
MASTER THESIS

Rajat Sharma

Evolutionary techniques in AutoML

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the master thesis: Mgr. Roman Neruda
Study programme: Computer Science

Prague 2024

I declare that I carried out this master thesis on my own, and only with the
cited sources, literature and other professional sources. I understand that my
work relates to the rights and obligations under the Act No. 121/2000 Sb., the
Copyright Act, as amended, in particular the fact that the Charles University has
the right to conclude a license agreement on the use of this work as a school work
pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

First and foremost, I would like to thank Professor Roman Neruda for his incredible
guidance and amazing leadership, without which this would have been impossible.
I would also like thank everyone who supported me during the writing of this
master’s thesis.

Title: Evolutionary techniques in AutoML

Author: Rajat Sharma

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: Mgr. Roman Neruda, CSc.

Abstract: AutoML methods search for a suitable pipeline of preprocessing and
ML components given a data set representing an ML task. The goal of the
thesis is to design an evolutionary optimization algorithm which will search the
space of pipelines and propose an optimized solution. Several search approaches,
such as hill climbing, simulated annealing and evolutionary search are tested.
Implementation of developed algorithms using standard machine learning libraries
such as scikit-learn, and their experimental evaluation on benchmark data as also
a part of the work.

Keywords: Machine learning Evolutionary computing AutoML

Contents

Introduction 6

1 Preliminaries 8
1.1 Machine Learning . 8

1.1.1 Performance . 8
1.1.2 Model Ensembles . 9

1.2 AutoML . 10
1.2.1 Workflows in ML . 10
1.2.2 Hyperparameter Optimization 10
1.2.3 Model Selection . 11

1.3 Search Algorithms . 12
1.3.1 Exhaustive Search . 12
1.3.2 Hill Climbing . 13
1.3.3 Simulated Annealing . 14
1.3.4 Evolutionary Algorithm 15

2 Related work 18

3 Our Search Solution 19
3.1 Optimization of pipelines . 19

3.1.1 Preprocessors and classifiers 19
3.1.2 Individual pipeline . 20

3.2 Different search techniques and their performance estimation . . . 21
3.2.1 Exhaustive search . 21
3.2.2 Hill climbing . 22
3.2.3 Simulated annealing . 24
3.2.4 Evolutionary algorithm 25

3.3 Code Implementation . 25

4 Experiments 26
4.1 Datasets . 26
4.2 Experimentation using different searches 26

4.2.1 Exhaustive search . 27
4.2.2 Hill climbing . 29
4.2.3 Simulated annealing . 29
4.2.4 Evolutionary algorithm 30

4.3 Experimentation using OpenML’s datasets 32

Conclusion 33

Bibliography 34

List of Figures 37

List of Tables 38

5

Introduction
In the past recent years, artificial intelligence has reached new heights. It

has officially became a household name. It has influenced everything we see or
encounter on our daily basis. They range from fields like finance to optimising
trading strategies and fraud detection, transportation, where it powers autonomous
vehicles, automated analyses of documents, through image recognition all the
way to music recommendation. This all became possible because of the advances
in machine learning that we were able to witness a great variety of applications.
Hence, artificial intelligence has played a key role in initiating Industry 4.0.

When we talk about these advances in machine learning, what we really mean
is that we are able to solve complex problems and complete tasks more efficiently
than ever before. These complex problems are tackled by a large team of machine
learning experts and data scientists. With their careful and smart approach,
they are able to choose what is best for their problem, be it selecting the best
parameters for their learning process or choosing the best optimal model according
to their dataset size.

But then there are teams, who do not have enough budget, time or even correct
knowledge about which parameters or models to use for their research. Many
times they end up using a configuration for their system, which either takes too
long to design or ends up with a system which does not produce promising results.

This is where AutoML comes into the picture. AutoML stands for automated
machine learning. This is a recently developed area whose main purpose is to solve
these kinds of issues in the first place. It helps in atomizing the entire workflow
for a user, providing them with some decent results to begin with. Afterwards,
they can improve these results by updating the configuration further as per their
requirement. In many cases, it can even suggest a list of models based on the
input dataset.

This brings to our topic. Our main goal is to design such a system that creates
pipelines for all the possible combinations of preprocessors and classifiers. Then
use multiple search techniques to find the best possible pipelines for the given
input dataset. For our experimentations, we are using the datasets of different
sizes (as seen in section 4.1 and 4.3). As for the results of these experiments, we
have a dedication section, i.e. section 4.2 for that purpose.

Regarding the overall structure of the thesis, we have divided it into four
chapters and a conclusion. In chapter 1, we have three subsections, mainly
machine learning (section 1.1), AutoML (section 1.2), and our dedicated search
algorithms (section 1.3).

In machine learning, we provide a basic overview of the subject followed by the
performance and ensembles of models. In AutoML, we have took a deep insight
about what is the workflow in machine learning, followed by hyperparameter
optimization and lastly, model selection and it’s criteria. At the end of this section
comes the most promising part, where we discuss all the kinds of searches we have
used in our computations, both exhaustive and smart searches.

Coming to chapter 2, it is called related work. It contains a brief introductions
about the existing AutoML systems in the present world.

Chapter 3 forms the base of how our machine learning pipelines fits into these

6

local (hill climbing and simulated annealing) and global (evolutionary algorithm)
searches. We describe how we were able to optimise the pipelines we have in
the experiments (section 3.1). This is followed by the evaluation of the different
kinds of searches used during the experiments (section 3.2). In the last section,
i.e. section 3.3, we have written some implementation regarding the project. It
contains the details about where this entire project is hosted and while libraries
were used.

Finally, we have the last chapter, i.e. chapter 4, where we have discussed
all the aspects of our experiments in great detail. We start by defining all the
datasets we used throughout our experimentation (section 4.1). This is followed
by the results and plots in section 4.2, where we used the datasets mentioned
in section 4.1. At the last section. i.e. section 4.3, we ran our experiments on
various dataset of OpenML-CC18 benchmark as well.

7

1 Preliminaries
In this chapter, we will be discussing all the components of our experimentation

from the theoretical point of view. We start with the brief overview of machine
learning, followed by the performance and ensembles of models. Then we move
on to the section 1.2, i.e. AutoML. Here, we take a deep insight about what is
the workflow in machine learning, followed by hyperparameter optimization and
lastly, model selection and it’s criteria. Finally, we discuss all the different search
algorithms we have utilized during our experimentation.

1.1 Machine Learning
In simple terms, machine learning is a field of study that gives computers a

capability to learn without being explicitly programmed. Machine learning in
itself covers a broad range of statistical methods and a wide variety of algorithms
for data processing. In his book, Flach defines machine learning as the systematic
study of algorithms and systems that improve their knowledge or performance
with experience [1]. For example, personalized recommendation. This uses a
user’s past behavior to suggest items they might like, or have purchased in the
past, making their shopping experience more tailored to their preferences. So this
field of machine learning can easily be divided into three separate subdomains -
supervised learning, unsupervised learning and reinforcement learning.

In the case of supervised learning, we train our models on training data which
is correctly labelled. So the primary task here is to predict the correct labels,
also sometimes called the target. There are two types of supervised learning —
classification and regression. Classification refers to problems where the labels
are from a finite set of distinct categories. And regression contains the problems
where the labels can take on any real number.

In the case of unsupervised learning, the main goal is to discover patters in
our dataset. This is because the data we have is not labelled, meaning, it does
not has any target labels. So we use clustering techniques and association rules to
find meaningful patters in our input dataset.

And lastly, the reinforcement learning. Here, an agent and an environment
continuously interact with each other. The goal for the agent is to gather as many
rewards from the state as possible in order to maximize the reward function.

Out of all the types of machine learning, our work focused on the supervised
learning aspect of it.

