
MASTER THESIS

Jelena Glǐsić

Non-standard representations of
Boolean functions for knowledge

compilation

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the master thesis: prof. RNDr. Ondřej Čepek, Ph.D.
Study programme: Computer Science - Theoretical

Computer Science
Study branch: Computer Science - Theoretical

Computer Science

Prague 2024

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to express my gratitude to the supervisor of this thesis prof. RNDr.
Ondřej Čepek, Ph.D. for continued guidance and advice during my thesis journey.

ii

Title: Non-standard representations of Boolean functions for knowledge compi-
lation

Author: Jelena Glǐsić

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: prof. RNDr. Ondřej Čepek, Ph.D., Department of Theoretical Com-
puter Science and Mathematical Logic

Abstract: The nearest neighbor representation is a new representation of Boolean
functions, introduced by Hajnal, Liu, and Turán. In this thesis, its properties
within knowledge compilation are examined. In particular, results on its suc-
cinctness are shown, and some questions on the hardness of answering queries
and performing transformations are answered.

Keywords: Boolean functions Knowledge representation languages Knowledge
compilation

iii

Contents

1 Introduction 2
1.1 Outline . 2
1.2 Notation and Definitions . 2

2 Nearest Neighbor Representations of Boolean Functions 5
2.1 Motivation and Definition . 5
2.2 Some Functions and Their Complexity 6

3 Knowledge Compilation Map 9
3.1 Standard Knowledge Representation Languages 9
3.2 Succinctness . 12
3.3 Queries . 13
3.4 Transformations . 13

4 Queries and Transformations of BNN 16
4.1 Transformations . 16
4.2 Queries . 17

5 Succinctness of BNN 20

6 Conclusion 27

Bibliography 28

List of Figures 29

1

1. Introduction
Boolean functions are fundamental components in computer science, which often
serve as the backbone of computation tasks and decision-making processes. Their
significance extends across diverse domains including circuit design, artificial in-
telligence and cryptography. However, as the complexity of systems increases, the
need for efficient representation and manipulation of Boolean functions becomes
more and more important.

Knowledge compilation emerges as a critical area within this context, aiming
to transform Boolean functions into more compact and tractable forms. This
allows us to use techniques from logic, algorithms and data structures in order
to bridge the gap between the expressive power of Boolean functions and the
efficiency requirements of practical applications.

In this thesis, we are in particular interested in a representation of Boolean
functions using nearest neighbors. We look at it through the lens of knowledge
compilation, and determine whether this novel representation brings any new
power to the way we view and use Boolean functions.

1.1 Outline
We begin by recalling elementary definitions and establishing notation to be used
in the remainder of the thesis. In Chapter 2, we define the nearest neighbor rep-
resentation of Boolean functions and restate the known results concerning this
representation. Afterwards, in Chapter 3 we present an introduction to knowl-
edge compilation. We define the main tools used in knowledge compilation. We
show some simple already known results, and map out the goal of the final chap-
ters. Finally, in Chapters 4 and 5, we place the nearest neighbor representation
within the knowledge compilation map. We show original results, and discuss the
advantages and limitation that they imply.

1.2 Notation and Definitions
Throughout the thesis, we make use of the following notation describing basic
notions and operations in logic, set theory and algebra:

• the symbols ∨ and ∧ denote the binary Boolean operations disjunction
and conjunction, respectively, and the symbol ¬ denotes the unary Boolean
negation operation;

• ∀ and ∃ denote the universal and existential quantifiers, respectively;

• the symbol ⊕ denotes the binary Boolean operation XOR

• the symbols ∪,∩ and \ denote set union, intersection and difference oper-
ations, respectively;

• the symbols ⊆ and = denote subset and equality relations, respectively;

2

• N = {1, 2, 3, . . .} denotes the set of natural numbers and the letter n always
denotes an element of N;

• R denotes the set of real numbers;

• for any set S, the symbol Sn denotes the Cartesian product S × S × · · · × S⏞ ⏟⏟ ⏞
n times

• the symbol B denotes the set {0, 1};

• by Bn we denote the Boolean hypercube;

• by x1, . . . , xn we denote the coordinates of x ∈ Bn;

• by d(x, y) for x, y ∈ Rn we denote the Euclidean distance in Rn;

• by d(x,A) for x ∈ Rn and A ⊆ Rn we denote min{d(x, y) | y ∈ A}, i.e. the
Euclidean distance between a vector and a set of vectors;

• by dH(x, y) for x ∈ Bn we denote the Hamming distance in the Boolean
hypercube, i.e. the number of coordinates where the two Boolean vectors
differ;

• by dH(x,A) for x, y ∈ Bn and A ⊆ Bn we denote min{dH(x, y) | y ∈ A},
i.e. the Hamming distance between a Boolean vector and a set of Boolean
vectors;

• by |x| for x ∈ Bn we denote the weight of x, i.e. the number of coordinates
of x which are equal to 1;

• by x ≤ y for x, y ∈ Bn we denote the component-wise partial order on B,
i.e. x ≤ y if {i | xi = 1} ⊆ {i | yi = 1};

We now provide definitions of some of the basic notions used throughout the
thesis.

Definition 1. A Boolean function is a function Bn → B. We say that x ∈ Bn

is positive vector or a model of f (resp. negative vector or a non-model of f) if
f(x) = 1 (resp. f(x) = 0).

Definition 2. We call a Boolean function f a symmetric function if there exists
a set If ⊆ {0, 1, . . . , n} such that f(x) = 1 if and only if |x| ∈ If .

Definition 3. The symmetric Boolean function with If = {i is odd | 1 ≤ i ≤ n}
is called the parity function and we will denote it by PARn.

Definition 4. We call a Boolean function f a threshold function if there exist
weights w1, . . . , wn ∈ R and threshold t ∈ R such that f(x) = 1 if and only if∑︁n

i=1 wixi ≥ t. By TH t
n we denote the threshold functions with weights w1 =

· · · = wn = 1 and threshold t.

In fact, one can observe that TH t
n is the symmetric function f defined by

If = {i | i ≥ t}.

3

Definition 5. The Boolean function THn/2
n is called the majority function and

we will denote it by MAJn.

Definition 6. A graph G is a pair (V, E), where the set V is called the vertex
set and the set E ⊆

(︂
V
2

)︂
is called the edge set. We say that a vertex u ∈ V is

adjacent to vertex v ∈ V if {u, v} ∈ E. A vertex v in a graph is isolated if it
is not adjacent to any other vertex. A walk in graph is a sequence of vertices
v1v2 . . . vk where vi ∈ V for 1 ≤ i ≤ k and {vi, vi+1} ∈ E for 1 ≤ i ≤ k − 1.
We call a walk in which every vertex is visited exactly once a path. We say that
a graph is connected if there is a walk between any two vertices. We say that
two vertices are connected if there exists a walk in G between them. We call the
equivalence classes of connected vertices the connected components of G. We say
that G′ = (V ′, E ′) is a subgraph of G if V ′ ⊆ V and E ′ ⊆ E. For U ⊆ V , we
call the subgraph (U, {{u, v} ∈ E | u, v ∈ U}) the subgraph induced by U .

