
MASTER THESIS

Michelle Elizabeth

Conversational Agents for Task-Oriented
Dialogue

Institute of Formal and Applied Linguistics

Supervisors of the master thesis: Lina M. Rojas-Barahona, Orange Innovation, France
Ondřej Dušek, Institute of Formal and Applied Linguistics,
Charles University, Czechia
Miguel Couceiro, University of Lorraine, France

Study programme: Language Technologies and Computational Linguistics

Prague 2024



I declare that I carried out this master thesis on my own, and only with the
cited sources, literature and other professional sources. I understand that my
work relates to the rights and obligations under the Act No. 121/2000 Sb., the
Copyright Act, as amended, in particular the fact that the Charles University has
the right to conclude a license agreement on the use of this work as a school work
pursuant to Section 60 subsection 1 of the Copyright Act.

In . . . . . . . . . . . . . date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Author’s signature



To the Erasmus Mundus LCT administration and the LCT coordinators at Charles
University and University of Lorraine, Marketa Lopatkova and Miguel Couceiro,
for believing in me and offering me the opportunity to be part of this prestigious
program, these two years have been a rollercoaster yet very fulfilling.

To my supervisors, Lina Rojas, Ondřej Dušek and Miguel Couceiro, thank you
for your exceptional guidance and patience in me as I navigated this project and
for your valuable feedback.

To my friends from Prague and Nancy – Mifta, Keenu, Fairooz, Anna, Nastya
and Hannah – thank you for the good times and the memories, I will always
cherish them. Also, to my friends back home, especially to Bhairavi and Irene, for
motivating and pushing me and for being there through it all, thank you.

Last but not the least, to Appa, Amma and Maria for their unconditional love
and support, without whom I would not be where I am today, I dedicate this
master thesis to you.



Title: Conversational Agents for Task-Oriented Dialogue

Author: Michelle Elizabeth

Institute: Institute of Formal and Applied Linguistics

Supervisors: Lina M. Rojas-Barahona, Orange Innovation, France; Ondřej Dušek,
Institute of Formal and Applied Linguistics, Charles University, Czechia; Miguel
Couceiro, University of Lorraine, France

Abstract: Large language models have gained immense popularity due to their
text generation and reasoning capabilities on a wide range of tasks. They even
show promise in solving complex tasks that conventionally require deep learning
techniques, using advanced prompting strategies like ReAct (reasoning and acting).
In this work, we apply the ReAct paradigm to prompt LLMs to perform task-
oriented dialogue (ToD) in simulation, with access to external tools. We perform
quantitative and qualitative analysis on the simulated dialogues but we see that
our method does not meet the current benchmarks for ToD. However, LLMs have
the potential to perform as a conversational agent for ToD with more fine-grained
instructions and tools.

Keywords: Task-oriented Dialogue, Large Language Models, Conversational
Agents, ReAct



Contents

Introduction 3

1 Task-Oriented Dialogue Systems 5
1.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Natural Language Understanding . . . . . . . . . . . . . . 6
1.1.2 Dialogue State Tracking . . . . . . . . . . . . . . . . . . . 7
1.1.3 Dialogue Management . . . . . . . . . . . . . . . . . . . . 7
1.1.4 Natural Language Generation . . . . . . . . . . . . . . . . 8
1.1.5 End-to-End Architectures for ToD . . . . . . . . . . . . . 8

1.2 ToD Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.1 ConvLab . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.1 Automatic Evaluation Measures . . . . . . . . . . . . . . . 9
1.3.2 Simulated Evaluation . . . . . . . . . . . . . . . . . . . . . 11
1.3.3 Human Evaluation . . . . . . . . . . . . . . . . . . . . . . 11

2 Large Language Models for ToD 13
2.1 Behind the Scenes of Large Language Models . . . . . . . . . . . 13

2.1.1 The Transformer Architecture . . . . . . . . . . . . . . . . 13
2.2 A Brief History of GPT . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 GPT-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 GPT-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 GPT-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.4 InstructGPT and GPT-3.5 . . . . . . . . . . . . . . . . . . 17
2.2.5 GPT-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Conversational Agents . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Reasoning with LLMs . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Prompting Strategies . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 Chain-of-Thought Prompting . . . . . . . . . . . . . . . . 19
2.4.3 ReAct Prompting . . . . . . . . . . . . . . . . . . . . . . . 19

3 Experiments 22
3.1 The MultiWOZ Dataset . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.3 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.4 Improved Versions . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.1 Dialogue Simulator . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 User Agent . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.3 System Agent . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.4 Other Experiments . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.1 LangChain . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1



3.4.2 Langfuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Results 30
4.1 Quantitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.1 Simulated Task-oriented Dialogue System . . . . . . . . . 30
4.1.2 System NLG Capabilities . . . . . . . . . . . . . . . . . . 33

4.2 Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.1 The System’s Point-of-View . . . . . . . . . . . . . . . . . 34
4.2.2 The User’s Point-of-View . . . . . . . . . . . . . . . . . . 37
4.2.3 Manual Analysis of GPT-3.5 vs GPT-4 . . . . . . . . . . . 39

5 Perspectives 42
5.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Conclusion 46

Bibliography 47

List of Figures 57

List of Tables 58

List of Abbreviations 59

A Attachments 60

2



Introduction
‘Alexa! Turn on the front porch lights at 6 p.m.’
Virtual assistants like Amazon’s Alexa, Apple’s Siri and the Google Assistant

have become a household name in the last decade. We rely on these assistants
everyday to perform a wide range of tasks from setting reminders to ordering
groceries and controlling our home appliances. Virtual assistants make our lives
easier by providing immediate access to information and services with simple voice
or text commands. These advancements are thanks to the leaps and bounds in
research in Natural Language Processing (NLP).

We have come a long way since the first chatbot ELIZA was introduced
(Weizenbaum, 1966). ELIZA was a chatbot developed to pose as a psychotherapist
– one of the first chatbots that made natural language communication with a
machine possible. ELIZA was programmed to identify keywords and respond to the
user based on templates. Since then, conversational bots have been a very active
and dynamic area of research leading to more popular chatbots and assistants like
Alexa, Siri and Google Assistant in the 2010s. Behind the scenes, most chatbots
rely on classical dialogue systems that perform speech recognition, natural language
understanding, dialogue management, natural language generation and text-to-
speech generation (Sarikaya et al., 2016).

Fast-forward to 2022, we were introduced to ChatGPT (Ouyang et al., 2022),
attributing its human-like conversational capabilities to the rise of Large Language
Models (LLM). The hype around LLM-based chatbots has led to high public
expectations. Many users have been led to believe that these systems can fully
replicate human conversation and understand complex contexts seamlessly. While
LLMs have made significant strides, there still remains a gap between their
capabilities and imitating actual human conversation. This is because human
conversation is a very complex phenomenon which is still being studied by scientists
around the world.

Human conversations rely on shared context and background knowledge.
Interpreting a message accurately requires understanding the context in which
it was said and determining its relevance. Although LLMs can use previous
conversation history, they lack the understanding that is inherent in humans to
know what to say and when. Another aspect of human dialogue is that words and
phrases can have multiple meanings. Humans frequently use implicit meanings,
metaphors, idiomatic expressions and anaphora which is very challenging for a
machine to detect. Conversations are also rich with social cues conveyed through
tone, pitch, body language and facial expressions. Accurately interpreting these
cues is essential for meaningful interactions and using just text to communicate
cannot convey the full meaning to the other party.

Although human conversation is very difficult, we have seen LLMs being able
to chat with humans as if they were a real person. They have even shown immense
potential in performing tasks they were not specifically trained for. Research has
also shown that they are capable of reasoning (Yao; J. Zhao, et al., 2022), leading
us to believe that LLMs can in fact do much more than just chat, if given the
right tools.

In this work, we aim to study the reasoning and acting capabilities of LLMs

3



to perform Task-oriented Dialogue (ToD). ToD systems are conversational agents
that help the user achieve a specific goal like booking a flight or finding information
about a restaurant. We want to study how well the LLM is able to understand
the user requirements and use the right tools to retrieve the domain-specific
information in order to successfully complete the task set by the user. We want
to evaluate our system in simulation to measure how well it would perform in
a real-world scenario since dialogue is dynamic and each turn depends on the
previous turns generated (Rieser; Lemon, 2011).

This thesis is divided into 5 chapters. Chapter 1 gives an overview of task-
oriented dialogue systems, their architecture, benchmarks and evaluation metrics
followed by Chapter 2 which explores LLMs in detail. Chapter 3 describes our
experiments and the setup developed to study the capabilites of LLMs as a task-
oriented conversational agent and Chapter 4 analyses the results we obtained.
Chapter 5 gives insight into the results and anticipates potential improvements
and future work.

4



1 Task-Oriented Dialogue
Systems

Dialogue system or conversational Artificial Intelligence (AI) is a rapidly
evolving topic in NLP with systems that can chit-chat with the users on any topic
to those that can communicate about very specific and niche topics. Task-oriented
dialogue systems are a class of dialogue systems wherein the main focus is to
help the user achieve a fixed goal. These systems are useful in different fields
like tourism, sales, customer service, hospitality to name a few (Niculescu et al.,
2014; Pellom et al., 2001; Athikkal; Jenq, 2022; Chai et al., 2001). The user
interacts with the system which helps him access information, book services,
manage reservations and so on.

In this chapter, we will go into the details of a classical ToD system pipeline.
Section 1.1 describes their architecture and main components. Section 1.1.5 takes
a brief look at end-to-end architectures for ToD. Section 1.2 explores the existing
benchmarks for task-oriented dialogue. Section 1.3 talks about various evaluation
metrics that are used to gauge the performance of ToD systems.

1.1 Architecture
The classical dialogue system pipeline draws inspiration from human conversa-

tion and tries to adapt it into various modules or components. In the context of
a human-human conversation, the first step is for one of the speakers to utter a
sentence in natural language. This utterance is perceived by the second party in
the conversation who then tries to put the dialogue into context and understand
what the speaker is trying to convey. The listener then forms the response taking
into account common knowledge and previous conversation history. The response
is then conveyed back to the first speaker in natural language and the conversation
continues with the first speaker perceiving this new information and responding
with a new utterance (Jurafsky; Martin, 2000; McTear, 2020).

Dialogue systems are similar and have various modules for each task. While
the exact process behind a human conversation is not known, dialogue systems
try to imitate them by defining the following tasks. The first task is to convert
the speech signals of the user utterance into natural language text by using an
automatic speech recognition module. The text is then passed through a natural
language understanding module that converts the natural language utterance
into a semantic representation that the system can process easily. The next step
involves the dialogue management module which decides the next course of action
in the conversation such as whether to access a heterogeneous source of knowledge
like a database, knowledge graph or documents and deciding the content of the
response. Once the content of the dialogue is determined by the dialogue manager,
a natural language generation module converts the semantic response into a
natural language response. Finally, a text-to-speech module converts the text into
speech (Jurafsky; Martin, 2000; McTear, 2020).

Since we are not utilizing the speech modules, namely, automatic speech
recognition and text-to-speech, we will start describing the natural language

5



Figure 1.1 A classical Task-oriented Dialogue pipeline

understanding, dialogue manager and natural language generation modules in
detail in the subsequent sections. Figure 1.1 shows a high level overview of a
classical task-oriented dialogue system.

1.1.1 Natural Language Understanding
The Natural Language Understanding (NLU) module is used for extracting

meaning from the user utterance. It is responsible for identifying the domain,
dialogue acts, the slots and their corresponding values and converting them into a
semantic representation.

The domain refers to the broader topic of the conversation. For example,
if the user is asking for a restaurant in the city centre, then the NLU module
identifies the domain as restaurant from the list of possible domains that the
system is designed to talk about. The dialogue act or intent refers to the action
performed by speakers when uttering sentences such as informing, requesting,
clarifying, promising and so on. In our previous example, the dialogue acts are
‘request’and ‘inform’since the user is requesting the system for a restaurant and
informing that it should be in the city centre. Slots and values are the concepts
of the domain that the system needs to take into consideration in order to form
the right response. In the example of restaurants, slots can be the name of the
restaurant, its address, the cuisine available, the price range and so on.

NLU can be performed using a wide range of methods. These include hand-
crafted methods and machine learning approaches. Handcrafted (HDC) or rule-
based methods include using regular expressions and grammars for domain de-
tection, slot identification and filling. Machine learning methods include using
classifiers for detecting slots and values. Methods employing neural networks for
classification (Raffel; Ellis, 2015), Recurrent Neural Networks (RNN) (Liu; Lane,
2016; Hakkani-Tür et al., 2016; L. Zhao; Feng, 2018; Rojas-Barahona et al., 2016)
and pre-trained language models for slot tagging and filling (Q. Chen et al., 2019;
C.-S. Wu et al., 2020) are very popular for NLU. Generative models like T5 (Shah
et al., 2023) and BART (Ahmad et al., 2021) have also been used for NLU. More
recently, prompting LLMs for slot tagging (Hudeček; Dusek, 2023) is also gaining
popularity.

6



1.1.2 Dialogue State Tracking
Dialogue State Tracking (DST) keeps track of the internal state of the dialogue

in terms of the domains, intents, slots and values that were communicated by the
user to the system and that the system responded with. It has the summary of
the dialogue so far in the conversation. There are handcrafted methods as well as
probabilistic methods for implementing DST.

The most common solution for implementing DST is using a probabilistic
belief state. The belief state is the estimated probablity distribution over all
possible states based on the observations and actions of the system. There are
various implementations of a belief state tracker which use simple neural networks
(Henderson et al., 2013), RNNs with different ranking algorithms (Mrkšić et
al., 2015; Zilka; Jurcicek, 2015; Rastogi; Hakkani-Tur, et al., 2018), pretrained
language models (Chao; Lane, 2019; Gao et al., 2019; Heck et al., 2020), generative
models (Jacqmin; Rojas Barahona, et al., 2022) and more recently, by prompting
LLMs (Hu et al., 2022) with more recent approaches integrating both NLU and
DST.

1.1.3 Dialogue Management
The Dialogue Management (DM) module is responsible for making the system

choose the optimal action based on the belief state generated by the DST module.
The dialogue manager is usually responsible solely for the dialogue policy: selecting
the optimal action. In other cases, the dialogue manager may consist both the
dialogue state tracker and the dialogue policy. The dialogue policy decides the
next action based on the history and the belief state of the conversation. The
dialogue manager also might have access to backend services like a database server
to retrieve information requested by the user, which is used within the policy to
decide the appropriate action.

Dialogue Policy makes the decision on the next action the system should take,
taking into consideration the current dialogue state. It has access to backend
services and takes informed decisions based on the response from the external
services. It controls the flow of the dialogue and tries to move the conversation
towards the goal.

The simplest methods for action selection include finite state machines and
rule-based methods. The most popular method is reinforcement learning, in which
an agent is rewarded based on the action it selects, thereby learning the optimal
actions to arrive at the goal. More advanced methods use neural networks for deep
reinforcement learning in Deep Q-networks (Lipton et al., 2017) and policy gradient
algorithms like REINFORCE (Wang et al., 2020), Actor-Critic (Su et al., 2017),
Actor-Critic with Experience Replay (ACER) (Weisz et al., 2018; Cordier; Urvoy;
Rojas-Barahona, et al., 2020) and Proximal Policy Optimization (PPO) (Tuan
et al., 2018). More recently, structured policy learning with imitation learning
was proposed by Cordier; Urvoy; Lefèvre, et al., 2022 to tackle multi-domain,
multi-task ToD.

7



1.1.4 Natural Language Generation
Natural Language Generation (NLG) or response generation is the final step

in the dialogue pipeline. It takes the semantic dialogue act as input and generates
the final response to be given to the user in natural language. Very early solutions,
which use templates to guide the NLG process (Weizenbaum, 1966) in dialogue
systems is still very common (Kale; Rastogi, 2020). Grammar-based (Mille et al.,
2019) and statistical approaches are also popular with the former using semantic
structures such as trees and applying grammar rules to generate the response
while the latter uses neural networks to generate the response based on the given
dialogue act. Neural-network-based seq2seq (Wen; Gašić, et al., 2015) models
that use encoder-decoder architectures like BART (Lewis et al., 2019), T5 (Raffel;
Shazeer, et al., 2020) and those that use only decoders like GPT-2 (Radford; J.
Wu, et al., 2019), GPT-3 (Brown et al., 2020) are widely used due to their ability
to generate natural and fluent text. Lately, LLMs have become very popular in
text generation tasks and this applies to the NLG step in ToD systems as well
(Madotto et al., 2020). Approaches that combine NLG and NLU have also been
explored (Tseng et al., 2020).

1.1.5 End-to-End Architectures for ToD
The classical pipeline of a task-oriented dialogue system follows a modular

approach with various components serving a particular task as shown in Figure 1.1.
While this approach improves the flexibility of the system since each component
stands alone and can be replaced without affecting the other parts, they can
easily accumulate errors down the pipeline leading to mediocre performance. In
end-to-end ToD systems, there is little or no separation of components and they
are trained as one single unit.

