
MASTER THESIS

Marek Zelený

Effective implementation of DP
elimination

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the master thesis: RNDr. Petr Kučera, Ph.D.
Study programme: Computer Science - Artificial

Intelligence

Prague 2024

I declare that I carried out this master thesis on my own, and only with the
cited sources, literature and other professional sources. I understand that my
work relates to the rights and obligations under the Act No. 121/2000 Sb., the
Copyright Act, as amended, in particular the fact that the Charles University has
the right to conclude a license agreement on the use of this work as a school work
pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

Title: Effective implementation of DP elimination

Author: Marek Zelený

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: RNDr. Petr Kučera, Ph.D., Department of Theoretical Computer
Science and Mathematical Logic

Abstract: We develop an efficient implementation of Davis-Putnam (DP) elimina-
tion, an algorithm for eliminating variables from a conjunctive normal form (CNF)
formula. We use zero-suppressed binary decision diagram (ZBDD) for representing
CNF formulas. Our focus is on evaluating the effect of minimising the formula
during DP elimination by removing absorbed clauses. We also want to find a
suitable heuristic for selecting the order of eliminated variables. Our motivation
is compiling a CNF formula into a formula that is propagation-complete (PC).
The formula can be encoded into decomposable negation normal form (DNNF),
then back into CNF that contains auxiliary variables and implements domain
consistency. Our program can be used to eliminate these auxiliary variables, thus
obtaining a PC formula equivalent to the original formula.

Keywords: DP resolution, satisfiability, conjunctive normal form, ZBDD

Název práce: Efektivní implementace DP eliminace

Autor: Marek Zelený

Katedra: Katedra teoretické informatiky a matematické logiky

Vedoucí bakalářské práce: RNDr. Petr Kučera, Ph.D., Katedra teoretické infor-
matiky a matematické logiky

Abstrakt: Vyvinuli jsme efektivní implementaci Davis-Putnamovy (DP) elimi-
nace, algoritmu, který eliminuje proměnné z formule v konjunktivní normální
formě (KNF). Použili jsme tzv. zero-suppressed binární rozhodovací diagramy
(ZBDD) pro reprezentaci KNF formulí. Zaměřili jsme se na zhodnocení efektu
průběžné minimalizace formule odstraňováním absorbovaných klauzulí. Také jsme
hledali vhodnou heuristiku pro pořadí, ve kterém se proměnné eliminují. Naší
motivací je kompilace KNF formule do formy úplné vůči jednotkové propagaci, tzv.
propagation-complete (PC). Formuli můžeme zakódovat do DNNF (decomposable
negation normal form), poté zpět do KNF obsahující pomocné proměnné, která je
tzv. doménově konzistentní. Náš program lze použít k eliminaci těchto pomocných
proměnných, čímž získáme PC formuli ekvivalentní s původní formulí.

Klíčová slova: DP rezoluce, splnitelnost, konjunktivní normální forma, ZBDD

Contents

1 Introduction 6
1.1 Preliminaries . 7

1.1.1 Logical Formulas . 7
1.1.2 Boolean Functions and Decision Diagrams 8
1.1.3 Combination Sets . 9
1.1.4 DP Procedure . 10

2 ZBDDs 11
2.1 Reduced Ordered BDDs . 11
2.2 Zero-suppressed BDDs . 12

2.2.1 Attributed Edges . 13
2.2.2 Basic Operations . 14
2.2.3 Additional Operations . 15

3 DP Elimination 19
3.1 Using ZBDDs . 19
3.2 Variable Selection . 22

3.2.1 Ordering-based Methods 22
3.2.2 Low-hanging Fruits . 22
3.2.3 Optimisation-based Methods 24
3.2.4 Dynamic Methods . 26

3.3 Removing Tautologies . 26
3.4 Unit Propagation . 27
3.5 Formula Minimisation . 29

3.5.1 Absorbed Removal Over ZBDD 30
3.5.2 Absorbed Removal Over Watched Literals 31
3.5.3 Incremental Absorbed Removal 32
3.5.4 More Efficient Absorption Detection 33

3.6 Putting It All Together . 34

4 ZBDD Implementation 36
4.1 Sylvan Library . 36

4.1.1 Node Sharing, Result Caching, and Garbage Collection . . 37
4.1.2 Lace Framework . 38

4.2 Literal Mapping . 39
4.3 Algorithms . 40
4.4 Building ZBDDs . 42

4.4.1 Logarithmic Merging . 46

5 Programming Documentation 48
5.1 Technical Decisions . 48
5.2 Project Structure . 48
5.3 External Libraries . 48
5.4 Software Architecture . 49

5.4.1 Data Structures . 49

4

5.4.2 Algorithms . 50
5.4.3 Metrics . 51
5.4.4 IO . 52

5.5 Experiment Execution and Result Processing 52

6 User Documentation 54
6.1 Prerequisites . 54
6.2 Compilation and Tests . 54
6.3 Program Stack Size Limit . 55
6.4 Parameters and Options . 55

6.4.1 Files . 56
6.4.2 Algorithm . 56
6.4.3 Complete Minimisation . 56
6.4.4 Partial Minimisation . 57
6.4.5 Incremental Absorption Removal 58
6.4.6 Stop Conditions . 59
6.4.7 Sylvan . 60

6.5 Configuration Files . 60
6.6 File Formats . 61

6.6.1 DIMACS CNF . 61
6.6.2 Metrics Export . 62

6.7 Examples . 65

7 Experiments 67
7.1 Inputs . 67
7.2 Setup . 68
7.3 Algorithm Breakdown . 69
7.4 Experiment 1: Absorption Removal 73
7.5 Experiment 2: Variable Selection 76
7.6 Experiment 3: Parallelisation . 77
7.7 Experiment 4: Comparison With PCCompile 77

8 Conclusion 80

Bibliography 82

A Attachments 85
A.1 Software and Data Attachments 85

5

1 Introduction
The DP procedure, originally proposed in the 1960s by Davis and Putnam [1],

is one of the first algorithms deciding satisfiability of a formula in propositional
logic. It takes a CNF formula and eliminates its variables one by one, until it
either derives an empty clause or ends up with an empty formula. While a single
variable can be eliminated in polynomial time, the formula can grow exponentially
before all its variables are eliminated. Because of that, it is not practical to use
the DP procedure for deciding the SAT problem and more space-efficient methods
have been developed instead. However, there might be some other applications
for DP which only need to eliminate some of the formula’s variables.

One such application is obtaining a propagation-complete (PC) formula, a
concept introduced by Bordeaux and Marques-Silva [2]. This property can be
advantageous for constraint programming solvers using SAT encodings as a
consistency checking or propagation technique. Several algorithms were introduced
for compiling a CNF formula into an equivalent PC formula, most of those based
on iteratively adding new clauses, for example by Bordeaux and Marques-Silva [2]
or Kučera [3]. The issue with these algorithms is that finding these new clauses is
computationally expensive (NP-complete as shown by Babka et al. [4]).

Kučera and Savický [5] introduced a compilation algorithm of a formula in
DNNF into a PC formula with polynomial time complexity. This offers a different
approach for obtaining a PC formula — encode a CNF formula into DNNF (e.g.
using encodings by Darwiche [6] or Lagniez and Marquis [7]), then compile the
result back into CNF. Unfortunately, the intermediate DNNF formula can be
significantly larger than the original CNF formula. Moreover, the compilation
from DNNF to a PC CNF further grows the formula’s size while also introducing
auxiliary variables. These side-effects negatively impact the advantages of having
a PC formula in the first place. In order to mitigate the formula growth, we could
use an encoding from DNNF to CNF that implements domain consistency instead
of propagation completeness, resulting in a formula that is only PC on the original
variables, but not on the auxiliary ones. There are several such encodings, some
of which are described by Abío et al. [8]. This is where the DP procedure steps
in — we can use it to eliminate the auxiliary variables. Because DP elimination
preserves domain consistency of the remaining variables, we will end up with a
PC formula equivalent to the original CNF formula before it was encoded into
DNNF.

The goal of our thesis is to efficiently implement DP elimination that can
eliminate some specified range of variables from a given CNF formula. While
encodings of DNNF implementing domain consistency are in general smaller than
encodings implementing PC, the resulting CNF formula can still be significantly
larger than the original one. In order to handle large formulas, we want to use
efficient data structures for representing them. We were inspired by Chatalic
and Simon [9], who use a data structure called ZBDD (introduced by Minato [10])
to represent CNF formulas and perform the DP procedure over them. To fight
the bloating effect of DP elimination, we want to minimise the formula during the
course of the algorithm. Most notably, we would like to try removing absorbed
clauses (defined by Atserias et al. [11]). A necessary part of the thesis is developing

6

heuristics for selecting the order in which variables are eliminated.
As part of our thesis, we present results of experiments performed with our

implementation of DP elimination on formulas obtained by applying the CNF →
DNNF → CNF pipeline described earlier. We compare performance of various
configurations and parameter settings of the developed program. The objective
of these experiments is to determine efficiency of the implemented techniques,
namely absorption removal and variable selection heuristics. The experiments
also serve as a feasibility study of our approach with respect to the size of the
input formulas.

In our thesis, after basic definitions and notation in Section 1.1, we introduce
ZBDDs as a data structure for representing CNF formulas in Chapter 2. Then
we analyse the DP elimination algorithm with focus on using ZBDDs, including
possible optimisations and heuristics, in Chapter 3. After that, we move on to
more technical details regarding ZBDDs and their efficient implementation in
Chapter 4. We follow up with programming and user documentations of our
program in chapters 5 and 6. Finally, we present and analyse results of experiments
conducted with the program in Chapter 7.

1.1 Preliminaries
Before describing our approach in detail, we start by some general descriptions,

basic definitions, and notation used in our thesis.

1.1.1 Logical Formulas
Let X be a set of propositional variables. Variable x ∈ X can occur in a

propositional formula either as a positive literal x, or a negative literal ¬x. We
denote lit(X) the set of literals over X ; a literal l ∈ lit(X) is either x or ¬x
for some x ∈ X . A (partial) assignment A is a (partial) mapping from a set of
variables to Boolean values, i.e. A : X ‧‧➡ {0, 1}; we sometimes denote x̄ = A(x)
where A is obvious from (or unimportant for) the context.

In our thesis, we are mostly concerned with propositional formulas in conjunc-
tive normal form (CNF). A clause is a disjunction of literals, i.e. C = (l1∨· · ·∨ ln).
It is often practical to think of clauses as sets of literals C = {l1, . . . , ln}, so that
we can use notations such as l ∈ C, C1 ⊂ C2, etc. Note that in the set notation,
the empty set ∅ denotes the empty clause, which represents a contradiction (⊥).
A formula φ in CNF is a conjunction of clauses φ = C1 ∧ · · · ∧ Cn. Again, it is
practical to consider CNF formulas being sets of clauses so that C ∈ φ denotes a
clause in formula φ. Here the empty set ∅ denotes the empty formula, representing
a tautology (⊤). We denote Var(φ) the set of variables occurring in formula φ.

We use φ[A] to denote formula φ after applying assignment A to variables in
φ. Assignment A is complete for formula φ if Var(φ) ⊆ dom(A). Assignment A
satisfies formula φ if φ[A] evaluates to true (1). Formula φ is satisfiable if there
exists an assignment that satisfies it; otherwise φ is unsatisfiable (a contradiction).

Formula g is an implicate of formula φ, denoted φ |= g, if every assignment
satisfying φ also satisfies g. More often we use special cases like φ |= C or φ |= l
for clause C and literal l. Clause C2 is subsumed by clause C1 if C1 ⊆ C2. Note
that every subsumed clause is an implicate of its subsuming clause, i.e. if C1 ⊆ C2

7

then C1 |= C2. We use φ ⊢1 l to denote that literal l can be inferred by unit
propagation on formula φ. Unit propagation is sound but not complete, i.e. φ ⊢1 l
implies φ |= l, but not the other way around.

The concept of absorbed clauses was introduced by Atserias et al. [11], but we
will use a more intuitive definition from Pipatsrisawat and Darwiche [12]. Let φ
be a CNF formula, and C = (l1 ∨ · · · ∨ ln) be an implicate of φ. The clause C is
empowering w.r.t. φ if one of its literals li, called empowered literal, is such that:

φ ∧
⋀︂

j∈1..n, j ̸=i

¬lj ̸⊢1 ⊥ , and

φ ∧
⋀︂

j∈1..n, j ̸=i

¬lj ̸⊢1 li .

C is called absorbed by φ if it has no empowered literal. Note that Bordeaux
and Marques-Silva [2] use a similar definition of empowerment and absorption,
but they omit the first condition, i.e. unit derivation of a contradiction.

1.1.2 Boolean Functions and Decision Diagrams
Boolean function f(y) on variables y = (y1, . . . , yn) is f : {0, 1}n → {0, 1}.

There are many ways how to represent a Boolean function. Propositional formulas,
even in CNF, are not a suitable representation in many applications — they
are not unique (e.g. f(y) = 0 is represented by any unsatisfiable formula),
equivalence checking is hard, and in general they are very hard to interpret. Many
representation languages form a subclass of negation normal form (NNF):

• rooted, directed acyclic graph (DAG),

• leaves are labelled with literals yi or ¬yi,

• inner nodes are labelled with ∧ or ∨.

There are no restrictions on node arity, i.e. nodes can have arbitrarily many
children. For an inner node u we denote Var(u) the set of variables from y that
are reachable from u by a directed path.

Evaluating a NNF formula given some assignment of y can be done by a simple
recursive traversal of the DAG from its root, performing the Boolean operation in
each node according to its label. However, NNF is still very general and various
restrictions are often considered. A very common restriction is decomposable NNF
(DNNF): for each conjunction (u1 ∧ · · · ∧ un), the conjuncts do not share variables
(i.e. Var(ui) ∩ Var(uj) = ∅ for i ̸= j). This restriction is in fact very strong —
checking satisfiability of a DNNF formula can be done in polynomial time, while
the problem is NP-complete for general NNF.

Another possible representation of Boolean functions is a binary decision
diagram (BDD), reviewed by Drechsler and Sieling [13]. Typically when BDDs
are used, they are in fact ordered BDDs (OBDDs) for some variable ordering. Let
us assume the following ordering on y: y1 < · · · < yn. Same as NNF, an OBDD
is a rooted DAG, but nodes have different properties:

• terminal nodes (leaves) are labelled 0 (false) and 1 (true),

• inner nodes are labelled with variables yi,

8

• each inner node has two outgoing edges: 0-edge and 1-edge,

• for every (0- or 1-)edge (yi, yj) it holds that yi < yj.

The semantics of an OBDD are straightforward — a directed path from the
root to the 0-terminal represents the function’s evaluation to 0, a path to the
1-terminal evaluates to 1. On that path, taking the 0-edge from a node labelled
yi corresponds to yi = 0, 1-edge corresponds to yi = 1. If some variable yi is not
encountered on the path, then both assignments yi = 0 and yi = 1 lead to the
same evaluation. Similarly to NNF, general OBDDs can be ambiguous, which
is typically solved with some additional restrictions. We describe some of those
restrictions in Chapter 2.

Despite the advantages these representations of Boolean functions bring, it
is sometimes still desirable to encode the function as a CNF formula and solve
it as a SAT problem. In these situations, the original representation of the
function f(y) can be converted into a CNF formula φ that represents f(y) by
using existentially quantified helper variables. Then φ is called a CNF encoding
of f(y) and the existentially quantified variables are called auxiliary variables. As
a consequence, Var(φ) ⊃ {y1, . . . , yn}. The encoding can have different properties;
we are interested in two properties in particular (defined for example by Abío
et al. [8]):

• encoding φ implements domain consistency when for each literal l ∈ lit(y)
and every partial assignment A to variables y, if f(y)[A] |= l then φ[A] ⊢1 l,1

• encoding φ implements propagation completeness when for each literal
l ∈ lit(Var(φ)) and every partial assignment A to variables Var(φ), if
φ[A] |= l then φ[A] ⊢1 l.

1.1.3 Combination Sets
Given a set of elements (a domain) D = {a1, . . . , an}, a combination over

D is a subset of D. A combination set S over D is a set of combinations over
D; essentially, it is a subset of the power set of D (S ⊆ P(D)). A combination
over D can be represented by an n-bit binary vector b̄ = (b1, . . . , bn), each bit
bi ∈ {0, 1} expressing whether the element ai is included in the combination or not.
Consequently, a combination set S over D can be represented by its characteristic
function χS(y) — a Boolean function on y = (y1, . . . , yn)2. For every n-bit
vector b̄, χS(b̄) determines whether the combination represented by the vector is
included in the combination set or not. If bi = 1, i.e. element ai does belong to
the combination, we say that the variable yi is active for that combination.

Combination sets can be used as a representation of CNF formulas. Given
a formula φ containing variables Var(φ), we can represent φ as a combination
set over lit(Var(φ)), each combination corresponding to a clause in φ. We call

1We have not formally defined lit(y), f(y)[A], and f(y) |= l for a Boolean function f(y) and
a vector of variables y, but the definitions of these operators can be easily extended from those
presented in Section 1.1.1.

2Note the distinction between the vectors b̄ and y — bi is a binary value, while yi is a binary
variable.

9

the characteristic function of such combination set the characteristic function of
formula φ and denote it χφ(y). Note that we have overloaded the term variable
here — variables of the characteristic function (corresponding to elements in the
domain of a combination set) are different from variables in formula φ. More
precisely, variables y of the characteristic function χφ(y) correspond to the literals
in φ. To avoid confusion, we refer to variables of characteristic functions as
d-variables (short for domain variables) in the rest of our thesis.

1.1.4 DP Procedure
The Davis-Putnam (DP) procedure was already mentioned in the introduc-

tion. Instead of the original description by Davis and Putnam [1], we will use a
description by Chatalic and Simon [9]. Given propositional formula φ, expressed
in CNF:

1. choose a variable x ∈ Var(φ),

2. replace all clauses in φ containing literals x or ¬x with all binary resolvents
on x (cut elimination of x),

3. remove all subsumed clauses from φ,

4. a. if φ is reduced to the empty clause, the original formula is unsatisfiable,
b. if φ is empty, the original formula is satisfiable,
c. otherwise, repeat steps 1. – 4. for the new φ.

For better understanding of the algorithm, we will illustrate its steps on an
example. Let φ = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x2) ∧ (x2 ∨ ¬x3) ∧ (x3 ∨ x4).

1. We choose x2 for elimination.

2. φ has one clause containing the positive literal x2, let us denote this set
φ+

x2 = {x2 ∨ ¬x3}, and two clauses containing the negative literal ¬x2,
denoted φ−

x2 = {x1 ∨ ¬x2 ∨ ¬x3,¬x2}. Binary resolvents φ+
x2 and φ−

x2 (i.e.
resolvents of all pairs of clauses C1 ∈ φ+

x2 and C2 ∈ φ−
x2) are the following:

x1 ∨ ¬x3, ¬x3. We replace φ+
x2 and φ−

x2 in φ with these resolvents and get a
new φ = (x1 ∨ ¬x3) ∧ (¬x3) ∧ (x3 ∨ x4).

3. In the new φ, the clause x1 ∨ ¬x3 is subsumed by the clause ¬x3, so it is
removed, leaving us with φ = (¬x3) ∧ (x3 ∨ x4).

4. φ is neither empty, nor does it contain the empty clause, so we go back to
Step 1.

10

2 ZBDDs
In this chapter, we will introduce zero-suppressed binary decision diagrams as

a data structure for efficiently representing and manipulating CNF formulas. We
will describe algorithms used for performing DP elimination on those formulas;
their usage will be described in Chapter 3, implementation details of the data
structure will be discussed in Chapter 4.

2.1 Reduced Ordered BDDs
In Section 1.1.2 we described a data structure called ordered binary decision

diagram (OBDD) which can be used for representing Boolean functions. We
noted that the general definition of an OBDD is too permissive, allowing different
OBDDs to represent the same function. In order to prevent that, as well as to
achieve some other advantages in terms of complexity of some queries, OBDDs
are typically used in a reduced form called reduced ordered BDD (ROBDD). This
is achieved by applying two reduction rules:

1. eliminate all nodes with both edges pointing to the same node,

2. share all equivalent sub-graphs.

When neither of those two rules can be further applied to an OBDD, it is called
a ROBDD. Consequently, ROBDDs are in this sense minimal, i.e. they cannot
be further reduced while representing the same function. For a fixed ordering of
variables, a Boolean function is uniquely represented by its ROBDD (see Drechsler
and Sieling [13] for details). An example of a ROBDD is shown in Figure 2.1 —
it represents a characteristic function of a combination set (see Section 1.1.3). We
use dashed lines for 0-edges and full lines for 1-edges in our examples.

y1

y2 y2

y3

0

y3

1

Figure 2.1 ROBDD representing combination set {{a1} , {a2, a3}} over domain
{a1, a2, a3}1.

1The reason for nodes in the ROBDD being labelled yi instead of ai originates in the
definitions from Section 1.1.3 — ai is an arbitrary element in a combination set (it does not
have to be a variable); yi is a d-variable corresponding to ai.

11

2.2 Zero-suppressed BDDs
In our thesis, we want to use BDDs for representing logical formulas in

CNF. We described in Section 1.1.3 that a CNF formula can be thought of as
a combination set, and that such combination set can be represented by its
characteristic function. ROBDDs are efficient for representing Boolean functions
in general, but characteristic functions are a special case. Perhaps the largest
inconvenience is that ROBDDs representing characteristic functions are domain-
specific. The combination set S = {{a1} , {a2, a3}} shown in Figure 2.1 will
have a different ROBDD representation over the domains D3 = {a1, a2, a3} and
D4 = {a1, a2, a3, a4}. The reason is that if we used the same ROBDD in both
cases, over D4 it would actually represent S ′ = {{a1, a4} , {a2, a3, a4}} instead of
S, since a missing node in a ROBDD implies both edges from that node having the
same destination (see Reduction rule 1 for ROBDDs), i.e. both y4 = 0 and y4 = 1
would yield the same result for function f(y), y = (y1, y2, y3, y4). For comparison,
the ROBDD representing S over D4 is shown in Figure 2.2. As a consequence,
d-variables that are only active in very few combinations still need to have their
node on almost every path of the ROBDD. This is particularly impactful for sets
of sparse combinations over large domains, i.e. sets where most combinations are
very small compared to the domain. Unfortunately, that is precisely the most
common case with CNF formulas.

y1

y2 y2

y3

0

y3

y4

1

Figure 2.2 ROBDD representing combination set {{a1} , {a2, a3}} over domain
{a1, a2, a3, a4}.

Zero-suppressed BDD (ZBDD), introduced by Minato [10] and summarised in
more detail by Minato [14], is an alternative to the widely used ROBDD. It is
also an OBDD, but it uses a different set of reduction rules:

1. eliminate all nodes with their 1-edge pointing to the 0-terminal, then connect
their ingoing edges to the other (0-edge) sub-graph directly,

2. share all equivalent sub-graphs (same as for ROBDDs).

12

Notice that the first reduction rule is asymmetric — we do not eliminate nodes
whose 0-edge points to a terminal node. This rule also changes how the diagram
is evaluated, as it no longer holds that a missing variable yi on a path means both
yi = 0 and yi = 1 lead to the same evaluation, which was the case for OBDDs (see
Section 1.1.2). Instead, the missing variable implies the path’s evaluation to be 0
if yi = 1 and unchanged if yi = 0. Also note that we do not eliminate nodes with
both edges pointing to the same node as we did with ROBDD. However, same
as ROBDDs, for a fixed set of variables and their ordering, a ZBDD represents a
Boolean function uniquely.

y1

y2

1

y3

0

Figure 2.3 ZBDD representing combination set {{a1} , {a2, a3}}.

Contrary to ROBDDs, when representing combination sets, ZBDDs do not
depend on the combination domain. A ZBDD for S = {{a1} , {a2, a3}} is identical
whether it is considered over the domain D3 or D4 — in both cases it looks as
shown in Figure 2.3. This is a direct consequence of the fact that if a d-variable is
not active for any of the combinations in a set, it does not appear in any node of
the set’s ZBDD representation. Minato [14] illustrates in Figure 6 how impactful
this effect is by comparing the number of nodes needed for representing the same
combination sets as ROBDDs and as ZBDDs. This is one of our main motivations
for using ZBDDs as a representation of CNF formulas.