1.1.1 Performance
In this section, we discuss in detail regarding evaluating the performance of

machine learning models. Let’s start with a formal definition of supervised learning.
According to Abhishek, performance metrics play a crucial role in evaluating the
effectiveness and accuracy of machine learning models. They provide insights into
a model’s predictive capabilities and help measure its performance across various
tasks [2].

8

• Evaluation Metrics: Various metrics like accuracy, precision, recall, and
F1-score are used to measure how well a model performs.

• Overfitting and Underfitting: Overfitting and underfitting occur when
a model is too complex or too simple respective, thereby affecting its
performance.

• Cross-Validation: Techniques such as k-fold cross-validation are used to
assess model performance by splitting data into training and validation sets.

• Bias-Variance Tradeoff: This is when models face a tradeoff between
bias (underfitting) and variance (overfitting), thereby impacting their per-
formance. The general idea is to find a balance between both of them.

• Learning Curves: Learning curves depict how a model’s performance
changes with training set size or iterations.

1.1.2 Model Ensembles
The word ensemble means a group of musicians, actors etc. In the machine

learning domain, when we combine a large number of models, it is called ensemble
learning. And it’s a very powerful technique to produce some great predictions.
As mentioned in Pytorch’s official website, the idea of model ensembling is to
combine the predictions taken from multiple models together. This solution is
achieved by running each model on some inputs separately and at the end, we
combine their predictions [3].

As Evan mentioned in this article, it is very clear that the final goal of any
machine learning problem is to find that one single model which will produce the
best results. So the idea of ensembling is that rather than making one machine
learning model and hoping that model will produce the best outcomes, we can
instead make multiple models and average those models to produce one final
model [4].

According to Derrick Mwiti, a famous data scientist and writer, ensemble
learning can help improve the performance of machine learning models by a good
proportion. By that, he means the overall accuracy increment or reduction of
error. Besides, he also believes that ensembling results in a more stable model.
[5].

There are many ensembling techniques using in the machine learning domain.
The most used ones are:

• Bagging (Bootstrap Aggregating): it uses n bootstrapped samples to
train n models, aggregating predictions by voting or averaging for stability
and diversity.

• Boosting: this technique weights training examples to focus on misclassified
instances, iterating until a set threshold, with final predictions weighted by
model accuracy.

9

1.2 AutoML
There is a phenomena in machine learning called ’non free lunch’ theorem [6],

which states that we cannot create just one machine learning algorithm model and
it will outperform all the other algorithms. So we cannot say for certain which
model is suitable for which dataset and problem in hand. This brings us to the
topics of model selection (discussed in detail in section 1.3) and hyperparameter
selection (discussed in section 1.2.2). Both these parameters are very essential
and must be used in order to gather optimal solutions for the problem set. But
doing all of this selectively requires great setup, time and processing power to
yield promising results in the first place.

This is where AutoML comes into the picture. Houssam thinks that AutoML
can be used to anticipate behaviour (probability that a customer will leave the
company, abandon a purchase, cancel a reservation, etc.), segment populations,
detect fraud, predict the imminence of an event (predictive maintenance, etc.) or
establish sales forecasts [7].

1.2.1 Workflows in ML
When it comes to the idea of workflow in a machine learning model, Regan

has narrowed it down to the most essential steps. According to him, we should
start with the project preparation. This is followed by data collection or data
preparation. And then comes the most crucial step, i.e. machine learning modelling.
This is where all the feature engineering, model selection and evaluation are done.
And then, we have the deployment of the model. From time to time, we need to
keep a track of all the activities happening in the entire workflows. And for that
purpose, we have the final step of monitoring the entire pipeline [8].

Speaking of pipeline, it is nothing but a series of configurations put together
and evaluated. We have an entire section 3.1 dedicated to the creation of these
pipelines, specifically made in the manner so that it can integrate with our
experimentation perfectly.

Coming back to the ml workflow, Figure 1.1 captures the overview of how a
typical machine learning workflow looks like. The most crucial step is to figure out
the problem definition and the dataset that can be used to find such an optimal
solution for this problem.

One of the leading software AI company, RunAi says the ml workflows are
really necessary part of the machine learning ecosystem. They forms the basic
definition of that steps we need to follow, in which exact manner and sequence,
in order to fetch the best optimal solutions and smooth working of the pipeline.
So, in short, these workflows follows a sequence of systemic tasks from problem
formulation all the way to the deployment of the model [9].

1.2.2 Hyperparameter Optimization
When we run the machine learning models with some predefined parameters, we

end up getting some results. But we have seen that if we tweak those parameters,
we may end up getting much better optimal solutions to our machine learning
problem. This is the underlying concept of Hyperparameter optimization.

10

Figure 1.1 A typical machine learning workflow.

That is why, hyperparameter optimization deals with finding the best hyper-
parameters of a model. This will help the model performs the best and eventually,
yields best optimal results. Thornton believed this as one of the most critical
components of AutoML. The motive is to find the best set of hyperparameters for
our model [10].

1.2.3 Model Selection
In this section we will take a look at the concept of model selection. If well

look from the view point of machine learning and artificial intelligence, model
selection could be very different. It can even have different meanings depending
upon different levels of layers. So, in short, we do model selectionin order to select
the best performing model architecture for our needs or the size of the dataset,
depending upon problem definition [11].

There are so many important thing we have to keep in mind before selecting
a model for our machine learning problem. That’s why choosing an effective
machine learning model is crucial and involves considering several key factors.

Firstly, we need to assess the complexity of the problem to determine if we
would need a simple or more complex model. We can look at the dataset size,
feature complexity, and nonlinear relationships to determine this factor. Next,
we can evaluate data availability and quality in order to avoid overfitting with
models that match the dataset’s scale and quality. Finally, this is the time to
employ our domain expertise and consider ensemble methods for enhanced model
performance through diversified predictions. Let’s see some of the frequently use
methods for selecting models:

• Train-Test Split: Data is split into training and testing sets. Model
performance is evaluated on the testing set after training set.

• Cross-Validation: Data is split into folds. This way, models are trained
and evaluated on each fold to reduce evaluation variance.

• Grid Search: Exhaustive search can be used over predefined hyperpa-
rameter values to find the best model configuration. This usually provides
promising results, but the time it takes to reach those results is very high.

• Random Search: Random sampling of hyperparameter values to explore
a subset of the search space efficiently. This technique can sometimes prove
beneficial as well.

11

• Model Averaging: We can combines predictions from multiple models to
improve overall accuracy, reducing bias and variance.

• Domain Expertise: Sometimes, we have prior knowledge about the con-
figuration or dataset that impacts model selection.

1.3 Search Algorithms
In this section, we will discuss about the search algorithms in detail. Moreover,

we will look more closely into all the searches we used during our experimentation.
To start with, search algorithms fall into the category of optimization methods
that focus on iteratively moving from one solution to a neighboring solution. This
is done by evaluating solutions based on a heuristic function, which provides the
value or quality of the solution. Basic purpose of the search algorithms is to find
the best solution either in the vicinity of the current state, or exploring the entire
solution space, depending upon the kind of searching we are performing.

Selecting an appropriate optimization method is crucial. While local search
algorithms are effective for many problems, they are not universally applicable.
The choice of method should be driven by problem characteristics, such as the
nature of the solution space, the presence of local optima, the scalability of the
problem, and available computational resources. In some cases, global optimization
methods or hybrid approaches may be better suited to the problem’s requirements.
It’s essential to understand the problem landscape and tailor the optimization
approach accordingly to achieve the desired results. [12]

1.3.1 Exhaustive Search
Exhaustive search, also known as brute-force search, is a straightforward

optimization method that systematically evaluates every possible solution to find
the optimal one. Unlike heuristic methods, exhaustive search does not rely on
heuristics or domain-specific knowledge but instead checks every possible solution
within a defined search space.

A general schema of exhaustive search is presented in Algorithm 1. The process
begins by systematically generating and evaluating each possible solution within
the search space (lines 2-6). The algorithm continues until all solutions have been
evaluated (line 7). Given its exhaustive nature, this method guarantees finding
the optimal solution, but it can be computationally expensive, especially for large
search spaces.