There are various approaches using supervised learning and reinforcement
learning for building an end-to-end ToD system. Wen; Vandyke, et al., 2017 uses
architectures that employ supervised learning for training an end-to-end system.
There are also hybrid code networks (Williams et al., 2017) that use both supervised
and reinforcement learning. Lei et al., 2018 describes a simple architecture that
uses a two-stage decoding step. Pre-trained language models like GPT-2 are also
very commonly used in many end-to-end architectures like SOLOIST (Peng et al.,
2021), SimpleTOD (Hosseini-Asl et al., 2022) and NeuralPipeline (Ham et al.,
2020).

1.2 ToD Benchmarks
Task-oriented dialogue (ToD) is a very active area of research and has evolved

quite a lot over the years. Various benchmarks have been developed to assess the
performance of ToD like PyDial (Ultes et al., 2017), ConvLab (Lee et al., 2019)
and DialogStudio (J. Zhang et al., 2023). In this section, we will describe the
most popular one, proposed for the DSTC9 Challenge (Gunasekara et al., 2020)
called ConvLab, which is being used in this work.

8



1.2.1 ConvLab
ConvLab1 (Lee et al., 2019) and its subsequent versions, ConvLab 2 and 3 (Q.

Zhu; Z. Zhang, et al., 2020; Q. Zhu; Geishauser, et al., 2022) is a comprehensive
toolkit designed for building, training, and evaluating conversational AI systems.
It provides a standardized platform for researchers and developers to create and
benchmark various dialogue system components.

ConvLab is an open-source framework and supports the entire pipeline and
benchmarks of dialogue systems, including NLU, DST, dialogue policy learning,
NLG and system evaluation. It has a modular architecture, allowing researchers
to plug and play different components. The toolkit also includes popular dialogue
datasets, pre-trained models and baseline systems, which can be used for various
parts of the dialogue system pipeline.

ConvLab provides tools for benchmarking dialogue systems against standard-
ized datasets and metrics. This allows for consistent evaluation and comparison
of different systems and approaches. It also provides various user simulators to
evaluate the developed systems under simulation and has been adapted to multiple
dialogue datasets.

1.3 Metrics
Just like with any task, it is extremely important to evaluate the performance

of the systems developed for task-oriented dialogue. Evaluation of task-oriented
conversational systems can happen for various aspects - the quality of the generated
responses, the information conveyed, the success of the task and so on. In this
section, we describe the most common metrics that are used to evaluate the
performance of a ToD system.

1.3.1 Automatic Evaluation Measures
Automatic evaluation measures quantify the performance of the system based

on different aspects or the performance of different components. These metrics
evaluate the system as a whole or each component of the system as a separate
entity. Here we describe the task success rate and inform and book rates as the
metrics to evaluate the full ToD pipeline in order to assess whether it achieves
the user goals. NLU is usually measured by the F1 score and NLG modules can
be evaluated by measuring BLEU (Papineni et al., 2002), GoogleBLEU (Y. Wu
et al., 2016), METEOR (Banerjee; Lavie, 2005) and BertScore (T. Zhang et al.,
2020) of the generated responses against the reference responses in the dataset.
DST is measured using the Joint Goal Accuracy and the Slot Error Rate.

Task Success Rate

The task success rate is used to evaluate the system as a whole – it tries to
answer whether the task-oriented system was able to achieve the user’s goal. In a
typical scenario, the task is considered successful if the system was able to inform

1https://convlab.github.io/

9

https://convlab.github.io/


the user of the requested slots and was able to book the requested entities as
specified in the goal.

Inform Rate and Book Rate

The inform rate and book rate are also used to measure the ToD system as a
whole. The inform rate reports the precision, recall and F1 scores for the slots
that were requested by the user in the goal. For example, if the user requested
the name and address of a restaurant in the east part of town, then the system
should inform the user of the same. The book rate reports the ratio of entities
booked successfully by the system and the total number of bookings requested by
the user (Lee et al., 2019).

BLEU and GoogleBLEU

The BiLingual Evaluation Understudy (BLEU) (Papineni et al., 2002) score is
a very popular metric used for evaluating text generation against reference text. It
measures the n-gram overlap between the generated text and the reference text. It
is a precision-oriented metric and reports the score between 0 and 100, the higher
the score the better the generated output. GoogleBLEU (Y. Wu et al., 2016) is
a variation of the BLEU score and is mostly used for evaluating sentence pairs
rather than the whole corpus like in BLEU. For NLG in a ToD system, BLEU
scores helps measure the quality of the generated responses against the reference
response, although this may not be the ideal metric since there are multiple ways
to convey the same piece of information.

METEOR

Metric for Evaluation of Translation with Explicit ORdering (METEOR)
(Banerjee; Lavie, 2005) is also a reference-based evaluation metric commonly used
for evaluation of machine translation responses. In contrast to BLEU, which
uses precision as the main factor in evaluating the responses, METEOR uses
a harmonic mean of precision and recall with the recall weighted higher than
precision. METEOR also aligns the words in the generated text with the words
in the reference translation. This alignment is based on exact matches, stemming
matches and semantic matches. This helps METEOR provide a more flexible and
nuanced comparison than metrics like BLEU which rely solely on exact n-gram
matches.

BertScore

BERTScore (T. Zhang et al., 2020) evaluates the quality of generated text
by comparing it to a reference text using pre-trained BERT (Devlin et al., 2019)
models. Unlike metrics like BLEU and METEOR, which rely on n-gram matching,
BERTScore leverages BERT’s contextual embeddings to assess semantic similarity.
It calculates the cosine similarity between token embeddings of the generated text
and the reference text to capture meaning and context.

10



Joint Goal Accuracy

The Joint Goal Accuracy (JGA) is used to measure the performance of a
DST system. It is calculated as the number of correct state predictions that were
reported in the entire dialogue. We look at exact matches in the turn-level state
annotations in order to calculate the joint goal accuracy (Jacqmin; Druart, et al.,
2023).

JGA = Number of correct state predictions
Total number of turns

Slot Error Rate

The Slot Error Rate (SER) is also a measure for evaluating the DST module. It
is defined as the ratio between the number of slot-value pairs that were substituted,
inserted or deleted, and the number of slot-value pairs in the reference state.

SER = Insertions + Deletions + Substitutions
Total number of slots in reference

This measure can also be adapted for NLG by delexicalising the slot values
and counting the placeholders in the output.

1.3.2 Simulated Evaluation
Evaluation through simulation is widely used to measure the performance

of ToD systems. Initially, this approach was implemented for Reinforcement
Learning (RL) policy learning algorithms, which required simulated environments
to optimize the policy. Given the dynamic nature of dialogue, it is difficult to
replicate the same dialogues using a static corpus. Simulation, therefore, provides
a controlled yet flexible environment to analyze and refine the performance of
ToD systems (Rieser; Lemon, 2011).

1.3.3 Human Evaluation
While automatic evaluation is an important method to gauge the performance

of a ToD system, in order to get the complete picture, we need feedback from
the users of the system. This is where human evaluation comes into the picture.
These measures will give the system designers an overview of how their systems
perform in the real world. User satisfaction is extremely important and there are
various methods to measure it.

Human evaluation is usually done by letting users chat with the system based
on a given goal and then answering a questionnaire at the end of the dialogue.
The questionnaire can ask questions regarding the task success, the helpfulness of
the system, the fluency and coherence of the responses, the system’s ability to
recover from mistakes and so on.

The PARADISE framework (Walker et al., 1997) was one of the first evaluation
frameworks for ToD. It is domain-independent and uses user ratings at the dialogue
level. PARADISE integrates multiple performance measures into a single metric to
assess their impact on user satisfaction, primarily using task success and dialogue
cost metrics. More recent approaches (Takanobu et al., 2020; Santhanam; Shaikh,

11



2019) explore the best ways to perform human evaluation studying component-wise,
single turn evaluation, various scales like Likert scale and so on.

Chapter Overview
In this chapter we discussed task-oriented dialogue systems in detail. We

looked at the classical pipeline and components comprising a ToD system and
touched upon various approaches that exist for each component. We also looked
at the existing benchmarks for ToD, namely ConvLab and also explored simulated
evaluation and various metrics available for evaluation – both automatic and
human evaluation measures.

12



2 Large Language Models for
ToD

In recent years, the emergence of LLMs, characterized by their vast size and
deep learning architectures based on transformers (Vaswani et al., 2017), have
demonstrated proficiency in a wide array of linguistic tasks. We are interested in
the capabilities of LLMs as conversational agents, specifically for task-oriented
dialogue.

This chapter examines the fundamental architecture of LLMs in Section 2.1.
We then explore the history of Generative Pretrained Transformer (GPT) models
in Section 2.2 and take a brief look at conversational agents and how LLMs
tie in with agents in Section 2.3. Section 2.4.1 gives an overview of popular
prompting strategies with a special focus on ReAct in Section 2.4.3, around which
our experiments are designed.

2.1 Behind the Scenes of Large Language Models
Traditional NLP methods, which often relied on handcrafted rules and sta-

tistical models, struggled to grasp context and produce human-like text. The
emergence of neural networks, particularly RNNs like Long Short Term Mem-
ory (LSTM) (Hochreiter; Schmidhuber, 1997) and Gated Recurrent Unit (GRU)
(Cho et al., 2014) and Convolutional Neural Networks (CNN) (O’Shea; Nash,
2015), was a turning point towards better and robust models for language tasks.

Sequence-to-sequence models were used for language generation tasks and
these used RNNs in an encoder-decoder architecture. But a major limitation for
these models was the loss of information when dealing with long sequences. To
overcome this, the attention mechanism was introduced. The idea behind the
attention mechanism is that the neural network gives importance to parts of the
input sequence that contain information relevant to the current generation step.

2.1.1 The Transformer Architecture
The transformer architecture, introduced by Vaswani et al., 2017 has been a

gamechanger in NLP. The transformer (Vaswani et al., 2017) favours a parallelized
approach that leverages self-attention mechanisms that allows it to process entire
sequences of words simultaneously. This has led to significant improvements in
training efficiency and the ability to capture long-range dependencies in text at
training time. See the full transformer architecture in Figure 2.1.

Positional Encoding

Since the transformer processes input sequences in parallel rather than sequen-
tially, it lacks a sense of word order. To address this, the architecture incorporates
positional encodings, which are added to the input embeddings to provide infor-
mation about the position of each word in the sequence. These encodings are

13



Figure 2.1 The transformer architecture from Vaswani et al., 2017.

designed to encode relative positions using sine and cosine functions of different
frequencies.

Encoder-Decoder Architecture

The transformer architecture is composed of an encoder and a decoder, each
consisting of a stack of multiple identical layers. The encoder converts the input
sequence into a series of continuous representations, while the decoder generates
the output sequence based on these representations and previously generated
tokens. Each layer in the encoder consists of two main components: a multi-head
self-attention mechanism and a position-wise feed-forward neural network, both
followed by layer normalization, with residual connections. The decoder layers
have a similar structure with the inclusion of an additional multi-head attention
mechanism that attends to the encoder’s output. This enables the model to focus
on relevant parts of the input sequence while generating the output. The decoder
follows an autoregressive generation, which means that it predicts the next word
based on the input and the tokens that were generated until the current position.
The softmax layer on top converts the predictions to probabilities, in order to
pick the best token for the next word. The final output is generated using various
decoding strategies - greedy search, beam search, top-k sampling to name a few.

Self-Attention Mechanism – Scaled Dot-Product Attention

At the core of the transformer (Vaswani et al., 2017) is the self-attention
mechanism, which enables the model to weigh the importance of different words

14



Figure 2.2 Scaled dot product attention from Vaswani et al., 2017

in a sentence relative to each other. For each word in the input sequence, self-
attention computes a set of attention scores that determine how much focus the
model should place on each word in the sequence. These scores are calculated
using a combination of query and key vectors with value vectors, which are derived
from the input embeddings using a linear transformation. The dot product of all
the queries with all keys is computed and scaled down to avoid very small values
when computing the gradient. Then, a softmax function is applied to obtain the
weighted sum of values that captures the contextual relationships between words.
Dot-product attention is very efficient in terms of computation time and space. It
is shown in Figure 2.2.

Multi-Head Attention Mechanism

The transformer (Vaswani et al., 2017) employs a multi-head attention mecha-
nism in order to enhance the model’s capacity to capture diverse patterns and
dependencies in the data. This involves running several self-attention operations in
parallel, each with its own set of key, query, and value projections. The outputs of
these attention heads are then concatenated and linearly transformed to produce
the final attention output. By using multiple attention heads, the transformer can
simultaneously focus on different parts of the input sequence, capturing a wider
range of contextual information and improving the model’s overall performance.
This mechanism is illustrated in Figure 2.3

The transformer (Vaswani et al., 2017) architecture forms the backbone of
many state-of-the-art language models, such as BERT (Devlin et al., 2019), GPT
(Radford; Narasimhan, et al., 2018) and T5 (Raffel; Shazeer, et al., 2020). These
models have achieved remarkable performance across a wide range of NLP tasks,
including machine translation, text summarization, question answering and so on.

15



Figure 2.3 Multi-head attention from Vaswani et al., 2017

2.2 A Brief History of GPT
Generative Pre-Trained Transformer or GPT models, by OpenAI are language

models with a decoder-only architecture. As the name suggests, these models
are generative, which means that they are designed to produce the next most
probable word, given a sequence of words. They use the transformer (Vaswani
et al., 2017) architecture in the decoder and have been pre-trained on a large
amount of textual data using self-supervised learning. This helps these models
to capture the features of the language. We will take a brief look at how these
models evolved over the years.

2.2.1 GPT-1
GPT-1 (Radford; Narasimhan, et al., 2018), released in 2018, was one of

the first pre-trained language models which introduced the idea of general self-
supervised pre-training followed by task-specific finetuning. It was pre-trained
on the BooksCorpus dataset (Y. Zhu et al., 2015) on a 12-layer decoder-only
transformer with masked self-attention heads and has 117 million parameters.
The model was then fine-tuned on downstream tasks in a supervised manner and
task-specific input transformations. GPT-1 surpassed state-of-the-art results for 9
out of 12 tasks by simply fine-tuning on specific datasets, showing that the model
can generalise well.

2.2.2 GPT-2
GPT-2 (Radford; J. Wu, et al., 2019), released in 2019, was trained on a much

larger and diverse corpus and comprises of 1.5 billion parameters. It follows the
architecture of GPT-1 with very few modifications including using 48 layers in the
decoder and supporting a larger input size and vocabulary. The training objective
of GPT-2 was modified to be conditioned on the task as well, which means that it

16



should produce a different output for the same input depending on the task. This
also enabled the model to perform zero shot learning and it was able to surpass 7
out of 8 tasks in a zero shot setting without any finetuning on in-domain data.

2.2.3 GPT-3
In 2020, GPT-3 (Brown et al., 2020) was released with 175 billion parameters

and trained on a very extensive dataset of textual data. GPT-3 also uses the same
decoder-only architecture but uses 96 layers and the size of word embeddings
and context window was increased to twice that of GPT-2. With this improved
architecture and a large amount of data, GPT-3 was able to recognise patterns in
data leading to in-context learning, which helped the model perform downstream
tasks in a zero-shot or few-shot setting without the need for fine-tuning (See
Section 2.4.1).

2.2.4 InstructGPT and GPT-3.5
InstructGPT (Ouyang et al., 2022) was developed with the aim of aligning the

model to better follow instructions from humans and to produce safe and grounded
text. This model uses the same architecture as GPT-3 but has added humans in
the training loop through Reinforcement Learning from Human Feedback (RLHF).
The model was trained in 3 steps. The first step was supervised finetuning of
the GPT-3 model with prompt-answer pairs. Then a reward model was trained
based on human rankings on candidate answers that were generated by the
finetuned model. The finetuned model was further finetuned by applying a
reinforcement learning policy with the reward model. GPT-3.5 is a modified
version of InstructGPT, where the model was optimised for chat.

2.2.5 GPT-4
GPT-4 (OpenAI et al., 2024), the largest model in the GPT series, was

introduced in 2023. It is a multimodal language model, which means that it can
process input that contain text as well as images and generate text output. While
exact details of its architecture has not been released, it is known that the GPT-4
model also uses a transformer-based architecture pre-trained on vast amounts of
data and further finetuned using RLHF. It has been shown to have reasoning
capabilities that are superior to GPT-3.5.

2.3 Conversational Agents
An agent is a system that can perceive its environment, make decisions and

take actions to achieve a specific goal autonomously. Figure 2.4 gives an overview
of how agents interact with their environment to perform tasks. An agent interacts
with its environments through sensors to understand and perceive its surroundings
which can be text, audio, images and videos. Based on the input it received
from the surroundings, it makes decisions on what action to perform by reasoning
and planning, also taking into account previous knowledge. Then it chooses the
appropriate action and performs it, which in turn can have an impact on the

17



Figure 2.4 A high-level overview of an agent interacting with its environment to
perform tasks.

environment. The agent is made aware of the changes and now it perceives the
new changes in its environment and continues the above process to finally reach
its goal.