Definition 7. The Boolean hypercube graph is the graph whose vertex set is
exactly the set Bn and in which there is an edge between x ∈ Bn and y ∈ Bn if
and only if dH(x, y) = 1.

In the thesis, we will often use the terms Boolean hypercube and Boolean
hypercube graph interchangeably. In particular, a neighbor of a vector x in
the Boolean hypercube will be any vector that is adjacent to it in the Boolean
hypercube graph.

4

2. Nearest Neighbor
Representations of Boolean
Functions
In this chapter we introduce the nearest neighbor representation of Boolean func-
tion, as defined by Hajnal et al. [2022]. We discuss the complexity of various
functions with respect to this representation, and make remarks about modified
versions of it.

2.1 Motivation and Definition
The nearest neighbor representation of Boolean functions is inspired by already
established and well studied examples of nearest neighbor representations. For-
mally, for any classification of vectors in Rn, a nearest neighbor representation
may be defined. This is done by picking disjoint subsets of Rn, each of which we
call a prototype set for some class. Afterwards, any other vector may be classified
using these subsets. In the simplest case, this is done by finding the prototype
closest to the vector, and assigning it the class of this prototype. Nearest neigh-
bor representation have been studied in the context of computational geometry
(e.g. in Aurenhammer et al. [1991]), machine learning (e.g. in Zhang [2016]) and
various other areas. When dealing with a nearest neighbor representation, the
objective is usually to minimize the number of prototypes. In this section we
define the nearest neighbor representation of Boolean functions, as well as some
of its variants.

Definition 8 (Hajnal et al. [2022]). A nearest neighbor (NN) representation of
a Boolean function f is a pair of disjoint subsets (P, N) of Rn such that for every
a ∈ Bn

• if a is positive then there exists b ∈ P such that for every c ∈ N it holds
that d(a, b) < d(a, c),

• if a is negative then there exists b ∈ N such that for every c ∈ P it holds
that d(a, b) < d(a, c).

The vectors in P (resp., N) are called positive (resp. negative) prototypes. The
size of the representation is |P ∪ N |. The nearest neighbor complexity of f ,
NN(f), is the minimum of the sizes of the NN representations of f .

Analogously, we may define a Boolean nearest neighbor representation of a
Boolean function.

Definition 9 (Hajnal et al. [2022]). A Boolean nearest neighbor (BNN) repre-
sentation of a Boolean function f is a pair of disjoint subsets (P, N) of Bn such
that for every a ∈ Bn

• if a is positive then there exists b ∈ P such that for every c ∈ N it holds
that dH(a, b) < dH(a, c),

5

• if a is negative then there exists b ∈ N such that for every c ∈ P it holds
that dH(a, b) < dH(a, c).

The Boolean nearest neighbor complexity of f , BNN(f), is the minimum of the
sizes of the BNN representations of f .

We remark here, that there is in fact no difference between using Euclidean
and Hamming distance when considering Boolean prototypes. This is due to the
fact that that for any two vectors x, y ∈ Bn, d(x, y) =

√︂
dH(x, y). Thus any BNN

representation of a function f , is also an NN representation of the same function
f .

Taking inspiration from machine learning, we may not only look for the nearest
neighbor, but the nearest k neighbors and look for the majority class. Thus we
may also define k-nearest neighbors.

Definition 10 (Hajnal et al. [2022]). A k-nearest neighbor (k-NN) representation
of a Boolean function f is a pair of disjoint subsets (P, N) of Rn such that for
every a ∈ Bn

• a is positive if and only if at least k
2 of the k vectors in P ∪N closest to a

belong to P .

Here we assume that for every a, the k smallest distances of a from the prototypes
are all smaller than the other |P ∪ N | − k distances from the prototypes. The
k-nearest neighbor complexity, k-NN(f), of f is the minimum of the sizes of the
k-nearest neighbor representations of f .

2.2 Some Functions and Their Complexity
It is easy to see that any non-constant Boolean function requires at least two
prototypes. We also make the following simple observation.
Observation. For any Boolean function f , it holds that

NN(f) ≤ BNN(f) ≤ 2n

Proof. There are more vectors in Rn then in Bn, and thus in general at most
as many real as Boolean prototypes are needed to represent any function. The
last inequality follows from the fact that we may take all Boolean vectors as
prototypes.

In this section, we discuss the complexity of some specific Boolean functions.
We begin by several results from Hajnal et al. [2022].

Theorem 1. The following statements hold:

(a) For any symmetric function f , NN(f) ≤ n + 1.

(b) For any threshold function f , NN(f) = 2.

6

Proof. We first prove the part (a). Let f be a symmetric function. Consider
the prototypes pl = (l

n
, . . . , l

n
) for l ∈ {0, 1, . . . , n}. Let P = {pl | l ∈ If} and

N = {pl | l ̸∈ If}. We claim that (P, N) is a nearest neighbor representation of f .
Let y ∈ Bn be such that |y| = w. Consider the hyperplane ∑︁n

i=1 xi = w, defined
by its normal vector (1, 1, . . . , 1). Then y lies on this hyperplane. Moreover, the
line L = {(t, t, . . . , t) ∈ Rn | t ∈ R} is orthogonal to it, since it is the extension of
the normal vector of the hyperplane. Since pw is exactly the intersection of the
hyperplane and the line, it is in fact closer to y than any other x ∈ L. Thus pw

is indeed the closest prototype to y, and the result follows.
As for part (b), let w1, . . . , wn be the weights of threshold function f and let

t be its threshold. Consider the hyperplane H = ∑︁n
i=1 wixi = t and let L be

the line orthogonal to it. We first show that without loss of generality we may
assume that no Boolean point lies on the hyperplane H. Suppose that there is
y ∈ Bn such that y ∈ H. Let z ∈ Bn be the closest negative vector to H. Then
let ε := d(H,z)

2 . Consider now the hyperplane H′ = ∑︁n
i=1 wixi = t − ε. Then H′

describes the same threshold function f and y ̸∈ H.
Let x be the intersection of the hyperplane and L. Let p be such that p ∈

L, ∑︁n
i=1 wipi > t and d(x, p) = 1. Let q be such that q ∈ L, ∑︁n

i=1 wiqi < t
and d(x, q) = 1. Then all negative Boolean vector lie on the same side of the
hyperplane as q and are therefore closer to it than to p. Similarly for positive
vectors and p. Thus picking p for the single positive prototype and q for the
single negative prototype gives a nearest neighbor representation of f and the
claim follows.

Theorem 2. The following statements hold:

(a) BNN(PARn) = 2n.

(b) If n is odd then BNN(MAJn) = 2 and if n is even then BNN(MAJn) ≤
n
2 + 2.