2.2.1 Attributed Edges
BDDs offer one more piece of optimization, and that is using attributes on

edges. Minato et al. [15] describes usage of attributed edges on ROBDDs and how
they improve manipulation efficiency. Minato [10] also proposes edge attributes
for ZBDDs, although used in a slightly different way than with ROBDDs. In
particular, it describes a 0-element edge with the following semantics: The sub-
graph pointed to by a 0-element edge has a path to the 1-terminal consisting
only of 0-edges. In other words, such sub-graph represents a combination set that
contains the empty combination ({} ∈ S).

In order to preserve uniqueness of ZBDDs, we need to place some constraints
on the usage of 0-element edges:

1. Use the 0-terminal only (omit the 1-terminal),

13

2. Do not use the 0-element attribute on 0-edges (use on 1-edges only).

It is easy to show that the 1-terminal prohibited by Rule 1 can be replaced with a
0-element edge pointing to the 0-terminal. This also illustrates why the rule is
necessary for ZBDDs uniqueness. However, it also poses a slight challenge — how
do we represent a ZBDD consisting of the 1-terminal alone, i.e. with no incoming
edge? This ZBDD represents the combination set {{}} (it only contains the empty
combination). The solution is giving each ZBDD an extra edge pointing to its
root. This edge can carry the 0-element attribute with the usual semantics — the
sub-graph (i.e. the whole ZBDD) has a 0-path to the 1-terminal. This workaround
is just a technicality; we will say that the root of a ZBDD is attributed when we
mean that the edge pointing to the root is attributed. The example combination
set we have been using in this chapter is represented by a ZBDD with attributed
edges shown in Figure 2.4.

y1

y2

0

y3

Figure 2.4 ZBDD with attributed edges representing combination set {{a1} , {a2, a3}}.

Using 0-element edges improves efficiency of some operations over ZBDDs.
The simplest example was already mentioned — checking if a ZBDD contains
the empty combination {} now only requires checking if the root is attributed
by the 0-element or not. Without the attribute, we would have to traverse the
0-edge path from the root to determine whether it leads to the 1-terminal. This
particular operation (or rather lookup) is performed quite often in our application,
so being able to do it in constant time rather than linear in the depth of the
ZBDD is a significant improvement. Impact on other operations will be further
explored in Section 4.1.

2.2.2 Basic Operations
Basic operations over ZBDDs are described in the original paper by Minato

[10], as well as algorithms implementing them. However, Minato [14] uses a
slightly different notation which we like better, so we are going to use it instead of
the original one. The basic operations that we need to use for DP elimination are:

• “∅” empty set {} (0-terminal),

• “1” set containing only the empty combination {{}} (1-terminal),

14

• P .top d-variable at the root of P ,

• P .offset(y) combinations in P that do not contain d-variable y,

• P .onset(y) combinations in P that contain d-variable y, excluding y from
those combinations,

• P0 P .offset(P .top) (subgraph of P under the 0-edge),

• P1 P .onset(P .top) (subgraph of P under the 1-edge),

• P ∪Q union of combinations in P and Q,

• P ∩Q intersection of combinations in P and Q,

• P −Q difference, i.e. combinations in P but not in Q,

• P .count number of combinations in P .

In addition, we can check if a ZBDD contains the empty combination, as shown
in Section 2.2.1:

• {} ∈ P .

To clarify, P .onset(y) returns the subset of P such that y = 1, i.e. all combina-
tions in P containing d-variable y, while removing y from these combinations. For
example, {{a1, a2, a3} , {a2}} .onset(a1) = {{a2, a3}}2.

When implementing these operations, Minato [14] employs a helper procedure
Getnode(y, P , Q), which gets a node with d-variable y in the root, and subgraphs
P under the 0-edge and Q under the 1-edge. The procedure either creates a new
node with the required d-variable and children, or returns an existing node if
it already exists. This is essential for efficient memory management of ZBDD
implementations. In addition, procedures that are recursively implemented use
caching of results, which in turn is essential for the data structure’s efficiency.
When we define our own operations over ZBDDs, we will use both of these features
to stay consistent with the rest of the operations.

2.2.3 Additional Operations
Minato [14] also describes some additional operations related to unate cube set

algebra; unate cube set is essentially what we call a combination set. Out of these
operations, we need the product operation, P ∗Q, which generates all possible

2Formally, the operations are defined over ZBDDs, not combination sets they represent.
For clarity and simplicity of notation, we substitute S for ZBDD(S) (and .onset(ai) for
.onset(yi)) in this example, as well as later ones.

15

unions of two combinations in respective combination sets. For example,

{{a1, a2} , {a2} , {a3}} ∗ {{a1, a2} , {}} = {{a1, a2} ∪ {a1, a2}} ∪ {{a1, a2} ∪ {}}∪
{{a2} ∪ {a1, a2}} ∪ {{a2} ∪ {}}∪
{{a3} ∪ {a1, a2}} ∪ {{a3} ∪ {}}∪

= {{a1, a2}} ∪ {{a1, a2}}∪
{{a1, a2}} ∪ {{a2}}∪
{{a1, a2, a3}} ∪ {{a3}}

= {{a1, a2} , {a1, a2, a3} , {a2} , {a3}} .

Looking at Step 3 of the DP procedure described in Section 1.1.4, we need an
operation for removing subsumed combinations from a ZBDD. It is not obvious
how to achieve that using standard operations over ZBDDs described so far.
Chatalic and Simon [9] mention special ZBDD operators they implemented (clause-
distribution, union) which remove subsumptions while computing the result of
those operations. However, they do not provide any description of those operators,
nor do they cite their source, and their ZRes software is no longer available.
Fortunately, we were able to find their other publication, Chatalic and Simon [16],
where the special operators are defined.

In total, Chatalic and Simon [16] describe three operators dealing with sub-
sumptions:

• P \̃Q subsumed difference,

• P .noSub subsumption elimination,

• P ⊔Q subsumption-free union.

P \̃Q computes the set of combinations obtained by removing from P all com-
binations that are subsumed by some combination in Q. P .noSub removes from
P all combinations that are subsumed by some other combination in P . Notice
that P.noSub ̸= P \̃P , because P \̃P = ∅. P ⊔Q computes the union of P and Q
while removing all subsumed combinations from the result. In other words, P ⊔Q
yields the same result as (P ∪Q).noSub, but computes it in one go. We provide
algorithms for performing these operations in Algorithm 2.1, Algorithm 2.2, and
Algorithm 2.3 respectively. They are based on the mathematical definitions of
the operators by Chatalic and Simon [16], but we take a more programming-like
approach, including caching as it is used by Minato [14]. Also note that Chatalic
and Simon [16] make some assumptions about their ZBDDs that do not hold
in general, so we had to adjust some base-cases from their recursive definitions.
Specifically, they assume that ZBDDs containing the empty combination are
reduced to 1, so in some cases instead of checking if P = 1, we need to check if
{} ∈ P .

In the following chapters, we will introduce several algorithms utilising the
operations over ZBDDs we have described so far. In addition to those, we might
also sometimes want to manually traverse all combinations in a ZBDD. For that
purpose, we introduce a convenience procedure in Algorithm 2.4. Whenever we
use a for-each loop over a ZBDD in some pseudocode, as shown in an example
Algorithm 2.5, we will understand it with semantics shown in Algorithm 2.6.

16

Algorithm 2.1: P \̃Q (subsumed difference)
Input: ZBDDs P and Q

1 if P = ∅ then return ∅
2 if {} ∈ Q then return ∅
3 if P = 1 then return 1
4 if Q = ∅ then return P
5 if P = Q then return ∅
6 R← cache[P \̃Q]
7 if R exists then return R
8 if P.top > Q.top then
9 R← P \̃Q0

10 else if P.top < Q.top then
11 R← Getnode(P .top, P0 \̃Q, P1 \̃Q)
12 else
13 R← Getnode(P .top, P0 \̃Q0, (P1 \̃Q1) \̃Q0)
14 end
15 cache[P \̃Q] ← R
16 return R

Algorithm 2.2: P .noSub (subsumption elimination)
Input: ZBDD P

1 if P = ∅ then return ∅
2 if {} ∈ P then return 1
3 R← cache[P .noSub]
4 if R exists then return R
5 if P0 = P1 then
6 R← P0.noSub
7 else
8 R← Getnode(P .top, P0.noSub, P1.noSub \̃P0.noSub)
9 end

10 cache[P .noSub] ← R
11 return R

17

Algorithm 2.3: P ⊔Q (subsumption-free union)
Input: ZBDDs P and Q

1 if {} ∈ P then return 1
2 if {} ∈ Q then return 1
3 if P = ∅ then return Q.noSub
4 if Q = ∅ then return P .noSub
5 R← cache[P ⊔Q]
6 if R exists then return R
7 if P.top < Q.top then
8 R← Getnode(P .top, P0 ⊔Q, P1.noSub \̃(P0 ⊔Q))
9 else if P.top > Q.top then

10 R← Getnode(Q.top, P ⊔Q0, Q1.noSub \̃(P ⊔Q0))
11 else
12 R← Getnode(P .top, P0 ⊔Q0, (P1 ⊔Q1) \̃(P0 ⊔Q0))
13 end
14 cache[P ⊔Q] ← R
15 return R

Algorithm 2.4: ForEachCombination(P , S, F)
Input: ZBDD P , stack of d-variables S, function F

1 if P = 1 then
2 C ← convert stack of d-variables S to a combination
3 F(C)
4 return
5 else if P = ∅ then
6 return
7 end
8 ForEachCombination(P0, S, F)
9 S.push(P .top)

10 ForEachCombination(P1, S, F)
11 S.pop()

Algorithm 2.5: Example of a for-each loop over a ZBDD
Input: ZBDD P

1 foreach C ∈ P do
2 do something with combination C
3 end

Algorithm 2.6: Semantics of a for-each loop over a ZBDD
Input: ZBDD P

1 S ← empty stack
2 F ← body of the foreach loop as a function
3 ForEachCombination(P , S, F)

18

3 DP Elimination
The DP procedure was already described in Section 1.1.4. In Chapter 1 we

described how we want to use this algorithm for eliminating auxiliary variables
from a formula in CNF that were introduced as part of the encoding of a DNNF
formula. The advantage of using DP in this way is that it preserves propagation
completeness of the remaining variables. The DP procedure in its basic form is a
SAT decider — it eliminates all variables and based on the result decides whether
the original formula was satisfiable or not. However, we only want to eliminate a
certain subset of variables. Let φ be a CNF formula, and let Xp ⊆ Var(φ) be a set
of protected variables, i.e. variables that we do not want to eliminate. In the DP
procedure described in Section 1.1.4 we replace steps 1 and 4b with the following:

1. choose a variable x ∈ Var(φ) \ Xp,

4. b. if φ only contains variables in Xp, stop.

In order to distinguish this version of the algorithm from the original DP procedure,
we will call it DP elimination. Note that if we indeed want to eliminate all variables
in φ, we can define Xp = ∅, which effectively unifies the new stop condition with
the original one. In this chapter, we will analyse each step of DP elimination
while discussing how to implement them efficiently.

3.1 Using ZBDDs
One of the crucial performance considerations regarding DP elimination (or

any algorithm manipulating CNF formulas for that matter) is the representation of
a formula. In Section 1.1.3 we outlined how a CNF formula φ can be represented
as a combination set over the domain lit(Var(φ)), with its characteristic function
χφ(y) (vector of d-variables y corresponds to the domain lit(Var(φ)), i.e. literals
of φ). Subsequently in Chapter 2 we described a data structure called zero-
suppressed binary decision diagram (ZBDD) that is very efficient for representing
combination sets (through their characteristic functions). We were inspired by
Chatalic and Simon [9] to use ZBDDs for representing CNF formulas in our
implementation of DP elimination. As the authors point out, the size of a ZBDD
is not directly related to the size of the formula it represents. In particular, the
number of clauses in the formula is equal to the number of paths (not edges nor
nodes) in the corresponding ZBDD from its root to the 1-terminal (see Minato
[14]). Since the cost of set operations over ZBDDs only depends on the size of the
ZBDD itself, this data structure looks promising for our use-case.

In Section 1.1.3 we already mentioned that there is a difference between
propositional variables in formula φ and domain variables (d-variables) of its
characteristic function χφ(y). The d-variables of χφ(y) correspond to literals in
φ. Consequently, when using a ZBDD P to represent φ, P needs two d-variables
for each variable in Var(φ). We will use the following notation: given variable
xi ∈ Var(φ), we denote yi the d-variable corresponding to the positive literal xi,
and y−i the d-variable corresponding to the negative literal ¬xi. For our ZBDDs,
we will assume d-variable ordering y1 < y−1 < · · · < yn < y−n. That way nodes

19

representing the positive and negative literal of the same variable will always be
subsequent in the ZBDD. This might be an advantage for some algorithms that are
aware of the semantics of our ZBDDs (i.e. that they represent a CNF formula), e.g.
for removing tautologies. Figure 3.1 shows a ZBDD representing the characteristic
function χφ(y) for formula φ = (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x2) ∧ (x2 ∨ ¬x3) ∧ (x3 ∨ x4),
assuming literals of variable xi map to d-variables yi and y−i.

y1

y2

y−2

y−2

y−3

y3

0

y4

Figure 3.1 ZBDD representing formula (x1∨¬x2∨¬x3)∧(¬x2)∧(x2∨¬x3)∧(x3∨x4).

In order to execute DP elimination over a ZBDD, we need the following
functionalities (steps refer to algorithm description in Section 1.1.4):

• selecting a non-protected variable for elimination (Step 1, modified in Chap-
ter 3),

• cut elimination of a variable (Step 2),

• removal of subsumed clauses (Step 3),

• check for empty clause (Step 4a),

• comparison of remaining variables with Xp (step 4b, modified in Chapter 3).

Variable selection will be discussed in detail in Section 3.2. This step can also deal
with checking whether there are any remaining variables outside of Xp — if there
are none, variable selection fails. For removing subsumed clauses we have already
defined ZBDD operations in Section 2.2.3, in particular the P .noSub operation
described in Algorithm 2.2. Checking if a ZBDD contains the empty set is a basic
ZBDD operation (see Section 2.2.2).

Cut elimination of a variable, which is the essential part of the algorithm, can
mostly be broken down into basic ZBDD operations described in Section 2.2.2.

20

As noted by Chatalic and Simon [9], we can describe cut elimination of variable
x ∈ Var(φ) as follows:

1. rewrite the formula φ as (x ∨ φ+
x) ∧ (¬x ∨ φ−

x) ∧ φ0
x, where

• φ+
x (resp. φ−

x) denotes the CNF of clauses in φ containing x (resp. ¬x)
from which the literal x (resp. ¬x) was removed,

• φ0
x denotes the CNF of clauses in φ containing neither x nor ¬x,

2. convert the formula (φ+
x ∨ φ−

x) ∧ φ0
x into CNF

a. distribute clauses in φ+
x over clauses in φ−

x ,
b. remove tautologies from the result,
c. compute union of the resulting clauses with clauses in φ0

x.

Now let us denote P the ZBDD representing formula φ, and assume that x = xi.
Obtaining φ+

x and φ−
x directly corresponds to the ZBDD operations P .onset(yi)

and P .onset(y−i), while φ0
x can be obtained by P .offset(yi).offset(y−i). Dis-

tributing clauses in formula φ over clauses in formula ψ (represented by ZBDDs
P and Q respectively) corresponds to the product operation, i.e. P ∗Q, described
in Section 2.2.3. Removing tautologies is not a standard ZBDD operation, as it is
not a purely syntactic operation, but depends on the semantics of the underlying
sets — it needs to know which d-variables correspond to complementary literals.
As such, it will be described in Section 3.3. Finally, union of two sets of clauses
naturally corresponds to the union of their ZBDDs.

To summarise, DP elimination over ZBDDs can be described by Algorithm 3.1.
Note that when performing cut elimination after selecting a d-variable yi, it does
not matter whether yi corresponds to a positive literal x|i| or a negative literal
¬x|i|. The cut elimination steps are symmetrical for i being positive or negative
(if i = −1, then yi = y−1 and y−i = y1). Also notice that the last operation of the
cut elimination — union of two ZBDDs — is directly followed by subsumption
removal. These two operations can be done in one go using the subsumption-free
union operator described in Algorithm 2.3 of Section 2.2.3.

Algorithm 3.1: DP elimination over ZBDDs
Input: ZBDD P , set of protected variables Xp

1 yi ← select d-variable from P such that x|i| /∈ Xp

2 while yi ̸= None and {} /∈ P do
3 P+ ← P .onset(yi)
4 P− ← P .onset(y−i)
5 P ′ ← P.offset(yi).offset(y−i)
6 Pnew ← P+ ∗ P−

7 remove tautologies from Pnew

8 P ← P ′ ⊔Pnew /* substitutes P ← (P ′ ∪ Pnew).noSub */
9 yi ← select d-variable from P such that x|i| /∈ Xp

10 end

21

3.2 Variable Selection
In this section, we will address lines 1 and 9 of Algorithm 3.1, i.e. selecting

a variable to be eliminated from φ. This step might have significant effect on
the formula’s behaviour, especially its size during the course of the algorithm.
There are a couple of approaches to be considered, ranging from very simple ones
based on the ZBDDs structure to heuristics based on the formula’s statistics, or
even dynamic behaviour of the formula over time. In this section, we will propose
a couple of these variable selection methods and decide which ones are worth
implementing. At first, we will ignore the constraint of some variables being
protected from elimination (Xp), and deal with this issue later. Note that because
a ZBDD representing φ does not contain variables Var(φ), but rather d-variables
of the characteristic function χφ(y), we actually want to select d-variables instead
of variables, as shown in Algorithm 3.1.

3.2.1 Ordering-based Methods
Before we discuss non-trivial methods of d-variable selection, we need to set

a baseline. One possibility is random selection, but we would rather avoid non-
deterministic methods, as they would complicate reproducibility and predictability
of results. Instead, we could utilise the assumed ordering of d-variables in ZBDDs
y1 < y−1 < · · · < yn < y−n. This provides us with two selection methods —
eliminate d-variables in ascending or descending order. Although we do not
make any assumptions about the d-variable ordering, it is possible that in practice
the ordering is not random. Especially in our context of working with CNF
encodings of DNNF formulas, it is a reasonable guess that the ordering reflects the
structure of the DNNF formula. Therefore, ascending and descending elimination
order can exhibit different properties. Implementation of such selection methods
is trivial, and so is dealing with protected variables Xp — they can be simply
skipped.

3.2.2 Low-hanging Fruits
First, let us look more closely at the ascending order method from Section 3.2.1.

If we ignore the protected variables Xp, the smallest d-variable from the ordering
y1 < y−1 < · · · < yn < y−n is actually the root d-variable in the ZBDD
(P .top). While this choice might be quite arbitrary with respect to DP elimination,
taking the root d-variable can have an advantage in terms of performance — the
P .onset() and P .offset() operations are trivial for the root d-variable, resulting
in constant time complexity of decomposing P into P+, P−, and P ′ as described
in Algorithm 3.1. However, there are no guarantees on the formula’s growth in
this case.

In order to limit how large the formula becomes after eliminating a variable,
we need to take into account some properties of the formula and its clauses. A
simple approach is finding a unit literal in the formula, i.e. a literal that appears
in a unit clause in φ. Assuming φ has no subsumed clauses, if it contains a unit
clause {l}, then the clause {l} is the only occurrence of literal l in φ. Let us
assume that l is a positive literal x. Then, φ+

x contains only the empty clause {},
i.e. it represents a contradiction (⊥). Distributing clauses in φ+

x over clauses in

22

φ−
x results in φ−

x , so the cut elimination x from φ becomes simply φ−
x ∧ φ0

x. This
guarantees that the formula will not grow at all during this step. The situation
is analogous if l is a negative literal ¬x. Finding a d-variable in a ZBDD that
corresponds to a unit literal can be done using Algorithm 3.2.

Algorithm 3.2: FindUnitLiteral(P)
Input: ZBDD P

1 while not (P = ∅ or P = 1) do
2 if {} ∈ P1 then return P .top
3 else P ← P0
4 end
5 return None

We could also find a pure literal — a variable that has either only positive
(x), or only negative (¬x) occurrences in φ. If that’s the case, one of φ+

x , φ−
x

is empty, i.e. always satisfied (⊤), resulting in φ+
x ∨ φ−

x being also ⊤, leading
to the cut elimination of x in φ being just φ0

x. In this case, we are guaranteed
that the formula will actually shrink instead of growing. To find a d-variable
that corresponds to a pure literal, we need to traverse the whole ZBDD and keep
track of all d-variables we encounter, as shown in Algorithm 3.3. Although we
could use the helper Algorithm 2.4, we do not actually need to traverse clauses
(combinations), but only nodes in the ZBDD. Therefore, a custom algorithm is
more efficient.

Algorithm 3.3: FindPureLiteral(P)
Input: ZBDD P

1 stack ← [P]
2 visited ← {}
3 literals ← {}
4 while stack is not empty do
5 Q← stack.pop()
6 if Q = ∅ or Q = 1 or Q ∈ visited then continue
7 visited ← visited ∪{Q}
8 stack.push(Q0)
9 stack.push(Q1)

10 literals ← literals ∪{Q.top}
11 end
12 foreach yi ∈ literals do
13 if y−i /∈ literals then return yi

14 end
15 return None

While the pure literal and unit literal approaches do offer some guarantees about
limiting the formula’s growth, their main disadvantage is their incompleteness —
they only work if such literals are present in the formula. Otherwise, we must fall
back to some other selection method. One possible approach is trying to find a
pure literal, then a unit literal if unsuccessful, and using the root d-variable if
none of the previous ones succeed, as it is shown in Algorithm 3.4.

23

Algorithm 3.4: Combined simple variable selection
Input: ZBDD P

1 yi ← FindPureLiteral(P)
2 if yi ̸= None then return yi

3 yi ← FindUnitLiteral(P)
4 if yi ̸= None then return yi

5 return P .top

Although this combination of simple methods does always find a d-variable
to eliminate, it fails to provide any guarantees about how much the formula
grows when the selected variable is eliminated (because of the fallback to P .top).
Moreover, none of these methods are able to satisfy the constraint of protected
variables Xp, and modifying them to do so would introduce additional complexity.
In order to solve both these issues, we need to find a more sophisticated way of
selecting a suitable d-variable for elimination.

3.2.3 Optimisation-based Methods
A more involved approach to variable selection is trying to find an optimum of

some metric based on formula statistics. The basic idea is that we want to select
a variable that, when eliminated, results in the smallest possible formula. There
might be multiple reasonable ways of defining the ‘size of a formula’, but let us
now focus on the number of clauses in the formula’s CNF. The only precise way
to predict the number of clauses after eliminating a variable is to actually perform
the elimination, due to tautologies, subsumption, etc. In order to find the optimal
variable, we would need to try eliminating all (or at least a significant portion)
of the variables and essentially backtrack. Since we are not performing a search,
but rather need to eliminate all (or most of) the variables anyway, this approach
seems unreasonable. Instead, we would like to use some heuristic for estimating
the formula’s growth when eliminating a variable.

When looking at the DP procedure described in Section 1.1.4, there are two
steps that modify the number of clauses in the formula: cut elimination of a
variable and removing subsumed clauses. We do not know how to predict the
number of subsumed clauses other than actually performing the cut elimination
and finding subsumptions in the result. However, the effect of cut elimination
alone can be predicted reasonably well.

Let us revisit cut elimination as described in Section 3.1:

• φ ≡ (x ∨ φ+
x) ∧ (¬x ∨ φ−

x) ∧ φ0
x,

• φnew := CNF(φ+
x ∨ φ−

x) ∧ φ0
x,

• CNF(φ+
x ∨ φ−

x) := “distribute φ+
x over φ−

x and remove tautologies”.