With the introduction of LLMs, we see a heightened interest in conversational
agents. Wahde; Virgolin, 2022 define conversational agents as computer programs
designed for natural conversation with human users, either involving informal
chatting or with the aim of providing the user with relevant information related to
a specific task. The first kind, also called chatbots, are useful for simply chatting
with the users on a wide range of topics while the second kind or task-specific
agents, can help the user perform a specific task. We are more interested in the
task-specific agents since they are programmed to provide clear cut answers to
perform complex tasks involving some form of data processing and reasoning based
on external factors like database queries, APIs and so on. Task-oriented dialogue
systems can be considered a type of conversational agent. We are more interested
in studying whether LLMs, with their impressive text generation capabilities can
also reason and perform well-defined actions to help users with complex tasks
such as booking a flight or finding the nearest hospital.

2.4 Reasoning with LLMs
This section describes prompting and the various strategies for prompting

briefly. We also look at advanced prompting strategies like chain-of-thought and
ReAct, which are used to help the model attempt to reason.

2.4.1 Prompting Strategies
A prompt is an input that provides context, instructions, or examples to a

language model to generate a specific type of response. It can be as simple as a

18



question or a more complex instruction involving multiple steps or examples. De-
pending on the number of examples provided in the prompt, prompting strategies
can be classified as follows:

Zero-shot prompting Only the task description is provided and does not
include any examples. For example,

Translate this sentence to French: Hello, how are you?
One-shot prompting The task description is provided along with a single

example. For example,
Translate the following sentence to French. Example: Good morning Transla-

tion: Bonjour. Now, translate: Hello, how are you?”
Few-shot prompting More than one example is provided with the task

description. For example,
Translate the following sentences to French. Example: Input: Good morning

Translation: Bonjour. Input: Thank you Translation: Merci. Now, translate:
Hello, how are you?

The subsequent sections explain two popular reasoning strategies that force the
LLMs to produce the reply gradually with intermediate steps, thereby reducing
the complexity of trying to tackle the bigger individual task. These are Chain-of-
Thought and ReAct and both these methods have achieved better results when
compared to simple few shot prompting.

2.4.2 Chain-of-Thought Prompting
Chain-of-Thought (CoT)(Wei et al., 2022) is a prompting technique used

to improve the performance of language models, especially in tasks that require
complex reasoning and multi-step problem-solving. It involves guiding the language
model to generate intermediate reasoning steps before arriving at the final answer.
The example given below, from Wei et al., 2022, illustrates the difference between
standard prompting and CoT prompting:

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can
has 3 tennis balls. How many tennis balls does he have now?

Standard Prompting A: The answer is 11
CoT Prompting A: Roger started with 5 balls. 2 cans of 3 tennis balls each is

6 tennis balls. 5 + 6 = 11. The answer is 11.
Instead of directly asking the model for the final answer to a question, CoT

prompting encourages the model to approach the problem in a step-by-step manner
which would lead to the final solution. This process mimics how humans often
solve problems by breaking them down into smaller, manageable parts. Results
show that chain-of-thought prompting improves performance by a large margin
for arithmetic reasoning and common sense reasoning.

2.4.3 ReAct Prompting
ReAct (Reasoning and Acting) (Yao; J. Zhao, et al., 2022) prompting enables

language models to interleave reasoning steps with actions. As shown in Figure
2.5, the language model generates reasoning traces to decide on the actions it
must perform. It then performs the action via tools which interact with the
environment to generate an output. This output changes the enviroment and

19



Figure 2.5 ReAct Trajectory from Yao; J. Zhao, et al., 2022.

Figure 2.6 Example from Yao; J. Zhao, et al., 2022 showing how React works in
comparison with Standard, CoT and Act prompting strategies. Standard refers to
prompting in which a plain input query is given to the model. Act refers to a strategy
in which the model is prompted to perform actions directly without other intermediate
steps.

the language model observes this change to generate more reasoning traces to
decide on its next action. This allows models to interact with external systems or
APIs, retrieve information, and make decisions based on that information in a
structured manner.

The ReAct prompt involves a clear sequence of Thought, Action and Obser-
vation repeated until the final answer is obtained. The Thought step forces the
model to think about the given input in order to determine the necessary actions
to be taken. Based on the list of tools provided, the model should then generate
the appropriate Action to be performed along with the input to the tool. These
actions are executed to achieve the desired outcome. Based on the result of the
actions, the model makes Observations and reasons again to adapt to the new
results. This process is repeated until it reaches the final output. Figure 2.6
compares the popular prompting methods and shows how ReAct is able to achieve
better results than the rest through reasoning and acting.

ReAct has proven to be very effective in knowledge intensive question answering
and complex decision-making tasks by minimising hallucinations when compared
to CoT (Wei et al., 2022) by generating grounded and trustworthy responses. The
experiments conducted by Yao; J. Zhao, et al., 2022 show that ReAct provides
promising results in complex tasks involving language-based interactive decision-
making tasks - ALFWorld (Shridhar et al., 2021) and WebShop (Yao; H. Chen,

20



et al., 2023). Since task-oriented dialogue is also a dynamic and complex task, we
explore in Chapter 3 how ReAct can be used to perform task-oriented dialogue
and evaluate and compare the performance of this system to previous works in
Chapter 4.

Chapter Overview
This chapter went into details of the architecture of LLMs, and about the

evolution of the GPT models from GPT-1 to the latest and most powerful model
GPT-4. We also described the idea of agents and how they apply to chatbots.
The reasoning capabilities of LLMs and current approaches were also described in
this chapter, laying the groundwork for the experiments for studying ReAct for
ToD that will be described in the next chapter.

21



3 Experiments
The last two chapters gave an overview of task-oriented dialogue and the ReAct

paradigm for reasoning in LLMs. This chapter describes the experimental setup
we developed to study whether the reasoning and acting capabilities of LLMs can
be used to perform task-oriented dialogue. Section 3.1 describes the dataset that
we used in the experiments. Section 3.2 describes how the dialogue simulation
was performed and the conversational agents and the methodologies used in our
system along with the different experiments that were performed. Section 3.3
explains the criteria used to evaluate our system and Section 3.4 elaborates on
the frameworks used to setup the experiments.

3.1 The MultiWOZ Dataset
The MultiWOZ (Multi-Domain Wizard-of-Oz) dataset (Budzianowski et al.,

2018) is one of the most popular and comprehensive datasets for training and
evaluating task-oriented dialogue systems. It includes conversations spanning
multiple domains such as hotels, restaurants, tourist attractions, trains, taxis,
hospitals and police. Each dialogue consists of user and system utterances anno-
tated with a user goal, belief state and set of dialogue acts with slots per turn.
These annotations can be used for training models for different modules such as
NLU, DST, NLG as well as for end-to-end systems. We selected this dataset due
to the availability of a user goal, using which we can evaluate the completion of
the task. The fact that the dataset is very popular and well-annotated provides
the additional incentive that there would be many systems following different
approaches for ToD against which we can compare our system.

3.1.1 Ontology
The ontology of the dataset describes each domain of a task-oriented dialogue

system and specifies all concepts, known as slots, and the possible values for
each slot. The slots are categorized into informable slots and requestable slots in
this dataset. Informable slots are concepts that allow the user to narrow down
the search (e.g., area or price range), while requestable slots represent additional
information that users can request about a given entity (e.g., phone number).
The ontology was used to create a task template spanning many domains through
random sampling.

3.1.2 Data Collection
The dialogues for MultiWOZ were collected using an online variant of the

Wizard-of-Oz setup (Kelley, 1984), where human participants interact with the
system as if it were an automated agent, while a hidden human operator controls
the system responses. The data collection was crowd sourced and used the Amazon
Mechanical Turk through which the workers were given the context to complete
a turn of dialogue by playing the user or the system. The collection started
with a semi-randomly generated goal – a task template including specific slot

22



values as user preferences (e.g., area of the restaurant) and additional slots to
request (e.g., address and phone number of the restaurant). Each task template
is translated into natural language goals for the user to converse with the system.
For the system dialogues, the wizard acted as a clerk, providing the user with
the required information via an easy-to-use graphical interface connected to the
back-end database. The wizard entered user input through a web form that was
used to query the database. This also helped annotate the belief state. Based on
the query results, the wizard either requested more details or supplied the user
with the appropriate information.

3.1.3 Statistics
The dataset consists of 10,438 dialogues. It includes 3,406 single-domain

dialogues with an average number of 8.93 turns and 7,032 multi-domain dialogues
involving 2 to 5 domains with 15.39 turns on average. To ensure reproducibility,
the corpus was randomly divided into training, testing, and development sets,
roughly in the ratio 80:10:10, with the test and development sets each containing
1,000 examples.

3.1.4 Improved Versions
There have been several improvements to the MultiWOZ dataset that tried

to address shortcomings in the first version. MultiWOZ version 2.1 (Eric et al.,
2019) corrected the noisy state annotations and utterances by re-annotating the
corpus with human annotators and by canonicalizing slot values in the utterances
to the values in the dataset ontology. MultiWOZ 2.2 (Zang et al., 2020) also
performed corrections in the annotations and redefined the ontology so that the
vocabularies of slots do not allow slots with a large number of possible values.
Version 2.3 of MultiWOZ (Han et al., 2021) introduced co-reference features and
unified annotations of dialogue acts and dialogue states. We use MultiWOZ 2.3
for our work since it has the latest corrections and the semantic representations
of the system.

3.2 Experimental Setup
This section describes the full experimental setup that we developed for

studying the performance of ReAct in LLMs for task-oriented dialogue systems.
Figure 3.1 shows a high-level overview of our setup.

3.2.1 Dialogue Simulator
As mentioned in Section 1.3.2, one way to evaluate a dialogue system is

through simulation. Therefore, our experiments were performed with the help of
a dialogue simulator written in Python which simulates the entire conversation
between a user agent and a system agent. The dialogue simulator is responsible
for alternating between the user and the system as well as making sure that the
responses from each party is being sent across to the other party. It keeps track of
the number of turns in the dialogue and stops the dialogue if it exceeds a certain

23



Figure 3.1 The proposed system that uses ReAct for task-oriented dialogue.

limit or if one of the agents generates the [END] token signalling the end of the
conversation. We have set the limit to be 30 turns for our experiments.

3.2.2 User Agent
Since we are simulating the conversations, we use user agents in place of real

human users to perform the experiments and to evaluate the system as it is more
feasible. The user agent is responsible for interacting with the system agent
based on a given goal. The goal provides information to the user about what
information it should give to the system, what information it should request from
the system as well as information to make bookings if required. At each turn, it
chats with the system based on the goal and the system’s previous response to
keep the conversation going. It should end the conversation when all the goals
are satisfied. We explored three options for implementing the user agent which
have been described below.

LLM as user

Our first implementation of the user agent used an LLM. The LLM was
prompted to act as the user and was given a goal based on which it was asked to
talk to the system agent. The LLM was also asked to generate [END] token to
end the conversation when it realises that all the goals were satisfied. However,
this implementation of the user agent had two major issues.

The first issue was that the LLM user agent could never identify that the
goals were satisfied. This meant that the user agent kept repeating the same
requests and the conversation always exceeded the turn threshold and never ended
naturally. The second issue showed that the LLM had trouble maintaining its role
as a user and sometimes switched to play the system by providing hallucinated
values for the goals.

LLM as user with goal tracking

To address the issue of the user agent not being able to end the conversation
naturally, we introduced goal tracking in the LLM user agent. After each turn, the

24



goal was updated based on the NLU from the system response. The user would
then be able to continue the conversation based on the goals still left unsatisfied.

While this was a temporary solution for goals in a single domain and with
few intents, the user agent was still not able to end the conversation naturally
for larger goals. This helped to realise that it may be better to have a rule based
user simulator instead of an LLM as a user.

Agenda based user simulator

To exercise better control over the user agent, we decided to use the agenda-
based user simulator (Schatzmann et al., 2007) implementation in ConvLab 3
(Q. Zhu; Geishauser, et al., 2022). ConvLab also implements a goal generator class
which generates goals in the format of the MultiWOZ dataset (Budzianowski et al.,
2018). The goal generator is used to initialize the agenda-based user simulator.
The user simulator then generates the dialogue acts and converts them into a
natural language response. This is fed to the system agent and the response from
the system is sent to BERT NLU to generate the semantic representation of the
system response. The semantic representation is then used to update the agenda
and thus the goal in the form of a stack. The user simulator then generates the
next utterance based on the system response and the updated agenda.

3.2.3 System Agent
The system agent is an LLM that was prompted to use the ReAct strategy to

generate its responses. Following the strategy as described in Yao; J. Zhao, et al.,
2022, we provided few shot examples in the prompt for the LLM to learn from.
We use the LangChain agent executor to develop the agent which uses the LLM
and the prompt. See the prompt in Figure 3.2.

We gave the agent a list of tools - list_domains, list_slots, db_query
and generate_booking_reference which it can use as actions. The example
provided in the prompt showed how and in what order the tools should be used.
The reasoning process to be followed by the system agent is outlined below.

• Step 1: The system agent should try to understand the user input. It
should form a thought according to the input and decide what course of
action it should follow. For ToD, the steps are to identify the domain and
the corresponding slots and values from the user input. Then it should form
the belief state and use it to query the database, retrieve the results and
form the final answer based on the results.

• Step 2: The system agent should first call the list_domains tool.

• Step 3: The system observes the output of the list_domains tool and
decides which domain the user request belongs to.

• Step 4: Now that the system knows the domain, it needs the list of slots
available in the selected domain in order to identify the slot values from the
user request. The system should use the list_slots tool with the domain
as input to get the list of slots.

25



Respond to the human as helpfully and accurately as possible.

You have access to the following tools:

{tools}

Use the following format:

Question: the input question you must answer

Thought: you should always think about what to do

Action: the action to take, should be one of [{tool_names}]

Input: the input to the action, should be in JSON object containing values for

the tool parameters

Observation: the result of the action

... (this Thought/Action/Input/Observation can repeat N times)

Thought: I now know the final answer

Final Answer: the final answer to the original input question

If you can’t find the answer just say it as your final answer.

You don’t have to use a tool every time, but when you do only specify the tool name

as the Action.

Example:

{examples}

Begin!

Chat history:

{history}

Question: {input}

{agent_scratchpad}

Figure 3.2 The ReAct prompt used to instruct the system LLM agent on how to
perform task-oriented dialogue.

• Step 5: The system should now observe the list of slots and decide which
slots have been mentioned in the user input and form/update the belief
state.

• Step 6: The system should call the db_query tool using the state as input
to retrieve records from the database that match the user request.

• Step 7: As the final step, the system agent observes the retrieved entities
and generates an appropriate response to convey to the user.

We noticed that asking the agent to generate a random booking number
has unexpected results - the LLM produces python code for generating ran-
dom numbers or tells the user that the generated number is a random number
since it does not have access to a booking system. Hence, we provided the
generate_booking_reference tool to be used for generate booking reference
numbers when the user requests a booking. The agent is provided with a detailed
example in the prompt of a full conversation showing the sequence of thoughts,
actions and observations it should follow. The agent also has access to previous
conversation history as well as a description of each tool that is given. The agent
scratchpad shows the reasoning process in detail.

26



3.2.4 Other Experiments
Generic vs Domain-Specific Examples in the Prompt

To study how the performance of the system changes based on the few-shot
examples in the prompt, we experimented with a random example from the
MultiWOZ dataset as well as randomly selected examples for each domain. The
first experiment used the same example irrespective of the domains of the user
goal. The second experiment changed the example in the prompt based on the
domains in the user goal. These two systems were evaluated as an end-to-end
system by calculating the success rate, inform rate and book rate.

You are a helpful assistant that can help the user to complete their task.

You have access to the following tools:

You should generate short, precise, and informative response

(less than 50 tokens), providing only necessary information.

You should generate a natural language response for the user request

based on the previous dialogue history and the dialogue act provided.

See the examples below:

{examples}

User input:

{input}

Previous conversation history:

{history}

System dialogue act:

{dialogue_act}

Your response:

Figure 3.3 The few-shot prompt used to instruct the LLM to perform response
generation.

NLG Capabilities of LLMs

We also studied how well the LLM performs natural language generation in
the context of task-oriented dialogue as a stand-alone component. The LLM is
prompted to generate the system utterance based on the system dialogue acts,
the previous user utterance and the chat history for each system utterance in
each dialogue in the test set of MultiWOZ in both zero-shot and few-shot settings.
We performed the evaluation by comparing the generated response with the gold
system utterances in the dataset. Figure 3.3 shows the few-shot prompt used for
the same.

3.3 Evaluation
For evaluating our system, we will use the metrics described in Section 1.3

of Chapter 1. For evaluating the task completion ability of our ToD system, we
will calculate the task success rate, inform rate and book rate. The evaluation
pipeline was set up by following the ConvLab pipeline for end-to-end evaluation.
It must be noted that we are evaluating the dialogues in simulation in order to

27



have a better understanding of how the system would perform in a real scenario.
Since dialogue is dynamic, a corpus-based evaluation does not suit our needs.

