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Abstract
This thesis explores spillover dynamics between cocoa futures and currency
pairs. Intercontinental Exchange U.S. and Intercontinental Exchange Europe
cocoa futures contracts are both included in the analysis. United States dollar,
British pound, and Swiss franc are selected as global currencies, and Ghana-
ian cedi is chosen as the currency of Ghana, a cocoa-dependent country. The
empirical analysis covers a period from July 2007 to May 2024. Univariate
GARCH modeling confirms that cocoa futures contracts have been experienc-
ing unprecedented volatility in 2024. VAR-DCC-GARCH model is used to
explore conditional correlations between the assets. The correlation between
cocoa contracts is very strong, with occasional episodes of temporary decline.
Conditional correlations between cocoa futures and currency pairs are weak
and vary over time. Bivariate VAR-BEKK-GARCH models are applied to ex-
plore the presence of spillovers in mean, shocks, and volatility across assets.
Additionally, the models are estimated for four subsample periods. The degree
of spillover differs in full sample and subsample analysis and varies across in-
dividual periods. Notably, spillovers between cocoa futures and the currency
pairs are the most widespread during the most volatile period covering the
Great Financial Crisis and the European Sovereign Debt Crisis, confirming
that spillover between the asset classes increases substantially in periods of
financial stress.
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Abstrakt
Tato práce se zabývá dynamikou přelévání mezi kakaovými futures a měnovými
páry. Intercontinental Exchange U.S. a Intercontinental Exchange Europe
kakaové futures kontrakty jsou zahrnuty v analýze. Americký dolar, britská
libra a švýcarský frank jsou vybrány jakožto důležité globální měny a ghan-
ský cedi jakožto měna Ghany, země závislé na exportu kakaa. Empirický
výzkum je proveden pro období od července 2007 do května 2024. GARCH
modely jedné proměnné potvrzují, že kakaové futures v roce 2024 zazname-
naly bezprecedentní úroveň volatility. VAR-DCC-GARCH model je použit pro
studium podmíněných korelací mezi jednotlivými instrumenty. Korelace mezi
kakaovými futures je velice silná až na výjimečná období náhlého poklesu.
Podmíněné korelace mezi kakaovými futures a měnovými páry jsou velice slabé
a proměnlivé v čase. VAR-BEKK-GARCH modely o dvou proměnných jsou
aplikovány na studium výskytu přelévání ve střední hodnotě, šoku a volatil-
itě mezi jednotlivými instrumenty. Model je dále postupně aplikován na čtyři
časové podintervaly. Míra přelévání v analýze celého intervalu se liší od analýz
podintervalů, stejně tak jako se liší míra přelévání mezi jednotlivými podinter-
valy. Je pozoruhodné, že přelévání dosahuje nejvyšší intenzity v podintervalu
zahrnujícím období finanční krize roku 2008 a počátečních fází krize eurozóny.
Tento poznatek potvrzuje, že přelévání mezi jednotlivými trhy se významně
prohlubuje v dobách paniky na finančních trzích.
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Chapter 1

Introduction

Volatility of an asset is the crucial input of many decision-making processes in
finance. As a measure of risk, it is applied in various stages of risk management,
portfolio management, or derivative pricing. In the asset allocation discipline,
the volatility of an asset will enter as an input within a mean-variance frame-
work. In the sphere of financial risk management, the volatility estimates are
employed within the concepts of Value at Risk (VaR) or Expected Shortfall (ES).
Derivative pricing is another field where volatility estimates find their applica-
tion. An example is the pricing of options using the Black-Scholes formula (see
Black & Scholes 1973) that requires the volatility estimate. While the volatility
sometimes does not receive the same level of attention as the mean of return, it
is just as important. Furthermore, from the econometric perspective, modeling
volatility or variance may be even more attractive since it is often an onerous
task to explain the mean of returns empirically (Hurn et al. 2021).