(c) BNN(TH⌈n/3⌉
n) = 2Ω(n)

Proof. We first show part (a). Let p be a positive prototype. Let x be such that
dH(p, x) = 1. Then PARn(x) = 0 and there must exist a negative prototype q
closer to it than p. As dH(p, x) = 1, it must be that dH(q, x) = 0 and thus x = q.
Since this must hold for all positive and negative prototypes, the claim follows.

For part (b), let us first assume that n is odd. Then we may pick the all-ones
vector as the single positive prototype and the all-zeros vector as the single neg-
ative prototype and obtain a Boolean nearest neighbor representation of MAJn.
Now we may assume that n is even. Then let us pick the all-zeros vector as the
single negative prototype q and arbitrary n

2 + 1 of the n vectors of weight n− 1
as the positive prototypes. Consider x such that |x| = n/2. Then MAJn(x) = 1
and moreover, dH(x, p) = n

2 − 1 for the closest positive prototype to x, p. This is
due to the fact that out of the n

2 +1 positive prototypes, one must match the half
of the coordinates where x has ones, and further, it must have exactly one zero
in the other half of the coordinates. As dH(x, q) = n

2 , p is the closest prototype
for x and x is classified correctly.

Let us now show part (c). Let t := ⌈n/3⌉. Consider a positive vector x ∈ Bn

such that |x| = t, and the positive prototype closest to it, say p. We first claim

7

that x ≤ p. Suppose for contradiction that it is not. Then there is an index
i ∈ {1, . . . , n} such that xi = 1 and pi = 0. Let y be the vector obtained by
flipping the ith coordinate of x to 0. Then |y| = t− 1 and y is a negative vector.
Let q be negative prototype closest to y. Then:

dH(x, p) = dH(y, p) + 1 > dH(y, q) + 1 (2.1)

since q must be closer to y than p. But on the other hand,

dH(x, p) < dH(x, q) ≤ dH(y, q) + 1 (2.2)

since p must be closer to x than q. As (2.1) and (2.2) cannot both be true, we
have arrived at a contradiction. By a symmetric argument, it can be shown that
for any y of weight t− 1 and the closest negative prototype to it q, q ≤ y.

We have now shown that for any x of weight t, there exists a negative prototype
q such that q ≤ x and thus dH(x, q) ≤ t. So for a positive prototype p closest to
x it must hold that dH(x, p) < t and thus |p| < 2t. In this case we say that such
a p covers x.

We now count the prototypes. There are
(︂

n
t

)︂
vectors of weight t. Each positive

prototype of may cover at most
(︂

2t
t

)︂
of them, since they are all of weight at most 2t,

and t changes of coordinates are needed to obtain a vector of weight t. Therefore
we need at least (︂

n
t

)︂
(︂

2t
t

)︂ = 2Ω(n)

positive prototypes.

As we will discuss in the next chapter, many representation of Boolean func-
tions are based on lists of Boolean vectors, such as MODS in Darwiche and
Marquis [2002] and SL in Čepek [2022]. Motivated by those results, we will only
consider BNN as this language also consists of lists of Boolean vectors. Theorem
2 will prove to be crucial in proving many results about this representation, which
we present in Chapters 4 and 5

8

3. Knowledge Compilation Map
This chapter serves as an introduction to the topic of knowledge compilation. We
explain the particular measures used to compare one representation of Boolean
functions to another. We set up the playing field for the next chapters, where
we finally place BNN within the knowledge compilation map of Darwiche and
Marquis [2002].

3.1 Standard Knowledge Representation Lan-
guages

We begin by defining some standard languages used in knowledge compilation,
as defined in Darwiche and Marquis [2002]. We will later use these languages to
explain how different representations are compared within the knowledge com-
pilation map, and to build the intuition for the results that we will show in the
final two chapters.

Definition 11. A sentence in Negation Normal Form (NNF) is a rooted, directed
acyclic graph (DAG) where each leaf node is labeled with true, false, X or ¬X,
for some variable X; and each internal node is labeled with ∧ or ∨ and can have
arbitrarily many children. The size of a sentence Σ in NNF, denoted |Σ|, is the
number of its DAG edges. Its height is the maximum number of edges from the
root to some leaf in the DAG.

We remark that an NNF can be thought of as a Boolean formula, where we
are only allowed to negate variables.

Figure 3.1: A sentence in the NNF language.

By restricting what the structure of an NNF looks like, we may define more
languages. By restricting the height of the underlying DAG as well, we obtain
CNF and DNF languages.

Definition 12. We call an NNF sentence of height 2 which is rooted at an ∧
node whose children are all ∨ nodes a CNF sentence. We call each child of the
root a clause. We call a clause consistent if it does not contain both a variable
and its negation. We denote the language of all such sentences by CNF.

9

Definition 13. We call an NNF sentence of height 2 which is rooted at an ∨
node whose children are all ∧ nodes a DNF sentence. We call each child of the
root a term. We call a term consistent if it does not contain both a variable and
its negation. We denote the language of all such sentences by DNF.

In order to introduce more languages, we define the notions of prime implicates
and implicants.

Definition 14. Let C be a clause and f be Boolean function. We say that C is
an implicate of f if f(x) = 1 =⇒ C(x) = 1 for any x ∈ Bn. Moreover, we call
C a prime implicate if removing any literal from C results in a clause that is not
an implicate of f .

Definition 15. Let T be a term and f be a Boolean function. We say that T is
an implicant of f if T (x) = 1 =⇒ f(x) = 1 for any x ∈ Bn. Moreover, we call
T a prime implicant if removing any literal from T results in a term that is not
an implicant of f .

Definition 16. For a Boolean function f , we call a CNF of f which contains
exactly all prime implicates of f the canonical CNF of f . We denote the language
where each function is represented by its canonical CNF by PI.

Definition 17. For a Boolean function f , we call a DNF of f which contains
exactly all prime implicants of f the canonical DNF of f . We denote the language
where each function is represented by its canonical DNF by IP.

We now define some more languages which are obtained by imposing vari-
ous structural restrictions on NNF. We denote by V ars(Σ) the variables of the
sentence Σ.

Definition 18. We say that a NNF DAG is decomposable if for children of an
and-node C1, . . . , Cn it holds that Vars(Ci) ∩Vars(Cj) = ∅, for i ̸= j. We denote
the language of decomposable NNFs by DNNF.

Definition 19. We say that a NNF DAG is deterministic if for children of an
or-node C1, . . . , Cn it holds that Ci∧Cj =⇒ 0, for i ̸= j. We denote the language
of deterministic NNFs by d-NNF. We denote the language of decomposable and
deterministic NNFs by d-DNNF.

Definition 20. We say that a NNF DAG is smooth if for children of an or-
node C1, . . . , Cn it holds that Vars(Ci) = Vars(Cj), for i ̸= j. We denote the
language of smooth NNFs by s-NNF. We denote the language of decomposable,
deterministic and smooth NNFs sd-DNNF.