For evaluating the response generation capabilities of the LLM agent in
isolation, we use BLEU (Papineni et al., 2002), GoogleBLEU (Y. Wu et al., 2016),
METEOR (Banerjee; Lavie, 2005) and BertScore (Banerjee; Lavie, 2005). The
evaluation was performed on the test set of the MultiWOZ dataset.

3.4 Frameworks
This section gives an overview of the third party frameworks that were used to

develop our system. We use the LangChain library and specifically the agents and
output parsers provided in the library for ease of implementing the LLM agent.
Langfuse was used to help us debug the reasoning traces and to keep track of the
computational costs of our experiments.

3.4.1 LangChain
LangChain1 is a framework designed to simplify the development and de-

ployment of applications using LLMs. It provides tools and abstractions that
streamline the integration of LLMs into various applications, particularly for tasks
that require complex natural language processing and interactions. LangChain is
useful for developers who want to build sophisticated applications such as chatbots,
virtual assistants and other conversational agents.

Agents

LangChain defines agents as systems that use a language model as a reasoning
engine to determine actions and their inputs. These agents can execute actions,
process the results, and decide whether further actions are needed or if the task
is complete. LangChain also provides an AgentExecutor which is a runtime for
agents. This allows the developer to visualise the reasoning process of the LLM
and shows in detail the thoughts, actions performed and the observations of the
LLM and how it reaches the final answer.

Output Parsers

LangChain output parsers are components designed to process and interpret
the textual outputs generated by language models. These parsers convert raw text
outputs into structured data formats. For the agent using the ReAct prompt, the
output contains the Thought, Action and Observation (see Section 2.4.3) and the
output parser helps the agent extract each step and the action input to perform
the function call.

1https://www.langchain.com/

28

https://www.langchain.com/


3.4.2 Langfuse
Langfuse2 is an open-source LLM engineering platform that enables teams

to collaboratively debug, analyze, and refine their LLM applications. Langfuse
is designed for agents and LLM chains, enabling the tracing of unlimited nested
actions and providing a detailed view of the entire request. It features cost calcu-
lation by tokenizing prompts of popular models, allowing for precise measurement
of each step’s cost in the LLM chain. Additionally, Langfuse tracks non-LLM
actions such as database queries and API calls, helping developers debug issues
that may arise during the response generation process. Langfuse is compatible
with various models and configurations and includes native integrations with
popular frameworks and libraries, making it a versatile tool for a wide range of
applications.

Chapter Overview
This chapter detailed the experiments that were performed using our proposed

system. We first took a brief look at the MultiWOZ dataset and how the data
was collected and annotated. Then we saw the experimental setup in detail as
well as an overview of the third party frameworks that were used.

2https://langfuse.com/

29

https://langfuse.com/


4 Results
This chapter details the results that we obtained after evaluating the simula-

tions of dialogues generated using our system. Section 4.1 analyses the evaluation
of the system in simulation using the automatic metrics defined in Section 1.3 for
various experiments. We also evaluate the performance of the LLM on individual
tasks in the ToD pipeline. Section 4.2 performs a qualitative analysis to identify
the advantages and drawbacks of using an LLM for a complex task like ToD.

Figure 4.1 shows an excerpt of a full conversation with reasoning traces obtained
during our simulations. It shows the user goal and how the conversation proceeds
in the manner that was described in Chapter 3 - in a sequence of thoughts, actions
and observations. In the example, we see that the system went step-by-step to
identify the domain, the slots and then generate the state for the database query.
In the second utterance, we see that the system skips ahead to the database query
while being able to update the belief state correctly.

4.1 Quantitative Analysis
In this section, we perform a quantitative analysis on the results that we

obtained for our system using automatic measures for ToD. We perform the
evaluation and analysis on dialogues generated in simulation between a simulated
user and our proposed system.

4.1.1 Simulated Task-oriented Dialogue System
To evaluate our ToD system using ReAct, we focus on how well the goals

of the user were satisfied. To measure this, we use metrics like Success Rate,
Book Rate, Inform Rate, Complete Rate and the average number of turns in the
dialogue described in Section 1.3. Systems with higher success rate, book rate,
inform rate and complete rate are considered to perform better as these systems
are able to satisfy the user goals better. In contrast, the lower the average number
of turns the better since this means that the system is able to understand the
user better and help achieve the goal faster. The experiment described here is
based on 1000 dialogue simulations for goals that were generated using the Goal
Generator module in ConvLab 3 (Q. Zhu; Geishauser, et al., 2022) in order to be
comparable to previous work. A random seed was used in the goal generator for
reproducibility.

Table 4.1 compares our system with previous works that also used ConvLab
simulations for 1000 dialogues in terms of the metrics mentioned above. The first
column in Table 4.1 shows the configuration of the system - the type of NLU,
the dialogue policy and the type of NLG used. The systems in the first section
of the table communicate at the semantic level and hence, the metrics show the
upper bound of the performance that can be achieved by a ToD system. The next
section in the table shows systems using BERT (Devlin et al., 2019) as the NLU
module and a template for NLG. The dialogue policies used are HDC, PPO and
ACGOS (Cordier; Urvoy; Rojas-Barahona, et al., 2020; Cordier; Urvoy; Lefèvre,
et al., 2022) which combines graph neural networks with imitation learning for

30



goal: { hotel: { info: { area: north, internet: yes, pricerange: moderate, type: guesthouse },

reqt: { parking: ? }, book: { day: tuesday, people: 6, stay: 4 },

book_again: { day: wednesday, people: 6, stay: 4 }, booked: ?,

fail_info_fail: { area: north, internet: yes, pricerange: expensive, type: guesthouse } },

restaurant: { info: { name: j restaurant }, reqt: { address: ? } } }

User: I need a hotel please . It should have free wifi . I ’ m looking for a guesthouse type place

to stay . I would like to keep it in the expensive range , please

Thought: The user is looking for a guesthouse type place to stay with free wifi and in the

expensive price range. I need to identify the domain and the slots and values.

Action: list_domains

Input: {}

Observation: [restaurant, hotel, attraction, train, hospital, taxi, police]

Thought: The domain hotel matches the user’s request. Now I need to identify the slot names

and values.

Action: list_slots

Input: {domain: hotel}

Observation: [address, area, internet, parking, id, location, name, phone, postcode, price,

pricerange, stars, takesbookings, type]

Thought: The user is looking for a guesthouse type place to stay with free wifi and in the

expensive price range. So the slots are internet: free, type: guesthouse and pricerange: expensive.

Now I need to query the database.

Action: db_query

Input: {domain: hotel, state: {hotel: {internet: yes, type: guesthouse, pricerange: expensive}}}

Observation: []

System: I’m sorry, but I couldn’t find any hotels matching your criteria. Can you please adjust

your requirements?

User: I would like to keep the price moderate.

Thought: The user has updated their request to include a price range of moderate.

I need to query the database with the updated slot value.

Action: db_query

Input: {domain: hotel, state: {hotel: {internet: yes, stars: 3, pricerange: moderate,

type: guesthouse}}}

Observation: [{address: 151 hills road, area: south, internet: yes, parking: yes, id: 11,

location: [52.1725982, 0.1112224], name: bridge guest house, phone: 01223247942,

postcode: cb28rj, price: {double: 75, family: 90, single: 50}, pricerange: moderate, stars: 3,

takesbookings: yes, type: guesthouse}]

System: I have found 1 hotel matching your criteria. The Bridge Guest House is a guesthouse in

the south with free wifi and a moderate price range. Would you like more information about it?

Figure 4.1 An excerpt of a dialogue simulated using our proposed system. The goal
is shown at the top wherein each domain has the requestable and informable slots. The
goal also shows the constraints for booking, as well as constraints that should return
an empty query in fail_info_fail. The different colours in the conversation, used for
readability, show the user utterance, the reasoning of the LLM separated into thought,
action and observations and the system utterance.

31



Configuration
NLU-Policy-NLG Avg Turns Inform Rate

(P/R/F1) Book Rate Success Rate Complete Rate

-HDC- 10.6 87.2 / 98.6 / 90.9 98.6 97.3 97.9
-ACGOS- 13.2 94.8/99/96.1 98.7 97.0 98.2

BERT NLU-HDC-T 12 82.8 / 94.1 / 86.2 91.5 83.8 92.7
BERT NLU-PPO-T 17.8 69.4 / 85.8 / 74.1 86.6 71.7 75.5

BERT NLU-ACGOS-T 14.8 88.8 / 92.6 / 89.5 86.6 81.7 89.1
ReAct LLM (GPT-3.5) 15.3 59.0/ 64.9/ 58.3 40.5 28.2 45.9
ReAct LLM (GPT-4) 15.5 62.7/ 81.3/ 66.8 58.2 43.6 63.8

Table 4.1 Evaluation of the task success rate of our system against previous works
also employing the ConvLab user simulator and run on 1000 dialogue simulations.

policy learning in multi-domain, multi-task scenarios. These results were obtained
from Cordier; Urvoy; Lefèvre, et al., 2022 where they use the same conditions
as we do to generate the simulations. We see that ACGOS performs the best in
terms of inform rate but it falls back when we look at the success rate, book rate
and complete rate. The handcrafted policy proves to be superior to other methods
with higher success rate and fewer turns although it still does not achieve the
performance of the systems communicating at the semantic level.

Our system uses an LLM with the ReAct strategy and does not have separate
methods for the NLU, dialogue policy and NLG. We performed the experiment
on GPT-3.5 (Ouyang et al., 2022) and GPT-4 (OpenAI et al., 2024) as shown in
the last two rows of Table 4.1. Both GPT-3.5 and GPT-4 show subpar results
compared to the other systems. Both take approximately 15 turns to complete
each dialogue which is still on the higher end of the number of turns. The
success rate of GPT-3.5 has been reported the lowest showing that the LLM has
trouble informing and booking as per the user’s goals. While GPT-4 shows better
performance compared to GPT-3.5 in terms of success rate, complete rate, book
rate and inform rate recall, we do not see much difference between the two for
inform rate precision and F1 scores.

Generic Examples vs Domain Specific Examples in the ReAct Prompt

The next experiment aimed to compare the performance when the examples
provided in the prompt contained a random example from the MultiWOZ dataset
with the reasoning steps with the performance when the examples were dynamically
changed based on the domains in the goal. Table 4.2 shows the results obtained
and compares the same metrics that we explored in Section 4.1.1. The evaluation
was performed for 100 simulations using GPT-3.5 with the user simulator and
goals generated using the Goal Generator from ConvLab.

We see that using domain-specific examples in the prompt has no effect on
the performance of the end-to-end system. The metrics clearly show that the
system in fact performs slightly better when there is only one random example
irrespective of the domains of the user goal.

GPT-3.5 vs GPT-4: Comparison of Cost and Performance comparison

Table 4.3 shows the cost per million tokens for the input and output of GPT
models. We see that GPT-3.5 is very cheap compared to GPT-4. Input for
GPT-4 is 40 times more expensive and the output is 60 times more expensive
than GPT-3.5. When we compare the performance of the two models, we see that

32



Prompt Type Avg Turns Inform Rate
(P/R/F1) Book Rate Success Rate Complete Rate

Generic 14.9 56.2 / 67.5 / 58.6 36.8 28.3 48.5
Domain Specific 14.0 61.1 / 63.2 / 59.1 35.4 22.2 47.4

Table 4.2 Evaluation of the performance of the ReAct ToD system when domain
specific examples are given. This experiment was run using GPT-3.5 for 100 dialogue
simulations.

Model Input Output
gpt-3.5-turbo-0301 $1.50 $2.00
gpt-4-32k $60.00 $120.00

Table 4.3 Cost of the GPT models used in the experiments per 1M tokens.

GPT-3.5 used 40.6 million tokens for 1000 simulations and GPT-4 used 35.76
million tokens. The cost for performing the same task is however, not justified
by the costs of the model since we do not see a substantial improvement in the
success rate of GPT-4 as reported in Table 4.1.

4.1.2 System NLG Capabilities
For using the LLM as the NLG module, we asked GPT-3.5 with a new prompt

to generate the final response based on the system dialogue act and the user
input and previous context from the full test set containing 1000 dialogues of the
MultiWOZ dataset. We then compare the generated text with the gold system
utterances in the test dataset.

We use four different scores for evaluating the natural language generation
capabilities of the LLM from the system act - BLEU (Papineni et al., 2002), Google-
BLEU (Y. Wu et al., 2016), METEOR (Banerjee; Lavie, 2005) and BertScore (T.
Zhang et al., 2020). These are reported in Table 4.4. BLEU is a precision-based
metric and GoogleBLEU is a variation of the BLEU score. We see that the BLEU
and GoogleBLEU scores are very low showing that the generated response are
worded differently compared to the reference. METEOR values both precision
and recall and we see that the METEOR scores are higher. BertScore evaluates
the semantic similarity and since LLMs are very good at the text generation
task, we see very high scores, reflecting that the text generated by the LLM is
semantically similar to the reference text. In all cases, we see that prompting the
LLM with few-shot examples makes the response generation comparatively better
than when there are no examples in the prompt.

BLEU Google BLEU METEOR BertScore
P / R / F1

Zero-Shot 10.1 13.5 36.1 88.0 / 87.2 / 87.5
Few-Shot 13.4 16.8 44.3 88.4 / 88.6 / 88.5

Table 4.4 Evaluation of response generation capabilities of GPT-3.5 in isolation on
1000 dialogues in the MultiWOZ testset.

33



4.2 Qualitative Analysis
In this section, we look at the dialogues generated in simulation to identify what

the system did well and what it lacks when performing task-oriented dialogue. We
randomly selected 50 dialogues from the 1000 simulations for GPT-3.5 prompted
with the generic example and we look at the dialogues from the perspective of the
system as well as from the user simulator.

4.2.1 The System’s Point-of-View
Smaller goals are easier to achieve

Analysing the conversations, an interesting observation that stood out was
that the shorter the goal, the easier it was for the system to achieve. See the
example in Figure 4.2 where the goal is to request the phone and postcode of
a police station. The system is able to reason correctly by learning from the
example in the prompt and gives the right answers after getting the values from
the database.

System produces creative responses but does not stick to the instruc-
tions

An advantage of using LLMs for dialogue tasks is that the system is able to
rephrase its response in cases where the user repeats the request. This can be
seen in the example in Figure 4.3. However, it should be noted that the system
does not have access to a tool that can help it retrieve the details of the booking.
If the system did indeed have access to more tools for managing booking, this
response would have been ideal in this situation, helping the user confirm the date
of the booking.

Reasoning is not always consistent

The main factor we are assessing in this system is an LLM’s capabilities to
reason and perform actions based on the reasoning. Depending on the complexity
of the goal and the user utterance, we see that the LLM performs reasoning
in varying levels. While it may seem that the LLM is able to reason well, it
sometimes does not stick to the instructions given, while at other times it follows
the instructions perfectly, performing the steps as given in the few-shot example
in the prompt, leading to a perfect answer.

Issues generating the correct dialogue state

In ToD, the system should accumulate the belief state in order to answer
the user’s queries correctly. We see in many cases that the system is not able
to generate the correct state as the turns progress and the user provides more
information.

Hallucinations are a major issue in LLMs. We see that this is the case even
when using LLMs for ToD. Figure 4.4 shows that the LLM produces invalid slots
– ‘time’ instead of ‘arriveBy’ in this case.

34



goal: { police: { info: {}, reqt: { postcode: ?, address: ?, phone: ? }}},

User: Hello , I have been robbed . Can you please help me get in touch with the police ?

Thought: The user is requesting assistance to get in touch with the police.

I need to identify the correct domain for this request.

Action: list_domains

Input: {}

Observation: [restaurant, hotel, attraction, train, hospital, taxi, police]

Thought: The domain police matches the user’s request. I need to find the available slots for

this domain

Action: list_slots

Input: {domain: police}

Observation: [’name’, ’address’, ’id’, ’phone’, ’postcode’]

Thought:The user has not provided any specific information about the police station they need

to contact. I need to ask for more information or provide a general query

to retrieve a list of police stations

Action: db_query

Input: {domain: police, state: {police: {}}}

Observation: [{name: Parkside Police Station, address: Parkside, Cambridge, id: 0,

phone: 01223358966, postcode: cb11jg}]

System: I have found one police station matching your request. The Parkside Police Station is

located at Parkside, Cambridge. Would you like me to provide you with their phone number?

User: Can you give me the phone number please ? Can I please have the postcode of the

police station as well ?

Thought: The user is asking for the phone number and postcode of the police station. I can retrieve

this information from the database using the domain ’police’ and the slot ’phone’ and ’postcode’

Action: db_query

Input: {domain: police, state: {police: {}}}

Observation: [{name: Parkside Police Station, address: Parkside, Cambridge, id: 0,

phone: 01223358966, postcode: cb11jg}]

System: The phone number for Parkside Police Station is 01223358966 and the postcode is cb11jg.

User: You were great . Goodbye .

System: Goodbye! Have a nice day!

Figure 4.2 A full conversation for a simple goal.