Volatility may be seen as a reflection of risk conditions pertaining to a par-
ticular asset, an asset class, or broader segments of financial markets. Risk, in
general, cannot be expressed as a single measurable quantity. Instead, we must
resolve to treat it as a latent variable that can never be observed directly. To
overcome this hindrance, various means of risk modeling have been proposed.
Typically, trade-offs between parsimony and complexity have to be made. This
thesis capitalizes on the framework of Generalized Autoregressive Conditional
Heteroskedasticity (GARCH) volatility models, expanding on Bollerslev (1986),
which produces the estimate of variance by using past information about shocks
and variance values. The resulting product, an estimate of conditional volatil-
ity, may be utilized in a wide array of financial applications. Therefore, the
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outcomes of the empirical analysis have the potential not only to be of theo-
retical importance but also to be of practical value.

Agricultural commodities will be the asset class of primary interest, namely
cocoa beans futures. Following the financialization of the commodity industry
that has taken place since the beginning of the 21st century, commodities have
become just another asset class that may be found in portfolios of investors
with no direct link to the industry itself. The annual volume of US exchange-
traded futures and futures options increased from 630 million contracts in 1998
to 3.2 billion contracts in 2007 (CFTC 2008). Trading in commodities is no
longer the domain of specialized commodity trading houses taking on the role
of a speculator or a producer entering the market to hedge against adverse
price movements. Nowadays, both institutional and retail investors may access
derivative commodity markets with ease, or they may use commodity-oriented
investment vehicles such as exchange-traded funds tracking commodity futures
that offer even greater convenience. The rapid pace of financialization prior
to the Great Financial Crisis (GFC) was reflected in the value of institutional
holdings of commodity index-related investments, which grew from 15 billion
United States Dollar (USD) in 2003 to 200 billion USD in 2008 (Tang & Xiong
2012; CFTC 2008).

One of the significant motivating factors for participating in the commodity
market is diversification. While the price dynamics of any commodity cannot
be immune from developments in other sectors of the economy, commodities
have historically evinced relatively low negative correlation with other asset
classes (Gorton & Rouwenhorst 2006). After all, the price of every commodity
should be a reflection of its supply and demand and the information the market
participants have concerning future developments. However, it is argued that
following commodity financialization and the integration into more traditional
financial structures, such as commodity index funds, the correlation with other
asset classes has increased. Such evidence is presented by ECB (2011). Fur-
thermore, they offer a theoretical rationale for this development. They argue
that financial investors may be more responsive to macroeconomic news than
specific commodity fundamentals. Therefore, the rising correlation emerged as
the news regarding the macroeconomic cycle became the joint driver for com-
modities and other asset classes. The effects of commodity financialization on
interconnectedness and correlations with conventional asset classes were also
confirmed by Tang & Xiong (2012), Irwin & Sanders (2011), Silvennoinen &
Thorp (2013), with possible structural breaks arising in the period leading to
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the GFC. Furthermore, Basak & Pavlova (2016) provide a theoretical frame-
work for commodity financialization mechanism that is largely in accordance
with the empirical results.

The ramification for the commodity market participants is that it is no
longer reasonable to rely entirely on the diversifying characteristics. Signifi-
cant spillovers and correlations with other asset classes need to be recognized.
Such correlations may vary over time and depend on the overall risk environ-
ment. The commodity that is very little correlated with other asset classes
during tranquil periods in financial markets may suddenly become highly cor-
related with other assets in the portfolio in times of stress. Such an occurrence
may be detrimental to the diversifying potential of the given asset. Tang &
Xiong (2012) present evidence that commodities included in popular indices
(e.g., S&P GSCI, DJ-UBSCI) show larger responses to shocks during the fi-
nancial crisis. Therefore, time-varying correlations and spillovers are among
the phenomena that we strive to explore, and particular focus is placed on
whether the degree of spillover differs in times of financial crisis.

Futures markets have been widely adopted throughout different sectors of
the commodity industry. Prices quoted on futures exchanges typically serve as
global benchmarks for prices of given commodities. Significant volatility has
historically been a defining feature of the agricultural commodities space. The
futures market provides the market participants with a toolset to navigate this
environment. Generally, hedgers and speculators are the two types of players
that meet in the futures market. A speculator bets on the directional move in
the futures price without direct participation in the market for the underlying
asset. A hedger, on the other hand, participates directly in the market for the
underlying asset. Therefore, the futures market provides the hedger with an
opportunity to lock in input or output prices. Such protection is of crucial
importance as it enables the producer to conduct operations and plan for the
future, even in times of extreme volatility in the spot market.

