gold: 0Ne0 0,0 8 H8 1l1 1ou1 1b1 1ě1 1t1 1ín1 0.0
Pred: 0N0 0e0 0,0 8 lou8 1b1 1í1 1 č1 1ty1 1ř1 1i1 0!0

Figure 4.7 An example of a correct token slot label and wrong text in predictions.
The decoding is correctly constrained, but the text token probabilities are wrong.
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Conclusion
In this thesis, we explored the task of slot filling in spoken language under-

standing for voice-based task-oriented dialogue systems. In the first three chapters,
we summarized the necessary theory, including audio processing, machine learning
methods, automatic speech recognition, textual slot filling, and existing methods
for spoken slot filling.

In order to target the task, we compiled a dataset for spoken slot filling in the
Czech language. To the best of our knowledge, there was no existing open-source
dataset that targeted this task and language. The dataset deals with public
transport search. It contains roughly 30k utterances where users ask about public
transport connections. We identified four main slot types of interest, but we
recommend three of them for further use. Although the provided labels are of
high quality, we believe a manual inspection may be beneficial.

Our primary research question was:

How can we utilize prior knowledge of possible slot values (e.g., having
them in a database) to achieve robust slot filling in SLU with general
off-the-shelf ASR (without fine-tuning the ASR model)?

In an attempt to answer it, we have proposed a novel architecture that integrates
SLU by adding a new decoder layer to the Whisper pre-trained ASR. This decoder
predicts labels in IOB format for individual tokens of the decoded text sequence.
We then constrain the text decoding to achieve only valid slot values using the
predicted IOB labels and a trie.

We have shown that even a relatively small Transformer-based decoder with
roughly 27M trainable parameters (compared to the 1543M of the underlying
Whisper model) can benefit from access to speech encodings. Unfortunately, the
best version of our architecture did not surpass the presented baseline.

Nevertheless, this presents an opportunity for future research to improve
upon these results. The baseline results are roughly 0.6 F1 score, i.e., there is a
substantial gap for improvement. For future work, we suggest altering the training
approach (Ruan et al., 2020) or further improving the constrained decoding (P.
Wang et al., 2022).
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A Attachments
A.1 First Attachment

We attach a ZIP archive with the dataset annotations; the audio recordings
were too large and are available in the original archive (Plátek et al., 2016).
We also share our model source code and other scripts. Consult the provided
README for details.
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