Definition 21. We say that a node N in an NNF is a decision node if it is
labeled with true, false, or is an or-node whose children are of the form X ∧ α
and ¬X ∧ β, where X is a variable, and α and β are decision nodes. We call the
the language of sentences rooted at decision nodes BDD. We denote by FBDD
the language of decomposable BDDs. We denote by OBDD< the subset of BDD
where a total ordering of decision variables is imposed. The union of all OBDD<

is denoted by OBDD.

10

In fact, BDDs are the so-called binary decision diagrams. For an example,
see Figure 3.2. On the right, a BDD is depicted as an NNF. On the right, a
more standard illustration of the BDD is shown. That is, the nodes of the new
diagram correspond to the decision variables. The edges will then correspond to
the decisions made, i.e. they will be labeled by either 0 or 1, depending on the
value of the decision variable.

It is an easy observation that every NNF sentence that satisfies the decision
property is also deterministic. Thus BDD⊆ d-NNF.

FBDDs are usually referred to as read-once branching programs. That is, in
each from the root to a leaf in an FBDD, each variable appears at most once.

aaaa

Figure 3.2: A sentence in the BDD language (left) and the corresponding binary
decision diagram (right).

Definition 22. MODS is the language at the intersection DNF and sd-NNF.

We remark here that MODS corresponds exactly to the language where each
Boolean function is represented by listing all of its models. Similarly, it is possible
to define the language ¬MODS, by a list of all non-models.

Recently, several new languages have been defined and studied in the context
of knowledge compilation.

Definition 23 (Berre et al. [2018]). A pseudo-Boolean constraint is of the form∑︁n
i=1 aili ∆ k where n ∈ N, ai ∈ {Z}, li is a literal, ∆ ∈ {<,≤, =,≥, >} and k ∈

Z. A pseudo-Boolean constraint is normalized if ∀i ∈ {1, . . . , n}: ai ∈ N, ∆ =≥,
k ∈ N and each variable appears in the constraint exactly once. A normalized
pseudo-Boolean constraint is a cardinality constraint if ∀i ∈ {1, . . . , n}: ai = 1.
We denote the language of conjunctions of pseudo-Boolean constraints by PBC
and the language of conjunctions of cardinality constraints by CARD.

Definition 24 (Čepek and Chromý [2020]). Let < define a total order on the
set of all propositional variables. Let X be a subset of propositional variables of
size n, and let f be a Boolean function on variables from X. Consider a vector
x ∈ {0, 1}n where the bits of x correspond to the variables of X in the prescribed
order <. Each such vector x can be in a natural way identified with a binary

11

number from [0, 2n − 1], so for every x > 0 the vector x − 1 is well defined.
We call x ∈ {0, 1}n a switch of f with respect to order <, if f(x − 1) ̸= f(x).
The list of all switches of f with respect to < is called the switch-list of f with
respect to <. The switch-list of f with respect to < together with the function
value f(0) is called the switch-list representation (SLR) of f with respect to <.
The set of switch-list representations with respect to < (of all functions) forms
the propositional language SL<. Finally, the language SL is the union of SL<

languages over all total orders on the set of propositional variables.

3.2 Succinctness
We now discuss the way we may compare different representations of Boolean
functions with respect to their size. This is the notion of succinctness.

Definition 25. Let L1 and L2 be two representations of Boolean functions L1 is
at least as succinct as L2, denoted L1 ≤ L2, if and only if there exists a polynomial
p such that for every sentence α ∈ L2, there exists an equivalent sentence β ∈ L1
where |β| ≤ p(|α|).

As usual, we denote by < the strict relation. That is, L1 is strictly more
succinct than L2, denoted by L1 < L2, if L1 ≤ L2 but L2 ̸≤ L1. In Figure 3.3 we
show a diagram representing the known succinctness results.

Figure 3.3: Diagram representing known succinctness results. The languages
included are from Darwiche and Marquis [2002], Berre et al. [2018] and Čepek
and Chromý [2020]. An edge L1 → L2 indicates that L1 is strictly more succinct
than L2.

.

12

We present here the standard technique of showing succinctness results. In
order to show that L1 ≤ L2, it is necessary to find a construction transforming
a sentence in language L2 to one in L1 polynomial in its size. To show that the
relation is strict, it is necessary to show that there exists a family of functions
with an increasing number of variables which has small representations in L1, but
exponentially large ones in L2.

For example, consider the languages CNF and PI. Since PI is a subset of CNF,
CNF≤PI holds trivially. However, since there are functions with exponentially
many prime implicates but a small CNF, the relation is strict.

3.3 Queries
We now move on to the measure of tractability of a language. The first way to
do this is by seeing how hard it may be to answer certain queries.

Definition 26. We say that knowledge representation language L supports query
Q if there is a polynomial time algorithm that provides the answer to the query,
given a sentence in L which represents a function f and possibly some additional
input. The query Q may be one of the following:

• CO, checking whether there is a model of f ;

• VA, checking whether f is a tautology;

• CE, checking whether f implies a given clause C;

• IM, checking whether f is implied by a given term T ;

• EQ, checking whether two sentences Σ and Φ from L represent the same
function f ;

• SE, checking whether a given sentence Σ implies another given sentence Φ;

• CT, finding the number of models of f ;

• ME, enumerating all models of f .

In Darwiche and Marquis [2002] (page 2), a representation language is called a
target compilation language if it supports CE. That is, languages supporting this
query qualify as possibly useful, as it may be easy to deduce some information
about a function in polytime.

3.4 Transformations
The next measure of tractability is one which allows us to see how efficiently we
can transform a sentence in a language.

Definition 27. We say that knowledge representation language L supports trans-
formation T if there is a polynomial time algorithm that, given a sentence in L
which represents a function f and possibly some additional input, outputs the
representation in the same language of a new function g obtained via the trans-
formation. The transformation T may be one of the following:

13

Figure 3.4: Table of query results, as per Čepek [2022]. Here ✓ denotes that a
transformation can be done in polynomial time, ◦ denotes that it cannot be done
in polynomial time unless P = NP and ? denotes unknown results.

• CD, conditioning f on given term T ; that is, finding the function obtained
by satisfying all literals in the term T , denoted f | T ;

• FO, forgetting a subset of variables X from f ; that is, finding the function
∃X.f ;

• SFO, forgetting a single variable x; that is, finding the function ∃x.f ;

• ∧C, conjunction of a finite set of functions;

• ∧BC, conjunction of two functions;

• ∨C, disjunction of a finite set of functions;

• ∨BC, disjunction of two functions;

• ¬C, negation of a function.

14

Figure 3.5: Table of transformation results, as per Čepek [2022]. Here ✓ denotes
that a transformation can be done in polynomial time, • denotes that it cannot
be done in polynomial time and ◦ denotes that it cannot be done in polynomial
time unless P = NP .

15

4. Queries and Transformations
of BNN
In this chapter, we discuss results about tractability of BNN. In particular,
we show hardness results for some transformations and construct polytime algo-
rithms for one transformation and multiple queries. We manage to qualify BNN
as a target compilation language.