Another issue that was found was that the system fills the wrong slots with
the wrong information as shown in the example in Figure 4.5. Slot identification
and filling is a very important step in ToD and these errors from the LLM will
drastically affect its overall performance.

No clarifying questions from the system

In a complex task such as task-oriented dialogue, it is essential that the system
understands the user request clearly in order to be able to answer correctly. Hence,
in cases where the user input might be incomplete, for example if the user did not
give the destination when asking for information of a train journey, the system
must reason and ask the user for the destination. In the dialogue simulations
generated, it has been noted that the system proceeds to generate the state for

35



User: I need a hotel please . Can you help me find a hotel called the home from home ?

System: I have found the hotel ḧome from home.̈ It is a guesthouse in the north with a

moderate price range and 4 stars. Would you like more information about it?

User: What about 2 nights ? That will work . Can you make a reservation for 3 people,

please ? On friday please.

System: Your booking reference for a reservation for 3 people for 2 nights at the

home from home guesthouse on Friday is 00000021.

User: I need a room starting on friday .

System: Your booking reference for a room at the home from home

guesthouse starting on Friday is 00000021.

User: I want to check in on friday .

System: I’m sorry, I couldn’t find the check-in date for the reservation made earlier.

Please provide me with the booking reference again so I can check the details.

Figure 4.3 An excerpt of a conversation where the LLM shows creative ways to
handle repeated user requests.

User: I would also like to book a train , please . I will leave on monday . I need to book

a train to london kings cross . I would like to leave after 14:15

System: The only available train that matches your request is TR6028 departing from Cambridge

at 15:00 and arriving at London Kings Cross at 15:51 on Monday. Your booking reference is 00000005.

Is there anything else I can help you with?

User: I need it to depart from cambridge.

Thought: The user has provided new information that the train should depart from Cambridge.

I need to update the query to include this information.

Action: db_query

Input: { domain: train, state: {train: {departure: cambridge, destination: london kings cross,

day: monday, time: after 14:15}}}

Figure 4.4 An excerpt showing the system hallucinating the slot name.

User: Howdy , I need a train heading into london kings cross . I need a train leaving after 16:30 .

The train should leave on wednesday

Thought: The user is requesting for a train leaving after 16:30 heading to London Kings Cross

on Wednesday. I need to identify the domain and slots for this request.

Action: list_domains

Input: {}

Observation: [restaurant, hotel, attraction, train, hospital, taxi, police]

Thought: The domain for this request is ’train’. Now I need to identify the slots and values

Action: list_slots

Input: {domain: train}

Observation: [arriveBy’, ’day’, ’departure’, ’destination’, ’duration’, ’leaveAt’, ’price’, ’trainID’]

Thought:The slots for this request are ’departure’: after 16:30, ’destination’: London Kings Cross,

and ’day’: Wednesday. I need to query the database to find the available trains

Figure 4.5 An excerpt showing the wrong slot being filled by the system. departure
refers to the departure station and leaveAt refers to the departure time.

36



the database query based on the information the user provided, and does not
reason whether the information provided is enough to make an informed decision.

Other Observations

• System is too honest at times It has been observed that the system
responds too honestly and does not stick to the tools and instructions
provided to answer the user query. For example, when asked to book a table
at a restaurant, the system responded with I’m sorry, but I cannot complete
the booking as I am not programmed to interact with the restaurant’s booking
system. while it was provided with the get_booking_reference tool to
perform the booking.

• American vs British English We see that the system always uses Ameri-
can English while generating the response even though the user input and
the dataset and examples were provided in British English. This shows
that the majority of the data that the LLM was trained on uses American
English.

• The system performs additional steps without being asked The
LLM sometimes tends to get ahead of itself when performing task-oriented
dialogue. For instance, it would generate a booking reference even though
the user was only enquiring about an entity in a specific domain.

4.2.2 The User’s Point-of-View
This section looks at the conversation from a user’s perspective to identify the

reasons the conversation did not go well. We look at conversations generated by
the user simulator as well as when an LLM played the user.

LLM as the user switches to play the system

During the initial experiments where the user agent was also played by an
LLM, we noticed an interesting phenomenon. The user LLM sometimes switches
its role as the user and pretends to be the system, providing hallucinated values
and asking the system LLM clarifying questions about its previous user request.
Figure 4.6 shows one such example where the user provides the system with
information it made up.

User: What type of car do you need for the taxi?

System: I’m sorry, but I don’t have information about the type of car needed for the taxi.

User: System: For your restaurant booking, I can inform you that the restaurant

is not available at 5:30 pm, but it is available at 5:45 pm.

Would you like me to book a table for 8 people at Pizza Hut City Centre at 5:45 pm?

System: I’m sorry, I couldn’t understand your request. Please provide a valid input.

Figure 4.6 Excerpts showing the LLM prompted to play the user acting like the
system.

37



User simulator ends the conversation before all goals are fulfilled

It has been observed that the user simulator ends the conversation prematurely
without having all the goals fulfilled. In the example in Figure 4.7, we can see
that the system is not able to give the user the expected answer. Instead of
repeating the request or uttering the next sentence based on the remaining goals,
the simulated user ends the conversation.

goal: { restaurant: { info: { food: french, pricerange: expensive }

reqt: { phone: ?, postcode: ? }, book: { time: 13:15, day: wednesday, people: 5 },

book_again: { time: 13:15, day: thursday, people: 5 }, booked: ?,

fail_info_fail: { food: french, pricerange: cheap}},

attraction: { info: { area: centre, type: nightclub },

reqt: { entrance fee: ?, postcode: ? } },

taxi: { info: { leaveAt: 02:15 }, reqt: { car type: ?, phone: ? } } }

User: Hello , can you help me find a restaurant for my upcoming trip to Cambridge ?

Actually I need a cheap priced restaurant . I ’d like to find a french restaurant , if possible .

System: I’m sorry, but I couldn’t find any cheap French restaurants in Cambridge.

Would you like me to search for other types of restaurants or in a different price range?

User: How about a french restaurant ? I ’ m looking for an expensive restaurant .

System: I have found one French restaurant matching your criteria, it’s called Restaurant Two Two

and it’s located in the north. Would you like more information about it?

User: I would like to know the postcode of the restaurant , if possible ?

Please provide their phone number .

System: The postcode of Restaurant Two Two is cb43ax and their phone number is 01223351880.

User: We will have 5 people in the party . I ’ll be needing a table for wednesday .

I would like a table for 13:15

System: I’m sorry, but I cannot complete the reservation for you as the database query

returned information for a different restaurant than the one you requested.

Please provide the name of the restaurant you would like to make a reservation for.

User: I am all set . Have a nice day . Bye

System: Goodbye! Have a great day!

Figure 4.7 An example conversation showing the simulated user end the conversation
abruptly when the system returns an unexpected response, without talking about the
remaining goals.

BERT NLU Errors

We use BERT NLU from ConvLab3 with the user simulator to convert the
natural language response of the system into a semantic representation for the
user simulator to understand and update the agenda. However, the BERT NLU is
also prone to errors. This leads to degrading performance down the line since the
user simulator agenda is not updated correctly. Table 4.5 shows the performance
of the BERT NLU as reported in ConvLab3, which was trained on both user and
system utterances with context.

38



Slot Intent Overall F1
BERT NLU with context 82.17 87.40 84.10

Table 4.5 Performance of BERT NLU from ConvLab3.

4.2.3 Manual Analysis of GPT-3.5 vs GPT-4
We compared the generated outputs for both GPT-3.5 (Ouyang et al., 2022)

and GPT-4 (OpenAI et al., 2024) for 50 randomly selected goals. We saw that
the performance of GPT-4 is superior to GPT-3 when we consider the quality of
the reasoning and generated texts. We explain a few of the reasons why we found
GPT-4 to be a better conversational agent than GPT-3.5 below.

Parsing Errors

GPT-4 is able to generate the output in the required format when compared
to GPT-3.5. This means that even if the reasoning is correct, the parsing errors
in the agent due to wrong output format can lead to the final answer being very
different from the intended answer. This leads to miscommunication between the
user and the system. GPT-4 is more adept at conforming to the prescribed format
than GPT-3.5 resulting in better performance.

Updates to belief state

GPT-4 is able to remember the information from the previous turns when the
user repeats questions thereby correctly updating the belief state. GPT-3.5 on the
other hand tends to create the belief state from scratch leading to wrong results.
See Figure 4.8 to see how the reasoning differs in both models for the same goal.

Clarifying and verifying user requests

GPT-4 asks clarifying questions and verifies with the user before performing
important steps such as booking a service. On the other hand, GPT-3.5 does the
booking in the same turn without consulting the user. In these cases, there is a
chance that the user has not conveyed all the required criteria for their chosen
service. In real-world scenarios, this could potentially lead to misinterpretation
of the user request and waste of resources where the system books services that
the user does not want. Hence, the ability of the GPT-4 model to ask the user
clarifying questions is a very important trait in a task-oriented agent. See Figure
4.9 for a sample conversation on the same goal and how GPT-4 and GPT-3.5
differ.

Politeness and verbosity

Analysing the system utterances for both models, we saw that GPT-4 produces
more verbose and polite answers. While GPT-3.5 answers reasonably well, it may
seem that it is more aloof whereas talking with GPT-4 feels more pleasant. The
difference can be seen in examples in Figure 4.8 and 4.9.

39



goal: { train: { info: { day: friday, departure: cambridge, destination: london kings cross,

leaveAt: 10:15 }, book: { people: 2 }, booked: yes }, hotel: { info: { name: cityroomz },

reqt: { phone: ? } } }

GPT-4

User: Please book that train for me now . I need to leave after 10:15 . I need to travel on friday .

I ’ll be departing from cambridge .

System Thought: The user is asking to book a train that leaves after 10:15 on Friday from

Cambridge. So the slots are leaveAt: after 10:15, day: Friday, and departure: Cambridge.

Now I need to query the database.

Action: db_query

Input: {domain: train, state: {train: {leaveAt: 10:15, day: Friday, departure: Cambridge}}}

User: Can you also help me find a train going to london kings cross ?

System Thought: The user is asking for a train going to London Kings Cross. So the slot is

destination: London Kings Cross. Now I need to query the database.

Action: db_query

Input: {domain: train, state: {train: {destination: london kings cross}}}

User: I ’ m looking to travel on friday

System Thought: The user wants to travel on Friday. I need to update the day of travel in the

database query and find a train that travels on Friday.

Action: db_query

Input: {domain: train, state: {train: {leaveAt: 10:15, day: friday, departure: cambridge,

destination: london kings cross}}}

GPT-3.5

User: Please book that train for me now . I need to leave after 10:15 . I need to travel on friday .

I ’ll be departing from cambridge .

System Thought: The slots for this request are ’departure’: ’Cambridge’, ’day’: ’Friday’,

and ’leaveAt’: ’after 10:15’. I need to query the database to find available trains.

Action: db_query

Input: {domain: train, state: {train: {leaveAt: after 10:15, day: Friday, departure: Cambridge}}}

User: Can you also help me find a train going to london kings cross ?

System Thought: The user is asking for a train going to London Kings Cross, so the slot ’destination’

should be set to ’london kings cross’. I can query the database with this information.

Action: db_query

Input: {domain: train, state: {train: {destination: london kings cross}}}

User: I ’ m looking to travel on friday

System Thought: The user wants to travel on Friday. I need to update the day of travel in the

database query and find a train that travels on Friday.

Action: db_query

Input: {domain: train, state: {train: {leaveAt: 10:15, day: friday, departure: cambridge,

destination: london kings cross}}}

Figure 4.8 An excerpt of conversation around the same goal by GPT-3.5 and GPT-4
showing how each model reasons and updates the belief state.

Chapter Overview
This chapter went into detail about the performance of our proposed system

from both qualitative and quantitative perspective. Based on automatic evaluation

40



GPT-4

User: I would also like to book a train , please . I will leave on monday . I need to book a train

to london kings cross . I would like to leave after 14:15 .

System: I have found a train for you. It departs from Cambridge at 15:00 on Monday and arrives at

London Kings Cross at 15:51. The journey will take 51 minutes and the ticket price is 23.60 pounds.

The train ID is TR6028. Would you like to book this train ?

User: I need it to depart from cambridge

System: I have found a train for you. It departs from Cambridge at 05:00 on Monday and arrives at

London Kings Cross at 05:51. The journey will take 51 minutes and the ticket price is 23.60 pounds.

The train ID is TR7075. Would you like to book this train?

User: I would like to leave after 14:15.

System: I have found a train for you. It departs from Cambridge at 15:00 on Monday and arrives at

London Kings Cross at 15:51. The journey will take 51 minutes and the ticket price is 23.60 pounds.

The train ID is TR6028. Would you like to book this train?

User: I would like 3 tickets please .

System: I have booked 3 tickets for you. Your booking reference is 00000005.

GPT-3.5

User: I would also like to book a train , please . I will leave on monday . I need to book a train

to london kings cross . I would like to leave after 14:15 .

System: Your booking reference for the train service is 00000106.

Figure 4.9 Excerpts of a conversation showing how GPT-4 clarifies and communicates
better than GPT-3.5.

measures, we saw that our system has scope for improvement since it is not able
to perform as well as other ToD systems that use conventional methods such
as supervised learning and deep reinforcement learning. From the qualitative
analysis, we saw that LLMs can reason only to an extent and they are still prone
to hallucinations and repetitions. We also compared GPT-3.5 and GPT-4 based
on performance vs cost and found that larger, more expensive models do not
imply better performance.

41



5 Perspectives
In this chapter, we analyse the capabilities of LLMs for performing task-

oriented dialogue based on the experiments and results performed. Section 5.1
describes the contributions of this work in the field of dialogue systems and
discusses the results in detail. Section 5.2 describes ways to improve the system
and make it more reliable for task-oriented dialogue.

5.1 Discussion
In this work, we explored the reasoning capabilities of LLMs and whether they

can be applied to a complex task like task-oriented dialogue. The ReAct paradigm
(Yao; J. Zhao, et al., 2022) for prompting LLMs showed promising results for
tasks like question answering and even complex tasks like text-based simulated
environments such as AlfWorld (Shridhar et al., 2021). We adapted the ReAct
strategy to task-oriented dialogue and gave the LLM access to tools that would
help it achieve the classical ToD pipeline through its reasoning abilities.

For a complex task such as task-oriented dialogue where each answer depends
on the previous context and actions, grounded knowledge and the current state of
the environment, we have seen in previous work (Cordier; Urvoy; Lefèvre, et al.,
2022) that it takes a lot of resources and work to find the optimal system action.
LLMs showed promise in commonsense reasoning (Yao; J. Zhao, et al., 2022;
Wei et al., 2022) even outperforming models trained using reinforcement learning
and imitation learning. LLMs can indeed reason and perform actions based on
the environment they are in and the instructions they are given. Yet, from the
results in Table 4.1 we see that the performance of the LLMs fall short compared
to handcrafted rules and policy training. On closer inspection of the reasoning
traces, we see that the LLM might just be imitating the examples that it was
given. This may work for simpler cases with fewer goals to achieve, but when
the goals get larger and the user requests become more complicated, the LLMs
struggle to understand the user and perform tasks accordingly. Handcrafted rules
and dialogue policies perform better mainly because there is a lot of fine-grained
control for each step in the pipeline. However, for LLMs, we rely completely on
its reasoning abilities and hence we lose the ability to control its reasoning traces
and response generation. Difficulty in understanding the user requests also leads
to repeated utterances from the user as well as the system leading to a higher
number of turns on average to complete the conversation.

LLMs have become very popular in the research community and with the
general public due to its ability to produce human-like text effortlessly. The NLG
capabilities of LLMs are very impressive as we saw in Table 4.4 and this reflects in
ToD as well. However, comparing the generated responses to the gold references
may not be the most effective way to gauge their performance. Scores like BLEU
(Papineni et al., 2002) and METEOR (Banerjee; Lavie, 2005) that compare the
overlap in n-grams between the generated and reference texts have very low scores
as we saw since the there are numerous ways in which one can communicate the
same idea (Reiter, 2018; Novikova et al., 2017). BertScore (T. Zhang et al., 2020),
which uses semantic similarity, tries to overcome this drawback and this reflects

42



in the scores of our stand-alone NLG module using LLM.
In order to assess whether the LLMs are producing responses grounded in

reality based on the tool user, we need to cross-check whether the entities that the
LLMs are talking about actually exist in the database. Previous work like Hudeček;
Dusek, 2023 delexicalises the slots and values before assessing the performance of
their system using automatic evaluation methods. In our work, in order to evaluate
the success rate, inform rate and book rate, we do not delexicalise the values, but
verify that the values exist in the database when calculating the metrics. All the
systems in Table 4.1 were evaluated the same way and this gives a more accurate
evaluation of our system and assesses its capability to produce text grounded in
reality. We see that the inform rate and book rate for our system is not up to
the mark compared to other systems. This may be due to the fact that the LLM
has trouble updating the states and hence, it may retrieve the wrong results from
the database. The LLM also does not ask the user enough clarifying questions,
leading to hasty bookings for services that the user does not want. Hence, the
inform rate and book rate are very low and by extension, the success rate.