• Search Space: All possible solutions that the algorithm evaluates, dictated
by problem complexity and decision variables.

• Objective Function: Scores solutions numerically, guiding the algorithm
towards optimal or near-optimal solutions.

• Stopping Criteria: Terminates when all solutions in the search space are
evaluated, directly impacting computational feasibility for larger problems.

12

Algorithm 1 Exhaustive Search
Require: Search space S, objective function f
Ensure: Optimized solution

1: xbest ← None
2: fbest ← −∞ ▷ Initialize with a very low value for minimization
3: for x in S do
4: fx ← f(x)
5: if fx > fbest then
6: xbest ← x
7: fbest ← fx

8: end if
9: end for

10: return xbest

In summary, exhaustive search is a reliable optimization technique that guaran-
tees finding the optimal solution within the constraints of the defined search space.
Its effectiveness lies in its systematic evaluation of all possible solutions, making
it suitable for problems where the search space is manageable and computational
resources allow for exhaustive evaluation.

1.3.2 Hill Climbing
Hill climbing is a heuristic optimization algorithm that iteratively improves a

candidate solution by adjusting it in iterative manner to obtain a higher quality
solution. It’s analogous to climbing a hill where each step moves towards a
higher point on the landscape. So basically, you keep on moving in a direction of
increasing value, something like a hill. And we stop this process when we notice
there are no more neighbours which can have a higher value [13].

In the case of hill climbing, we start by randomly generating a solution. Then,
the algorithm evaluates the neighboring solutions, and moves to the best neighbor
if it offers an improvement. This process is continued until a local maximum is
reached where no better neighbors exist.

A general schema of hill climbing is presented in Algorithm 2. The process
begins with initializing a solution randomly or heuristically (line 1 of Algorithm
2). At each iteration, the algorithm evaluates neighboring solutions (line 3). If
a neighboring solution offers an improvement, the current solution is updated
(line 6). The algorithm terminates when no better solution can be found in the
neighborhood (line 7).

Let’s discuss the components of hill climbing in more depth.

• Objective function: it evaluates the quality of a solution. Its primary
role is to guide the search towards optimal (or near-optimal) solutions by
assigning a numerical score to each candidate solution.

• Neighborhood search: it explores nearby solutions of the current solu-
tion. This step is crucial as it checks if a neighboring solution offers an
improvement, updating the current optimal solution accordingly.

13

Algorithm 2 Hill Climbing
Require: Initial solution x, stopping condition c
Ensure: Optimized solution

1: xcurrent ← x ▷ Initialization
2: while c is not met do
3: Find neighboring solutions of xcurrent
4: xneighbor ← select the best neighboring solution
5: if f(xneighbor) > f(xcurrent) then
6: xcurrent ← xneighbor ▷ Update current solution
7: end if
8: end while
9: return xcurrent ▷ Return optimized solution

• Stopping criteria: it determines when the hill climbing process terminates.
Common criteria include reaching a certain number of iterations or when
no better solution is found in the neighborhood.

So to summarize this, hill climbing is a very straightforward yet effective
optimization technique. It is primarily suitable for problems where a good initial
solution can lead to satisfactory results, something like how we have implemented
in our experiments. We did this step by calling one of our functions to generate a
random pipeline and initialize the search for the optimal solution from there. But
again, hill climbing is prone to getting stuck in local optima. So we have to be
careful while making the parameter tuning to achieve desired results.

1.3.3 Simulated Annealing
Simulated annealing is an optimization technique, which is inspired by the

annealing process in metallurgy. The basic idea behind is that it mimics the
annealing process where a material is heated and then gradually cooled to decrease
defects, which ultimately leads to a more stable crystalline structure.

Just like in hill climbing, in SA, we again start with an initial solution which
is randomly generated. In our case, it was a pipeline, as discuss in section 3. The
algorithm start with iteratively adjusting its solution, exploring nearby solutions
with the hope of finding an optimal or near-optimal solution.

A general schema of simulated annealing (SA) is presented in Algorithm 3.
The process begins with initializing a solution randomly or heuristically (line 1 of
Algorithm 3). At each iteration, a candidate solution is randomly generated around
the current solution (line 5). The quality of this candidate solution is evaluated
using an objective function (line 6). The algorithm then decides whether to move
to this candidate solution based on its quality and the current temperature (line 8).
The temperature decreases over time according to a cooling schedule (line 3). This
cooling process controls the probability of accepting worse solutions early in the
search and encourages exploration of the solution space. The algorithm terminates
when a stopping condition is met (line 9), typically after a predetermined number
of iterations or when the temperature drops below a certain threshold.

Moving on, let’s discuss the components of simulated annealing in detail.

14

Algorithm 3 Simulated Annealing
Require: Initial solution x, stopping condition c, initial temperature Tinit, and

cooling rate α
Ensure: Optimized solution

1: xcurrent ← x ▷ Initialization
2: T ← Tinit ▷ Initial temperature
3: while c is not met do
4: Generate a candidate solution xcandidate near xcurrent
5: Compute objective value f(xcandidate)
6: if f(xcandidate) < f(xcurrent) or random(0, 1) < e− f(xcandidate)−f(xcurrent)

T then
7: xcurrent ← xcandidate ▷ Move to candidate solution
8: end if
9: T ← α · T ▷ Cooling schedule

10: end while
11: return xcurrent ▷ Return optimized solution

• Objective function: It evaluates the quality of a solution by assigning
a numerical score to each candidate solution, guiding the search towards
optimal or near-optimal solutions.

• Temperature schedule: This schedule determines how the algorithm ex-
plores the solution space. Initially, the high temperature allows the algorithm
to accept worse solutions more readily. As temperature decreases, accep-
tance of worse solutions decreases, balancing exploration and exploitation
crucial for simulated annealing success.

• Cooling schedule: It controls the rate at which temperature T decreases
over time, shifting the algorithm from exploring the solution space (at higher
temperatures) to exploiting promising solutions (at lower temperatures).

• Stopping criteria: These criteria determine when the simulated annealing
process should be terminated. We have several ways to figure this out, i.e.
we can set a fixed number of iterations and we can terminate once that
number is reached. Another technique is to stop the algorithm when the
temperature drops below a predefined threshold.

In summary, simulated annealing is a versatile optimization technique suitable
for a wide range of problems. By balancing exploration and exploitation through
temperature control, it efficiently searches for optimal or near-optimal solutions
in complex solution spaces.

1.3.4 Evolutionary Algorithm
Charles Darwin’s theory of natural selection has a great impact on the world of

machine learning ecosystem. One such impact was the introduction of evolutionary
algorithm, which is entirely inspired by biological evolution and natural selection
[14]. More precisely, evolutionary algorithm is a specific application of evolutionary
computing techniques within the area of optimization and search problems. These

15

algorithms iterate through populations, where individuals compete randomly and
the fittest individuals are selected over time. This closely mimics the idea behind
survival of the fittest, which states that the beings with the best survival traits will
live and end up creating new offspring and passing their traits to them. Overtime,
the evolution will continue its course and in a matter of some generations, we
shall notice that the most strongest traits predominate.

Moving onto Algorithm 4, we can see the working of EA. It begins by initializing
a population of individuals (line 1) and selecting the parents for reproduction (line
7). Here, the process of reproduction creates new individuals until the population
reaches its original size. Afterwards, environmental selection combines these
individuals from the entire group.

So keep on running this algorithm until a stopping condition is met (line 3).
This stopping conditions could be set as a number of iterations or generations
are achieved by the algorithm. The main idea behind all this is to have the final
population, which will consist of individuals with the highest fitness values.