4.1 Transformations
We first consider what happens when transforming a Boolean function repre-
sented by a BNN. First, we make an easy observation about negation, which
follows directly from the definition of negation. Afterwards, we discuss hardness
of conditioning and forgetting.
Proposition 3. BNN supports ¬C.
Proof. We need to show that we can compute the negation of a Boolean function
in polynomial time. Consider an algorithm that given (P, N), outputs (N, P).
Since each vector in the hypercube is classified by (P, N) by definition of BNN,
the output gives exactly the opposite classification. Then this is a well-defined
BNN.
Theorem 4. BNN does not support CD.
Proof. It suffices to find a family of BNN formulas (Pn, Nn) and consistent terms
Tn, such that a representation of the function (Pn, Nn) | Tn cannot be computed
in polynomial time.

Let (Pn, Nn) be the smallest BNN representing the Boolean majority function
on n = 4k variables, for some k ∈ N. That is, (Pn, Nn) represent the function
TH2k

4k . We know that |(Pn, Nn)| ≤ n
2 + 2 = 2(k + 1) by Theorem 2. Let x1, . . . , xn

denote the variables of the threshold function. Notice that by conditioning on
some term T = xi we obtain a threshold function which has one variable fewer
and threshold smaller by one.

Let Tk = x1 ∧ x2 ∧ · · · ∧ xk. Then (Pn, Nn) | Tk = THk
3k. By Theorem 2,

we know that in order to represent such a function, we need a BNN of size
2Ω(3k) = 2Ω(n), and thus cannot produce it in polynomial time.
Lemma 5. Let m, n ∈ N, m ≤ n and let f = THm

n be a threshold function
such that f(x1, x2, . . . , xn) = 1 if and only if x1 + x2 + · · · + xn ≥ m. Fix some
i ∈ {1, 2, . . . , n}. Then

f |xi ≡ ∃xi.f(x1, x2, . . . , xn) .

Proof. From the proof of Theorem 4, we know that f |xi ≡ THm−1
n−1 . Thus it

suffices to show that also ∃xi.f(x1, x2, . . . , xn) ≡ THm−1
n−1 . We know that by

definition:
∃xi.f(x1, x2, . . . , xn) ≡

f(x1, x2, . . . , xi−1, 0, xi+1, . . . , xn) ∨ f(x1, x2, . . . , xi−1, 1, xi+1, . . . , xn) ≡
THm

n−1 ∨ THm−1
n−1

16

Notice now that the positive vectors of THm
n−1 form a subset of the positive vectors

of THm−1
n−1 . We may then omit THm

n−1 and hence ∃xi.f(x1, x2, . . . , xn) ≡ THm−1
n−1 ,

as desired.

Theorem 6. BNN does not support FO.

Proof. We combine Theorem 4 and Lemma 5. Then it is easy to represent THn/2
n ,

but hard to transform it by forgetting the first n/4 variables.

We have shown that BNN does not support two of the standard transforma-
tions from knowledge compilation. As can be observed in Figure 3.5, all repre-
sentations that have been considered and studied before supported at least CD.
This leads us to conclude that BNN would not be a suitable representation to
use when transforming Boolean functions.

While we have not proven that other non-trivial transformations are hard, we
conjecture that disjunction and conjunction are hard, even in the bounded case.
Thus far it is not clear how one would be able to find the ∨ or ∧ of two BNNs.

We have seen that FO is hard when it comes to BNNs. We conjecture that
its restricted variant, SFO, is hard as well. That is, we conjecture that there is
a family of functions where conditioning on a single variable yields a function
requiring a BNN of exponential size.

Finally, as we have observed that for threshold functions forgetting and con-
ditioning behave in the same way, we note that a transformation analogous to
singleton forgetting can be considered. That is, we conjecture that even singleton
conditioning (SCD) is hard for BNN. Note that SCD is not considered in Dar-
wiche and Marquis [2002] because all standard representation languages support
CD and hence support SCD as well.

4.2 Queries
We begin with a couple of simple observations regarding query answering. Just
from the definition of BNN, we derive two simple algorithms, for consistency
and validity checking.

Proposition 7. BNN supports CO.

Proof. Notice that for a Boolean function represented by a BNN to evaluate to 1
for some input, it is necessary and sufficient that there exists at least one positive
prototype. Then there is an algorithm which checks consistency in constant time,
by simply checking whether the set of positive prototypes in non-empty.

Proposition 8. BNN supports VA.

Proof. Similarly as above, we observe that for a Boolean function represented by
a BNN to ever evaluate to 0, it is necessary and sufficient for there to be any
negative prototype. Thus an algorithm outputting 1 if and only if there are no
negative prototypes checks validity in constant time.

We now show that BNN qualifies as a target compilation language, as defined
by Darwiche and Marquis [2002]. In particular, this means that BNN supports
clausal entailment queries.

17

Theorem 9. BNN supports IM.

Proof. Let f be a Boolean function and let (P, N) be a BNN representing it. Let
T = l1 ∧ · · · ∧ lk be a consistent term. We wish to find a polytime algorithm
determining whether T =⇒ f . Without loss of generality, we may assume that
∀1 ≤ i ≤ k : li ∈ {xi,¬xi}, since otherwise we may relabel the variables. Let y ∈
Bk be such that yi = 1 if li = xi and yi = 0 if li = ¬xi. Let H denote the subcube
of Bn determined by the term T . That is, H := {x ∈ Bn | ∀1 ≤ i ≤ k : xi = yi}.
Then T =⇒ f if and only if there is no negative vector inside H.
If there is a negative prototype inside H, we are done as T cannot be an implicate
of f . Suppose then that there are no negative prototypes inside H and let N ′

be the set of projections of all negative prototypes into H. In particular, N ′ :=
{projT (q) | q ∈ N}, where projT (q)i = yi for 1 ≤ i ≤ k and projT (q)i = qi

otherwise.
Suppose that for every q′ = projT (q) ∈ N ′ there exists a positive prototype
p ∈ P which is closer to it than q. That is, suppose that for every projection q′,
f(q′) = 1. We now claim that in this case, there are no negative vectors inside
H.
Let us assume for contradiction that there exists such a vector x. Let x ∈ H be
such that f(x) = 0 and let q be the closest prototype to x. Then

dH(q, x) = dH(q, q′) + dH(q′, x) > dH(p, q′) + dH(q′, x) ≥ dH(p, x),

where p is the positive prototype closest to q′ and the equality holds because
in dH(q, q′) only distance within the coordinates fixed by H is measured and in
dH(q′, x) only distance within H is measured. The first inequality follows from the
assumption and the second from the triangle inequality for Hamming distance.
Therefore in order to check whether there is a negative vector inside H, it suffices
to look for a projection of a negative prototype which is negative as well.
This idea gives us Algorithm 1. The algorithm runs in time O(n|P ||N |), as the
main part consists of the two nested for loops. In the worst case, the algorithms
considers all projections of negative prototypes, and calculates their distances to
each of the positive prototypes.