Comparing our work to Hudeček; Dusek, 2023, where the LLM was prompted
at each step in the ToD pipeline, we see that the success rate for GPT-3.5 is much
higher than what we achieved. This shows that the more fine-grained control we
have, the better the system performs. However, we should remember that their
evaluation is on delexicalised and static dialogues, hence, the comparison might
not be fair.

We must also note that, the LLMs can be biased in certain ways as seen from
our experiments. Since LLMs are mostly trained to assist humans, we see that
they have a hard time sticking to the role of a user. Also, depending on the
training and the dataset used for training, we see that the LLM uses American
English, while the input given is in British English.

Since LLMs are trained on a wide variety of tasks, they may not perform all
tasks equally well and this is evident in our experiments. ToD is very specific and
our experiments prove that it is necessary to have models trained with specific
goals in mind in order to achieve good results.

5.2 Future Work
While the results we obtained are not up to the mark compared to current

state-of-the-art methods, LLMs have the potential to improve their performance
for task-oriented dialogue. Here we outline a few ways that our work can be
enhanced which can improve our system.

More descriptive and dynamic prompts

When designing task-oriented dialogue systems, incorporating more detailed
information and descriptions for each slot has the potential to enhance performance.
Since LLMs are trained to follow instructions, providing comprehensive context
and clear descriptions can help the model better understand the relationships
between different slots, thereby improving the overall quality of interactions.
Detailed slot descriptions ensure that the model is aware of specific attributes and
constraints.

43



Adapt to more datasets

Adapting the work to more diverse datasets in the ToD such as the Schema-
Guided Dialogue dataset (Rastogi; Zang, et al., 2020) can help us assess the
capabilities of our system more effectively. This will also help us evaluate other
aspects of the system.

Get more control by not relying on third party frameworks

While frameworks like LangChain offer convenient tools for building and
managing language model applications, gaining more control over the development
process by not relying on such frameworks can provide several benefits. By
building custom solutions, we get greater flexibility and control in following the
LLM’s reasoning and generation process and guiding it to take the right action
and generate the right response. Being able to pause at each step and control
the generation in the ReAct paradigm can help us create a pipeline that closely
resembles the classical pipeline, by guiding the LLM on various actions to be
taken at each step.

Human evaluation

Incorporating human evaluation into the development process of dialogue
systems is essential for ensuring quality and reliability. Human evaluators can
provide nuanced feedback that automated metrics might miss, such as the appro-
priateness of responses, coherence and the fluency of interactions. This feedback is
invaluable for identifying weaknesses, refining prompts, and enhancing the model’s
performance. Human evaluation will help us understand how the system performs
in real-world scenarios.

Try more open source language models

Exploring open-source language models for task-oriented dialogue system has
many benefits. Open-source models are transparent in their training process which
means that we can identify models suited for particular tasks by exploring the
datasets used to train them and the training methodologies. By experimenting
with different models, we can identify those that best suit our specific needs,
whether in terms of accuracy, efficiency, or adaptability. Additionally, using
open-source solutions can reduce costs which is a huge factor when building
conversational agents.

Study carbon emissions

Studying and addressing the carbon emissions associated with the training and
usage of language models is increasingly important in the context of sustainable
AI development. Large-scale models require significant computational resources,
leading to substantial energy consumption and carbon footprint. Awareness
and proactive measures in this area contribute to the responsible and ethical
development of AI technologies, ensuring that advancements in language models
are balanced with environmental sustainability.

44



Chapter Overview
This chapter went into the results from the previous chapter in more detail,

and attempted to answer why the system performed the way it did. We also
discussed possible methods that could potentially improve the system and provide
a better analysis of the method.

45



Conclusion
In this thesis, we explored the use of large language models for performing

task-oriented dialogue. Specifically, we studied the reasoning capabilities of LLMs
to use appropriate tools to help the user achieve their objective, using the ReAct
paradigm. We evaluated the performance of our system using metrics such as
success rate that measures the ability of the system to achieve the user goal.

We performed experiments by simulating dialogues between the user and
the system agent. The system agent was prompted using the ReAct prompt
and provided with an example conversation showing how it should reason using
sequences of Thought, Action and Observation. The prompt also demonstrated
what tools are to be used in different scenarios. For the user, we experimented
using LLMs which proved to be infeasible since they were unable to track the
goals and end the conversation based on how the conversation was progressing. In
our following experiments, we used a user simulator that followed an agenda-based
logic to keep track of the goals and a template-based approach to communicate
with the LLM-based system agent.

The evaluation performed showed us that LLMs still have a long way to go
with their reasoning capabilities in the context of task-oriented dialogue. We
experimented with the GPT-3.5 and GPT-4 models and while GPT-4 performs
better than GPT-3.5, it still falls short of other statistical methods that employ
reinforcement learning to train a dialogue policy. We must note that employing
bigger models does not guarantee better results, especially when we see the trade-
off between cost and performance. This was evident from our experiments with
GPT-4 and it pushes us to try more cost-effective and open source models.

We also saw that the NLG capabilities of LLMs are extremely good – they
effortlessly convert dialogue acts into beautifully framed natural language responses.
However, during the intermediate steps of task-oriented dialogue like domain
detection, slot filling and forming the dialogue state for performing the database
query, we see that the LLM tries to imitate the examples supplied in the prompt
and does not always reason or understand the requirements correctly.

While LLMs are truly advancing the research in NLP, our work shows that
there is still a lot of potential for improvement in complex tasks such as task-
oriented dialogue. In order to exploit the full potential of LLMs, we need to
understand how the vast amounts of parameters and embeddings in LLMs interact
with each other to perform various tasks. We should also keep in mind the effect
these large models have on the environment, both as computing power and their
effects in the carbon footprint and costs. Being mindful of the consequences of
developing and deploying LLMs, we will be able to build efficient, cost effective
systems that can perform our tasks with ease.

46



Bibliography
Ahmad, Wasi; Chi, Jianfeng; Le, Tu; Norton, Thomas; Tian, Yuan; Chang,

Kai-Wei, 2021. Intent Classification and Slot Filling for Privacy Policies. In:
Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers). Online: Association for Computational
Linguistics, pp. 4402–4417. Available from doi: 10.18653/v1/2021.acl-
long.340.

Athikkal, Sagina; Jenq, John, 2022. Voice Chatbot for Hospitality. Available
from arXiv: 2208.10926 [cs.HC].

Banerjee, Satanjeev; Lavie, Alon, 2005. METEOR: An Automatic Metric for
MT Evaluation with Improved Correlation with Human Judgments. In: Gold-
stein, Jade; Lavie, Alon; Lin, Chin-Yew; Voss, Clare (eds.). Proceedings
of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for
Machine Translation and/or Summarization. Ann Arbor, Michigan: Associ-
ation for Computational Linguistics, pp. 65–72. Available also from: https:
//aclanthology.org/W05-0909.

Brown, Tom B.; Mann, Benjamin; Ryder, Nick; Subbiah, Melanie; Kaplan,
Jared; Dhariwal, Prafulla; Neelakantan, Arvind; Shyam, Pranav; Sas-
try, Girish; Askell, Amanda; Agarwal, Sandhini; Herbert-Voss, Ariel;
Krueger, Gretchen; Henighan, Tom; Child, Rewon; Ramesh, Aditya;
Ziegler, Daniel M.; Wu, Jeffrey; Winter, Clemens; Hesse, Christopher;
Chen, Mark; Sigler, Eric; Litwin, Mateusz; Gray, Scott; Chess, Ben-
jamin; Clark, Jack; Berner, Christopher; McCandlish, Sam; Radford,
Alec; Sutskever, Ilya; Amodei, Dario, 2020. Language Models are Few-Shot
Learners. Available from arXiv: 2005.14165 [cs.CL].

Budzianowski, Paweł; Wen, Tsung-Hsien; Tseng, Bo-Hsiang; Casanueva,
Iñigo; Ultes, Stefan; Ramadan, Osman; Gašić, Milica, 2018. MultiWOZ - A
Large-Scale Multi-Domain Wizard-of-Oz Dataset for Task-Oriented Dialogue
Modelling. In: Riloff, Ellen; Chiang, David; Hockenmaier, Julia; Tsujii,
Jun’ichi (eds.). Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing. Brussels, Belgium: Association for Computational
Linguistics, pp. 5016–5026. Available from doi: 10.18653/v1/D18-1547.

Chai, Joyce Yue; Budzikowska, Malgorzata; Horvath, Veronika; Nicolov,
Nicolas; Kambhatla, Nanda; Zadrozny, Wlodek, 2001. Natural Language
Sales Assistant-A Web-Based Dialog System for Online Sales. In: IAAI, pp. 19–
26.

Chao, Guan-Lin; Lane, Ian, 2019. BERT-DST: Scalable End-to-End Dialogue
State Tracking with Bidirectional Encoder Representations from Transformer.
Available from arXiv: 1907.03040 [cs.CL].

Chen, Qian; Zhuo, Zhu; Wang, Wen, 2019. BERT for Joint Intent Classification
and Slot Filling. Available from arXiv: 1902.10909 [cs.CL].

47

https://doi.org/10.18653/v1/2021.acl-long.340
https://doi.org/10.18653/v1/2021.acl-long.340
https://arxiv.org/abs/2208.10926
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://arxiv.org/abs/2005.14165
https://doi.org/10.18653/v1/D18-1547
https://arxiv.org/abs/1907.03040
https://arxiv.org/abs/1902.10909


Cho, Kyunghyun; Merrienboer, Bart van; Gulcehre, Caglar; Bahdanau,
Dzmitry; Bougares, Fethi; Schwenk, Holger; Bengio, Yoshua, 2014. Learn-
ing Phrase Representations using RNN Encoder-Decoder for Statistical Machine
Translation. Available from arXiv: 1406.1078 [cs.CL].

Cordier, Thibault; Urvoy, Tanguy; Lefèvre, Fabrice; Rojas-Barahona,
Lina M., 2022. Graph Neural Network Policies and Imitation Learning for
Multi-Domain Task-Oriented Dialogues. Available from arXiv: 2210.05252
[cs.CL].

Cordier, Thibault; Urvoy, Tanguy; Rojas-Barahona, Lina M.; Lefèvre,
Fabrice, 2020. Diluted Near-Optimal Expert Demonstrations for Guiding Di-
alogue Stochastic Policy Optimisation. Available from arXiv: 2012.04687
[cs.CL].

Devlin, Jacob; Chang, Ming-Wei; Lee, Kenton; Toutanova, Kristina, 2019.
BERT: Pre-training of Deep Bidirectional Transformers for Language Un-
derstanding. In: Burstein, Jill; Doran, Christy; Solorio, Thamar (eds.).
Proceedings of the 2019 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers). Minneapolis, Minnesota: Association for Computa-
tional Linguistics, pp. 4171–4186. Available from doi: 10.18653/v1/N19-1423.

Eric, Mihail; Goel, Rahul; Paul, Shachi; Kumar, Adarsh; Sethi, Abhishek; Ku,
Peter; Goyal, Anuj Kumar; Agarwal, Sanchit; Gao, Shuyang; Hakkani-
Tur, Dilek, 2019. MultiWOZ 2.1: A Consolidated Multi-Domain Dialogue
Dataset with State Corrections and State Tracking Baselines. Available from
arXiv: 1907.01669 [cs.CL].

Gao, Shuyang; Sethi, Abhishek; Agarwal, Sanchit; Chung, Tagyoung; Hakkani-
Tur, Dilek, 2019. Dialog State Tracking: A Neural Reading Comprehension Ap-
proach. In: Nakamura, Satoshi; Gasic, Milica; Zukerman, Ingrid; Skantze,
Gabriel; Nakano, Mikio; Papangelis, Alexandros; Ultes, Stefan; Yoshino,
Koichiro (eds.). Proceedings of the 20th Annual SIGdial Meeting on Discourse
and Dialogue. Stockholm, Sweden: Association for Computational Linguistics,
pp. 264–273. Available from doi: 10.18653/v1/W19-5932.

Gunasekara, Chulaka; Kim, Seokhwan; D’Haro, Luis Fernando; Rastogi,
Abhinav; Chen, Yun-Nung; Eric, Mihail; Hedayatnia, Behnam; Gopalakr-
ishnan, Karthik; Liu, Yang; Huang, Chao-Wei; Hakkani-Tür, Dilek; Li,
Jinchao; Zhu, Qi; Luo, Lingxiao; Liden, Lars; Huang, Kaili; Shayandeh,
Shahin; Liang, Runze; Peng, Baolin; Zhang, Zheng; Shukla, Swadheen;
Huang, Minlie; Gao, Jianfeng; Mehri, Shikib; Feng, Yulan; Gordon,
Carla; Alavi, Seyed Hossein; Traum, David; Eskenazi, Maxine; Beirami,
Ahmad; Eunjoon; Cho; Crook, Paul A.; De, Ankita; Geramifard, Alborz;
Kottur, Satwik; Moon, Seungwhan; Poddar, Shivani; Subba, Rajen, 2020.
Overview of the Ninth Dialog System Technology Challenge: DSTC9. Available
from arXiv: 2011.06486 [cs.CL].

Hakkani-Tür, Dilek; Tur, Gokhan; Celikyilmaz, Asli; Chen, Yun-Nung; Gao,
Jianfeng; Deng, Li; Wang, Ye-Yi, 2016. Multi-Domain Joint Semantic Frame
Parsing Using Bi-Directional RNN-LSTM. In: Proc. Interspeech 2016, pp. 715–
719. issn 2958-1796. Available from doi: 10.21437/Interspeech.2016-402.

48

https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/2210.05252
https://arxiv.org/abs/2210.05252
https://arxiv.org/abs/2012.04687
https://arxiv.org/abs/2012.04687
https://doi.org/10.18653/v1/N19-1423
https://arxiv.org/abs/1907.01669
https://doi.org/10.18653/v1/W19-5932
https://arxiv.org/abs/2011.06486
https://doi.org/10.21437/Interspeech.2016-402


Ham, Donghoon; Lee, Jeong-Gwan; Jang, Youngsoo; Kim, Kee-Eung, 2020. End-
to-End Neural Pipeline for Goal-Oriented Dialogue Systems using GPT-2. In:
Jurafsky, Dan; Chai, Joyce; Schluter, Natalie; Tetreault, Joel (eds.).
Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics. Online: Association for Computational Linguistics, pp. 583–592.
Available from doi: 10.18653/v1/2020.acl-main.54.

Han, Ting; Liu, Ximing; Takanabu, Ryuichi; Lian, Yixin; Huang, Chongx-
uan; Wan, Dazhen; Peng, Wei; Huang, Minlie, 2021. MultiWOZ 2.3: A
Multi-domain Task-Oriented Dialogue Dataset Enhanced with Annotation
Corrections and Co-Reference Annotation. In: Wang, Lu; Feng, Yansong;
Hong, Yu; He, Ruifang (eds.). Natural Language Processing and Chinese
Computing. Cham: Springer International Publishing, pp. 206–218. isbn 978-
3-030-88483-3.

Heck, Michael; Niekerk, Carel van; Lubis, Nurul; Geishauser, Christian;
Lin, Hsien-Chin; Moresi, Marco; Gasic, Milica, 2020. TripPy: A Triple Copy
Strategy for Value Independent Neural Dialog State Tracking. In: Pietquin,
Olivier; Muresan, Smaranda; Chen, Vivian; Kennington, Casey; Vandyke,
David; Dethlefs, Nina; Inoue, Koji; Ekstedt, Erik; Ultes, Stefan (eds.).
Proceedings of the 21th Annual Meeting of the Special Interest Group on
Discourse and Dialogue. 1st virtual meeting: Association for Computational
Linguistics, pp. 35–44. Available from doi: 10.18653/v1/2020.sigdial-1.4.

Henderson, Matthew; Thomson, Blaise; Young, Steve, 2013. Deep Neural
Network Approach for the Dialog State Tracking Challenge. In: Eskenazi,
Maxine; Strube, Michael; Di Eugenio, Barbara; Williams, Jason D. (eds.).
Proceedings of the SIGDIAL 2013 Conference. Metz, France: Association
for Computational Linguistics, pp. 467–471. Available also from: https://
aclanthology.org/W13-4073.

Hochreiter, Sepp; Schmidhuber, Jürgen, 1997. Long Short-Term Memory.
Neural Comput. Vol. 9, no. 8, pp. 1735–1780. issn 0899-7667. Available from
doi: 10.1162/neco.1997.9.8.1735.

Hosseini-Asl, Ehsan; McCann, Bryan; Wu, Chien-Sheng; Yavuz, Semih;
Socher, Richard, 2022. A Simple Language Model for Task-Oriented Dialogue.
Available from arXiv: 2005.00796 [cs.CL].

Hu, Yushi; Lee, Chia-Hsuan; Xie, Tianbao; Yu, Tao; Smith, Noah A.; Osten-
dorf, Mari, 2022. In-Context Learning for Few-Shot Dialogue State Tracking.
In: Goldberg, Yoav; Kozareva, Zornitsa; Zhang, Yue (eds.). Findings
of the Association for Computational Linguistics: EMNLP 2022. Abu Dhabi,
United Arab Emirates: Association for Computational Linguistics, pp. 2627–
2643. Available from doi: 10.18653/v1/2022.findings-emnlp.193.