φ0
x is stable throughout the cut elimination. Assuming φ does not contain any

tautologies, we can easily measure the size of the rest of the formula by counting
the number of occurrences of x and ¬x in φ, i.e. |φ|− |φ0

x| = |φ+
x |+ |φ−

x |. The size
of CNF(φ+

x ∨ φ−
x) again cannot be known precisely without actually computing

the formula (due to tautologies and identical clauses produced by distributing φ+
x

24

over φ−
x), but we can at least give it an upper bound. Since the clause distribution

step essentially takes all clauses in φ+
x and unifies them with all clauses in φ−

x , the
result cannot be larger than |φ+

x | · |φ−
x |. Consequently, we can deduce that:

|φnew| ≤ |φ| − (
⃓⃓⃓
φ+

x

⃓⃓⃓
+

⃓⃓⃓
φ−

x

⃓⃓⃓
) + (

⃓⃓⃓
φ+

x

⃓⃓⃓
·

⃓⃓⃓
φ−

x

⃓⃓⃓
). (3.1)

Our goal is to find a variable x in formula φ such that cut elimination of x
from φ minimises the resulting formula’s size. Based on the reasoning we have
described so far, we will use the following heuristic:

h(x) = −(
⃓⃓⃓
φ+

x

⃓⃓⃓
+

⃓⃓⃓
φ−

x

⃓⃓⃓
) +

⃓⃓⃓
φ+

x

⃓⃓⃓
·

⃓⃓⃓
φ−

x

⃓⃓⃓
. (3.2)

We call this heuristic the minimal bloat heuristic, as it tries to minimise the
bloat (growth) of the formula. In order to find x = arg minx∈Var(φ) h(x), we need
to compute |φ+

x | and |φ−
x | for each x ∈ Var(φ). For that, we can use Algorithm 3.5,

which makes use of the for-each algorithm over ZBDDs (see Algorithm 2.4 in
Section 2.2.3).

Algorithm 3.5: CountLiterals(P)
Input: ZBDD P

1 variableMap ← empty map
2 foreach C ∈ P do
3 foreach yi ∈ C do
4 if x|i| /∈ variableMap then
5 variableMap[x|i|] ← (pos = 0, neg = 0)
6 end
7 if yi represents positive literal then
8 variableMap[x|i|].pos ← variableMap[x|i|].pos +1
9 else

10 variableMap[x|i|].neg ← variableMap[x|i|].neg +1
11 end
12 end
13 end
14 return variableMap

Notice how finding an optimum of h(x) is a generalisation of the combined
selection methods described in Algorithm 3.4. If φ does contain a pure literal x
(resp. ¬x), then h(x) = − |φ−

x | (resp. h(x) = − |φ+
x |). If φ contains a unit literal

x (resp. ¬x), then h(x) = −1. All other variables have h(x) ≥ 0. The difference
is that if φ does not contain any pure nor unit literal, then arg minx∈Var(φ) h(x)
still selects a sensible variable instead of the arbitrary choice of P .top.

Let us now address the requirement of only eliminating variables that are not in
the protected set Xp, i.e. the modified steps 1 and 4b of DP elimination presented
at the beginning of Chapter 3. Using this heuristic-based variable selection, we
can simply take x = arg minx∈Var(φ)\Xp

h(x). To achieve this algorithmically, we
can iterate through the result of Algorithm 3.5 and skip variables that are in Xp.
If the set Var(φ) \Xp is empty, there are no more variables that can be eliminated
and we stop the DP elimination. The full algorithm, including Xp filtering, is
described in Algorithm 3.6.

25

Algorithm 3.6: GetMinimalBloatLiteral(P , Xp)
Input: ZBDD P , set of protected variables Xp

1 varMap ← CountLiterals(P)
2 hbest ←∞
3 ybest ← None
4 foreach xi ∈ varMap where xi /∈ Xp do
5 hi ← −(varMap[xi].pos + varMap[xi].neg) + (varMap[xi].pos ·

varMap[xi].neg)
6 if hi < hbest then
7 hbest ← hi

8 ybest ← yi

9 end
10 end
11 return ybest

3.2.4 Dynamic Methods
In SAT solvers, it is common to use dynamic methods for variable selection.

In fact, the optimisation method described in Section 3.2.3 can also be considered
dynamic — instead of pre-computing the literal occurrences beforehand and using
them statically during DP elimination, we count literals for the new formula after
each elimination step. Some of these dynamic methods try to measure ‘activity’
of variables during the course of the algorithm (e.g. VSIDS, Liang et al. [17]) and
prefer variables that are more active in some way. Such activity measures can be
collected if the algorithm in question represents formulas in a way that makes it
clear when a clause is added, removed, or altered in some way. However, in case
of ZBDDs it would be very impractical to try to measure such activity of clauses
or variables, because the formula is modified by ZBDD operations, which obscure
changes to individual clauses or variables. Therefore, we did not try using any
such methods.

3.3 Removing Tautologies
The remaining missing piece of Algorithm 3.1 is tautology removal. Tautology

in general is a formula that always evaluates to true (⊤). If a formula is in CNF —
it is a conjunction of clauses — it can only be a tautology if it does not contain any
clauses, or if all its clauses are tautologies on their own. A clause is a tautology if
it contains both a positive and a negative literal of the same variable. Clearly, a
tautological clause does not add any information to the CNF formula and can be
safely removed without breaking equivalence.

Removing tautological clauses is not merely a minimisation technique, it
is necessary for correctness of cut elimination as it is described in Section 3.1.
Suppose formula φ contains a clause C with both x and ¬x. Then φ+

x contains
C \ {x}, which still contains ¬x. Analogously, φ−

x contains a clause that still
contains x. When clauses in φ+

x are distributed over clauses in φ−
x , the results

contains literals of the variable x that was supposed to be eliminated. Therefore,
we need to remove tautologies in each step of DP elimination.

26

Removing tautologies from a formula represented by a ZBDD cannot be done
by a standard ZBDD operation. The reason is that ZBDDs represent combination
sets, and being a tautology is not a property of a combination — it depends on
how the combination is interpreted (a set of literals). In order to define a ZBDD
operation for tautology removal, we need to utilise the semantics of ZBDDs in
our context. In Section 3.1 we made an assumption about d-variable ordering
in ZBDDs: d-variables corresponding to complementary literals always appear
in succession in the ordering. As a consequence, if two nodes corresponding to
complementary literals are on a directed path in a ZBDD, then one must be a child
of the other. This is a basis of Algorithm 3.7. We recursively remove tautologies
from both children of a ZBDD node. Then, if the 1-edge child corresponds to
the node’s complementary literal, we remove the whole 1-edge sub-graph of that
child. Figure 3.2 illustrates the last step, assuming all children are already without
tautologies. The result of the operation is a ZBDD representing an equivalent
formula to the original one, but without any tautological clauses.

yi

y−iA

B C

yi

A B

Figure 3.2 Illustration of recursive tautology removal step over ZBDD.

3.4 Unit Propagation
When discussing the effects of cut-eliminating a variable that appears in a unit

clause (see Section 3.2.2), we argued that the advantage of such cut elimination is
that the formula will not grow in size. The basis of our argument was that if {x}
is a unit clause in φ, then eliminating x from φ can be simplified to φ−

x ∧ φ0
x (and

analogously for unit clause {¬x}). We can utilise this property of unit literals even
more than just as a variable selection heuristic — we can skip a couple of steps
done in the general-purpose cut elimination algorithm described in Section 3.1.
We do not need to distribute clauses in φ+

x over φ−
x ; in fact, we do not need φ+

x

(resp. φ−
x for negative unit literal) at all.

Let us assume that we have found a unit literal l of variable x in formula φ and
want to eliminate x from φ. This operation can be understood as assigning x̄ = 1
if l is positive, or x̄ = 0 if l is negative. We can do it repeatedly until there are no
unit clauses in the result, essentially performing unit propagation. Because finding
a unit literal in a ZBDD using Algorithm 3.2 is cheap (linear in the depth of the
ZBDD), we can run unit propagation, implemented in algorithms 3.8 and 3.9, as
a formula-simplification method after each iteration of DP elimination.

27

Algorithm 3.7: RemoveTautologies(P)
Input: ZBDD P

1 if P = ∅ or P = 1 then return P
2 R← cache[RemoveTautologies(P)]
3 if R exists then return R
4 P0← RemoveTautologies(P0)
5 P1← RemoveTautologies(P1)
6 yi ← P .top
7 yj ← P1.top
8 if P1 = ∅ or P1 = 1 then
9 R← Getnode(yi, P0, P1)

10 if yi = y−j then
11 R← Getnode(yi, P0, P10)
12 else
13 R← Getnode(yi, P0, P1)
14 end
15 cache[RemoveTautologies(P)] ← R
16 return R

Algorithm 3.8: AssignLiteral(P , yi)
Input: ZBDD P , d-variable yi

1 P− ← P.onset(y−i)
2 P ′ ← P.offset(yi).offset(y−i)
3 return P− ∪ P ′

Algorithm 3.9: UnitPropagation(P)
Input: ZBDD P

1 yi ← FindUnitLiteral(P)
2 implied ← {}
3 while yi ̸= None and {} /∈ P do
4 implied ← implied ∪{yi}
5 P ← AssignLiteral(P , yi)
6 end
7 return P , implied

28

Notice that the algorithm keeps track of d-variables corresponding to implied
(unit) literals and returns them to the caller. This is done because we are
not allowed to eliminate variables from a protected set Xp, as explained at the
beginning of Chapter 3. In order to comply with this requirement, we can use
a trick. We will still perform unit propagation over all variables, but we will
keep a list Yu of d-variables that were implied this way. Once the DP elimination
algorithm finishes, we will find all d-variables yi ∈ Yu such that x|i| ∈ Xp. Literals
corresponding to these d-variables will be added to the resulting formula as unit
clauses, ensuring that none of the protected variables are missing. Because all
literals corresponding to Yu were unit literals at some point during DP elimination,
all other occurrences of such literals were subsumed by their unit clauses. This
guarantees that after adding the unit clauses, the resulting CNF formula encodes
the same Boolean function as the formula before DP elimination.

3.5 Formula Minimisation
We mentioned at the beginning of Chapter 1 that a formula running through DP

elimination might grow exponentially. To reduce this effect, Chatalic and Simon
[9] have included a step into the algorithm that removes subsumed clauses from the
formula, as shown in the algorithm’s outline in Section 1.1.4. While subsumption
removal can significantly reduce the size of a CNF formula, we can do even better.
Our goal is to efficiently remove from the formula as many clauses as possible
while keeping it equivalent to the original form. A helpful concept in this regard
might be the notion of absorbed clauses described in Section 1.1.1.

It follows directly from the definition that an absorbed clause is implied by
the formula that absorbs it. Moreover, it is clear that such a clause does not add
anything that benefits propagation, which is discussed by Bordeaux and Marques-
Silva [2]. Therefore, similarly to subsumed clauses, we can safely remove any
absorbed clause from the formula being processed to minimise its size. We show
that every subsumed clause is also absorbed:

Lemma 1. Let φ be a CNF formula, and C be an implicate of φ. Let also
C ′ = (l1 ∨ · · · ∨ ln) be a clause in φ such that C ′ ⊂ C. Then C is absorbed by φ.

Proof. Let li be a literal of C.
If li ∈ C ′, then

{C ′} ⊆ φ, {C ′} ∧
⋀︂

j∈1..n, j ̸=i

¬lj ⊢1 li.

If li /∈ C ′, then

{C ′} ⊆ φ, {C ′} ∧
⋀︂

j∈1..n

¬lj ⊢1 ⊥.

Lemma 1 shows that the notion of absorbed clauses is at least as strong as
the notion of subsumed clauses. Bordeaux and Marques-Silva [2] also provides

29

a simple example of an absorbed clause that is not subsumed: clause (¬x1 ∨ x3)
for formula φ = (¬x1 ∨ x2) ∧ (¬x2 ∨ x3). Therefore, removing absorbed clauses is
strictly stronger than removing subsumed clauses. We should note that Bordeaux
and Marques-Silva [2] also considered an algorithm called ‘minimize’ that iterates
through all clauses of a formula and removes the absorbed ones.

The question now becomes how do we find absorbed clauses in a formula φ
represented by a ZBDD. A direct approach is to simply follow the definition of
an absorbed clause in Section 1.1.1, i.e. go through each literal li of a candidate
clause C = (l1 ∨ · · · ∨ ln), run unit propagation while asserting the conjunction⋀︁

j∈1..n, j ̸=i ¬lj , and check if li is obtained as a unit implicate. For that, we need an
algorithm for performing unit propagation. In our setting, two possible approaches
come to mind; either we run unit propagation directly over the ZBDD at hand, or
we convert the ZBDD into some standard data structure used for unit propagation.
In the following sections, we will explore both of these possibilities. In our
application, we will implement both and compare their performance empirically.

3.5.1 Absorbed Removal Over ZBDD
The more direct approach is finding absorbed clauses directly in ZBDDs. We

have already discussed how to run unit propagation over ZBDDs in Section 3.4.
Using algorithms 3.8 and 3.9 we can devise a function that determines whether a
clause is absorbed by a ZBDD or not. We will take advantage of the fact that Al-
gorithm 3.9 also returns unit literals that were found during the propagation. The
resulting sub-routine, described in Algorithm 3.10, can be used in the algorithm
that removes all absorbed clauses from a given ZBDD, described in Algorithm 3.11.
Note that in the algorithm we use the difference operation P − C of a ZBDD
P and a clause C, which is technically not defined. We use it as a shortcut for
creating a ZBDD containing a single clause C and subtracting that from P , i.e.
P − ZBDD({C}).

Algorithm 3.10: IsClauseAbsorbedZBDD(P , C)
Input: ZBDD P , clause C

1 if {} ∈ P then return True
2 P , initImplied ← UnitPropagation(P)
3 foreach yi ∈ C where yi /∈ initImplied do
4 Q← P
5 implied ← initImplied
6 foreach yj ∈ C where yj ̸= yi, y−j /∈ implied do
7 if yj ∈ implied then next yi

8 Q← AssignLiteral(Q, y−j)
9 Q, newImplied ← UnitPropagation(Q)

10 if {} ∈ Q or yi ∈ newImplied then next yi

11 implied ← implied ∪ newImplied ∪{y−j}
12 end
13 return False
14 end
15 return True

30

Algorithm 3.11: RemoveAbsorbedZBDD(P)
Input: ZBDD P

1 foreach C ∈ P do
2 if IsClauseAbsorbedZBDD(P , C) then P ← P − C
3 end
4 return P

3.5.2 Absorbed Removal Over Watched Literals
While it is possible to perform unit propagation directly over ZBDDs, as

demonstrated in Section 3.4, it is not the most efficient data structure for the task.
Each variable assignment results in several recursive traversals of the ZBDD at
hand, regardless of how many occurrences the assigned variable has in the formula.
Because we need to perform many unit propagations when removing absorbed
clauses from a formula, it might be more efficient to convert the ZBDD into a
different data structure, remove absorbed clauses, and create a new ZBDD from
the result.

The data structure for unit propagation widely used in SAT solvers and
regarded as the state-of-the-art is watched literals, introduced by Moskewicz et al.
[18]. It represents the formula as a list of clauses, each clause being a list of literals.
On top of that, it uses some pointers and additional lists and sets for efficiently
detecting unit clauses when some assignment changes. The most important feature
of watched literals is its very efficient backtracking. This operation was not needed
in our implementation of absorbed clause removal over ZBDDs directly (it was
done implicitly by keeping the original ZBDD), but it is essential for a list-of-
clauses representation, because such representation cannot be efficiently copied.
For implementing absorbed clause detection, we will need the following operations
over watched literals:

• W .containsEmpty checks if W contains an empty clause,

• W .get(l) assignment of literal l, either 0, 1, or ? (unassigned),

• W .assign(l) assigns l = 1,

• W .backtrack(n) backtracks to n-th level of assignment,

• W .add(C) add clause C,

• W .remove(C) remove clause C.

Note that add and remove operations might be more complex than it appears
at first, because if W is in some non-trivial state (some level of assignment), it
might change depending on the added or removed clause. However, we can ignore
that complexity, because we only add or remove clauses at 0th assignment level.
See algorithms 3.12 and 3.13 describing absorbed clause removal over watched
literals. Also note that formally, clauses in a ZBDD do not contain literals of
the represented formula, but d-variables corresponding to those literals. Because
watched literals work directly with literals, there is a hidden assumption of some
conversion happening between the two sets. In practice, this is likely not going

31

to be an issue, as the representations might coincide in code. Another implicit
assumption is that we know how to build a ZBDD from a list of clauses. We have
not discussed this topic so far, but it will be addressed in Section 4.4.

Algorithm 3.12: IsClauseAbsorbedWatched(W , C)
Input: watched literals W , clause C

1 if W .containsEmpty then return True
2 foreach l ∈ C where W.get(l) ̸= 1 do
3 foreach m ∈ C where m ̸= l, W.get(¬m) ̸= 1 do
4 if W.get(¬m) = 0 then
5 W .backtrack(0)
6 next l
7 end
8 W.assign(¬m)
9 if W .containsEmpty or W.get(l) = 1 then

10 W .backtrack(0)
11 next l
12 end
13 end
14 W .backtrack(0)
15 return False
16 end
17 W .backtrack(0)
18 return True

Algorithm 3.13: RemoveAbsorbedWatched(P)
Input: ZBDD P

1 W ← watched literals
2 foreach C ∈ P do
3 W .add(C)
4 end
5 foreach C ∈ W do
6 W .remove(C)
7 if not IsClauseAbsorbedWatched(W , C) then W .add(C)
8 end
9 return ZBDD from W

3.5.3 Incremental Absorbed Removal
It is clear that removing absorbed clauses from a formula is computationally

expensive. When using watched literals, which should be the more efficient method,
in the worst-case scenario we have to traverse the whole formula twice — once in
the outer loop over clauses, once during unit propagation — resulting in quadratic
time complexity w.r.t. formula length (sum of all clauses’ lengths). This is a
theoretical limit of the method rather than its implementation, hinted by the

32

definition of absorption itself. Although the worst-case scenario with respect to
unit propagation is not likely to occur in practice, removing all absorbed clauses
is still an expensive operation. Therefore, we might want to avoid performing
full minimisation of the formula in each iteration of DP elimination. The obvious
approach is to remove absorbed clauses conditionally based on the state of DP
elimination and the formula, e.g. only when the formula grows significantly. We
will explore this more in Section 3.6. In this section we would like to propose an
alternative approach to full minimisation.

The inefficiency of absorbed clause removal stems from the need for checking
each clause against the entire formula. Although this is the only complete algo-
rithm, we could sacrifice completeness for efficiency while still achieving significant
reduction of the formula’s size. The idea is to check absorption incrementally —
iterate through the formula’s clauses, and only check if a new clause is absorbed
by the clauses that were already checked. In case the clause is absorbed, we skip
it; otherwise, we add it to the set of clauses to keep. Algorithm 3.14 implements
this idea over watched literals, using directly ZBDDs would be very similar.

Algorithm 3.14: IncrementalRemoveAbsorbed(P)
Input: ZBDD P

1 W ← watched literals
2 foreach C ∈ P do
3 if not IsClauseAbsorbedWatched(W , C) then W .add(C)
4 end
5 return ZBDD from W

We can apply this technique to our specific context of DP elimination. Looking
at the stages of Algorithm 3.1, reduction of the formula’s size (i.e. removing
subsumed clauses) takes place while unifying P ′ with Pnew. With incremental
absorbed removal, we can take this a step further — instead of computing
subsumption-free union, we can use the incremental algorithm for removing
absorptions to compute the union of Pv′ and Pnew. Described in Algorithm 3.15,
which based on Algorithm 3.14, we take all clauses from the first given ZBDD
and sequentially add to them clauses from the second ZBDD, but only if they
are not absorbed by those already added. Despite us calling the algorithm
‘AbsorptionFreeUnion()’, it does not guarantee that the result is absorption-free,
because incremental absorption removal is not complete. However, it could reduce
the resulting formula’s size more than subsumption-free union, while not being as
computationally expensive as complete absorption removal.

3.5.4 More Efficient Absorption Detection
Notice how both algorithms 3.10 and 3.12 naively follow the definition of an

absorbed clause to detect one. They sequentially iterate through all literals in the
candidate clause in two nested loops. Especially in the latter variant using watched
literals, where backtracking is explicit, it might be visible that this straightforward
implementation duplicates a lot of work. Once the outer loop is getting to the
last literals, the earlier literals are assigned repeatedly in the inner loop after each
backtrack to the 0-th assignment level.

33

Algorithm 3.15: AbsorptionFreeUnion(P , Q)
Input: ZBDDs P , Q

1 W ← watched literals
2 foreach C ∈ P do
3 W .add(C)
4 end
5 foreach C ∈ Q do
6 if not IsClauseAbsorbedWatched(W , C) then W .add(C)
7 end
8 return ZBDD from W

It should be quite simple to improve the algorithm by only backtracking the
necessary number of levels instead of going all the way back to 0. However, as
already mentioned, this will only become efficient in the later iterations of the
outer loop. We can do even better:

1. split the clause into two halves,

2. assign all literals from the first half; if it fails, skip to the other half,

3. perform the original algorithm on the second half; backtracking never goes
lower than half of the clause,

4. if no empowering literal is found, backtrack to 0, swap the two halves and
repeat; after that, the clause is absorbed.

We will not provide pseudocode for the full modified algorithm as it would get
fairly complicated. The implementation can be found in Attachment A.1; for
details, see Section 5.4.2.

3.6 Putting It All Together
Now that we have introduced all the necessary pieces, we can put them together

into the final version of our DP elimination over ZBDDs, based on Algorithm 3.1.
We use Algorithm 3.6 as variable selection heuristic. Removing tautologies is
achieved with Algorithm 3.7. Algorithm 3.9 is used for unit propagation, and
unit literals that belong to protected variables Xp are re-added when the DP
elimination is finished. We have described two distinct methods of minimising
a formula — subsumption removal (already included in the original algorithm)
and absorption removal (Section 3.5), the latter being strictly stronger but more
expensive. Since we want to measure their impact on efficiency of DP elimination,
we offer quite detailed customisation of when each of these techniques is used. We
proposed several variants of both subsumption removal and absorption removal;
in the end, we use algorithms 2.1, 2.2, 2.3, 3.15, and 3.13. The decision to prefer
absorption removal over watched literals rather than over ZBDDs was made during
development — watched literals were much more efficient. The result of our efforts
is Algorithm 3.16. Notice that when calling AbsorptionFreeUnion() on line
11, we first compute (Pnew \̃P ′).noSub. This is a performance optimisation —

34

removing subsumptions can significantly reduce the number of clauses that need
to be checked for absorption.

Algorithm 3.16: DP elimination over ZBDDs, final version
Input: ZBDD P , set of protected variables Xp

1 P , Yu ← UnitPropagation(P)
2 yi ← GetMinimalBloatLiteral(P , Xp)
3 while yi ̸= None and {} /∈ P do
4 P+ ← P .onset(yi)
5 P− ← P .onset(y−i)
6 P ′ ← P.offset(yi).offset(y−i)
7 Pnew ← P+ ∗ P−

8 Pnew ← RemoveTautologies(Pnew)
9 if condition for partial minimisation is met then

10 if condition for incremental absorption removal is met then
11 P ← AbsorptionFreeUnion(P ′, (Pnew \̃P ′).noSub)
12 else
13 P ← P ′ ⊔Pnew

14 end
15 else
16 P ← P ′ ∪ Pnew

17 end
18 P , Y ← UnitPropagation(P)
19 Yu ← Yu ∪ Y
20 if condition for complete minimisation is met then
21 P ← RemoveAbsorbedWatched(P)
22 end
23 yi ← GetMinimalBloatLiteral(P , Xp)
24 end
25 foreach yi ∈ Yu where xi ∈ Xp do
26 P ← P ∪ {yi}
27 end

35

4 ZBDD Implementation
In this chapter, we will discuss implementation details regarding ZBDDs,

which were introduced in Chapter 2. Like all decision diagram implementations,
efficiency of ZBDDs relies heavily on node sharing and result caching. Node
sharing is a mechanism ensuring that if two nodes are identical, i.e. they represent
the same function, they are unified into a single instance that is shared between
all ZBDDs in the program. Consequently, each node is unique across all ZBDDs,
and rather than each ZBDD being a single graph, all ZBDDs in the program form
a global graph with multiple roots. This is achieved with the Getnode() function
proposed by Minato [14] already mentioned in Section 2.2.2. Result caching is
closely related to node sharing, as it relies on uniqueness of nodes. Whenever
doing an operation over ZBDDs, the corresponding algorithm first checks if an
identical operation (with the same arguments) was already performed earlier. If
that is the case, the previously computed result is returned from the cache instead
of computing it again from scratch.