Corollary 10. BNN supports CE.

Proof. Let f be a Boolean function and let (P, N) represent it. Let C = l1∨· · ·∨lk
be a consistent clause. We wish to find a polytime algorithm determining whether
f =⇒ C. We know that (f =⇒ C) ≡ (¬C =⇒ ¬f). By DeMorgan laws, the
negation of a clause is a term. So let T = ¬C. Now, we may answer the question
by calling Algorithm 1 for inputs ¬f = (N, P) and T , and get the correct answer.
Since by Proposition 3 and Theorem 9 negation and implicant check can be done
in polynomial time, the claim follows.

We have now seen that BNN supports half of the standard knowledge com-
pilation queries. In this case, it is interesting that there exist polynomial time
algorithms for IM and CE. In previous results, the fact that a language supports
IM usually follows from the fact that it supports CD and VA. We have shown
that this is not the case for BNN, and we make note of this interesting behaviour
of the BNN language.

18

Algorithm 1 Checking whether a consistent term implies a BNN.
Input: (P, N) representing f : Bn → B and a consistent term T = l1 ∧ · · · ∧ lk
Output: IM(f, T)

N ′ ← {projT (q) | q ∈ N}
if N ∩N ′ ̸= ∅ then

return 0
end if
for q′ ∈ N ′ do

d← +∞
for p ∈ P do

d← min{d, dH(p, q′)}
if dH(q, q′) < d then

return 0
end if

end for
end for
return 1

The questions about whether BNN supports any of the other queries remain
open. We conjecture that BNN supports ME, while the remaining queries are
hard, i.e. that there are no polynomial time algorithms for EQ, SE and CT.

19

5. Succinctness of BNN
In this chapter, we present results about succinctness of BNN. In particular, we
prove the relations from the diagram in Picture 5.1.

Figure 5.1: Diagram representing BNN succinctness results. A solid directed
edge L1 → L2 indicates that L1 is strictly more succinct than L2. A dashed edge
represents incomparability results.

As described in Chapter 3, BDD is a subset of d-NNF. From the diagram on
Figure 3.3, we know that NNF<d-NNF and thus the top arrow in Figure 5.1 is
correct. We therefore begin by showing that BNN is strictly less succinct than
BDD.

Theorem 11. BDD < BNN.

Proof. It suffices to show that there exists a polynomial p such that for every
sentence α ∈ BNN, there exists an equivalent sentence β ∈ BDD where |β| ≤
p(|α|). For any α = (P, N), we will construct such a a binary decision diagram.
Let us assume that P ∪N = {p1, . . . , pk} and let x ∈ Bn. We build the BDD in
two steps:

1. We construct a gadget which for two fixed prototypes pi and pj checks which
one is closer to x.

2. We put a number of the gadgets together so that the prototype closest to
x is found and its value outputted.

We begin by building a BDD gadget. For any pi, pj ∈ P ∪N , we construct a
diagram Gi,j, as seen in Figure 5.2 for n = 3. We first compare each coordinate
of x with the corresponding coordinate of pi. Thus the nodes on level n + 1 of
the gadget reflect the value dH(x, pi). Consider for an example the gadget in
Figure 5.2 with x = (1, 0, 1) and pi = (0, 0, 1). In the first three coordinated
comparisons, we take the edges labelled N , Y and Y . As only one coordinate
differs, on level 4 we know that the value of dH(x, pi) is 1.

In the next n levels, we compare each coordinate of x with the corresponding
coordinate of pj. For the example above, consider pj = (0, 0, 0). Then the next

20

edges visited will have labels N , Y and N and thus dH(x, pj) = 2. The gadget
will thus determine which of the two prototypes is closer, and send us either to
a new gadget Gi,k or Gj,k for some k. For simplicity, this is depicted as either i
or j in Figure 5.2. We define the gadgets to break ties in favor of i. This choice
is arbitrary, as we will use the gadgets to find one of the nearest prototypes, and
those must all necessary belong to the same class, by the definition of BNN.

We note here that while the gadgets are defined to have nodes which check
for equality, those can simply be converted into decision nodes. This is due to
the fact that the decisions are predefined by the prototypes, as shown in Figure
5.3.

Figure 5.2: Gadget Gi,j for n = 3. Each equality node can be replaced by a
decision node, as shown in Figure 5.3.

Figure 5.3: A decision node that corresponds to the equality node if pi
2 = 0 (left)

and if pi
2 = 1 (right).

It now remains to build the final BDD using the gadgets. We can sequentially
test pairs of prototypes until the closest one is found. We do so by making a tree
of gadgets. It contains k − 1 levels. At each level i, we compare pi+1 with every
pj such that j < i, and add a directed edge pointing to the appropriate gadget
on the next level. After level k− 1, a closest prototype has been determined, and
a directed edge pointing to 1 (resp. 0) is added if the closest protype is positive
(resp. negative). The final BDD for a function with k prototypes is shown in
Figure 5.4.

We now show that we have constructed a BDD of polynomial size with respect
to the size of α. For vectors of length n, each gadget consists of (n+1)2−1 = O(n2)
decision nodes. As there are k prototypes, we need exactly ∑︁k−1

i=1 i = (k−1)k
2 =

21

Figure 5.4: BDD of a function with k prototypes, where τ(i) = 1 if and only if
the ith prototype is positive.

O(k2) gadgets. Hence the size of the constructed BDD is O(n2k2) = O(|α|2), as
desired.

To show that the inequality is strict, it suffices to consider the parity function.
From Chapter 2, we know that a BNN of this function requires 2n prototypes.
However, a BDD of the parity function on n variables can be of size 2n + 1, as
shown in Figure 5.5 for n = 4.

Figure 5.5: A binary decision diagram for the parity function on 4 variables.

In order to shown the rest of the results, we will need the following lemma.

Lemma 12 (DiCicco et al. [2024]). Let f be a Boolean function on n variables.
If the subgraph of Bn induced by f−1(1) has m connected components then any
BNN representation of f has at least m prototypes.

Proof. Let C be a connected component of the subgraph of Bn induced by f−1(1).
Let δ(C) = {x ∈ Bn | dH(x, C) = 1}. Then δ(C) ⊆ f−1(0).

22

Let P ∪ N be a BNN representing f and let p ∈ P be the nearest positive
prototype to some x ∈ C. Suppose for contradiction that p ̸∈ C. Then there must
be y ∈ δ(C) such that y is on a shortest path from x to p and thus dH(x, p) =
dH(x, y) + dH(y, p). Since f(y) = 0, there must be a negative prototype q ∈ N
such that dH(y, q) < dH(y, p). But then

dH(x, q) ≤ dH(x, y) + dH(y, q) < dH(x, y) + dH(y, p) = dH(x, p),

where the first inequality follows from the triangle inequality for Hamming dis-
tance. But then q is closer to x than p, contradicting the minimality of p. Thus,
every connected component C must contain a positive prototype.