Algorithm 4 Evolutionary Algorithm
Require: Initial population, crossover probability, mutation probability
Ensure: Evolved individuals

1: Initialize population
2: while Stopping condition is not met do
3: for each individual in current population do
4: Compute fitness
5: end for ▷ Reproduction
6: for each pair of individuals do ▷ Select parents and create offspring
7: Select parents
8: Perform crossover and mutation
9: Add offspring to new population

10: end for ▷ Environmental selection
11: Select individuals for next generation
12: end while
13: return Final population

Here’s few essential terms related to the concept of evolutionary algorithm.

• Parent Selection: This step selects the parents for mating to maintain
diversity. It also balances better and worse individuals, in order to maintain
diversity.

• Crossover and Mutation: These are reproduction operators that alter
genetic structures to create offspring. In simple terms, crossover combines
traits of parents, while the mutation introduces diversity.

• Fitness Evaluation: It assesses the quality of individuals based on objective
functions, which guides the selection and evolutionary process.

• Environmental Selection: It creates a new population deterministically
by favoring individuals with higher fitness.

16

• Stopping Criteria: We can either set the certain number of generations
as the limit. Once we reach that limit, we can terminate the algorithm.

17

2 Related work
In recent years, the field of automated machine learning (AutoML) has seen

significant advancements, mainly aimed at automating the model selection, hyper-
parameter tuning, and pipeline optimization processes. AutoML systems helps
across various domains, starting from traditional machine learning all the way to
deep learning approaches.

Let’s start with discussing one such prominent AutoML system, called TPOT.
TPOT utilises genetic programming to automatically explore and optimise machine
learning pipelines composed of preprocessing steps and estimators. Its main focus
is on generating efficient pipelines through evolutionary algorithms. As of now, its
scope primarily covers simple model architectures and ensemble methods within
the scikit-learn ecosystem [15].

Then, we have deep learning-oriented AutoML approaches, such as those
discussed by Elsken et al. (2018) [16], which delve into Neural Architecture
Search (NAS) to automate the design of deep neural network architectures. These
methods primarily use strategies like bayesian optimization and reinforcement
learning to efficiently explore the huge state space. This helps them achieve
state-of-the-art results in tasks like image recognition and object detection.

Even classical machine learning AutoML tools, such as Auto-WEKA [10]
and its successor Auto-sklearn, employ Bayesian optimization techniques for
hyperparameter tuning and model selection. These systems typically focus on
optimising simpler model configurations and ensemble structures. Ultimately,
their technique limits the complexity of the pipelines they can generate.

Our work contributes to this landscape by introducing a pipeline configured
with a random number of numerical and categorical preprocessors followed by a
classifier. This approach helps in finding the optimal solution for any incoming
dataset. It starts by segregating the columns of the input dataset into numerical
columns and categorical columns. This is followed by applying numerical and
categorical preprocessors respectively to these columns. In some cases, we have
even applied common preprocessors to the pipeline. Then we select a classifier from
the wide range of classifiers we have in our system. At last, we run this pipeline
across the dataset and find the accuracy. We do this for all the combinations of
numerical preprocessors, categorical preprocessors and classifiers we used in our
experiments. Unlike existing systems, our approach aims to find the best optimal
solutions for a given dataset. In the end, we evaluated our searches, both brute
force and smart searches on benchmarks like OpenML-CC18.

18

3 Our Search Solution
In this chapter, we will go deep about studying our pipelines and integration

of those pipelines with our local and global search to find the best optimal
solutions for our input dataset (mentioned in section 4.1). So the entire base
of our experimentation lies in creating pipelines of different combinations of
preprocessors, classifiers, and leveraging sophisticated algorithms. This system
ultimately streamlines the journey from raw data to a finely-tuned model, thereby
enhancing both efficiency and performance

We have mentioned Algorithm 5, which shows the pipeline optimization steps
clearly. As we can see, the input is the dataset and the main objective is to find that
pipeline or set of pipelines that produces the best optimal solution for our dataset.
The configuration related to construction of pipelines are discussed thoroughly in
section 3.1. And for its quick overview, you can refer to the Tables 3.1 and 3.2.
The dataset provided to the algorithm does not need to be preprocessed, as we
have plenty of preprocessors in the inventory to perform imputation of missing
values.

Algorithm 5 Pipeline Optimization — Main
1: Data: dataset d
2: Result: optimised pipelines
3: split dataset d into numerical and categorical columns
4: generate pipelines using preprocessors and classifiers
5: run pipelines on d
6: select pipelines with the best accuracy
7: return optimised pipelines

3.1 Optimization of pipelines
In this section, we describe the necessary components and optimization of the

pipelines. Initially, we started with exhaustive search, and as we gained more
insights, we shifted towards adding smart search which consisted of hill climbing,
simulated annealing and evolutionary algorithm.

3.1.1 Preprocessors and classifiers
In this section, we have mentioned different types of preprocessors and classifiers

used during the experiments. Table 3.1 and 3.2 shows the list of numerical and
categorical preprocessors respectively. And Table 3.4 shows the classifiers used
during the experimentation.

On receiving the data, we divide its features into numerical columns where
numerical preprocessors are applied and categorical columns, where categorical
preprocessors are applied. And as mentioned in Table 3.3, we have TruncatedSVD
and SelectKBest preprocessors, which acts as common preprocessors for the
pipelines.

19

Preprocessor Description
StandardScaler Scales numerical features to have zero mean and

unit variance.
SimpleImputer Handles missing data by filling in missing values

using various strategies.
MaxAbsScaler Scales each feature by its maximum absolute value.

QuantileTransformer Transforms numerical features to follow a Gaussian
distribution using quantiles.

Normalizer Scales each sample to have unit norm (L2 norm).
KBinsDiscretizer Discretizes numerical features into bins based on

specified strategies.

Table 3.1 List of Numerical Preprocessors

Preprocessor Description
SimpleImputer Handles missing data by filling in missing values

using various strategies.
OneHotEncoder Converts categorical features into binary vectors

(one-hot encoding).
OrdinalEncoder Encodes categorical features as ordinal integers.

Table 3.2 List of Categorical Preprocessors

Preprocessor Description
TruncatedSVD Dimensionality reduction using TruncatedSVD.

SelectKBest Selects top k features based on statistical tests.

Table 3.3 List of Common Preprocessors

Classifier Description
DecisionTreeClassifier A tree-based classifier

RandomForestClassifier An ensemble of decision trees
LogisticRegression A linear model for binary classification

SVC Support Vector Classifier
Perceptron A linear classifier

SGDClassifier Stochastic Gradient Descent classifier
PassiveAggressiveClassifier A linear model suitable for large-scale

learning
MLPClassifier Multi-layer Perceptron classifier

Table 3.4 List of Classifiers

3.1.2 Individual pipeline
In the early stages, we focused on creating individual pipelines. Each pipeline

consisted of specific preprocessors and classifiers (as mentioned in section 3.1.1)
tailored to handle either numerical or categorical data.

This division was important as it allowed us to apply the right techniques to
the right kind of data. Once the pipelines were set up, we ran them across the

20

dataset to see which ones performed the best. Regarding the output, we ended
up with a set of high-performing pipelines, each representing a potential best-fit
pipeline for our dataset.

Algorithm 6 Create Pipeline
1: function create_pipeline
2: if preprocess_flag then
3: Set up preprocessor for numerical and categorical columns
4: Combine preprocessors into a single preprocessor
5: Create pipeline with preprocessor and classifier
6: else
7: Create pipeline with only the classifier
8: end if
9: return pipeline

10: end function

3.2 Different search techniques and their perfor-
mance estimation

Let’s have a look at the different search processes and their performances in
this section. This will give a better way to understand our evaluation process and
how we implemented different algorithms in our workflow.

3.2.1 Exhaustive search
We started our experimentation with the most straightforward approach, i.e.

exhaustive search. For this, we created a large number of pipelines using different
combinations of numerical preprocessor, categorical preprocessor and classifiers
(as seen in the table 3.1 and 3.2) using the create_pipeline() (Algorithm 6).
This newly created pipeline then underwent evaluate_pipeline() (Algorithm
7) which returns the accuracy and execution time of the pipeline. And we repeat
this for all the pipelines that were generated.