4.1 Sylvan Library
Because our goal is to implement DP elimination over ZBDDs efficiently, a

crucial requirement is to have an efficient ZBDD implementation. This limits
the choice of programming language to high-performance, low-level languages
like C, C++, or Rust. In order to efficiently implement node sharing and result
caching in these unmanaged languages, it is necessary to utilise careful memory
management, including custom garbage collection (GC). This is not an easy task
and seems unnecessary work for our thesis. Naturally, we decided to use some
existing BDD library that would support ZBDDs. In addition to the already
mentioned performance requirements, we also want the library to be open-source
and reasonably easy to understand, as we will likely need to add custom ZBDD
operations or modify existing ones.

Probably the most well-known and commonly used BDD library is CUDD (by
Somenzi [19]). Unfortunately, the CUDD library is no longer maintained and we
were unable to compile it with deterministic results on validation tests. After
some research, we arrived at Sylvan (by van Dijk [20]), which is a BDD library
implemented in C that uses work-stealing for parallel execution. Its implementation
is very close to the original algorithms proposed by Minato [14], which convinced
us to use it for our application. Note that in the Sylvan codebase, ZBDDs are
called ZDDs.

A Sylvan ZBDD node carries the following information:

• d-variable (24-bit unsigned integer)

• high edge (1-edge)

• low edge (0-edge)

• 0-element attribute

• terminal node information (if it is a terminal node)

36

The library uses implicit ordering of d-variables from smallest to largest (starting
at 0), so the smallest d-variable is always at the root of a ZBDD. If we wish to
change the ordering of d-variables, we need to remap them manually. Note that
due to the 24-bit d-variable representation, we are technically limited to formulas
with at most 223 ≈ 8.3M variables.

Notice that the 0-element attribute is associated with a node instead of an
edge as it was defined in Section 2.2.1. The semantics in Sylvan are that a
node with the 0-element attribute denotes that the edge pointing to the node is
attributed. Essentially, the attribute can be interpreted as ‘ZBDD represented by
this node contains the empty combination’. When ZBDDs in Sylvan are traversed,
0-element attributes are passed down from parents to children — 0-edge copies the
attribute to the child, 1-edge scraps the attribute. Unfortunately, the 0-element
attribute is not leveraged in any ZBDD operations in Sylvan. If we find this to be
a performance bottleneck of our implementation, we could try improving some
operations’ efficiency by using the attribute.

4.1.1 Node Sharing, Result Caching, and Garbage Collec-
tion

A Sylvan ZBDD node does not carry all its information directly. A program
variable of type ZDD only holds the 0-element attribute and an index into the
so-called unique table — a pre-allocated table containing the remaining infor-
mation about all ZBDD nodes currently existing in the application. This table
alongside the zdd_makenode(int var, ZDD low, ZDD high) function (Sylvan’s
implementation of Getnode() introduced in Section 2.2.2) ensures node sharing.
Whenever a new ZBDD node is being created, zdd_makenode() first checks if an
identical node (same variable and children) already exists in the unique table. If
so, it simply returns the unique table index of that existing node, otherwise it
must first create a new entry in the table.

In order to be memory efficient, the unique table has to be cleaned up regularly
from nodes that are no longer used. For that, Sylvan implements a custom GC
algorithm, which is invoked when zdd_makenode() tries to add a new entry into
the unique table that is already full. At that point, the whole table is traversed,
marking nodes that are still in use. Once all nodes are marked, they are copied
into a new table twice the original size, leaving out the unmarked nodes to be
forgotten.

In order to preform GC, Sylvan needs to know which nodes are still in use
and which can be deleted. For this purpose, the library uses a node protection
mechanism. There are two basic ways the user can protect a ZBDD node from
being garbage-collected:

• global protection: zdd_protect(ZDD *ptr), zdd_unprotect(ZDD *ptr),

• local stack-based protection: zdd_refs_push(ZDD zdd), zdd_refs_pop(
int count), zdd_refs_pushptr(ZDD *ptr), zdd_refs_popptr(
int count).

A protected node is guaranteed to survive GC, and so is the whole ZBDD rooted
at this node. Global protection is designed to be used for persistent ZBDDs,

37

while local stack-based protection is recommended for ZBDDs stored as local
variables in the code. As such, local protection stacks are specific for each
Lace thread (see Section 4.1.2) and therefore cannot be used from a non-Lace
thread. The two variants of local protection differ by what is actually protected

— zdd_refs_push(ZDD zdd) protects the actual ZBDD passed as a parameter,
while zdd_refs_pushptr(ZDD *ptr) protects the ZBDD stored under the given
pointer (typically local variable), which is useful e.g. for accumulating results.

Because of the thread-specific ZBDD protection stacks, it is necessary that all
threads cooperate on GC together. To ensure this cooperation, all Sylvan opera-
tions that can create new ZBDD nodes and employ some kind of looping (typically
recursive) check whether some other thread has initiated GC. If that happens, the
the working thread first cooperates on GC and only after that it continues with
its task. In Sylvan codebase, this is achieved with the sylvan_gc_test() macro.

In order to ensure correctness of the program, it is essential to use the ZBDD
protection mechanism correctly. Unfortunately, the library does not document
very well when it is necessary to protect ZBDDs and when it is not. We had to go
through a fair share of errors in our program caused by this mechanism, and needed
to do some reverse-engineering to figure out the correct usage. In a nutshell, every
function that either explicitly participates on GC in its implementation, or that
might create a new ZBDD node, can perform GC. Therefore, before calling such
functions, all ZBDDs in the program must be protected. Inside those functions,
there holds a general assumption that any ZBDDs passed as arguments are already
protected by the user, which also implies protection of their children. As a result,
in Sylvan’s codebase only newly created ZBDDs through other operations are
being explicitly protected.

In addition to the unique node table, Sylvan has another global table that is
used for caching results of operations. This cache table must be cleared during
every GC, otherwise the cached results might point to ZBDD nodes that no longer
exist in the unique table. Just as the unique table, the cache table doubles its
size after it is cleared during GC. Both the initial size and maximum size of these
tables are configurable through Sylvan’s interface, which needs to be taken into
consideration when dealing with large formulas in our DP elimination application.

4.1.2 Lace Framework
To parallelise ZBDD operations, Sylvan uses Lace, a work-stealing framework

by Dijk and Pol [21]. In this section, we will briefly introduce the framework from
a user’s point of view. Lace uses a pool of special threads for parallel execution.
These Lace threads are created when the framework is initialised by a dedicated
function call. Once started, all threads are waiting for a Lace task to be created
so that they can steal and execute it. Lace tasks are special functions defined by
C preprocessor macros, e.g. TASK_1(int, f, int, arg). Once defined, a task
can be started in three different ways:

• RUN(f, args): run task f(args) from the main (non-Lace) thread or from
a Lace thread, wait until its execution is finished (i.e. is blocking),

• CALL(f, args): same as RUN(f, args), but can only be called from a Lace
thread,

38

• SPAWN(f, args): run task f(args) from a Lace thread asynchronously,
the result is then obtained by SYNC(f) (blocking).

Note that in order to reduce verbosity of calling Lace tasks, it is a common practice
in Sylvan to define helper macros for each defined task so that one can simply
call f(args) instead of RUN(f, args). Lace also offers some synchronisation
primitives like barriers and cooperative interruption, which can be used e.g. for
GC in Sylvan.

An important property of Lace is that its worker threads use busy-waiting
when idle. While this may reduce latency of starting a task, it can severely hurt
performance if used naively. The default behaviour of Lace’s initialisation is to
start as many threads as available in the system. Unfortunately, the main thread
(from which Lace is started) is not taken into account. As a consequence, if one
attempts to do some work in the main thread while Lace is already running, the
main thread will compete with Lace threads for CPU compute time. There are
two ways to avoid this problem: either initialise Lace with at least one thread
fewer than available in the system, or use Lace’s suspend and resume mechanism —
suspend all Lace threads when not used, and resume them again before starting a
new Lace task. The suspend and resume approach has its own caveats; if not done
correctly, it can cause deadlocks and/or segmentation faults (when attempting
to run a Lace task while Lace threads are suspended). However, even if used
correctly, we still recommend reserving at least one CPU core for the main thread.

Unfortunately, during development of our application we found a race condition
in Lace’s suspend and resume mechanism (in version 1.3.1). If there’s an attempt
to suspend the threads right after being resumed (or started), it might happen
that some (or even all) threads are not actually suspended. Consequently, a
semaphore used in this mechanism becomes inconsistent, which might in some
cases even lead to a deadlock. This situation is not very likely to arise during
typical resume-suspend cycles, since some work is done between the two Lace
calls. However, we observed it quite often when we suspended Lace threads right
after initialising Lace. To mitigate the chance of this happening, we used system
sleep for a short time, but there is no guarantee of correctness.

4.2 Literal Mapping
When working programmatically with CNF formulas, variables are typically

represented simply as positive integers:

|Var(φ)| = n

υ : Var(φ)→ {1, . . . , n}
∀xi, xj ∈ Var(φ), xi ̸= xj : υ(xi) ̸= υ(xj).

For each variable, its positive literal is represented by a positive integer, and its
negative literal by the opposite (negative) integer:

λ : lit(Var(φ))→ {−n, . . . ,−1, 1, . . . , n}
∀xi ∈ Var(φ) : λ(xi) = υ(xi),

λ(¬xi) = −υ(xi).

39

For obvious reasons, zero is left out in such representation. Unfortunately, we
cannot use a direct (identity) mapping from literals to d-variables in ZBDDs for
our application. There are two reasons, both of them mentioned in Section 4.1.
One, Sylvan represents d-variables in ZBDD nodes as unsigned integers. Two,
Sylvan implicitly uses ascending ordering of d-variables in ZBDDs. Therefore, we
need to use some non-trivial mapping of literals to ZBDD d-variables.

The implicit d-variable ordering in Sylvan is actually very restrictive for
us. In Section 3.1 we made an assumption that every d-variable corresponding
to a negative literal will be a successor of the d-variable corresponding to its
complementary (positive) literal. This leaves us with essentially only one possible
mapping for d-variables:

δ : {y1, y−1, . . . , yn, y−n} → {1, . . . , 2n}
∀i ∈ {1, . . . , n} : δ(yi) = 2υ(xi)− 1,

δ(y−i) = 2υ(xi).

There is one more thing to consider. In our application, we are likely going
to need to transfer between variables/literals and d-variables very often. The
conversion from literals to d-variables is straightforward, it is almost explicitly
given by the mapping δ (up to the sign of the literal). However, the other direction
is slightly cumbersome and can be simplified by shifting the mapping:

δ′ : {y1, y−1, . . . , yn, y−n} → {2, . . . , 2n+ 1}
∀i ∈ {1, . . . , n} : δ′(yi) = 2υ(xi),

δ′(y−i) = 2υ(xi) + 1.

Now getting a variable from a d-variable can be done by a single integer division:

υ(xi) =
⌊︄
δ′(yi)

2

⌋︄
.

4.3 Algorithms
In Section 2.2.2 we listed basic operations over ZBDDs that are needed for

our implementation of DP elimination. Most of them are implemented in Sylvan;
for clarity, we list how the ZBDD operations map to Sylvan’s interface:

• “∅” zdd_false,

• “1” zdd_true,

• P .top zdd_getvar(P),

• P0 zdd_getlow(P),

• P1 zdd_gethigh(P),

• P ∪Q zdd_or(P, Q),

• P ∩Q zdd_and(P, Q),

40

• P −Q zdd_diff(P, Q),

• P .count zdd_satcount(P),

• {} ∈ P P & zdd_complement != 0, where P is a program variable
of type ZDD and “&” is a bitwise AND operator1.

Unfortunately, the library does not implement all operations that we need, so we
will have to provide our own implementation. Namely, this concerns the following:

• P .offset(y),

• P .onset(y),

• P ∗Q.

Originally, we implemented these methods in our application on top of Sylvan.
However, this had both performance and correctness implications. Performance-
wise, we could not easily utilise parallelisation using Lace. Regarding correctness,
we needed to implement our own result caching, which did not interact well with
Sylvan’s GC. In the end we decided to create our own fork of the Sylvan library
and implement the operations directly in Sylvan’s codebase.

For P .offset(x) and P .onset(x) operations, Sylvan has a function
zdd_eval(ZDD zdd, int variable, int value)2. Using this function,
P .offset(x) would correspond to zdd_eval(P, x, 0) while P .onset(x) would
correspond to zdd_eval(P, x, 1). Unfortunately, Sylvan’s implementation of
these operations only works for the root d-variable or earlier (smaller) d-variables.
Therefore, we had to generalise the function — we provided a recursive implemen-
tation that works for any d-variable. Our implementation is based on the onset
and offset algorithms described by Minato [14] and is outlined in Algorithm 4.1.
In the algorithm, we illustrate one of the uses of ZBDD node protection in Sylvan,
how to participate on GC, and how Lace can be used for parallel execution, as
explained in sections 4.1.1 and 4.1.2 respectively.

For P ∗Q, we define our own function in Sylvan: zdd_product(ZDD a, ZDD b).
Its implementation is also based on Minato [14] and is outlined in Algorithm 4.2. It
involves slightly more advanced usage of Lace parallel execution and Sylvan’s GC
protection. In pseudocodes for both algorithms we use the actual implementation’s
interface for recursive calls and Sylvan-specific functions, but for other ZBDD
operations we use the notation outlined in Section 2.2 for better readability.

With these two algorithms added to our Sylvan fork, we can map the remaining
three operations:

• P .offset(y) zdd_eval(P, y, 0),

• P .onset(y) zdd_eval(P, y, 1),
1This checks for the 0-element attribute. It is more of a hack than Sylvan’s interface, but

using the documented interface would result in transferring the whole 0-path from root to
terminal, which is unnecessarily inefficient.

2In Sylvan, they naturally do not follow our convention of distinguishing between variables
in formulas and d-variables in ZBDDs. When referring to specific function signatures, we prefer
consistency with the codebase.

41

Algorithm 4.1: zdd_eval(P , var, b)
Input: ZBDD P , d-variable var, Boolean value b (0 or 1)

1 if P = ∅ or P = 1 or var < P.top then
2 if b = 1 then return ∅ else return P
3 else if var = P.top then
4 if b = 1 then return P1 else return P0
5 end
6 sylvan_gc_test()
7 R← cache[zdd_eval(P , var, b)]
8 if R exists then return R
9 SPAWN(zdd_eval, P0, var, b)

10 H ← zdd_eval(P1, var, b)
11 zdd_refs_push(H)
12 L← SYNC(zdd_eval)
13 zdd_refs_pop(1)
14 R← Getnode(P .top, L, H)
15 cache[zdd_eval(P , var, b)] ← R
16 return R

• P ∗Q zdd_product(P, Q).

We have omitted operations concerning subsumption removal defined in Sec-
tion 2.2.3. Naturally, they are not implemented in Sylvan and we had to add our
own implementation as well. We will not provide detailed (pseudo)code for those
operations; the algorithm descriptions we provide in Section 2.2.3 include all the
necessary pieces. Adapting those algorithms to Sylvan follows the same principles
we illustrated for zdd_eval() and zdd_product().

Algorithm 2.4 implementing a for-each loop through clauses of a ZBDD is
implemented outside of Sylvan’s codebase, as it is a read-only operation and
does not require GC, node protection, etc. Most of the algorithms defined in
Chapter 3 do not work with any low-level details of ZBDDs, they are implemented
by using ZBDD operations. As such, they are also implemented outside of Sylvan.
The only exception is Algorithm 3.7 for removing tautologies. We included
this operation in our Sylvan fork for better efficiency. However, similarly to
subsumption removal operations, we will not provide any pseudocode other than
the algorithm’s description in Section 3.3.

4.4 Building ZBDDs
So far, we have assumed that before running DP elimination (Algorithm 3.16

in Section 3.6) we have somehow obtained a ZBDD representation of the CNF
formula we want to process. However, it is very unlikely that the user would
prepare their formula as a ZBDD to give it as an input to our application. In fact,
typical representation of a CNF formula is a list of clauses, each clause being a list
of literals. Moreover, in Section 3.5.2 when describing minimisation algorithms
over the watched literals data structure, we made the assumption that we are
able to build a ZBDD from a list of clauses. In this section, we will address this

42

Algorithm 4.2: zdd_product(P , Q)
Input: ZBDDs P and Q

1 if P = ∅ then return ∅
2 if P = 1 then return Q
3 if Q = ∅ then return ∅
4 if Q = 1 then return P
5 sylvan_gc_test()
6 if P.top > Q.top then swap P and Q
7 R← cache[zdd_product(P , Q)]
8 if R exists then return R
9 if P.top = Q.top then

10 Q0← Q0
11 Q1← Q1
12 else
13 Q0← Q
14 Q1← ∅
15 end
16 SPAWN(zdd_product, P0, Q0)
17 SPAWN(zdd_product, P0, Q1)
18 SPAWN(zdd_product, P1, Q0)
19

20 P1Q1← zdd_product(P1, Q1)
21 zdd_refs_push(P1Q1)
22 P1Q0← SYNC(zdd_product)
23 zdd_refs_push(P1Q0)
24 T1← P1Q1 ∪ P1Q0
25 zdd_refs_pop(2)
26 zdd_refs_push(T1)
27

28 P0Q1← SYNC(zdd_product)
29 zdd_refs_push(P0Q1)
30 T1← T1 ∪ P0Q1
31 zdd_refs_pop(2)
32 zdd_refs_push(T2)
33

34 P0Q0← SYNC(zdd_product)
35 zdd_refs_pop(1)
36 R← Getnode(P .top, P0Q0, T2)
37 cache[zdd_product(P , Q)] ← R
38 return R

43

missing piece in our design and propose an algorithm for building ZBDDs.
The basic principle of building a ZBDD from a list of clauses is quite straight-

forward:

• iterate through the list of clauses,

• for each clause C, create a ZBDD representing a set containing only C,

• accumulate these ZBDD clauses in a single set using the union operator.

Let us first address how to create a ZBDD representing a single clause. Sylvan offers
us the function zdd_ithvar(int var) that creates a single node with d-variable
var, its 0-edge going to ∅ and 1-edge going to 1. Essentially, it is a wrapper around
Getnode(var,∅, 1). However, we cannot combine these one-element combinations
into larger combinations using basic ZBDD operations like union and intersection

— they operate on the level of combination sets and do not alter individual
combinations. Minato [10] defines a basic ZBDD operation P .change(y) which
can be used to build combinations by adding d-variables one by one. Unfortunately,
Sylvan does not implement this operation. We could provide an implementation
in our Sylvan fork as we did with zdd_eval() and zdd_product(), but the
operation is unnecessarily general for just building combinations. Instead, we
implemented a function that creates a ZBDD combination directly from a list of
d-variables: zdd_combination_from_array(int *variables, int length). It
uses the most straightforward approach possible — repeated calls to Getnode().
The function assumes that the supplied list of d-variables is sorted according to
the ZBDDs d-variable ordering, i.e. ascending ordering in Sylvan, and traverses
the list in reverse order so that smallest d-variable ends up in the root of the
ZBDD. Because the function is implemented in C, the list needs to be supplied as
a pointer and array length; in our pseudocode in Algorithm 4.3 we simplify these
technicalities. Using this function, we can build a ZBDD representing a single
clause using Algorithm 4.4.

Algorithm 4.3: zbdd_combination_from_array(V)
Input: sorted list of integers representing d-variables V

1 P ← 1
2 foreach v ∈ V in reverse order do
3 P ← Getnode(v, ∅, P)
4 end
5 return P

Now that we can create a clause, we can build a ZBDD representing an
entire formula. As already mentioned, the most straightforward approach is
to accumulate the clauses one by one using the union operator, as shown in
Algorithm 4.5. Notice the difference between usage of zdd_refs_pushptr() for
the accumulator variable P and zdd_refs_push() for the new clause Q — the
accumulator’s value changes in each iteration, so it is protected indirectly through
a pointer to the variable (denoted by the & before P on line 2).

44

Algorithm 4.4: CreateClause(C)
Input: clause C

1 V ← empty list
2 foreach li ∈ C do
3 if λ(li) > 0 then d-var ← 2λ(li)
4 else d-var ← 2(−λ(li)) + 1
5 V .append(d-var)
6 end
7 V ← sort(V)
8 P ← zbdd_combination_from_array(V)
9 return P

Algorithm 4.5: BuildFormula(φ)
Input: formula φ

1 P ← ∅
2 zdd_refs_pushptr(&P)
3 foreach C ∈ φ do
4 Q← CreateClause(C)
5 zdd_refs_push(Q)
6 P ← P ∪Q
7 zdd_refs_pop(1)
8 end
9 zdd_refs_popptr(1)

10 return P

45

4.4.1 Logarithmic Merging
While the straightforward algorithm si certainly correct, it might not be very

efficient. Once we have accumulated a significant part of the input formula, adding
each new clause now requires traversing the whole ZBDD. In order to optimise
this, we could borrow an idea from information retrieval used when building large
document indexes called logarithmic merging. The basic principle is that instead
of having a single accumulator, we can have several of them; let us denote them
A0, A1, We start the same way as previously, accumulating the resulting
ZBDD into A0. Once A0 reaches a certain size N — this can be e.g. the number
of added clauses — we merge A0 into A1. If A1 was empty before the merging,
this simply moves A0 into A1 and leaves A0 empty. However, the next time this
happens, A1 is already full, which means it is now twice the size of N after merging
with A0. This triggers another merging, now of A1 and A2, and it continues until
some Ak is empty and swallows Ak−1. Each accumulator has a size limit twice
as large as the previous one — hence the name logarithmic merging. Once all
clauses are added, the resulting ZBDD can be obtained by merging (unifying) all
the accumulators.

While this technique does not reduce the number of unions that have to be
computed (it actually requires some additional ones), the advantage is that most
of the unions will happen on small ZBDDs (smaller than N). As the size of
the accumulators grows, the number of operations performed decreases. Because
the complexity of computing a union of ZBDDs coincides with the ZBDDs’ size,
the performance gains are very significant. Pseudocode using the logarithmic
technique for building ZBDDs is shown in Algorithm 4.6. Note that we have
omitted Sylvan’s node protection for simplicity.

46

Algorithm 4.6: BuildFormulaLogarithmic(φ, N)
Input: formula φ, accumulator size limit N

1 A← empty map of accumulators
2 A[0]← ∅
3 foreach C ∈ φ do
4 if A[0].count = N then
5 i← 1
6 while i ∈ A and A[i] ̸= ∅ do
7 A[0]← A[0] ∪ A[i]
8 A[i] ← ∅
9 i← i+ 1

10 end
11 A[i]← A[0]
12 A[0]← ∅
13 end
14 Q← CreateClause(C)
15 A[0]← A[0] ∪Q
16 end
17 foreach i ∈ A where i ̸= 0 do
18 A[0]← A[0] ∪ A[i]
19 end
20 return A[0]

47

5 Programming Documentation
In this chapter, we will describe the programming aspects of our implementation

of DP elimination. We will describe the project’s structure, external libraries
and their usage, and give an overview of the software architecture. We will also
describe tools we have developed for running experiments conveniently and for
processing their results. The whole codebase is provided as Attachment A.1 and
all filesystem paths used in this chapter will be relative to the root directory of
the attached archive.

5.1 Technical Decisions
Due to our requirement of developing an efficient implementation of DP elimi-

nation, we had to choose a programming language suitable for high-performance
applications, allowing careful memory management. This disqualified garbage-
collected languages like Python, Java, or C#. We decided to use C++ — mostly
due to the author’s expertise in the language, but also because the Sylvan library
(see Section 4.1) is implemented in C, which is natively integrated with C++. Rust
would have been a suitable alternative, but we do not have that much experience
with the language. For project management and building, we used the CMake
build system. Contrary to the DP elimination application, experiment execution
and result processing does not need low-level control, but rather flexibility and
ease of use. Therefore, we wrote the convenience scripts in Python.

5.2 Project Structure
We decided to split the application into two parts:

• dp_lib (lib/) library with all data structures and algorithms,

• dp (app/) application providing command line interface (CLI).