Hudeček, Vojtěch; Dusek, Ondrej, 2023. Are Large Language Models All You
Need for Task-Oriented Dialogue? In: Stoyanchev, Svetlana; Joty, Shafiq;
Schlangen, David; Dusek, Ondrej; Kennington, Casey; Alikhani, Malihe
(eds.). Proceedings of the 24th Annual Meeting of the Special Interest Group
on Discourse and Dialogue. Prague, Czechia: Association for Computational
Linguistics, pp. 216–228. Available from doi: 10.18653/v1/2023.sigdial-
1.21.

49

https://doi.org/10.18653/v1/2020.acl-main.54
https://doi.org/10.18653/v1/2020.sigdial-1.4
https://aclanthology.org/W13-4073
https://aclanthology.org/W13-4073
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/2005.00796
https://doi.org/10.18653/v1/2022.findings-emnlp.193
https://doi.org/10.18653/v1/2023.sigdial-1.21
https://doi.org/10.18653/v1/2023.sigdial-1.21


Jacqmin, Léo; Druart, Lucas; Estève, Yannick; Favre, Benoı̂t; M Rojas,
Lina; Vielzeuf, Valentin, 2023. OLISIA: a Cascade System for Spoken Dia-
logue State Tracking. In: Chen, Yun-Nung; Crook, Paul; Galley, Michel;
Ghazarian, Sarik; Gunasekara, Chulaka; Gupta, Raghav; Hedayatnia,
Behnam; Kottur, Satwik; Moon, Seungwhan; Zhang, Chen (eds.). Pro-
ceedings of The Eleventh Dialog System Technology Challenge. Prague, Czech
Republic: Association for Computational Linguistics, pp. 95–104. Available
also from: https://aclanthology.org/2023.dstc-1.12.

Jacqmin, Léo; Rojas Barahona, Lina M.; Favre, Benoit, 2022. “Do you follow
me?”: A Survey of Recent Approaches in Dialogue State Tracking. In: Lemon,
Oliver; Hakkani-Tur, Dilek; Li, Junyi Jessy; Ashrafzadeh, Arash; Garcia,
Daniel Hernández; Alikhani, Malihe; Vandyke, David; Dušek, Ondřej
(eds.). Proceedings of the 23rd Annual Meeting of the Special Interest Group
on Discourse and Dialogue. Edinburgh, UK: Association for Computational
Linguistics, pp. 336–350. Available from doi: 10.18653/v1/2022.sigdial-
1.33.

Jurafsky, Daniel; Martin, James H., 2000. Speech and Language Processing:
An Introduction to Natural Language Processing, Computational Linguistics,
and Speech Recognition. 1st. USA: Prentice Hall PTR. isbn 0130950696.

Kale, Mihir; Rastogi, Abhinav, 2020. Template Guided Text Generation for
Task-Oriented Dialogue. In: Webber, Bonnie; Cohn, Trevor; He, Yulan;
Liu, Yang (eds.). Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP). Online: Association for Computational
Linguistics, pp. 6505–6520. Available from doi: 10.18653/v1/2020.emnlp-
main.527.

Kelley, J. F., 1984. An iterative design methodology for user-friendly natural
language office information applications. ACM Trans. Inf. Syst. Vol. 2, no. 1,
pp. 26–41. issn 1046-8188. Available from doi: 10.1145/357417.357420.

Lee, Sungjin; Zhu, Qi; Takanobu, Ryuichi; Zhang, Zheng; Zhang, Yaoqin;
Li, Xiang; Li, Jinchao; Peng, Baolin; Li, Xiujun; Huang, Minlie; Gao,
Jianfeng, 2019. ConvLab: Multi-Domain End-to-End Dialog System Platform.
In: Costa-jussà, Marta R.; Alfonseca, Enrique (eds.). Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics: System
Demonstrations. Florence, Italy: Association for Computational Linguistics,
pp. 64–69. Available from doi: 10.18653/v1/P19-3011.

Lei, Wenqiang; Jin, Xisen; Kan, Min-Yen; Ren, Zhaochun; He, Xiangnan;
Yin, Dawei, 2018. Sequicity: Simplifying Task-oriented Dialogue Systems with
Single Sequence-to-Sequence Architectures. In: Gurevych, Iryna; Miyao,
Yusuke (eds.). Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Melbourne, Australia:
Association for Computational Linguistics, pp. 1437–1447. Available from doi:
10.18653/v1/P18-1133.

Lewis, Mike; Liu, Yinhan; Goyal, Naman; Ghazvininejad, Marjan; Mohamed,
Abdelrahman; Levy, Omer; Stoyanov, Ves; Zettlemoyer, Luke, 2019.
BART: Denoising Sequence-to-Sequence Pre-training for Natural Language

50

https://aclanthology.org/2023.dstc-1.12
https://doi.org/10.18653/v1/2022.sigdial-1.33
https://doi.org/10.18653/v1/2022.sigdial-1.33
https://doi.org/10.18653/v1/2020.emnlp-main.527
https://doi.org/10.18653/v1/2020.emnlp-main.527
https://doi.org/10.1145/357417.357420
https://doi.org/10.18653/v1/P19-3011
https://doi.org/10.18653/v1/P18-1133


Generation, Translation, and Comprehension. Available from arXiv: 1910.
13461 [cs.CL].

Lipton, Zachary C.; Li, Xiujun; Gao, Jianfeng; Li, Lihong; Ahmed, Faisal;
Deng, Li, 2017. BBQ-Networks: Efficient Exploration in Deep Reinforcement
Learning for Task-Oriented Dialogue Systems. Available from arXiv: 1608.
05081 [cs.LG].

Liu, Bing; Lane, Ian, 2016. Attention-Based Recurrent Neural Network Models
for Joint Intent Detection and Slot Filling. Available from arXiv: 1609.01454
[cs.CL].

Madotto, Andrea; Liu, Zihan; Lin, Zhaojiang; Fung, Pascale, 2020. Language
Models as Few-Shot Learner for Task-Oriented Dialogue Systems. Available
from arXiv: 2008.06239 [cs.CL].

McTear, Michael F., 2020. Conversational AI: Dialogue Systems, Conversational
Agents, and Chatbots. Synthesis Lectures on Human Language Technolo-
gies. Available also from: https://api.semanticscholar.org/CorpusID:
228935772.

Mille, Simon; Dasiopoulou, Stamatia; Fisas, Beatriz; Wanner, Leo, 2019.
Teaching FORGe to Verbalize DBpedia Properties in Spanish. In: Deemter,
Kees van; Lin, Chenghua; Takamura, Hiroya (eds.). Proceedings of the 12th
International Conference on Natural Language Generation. Tokyo, Japan:
Association for Computational Linguistics, pp. 473–483. Available from doi:
10.18653/v1/W19-8659.

Mrkšić, Nikola; Séaghdha, Diarmuid Ó; Thomson, Blaise; Gašić, Milica; Su,
Pei-Hao; Vandyke, David; Wen, Tsung-Hsien; Young, Steve, 2015. Multi-
domain Dialog State Tracking using Recurrent Neural Networks. Available
from arXiv: 1506.07190 [cs.CL].

Niculescu, Andreea I.; Jiang, Ridong; Kim, Seokhwan; Yeo, Kheng Hui;
D’Haro, Luis F.; Niswar, Arthur; Banchs, Rafael E., 2014. SARA: Sin-
gapore’s Automated Responsive Assistant, A Multimodal Dialogue System
for Touristic Information. In: Awan, Irfan; Younas, Muhammad; Franch,
Xavier; Quer, Carme (eds.). Mobile Web Information Systems. Cham: Springer
International Publishing, pp. 153–164. isbn 978-3-319-10359-4.

Novikova, Jekaterina; Dušek, Ondřej; Cercas Curry, Amanda; Rieser,
Verena, 2017. Why We Need New Evaluation Metrics for NLG. In: Palmer,
Martha; Hwa, Rebecca; Riedel, Sebastian (eds.). Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing. Copenhagen,
Denmark: Association for Computational Linguistics, pp. 2241–2252. Available
from doi: 10.18653/v1/D17-1238.

O’Shea, Keiron; Nash, Ryan, 2015. An Introduction to Convolutional Neural
Networks. Available from arXiv: 1511.08458 [cs.NE].

OpenAI et al., 2024. GPT-4 Technical Report. Available from arXiv: 2303.08774
[cs.CL].

51

https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1608.05081
https://arxiv.org/abs/1608.05081
https://arxiv.org/abs/1609.01454
https://arxiv.org/abs/1609.01454
https://arxiv.org/abs/2008.06239
https://api.semanticscholar.org/CorpusID:228935772
https://api.semanticscholar.org/CorpusID:228935772
https://doi.org/10.18653/v1/W19-8659
https://arxiv.org/abs/1506.07190
https://doi.org/10.18653/v1/D17-1238
https://arxiv.org/abs/1511.08458
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774


Ouyang, Long; Wu, Jeff; Jiang, Xu; Almeida, Diogo; Wainwright, Carroll L.;
Mishkin, Pamela; Zhang, Chong; Agarwal, Sandhini; Slama, Katarina;
Ray, Alex; Schulman, John; Hilton, Jacob; Kelton, Fraser; Miller,
Luke; Simens, Maddie; Askell, Amanda; Welinder, Peter; Christiano,
Paul; Leike, Jan; Lowe, Ryan, 2022. Training language models to follow
instructions with human feedback. Available from arXiv: 2203.02155 [cs.CL].

Papineni, Kishore; Roukos, Salim; Ward, Todd; Zhu, Wei-Jing, 2002. Bleu:
a Method for Automatic Evaluation of Machine Translation. In: Isabelle,
Pierre; Charniak, Eugene; Lin, Dekang (eds.). Proceedings of the 40th
Annual Meeting of the Association for Computational Linguistics. Philadelphia,
Pennsylvania, USA: Association for Computational Linguistics, pp. 311–318.
Available from doi: 10.3115/1073083.1073135.

Pellom, B.; Ward, W.; Hansen, J.; Cole, R.; Hacioglu, K.; Zhang, J.;
Yu, X.; Pradhan, S., 2001. University of Colorado Dialogue Systems for
Travel and Navigation. In: Proceedings of the First International Conference
on Human Language Technology Research. Available also from: https://
aclanthology.org/H01-1073.

Peng, Baolin; Li, Chunyuan; Li, Jinchao; Shayandeh, Shahin; Liden, Lars; Gao,
Jianfeng, 2021. Soloist: Building Task Bots at Scale with Transfer Learning
and Machine Teaching. Transactions of the Association for Computational
Linguistics. Vol. 9, pp. 807–824. Available from doi: 10.1162/tacl_a_00399.

Radford, Alec; Narasimhan, Karthik; Salimans, Tim; Sutskever, Ilya,
et al., 2018. Improving language understanding by generative pre-training.

Radford, Alec; Wu, Jeff; Child, Rewon; Luan, David; Amodei, Dario; Sutskever,
Ilya, 2019. Language Models are Unsupervised Multitask Learners.

Raffel, Colin; Ellis, Daniel PW, 2015. Feed-forward networks with attention
can solve some long-term memory problems. arXiv preprint arXiv:1512.08756.

Raffel, Colin; Shazeer, Noam; Roberts, Adam; Lee, Katherine; Narang,
Sharan; Matena, Michael; Zhou, Yanqi; Li, Wei; Liu, Peter J., 2020. Explor-
ing the Limits of Transfer Learning with a Unified Text-to-Text Transformer.
Journal of Machine Learning Research. Vol. 21, no. 140, pp. 1–67. Available
also from: http://jmlr.org/papers/v21/20-074.html.

Rastogi, Abhinav; Hakkani-Tur, Dilek; Heck, Larry, 2018. Scalable Multi-
Domain Dialogue State Tracking. Available from arXiv: 1712.10224 [cs.CL].

Rastogi, Abhinav; Zang, Xiaoxue; Sunkara, Srinivas; Gupta, Raghav; Khai-
tan, Pranav, 2020. Towards Scalable Multi-domain Conversational Agents: The
Schema-Guided Dialogue Dataset. Available from arXiv: 1909.05855 [cs.CL].

Reiter, Ehud, 2018. A Structured Review of the Validity of BLEU. Computational
Linguistics. Vol. 44, no. 3, pp. 393–401. Available from doi: 10.1162/coli_a_
00322.

Rieser, Verena; Lemon, Oliver, 2011. Reinforcement Learning for Adaptive
Dialogue Systems: a data-driven methodology for Dialogue Management and
Natural Language Generation. In.

52

https://arxiv.org/abs/2203.02155
https://doi.org/10.3115/1073083.1073135
https://aclanthology.org/H01-1073
https://aclanthology.org/H01-1073
https://doi.org/10.1162/tacl_a_00399
http://jmlr.org/papers/v21/20-074.html
https://arxiv.org/abs/1712.10224
https://arxiv.org/abs/1909.05855
https://doi.org/10.1162/coli_a_00322
https://doi.org/10.1162/coli_a_00322


Rojas-Barahona, Lina M.; Gašić, Milica; Mrkšić, Nikola; Su, Pei-Hao; Ultes,
Stefan; Wen, Tsung-Hsien; Young, Steve, 2016. Exploiting Sentence and
Context Representations in Deep Neural Models for Spoken Language Under-
standing. In: Matsumoto, Yuji; Prasad, Rashmi (eds.). Proceedings of COL-
ING 2016, the 26th International Conference on Computational Linguistics:
Technical Papers. Osaka, Japan: The COLING 2016 Organizing Committee,
pp. 258–267. Available also from: https://aclanthology.org/C16-1025.

Santhanam, Sashank; Shaikh, Samira, 2019. Towards Best Experiment De-
sign for Evaluating Dialogue System Output. In: Deemter, Kees van; Lin,
Chenghua; Takamura, Hiroya (eds.). Proceedings of the 12th International
Conference on Natural Language Generation. Tokyo, Japan: Association for
Computational Linguistics, pp. 88–94. Available from doi: 10.18653/v1/W19-
8610.

Sarikaya, R.; Crook, P. A.; Marin, A.; Jeong, M.; Robichaud, J.P.; Ce-
likyilmaz, A.; Kim, Y.B.; Rochette, A.; Khan, O. Z.; Liu, X.; Boies, D.;
Anastasakos, T.; Feizollahi, Z.; Ramesh, N.; Suzuki, H.; Holenstein,
R.; Krawczyk, E.; Radostev, V., 2016. An overview of end-to-end language
understanding and dialog management for personal digital assistants. In: 2016
IEEE Spoken Language Technology Workshop (SLT), pp. 391–397. Available
from doi: 10.1109/SLT.2016.7846294.

Schatzmann, Jost; Thomson, Blaise; Weilhammer, Karl; Ye, Hui; Young,
Steve, 2007. Agenda-Based User Simulation for Bootstrapping a POMDP
Dialogue System. In: Sidner, Candace; Schultz, Tanja; Stone, Matthew;
Zhai, ChengXiang (eds.). Human Language Technologies 2007: The Confer-
ence of the North American Chapter of the Association for Computational
Linguistics; Companion Volume, Short Papers. Rochester, New York: As-
sociation for Computational Linguistics, pp. 149–152. Available also from:
https://aclanthology.org/N07-2038.

Shah, Harshil; Wilcke, Arthur; Cobzarenco, Marius; Cobzarenco, Cristi;
Challis, Edward; Barber, David, 2023. Generalized Multiple Intent Condi-
tioned Slot Filling. Available from arXiv: 2305.11023 [cs.CL].

Shridhar, Mohit; Yuan, Xingdi; Côté, Marc-Alexandre; Bisk, Yonatan; Trischler,
Adam; Hausknecht, Matthew, 2021. ALFWorld: Aligning Text and Embod-
ied Environments for Interactive Learning. In: Proceedings of the International
Conference on Learning Representations (ICLR). Available also from: https:
//arxiv.org/abs/2010.03768.

Su, Pei-Hao; Budzianowski, Pawel; Ultes, Stefan; Gasic, Milica; Young,
Steve, 2017. Sample-efficient Actor-Critic Reinforcement Learning with Su-
pervised Data for Dialogue Management. Available from arXiv: 1707.00130
[cs.CL].

Takanobu, Ryuichi; Zhu, Qi; Li, Jinchao; Peng, Baolin; Gao, Jianfeng; Huang,
Minlie, 2020. Is Your Goal-Oriented Dialog Model Performing Really Well? Em-
pirical Analysis of System-wise Evaluation. In: Pietquin, Olivier; Muresan,
Smaranda; Chen, Vivian; Kennington, Casey; Vandyke, David; Dethlefs,
Nina; Inoue, Koji; Ekstedt, Erik; Ultes, Stefan (eds.). Proceedings of the
21th Annual Meeting of the Special Interest Group on Discourse and Dialogue.