Algorithm 7 Evaluate Pipeline
1: function evaluate_pipeline
2: Record start time
3: Fit the pipeline with training data
4: Record end time
5: Calculate execution time
6: Compute accuracy on test data
7: return accuracy, execution time
8: end function

With this brute force approach, we ran every pipeline across our input dataset
and selected the individual pipelines that performed the best. So this straight-
forward approach basically resulted in finding the best pipelines which achieved

21

highest accuracy among all the searches during our experimentation. And this
way, we were able to figure out what combinations of preprocessors and classifiers
achieves best accuracy against the input dataset as shown in Algorithm 8.

But this approach is very costly in terms of time. Since we are doing the brute
force, the computation time is very high. For small datasets like iris dataset (as
mentioned in Section 4.1) it took like 5 minutes, but medium datasets like digits
dataset, it took 1.5 hours to produce the best performing pipelines. If the input
dataset size increases, so does the computation time massively.

Algorithm 8 Pipeline Selection Algorithm
1: Dataset, Pipelines → Best Pipeline
2: Generate all possible pipeline combinations from the configurations.
3: Test each pipeline thoroughly on the dataset.
4: Select the pipeline with the highest accuracy.
5: return Best Pipeline

3.2.2 Hill climbing
After brute force, we wanted to implement smart search in our experiments.

And so, we started with implementing hill climbing. Since we have already dis-
cussed in section 1.5.2 about hill climbing, we had to implement this algorithm in
our in our pipleline to find the best possible optimal solution for the incoming
dataset. We initialise the algorithm by generating a random configuration using
generate_random_configuration() as seen in Algorithm 9. This function re-
turns a pipeline composed of randomly generated preprocessors and a classifier.
Then we pass this pipeline and our dataset to the perform_hill_climbing(), as
seen in Algorithm 10.

Algorithm 9 Generate Random Configuration
1: function generate_random_configuration
2: Get available preprocessors and classifiers
3: Choose a random number of numerical preprocessors
4: Choose a random number of categorical preprocessors
5: Select configurations for numerical and categorical preprocessors randomly
6: Select a random classifier configuration
7: Format and return selected configurations
8: end function

In this function, we calculate the accuracy of this pipeline, called initial
accuracy. Then we tweak this pipeline bit by bit to see if it improves. We do
this by flipping the preprocessors (numerical or categorical) or classifier. If the
tweaking produces better accuracy as stated in the line 6 of Algorithm 10, we
stick with it and keep refining until all the iterations are over.

As a result, we get the pipeline which scored the best accuracy during the
whole process. With this, we know which set of preprocessors and the classifier
was used in building this pipeline.

22

Algorithm 10 Perform Hill Climbing
1: function perform_hill_climbing
2: Initialize current configurations for preprocessors and classifier
3: Initialize variables for tracking best accuracy and pipeline
4: Evaluate initial pipeline’s accuracy
5: Store initial accuracy and update best if it’s the highest so far
6: Set number of iterations for hill climbing
7: for _ in iterations do
8: if random decision to modify preprocessors then
9: if random decision to change numerical preprocessor then

10: Update numerical preprocessor configuration randomly
11: else
12: Update categorical preprocessor configuration randomly
13: end if
14: else
15: Update classifier configuration randomly
16: end if
17: Evaluate the new pipeline’s accuracy
18: if new accuracy is higher than current best then
19: Update best accuracy and pipeline
20: end if
21: Record best accuracy achieved in each iteration
22: end for
23: return best pipeline, best accuracy, list of best accuracies during iterations
24: end function

23

3.2.3 Simulated annealing
After discussing the theoretical aspect of simulated annealing in section 1.5.3,

this section deals with the practical implementation of this. Here, we use the logic
to integrate with our pipelines to find the best possible optimal solution for the
incoming dataset.

Implementation for simulated annealing is very similar to the hill climbing, as
seen in the Algorithm 11. The only difference is that it introduces the occasional
steps backward to explore potentially better solutions. Just as we discussed in
theory, it uses the temperature parameter to control randomness in accepting
worse solutions and a cooling rate to reduce this randomness over iterations.
But as seen by the results (in section 4.2.3) it is clear that its performance very
much resembles hill climbing.

Algorithm 11 Perform Simulated Annealing
1: function perform_simulated_annealing
2: Initialize current configurations for preprocessors and classifier
3: Initialize variables for tracking best accuracy and pipeline
4: Evaluate initial pipeline’s accuracy
5: Store initial accuracy and update best if it’s the highest so far
6: Set number of iterations and initial temperature for simulated annealing
7: Define cooling rate for temperature decrease
8: for _ in iterations do
9: if random decision to modify preprocessors then

10: if random decision to change numerical preprocessor then
11: Update numerical preprocessor configuration randomly
12: else
13: Update categorical preprocessor configuration randomly
14: end if
15: else
16: Update classifier configuration randomly
17: end if
18: Evaluate the new pipeline’s accuracy
19: if new accuracy is higher than current best then
20: Update best accuracy and pipeline
21: else
22: Calculate acceptance probability based on temperature and accu-

racy difference
23: if probability condition met then
24: Accept the new configuration despite lower accuracy
25: Update best accuracy and pipeline
26: end if
27: end if
28: Cool down the temperature
29: Record best accuracy achieved in each iteration
30: end for
31: return best pipeline, best accuracy, list of best accuracies during iterations
32: end function

24

3.2.4 Evolutionary algorithm
Moving on to the last smart search, i.e. evolutionary algorithm. In order to

implement it, we had to mimic natural selection by breeding the best pipelines
to create even better ones. So the idea is to start with the population size of n
individual pipelines and run the evolution process over g generations. For this, we
use initialize_population(size) (refer to Algorithm 12. Then, we evaluate
each pipeline’s performance using accuracy as a fitness metric. This involved
training and testing the pipelines on our dataset, storing the results along with
their configurations. Algorithm 13 clearly explains how we utilised evolutionary
algorithm to search for the best optimal solutions.

Algorithm 12 Initialize Population
1: function initialize_population(size)
2: Initialize an empty population list
3: for _ in range(size) do
4: Generate random configurations for numerical preprocessors, categori-

cal preprocessors, and classifier
5: Append the generated configuration tuple to the population list
6: end for
7: return population
8: end function

The top-performing pipelines, determined by their accuracy scores, were
selected as parents for the next generation. To create new pipelines for the
next generation, we applied crossover and mutation on pairs of selected parents’
configurations. After running it for g generations, we get the pipeline which scored
the best accuracy during the whole process.

Algorithm 13 Evolutionary Algorithm
1: function perform_evolutionary_algorithm
2: Initialize a random population of pipeline configurations.
3: Evaluate each pipeline’s accuracy.
4: Select top-performing pipelines to create the next generation.
5: Combine features of selected pipelines through crossover.
6: Introduce random mutations to maintain diversity.
7: Form a new population from offspring and a subset of parents.
8: Repeat for multiple generations or until a termination condition.
9: return the best pipeline configuration found and its accuracy score.

10: end function

3.3 Code Implementation
We have hosted the entire code base on my GitHub repository [17]. For the

machine-learning components, we utilised various tools from scikit-learn [18]. And
lastly, the project repository includes all the instructions in order to run the
experiments for testing and validation purposes smoothly.

25

4 Experiments
In this chapter, we start with defining all the datasets used during the experi-

mentation (section 4.1). The first experiment was aimed at Exhaustive Search,
whose main purpose was to discover the best optimal solutions in the entire search
field using brute force (section 4.2.1). This was followed by experimentation
done using hill climbing (section 4.2.2), simulated annealing (section 4.2.3) and
evolutionary algorithm (section 4.2.4); we tried to determine which search was
able to perform better and whether the results were related to the dataset in
any manner. The goal of the last experiment was to run the top four most used
datasets from OpenML (section 4.3).