The main motivation for this separation is that it allows seamless unit-testing of
dp_lib, as a testing framework can link it as a library. However, it also makes
it easier to use some of the library’s functionalities in another application, or to
provide a different (perhaps graphical) user interface. The external/ directory
contains all external libraries used in either dp_lib or dp. Unit tests are in the
tests/ directory, and the experiments/ directory contains Python scripts for
convenient experiment execution and results processing.

5.3 External Libraries
In total, we use five external libraries for our C++ application, all of them

are in the external/ directory. Sylvan (Dijk [22]) was already introduced in
Section 4.1, it provides the ZBDD data structure. As discussed in Section 4.3,
we are using a custom fork of the library with some modifications and custom
algorithms. For runtime logging we use simple-logger (Zelený [23]), which is a

48

small library written by the author of this thesis. Originally, it was developed for
our application, but because the author found it useful for other projects as well,
they decided to single it out as a stand-alone library. The json library (Lohmann
[24]) is used for exporting application metrics in the JSON format. We use the
Catch2 framework (Hořeňovský [25]) for unit tests of dp_lib. Finally, CLI11
(Schreiner [26]) is used for CLI argument and configuration parsing.

5.4 Software Architecture
The dp_lib library is divided into four parts:

• lib/data_structures,

• lib/algorithms,

• lib/io,

• lib/metrics.

In this section, we will give an overview of each of these parts. An outlier is
the utils.hpp file which contains general-purpose utilities used throughout the
library, typically related to templates. The whole library is encapsulated in the
dp namespace.

The dp application uses dp_lib to load input files, run DP elimination, write
the result, and export collected metrics. Other than that it contains mostly
boilerplate code for parsing CLI arguments and for initialising libraries. We
will not go into more detail of the application’s source code; user interface and
configuration will be described in the user documentation (Chapter 6).

5.4.1 Data Structures
SylvanZddCnf is a C++ wrapper around Sylvan’s ZDD. Apart from initialisa-
tion and clean-up, this class should be the only point of interaction with the
Sylvan library. Its main responsibility is to ensure correct node protection (see
Section 4.1.1) employing the resource acquisition is initialisation (RAII) pattern.
It also provides translation between formula literals and ZBDD d-variables (see
Section 4.2) making it transparent, i.e. the user does not know anything about
d-variables and only works with literals. When delegating calls to Sylvan, it
ensures Lace threads are correctly resumed and suspended (see Section 4.1.2),
again employing the RAII pattern. On top of that, the class implements ZBDD al-
gorithms that are not implemented in our Sylvan fork. This includes Algorithm 2.4
for iterating through clauses in the ZBDD (Section 2.2.3), algorithms 3.2, 3.3,
and 3.5 extracting information for d-variable selection heuristics (Section 3.2),
and algorithms 4.4 and 4.6 for building ZBDDs from CNF formulas (Section 4.4).

Originally, SylvanZddCnf also implemented algorithms that were later moved
to our Sylvan fork. For those algorithms, it used the LruCache template for result
caching, which implements a quite straightforward least recently used (LRU) cache.
After moving all those algorithms to Sylvan, the cache is no longer used.

49

WatchedLiterals implements the watched literals data structure for unit prop-
agation on CNF formulas, providing the interface described in Section 3.5.2. It
works on top of an existing collection of clauses (can be a vector, set, or even a
combination of multiple containers), but it does not copy their data. The class
maintains the following information about each clause:

• reference to underlying clause (vector of literals),

• indices of two watched literals in the clause,

• activation flag,

and about each variable:

• assignment (positive, negative, unassigned),

• set of positive watches (clauses that are watching a positive literal of this
variable),

• set of negative watches (watching a negative literal).

In addition, the class has an assignment stack (a vector of levels, each level being
a vector of literals), a set of unit clauses, and a counter of empty clauses.

As discussed in Section 4.2, variables are represented as unsigned integers,
literals are signed integers. Because the set of variables might grow when adding
new clauses, information about each variable is kept in a vector indexed by the
variables’ representation. This is a performance optimisation which might result
in additional memory consumption, especially if the variables are spread out (i.e.
with many ‘holes’ between 0 and the highest variable). The assumption is that
typically, variables in the represented formula are close together (and to 0).

Because removing clauses from the data structure could be problematic, instead
we use an activation/deactivation mechanism — each clause can be deactivated,
in which case it does not participate in unit propagation; later on it can be
re-activated. Deactivated clauses are removed from all watches in order not to
slow down the data structure. Note that activating or deactivating clauses cannot
happen with assignment in place, as it could change the course of the already
performed propagation. First, the data structure needs to backtrack, than it can
activate/deactivate clauses, and assignment/propagation needs to be re-run after
that.

VectorCnf is a CNF implementation based on vectors, i.e. a vector of clauses,
each clause being a vector of literals. The class mirrors the interface of SylvanZdd
Cnf and serves only for debugging and validation purposes. The implementation
is not optimised in any way, and does not even support all features.

5.4.2 Algorithms
unit_propagation.hpp implements algorithms connected to unit propagation.
The dp::unit_propagation namespace implements algorithms 3.8 and 3.9 (Sec-
tion 3.4). Namespace dp::absorbed_clause_detection contains algorithms
from Section 3.5 and is further divided into namespaces without_conversion

50

with algorithms 3.10 and 3.11, and with_conversion that uses the Watched
Literals class in algorithms 3.12, 3.13, and 3.15. Note that Algorithm 3.12 is
modified according to Section 3.5.4.

Absorption removal over ZBDDs (without_conversion namespace) is incom-
plete and not up-to-date. During development we found that watched literals were
overwhelmingly more efficient and the overhead of conversions from/to ZBDDs is
insignificant. Early implementation of algorithms 3.10 and 3.11 was kept in the
codebase for reference in case someone is interested in testing them. However,
they cannot be used through the CLI.

heuristics.hpp implements d-variable selection heuristics from Section 3.2
as functor classes. Ordering-based methods from Section 3.2.1 make sure that
they select an existing d-variable — it is cheaper than executing the whole
elimination step on a non-existent d-variable. Algorithms from Section 3.2.2 are
also implemented in some form, but they were used only for development and
debugging purposes. The main heuristic MinimalScoreHeuristic is a generalised
version of Algorithm 3.6 which is templated by the minimised function, i.e. it can
use also other functions than h(x) from Equation 3.2.

dp_elimination.hpp puts all the pieces together and implements
Algorithm 3.16. For easy customisation, the algorithm is parametrised by several
functions (callable objects) either serving as predicates in control flow, or used for
choosing between various implementations of some functionalities.

5.4.3 Metrics
MetricsCollector is a tool for collecting metrics throughout the library. We
wanted to use some existing library, but did not find anything suitable for our
use-case. The main focus of the tool is minimal overhead, and easy modification
of the collected metrics. The collector supports four types of metrics:

• counter integer value, accumulated,

• series list of integers, appended,

• duration series list of durations, appended,

• cumulative duration duration value, accumulated.

Each metric entry has a unique identifier and is of one of those types. To make
the individual entries easily modifiable, they are given as template arguments
of the class. Integer metrics (counter and series) are collected through simple
method calls. Duration metrics (series and cumulative) employ the RAII pattern
through the MetricsCollector::Timer class, i.e. the timer starts when created
and stops when destroyed. However, the interface also allows stopping the timer
explicitly in order to allow seamless integration of timers in existing code without
introducing unnecessary code blocks.

51

dp_metrics.hpp defines identifiers of metrics collected in the dp_lib library.
It also creates an instance of MetricsCollector with those identifiers. These
metrics are exported in JSON once the DP elimination finishes, allowing analysis
and visualisation of the collected data in order to evaluate the algorithm. The
format of exported data will be described in the user documentation (Section 6.6.2).

5.4.4 IO
Input/output operations of CNF formulas are handled by CnfReader and Cnf

Writer. They work with the DIMACS CNF format, which will be described
in detail in the user documentation (Section 6.6.1). The format is very simple
and easy to parse, so we wrote our own reader/writer to keep dependencies to
a minimum. CnfReader is just a static class encapsulating a couple of related
functions. It can either parse the input file into a vector of vectors, or the user can
supply it with a custom callback function to process each clause individually (e.g.
to create a ZBDD). CnfWriter is an ordinary class with internal state. It also
offers out-of-the-box support for a vector of vectors, or it can be used manually to
write clauses one by one.

5.5 Experiment Execution and Result Process-
ing

Alongside the C++ codebase implementing DP elimination, Attachment A.1
also includes several Python scripts in the experiments/ directory for convenient
execution of experiments and processing of their results. Note that these scripts
are not intended to be a part of the user interface of our application; they served
us as a tool when writing our thesis. The reason we include them in the attached
codebase is to provide an example of utilising the metrics collected by the dp
application. As such, the code quality of the Python scripts is not as high as of
dp — it might require more extensive in-code adjustments when tweaking their
behaviour.

The main functionality of these scripts is running dp over multiple input
formulas under several configurations. That is, given a list of paths to input
formulas and a list of configuration files, they are all combined — each formula
with each configuration — and run through dp in a single script execution.
Then, by another script invocation, metrics from all runs can be collected and
summarised into various tables, plots, etc. We use DataFrames from the Pandas
library for processing the data and exporting tables. Currently supported export
formats for tables are Markdown, LATEX, CSV, and JSON; more can be easily
added by adjusting experiments.py. For plotting we use the matplotlib library,
and support all output formats supported by the library.

Aside from the Python scripts, the experiments/ directory also includes
a list of input formula paths input_formulas.txt, default configuration file
default_config.toml for dp, and environment.yml which can be used to re-
produce the Python environment necessary for running the scripts.

52

experiments.py is the main script providing CLI for the other scripts. It also
generates all formula–configuration pairs from the given lists.

run.py implements execution of the dp application. The script is slightly
overcomplicated due to its support for parallel execution of different runs. Later,
it was adjusted to be suitable for execution — especially as an array job — under
the SLURM workload manager (by Yoo et al. [27]) used on high-performance
computing (HPC) clusters.

tables.py creates tables for each formula–configuration pair showing the data
from exported metrics in a more human-readable format.

plots.py creates plots for each formula–configuration pair visualising how DP
elimination proceeded over time.

summary_table.py creates a table summarising the whole experiment, extract-
ing useful data to compare different configurations.

summary_plots.py creates plots from the summary table created by summary
_table.py.

grid_search.py is a stand-alone script on the side — it is not executed through
experiments.py, but provides its own CLI. It uses a separate list of input files
and configurations for searching the parameter space of dp to find the optimal
parameter setting.

equivalence.py is another stand-alone script. It takes two formulas as argu-
ments and checks if they are equivalent; we used it for verifying the results of our
program. Note that the script uses the pysat library, which is not included as a
dependency listed in the environment.yml file — it has to be installed manually
(pipy package called python-sat).

53

6 User Documentation
This chapter describes the dp application (see Section 5.2) from a user’s point

of view. We show how to compile the application, how to run it, what are its
parameters and what outputs the application produces. We also provide examples
of the usage.

6.1 Prerequisites
In order to compile and run dp, the following software is needed:

• Linux-based system,

• CMake (version 3.14 or later),

• C++ compiler supporting C++20 (GNU version 10 or later).

The application was only tested on Linux-based systems, support for other op-
erating systems is not guaranteed. CMake is a tool for generating build files for
systems like GNU Make, Ninja, etc. For compilation, we used the GNU compiler,
but any compiler supporting C++20 should work as well. Note that first-time
compilation might also require internet connection in order to download external
dependencies of the Sylvan library (see Section 4.1).

6.2 Compilation and Tests
We assume that the user has obtained the codebase in Attachment A.1 and

that their terminal’s current directory is the root directory of the attachment.
In this chapter, we will refer to this directory as the root directory. We also
assume that all prerequisites from Section 6.1 are met. In order to compile the
dp application, run the following commands:

mkdir build
cd build
cmake ..
cmake --build . -j6

The -j6 option tells the build system to use 6 threads for the compilation; this
constant is quite arbitrary and should be adjusted according to the user’s hardware.
By default, CMake uses the GNU Make build system for building the application.
While it should be available on any Linux-based operating system, there are more
modern and more efficient tools that can be used instead. For example, to use
Ninja instead of Make, the third command can be substituted for the following:

cmake -G Ninja ..

Also, the default build type is set to Release. For a Debug build, the user can add
a different option to the third line (it can be combined with the Ninja option):

54

cmake -DCMAKE_BUILD_TYPE=Debug ..

After executing these commands, the newly created build/ directory should
contain an executable file called dp, which is the executable of the dp application.
The directory should also contain the tests executable. By running

./tests

from the build/ directory, unit tests of the dp_lib library (see Section 5.2) will
be executed. This can be used to verify correctness of the compiled code.

6.3 Program Stack Size Limit
Many of the algorithms used in our codebase, and especially those in the Sylvan

library, are implemented recursively. This results in unusually high usage of the
program stack by the dp application. The required stack size depends on the
input formula. On Linux-based systems, the corresponding user limit is typically
set to 8 MB, which is insufficient for larger formulas. If dp hits this limit, it has
no other option than to fail with segmentation fault. Therefore, it is important to
increase the limit before running the application on large formulas. For inputs
and configurations included in Attachment A.1 we managed to run successfully
on stack size limit of 16 GB, although this is very generous and for reasonable
configurations (non-experimental) much smaller stack should be enough.

On Linux, the user stack size limit can be managed with the ulimit command.
Running

ulimit -s

displays the current limit in KB. In order to increase this limit to 16 GB, run

ulimit -s 16777216

before running the dp application. Note that setting the limit to unlimited
might cause problems with initialising the Lace framework used by Sylvan.

6.4 Parameters and Options
The dp application provides a command line interface (CLI) with standard

Unix syntax. After following compilation steps in Section 6.2, running

build/dp --help

from the root directory will print out the help message of the application, listing
all the parameters and options. There is one positional parameter — path to the
input formula in the DIMACS CNF format (see Section 5.4.4). Aside from that,
there are many options divided into several categories modifying the application’s
behaviour.

55

6.4.1 Files
The Files category includes settings concerning output files of the application.

--output-file sets a path where the output formula after DP elimination is
written.

The default path is result.cnf.

--output-max-size limits the size of the output formula by the maximum
number of clauses allowed in the output. If the formula is larger, the output file
is not created. This is a prevention mechanism to avoid cluttering the hard drive.
As mentioned at the beginning of Chapter 1, the formula can grow exponentially
during DP elimination. Due to efficient representation of the formula in-memory,
the output file can also be exponentially larger than the in-memory representation,
resulting in infeasibly large files.

The default value is the largest integer representable on the system (essentially
unlimited).

--metrics-file sets a path for exporting the metrics file in JSON format
(Section 5.4.3). The format of the metrics will be described in Section 6.6.2.

The default path is metrics.json.

--log-file sets a path for writing logs of the application. These logs can be
used for debugging, or for detailed observation of the course of the algorithm.

The default path is dp.log.

6.4.2 Algorithm
The Algorithm category specifies which implementation of some part of DP

elimination is used where multiple implementations are available.

--heuristic specifies how variables are selected for elimination (Section 3.2).
These are the available arguments:

1. ascending (variables from smallest to largest),

2. descending (variables from largest to smallest),

3. minimal_bloat (Algorithm 3.6).

This is a required option without a default value.

6.4.3 Complete Minimisation
The Complete minimisation category customises when Algorithm 3.11

or 3.13 (depending on --absorbed-removal-algorithm) is executed.

56

--complete-minimization-condition decides what kind of condition is
checked in each iteration of DP elimination to decide if complete minimisation
should be performed. These are the available arguments:

1. never,

2. interval in regular intervals (after a certain number of iterations),

3. relative_size when the formula has grown by a certain ratio since last
minimisation.

The default value is relative_size.

--complete-minimization-interval sets the number of iterations of DP
elimination (number of eliminated variables) between two consecutive runs of
complete minimisation.

Requires --complete-minimization-condition to be interval.
The default value is 1 (run always).

--complete-minimization-relative-size sets the ratio of growth of the
formula before complete minimisation is run. For example, a ratio of 2 means
that if the formula has N clauses after complete minimisation, the next complete
minimisation will be run once the formula reaches at least 2N clauses.

Requires --complete-minimization-condition to be relative_size.
The default value is 1.5.

6.4.4 Partial Minimisation
The Partial minimisation category customises when the formula is partially

minimized. Contrary to complete minimisation (Section 6.4.3), partial minimi-
sation is not performed on a single formula, but when unifying two formulas.
Looking at Algorithm 3.16, this union is of P ′ (clauses not containing the elimi-
nated variable) and Pnew (resolvents of clauses containing the eliminated variable).
Partial minimisation either performs subsumption-free union (Algorithm 2.3), or
absorption-free union (Algorithm 3.15). The choice depends on the setting of
incremental absorption removal, which will be described in Section 6.4.5.

--partial-minimization-condition decides what kind of condition is
checked in each iteration of DP elimination to decide if partial minimisation
should be performed. These are the available arguments:

1. never,

2. interval in regular intervals (after a certain number of iterations),

3. relative_size when the size of Pnew is at least a certain ratio of the size
of P ′,

4. absolute_size when Pnew has at least some constant number of clauses.

The default value is relative_size.

57

--partial-minimization-interval sets the number of iterations of DP elim-
ination (number of eliminated variables) between two consecutive runs of partial
minimisation.

Requires --partial-minimization-condition to be interval.
The default value is 1 (run always).

--partial-minimization-relative-size sets the minimum size ratio of P ′

and Pnew in order to run partial minimisation. For example, a ratio of 0.2 means
that if P ′ has N clauses, partial minimisation will be run if Pnew has at least 0.2N
clauses.

Requires --partial-minimization-condition to be relative_size.
The default value is 0.1.

--partial-minimization-absolute-size sets the minimum size of Pnew in
order to run partial minimisation.

Requires --partial-minimization-condition to be absolute_size.
The default value is 0 (run always).

6.4.5 Incremental Absorption Removal
The Incremental absorption removal category customises when absorption-

free union (Algorithm 3.15) is executed. As noted in Section 6.4.4, incremental
absorption removal is performed instead of subsumption-free union during par-
tial minimisation. Therefore, even if the condition for incremental absorption
removal is met, it will be only run if partial minimisation is also triggered (see
Algorithm 3.16).

--incremental-absorption-removal-condition decides what kind of con-
dition is checked in each iteration of DP elimination to decide if incremental
absorption removal should be performed. These are the available arguments:

1. never,

2. interval in regular intervals (after a certain number of iterations),

3. relative_size when the size of Pnew is at least a certain ratio of the size
of P ′,

4. absolute_size when Pnew has at least some constant number of clauses.

The default value is relative_size.

--incremental-absorption-removal-interval sets the number of iterations
of DP elimination (number of eliminated variables) between two consecutive runs
of incremental absorption removal.

Requires --incremental-absorption-removal-condition to be interval.
The default value is 1 (run always).

58

--incremental-absorption-removal-relative-size sets the minimum size
ratio of P ′ and Pnew in order to run incremental absorption removal. For example,
a ratio of 0.2 means that if P ′ has N clauses, incremental absorption removal will
be run if Pnew has at least 0.2N clauses.

Requires --incremental-absorption-removal-condition to be relative
_size.

The default value is 0.1.

--incremental-absorption-removal-absolute-size sets the minimum size
of Pnew in order to run incremental absorption removal.

Requires --incremental-absorption-removal-condition to be absolute
_size.

The default value is 0 (run always).

6.4.6 Stop Conditions
The Stop conditions category sets the stop conditions for DP elimination.

There are multiple conditions that are checked in conjunction — if one of them
becomes true, the algorithm stops and outputs the results. If this happens before
all auxiliary variables are eliminated, the remaining ones are still included in
the resulting formula. In that case, they are guaranteed to have maintained the
numbering from the input formula. There are also some implicit stop conditions —
when an empty clause occurs in the formula, or when the formula becomes empty
(all variables are eliminated).

--max-iterations sets the maximum number of iterations (eliminated vari-
ables) before stopping.

Unlimited if not set.

--timeout sets the maximum runtime duration of the algorithm in seconds.
The measured runtime only concerns the DP elimination algorithm — it excludes
initialisation, input parsing, etc. Note that this limit may be exceeded, as the
algorithm waits for the on-going operation to finish. In most cases, this should
not be more than a few seconds, but in some rare situations (excessively large
formulas), this can be significant (even a couple of minutes, but theoretically
without any limit).

Unlimited if not set.

--max-formula-growth sets the maximum size of the formula relative to the
input. The size limit is expressed as a ratio — for example, a ratio of 2 means
that once the formula becomes twice as large as the input formula, the algorithm
stops. Note that the last iteration is not reversed in that case, i.e. the output
formula exceeds the size limit.

Unlimited if not set.

--var-range defines the range of variables in the input formula to be eliminated.
Effectively, variables outside of this range are protected from elimination (see

59

Chapter 3). Once the formula does not contain any more variables from this
range, execution stops.

Accepts two integers separated by whitespace.
Unlimited if not set.

6.4.7 Sylvan
The Sylvan category provides settings for the Sylvan library (see Section 4.1).

--sylvan-table-size sets the default and maximum size of Sylvan’s unique
table. The size is defined in the number of entries (ZBDD nodes). A single entry
takes up 24 bytes of memory. Because Sylvan only allows the size to be a power
of 2, the values of this setting is expressed as a base-2 logarithm. The resulting
memory consumption is therefore expressed as 2k · 24B; for k = 20, this results
in 24MB. If the program approaches the maximum size, it attempts to export
collected data and terminates with an error; however, the situation might not be
recoverable.

Accepts two integers separated by whitespace.
The default values are 20 (default), 25 (max).

--sylvan-cache-size sets the default and maximum size of Sylvan’s cache
table. The size is defined in the number of entries (cached operation results). A
single entry takes up 36 bytes of memory. Because Sylvan only allows the size to
be a power of 2, the values of this setting is expressed as a base-2 logarithm. The
resulting memory consumption is therefore expressed as 2k · 36B; for k = 20, this
results in 36MB.

Accepts two integers separated by whitespace.
The default values are 20 (default), 25 (max).

--lace-threads sets the number of Lace threads (see Section 4.1.2). Because
this number does not include the main thread, and because waiting Lace threads
are busy-waiting, we strongly recommend using fewer threads than the
number of cores on the system. Otherwise the user risks considerable slow-
down of the application when Sylvan operations are interleaved with code executed
in the main thread (e.g. when building a ZBDD). If the value is set to 0, Lace
auto-detects available cores on the system. Therefore, we do not recommend
using 01.

The default value is 1 (no parallelisation).

6.5 Configuration Files
Instead of supplying all the options listed in Section 6.4 directly to dp, the user

can group them in a configuration file, which can be supplied using the --config
option. The option names and values stay the same, only the names are stripped

1An easy experiment to observe the impact of this setting is to modify tests/main.cpp to
use lace_start(0, 0) instead of the current values. Compare how long it takes to run unit
tests (see Section 6.2) before and after the modification.

60

of the leading double-dash, i.e. --option becomes option. This approach makes
it easier to use the same configuration for multiple runs of the application, or
to use some automation for processing many input files. It is possible to supply
multiple configuration files; in case of conflicting options, the later config overrides
the former one. Similarly, if an option is given explicitly to the application, it
overrides all previously supplied configuration files. The supported formats of
configs are INI and TOML. An example of a configuration file in the TOML
format can be the following:

output-file = "result.cnf"
log-file = "dp.log"
metrics-file = "metrics.json"
output-max-size = 20_000_000

heuristic = "minimal_bloat"

complete-minimization-condition = "relative_size"
complete-minimization-relative-size = 1.6

partial-minimization-condition = "relative_size"
partial-minimization-relative-size = 0.1

incremental-subsumption-removal-condition = "relative_size"
incremental-subsumption-removal-relative-size = 0.4

timeout = 3600 # seconds (1h)

sylvan-table-size = [20, 28] # 24 MB, 6 GB
sylvan-cache-size = [20, 28] # 36 MB, 9 GB
lace-threads = 3

6.6 File Formats
In this section, we describe file formats used by the dp application.

6.6.1 DIMACS CNF
The DIMACS CNF format, which is an industry standard for logical formulas

in CNF for automated processing, is used for input and output formulas. It is
not very precisely defined; there are several variants and extensions, and different
parsers have various support and requirements. We use a definition that is simple
enough for our use-case and compatible with most potential input files:

• a line beginning with the character c is a comment,

• the first non-comment line is the problem definition header with the following
format:

p cnf <variables> <clauses>

61

where <variables> indicates the number of variables and <clauses> indi-
cates the number of clauses,

• after the header follow the clauses, typically one clause per line,

• each clause is a sequence of literals separated by white-space,

• positive/negative literals are represented by positive/negative integers,

• each clause ends with a 0 (which is never a literal).