Corollary 13. Let f be a Boolean function and let x be positive vector such
that x is isolated in the subgraph induced by f−1(1). Then x must be a positive
prototype in any BNN representation of f .

Corollary 14. Let f be a Boolean function on n variables. If the subgraph of Bn

induced by f−1(0) has m connected components then any BNN representation of
f has at least m prototypes. In particular, if x is a negative vector such that x is
isolated in the subgraph induced by f−1(0), then x must be a negative prototype
in any BNN representation of f .

Proposition 15. BNN < MODS.

Proof. We first show that BNN ≤ MODS. Suppose that a Boolean function f
has m models and let M be the set of all models and let δ(M) be as in the proof
of Lemma 12. Let

(P, N) = (M, δ(M)).
We claim that this (P, N) is a BNN representation of f .

Suppose that x is such that f(x) = 1. Then x ∈M = P . Otherwise, we have
f(x) = 0. If x ∈ N , we are done. If x ̸∈ N , then dH(x, M) ≥ 2. But then any
path from x to a model must pass through a point in δ(M) and thus through a
negative prototype.

In the worst case, all neighbors of all models need to be picked as negative
prototypes. Thus we can construct a BNN with at most m + nm prototypes, and
we have shown BNN ≤ MODS.

It remains to show that MODS ̸≤ BNN. Let f be the function on n-
dimensional vectors which is constantly 1. Then we may represent f by a single
positive prototype and no negative ones. On the other hand, there are 2n models
of f , and MODS cannot be more succinct than BNN.

Corollary 16. BNN < ¬MODS.

Proof. The corollary follows by an argument analogous to the one for MODS.

We now show that BNN is incomparable to CNFs and DNFs.

23

Lemma 17. BNN ̸≤ CNF.

Proof. It suffices to show that there is a Boolean function with CNF representa-
tion of size polynomial in the number of variables, which cannot be represented
by a BNN of polynomial size. We construct a family of such functions as in Di-
Cicco et al. [2024].
Let n = 4k for some positive integer k. Let Si := {xi, xi+1, xi+2, xi+3} for
1 ≤ i ≤ 4(k − 1) + 1. We define the CNFs

ϕi :=(xi ∨ xi+1 ∨ xi+2 ∨ xi+3) ∧ (xi ∨ xi+1 ∨ xi+2 ∨ ¬xi+3)∧
(xi ∨ xi+1 ∨ ¬xi+2 ∨ xi+3) ∧ (xi ∨ ¬xi+1 ∨ xi+2 ∨ xi+3)∧
(¬xi ∨ xi+1 ∨ xi+2 ∨ xi+3) ∧ (¬xi ∨ ¬xi+1 ∨ ¬xi+2 ∨ ¬xi+3)∧
(¬xi ∨ ¬xi+1 ∨ ¬xi+2 ∨ xi+3) ∧ (¬xi ∨ ¬xi+1 ∨ xi+2 ∨ ¬xi+3)∧
(¬xi ∨ xi+1 ∨ ¬xi+2 ∨ ¬xi+3) ∧ (xi ∨ ¬xi+1 ∨ ¬xi+2 ∨ ¬xi+3).

That is, ϕi = 1 if and only if exactly two of the variables in Si are 1. Let

ϕ :=
k⋀︂

j=1
ϕ4(j−1)+1.

Let f be the function that ϕ represents. Then ϕ is a CNF representation of f of
size 40k = 10n.
We now claim that a BNN representation of f cannot be of polynomial size. Let
x ̸= y ∈ Bn. Suppose that f(x) = 1 and f(y) = 1. Since x ̸= y, they must differ
in at least one of the k disjoint sets of coordinates Si, and therefore in at least
2 coordinates. Hence dH(x, y) ≥ 2, and each positive vector is isolated in the
subgraph of Bn induced by f−1(1).

It now remains to count the positive vectors. Consider first some ϕi. There
are exactly

(︂
4
2

)︂
ways to pick the two positive variables. As the variables of each

ϕi form disjoint sets, there are
(︂

4
2

)︂k
= 6k positive vectors. Hence by Corollary 13,

at least 6k prototypes are needed.

Lemma 18. CNF ̸≤ BNN.

Proof. Consider the majority function on n variables. Any CNF of this function
must be of exponential size [Darwiche and Marquis [2002]]. However, as shown
in Chapter 2, this function has a BNN representation of size ≤ n

2 + 2, and so the
claim follows.

Theorem 19. BNN is incomparable with CNF.

Proof. We combine Lemma 17 and Lemma 18 and obtain the result.

Corollary 20. BNN is incomparable with DNF.

Proof. To show that DNF ̸≤ BNN it again suffices to consider the majority
function.
To show that BNN ̸≤ DNF consider the function ¬ϕ where ϕ is as defined in
the proof of Lemma 17. After an application of DeMorgan laws, we obtain a
DNF formula of polynomial size representing the function ¬f . However, we may
repeat the argument from Lemma 17 for the negative vectors of ¬f and conclude
that an exponential number of negative prototypes is required.

24

Corollary 21. BNN is incomparable with both IP and PI.

Proof. Consider the function ϕ from the proof of Lemma 17. Let us first identify
the prime implicates of each ϕi. In order to see that ϕi = 0 it suffices to check
whether any three variables have either all been set to 1 or to 0. Thus the
canonical CNF of ϕi is

(xi ∨ xi+1 ∨ xi+2) ∧ (xi ∨ xi+1 ∨ xi+3)∧
(xi ∨ xi+2 ∨ xi+3) ∧ (xi+1 ∨ xi+2 ∨ xi+3)∧
(¬xi ∨ ¬xi+1 ∨ ¬xi+2) ∧ (¬xi ∨ ¬xi+1 ∨ ¬xi+3)∧
(¬xi ∨ ¬xi+2 ∨ ¬xi+3) ∧ (¬xi+1 ∨ ¬xi+2 ∨ ¬xi+3).

Furthermore, as the subformulas ϕi are defined on disjoint sets of variables, the
set of all their prime implicates is exactly the set of the prime implicates of f .
Thus there are exactly 8k prime implicates of f , and so BNN ̸≤PI follows.

The relation PI̸≤BNN follows from the fact that CNF̸≤BNN as the PI lan-
guage is a subset of the CNF language.

By symmetric arguments, the same can be shown for the language IP.

We now briefly discuss OBDD. In particular, we show one side of its incom-
parability to BNN.

Proposition 22. BNN ̸≤ OBDD. That is, there is a Boolean function with
OBDD representation of polynomial size, which cannot be represented by a BNN
of polynomial size.

Figure 5.6: The construction of OBDD for TH⌊n/3⌋
n

Proof. Recall that the function TH⌊n/3⌋
n can only be represented by a BNN of ex-

ponential size. We claim that this function has a polysize OBDD representation.
For simplicity we consider only n such that n = 3k. We construct a diagram
representing this function as follows:

25

We start by making an undirected k× (2k + 1) grid. We orient all horizontal
edges to the right, and label them by 0. The vertical edges should be oriented
downwards, and labeled by 1.