4.1 Datasets
Throughout the experimentation, we got the opportunity to run our set of

pipelines across multiple datasets numerous times. The main idea behind selecting
a wide range of datasets was to notice if the performance of the experiments change
on updating the size of the datasets. So for the purpose of our experimentation,
we used the datasets mentioned in Table 4.1.

Dataset Name Size (Instances, Features) Source
iris dataset Small (150, 4) [19]
wine dataset Small (178, 13) [20]
blood transfusion dataset Small (748, 4) [21]
kc2 dataset Small (522, 21) [22]
breast cancer dataset Medium (569, 30) [23]
credit-g dataset Medium (1000, 21) [24]
kc1 dataset Medium (2109, 21) [25]
wilt dataset Medium (4839, 6) [26]
wine-quality-white Medium (4898, 12) [27]
digits dataset Large (1797, 64) [28]
MagicTelescope (magic) Large (19020, 12) [29]

Table 4.1 Dataset Summary

4.2 Experimentation using different searches
In this section, we will explore the results achieved by different searches. For

a fair comparison, we used the wine quality dataset mentioned in section 4.1 for
all the searches, i.e. exhaustive search, hill climbing, simulated annealing and
evolutionary algorithm.

In the case of smart search techniques, we plotted the results as a comparison
between a randomly generated pipeline and smart search techniques, just like we
mentioned in section 3.2.

26

4.2.1 Exhaustive search
As previously discussed in section 3.2.1, this is the brute force search we started

our experimentation with. This approach generated all possible combinations of
numerical preprocessor, categorical preprocessor and classifiers listed in Table 3.1
and 3.2.

Figure 4.1 Average accuracy of classifiers achieved on wine quality dataset.

For example, during the exhaustive search, a total of 7056 pipelines were
created using all the existing configurations and we ran it across the wine quality
dataset (as mentioned in Section 4.1).

Figures 4.1 and 4.2 show the classifier’s average accuracy and execution time
were during experimentation. And figure 4.3 shows accuracy and execution time
using a scatter plot with Kernel Density Estimate (KDE) for both the x-axis
(Execution Time) and y-axis (Accuracy).

Figure 4.2 Execution time of classifiers achieved on wine quality dataset.

Next, we chose two small and two medium sized datasets and ran exhaustive
search on them. We selected top 200 pipelines based to their accuracy. Then, we
plotted a bar graph showing which classifiers appeared the most number of times.
Random forest classifier performed the best in all the four scenarios. And quite
interestingly, in both the medium datasets, random forest was the only classifier
present in the top 200 best performing pipelines. Figure 4.8 provides a visual
representation of these four scenarios.

27

F
ig

ur
e

4.
3

X
-A

xi
s

re
pr

es
en

ts
th

e
ex

ec
ut

io
n

tim
e

of
di

ffe
re

nt
m

od
el

s
an

d
Y

-A
xi

s
re

pr
es

en
ts

th
e

ac
cu

ra
cy

of
th

e
m

od
el

s.
Ea

ch
po

in
t

on
th

e
sc

at
te

r
pl

ot
re

pr
es

en
ts

a
m

od
el

or
m

et
ho

d
w

ith
its

co
rr

es
po

nd
in

g
ex

ec
ut

io
n

tim
e

an
d

ac
cu

ra
cy

.
T

he
di

st
rib

ut
io

n
of

po
in

ts
he

lp
s

to
vi

su
al

iz
e

th
e

tr
ad

e-
off

be
tw

ee
n

ex
ec

ut
io

n
tim

e
an

d
ac

cu
ra

cy
.

K
D

E
on

X
-A

xi
s

sh
ow

s
th

e
de

ns
ity

of
ex

ec
ut

io
n

tim
es

an
d

pe
ak

s
in

th
is

pl
ot

in
di

ca
te

ex
ec

ut
io

n
tim

es
w

he
re

th
er

e
ar

e
m

an
y

m
od

el
s

co
nc

en
tr

at
ed

.
Si

m
ila

rly
,K

D
E

on
Y

-A
xi

s
sh

ow
s

th
e

de
ns

ity
of

ac
cu

ra
ci

es
an

d
pe

ak
s

he
re

in
di

ca
te

ac
cu

ra
cy

le
ve

ls
w

he
re

m
an

y
m

od
el

s
ar

e
co

nc
en

tr
at

ed
.

28

Figure 4.8 Results of top 200 best performing pipelines on four different datasets.

4.2.2 Hill climbing
As mentioned in section 3.2.2, the next approach we used was hill climbing.

After generating a random pipeline to start with using Algorithm 9, we ran the
Algorithm 10. This ran for 1000 iterations and gave the pipeline with the best
accuracy as the output. Figure 4.9 shows the learning curve of hill climbing for
these 1000 iterations.

Figure 4.9 Learning curve of hill climbing search algorithm on 1000 iterations.

4.2.3 Simulated annealing
Very similar to hill climbing in the section 4.2.2, the next approach we used

was simulated annealing. After initialising the experiment with a random pipeline
using Algorithm 9, we ran Algorithm 11.

29

Just like hill climbing, we ran this for 1000 iterations as well, but we set the
temperature to 1 and cooling rate to 0.95. And as a result, we received a pipeline
with the best accuracy as the final output. Figure 4.10 shows the learning curve
of simulated annealing for these 1000 iterations.

Figure 4.10 Learning curve of simulated annealing search algorithm on 1000 iterations.

4.2.4 Evolutionary algorithm
After this, we moved on to the last approach, which is searching for the

best optimization solution using the Evolutionary algorithm. Here, we started
with a population size of 20 pipelines (called individuals) and ran the evolution
process for over 50 generations. 50 generations of 20 individuals corresponds to
1000 iterations of fitness. Thus, it is comparable to hill climbing and simulated
annealing experiments. Figure 4.11 shows the learning curve of hill climbing for
these 1000 iterations.

Figure 4.11 Learning curve of evolutionary algorithm search algorithm on 50 genera-
tions.

30

Figure 4.12 Learning curve of all search algorithms on 1000 iterations. Here, 50
generations of evolutionary algorithm corresponds to 1000 iterations of hill climbing
and simulated annealing in terms of number of fitness evaluations.

Figure 4.13 Accuracy of the resulting pipeline for each algorithm.

31

Figure 4.14 Accuracy achieved by all smart searches on four OpenML-CC18 bench-
mark datasets.

Figure 4.12 shows how the learning curves of hill climbing, simulated annealing
and evolutionary algorithm looks together after 1000 iterations.

And Figure 4.13 shows the accuracy of the best optimal solution from each of
the smart search algorithm. We added a randomly generated pipeline to compete
with the other three algorithms. As we can see in the plot, all the three smart
searches achieved similar results. On the other hand, the randomly generated
pipeline didn’t perform well.

4.3 Experimentation using OpenML’s datasets
After going though the other datasets (as mentioned in section 4.1), we came

across OpenML’s public dataset OpenML-CC18. It contains a wide variety of
72 datasets. Although the datasets can be accessed after a free registration and
using your own API key, we downloaded the four most used datasets among all
the 72 mentioned over there [30].

In the figure 4.14, we can see the performance of all the three smart searches
(as mentioned in section 3.2) when we ran it across the top four most used dataset
from OpenML-CC18.

32

Conclusion
The main idea behind our experimentation was to design an AutoML system

that takes in the dataset as an input and performs supervised learning optimization.
It achieves this by forming a set of pipelines whose configuration is composed of
any length of numerical preprocessors, categorical preprocessors and a classifier.
It could be a single randomly generated pipeline, or a set of pipelines generated
using all the possible combinations of preprocessors and classifiers. Basically, this
depended upon the kind of search we were performing in order to find the best
optimal solution.