For example, the formula (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) could be encoded as follows:

c This is an example DIMACS CNF file
p cnf 3 2
-1 2 0
-2 3 0

While our application does require the problem definition header, it does not
fail if the number of variables or clauses does not match the declared values — it
only issues a warning if such discrepancy occurs.

6.6.2 Metrics Export
The dp application collects various metrics while performing DP elimination.

These metrics are then exported into a JSON file with the following structure:

{
"counters": {

...
},
"cumulative_durations": {

...
},
"durations": {

...
},
"series": {

...
}

}

Each of the top-level elements represents a category of metrics and contains
nested elements with data. Counters are single integer values, while each series
element contains a list of integer values. Duration-based metrics are measured in
microseconds; cumulative_durations contain a single value, durations are similar
to series — carrying a list of durations per element. Note that while all elements
are sorted by their name within each category, we might not follow this ordering
in this documentation. Also note that some metrics are only relevant with certain
program options. In particular, some series or durations might contain empty lists
in certain configurations.

62

Counters contain the following metrics:

• MinVar minimum variable allowed to be eliminated,

• MaxVar maximum variable allowed to be eliminated,

• InitVars number of variables in the input formula,

• FinalVars number of variables in the output formula,

• EliminatedVars number of eliminated variables,

• RemoveAbsorbedClausesCallCount
how many times complete minimisation was performed,

• AbsorbedClausesRemoved
total number of removed absorptions,

• AbsorbedClausesNotAdded
total number of absorbed clauses detected during incremental minimisation,

• UnitLiteralsRemoved
total number of variables eliminated by unit propagation,

• WatchedLiterals_Assignments
total number of assignments performed by the watched literals data structure.

Note that in general

FinalVars ̸= InitVars− (EliminatedVars + UnitLiteralsRemoved),

because some of the removed unit literals might have been added back to the
results (see Section 3.4). Moreover, even though it is unlikely, it can happen that
some variable disappears during some other variable’s elimination (due to various
minimisation methods).

Series contain the following metrics:

• EliminatedLiterals
literals in their order of elimination,

• ClauseCounts number of clauses in each iteration,

• NodeCounts number of ZBDD nodes in each iteration,

• HeuristicScores score assigned to the literal selected for elimination,

• ClauseCountDifference
difference between number of clauses before and after each elimination;
includes incremental minimisation, excludes complete minimisation and unit
propagation,

• AbsorbedClausesRemoved
number of removed absorptions during each complete minimisation,

63

• AbsorbedClausesNotAdded
number of absorbed clauses detected during each incremental minimisation,

• UnitLiteralsRemoved
number of variables eliminated by unit propagation in each iteration.

Note that in general

ClauseCountDifference[i] ̸= ClauseCounts[i+ 1]− ClauseCounts[i],

because ClauseCounts are measured after complete minimisation and unit propa-
gation.

Cumulative durations contain the following metrics:

• WatchedLiterals_Propagation
time spent by unit propagation in the watched literals data structure,

• WatchedLiterals_Backtrack
time spent by backtracking in the watched literals data structure.

Durations contain the following metrics:

• ReadInputFormula
total time spent by reading the input formula and building its ZBDD,

• WriteOutputFormula
total time spent by writing the output formula into a file,

• ReadFormula_AddClause
time spent by reading each clause of the input formula,

• WriteFormula_PrintClause
time spent by writing each clause of the output formula,

• AlgorithmTotal total time spent by the DP elimination algorithm,

• RemoveAbsorbedClauses_Serialize
time spent by serialising a ZBDD into watched literals during each complete
minimisation,

• RemoveAbsorbedClauses_Search
time spent by searching for absorptions during each complete minimisation,

• RemoveAbsorbedClauses_Build
time spent by building a ZBDD from watched literals during each complete
minimisation,

• IncrementalAbsorbedRemoval_Serialize
time spent by serialising a ZBDD into watched literals during each incre-
mental minimisation,

64

• IncrementalAbsorbedRemoval_Search
time spent by searching for absorbed clauses during each incremental min-
imisation,

• IncrementalAbsorbedRemoval_Build
time spent by building a ZBDD from watched literals during each incremental
minimisation,

• VarSelection time spent by selecting a literal to be eliminated in each
iteration,

• EliminateVar_Total
time spent by eliminating each variable; excludes literal selection, full
minimisation, and unit propagation,

• EliminateVar_SubsetDecomposition
time spent by subset decomposition in each iteration,

• EliminateVar_Resolution
time spent by clause resolution in each iteration,

• EliminateVar_TautologiesRemoval
time spent by removing tautologies in each iteration,

• EliminateVar_Unification
time spent by computing union in each iteration; includes subsumed removal
and incremental minimisation.

6.7 Examples
We provide a couple of examples of using the dp application. Let us assume

that we are in the root directory of our project and we have successfully compiled
the application using instructions in Section 6.2 Additionally, we also have the
configuration example from Section 6.5 saved as config.toml, and an input file
in the DIMACS CNF format as formula.cnf. Example configuration files and
formulas are included in Attachment A.1. Then by running

build/dp --config config.toml formula.cnf

we could get the following output:

Reading input formula from file formula.cnf...
Input formula has 21254 clauses
Eliminating variables...
Formula with 29782 clauses written to file result.cnf
Exporting metrics to metrics.json

Detailed information about the program’s progress was logged into the dp.log
file.

We might wish to give the program some extra options in addition to the
configuration file:

65

build/dp --config config.toml --var-range 110 485 formula.cnf

This time, only variables starting from 110 ending with 485 will be eliminated.
We can also override some options set in the config.toml file:

build/dp --config config.toml --heuristic ascending formula.cnf

Now instead of the minimal bloat heuristic for variable selection we eliminate
variables in ascending order.

It is also possible to use multiple configuration files at once:

build/dp --config config.toml --config another_config.toml formula.cnf

If there are conflicting options in the two configuration files, the latter (another
_config.toml) overrides the former (config.toml).

66

7 Experiments
With our DP elimination application finished, we ran several experiments in

order to evaluate the techniques we used. As outlined in Chapter 1, our main
focus was to determine efficiency of absorption removal described in Section 3.5,
and to compare variable selection heuristics from Section 3.2. In addition, we
also tested the effect of parallelisation on ZBDD operations given its support in
the Sylvan library (see Section 4.1). Finally, we looked at the whole pipeline
described in Chapter 1 — encoding a CNF formula into DNNF and back to CNF,
and then reducing it with our application to obtain a PC formula. We compare
this approach with Kučera [3] on relevant formulas.

7.1 Inputs
As inputs for our experiments, we used a combination of formulas from various

real combinatorial problems and some randomly generated formulas, all taken
from the benchmark collection by Koriche et al. [28]. We chose formulas of such
size so that a substantial amount of auxiliary variables (if not all of them) could be
eliminated in a reasonable amount of time, which we decided to be one hour. All
inputs are included in Attachment A.1 under the experiments/inputs/ directory.
Each formula has several associated files, we list them in their order of creation:

• *.cnf the original formula,

• *.nnf DNNF encoding of the formula,

• *.dc.cnf CNF encoding of the DNNF formula,

• *.dc.min.cnf minimised version of the CNF encoding (removed ab-
sorptions),

• *.dc.min.toml dp configuration file with formula-specific options.
For compilation into DNNF we used the modern Bella compiler by Illner

and Kučera [29] instead of more common compilers by Darwiche [6] or Lagniez
and Marquis [7]. Domain-consistent encoding of the DNNF formula back into
CNF was computed with algorithm FullNNF by Abío et al. [8]. We used an
implementation included in the tool PCCompile by Kučera [30]. It might be
relevant that this implementation uses postorder numbering of DNNF nodes, i.e.
nodes in a subgraph are assigned a lower number than the root of the subgraph.
The minimised formulas were also obtained using the PCCompile tool. We use
the minimised version of the CNF encoding (*.dc.min.cnf) as input of the dp
program. The TOML configuration file is used for specifying which variables should
be eliminated from each formula (the --var-range option, see Section 6.4.6).

Regarding size of the formulas, we filtered the benchmark collection in the
following way:

• we selected only CNF formulas with < 400 variables,

• we compiled them with Bella with timeout of 300s and ignored the rest,

• we selected NNF formulas with < 10000 nodes in the header.

67

7.2 Setup
We ran all experiments on the Chimera cluster at Faculty of Mathematics and

Physics, Charles University, Prague. The experiments reported in this chapter
were run on homogenous hardware with the following specifications:

• CPU AMD EPYC 7543 (2.8 GHz),

• cores per task 4,

• RAM per task 32 GB.

Before running the experiments, it is necessary to increase the system stack size
limit as explained in Section 6.3.

Regarding options for the dp program, we use a default configuration common
for all experiments and adjust/supplement it with experiment-specific configura-
tions. See sections 6.4 and 6.5 for details about program options and configuration
files. Each experiment is conducted on all input formulas. The default configura-
tion is as follows:

output-max-size = 20_000_000
sylvan-table-size = [20, 28]
sylvan-cache-size = [20, 28]
lace-threads = 3

Notice that one core is reserved for the main thread, as recommended in Sec-
tion 6.4.7. Also, by default we use the minimal_bloat variable selection heuristic
unless stated otherwise.

Apart from variable selection heuristics, which are one of the subjects of our
experiments, dp has several other options that directly modify the behaviour of DP
elimination. In particular, these are the options regarding complete minimisation
(Section 6.4.3), partial minimisation (Section 6.4.4), and incremental absorption
removal (Section 6.4.5). We conducted a parameter search on a limited subset of
the input formulas to find optimal parameters for these settings (when they are
activated). However, the results of the search were not very conclusive — different
parameters were better for different formulas and we did not find any clear way
of extrapolation. In the end, we gave more weight to formulas that were not
randomly generated, but even among those there were very few clear trends. In
general, we find the relative_size condition most reasonable (unless we choose
never). If all three minimisation techniques are activated, we chose the following
parameters:

complete-minimization-condition = "relative_size"
complete-minimization-relative-size = 1.5

partial-minimization-condition = "relative_size"
partial-minimization-relative-size = 0.1

incremental-absorption-removal-condition = "relative_size"
incremental-absorption-removal-relative-size = 1.0

68

7.3 Algorithm Breakdown
Before evaluating the experiments, we first want to give some insight into the

course of the DP elimination algorithm. We will look at a run of the algorithm
on a single input formula, using the default configuration shown in Section 7.2
with two modifications:

• incremental absorption removal is disabled,

• complete minimization relative size is set to 1.1.

This configuration results in more illustrative plots. The formula of choice is
instancesCompilation/Handmade/ais/ais6. Table 7.1 shows a summary of the
run. Some metrics in the table can be directly mapped to metrics described in
Section 6.6.2, others are derived from them.

initial variables 261 read duration 72.0 ms
final variables 61 write duration 5.9 ms
eliminated variables 199 DP algorithm duration 23.7 s
initial clauses 1497 variable selection 40.3 ms
final clauses 2118 elimination 315.2 ms
removed unit literals 3 absorption removal 23.3 s
removed absorbed clauses 52196 unit propagations per second 622274
heuristic correlation 0.956 backtrack-to-propagation ratio 0.0021

Table 7.1 Run summary.

The first thing worth pointing out is that absorption removal (i.e. complete
minimisation) takes up almost the whole runtime duration of the algorithm (23.3
out of 23.6 seconds). Such dominance of absorption removal is a trend we see
on almost all input formulas. We can also see that parsing the input file (which
includes building a ZBDD) and writing the resulting formula takes negligible
time in comparison to actual DP elimination. If we compare variable selection
to the elimination stage, it is quite significant. On the other hand, the heuristic
predicting the formula’s growth seems to be very accurate, judging by its high
correlation with observed formula growth.

In Figure 7.1 we see how the size of the formula develops throughout the
algorithm. There are two curves in the plot — one for the number of clauses
(i.e. formula size), one for ZBDD nodes. Similarly to this run, in most cases the
number of ZBDD nodes is ≈ 1.5 times larger than the size of the formula. Looking
at the curves, we see that for roughly the first half of eliminated variables the
formula size does not change much (or declines slightly). This illustrates how the
algorithm first eliminates variables with low heuristic score (see Equation 3.2).
Then between 100 and 150 eliminated variables the formula starts growing as no
more ‘cheap variables’ are available, and the second half of the plot shows spikes
of growth and decline with increasing frequency. These spikes mark where some
minimisation happens, suddenly reducing the formula’s size. It is not immediately
clear what behaviour should be attributed to complete minimisation (absorption
removal) and what behaviour to partial minimisation (subsumption removal),
sometimes the effect is also combined.

69

0 25 50 75 100 125 150 175 200
eliminated variables

0

500

1000

1500

2000

2500
co

un
t

ZBDD size

clauses
nodes

Figure 7.1 Formula size.

Let us look in detail at variable elimination. In Figure 7.2 we see the main
part of the algorithm broken down into all its phases, the y-axis showing their
duration. There are several interesting trends shown by the plot. Firstly, notice
how at the beginning of the algorithm, the total duration follows certain cycles —
first it linearly grows, then it suddenly drops down. Looking at the application log,
we noticed that this behaviour strongly correlates with the eliminated variable
and its position in the ZBDD d-variable ordering. Due to the implementation of
the minimal bloat heuristic (see Algorithm 3.6), when there are multiple variables
with the same heuristic score, we eliminate the smallest variable (earliest in the
d-variable ordering). The first ≈ 50 eliminated variables all had heuristic score 0,
the next ≈ 20 had score 1, then again ≈ 50 variables with score 3, etc. Each time
the minimal heuristic score increases, the position of the eliminated variable drops
to the beginning of the ZBDD variable ordering, which results in much shorter
subset decomposition stage. This is not that surprising — subset decomposition is
achieved using the offset() and onset() operations, which are more efficient
for d-variables closer to the ZBDD root.

The second observation we can make based on Figure 7.2 concerns the phases
of variable elimination. It is clear that most of the time, the dominant phase is
subset decomposition. However, in the last part of DP elimination, the unification
phase takes over and significantly slows down the whole algorithm. The reason is
quite clear — due to the configuration we use, the algorithm does not perform
any partial minimisation unless Pnew.count is at least 10 % of P ′.count (see
Section 6.4.4). As a result, partial minimisation (in our case only subsumption-
free union, see Algorithm 2.3) only contributes once the formula starts growing

70

0 25 50 75 100 125 150 175 200
eliminated variables

0

1

2

3

4

5

6
du

ra
tio

n
(m

s)

Duration of variable elimination

subset decomposition
resolution
tautologies removal

unification
total

Figure 7.2 Variable elimination.

significantly. This is consistent with Figure 7.3 showing the heuristic score as well
as actual difference in formula size. Note that the clause count difference curve
excludes complete minimisation, but includes partial minimisation (it would be
impossible to filter out its effect); this causes the inaccuracy of the heuristic once
partial minimisation starts taking part.

Regarding the resolution and tautology removal phases in Figure 7.2, they also
slow down for the last few elimination cycles similarly to unification, but they are
still contributing significantly to the total duration.

If we compare figures 7.1 and 7.2, it is clear that partial minimisation alone
cannot explain the sudden drops in formula size, because the two phenomenons do
not start at the same time. To explain also the earlier formula size drops, we need
to look more closely at complete minimisation. Figure 7.4 shows all invocations of
Algorithm 3.13. The bars illustrate how many absorbed clauses were detected and
removed (with y-axis on the left), the line plots break down how much runtime
was spent in different phases of the algorithm (y-axis on the right):

1. serialising a ZBDD into a vector of clauses,

2. searching for absorptions with watched literals,

3. building a ZBDD from the vector of clauses.

Note that the x-axis does not represent time nor the number of eliminated
variables by DP elimination, it simply tracks the number of invocations of complete
minimisation. This is important to keep in mind, as minimisation is conducted
with increasing frequency as more variables are eliminated.

71

0 25 50 75 100 125 150 175 200
eliminated variables

0

1500

3000

4500

6000

7500

9000

10500

12000

13500
(e

xp
ec

te
d)

 #
 c

la
us

es

Heuristic accuracy

heuristic score clause count difference

Figure 7.3 Heuristic prediction and actual clause difference.

We can see that there is a clear trend of more absorbed clauses being removed
later on in DP elimination. From Figure 7.1 we see that the size of the formula
does not change as drastically, which indicates that eliminating variables in the last
phase of DP elimination creates a lot of absorbed clauses. Another observation is
that the duration of the search part of complete minimisation strongly correlates
with the number of removed absorptions. We can also see how it happens that
absorption removal takes up most of DP elimination’s runtime as shown by
Table 7.1 — a single minimisation can run a few seconds. Finally, it is clear that
using watched literals is a good choice, because both ZBDD serialisation and
building are insignificant compared to the actual absorption search.

The final note we want to make with regards to the DP elimination breakdown
concerns unit propagation. In Table 7.1 we see that in this particular formula,
44 unit literals were removed in total. The interesting part, which is visible
from the collected metrics, is that all of those 44 literals were removed during
the first run of unit propagation. In fact, we have not seen a single experiment
where some unit clause would appear in the middle of DP elimination. To our
understanding, it should not be impossible, but empirically it is very rare to say
the least. Fortunately, as explained in Section 3.4, checking for a unit literal
in a ZBDD is very fast and even if unsuccessful, it does not slow down the DP
elimination algorithm.

72

0 10 20 30 40
invocations

0

1000

2000

3000

4000

ab
so

rb
ed

 c
la

us
es

 re
m

ov
ed

Removed absorbed clauses

0

500

1000

1500

2000

2500

3000

du
ra

tio
n

(m
s)

removed clauses
search

serialize
build

Figure 7.4 Complete minimisation.

7.4 Experiment 1: Absorption Removal
Our first experiment looks at the effect of removing absorbed clauses. We use

three different configurations:

1. all minimisation enabled,

complete-minimization-condition = "relative_size"
complete-minimization-relative-size = 1.5

partial-minimization-condition = "relative_size"
partial-minimization-relative-size = 0.1

incremental-absorption-removal-condition = "relative_size"
incremental-absorption-removal-relative-size = 1.0

2. only complete minimisation (and subsumption removal) — disable incre-
mental absorption removal,

complete-minimization-condition = "relative_size"
complete-minimization-relative-size = 1.1

partial-minimization-condition = "relative_size"
partial-minimization-relative-size = 0.1

incremental-absorption-removal-condition = "never"

73

3. no absorption removal — disable also complete minimisation.

complete-minimization-condition = "never"

partial-minimization-condition = "relative_size"
partial-minimization-relative-size = 0.1

incremental-absorption-removal-condition = "never"

The results of this experiment are captured in three plots, each plot showing a
different metric. For every input formula there are three bars in each plot, one per
configuration. Data used for creating the plots is included in Attachment A.1 as
experiments/summary_data.csv. The file also contains data collected from other
experiments and includes some additional information about each input formula.
For more details about extracting the data from dp metrics and processing them
see Section 5.5.

We should note that for 6 inputs, without minimisation the formulas grew so
large that they crashed the program by completely filling Sylvan’s unique table,
which with our configuration fits 228 ≈ 2.68 ∗ 108 nodes. Unfortunately, dp is
not able to recover from such situation and crashes without any output data.
In order to avoid misleading plots, we tried to read the missing from log files
and added them manually. The resulting file is also attached in Attachment A.1
as experiments/summary_data_manual.csv. This is the actual source for our
summary plots. We were not able to derive from the logs how many variables
were eliminated before crashing, so we filled in that no variables were eliminated.

Figure 7.5 shows the runtime duration. Notice the cut-off at ≈ 3600 seconds,
which marks the 1-hour timeout.

qg
1-

07
.d

c.
m

in
qg

2-
07

.d
c.

m
in

ai
s1

0.
dc

.m
in

ai
s6

.d
c.

m
in

ai
s8

.d
c.

m
in

pa
r1

6-
1-

c.
dc

.m
in

pa
r1

6-
2-

c.
dc

.m
in

pa
r1

6-
3-

c.
dc

.m
in

pa
r1

6-
4-

c.
dc

.m
in

pa
r1

6-
5-

c.
dc

.m
in

pa
r8

-1
-c

.d
c.

m
in

pa
r8

-1
.d

c.
m

in
pa

r8
-2

-c
.d

c.
m

in
pa

r8
-2

.d
c.

m
in

pa
r8

-3
-c

.d
c.

m
in

pa
r8

-3
.d

c.
m

in
pa

r8
-4

-c
.d

c.
m

in
pa

r8
-4

.d
c.

m
in

pa
r8

-5
-c

.d
c.

m
in

pa
r8

-5
.d

c.
m

in
fs

-0
1.

ne
t.d

c.
m

in
sa

t-g
rid

-p
bl

-0
01

0.
dc

.m
in

sa
t-g

rid
-p

bl
-0

01
5.

dc
.m

in
3b

lo
ck

s.d
c.

m
in

an
om

al
y.d

c.
m

in
m

ed
iu

m
.d

c.
m

in
tir

e-
1.

dc
.m

in
c4

32
.is

c.
dc

.m
in

s4
00

.b
en

ch
.d

c.
m

in
s4

20
.1

.b
en

ch
.d

c.
m

in
s4

44
.b

en
ch

.d
c.

m
in

s5
10

.b
en

ch
.d

c.
m

in
s5

26
.b

en
ch

.d
c.

m
in

s5
26

n.
be

nc
h.

dc
.m

in
s8

20
.b

en
ch

.d
c.

m
in

s8
32

.b
en

ch
.d

c.
m

in
m

ix
du

p.
dc

.m
in

uf
25

0-
01

0.
dc

.m
in

uf
25

0-
01

00
.d

c.
m

in
uf

25
0-

01
1.

dc
.m

in
uf

25
0-

01
3.

dc
.m

in
uf

25
0-

01
4.

dc
.m

in
uf

25
0-

01
7.

dc
.m

in
uf

25
0-

01
8.

dc
.m

in
uf

25
0-

02
.d

c.
m

in
uf

25
0-

02
0.

dc
.m

in
uf

25
0-

02
2.

dc
.m

in
uf

25
0-

02
3.

dc
.m

in
uf

25
0-

02
4.

dc
.m

in
uf

25
0-

02
6.

dc
.m

in
uf

25
0-

02
7.

dc
.m

in
uf

25
0-

02
8.

dc
.m

in
uf

25
0-

02
9.

dc
.m

in
uf

25
0-

03
.d

c.
m

in
uf

25
0-

03
0.

dc
.m

in
uf

25
0-

03
1.

dc
.m

in
uf

25
0-

03
2.

dc
.m

in
uf

25
0-

03
4.

dc
.m

in
uf

25
0-

03
6.

dc
.m

in
uf

25
0-

03
8.

dc
.m

in
uf

25
0-

04
0.

dc
.m

in
uf

25
0-

04
1.

dc
.m

in
uf

25
0-

04
2.

dc
.m

in
uf

25
0-

04
3.

dc
.m

in
uf

25
0-

04
5.

dc
.m

in
uf

25
0-

04
6.

dc
.m

in
uf

25
0-

04
7.

dc
.m

in
uf

25
0-

04
8.

dc
.m

in
uf

25
0-

05
.d

c.
m

in
uf

25
0-

05
0.

dc
.m

in
uf

25
0-

05
1.

dc
.m

in
uf

25
0-

05
2.

dc
.m

in
uf

25
0-

05
3.

dc
.m

in
uf

25
0-

05
4.

dc
.m

in
uf

25
0-

05
5.

dc
.m

in
uf

25
0-

05
6.

dc
.m

in
uf

25
0-

05
7.

dc
.m

in
uf

25
0-

05
8.

dc
.m

in
uf

25
0-

05
9.

dc
.m

in
uf

25
0-

06
0.

dc
.m

in
uf

25
0-

06
2.

dc
.m

in
uf

25
0-

06
3.

dc
.m

in
uf

25
0-

06
5.

dc
.m

in
uf

25
0-

06
7.

dc
.m

in
uf

25
0-

06
9.

dc
.m

in
uf

25
0-

07
.d

c.
m

in
uf

25
0-

07
0.

dc
.m

in
uf

25
0-

07
1.

dc
.m

in
uf

25
0-

07
2.

dc
.m

in
uf

25
0-

07
5.

dc
.m

in
uf

25
0-

07
6.

dc
.m

in
uf

25
0-

07
7.

dc
.m

in
uf

25
0-

07
8.

dc
.m

in
uf

25
0-

07
9.

dc
.m

in
uf

25
0-

08
0.

dc
.m

in
uf

25
0-

08
2.

dc
.m

in
uf

25
0-

08
3.

dc
.m

in
uf

25
0-

08
6.

dc
.m

in
uf

25
0-

08
7.

dc
.m

in
uf

25
0-

08
8.

dc
.m

in
uf

25
0-

09
.d

c.
m

in
uf

25
0-

09
0.

dc
.m

in
uf

25
0-

09
2.

dc
.m

in
uf

25
0-

09
3.

dc
.m

in
uf

25
0-

09
4.

dc
.m

in
uf

25
0-

09
6.

dc
.m

in
uf

25
0-

09
7.

dc
.m

in
uf

25
0-

09
9.

dc
.m

in
wf

f.3
.7

5.
31

5.
dc

.m
in

input formulas

0

1

2

3

4

du
ra

tio
n

(1
0^

3
s)

Duration

all_minimizations
only_complete_minimization
no_absorbed_removal

Figure 7.5 Experiment 1: duration of DP elimination.