Now we add labels to the nodes. For each row of the grid i ∈ {1, 2, . . . , k},
we label its nodes as xi, xi+1, . . . , xi+2k.

Finally, we add two nodes, 1 and 0. It remains to add edges labeled 1 con-
necting each vertical path with 1, and edges labeled 0 connecting each horizontal
path to 0. The constructed OBDD is shown in Figure 5.6.

We now claim that the construction is indeed an OBDD representation of
THn/3

n . Consider first all paths which lead to 1. Each of them consists of exactly
n/3 edges labeled 1, and thus at least n/3 variables have value 1. Similarly, all
paths to 0 have exactly 2k+1 edges labelled 0, and thus at most n/3−1 variables
can be set to 1 in that case.

We note here that it can in fact be shown that any symmetric function can be
represented by a OBDD of polynomial size, as shown by Wegener [2000]. Thus
the proof of Proposition 22 is just a special case of a more general result but we
present it here as it is much simpler and suffices for the proof of BNN ̸≤OBDD.

The other direction of the above comparison remains an open question. We
conjecture that also OBDD ̸≤BNN. It also remains to answer similar questions
about the newer knowledge representation languages.

26

6. Conclusion
We have examined the Boolean nearest neighbor representation of Boolean func-
tions. After reviewing the already known results about the complexity of this
representation, as introduced by Hajnal et al. [2022], as well as the setup of
the knowledge compilation map as per Darwiche and Marquis [2002], we were
able to compare the BNN representation to standard knowledge representation
languages.

We have shown that it is easy to negate a BNN, but that some other transfor-
mations are hard. In particular, unlike all standard knowledge representation lan-
guages, BNN does not support polynomial-time conditioning. As a consequence
of this, we showed that BNN does not support polynomial-time forgetting as well.

The results are different for the standard queries. It is easy to check whether
a BNN is consistent or valid. We have presented an algorithm which performs
implicant and clausal entailment checks in polynomial time. We conjecture that
more queries can be answered in polynomial time.

With respect to its support of different queries and transformations, BNN
appears to have some unique properties. In particular, the hardness of condition-
ing makes it stand up among other languages. However, it is possible to check
clausal entailment in polynomial time, which makes it a target compilation lan-
guage. For other target languages, this follows from the fact that they support
polynomial-time conditioning and consistency check, which is not the case for
BNN.

In terms of succinctness, BNN lies between BDD and MODS. It is incompara-
ble with CNF, DNF, PI and IP. We conjecture that it is also incomparable with
OBDD.

Recent research on nearest neighbor representations of Boolean functions in
DiCicco et al. [2024] and Kilic et al. [2023] asks and answers many questions
about the representation, but not in the context of knowledge compilation. We
have answered several questions that appear in this context.

27

Bibliography
Franz Aurenhammer, Gerd Stöckl, and Emo Welzl. The post office problem for

fuzzy point sets. In Workshop on Computational Geometry, volume 553 of
Lecture Notes in Computer Science, pages 1–11. Springer, 1991.

Daniel Le Berre, Pierre Marquis, Stefan Mengel, and Romain Wallon. Pseudo-
boolean constraints from a knowledge representation perspective. In IJCAI,
pages 1891–1897. ijcai.org, 2018.

Ondřej Čepek. Switch lists in the landscape of knowledge representation lan-
guages. In FLAIRS, 2022.

Ondřej Čepek and Milos Chromý. Properties of switch-list representations of
boolean functions. J. Artif. Intell. Res., 69:501–529, 2020.

Adnan Darwiche and Pierre Marquis. A knowledge compilation map. J. Artif.
Intell. Res., 17:229–264, 2002. doi: 10.1613/jair.989. URL https://doi.org/
10.1613/jair.989.

Mason DiCicco, Vladimir Podolskii, and Daniel Reichman. Nearest neighbor com-
plexity and boolean circuits. Electron. Colloquium Comput. Complex., pages
TR24–025, 2024.

Péter Hajnal, Zhihao Liu, and György Turán. Nearest neighbor representations
of boolean functions. Inf. Comput., 285(Part B):104879, 2022. doi: 10.1016/j.
ic.2022.104879. URL https://doi.org/10.1016/j.ic.2022.104879.

Kordag Mehmet Kilic, Jin Sima, and Jehoshua Bruck. On the information ca-
pacity of nearest neighbor representations. In ISIT, pages 1663–1668. IEEE,
2023.

Ingo Wegener. Branching Programs and Binary Decision Diagrams. SIAM, 2000.

Zhongheng Zhang. Introduction to machine learning: k-nearest neighbors. Annals
of Translational Medicine., 4(11):218, 2016.

28

https://doi.org/10.1613/jair.989
https://doi.org/10.1613/jair.989
https://doi.org/10.1016/j.ic.2022.104879

List of Figures

3.1 A sentence in the NNF language. 9
3.2 A sentence in the BDD language (left) and the corresponding bi-

nary decision diagram (right). 11
3.3 Diagram representing known succinctness results. The languages

included are from Darwiche and Marquis [2002], Berre et al. [2018]
and Čepek and Chromý [2020]. An edge L1 → L2 indicates that
L1 is strictly more succinct than L2. 12

3.4 Table of query results, as per Čepek [2022]. Here ✓ denotes that a
transformation can be done in polynomial time, ◦ denotes that it
cannot be done in polynomial time unless P = NP and ? denotes
unknown results. 14

3.5 Table of transformation results, as per Čepek [2022]. Here ✓ de-
notes that a transformation can be done in polynomial time, •
denotes that it cannot be done in polynomial time and ◦ denotes
that it cannot be done in polynomial time unless P = NP 15

5.1 Diagram representing BNN succinctness results. A solid directed
edge L1 → L2 indicates that L1 is strictly more succinct than L2.
A dashed edge represents incomparability results. 20

5.2 Gadget Gi,j for n = 3. Each equality node can be replaced by a
decision node, as shown in Figure 5.3. 21

5.3 A decision node that corresponds to the equality node if pi
2 = 0

(left) and if pi
2 = 1 (right). 21

5.4 BDD of a function with k prototypes, where τ(i) = 1 if and only
if the ith prototype is positive. 22

5.5 A binary decision diagram for the parity function on 4 variables. . 22
5.6 The construction of OBDD for TH⌊n/3⌋

n 25

29

List of Algorithms
1 Checking whether a consistent term implies a BNN. 19

30

	Introduction
	Outline
	Notation and Definitions

	Nearest Neighbor Representations of Boolean Functions
	Motivation and Definition
	Some Functions and Their Complexity

	Knowledge Compilation Map
	Standard Knowledge Representation Languages
	Succinctness
	Queries
	Transformations

	Queries and Transformations of BNN
	Transformations
	Queries

	Succinctness of BNN
	Conclusion
	Bibliography
	List of Figures