For the exhaustive search, the results were phenomenal and we were receiving
the best set of pipelines for a given dataset. But on the downside, this process
took a lot of time because of its brute force approach. If we talk about smart
searches, the hill climbing and simulated annealing always received almost similar
accuracy in their best performing pipeline configuration, be it a small or large
dataset. And in the case of evolutionary algorithms, it always used to converge
the fastest and provided the best result out of all the smart searches.

Regarding the OpenML’s top four most used datasets, we saw that all the
smart searches received almost similar accuracy after running for 1000 iterations.

Regarding the future scope of this experimentation, we can integrate many new
ideas. One such promising concept was hyperparameter tuning. The mutations
of hyperparameters can significantly improve the results. The idea was to input
different values of the parameters for all the preprocessors and classifiers. This
could uplift the performance of the best pipelines even further. This is because
we would be using the best parameter settings for the particular configuration
and the input dataset. Another extension is to implement the crossover rate of
the evolutionary algorithm between 0.5 to 0.8. This change would enhance the
resulting pipelines by better mimicking the process of natural selection, making
the overall evolutionary algorithm more realistic.

33

Bibliography
1. Flach, Peter. Machine Learning: The Art and Science of Algorithms That

Make Sense of Data [Cambridge University Press, New York, NY, USA,
2012]. [N.d.]. ISBN 1107422221, 9781107422223.

2. Jain, Abhishek. A Comprehensive Guide to Performance Metrics in Machine
Learning [Medium, https://medium.com/@abhishekjainindore24/a-
comprehensive-guide-to-performance-metrics-in-machine-learning-
4ae5bd8208ce]. 2024. Accessed: 2024-04-13.

3. PyTorch. Ensembling multiple models together [https://pytorch.org/
tutorials/intermediate/ensembling.html]. Accessed: 2024-06-04.

4. Science, Towards Data. Ensemble Methods in Machine Learning: What Are
They and Why Use Them? [https://towardsdatascience.com/ensemble-
methods-in-machine-learning-what-are-they-and-why-use-them-
68ec3f9fef5f]. Accessed: 2023-09-12.

5. Neptune.ai. Ensemble Learning Guide [https://neptune.ai/blog/
ensemble-learning-guide]. Accessed: 2024-05-22.

6. Wolpert, David H.; Macready, William G. No Free Lunch Theorems
for Optimization. IEEE Transactions on Evolutionary Computation. 1997,
vol. 1, no. 1, pp. 67–82. Available from doi: 10.1109/4235.585893.

7. Devoteam. Is AutoML the Future of Data Science? [https : / / www .
devoteam.com/expert-view/is-automl-the-future-of-data-science/].
Accessed: 2024-07-02.

8. Somi, Regan. A Guide to Machine Learning Workflow [Medium, https:
//medium.com/@regansomi/a-guide-to-machine-learning-workflow-
9a4302b8787e]. 2021. Accessed: 2024-07-18.

9. Run.AI. Machine Learning Workflows [https://www.run.ai/guides/
machine - learning - engineering / machine - learning - workflow]. Ac-
cessed: 2024-05-03.

10. Thornton, Chris; Hutter, Frank; Hoos, Holger H.; Leyton-Brown,
Kevin. AutoWEKA: Automated Selection and Hyper-Parameter Optimiza-
tion of Classification Algorithms. CoRR. 2012, vol. abs/1208.3719. Available
also from: http://arxiv.org/abs/1208.3719.

11. ScholarHat. Model Selection for Machine Learning [https : / / www .
scholarhat.com/tutorial/machinelearning/model-selection-for-
machine-learning]. Accessed: 2024-07-02.

12. AlmaBetter. Local Search Algorithm in Artificial Intelligence [https:
//www.almabetter.com/bytes/tutorials/artificial-intelligence/
local - search - algorithm - in - artificial - intelligence]. Accessed:
2024-07-11.

13. Russell, Stuart; Norvig, Peter. Artificial Intelligence: A Modern Ap-
proach. 3rd. Upper Saddle River, NJ, USA: Prentice Hall Press, 2009. isbn
0136042597, isbn 9780136042594.

34

https://medium.com/@abhishekjainindore24/a-comprehensive-guide-to-performance-metrics-in-machine-learning-4ae5bd8208ce
https://medium.com/@abhishekjainindore24/a-comprehensive-guide-to-performance-metrics-in-machine-learning-4ae5bd8208ce
https://medium.com/@abhishekjainindore24/a-comprehensive-guide-to-performance-metrics-in-machine-learning-4ae5bd8208ce
https://pytorch.org/tutorials/intermediate/ensembling.html
https://pytorch.org/tutorials/intermediate/ensembling.html
https://towardsdatascience.com/ensemble-methods-in-machine-learning-what-are-they-and-why-use-them-68ec3f9fef5f
https://towardsdatascience.com/ensemble-methods-in-machine-learning-what-are-they-and-why-use-them-68ec3f9fef5f
https://towardsdatascience.com/ensemble-methods-in-machine-learning-what-are-they-and-why-use-them-68ec3f9fef5f
https://neptune.ai/blog/ensemble-learning-guide
https://neptune.ai/blog/ensemble-learning-guide
https://doi.org/10.1109/4235.585893
https://www.devoteam.com/expert-view/is-automl-the-future-of-data-science/
https://www.devoteam.com/expert-view/is-automl-the-future-of-data-science/
https://medium.com/@regansomi/a-guide-to-machine-learning-workflow-9a4302b8787e
https://medium.com/@regansomi/a-guide-to-machine-learning-workflow-9a4302b8787e
https://medium.com/@regansomi/a-guide-to-machine-learning-workflow-9a4302b8787e
https://www.run.ai/guides/machine-learning-engineering/machine-learning-workflow
https://www.run.ai/guides/machine-learning-engineering/machine-learning-workflow
http://arxiv.org/abs/1208.3719
https://www.scholarhat.com/tutorial/machinelearning/model-selection-for-machine-learning
https://www.scholarhat.com/tutorial/machinelearning/model-selection-for-machine-learning
https://www.scholarhat.com/tutorial/machinelearning/model-selection-for-machine-learning
https://www.almabetter.com/bytes/tutorials/artificial-intelligence/local-search-algorithm-in-artificial-intelligence
https://www.almabetter.com/bytes/tutorials/artificial-intelligence/local-search-algorithm-in-artificial-intelligence
https://www.almabetter.com/bytes/tutorials/artificial-intelligence/local-search-algorithm-in-artificial-intelligence

14. Darwin, Charles. On the Origin of Species by Means of Natural Selection,
or, The Preservation of Favoured Races in the Struggle for Life. London:
Murray, 1859.

15. Le, Trang T.; Fu, Weixuan; Moore, Jason H. Scaling Tree-based Automated
Machine Learning to Biomedical Big Data with a Dataset Selector. bioRxiv.
2018. Available from doi: 10.1101/502484.

16. Elsken, Thomas; Metzen, Jan Hendrik; Hutter, Frank. Neural Ar-
chitecture Search: A Survey. arXiv e-prints. 2018. Available from arXiv:
1808.05377 [cs.LG].

17. Sharma, Rajat. Evolutionary techniques in AutoML [https://github.com/
silver-times/autoML_pipeline]. 2024. Accessed 2024-07-18.

18. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion,
B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg,
V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Per-
rot, M.; Duchesnay, E. Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research. 2011, vol. 12, pp. 2825–2830.

19. Fisher, R.A. Iris Dataset [https://archive.ics.uci.edu/ml/datasets/
iris]. 1936. Small dataset used for classification of iris species into setosa,
versicolor, and virginica classes based on four features. Cite: R.A. Fisher
(1936) ”The use of multiple measurements in taxonomic problems” Annals
of Eugenics.

20. Forina, M. et al. Wine Dataset [https://archive.ics.uci.edu/ml/
datasets/wine]. UCI Machine Learning Repository. Small dataset used for
classifying wines into three classes based on chemical analysis of 13 features.
Cite: Forina, M. et al. (1991) ”PARVUS: An Extendible Package for Data
Exploration, Classification and Correlation.” Institute of Pharmaceutical and
Food Analysis and Technologies.