Figure 7.6 is in some sense complementary to Figure 7.5. It shows how many
auxiliary variables are left to be eliminated from the formula. If the program

74

finished before timing out, there are no auxiliary variables left. In other words,
only if a bar reaches the 3600s bar in Figure 7.5 should the same bar have a
non-zero value in Figure 7.6. The values in the plot are normalised — the y-axis is
a percentage of the total number of auxiliary variables in the input formula. This
figure also allows us to pinpoint which formulas crashed due to full Sylvan unique
table, as discussed before — it shows that none of the variables were eliminated.

qg
1-

07
.d

c.
m

in
qg

2-
07

.d
c.

m
in

ai
s1

0.
dc

.m
in

ai
s6

.d
c.

m
in

ai
s8

.d
c.

m
in

pa
r1

6-
1-

c.
dc

.m
in

pa
r1

6-
2-

c.
dc

.m
in

pa
r1

6-
3-

c.
dc

.m
in

pa
r1

6-
4-

c.
dc

.m
in

pa
r1

6-
5-

c.
dc

.m
in

pa
r8

-1
-c

.d
c.

m
in

pa
r8

-1
.d

c.
m

in
pa

r8
-2

-c
.d

c.
m

in
pa

r8
-2

.d
c.

m
in

pa
r8

-3
-c

.d
c.

m
in

pa
r8

-3
.d

c.
m

in
pa

r8
-4

-c
.d

c.
m

in
pa

r8
-4

.d
c.

m
in

pa
r8

-5
-c

.d
c.

m
in

pa
r8

-5
.d

c.
m

in
fs

-0
1.

ne
t.d

c.
m

in
sa

t-g
rid

-p
bl

-0
01

0.
dc

.m
in

sa
t-g

rid
-p

bl
-0

01
5.

dc
.m

in
3b

lo
ck

s.d
c.

m
in

an
om

al
y.d

c.
m

in
m

ed
iu

m
.d

c.
m

in
tir

e-
1.

dc
.m

in
c4

32
.is

c.
dc

.m
in

s4
00

.b
en

ch
.d

c.
m

in
s4

20
.1

.b
en

ch
.d

c.
m

in
s4

44
.b

en
ch

.d
c.

m
in

s5
10

.b
en

ch
.d

c.
m

in
s5

26
.b

en
ch

.d
c.

m
in

s5
26

n.
be

nc
h.

dc
.m

in
s8

20
.b

en
ch

.d
c.

m
in

s8
32

.b
en

ch
.d

c.
m

in
m

ix
du

p.
dc

.m
in

uf
25

0-
01

0.
dc

.m
in

uf
25

0-
01

00
.d

c.
m

in
uf

25
0-

01
1.

dc
.m

in
uf

25
0-

01
3.

dc
.m

in
uf

25
0-

01
4.

dc
.m

in
uf

25
0-

01
7.

dc
.m

in
uf

25
0-

01
8.

dc
.m

in
uf

25
0-

02
.d

c.
m

in
uf

25
0-

02
0.

dc
.m

in
uf

25
0-

02
2.

dc
.m

in
uf

25
0-

02
3.

dc
.m

in
uf

25
0-

02
4.

dc
.m

in
uf

25
0-

02
6.

dc
.m

in
uf

25
0-

02
7.

dc
.m

in
uf

25
0-

02
8.

dc
.m

in
uf

25
0-

02
9.

dc
.m

in
uf

25
0-

03
.d

c.
m

in
uf

25
0-

03
0.

dc
.m

in
uf

25
0-

03
1.

dc
.m

in
uf

25
0-

03
2.

dc
.m

in
uf

25
0-

03
4.

dc
.m

in
uf

25
0-

03
6.

dc
.m

in
uf

25
0-

03
8.

dc
.m

in
uf

25
0-

04
0.

dc
.m

in
uf

25
0-

04
1.

dc
.m

in
uf

25
0-

04
2.

dc
.m

in
uf

25
0-

04
3.

dc
.m

in
uf

25
0-

04
5.

dc
.m

in
uf

25
0-

04
6.

dc
.m

in
uf

25
0-

04
7.

dc
.m

in
uf

25
0-

04
8.

dc
.m

in
uf

25
0-

05
.d

c.
m

in
uf

25
0-

05
0.

dc
.m

in
uf

25
0-

05
1.

dc
.m

in
uf

25
0-

05
2.

dc
.m

in
uf

25
0-

05
3.

dc
.m

in
uf

25
0-

05
4.

dc
.m

in
uf

25
0-

05
5.

dc
.m

in
uf

25
0-

05
6.

dc
.m

in
uf

25
0-

05
7.

dc
.m

in
uf

25
0-

05
8.

dc
.m

in
uf

25
0-

05
9.

dc
.m

in
uf

25
0-

06
0.

dc
.m

in
uf

25
0-

06
2.

dc
.m

in
uf

25
0-

06
3.

dc
.m

in
uf

25
0-

06
5.

dc
.m

in
uf

25
0-

06
7.

dc
.m

in
uf

25
0-

06
9.

dc
.m

in
uf

25
0-

07
.d

c.
m

in
uf

25
0-

07
0.

dc
.m

in
uf

25
0-

07
1.

dc
.m

in
uf

25
0-

07
2.

dc
.m

in
uf

25
0-

07
5.

dc
.m

in
uf

25
0-

07
6.

dc
.m

in
uf

25
0-

07
7.

dc
.m

in
uf

25
0-

07
8.

dc
.m

in
uf

25
0-

07
9.

dc
.m

in
uf

25
0-

08
0.

dc
.m

in
uf

25
0-

08
2.

dc
.m

in
uf

25
0-

08
3.

dc
.m

in
uf

25
0-

08
6.

dc
.m

in
uf

25
0-

08
7.

dc
.m

in
uf

25
0-

08
8.

dc
.m

in
uf

25
0-

09
.d

c.
m

in
uf

25
0-

09
0.

dc
.m

in
uf

25
0-

09
2.

dc
.m

in
uf

25
0-

09
3.

dc
.m

in
uf

25
0-

09
4.

dc
.m

in
uf

25
0-

09
6.

dc
.m

in
uf

25
0-

09
7.

dc
.m

in
uf

25
0-

09
9.

dc
.m

in
wf

f.3
.7

5.
31

5.
dc

.m
in

input formulas

0.0

0.2

0.4

0.6

0.8

1.0

%
 re

m
ai

ni
ng

 v
ar

ia
bl

es

Remaining variables to eliminate

all_minimizations
only_complete_minimization
no_absorbed_removal

Figure 7.6 Experiment 1: auxiliary variables left to eliminate.

Figure 7.7 shows the maximum size of the processed formula during DP
elimination relative to the input formula’s size. Note that the y-axis is scaled
logarithmically due to large disparity of values between different inputs.

qg
1-

07
.d

c.
m

in
qg

2-
07

.d
c.

m
in

ai
s1

0.
dc

.m
in

ai
s6

.d
c.

m
in

ai
s8

.d
c.

m
in

pa
r1

6-
1-

c.
dc

.m
in

pa
r1

6-
2-

c.
dc

.m
in

pa
r1

6-
3-

c.
dc

.m
in

pa
r1

6-
4-

c.
dc

.m
in

pa
r1

6-
5-

c.
dc

.m
in

pa
r8

-1
-c

.d
c.

m
in

pa
r8

-1
.d

c.
m

in
pa

r8
-2

-c
.d

c.
m

in
pa

r8
-2

.d
c.

m
in

pa
r8

-3
-c

.d
c.

m
in

pa
r8

-3
.d

c.
m

in
pa

r8
-4

-c
.d

c.
m

in
pa

r8
-4

.d
c.

m
in

pa
r8

-5
-c

.d
c.

m
in

pa
r8

-5
.d

c.
m

in
fs

-0
1.

ne
t.d

c.
m

in
sa

t-g
rid

-p
bl

-0
01

0.
dc

.m
in

sa
t-g

rid
-p

bl
-0

01
5.

dc
.m

in
3b

lo
ck

s.d
c.

m
in

an
om

al
y.d

c.
m

in
m

ed
iu

m
.d

c.
m

in
tir

e-
1.

dc
.m

in
c4

32
.is

c.
dc

.m
in

s4
00

.b
en

ch
.d

c.
m

in
s4

20
.1

.b
en

ch
.d

c.
m

in
s4

44
.b

en
ch

.d
c.

m
in

s5
10

.b
en

ch
.d

c.
m

in
s5

26
.b

en
ch

.d
c.

m
in

s5
26

n.
be

nc
h.

dc
.m

in
s8

20
.b

en
ch

.d
c.

m
in

s8
32

.b
en

ch
.d

c.
m

in
m

ix
du

p.
dc

.m
in

uf
25

0-
01

0.
dc

.m
in

uf
25

0-
01

00
.d

c.
m

in
uf

25
0-

01
1.

dc
.m

in
uf

25
0-

01
3.

dc
.m

in
uf

25
0-

01
4.

dc
.m

in
uf

25
0-

01
7.

dc
.m

in
uf

25
0-

01
8.

dc
.m

in
uf

25
0-

02
.d

c.
m

in
uf

25
0-

02
0.

dc
.m

in
uf

25
0-

02
2.

dc
.m

in
uf

25
0-

02
3.

dc
.m

in
uf

25
0-

02
4.

dc
.m

in
uf

25
0-

02
6.

dc
.m

in
uf

25
0-

02
7.

dc
.m

in
uf

25
0-

02
8.

dc
.m

in
uf

25
0-

02
9.

dc
.m

in
uf

25
0-

03
.d

c.
m

in
uf

25
0-

03
0.

dc
.m

in
uf

25
0-

03
1.

dc
.m

in
uf

25
0-

03
2.

dc
.m

in
uf

25
0-

03
4.

dc
.m

in
uf

25
0-

03
6.

dc
.m

in
uf

25
0-

03
8.

dc
.m

in
uf

25
0-

04
0.

dc
.m

in
uf

25
0-

04
1.

dc
.m

in
uf

25
0-

04
2.

dc
.m

in
uf

25
0-

04
3.

dc
.m

in
uf

25
0-

04
5.

dc
.m

in
uf

25
0-

04
6.

dc
.m

in
uf

25
0-

04
7.

dc
.m

in
uf

25
0-

04
8.

dc
.m

in
uf

25
0-

05
.d

c.
m

in
uf

25
0-

05
0.

dc
.m

in
uf

25
0-

05
1.

dc
.m

in
uf

25
0-

05
2.

dc
.m

in
uf

25
0-

05
3.

dc
.m

in
uf

25
0-

05
4.

dc
.m

in
uf

25
0-

05
5.

dc
.m

in
uf

25
0-

05
6.

dc
.m

in
uf

25
0-

05
7.

dc
.m

in
uf

25
0-

05
8.

dc
.m

in
uf

25
0-

05
9.

dc
.m

in
uf

25
0-

06
0.

dc
.m

in
uf

25
0-

06
2.

dc
.m

in
uf

25
0-

06
3.

dc
.m

in
uf

25
0-

06
5.

dc
.m

in
uf

25
0-

06
7.

dc
.m

in
uf

25
0-

06
9.

dc
.m

in
uf

25
0-

07
.d

c.
m

in
uf

25
0-

07
0.

dc
.m

in
uf

25
0-

07
1.

dc
.m

in
uf

25
0-

07
2.

dc
.m

in
uf

25
0-

07
5.

dc
.m

in
uf

25
0-

07
6.

dc
.m

in
uf

25
0-

07
7.

dc
.m

in
uf

25
0-

07
8.

dc
.m

in
uf

25
0-

07
9.

dc
.m

in
uf

25
0-

08
0.

dc
.m

in
uf

25
0-

08
2.

dc
.m

in
uf

25
0-

08
3.

dc
.m

in
uf

25
0-

08
6.

dc
.m

in
uf

25
0-

08
7.

dc
.m

in
uf

25
0-

08
8.

dc
.m

in
uf

25
0-

09
.d

c.
m

in
uf

25
0-

09
0.

dc
.m

in
uf

25
0-

09
2.

dc
.m

in
uf

25
0-

09
3.

dc
.m

in
uf

25
0-

09
4.

dc
.m

in
uf

25
0-

09
6.

dc
.m

in
uf

25
0-

09
7.

dc
.m

in
uf

25
0-

09
9.

dc
.m

in
wf

f.3
.7

5.
31

5.
dc

.m
in

input formulas

100

101

102

103

104

105

106

re
la

tiv
e

gr
ow

th
 o

f #
 c

la
us

es

Maximum formula growth

all_minimizations
only_complete_minimization
no_absorbed_removal

Figure 7.7 Experiment 1: maximum growth of formulas.

The effect of removing absorbed clauses during DP elimination is immediately

75

visible in Figure 7.7 — the formulas remain several orders of magnitudes smaller
than without absorption removal for almost all inputs. While to some extent this
also translates into DP elimination’s efficiency, the effect is much less pronounced
in figures 7.5 and 7.6. This illustrates two things: one, while absorption removal
greatly reduces the formulas’ size, it is expensive, as discussed in Section 7.3;
two, ZBDDs are quite efficient even when dealing with very large formulas.
Nevertheless, it is clear that the overall effect of absorption removal is very
positive in terms of performance — none of the input formulas shows significantly
better results with absorption removal turned off, and in most cases the results
are considerably worse. Regarding the comparison of allowing or not allowing
incremental absorption removal, the results are not conclusive. In most cases, the
performance is comparable, sometimes going one way or the other.

7.5 Experiment 2: Variable Selection
The second experiment compares different variable selection methods described

in Section 3.2. For all setups, we use the default configuration from Section 7.2,
the only difference is in the --heuristic option (see Section 6.4.2):

1. minimal bloat,

2. ascending,

3. descending.

We show the same plots as we did in Experiment 1 (Section 7.4), but only this
time we omit the plot showing formula growth — the differences rarely even reach
one order of magnitude and do not seem to show any trend.

In figures 7.8 and 7.9 we can see that more often than not, the minimal bloat
heuristic performs better than the ordering-based heuristics. The difference is
especially visible with ‘hard’ formulas that DP elimination was not able to solve in
the 1-hour limit. In a lot of cases the order-based heuristics manage to eliminate
only a small fraction of variables where minimal bloat eliminates the majority
of variables. However, there are some outliers, specifically within the randomly
generated formulas (prefixed by uf250*) — sometimes the ascending heuristic
beats minimal bloat by managing to finish in time where minimal bloat fails to
do so. Although this is an interesting phenomenon, it is quite rare and given that
it only happens on random formulas, we attribute it to pure luck — sometimes a
(seemingly) random elimination sequence finds an optimum by chance.

Comparing the two ordering-based methods with each other, ascending order
seems to be almost always better than descending (to varying degree). We attribute
this to the fact also discussed in Section 7.3 that variables closer to the root of the
ZBDD are cheaper to eliminate, giving ascending elimination order an advantage.
There are two or three counter-examples which could perhaps be attributed to
coincidental structure of the specific formulas, but we do not offer any conclusive
insight. In any case, we can safely confirm that the minimal bloat heuristic works
reasonably well and is the best choice in general.

76

qg
1-

07
.d

c.
m

in
qg

2-
07

.d
c.

m
in

ai
s1

0.
dc

.m
in

ai
s6

.d
c.

m
in

ai
s8

.d
c.

m
in

pa
r1

6-
1-

c.
dc

.m
in

pa
r1

6-
2-

c.
dc

.m
in

pa
r1

6-
3-

c.
dc

.m
in

pa
r1

6-
4-

c.
dc

.m
in

pa
r1

6-
5-

c.
dc

.m
in

pa
r8

-1
-c

.d
c.

m
in

pa
r8

-1
.d

c.
m

in
pa

r8
-2

-c
.d

c.
m

in
pa

r8
-2

.d
c.

m
in

pa
r8

-3
-c

.d
c.

m
in

pa
r8

-3
.d

c.
m

in
pa

r8
-4

-c
.d

c.
m

in
pa

r8
-4

.d
c.

m
in

pa
r8

-5
-c

.d
c.

m
in

pa
r8

-5
.d

c.
m

in
fs

-0
1.

ne
t.d

c.
m

in
sa

t-g
rid

-p
bl

-0
01

0.
dc

.m
in

sa
t-g

rid
-p

bl
-0

01
5.

dc
.m

in
3b

lo
ck

s.d
c.

m
in

an
om

al
y.d

c.
m

in
m

ed
iu

m
.d

c.
m

in
tir

e-
1.

dc
.m

in
c4

32
.is

c.
dc

.m
in

s4
00

.b
en

ch
.d

c.
m

in
s4

20
.1

.b
en

ch
.d

c.
m

in
s4

44
.b

en
ch

.d
c.

m
in

s5
10

.b
en

ch
.d

c.
m

in
s5

26
.b

en
ch

.d
c.

m
in

s5
26

n.
be

nc
h.

dc
.m

in
s8

20
.b

en
ch

.d
c.

m
in

s8
32

.b
en

ch
.d

c.
m

in
m

ix
du

p.
dc

.m
in

uf
25

0-
01

0.
dc

.m
in

uf
25

0-
01

00
.d

c.
m

in
uf

25
0-

01
1.

dc
.m

in
uf

25
0-

01
3.

dc
.m

in
uf

25
0-

01
4.

dc
.m

in
uf

25
0-

01
7.

dc
.m

in
uf

25
0-

01
8.

dc
.m

in
uf

25
0-

02
.d

c.
m

in
uf

25
0-

02
0.

dc
.m

in
uf

25
0-

02
2.

dc
.m

in
uf

25
0-

02
3.

dc
.m

in
uf

25
0-

02
4.

dc
.m

in
uf

25
0-

02
6.

dc
.m

in
uf

25
0-

02
7.

dc
.m

in
uf

25
0-

02
8.

dc
.m

in
uf

25
0-

02
9.

dc
.m

in
uf

25
0-

03
.d

c.
m

in
uf

25
0-

03
0.

dc
.m

in
uf

25
0-

03
1.

dc
.m

in
uf

25
0-

03
2.

dc
.m

in
uf

25
0-

03
4.

dc
.m

in
uf

25
0-

03
6.

dc
.m

in
uf

25
0-

03
8.

dc
.m

in
uf

25
0-

04
0.

dc
.m

in
uf

25
0-

04
1.

dc
.m

in
uf

25
0-

04
2.

dc
.m

in
uf

25
0-

04
3.

dc
.m

in
uf

25
0-

04
5.

dc
.m

in
uf

25
0-

04
6.

dc
.m

in
uf

25
0-

04
7.

dc
.m

in
uf

25
0-

04
8.

dc
.m

in
uf

25
0-

05
.d

c.
m

in
uf

25
0-

05
0.

dc
.m

in
uf

25
0-

05
1.

dc
.m

in
uf

25
0-

05
2.

dc
.m

in
uf

25
0-

05
3.

dc
.m

in
uf

25
0-

05
4.

dc
.m

in
uf

25
0-

05
5.

dc
.m

in
uf

25
0-

05
6.

dc
.m

in
uf

25
0-

05
7.

dc
.m

in
uf

25
0-

05
8.

dc
.m

in
uf

25
0-

05
9.

dc
.m

in
uf

25
0-

06
0.

dc
.m

in
uf

25
0-

06
2.

dc
.m

in
uf

25
0-

06
3.

dc
.m

in
uf

25
0-

06
5.

dc
.m

in
uf

25
0-

06
7.

dc
.m

in
uf

25
0-

06
9.

dc
.m

in
uf

25
0-

07
.d

c.
m

in
uf

25
0-

07
0.

dc
.m

in
uf

25
0-

07
1.

dc
.m

in
uf

25
0-

07
2.

dc
.m

in
uf

25
0-

07
5.

dc
.m

in
uf

25
0-

07
6.

dc
.m

in
uf

25
0-

07
7.

dc
.m

in
uf

25
0-

07
8.

dc
.m

in
uf

25
0-

07
9.

dc
.m

in
uf

25
0-

08
0.

dc
.m

in
uf

25
0-

08
2.

dc
.m

in
uf

25
0-

08
3.

dc
.m

in
uf

25
0-

08
6.

dc
.m

in
uf

25
0-

08
7.

dc
.m

in
uf

25
0-

08
8.

dc
.m

in
uf

25
0-

09
.d

c.
m

in
uf

25
0-

09
0.

dc
.m

in
uf

25
0-

09
2.

dc
.m

in
uf

25
0-

09
3.

dc
.m

in
uf

25
0-

09
4.

dc
.m

in
uf

25
0-

09
6.

dc
.m

in
uf

25
0-

09
7.

dc
.m

in
uf

25
0-

09
9.

dc
.m

in
wf

f.3
.7

5.
31

5.
dc

.m
in

input formulas

0

500

1000

1500

2000

2500

3000

3500

du
ra

tio
n

(s
)

Duration

minimal_bloat
ascending
descending

Figure 7.8 Experiment 2: duration of DP elimination.

7.6 Experiment 3: Parallelisation
We also conducted an experiment to see how Sylvan’s parallelisation contributes

to DP elimination’s efficiency. In total, we run three setups:

1. 1 Lace thread (serial solution),

2. 3 Lace threads (default),

3. 7 Lace threads.

Perhaps surprisingly, the results show absolutely no difference between the three
setups. This further illustrates that our implementation is limited by absorption
removal, which dominates the runtime, as we already discussed in Section 7.3.

7.7 Experiment 4: Comparison With PCCom-
pile

In Chapter 1 we cited some existing approaches of obtaining a propagation
complete (PC) formula. In the final experiment, we wanted to compare them with
our approach. Kučera [3] implemented a learning-based compilation algorithm, as
well as an iteration-based one proposed by Bordeaux and Marques-Silva [2]. We
ran their PCCompile program against our dp on formulas that are common in
our datasets:

• ais6,

• sat-grid-pbl-0010,

• sat-grid-pbl-0015.