53

https://aclanthology.org/C16-1025
https://doi.org/10.18653/v1/W19-8610
https://doi.org/10.18653/v1/W19-8610
https://doi.org/10.1109/SLT.2016.7846294
https://aclanthology.org/N07-2038
https://arxiv.org/abs/2305.11023
https://arxiv.org/abs/2010.03768
https://arxiv.org/abs/2010.03768
https://arxiv.org/abs/1707.00130
https://arxiv.org/abs/1707.00130


1st virtual meeting: Association for Computational Linguistics, pp. 297–310.
Available from doi: 10.18653/v1/2020.sigdial-1.37.

Tseng, Bo-Hsiang; Cheng, Jianpeng; Fang, Yimai; Vandyke, David, 2020. A
Generative Model for Joint Natural Language Understanding and Generation.
Available from arXiv: 2006.07499 [cs.CL].

Tuan, Yi-Lin; Zhang, Jinzhi; Li, Yujia; Lee, Hung-yi, 2018. Proximal Policy
Optimization and its Dynamic Version for Sequence Generation. Available
from arXiv: 1808.07982 [cs.CL].

Ultes, Stefan; Rojas-Barahona, Lina M.; Su, Pei-Hao; Vandyke, David;
Kim, Dongho; Casanueva, Iñigo; Budzianowski, Paweł; Mrkšić, Nikola;
Wen, Tsung-Hsien; Gašić, Milica; Young, Steve, 2017. PyDial: A Multi-
domain Statistical Dialogue System Toolkit. In: Bansal, Mohit; Ji, Heng
(eds.). Proceedings of ACL 2017, System Demonstrations. Vancouver, Canada:
Association for Computational Linguistics, pp. 73–78. Available also from:
https://aclanthology.org/P17-4013.

Vaswani, Ashish; Shazeer, Noam; Parmar, Niki; Uszkoreit, Jakob; Jones,
Llion; Gomez, Aidan N; Kaiser, Łukasz; Polosukhin, Illia, 2017. Attention
is All you Need. In: Guyon, I.; Luxburg, U. Von; Bengio, S.; Wallach, H.;
Fergus, R.; Vishwanathan, S.; Garnett, R. (eds.). Advances in Neural
Information Processing Systems. Curran Associates, Inc. Vol. 30. Available
also from: https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Wahde, Mattias; Virgolin, Marco, 2022. Conversational agents: Theory and
applications. In: HANDBOOK ON COMPUTER LEARNING AND INTEL-
LIGENCE: Volume 2: Deep Learning, Intelligent Control and Evolutionary
Computation. World Scientific, pp. 497–544.

Walker, Marilyn A.; Litman, Diane J.; Kamm, Candace A.; Abella, Alicia,
1997. PARADISE: a framework for evaluating spoken dialogue agents. In:
Proceedings of the 35th Annual Meeting of the Association for Computational
Linguistics and Eighth Conference of the European Chapter of the Association
for Computational Linguistics. Madrid, Spain: Association for Computational
Linguistics, pp. 271–280. ACL ’98/EACL ’98. Available from doi: 10.3115/
976909.979652.

Wang, Sihan; Zhou, Kaijie; Lai, Kunfeng; Shen, Jianping, 2020. Task-Completion
Dialogue Policy Learning via Monte Carlo Tree Search with Dueling Network.
In: Webber, Bonnie; Cohn, Trevor; He, Yulan; Liu, Yang (eds.). Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP). Online: Association for Computational Linguistics, pp. 3461–3471.
Available from doi: 10.18653/v1/2020.emnlp-main.278.

Wei, Jason; Wang, Xuezhi; Schuurmans, Dale; Bosma, Maarten; Chi, Ed Huai-
hsin; Xia, F.; Le, Quoc; Zhou, Denny, 2022. Chain of Thought Prompting
Elicits Reasoning in Large Language Models. ArXiv. Vol. abs/2201.11903. Avail-
able also from: https://api.semanticscholar.org/CorpusID:246411621.

54

https://doi.org/10.18653/v1/2020.sigdial-1.37
https://arxiv.org/abs/2006.07499
https://arxiv.org/abs/1808.07982
https://aclanthology.org/P17-4013
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.3115/976909.979652
https://doi.org/10.3115/976909.979652
https://doi.org/10.18653/v1/2020.emnlp-main.278
https://api.semanticscholar.org/CorpusID:246411621


Weisz, Gellért; Budzianowski, Paweł; Su, Pei-Hao; Gašić, Milica, 2018. Sample
efficient deep reinforcement learning for dialogue systems with large action
spaces. IEEE/ACM Transactions on Audio, Speech, and Language Processing.
Vol. 26, no. 11, pp. 2083–2097.

Weizenbaum, Joseph, 1966. ELIZA—a computer program for the study of natural
language communication between man and machine. Commun. ACM. Vol. 9, no.
1, pp. 36–45. issn 0001-0782. Available from doi: 10.1145/365153.365168.

Wen, Tsung-Hsien; Gašić, Milica; Mrkšić, Nikola; Su, Pei-Hao; Vandyke,
David; Young, Steve, 2015. Semantically Conditioned LSTM-based Natural
Language Generation for Spoken Dialogue Systems. In: Màrquez, Lluís;
Callison-Burch, Chris; Su, Jian (eds.). Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing. Lisbon, Portugal:
Association for Computational Linguistics, pp. 1711–1721. Available from doi:
10.18653/v1/D15-1199.

Wen, Tsung-Hsien; Vandyke, David; Mrkšić, Nikola; Gašić, Milica; Rojas-
Barahona, Lina M.; Su, Pei-Hao; Ultes, Stefan; Young, Steve, 2017. A
Network-based End-to-End Trainable Task-oriented Dialogue System. In: La-
pata, Mirella; Blunsom, Phil; Koller, Alexander (eds.). Proceedings of
the 15th Conference of the European Chapter of the Association for Com-
putational Linguistics: Volume 1, Long Papers. Valencia, Spain: Associa-
tion for Computational Linguistics, pp. 438–449. Available also from: https:
//aclanthology.org/E17-1042.

Williams, Jason D.; Asadi, Kavosh; Zweig, Geoffrey, 2017. Hybrid Code Net-
works: practical and efficient end-to-end dialog control with supervised and
reinforcement learning. Available from arXiv: 1702.03274 [cs.AI].

Wu, Chien-Sheng; Hoi, Steven C.H.; Socher, Richard; Xiong, Caiming, 2020.
TOD-BERT: Pre-trained Natural Language Understanding for Task-Oriented
Dialogue. In: Webber, Bonnie; Cohn, Trevor; He, Yulan; Liu, Yang (eds.).
Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Online: Association for Computational Linguistics,
pp. 917–929. Available from doi: 10.18653/v1/2020.emnlp-main.66.

Wu, Yonghui; Schuster, Mike; Chen, Zhifeng; Le, Quoc V.; Norouzi, Mo-
hammad; Macherey, Wolfgang; Krikun, Maxim; Cao, Yuan; Gao, Qin;
Macherey, Klaus; Klingner, Jeff; Shah, Apurva; Johnson, Melvin; Liu,
Xiaobing; Kaiser, Łukasz; Gouws, Stephan; Kato, Yoshikiyo; Kudo, Taku;
Kazawa, Hideto; Stevens, Keith; Kurian, George; Patil, Nishant; Wang,
Wei; Young, Cliff; Smith, Jason; Riesa, Jason; Rudnick, Alex; Vinyals,
Oriol; Corrado, Greg; Hughes, Macduff; Dean, Jeffrey, 2016. Google’s
Neural Machine Translation System: Bridging the Gap between Human and
Machine Translation. Available from arXiv: 1609.08144 [cs.CL].

Yao, Shunyu; Chen, Howard; Yang, John; Narasimhan, Karthik, 2023. Web-
Shop: Towards Scalable Real-World Web Interaction with Grounded Language
Agents. Available from arXiv: 2207.01206 [cs.CL].

Yao, Shunyu; Zhao, Jeffrey; Yu, Dian; Du, Nan; Shafran, Izhak; Narasimhan,
Karthik; Cao, Yuan, 2022. ReAct: Synergizing Reasoning and Acting in
Language Models. arXiv preprint arXiv:2210.03629.

55

https://doi.org/10.1145/365153.365168
https://doi.org/10.18653/v1/D15-1199
https://aclanthology.org/E17-1042
https://aclanthology.org/E17-1042
https://arxiv.org/abs/1702.03274
https://doi.org/10.18653/v1/2020.emnlp-main.66
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/2207.01206


Zang, Xiaoxue; Rastogi, Abhinav; Sunkara, Srinivas; Gupta, Raghav; Zhang,
Jianguo; Chen, Jindong, 2020. MultiWOZ 2.2 : A Dialogue Dataset with
Additional Annotation Corrections and State Tracking Baselines. Available
from arXiv: 2007.12720 [cs.CL].

Zhang, Jianguo; Qian, Kun; Liu, Zhiwei; Heinecke, Shelby; Meng, Rui; Liu,
Ye; Yu, Zhou; Savarese, Silvio; Xiong, Caiming, 2023. DialogStudio: To-
wards Richest and Most Diverse Unified Dataset Collection for Conversational
AI. arXiv preprint arXiv:2307.10172.

Zhang, Tianyi; Kishore, Varsha; Wu, Felix; Weinberger, Kilian Q.; Artzi,
Yoav, 2020. BERTScore: Evaluating Text Generation with BERT. Available
from arXiv: 1904.09675 [cs.CL].

Zhao, Lin; Feng, Zhe, 2018. Improving Slot Filling in Spoken Language Under-
standing with Joint Pointer and Attention. In: Gurevych, Iryna; Miyao,
Yusuke (eds.). Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers). Melbourne, Australia:
Association for Computational Linguistics, pp. 426–431. Available from doi:
10.18653/v1/P18-2068.

Zhu, Qi; Geishauser, Christian; Lin, Hsien-chin; Niekerk, Carel van; Peng,
Baolin; Zhang, Zheng; Heck, Michael; Lubis, Nurul; Wan, Dazhen; Zhu,
Xiaochen; Gao, Jianfeng; Gašić, Milica; Huang, Minlie, 2022. ConvLab-3:
A Flexible Dialogue System Toolkit Based on a Unified Data Format. arXiv
preprint arXiv:2211.17148. Available also from: http://arxiv.org/abs/
2211.17148.

Zhu, Qi; Zhang, Zheng; Fang, Yan; Li, Xiang; Takanobu, Ryuichi; Li, Jinchao;
Peng, Baolin; Gao, Jianfeng; Zhu, Xiaoyan; Huang, Minlie, 2020. ConvLab-
2: An Open-Source Toolkit for Building, Evaluating, and Diagnosing Dialogue
Systems. In: Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics.

Zhu, Yukun; Kiros, Ryan; Zemel, Rich; Salakhutdinov, Ruslan; Urtasun,
Raquel; Torralba, Antonio; Fidler, Sanja, 2015. Aligning Books and Movies:
Towards Story-Like Visual Explanations by Watching Movies and Reading
Books. In: The IEEE International Conference on Computer Vision (ICCV).

Zilka, Lukas; Jurcicek, Filip, 2015. Incremental LSTM-based Dialog State
Tracker. Available from arXiv: 1507.03471 [cs.CL].

56

https://arxiv.org/abs/2007.12720
https://arxiv.org/abs/1904.09675
https://doi.org/10.18653/v1/P18-2068
http://arxiv.org/abs/2211.17148
http://arxiv.org/abs/2211.17148
https://arxiv.org/abs/1507.03471


List of Figures

1.1 A classical Task-oriented Dialogue pipeline . . . . . . . . . . . . . 6

2.1 The transformer architecture from Vaswani et al., 2017. . . . . . . 14
2.2 Scaled dot product attention from Vaswani et al., 2017 . . . . . . 15
2.3 Multi-head attention from Vaswani et al., 2017 . . . . . . . . . . 16
2.4 A high-level overview of an agent interacting with its environment

to perform tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 ReAct Trajectory from Yao; J. Zhao, et al., 2022. . . . . . . . . . 20
2.6 Example from Yao; J. Zhao, et al., 2022 showing how React works

in comparison with Standard, CoT and Act prompting strategies.
Standard refers to prompting in which a plain input query is given
to the model. Act refers to a strategy in which the model is
prompted to perform actions directly without other intermediate
steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 The proposed system that uses ReAct for task-oriented dialogue. . 24
3.2 The ReAct prompt used to instruct the system LLM agent on how

to perform task-oriented dialogue. . . . . . . . . . . . . . . . . . . 26
3.3 The few-shot prompt used to instruct the LLM to perform response

generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 An excerpt of a dialogue simulated using our proposed system. The
goal is shown at the top wherein each domain has the requestable
and informable slots. The goal also shows the constraints for
booking, as well as constraints that should return an empty query
in fail_info_fail. The different colours in the conversation, used
for readability, show the user utterance, the reasoning of the LLM
separated into thought, action and observations and the system
utterance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 A full conversation for a simple goal. . . . . . . . . . . . . . . . . 35
4.3 An excerpt of a conversation where the LLM shows creative ways

to handle repeated user requests. . . . . . . . . . . . . . . . . . . 36
4.4 An excerpt showing the system hallucinating the slot name. . . . 36
4.5 An excerpt showing the wrong slot being filled by the system.

departure refers to the departure station and leaveAt refers to
the departure time. . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.6 Excerpts showing the LLM prompted to play the user acting like
the system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.7 An example conversation showing the simulated user end the conver-
sation abruptly when the system returns an unexpected response,
without talking about the remaining goals. . . . . . . . . . . . . . 38

4.8 An excerpt of conversation around the same goal by GPT-3.5 and
GPT-4 showing how each model reasons and updates the belief state. 40

4.9 Excerpts of a conversation showing how GPT-4 clarifies and com-
municates better than GPT-3.5. . . . . . . . . . . . . . . . . . . . 41

57



List of Tables

4.1 Evaluation of the task success rate of our system against previous
works also employing the ConvLab user simulator and run on 1000
dialogue simulations. . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Evaluation of the performance of the ReAct ToD system when
domain specific examples are given. This experiment was run using
GPT-3.5 for 100 dialogue simulations. . . . . . . . . . . . . . . . 33

4.3 Cost of the GPT models used in the experiments per 1M tokens. . 33
4.4 Evaluation of response generation capabilities of GPT-3.5 in isola-

tion on 1000 dialogues in the MultiWOZ testset. . . . . . . . . . . 33
4.5 Performance of BERT NLU from ConvLab3. . . . . . . . . . . . . 39

58



List of Abbreviations
NLP Natural Language Processing

LLM Large Language Models

ToD Task-oriented Dialogue

AI Artificial Intelligence

NLU Natural Language Understanding

HDC Handcrafted

RNN Recurrent Neural Networks

DST Dialogue State Tracking

DM Dialogue Management

ACER Actor-Critic with Experience Replay

PPO Proximal Policy Optimization

NLG Natural Language Generation

BLEU BiLingual Evaluation Understudy

JGA Joint Goal Accuracy

SER Slot Error Rate

METEOR Metric for Evaluation of Translation with Explicit ORdering

RL Reinforcement Learning

GPT Generative Pretrained Transformer

LSTM Long Short Term Memory

GRU Gated Recurrent Unit

CNN Convolutional Neural Networks

RLHF Reinforcement Learning from Human Feedback

CoT Chain-of-Thought

59



A Attachments
Additional materials related to this work are provided as electronic attachment

as a .zip archive file. The contents of the file include:

• The code developed for the project.

• The files containing the dialogue simulations run on GPT-3.5 and GPT-4.

• The files containing the NLG outputs from our experiments.

• The prompts used in our experiments.

• The randomly sampled dialogues from the simulations, which were selected
for the qualitative analysis.

• The examples used for few-shot prompting in our experiments.

• The files containing the evaluation metrics generated for our experiments.

60


	Introduction
	Task-Oriented Dialogue Systems
	Architecture
	Natural Language Understanding
	Dialogue State Tracking
	Dialogue Management
	Natural Language Generation
	End-to-End Architectures for ToD

	ToD Benchmarks
	ConvLab

	Metrics
	Automatic Evaluation Measures
	Simulated Evaluation
	Human Evaluation


	Large Language Models for ToD
	Behind the Scenes of Large Language Models
	The Transformer Architecture

	A Brief History of GPT
	GPT-1
	GPT-2
	GPT-3
	InstructGPT and GPT-3.5
	GPT-4

	Conversational Agents
	Reasoning with LLMs
	Prompting Strategies
	Chain-of-Thought Prompting
	ReAct Prompting


	Experiments
	The MultiWOZ Dataset
	Ontology
	Data Collection
	Statistics
	Improved Versions

	Experimental Setup
	Dialogue Simulator
	User Agent
	System Agent
	Other Experiments

	Evaluation
	Frameworks
	LangChain
	Langfuse


	Results
	Quantitative Analysis
	Simulated Task-oriented Dialogue System
	System NLG Capabilities

	Qualitative Analysis
	The System's Point-of-View
	The User's Point-of-View
	Manual Analysis of GPT-3.5 vs GPT-4


	Perspectives
	Discussion
	Future Work

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Attachments