21. Yeh, Prof. I-Cheng. Blood Transfusion Service Center Dataset [https:
//archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+
Center]. UCI. Dataset from the Blood Transfusion Service Center in Hsin-
Chu City, Taiwan, used for predicting blood donation behavior. Attributes
include recency, frequency, monetary value, and time since first donation.
Cite: Yeh, I-Cheng, Yang, King-Jang, and Ting, Tao-Ming, ”Knowledge
discovery on RFM model using Bernoulli sequence”, Expert Systems with
Applications, 2008.

22. Mike Chapman, NASA. KC2 Dataset [https://openscience.us/repo/
defect/mccabehalsted/kc2.html]. 2004. Dataset from the NASA Metrics
Data Program, used for software defect prediction based on McCabe and
Halstead features of source code.

23. Wolberg, Dr. William H.; Street, W. Nick; Mangasarian, Olvi L. Breast
Cancer Dataset [https://archive.ics.uci.edu/ml/datasets/Breast+
Cancer + Wisconsin + (Diagnostic)]. UCI Machine Learning Repository.
Medium-sized dataset used for classifying tumors as malignant or benign
based on 30 features extracted from breast images. Cite: Dua, D. and Karra
Taniskidou, E. (2017) ”UCI Machine Learning Repository.”.

35

https://doi.org/10.1101/502484
https://arxiv.org/abs/1808.05377
https://github.com/silver-times/autoML_pipeline
https://github.com/silver-times/autoML_pipeline
https://archive.ics.uci.edu/ml/datasets/iris
https://archive.ics.uci.edu/ml/datasets/iris
https://archive.ics.uci.edu/ml/datasets/wine
https://archive.ics.uci.edu/ml/datasets/wine
https://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center
https://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center
https://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center
https://openscience.us/repo/defect/mccabehalsted/kc2.html
https://openscience.us/repo/defect/mccabehalsted/kc2.html
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

24. Hofmann, Dr. Hans. German Credit Dataset [https://archive.ics.uci.
edu/ml/datasets/Statlog+(German+Credit+Data)]. 1994. UCI Machine
Learning Repository.

25. Mike Chapman, NASA. KC1 Dataset [https://openscience.us/repo/
defect/mccabehalsted/kc1.html]. 2004. Dataset from the NASA Metrics
Data Program, used for software defect prediction in storage management
software. Includes McCabe and Halstead features to assess software quality.

26. Johnson, Brian Alan; Tateishi, Ryutaro; Hoan, Nguyen Thanh. A Hybrid
Pansharpening Approach and Multiscale Object-Based Image Analysis for
Mapping Diseased Pine and Oak Trees. International Journal of Remote
Sensing. 2013, vol. 34, no. 20, pp. 6969–6982. Available from doi: 10.1080/
01431161.2013.810825.

27. Cortez, Paulo; Cerdeira, António; Almeida, Fernando; Matos, Telmo;
Reis, José. Modeling Wine Preferences by Data Mining from Physicochemical
Properties. Decision Support Systems. 2009, vol. 47, no. 4, pp. 547–553. issn
0167-9236. Available from doi: 10.1016/j.dss.2009.05.016.

28. Alpaydin, E.; Kaynak, C. Digits Dataset [https://archive.ics.uci.
edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits]. UCI
Machine Learning Repository. Large dataset used for recognizing handwritten
digits (0-9) based on 64 features representing pixel values. Cite: E. Alpaydin,
C. Kaynak (1998) ”Cascading Classifiers, Kybernetika.”.

29. Bock, R.K.; Chilingarian, A.; Gaug, M.; Hakl, F.; Hengstebeck, T.;
Jiřina, M.; Klaschka, J.; Kotrč, E.; Savický, P.; Towers, S.; Vaici-
ulis, A.; Wittek, W. Methods for Multidimensional Event Classification: A
Case Study Using Images from a Cherenkov Gamma-ray Telescope. Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spec-
trometers, Detectors and Associated Equipment. 2004, vol. 516, no. 2, pp. 511–
528. issn 0168-9002. Available from doi: 10.1016/j.nima.2003.08.157.

30. OpenML. OpenML-CC18 Documentation [https://docs.openml.org/
benchmark/#openml-cc18]. 2019. Accessed 2024-03-05.

36

https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)
https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)
https://openscience.us/repo/defect/mccabehalsted/kc1.html
https://openscience.us/repo/defect/mccabehalsted/kc1.html
https://doi.org/10.1080/01431161.2013.810825
https://doi.org/10.1080/01431161.2013.810825
https://doi.org/10.1016/j.dss.2009.05.016
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://doi.org/10.1016/j.nima.2003.08.157
https://docs.openml.org/benchmark/#openml-cc18
https://docs.openml.org/benchmark/#openml-cc18

List of Figures

1.1 A typical machine learning workflow. 11

4.1 Average accuracy of classifiers achieved on wine quality dataset. . 27
4.2 Execution time of classifiers achieved on wine quality dataset. . . 27
4.3 X-Axis represents the execution time of different models and Y-

Axis represents the accuracy of the models. Each point on the
scatter plot represents a model or method with its corresponding
execution time and accuracy. The distribution of points helps
to visualize the trade-off between execution time and accuracy.
KDE on X-Axis shows the density of execution times and peaks
in this plot indicate execution times where there are many models
concentrated. Similarly, KDE on Y-Axis shows the density of
accuracies and peaks here indicate accuracy levels where many
models are concentrated. 28

4.4 First image . 29
4.5 Second image . 29
4.6 Third image . 29
4.7 Fourth image . 29
4.8 Results of top 200 best performing pipelines on four different datasets. 29
4.9 Learning curve of hill climbing search algorithm on 1000 iterations. 29
4.10 Learning curve of simulated annealing search algorithm on 1000

iterations. 30
4.11 Learning curve of evolutionary algorithm search algorithm on 50

generations. 30
4.12 Learning curve of all search algorithms on 1000 iterations. Here, 50

generations of evolutionary algorithm corresponds to 1000 iterations
of hill climbing and simulated annealing in terms of number of
fitness evaluations. 31

4.13 Accuracy of the resulting pipeline for each algorithm. 31
4.14 Accuracy achieved by all smart searches on four OpenML-CC18

benchmark datasets. 32

37

List of Tables

3.1 List of Numerical Preprocessors 20
3.2 List of Categorical Preprocessors 20
3.3 List of Common Preprocessors . 20
3.4 List of Classifiers . 20

4.1 Dataset Summary . 26

38

List of Algorithms
1 Exhaustive Search . 13
2 Hill Climbing . 14
3 Simulated Annealing . 15
4 Evolutionary Algorithm . 16
5 Pipeline Optimization — Main 19
6 Create Pipeline . 21
7 Evaluate Pipeline . 21
8 Pipeline Selection Algorithm . 22
9 Generate Random Configuration 22
10 Perform Hill Climbing . 23
11 Perform Simulated Annealing . 24
12 Initialize Population . 25
13 Evolutionary Algorithm . 25

39

	Introduction
	Preliminaries
	Machine Learning
	Performance
	Model Ensembles

	AutoML
	Workflows in ML
	Hyperparameter Optimization
	Model Selection

	Search Algorithms
	Exhaustive Search
	Hill Climbing
	Simulated Annealing
	Evolutionary Algorithm

	Related work
	Our Search Solution
	Optimization of pipelines
	Preprocessors and classifiers
	Individual pipeline

	Different search techniques and their performance estimation
	Exhaustive search
	Hill climbing
	Simulated annealing
	Evolutionary algorithm

	Code Implementation

	Experiments
	Datasets
	Experimentation using different searches
	Exhaustive search
	Hill climbing
	Simulated annealing
	Evolutionary algorithm

	Experimentation using OpenML's datasets

	Conclusion
	Bibliography
	List of Figures
	List of Tables