77

qg
1-

07
.d

c.
m

in
qg

2-
07

.d
c.

m
in

ai
s1

0.
dc

.m
in

ai
s6

.d
c.

m
in

ai
s8

.d
c.

m
in

pa
r1

6-
1-

c.
dc

.m
in

pa
r1

6-
2-

c.
dc

.m
in

pa
r1

6-
3-

c.
dc

.m
in

pa
r1

6-
4-

c.
dc

.m
in

pa
r1

6-
5-

c.
dc

.m
in

pa
r8

-1
-c

.d
c.

m
in

pa
r8

-1
.d

c.
m

in
pa

r8
-2

-c
.d

c.
m

in
pa

r8
-2

.d
c.

m
in

pa
r8

-3
-c

.d
c.

m
in

pa
r8

-3
.d

c.
m

in
pa

r8
-4

-c
.d

c.
m

in
pa

r8
-4

.d
c.

m
in

pa
r8

-5
-c

.d
c.

m
in

pa
r8

-5
.d

c.
m

in
fs

-0
1.

ne
t.d

c.
m

in
sa

t-g
rid

-p
bl

-0
01

0.
dc

.m
in

sa
t-g

rid
-p

bl
-0

01
5.

dc
.m

in
3b

lo
ck

s.d
c.

m
in

an
om

al
y.d

c.
m

in
m

ed
iu

m
.d

c.
m

in
tir

e-
1.

dc
.m

in
c4

32
.is

c.
dc

.m
in

s4
00

.b
en

ch
.d

c.
m

in
s4

20
.1

.b
en

ch
.d

c.
m

in
s4

44
.b

en
ch

.d
c.

m
in

s5
10

.b
en

ch
.d

c.
m

in
s5

26
.b

en
ch

.d
c.

m
in

s5
26

n.
be

nc
h.

dc
.m

in
s8

20
.b

en
ch

.d
c.

m
in

s8
32

.b
en

ch
.d

c.
m

in
m

ix
du

p.
dc

.m
in

uf
25

0-
01

0.
dc

.m
in

uf
25

0-
01

00
.d

c.
m

in
uf

25
0-

01
1.

dc
.m

in
uf

25
0-

01
3.

dc
.m

in
uf

25
0-

01
4.

dc
.m

in
uf

25
0-

01
7.

dc
.m

in
uf

25
0-

01
8.

dc
.m

in
uf

25
0-

02
.d

c.
m

in
uf

25
0-

02
0.

dc
.m

in
uf

25
0-

02
2.

dc
.m

in
uf

25
0-

02
3.

dc
.m

in
uf

25
0-

02
4.

dc
.m

in
uf

25
0-

02
6.

dc
.m

in
uf

25
0-

02
7.

dc
.m

in
uf

25
0-

02
8.

dc
.m

in
uf

25
0-

02
9.

dc
.m

in
uf

25
0-

03
.d

c.
m

in
uf

25
0-

03
0.

dc
.m

in
uf

25
0-

03
1.

dc
.m

in
uf

25
0-

03
2.

dc
.m

in
uf

25
0-

03
4.

dc
.m

in
uf

25
0-

03
6.

dc
.m

in
uf

25
0-

03
8.

dc
.m

in
uf

25
0-

04
0.

dc
.m

in
uf

25
0-

04
1.

dc
.m

in
uf

25
0-

04
2.

dc
.m

in
uf

25
0-

04
3.

dc
.m

in
uf

25
0-

04
5.

dc
.m

in
uf

25
0-

04
6.

dc
.m

in
uf

25
0-

04
7.

dc
.m

in
uf

25
0-

04
8.

dc
.m

in
uf

25
0-

05
.d

c.
m

in
uf

25
0-

05
0.

dc
.m

in
uf

25
0-

05
1.

dc
.m

in
uf

25
0-

05
2.

dc
.m

in
uf

25
0-

05
3.

dc
.m

in
uf

25
0-

05
4.

dc
.m

in
uf

25
0-

05
5.

dc
.m

in
uf

25
0-

05
6.

dc
.m

in
uf

25
0-

05
7.

dc
.m

in
uf

25
0-

05
8.

dc
.m

in
uf

25
0-

05
9.

dc
.m

in
uf

25
0-

06
0.

dc
.m

in
uf

25
0-

06
2.

dc
.m

in
uf

25
0-

06
3.

dc
.m

in
uf

25
0-

06
5.

dc
.m

in
uf

25
0-

06
7.

dc
.m

in
uf

25
0-

06
9.

dc
.m

in
uf

25
0-

07
.d

c.
m

in
uf

25
0-

07
0.

dc
.m

in
uf

25
0-

07
1.

dc
.m

in
uf

25
0-

07
2.

dc
.m

in
uf

25
0-

07
5.

dc
.m

in
uf

25
0-

07
6.

dc
.m

in
uf

25
0-

07
7.

dc
.m

in
uf

25
0-

07
8.

dc
.m

in
uf

25
0-

07
9.

dc
.m

in
uf

25
0-

08
0.

dc
.m

in
uf

25
0-

08
2.

dc
.m

in
uf

25
0-

08
3.

dc
.m

in
uf

25
0-

08
6.

dc
.m

in
uf

25
0-

08
7.

dc
.m

in
uf

25
0-

08
8.

dc
.m

in
uf

25
0-

09
.d

c.
m

in
uf

25
0-

09
0.

dc
.m

in
uf

25
0-

09
2.

dc
.m

in
uf

25
0-

09
3.

dc
.m

in
uf

25
0-

09
4.

dc
.m

in
uf

25
0-

09
6.

dc
.m

in
uf

25
0-

09
7.

dc
.m

in
uf

25
0-

09
9.

dc
.m

in
wf

f.3
.7

5.
31

5.
dc

.m
in

input formulas

0.0

0.2

0.4

0.6

0.8

1.0

%
 re

m
ai

ni
ng

 v
ar

ia
bl

es

Remaining variables to eliminate

minimal_bloat
ascending
descending

Figure 7.9 Experiment 2: auxiliary variables left to eliminate.

Based on the results of Kučera [3], we only used the learning algorithm of
PCCompile, as it produced better results on all these formulas. As the underlying
SAT solver we used CaDiCaL (by Biere [31]) instead of Glucose (by Audemard
[32]), otherwise we followed the recommended settings for each formula. We have
also verified that the resulting formulas from dp are equivalent to the original
CNF formulas and that they are PC.

The results of these experiments are shown in Table 7.2. Note that this direct
comparison is not completely fair. PCCompile takes a CNF formula as an input
and outputs a PC formula, while dp needs preprocessing done on the original CNF
formula, as described in Section 7.1. However, this preprocessing is insignificant —
at most units of percent of the total execution time of PCCompile.

PCCompile dp
formula vars size time size time size
ais6 61 581 3128.98 s 1962 15.31 s 2506
sat-grid-pbl-0010 110 191 3.28 s 297 5.95 s 522
sat-grid-pbl-0015 240 436 14418.30 s 15984 N/A N/A

Table 7.2 Experiment 4: results comparing dp with PCCompile.

We can see that for ais6, the dp approach is much faster, although resulting in
a larger formula. Here we should note that the size could be reduced, because dp
does not explicitly minimise the formula when it finishes, while PCCompile does.
This might give another unfair advantage regarding runtime to dp, but for this
formula size it is not significant. For sat-grid-pbl-0010, PCCompile beats
dp both in terms of performance and result size, but the difference in compilation
time is much smaller than with ais6. Formula sat-grid-pbl-0015 has proven
to be hard for both compilation approaches, but significantly harder for dp — it
has not managed to eliminate all variables even after 6 hours of computation.

Formulas sat-grid-pbl-0010 and sat-grid-pbl-0015 are similar to each

78

other in terms of structure, the only difference being that the latter is larger.
However, there are some obvious differences compared to ais6. Firstly, ais6 has
much smaller variable-to-size ratio than the other two, which could result in a
more favourable encoding for DP elimination. Secondly, it is missing a lot of
clauses in order to become PC, which makes it expensive for the iterative approach
to find them. We would need to conduct more experiments in order to find out
which properties are most important to make one approach substantially better
than the other. In any case, the results show that the CNF → DNNF → CNF
approach is a viable alternative to iterative approaches for PC compilation, for
some formulas even significantly better.

79

8 Conclusion
The goal of our thesis was to implement an efficient DP elimination algorithm

able to eliminate a range of variables in a CNF formula. We had a specific
application in mind — removing auxiliary variables from a domain-consistent
CNF encoding of a DNNF formula in order to obtain a propagation-complete CNF
formula. Our inspiration was the work by Chatalic and Simon [9], who performed
the DP procedure on CNF formulas represented by ZBDDs. We wanted to improve
their approach by applying additional techniques for formula minimisation during
the algorithm — namely removing absorbed clauses. In addition, we had to find
a suitable heuristic for elimination order of variables.

The result of our efforts is a program called dp. It uses ZBDDs implemented
by the Sylvan library as described in chapters 2 and 4. We also implemented some
custom algorithms over the data structure that were either missing in the library,
or were too specific for our use-case. Chapter 3 explains how to utilise ZBDDs for
DP elimination, and also describes various improvements to the basic algorithm,
including absorption removal. The dp program’s codebase is documented in
Chapter 5, including unit tests and additional scripts for conducting experiments,
and user documentation is available in Chapter 6. Finally, Chapter 7 describes
and evaluates experiments conducted with our implementation.

Let us first note that our implementation is complete and correct. When
conducting the experiments, we have not encountered any undefined behaviour
nor unresponsiveness during the algorithm. In very few cases, the program hangs
during clean-up of the Sylvan library, which we suspect to be connected to the
race condition in the Lace framework documented in Section 4.1.2. However, this
happens only after the algorithm has finished and all data have been exported.
Regarding correctness, we have developed extensive unit tests to verify all sub-
algorithms, and have also checked that if all auxiliary variables are eliminated
from an input formula, the result is equivalent to the original CNF formula before
it was encoded into DNNF.

In terms of performance, our experiments conclusively show that absorption
removal is very beneficial to the efficiency of DP elimination, if not necessary.
Without removing absorbed clauses during the algorithm, the formulas grow very
large, in some instances to unfeasible proportions. However, the experiments also
show that absorption removal is an overwhelming bottleneck for the program. This
is not completely surprising — the algorithm we use for detecting absorptions has
quadratic time complexity in the length of the formula, which is very expensive
even if only performed occasionally. Unfortunately, this situation overshadows
the otherwise very efficient implementation of DP elimination over ZBDDs.

Another conclusion arising from the experiments is that our heuristic for
selecting eliminated variables, which tries to minimise growth of the formula,
works reasonably well compared to naive heuristics based on variable ordering.
On the other hand, these experiments hinted on an aspect that we did not explore

— the ordering of d-variables in a ZBDD can impact efficiency of DP elimination.
There are two reasons why we avoided this topic. One, the potential improvements
seemed small given that most of the runtime is spent by removing absorptions
rather than by ZBDD operations. Two, the Sylvan library does not offer any

80

support for determining a good variable ordering for ZBDDs. However, this is one
of the possible directions for future work, perhaps also in connection with trying
a different ZBDD implementation — for example CUDD (which we were not able
to run) even supports dynamic reordering.

Finally, we would like to address the big picture involving our thesis — obtain-
ing a PC CNF formula. Current approaches pioneered by Bordeaux and Marques-
Silva [2], which are based on iteratively adding empowering clauses, work rea-
sonably well with formulas that are already close to propagation completeness.
However, in the opposite situation, PC compilation takes a very long time even
on small formulas. Experiments comparing dp with PCCompile (by Kučera
[30]) show that on some of these hard instances, dp can be very efficient. In
conclusion, our approach — encoding the source formula into DNNF, then back to
CNF, and finally eliminating auxiliary variables with dp — provides an interesting
alternative which seems complementary to iterative approaches of PC compilation.

81

Bibliography
1. Davis, Martin; Putnam, Hilary. A Computing Procedure for Quantification

Theory. J. ACM. 1960, vol. 7, no. 3, pp. 201–215. issn 0004-5411. Available
from doi: 10.1145/321033.321034.

2. Bordeaux, Lucas; Marques-Silva, Joao. Knowledge Compilation with
Empowerment. In: Bieliková, Mária; Friedrich, Gerhard; Gottlob,
Georg; Katzenbeisser, Stefan; Turán, György (eds.). SOFSEM 2012:
Theory and Practice of Computer Science. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 612–624. isbn 978-3-642-27660-6.

3. Kučera, Petr. Learning a Propagation Complete Formula. In: Integration
of Constraint Programming, Artificial Intelligence, and Operations Research:
19th International Conference, CPAIOR 2022, Los Angeles, CA, USA, June
20-23, 2022, Proceedings. Los Angeles, CA, USA: Springer-Verlag, 2022,
pp. 214–231. isbn 978-3-031-08010-4. Available from doi: 10.1007/978-3-
031-08011-1_15.

4. Babka, Martin; Balyo, Tomáš; Čepek, Ondřej; Gurský, Štefan; Kučera,
Petr; Vlček, Václav. Complexity issues related to propagation completeness.
Artificial Intelligence. 2013, vol. 203, pp. 19–34. issn 0004-3702. Available
from doi: https://doi.org/10.1016/j.artint.2013.07.006.

5. Kučera, Petr; Savický, Petr. Propagation complete encodings of smooth
DNNF theories. Constraints. 2022, vol. 27, no. 3, pp. 327–359. issn 1572-9354.
Available from doi: 10.1007/s10601-022-09331-2.

6. Darwiche, Adnan. New Advances in Compiling CNF into Decomposable
Negation Normal Form. In: 2004, pp. 328–332.

7. Lagniez, Jean-Marie; Marquis, Pierre. An improved decision-DNNF com-
piler. In: Proceedings of the 26th International Joint Conference on Artificial
Intelligence. Melbourne, Australia: AAAI Press, 2017, pp. 667–673. IJCAI’17.
isbn 9780999241103.

8. Abío, Ignasi; Gange, Graeme; Mayer-Eichberger, Valentin; Stuckey,
Peter J. On CNF Encodings of Decision Diagrams. In: Quimper, Claude-
Guy (ed.). Integration of AI and OR Techniques in Constraint Programming.
Cham: Springer International Publishing, 2016, pp. 1–17. isbn 978-3-319-
33954-2.

9. Chatalic, Philippe; Simon, Laurent. ZRes: The Old Davis–Putnam Proce-
dure Meets ZBDD. In: McAllester, David (ed.). Automated Deduction -
CADE-17. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 449–454.
isbn 978-3-540-45101-3.

10. Minato, Shin-ichi. Zero-suppressed BDDs for set manipulation in com-
binatorial problems. In: Proceedings of the 30th International Design Au-
tomation Conference. Dallas, Texas, USA: Association for Computing Ma-
chinery, 1993, pp. 272–277. DAC ’93. isbn 0897915771. Available from doi:
10.1145/157485.164890.

82

https://doi.org/10.1145/321033.321034
https://doi.org/10.1007/978-3-031-08011-1_15
https://doi.org/10.1007/978-3-031-08011-1_15
https://doi.org/https://doi.org/10.1016/j.artint.2013.07.006
https://doi.org/10.1007/s10601-022-09331-2
https://doi.org/10.1145/157485.164890

11. Atserias, Albert; Fichte, Johannes Klaus; Thurley, Marc. Clause-
Learning Algorithms with Many Restarts and Bounded-Width Resolution. In:
Kullmann, Oliver (ed.). Theory and Applications of Satisfiability Testing -
SAT 2009. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 114–127.
isbn 978-3-642-02777-2.

12. Pipatsrisawat, Knot; Darwiche, Adnan. On the power of clause-learning
SAT solvers as resolution engines. Artif. Intell. 2011, vol. 175, pp. 512–
525. Available also from: https://api.semanticscholar.org/CorpusID:
909230.

13. Drechsler, Rolf; Sieling, Detlef. Binary decision diagrams in theory and
practice. International Journal on Software Tools for Technology Transfer.
2001, vol. 3, pp. 112–136. Available also from: https://api.semanticscholar.
org/CorpusID:1517733.

14. Minato, Shin-ichi. Zero-suppressed BDDs and their applications. Interna-
tional Journal on Software Tools for Technology Transfer. 2001, vol. 3, no. 2,
pp. 156–170. issn 1433-2779. Available from doi: 10.1007/s100090100038.

15. Minato, S.; Ishiura, N.; Yajima, S. Shared binary decision diagram
with attributed edges for efficient Boolean function manipulation. In: 27th
ACM/IEEE Design Automation Conference. 1990, pp. 52–57. issn 0738-100X.
Available from doi: 10.1109/DAC.1990.114828.

16. Chatalic, P.; Simon, L. Multi-resolution on compressed sets of clauses. In:
Proceedings 12th IEEE Internationals Conference on Tools with Artificial
Intelligence. ICTAI 2000. 2000, pp. 2–10. Available from doi: 10.1109/TAI.
2000.889839.

17. Liang, Jia Hui; Ganesh, Vijay; Zulkoski, Ed; Zaman, Atulan; Czar-
necki, Krzysztof. Understanding VSIDS Branching Heuristics in Conflict-
Driven Clause-Learning SAT Solvers. 2015. Available from arXiv: 1506.08905
[cs.LO].

18. Moskewicz, M. W.; Madigan, C. F.; Zhao, Y.; Zhang, L.; Malik, S.
Chaff: engineering an efficient SAT solver. In: Proceedings of the 38th Design
Automation Conference (IEEE Cat. No.01CH37232). 2001, pp. 530–535.
Available from doi: 10.1145/378239.379017.

19. Somenzi, Fabio. CUDD: CU Decision Diagram Package [https://web.
archive . org / web / 20150216083245 / http : / / vlsi . colorado . edu /
~fabio/CUDD]. [N.d.]. [Software].

20. van Dijk, Tom. Sylvan: multi-core decision diagrams. Netherlands: Univer-
sity of Twente, 2016. isbn 978-90-365-4160-2. Available from doi: 10.3990/
1.9789036541602. PhD Thesis. University of Twente.

21. Dijk, Tom van; Pol, Jaco C. van de. Lace: Non-blocking Split Deque
for Work-Stealing. In: Lopes, Luís; Žilinskas, Julius; Costan, Alexan-
dru; Cascella, Roberto G.; Kecskemeti, Gabor; Jeannot, Emmanuel;
Cannataro, Mario; Ricci, Laura; Benkner, Siegfried; Petit, Salvador;
Scarano, Vittorio; Gracia, José; Hunold, Sascha; Scott, Stephen L.;
Lankes, Stefan; Lengauer, Christian; Carretero, Jesús; Breitbart,

83

https://api.semanticscholar.org/CorpusID:909230
https://api.semanticscholar.org/CorpusID:909230
https://api.semanticscholar.org/CorpusID:1517733
https://api.semanticscholar.org/CorpusID:1517733
https://doi.org/10.1007/s100090100038
https://doi.org/10.1109/DAC.1990.114828
https://doi.org/10.1109/TAI.2000.889839
https://doi.org/10.1109/TAI.2000.889839
https://arxiv.org/abs/1506.08905
https://arxiv.org/abs/1506.08905
https://doi.org/10.1145/378239.379017
https://web.archive.org/web/20150216083245/http://vlsi.colorado.edu/~fabio/CUDD
https://web.archive.org/web/20150216083245/http://vlsi.colorado.edu/~fabio/CUDD
https://web.archive.org/web/20150216083245/http://vlsi.colorado.edu/~fabio/CUDD
https://doi.org/10.3990/1.9789036541602
https://doi.org/10.3990/1.9789036541602

Jens; Alexander, Michael (eds.). Euro-Par 2014: Parallel Processing Work-
shops. Cham: Springer International Publishing, 2014, pp. 206–217. isbn
978-3-319-14313-2.

22. Dijk, Tom van. Sylvan. [N.d.]. Available also from: https://github.com/
trolando/sylvan. [Software].

23. Zelený, Marek. simple-logger. [N.d.]. Available also from: https://github.
com/marek-zeleny/simple-logger. [Software].

24. Lohmann, Niels. json. [N.d.]. Available also from: https://github.com/
nlohmann/json. [Software].

25. Hořeňovský, Martin. Catch2. [N.d.]. Available also from: https://github.
com/catchorg/Catch2. [Software].

26. Schreiner, Henry. CLI11. [N.d.]. Available also from: https://github.
com/CLIUtils/CLI11. [Software].

27. Yoo, Andy B.; Jette, Morris A.; Grondona, Mark. SLURM: Simple
Linux Utility for Resource Management. In: Feitelson, Dror; Rudolph,
Larry; Schwiegelshohn, Uwe (eds.). Job Scheduling Strategies for Parallel
Processing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 44–60.
isbn 978-3-540-39727-4.

28. Koriche, Frédéric; Lagniez, Jean-Marie; Lonca, Emmanuel; Marquis,
Pierre; Mengel, Stefan. Compile! Benchmarks. [N.d.]. Available also from:
https://www.cril.univ-artois.fr/KC/benchmarks.html. [Data].

29. Illner, Petr; Kučera, Petr. A Compiler for Weak Decomposable Negation
Normal Form. Proceedings of the AAAI Conference on Artificial Intelligence.
2024, vol. 38, no. 9, pp. 10562–10570. Available from doi: 10.1609/aaai.
v38i9.28926.

30. Kučera, Petr. PCCompile. [N.d.]. Available also from: https://ktiml.mff.
cuni.cz/~kucerap/pccompile/. [Software].

31. Biere, Armin. CaDiCaL. [N.d.]. Available also from: https://github.com/
arminbiere/cadical. [Software].

32. Audemard, Gilles. Glucose. [N.d.]. Available also from: https://github.
com/audemard/glucose. [Software].

84

https://github.com/trolando/sylvan
https://github.com/trolando/sylvan
https://github.com/marek-zeleny/simple-logger
https://github.com/marek-zeleny/simple-logger
https://github.com/nlohmann/json
https://github.com/nlohmann/json
https://github.com/catchorg/Catch2
https://github.com/catchorg/Catch2
https://github.com/CLIUtils/CLI11
https://github.com/CLIUtils/CLI11
https://www.cril.univ-artois.fr/KC/benchmarks.html
https://doi.org/10.1609/aaai.v38i9.28926
https://doi.org/10.1609/aaai.v38i9.28926
https://ktiml.mff.cuni.cz/~kucerap/pccompile/
https://ktiml.mff.cuni.cz/~kucerap/pccompile/
https://github.com/arminbiere/cadical
https://github.com/arminbiere/cadical
https://github.com/audemard/glucose
https://github.com/audemard/glucose

A Attachments

A.1 Software and Data Attachments
This attachment is included as an archive in electronic format. The structure

of the archive is shown below.
root/

lib/.................................source code of the dp_lib library
app/.................................source code of the dp application
tests/..source code of unit tests
external/...external libraries
experiments/

experiments.py main script for running experiments
*.py..............................other Python scripts and modules
inputs/...................................directory with input files
input_formulas.txt...........list of input formulas for experiments
setups/.....directory with configuration files for experimental setups
default_config.toml......................master configuration file
environment.yml.......definition of Python environment for running
experiments
summary_data.csv summary data from experiments
summary_data_manual.csv.... includes manually added missing data

CMakeLists.txt...............................CMake build system file
README.md.....................basic compilation and usage instructions
thesis.pdf..this text

85

	Introduction
	Preliminaries
	Logical Formulas
	Boolean Functions and Decision Diagrams
	Combination Sets
	DP Procedure

	ZBDDs
	Reduced Ordered BDDs
	Zero-suppressed BDDs
	Attributed Edges
	Basic Operations
	Additional Operations

	DP Elimination
	Using ZBDDs
	Variable Selection
	Ordering-based Methods
	Low-hanging Fruits
	Optimisation-based Methods
	Dynamic Methods

	Removing Tautologies
	Unit Propagation
	Formula Minimisation
	Absorbed Removal Over ZBDD
	Absorbed Removal Over Watched Literals
	Incremental Absorbed Removal
	More Efficient Absorption Detection

	Putting It All Together

	ZBDD Implementation
	Sylvan Library
	Node Sharing, Result Caching, and Garbage Collection
	Lace Framework

	Literal Mapping
	Algorithms
	Building ZBDDs
	Logarithmic Merging

	Programming Documentation
	Technical Decisions
	Project Structure
	External Libraries
	Software Architecture
	Data Structures
	Algorithms
	Metrics
	IO

	Experiment Execution and Result Processing

	User Documentation
	Prerequisites
	Compilation and Tests
	Program Stack Size Limit
	Parameters and Options
	Files
	Algorithm
	Complete Minimisation
	Partial Minimisation
	Incremental Absorption Removal
	Stop Conditions
	Sylvan

	Configuration Files
	File Formats
	DIMACS CNF
	Metrics Export

	Examples

	Experiments
	Inputs
	Setup
	Algorithm Breakdown
	Experiment 1: Absorption Removal
	Experiment 2: Variable Selection
	Experiment 3: Parallelisation
	Experiment 4: Comparison With PCCompile

	Conclusion
	Bibliography
	Attachments
	Software and Data Attachments