The specificity of the cocoa market resides in the high geographical concen-
tration of production. Only a handful of countries in West Africa account for
the vast majority of cocoa bean production. The supply-side vulnerability is
further exacerbated by the significant proneness of the cocoa plant to adverse
weather conditions and various pests and diseases. The perfect example of
such vulnerability has unfolded in the cocoa beans market since the autumn
of 2023. Unseasonal severe rains have gravely impacted bean production in
both pre-harvest and post-harvest stages (ICCO 2023). The drying process
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was disrupted, leading to degradation of the bean quality. Furthermore, due to
the excess rainfall, black pod disease and swollen shoot virus cases have been
detected. Consequently, the resulting supply deficit and negative crop outlook
led to the price of the ICE US front month futures contract increasing from
3400 USD on October 5, 2023, to 11461 USD on April 19, 2024. Moreover, it is
necessary to highlight the substantial dependence of the cocoa exporting coun-
tries on price fluctuations, which is in sharp contrast with the cocoa importing
countries for which the price of cocoa is of little importance. The high re-
liance on the price of one commodity plays a fundamental role in the economic
development of these countries.

Despite the heterogeneity of actors participating in various stages of the
cocoa supply chain, exposure to the cocoa price and foreign exchange rates
is a common factor for all of them. To explore the risks this exposure entails,
inspecting the volatility of univariate series one by one does not suffice. The de-
gree of correlation and information transmission between the assets is likely to
be time-varying. Understanding how cocoa futures prices and exchange rates
interrelate proves vital, especially in times when the volatility environment
changes abruptly. In such situations, a part of the portfolio may be subject
to substantial price fluctuations, and the survival of the business rests on the
performance of the remaining exposures. In order to model the cross-asset dy-
namics and to provide a detailed description of the interrelations, multivariate
GARCH models are applied in this thesis.

The foreign exchange market is the largest market in the world by volume.
According to a survey by NY FED (2023), the average daily volume of spot
transactions was 436,092 million USD. When the adjacent derivative transac-
tions were considered, the average daily volume amounted to 1,021,008 million
USD. Furthermore, foreign exchange markets are closely tied to the global econ-
omy. Price moves in the currency markets may be interpreted beyond simple
supply and demand forces. They carry informational values about interest rate
differentials between countries, macroeconomic performance, or risk sentiment
pertinent either to a particular country or the global economy. On the other
hand, cocoa futures are a considerably smaller market that will only exercise
limited influence outside the producing countries. Therefore, the transmission
of information is expected to flow predominantly from currency pairs to co-
coa futures. However, the situation may differ for Ghanian Cedi (GHS), the
currency of Ghana. Cocoa production is an important sector of the Ghanaian
economy. Therefore, it is not unlikely that the cocoa futures price is among
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the important factors priced in by the currency markets. Consequently, it
may be hypothesized that, unlike the global currency pairs, the transmission
mechanism between GHS and cocoa futures works in either opposite or two-way
direction.

The objective of the thesis is to provide a comprehensive overview of cross-
asset dynamics between both cocoa futures contracts and selected currency
pairs. The selected currencies are USD, Euro (EUR), British Pound (GBP),
Swiss Franc (CHF), and GHS. Own volatility dynamics of cocoa futures will be
examined in the process. Furthermore, time-varying correlation between the
assets is to be explored to determine whether stable patterns exist in the corre-
lation structure of the data. Conditional correlation will be examined with the
use of Vector Autoregressive (VAR)-Dynamic Conditional Correlation (DCC)-
GARCH model, first for cocoa futures contracts exclusively and consequently
for USD and GBP-denominated assets. A similar structure will be followed in
the study of spillovers. However, in response to the limitations of VAR-Babba,
Engle, Kraft, Kroner (BEKK)-GARCH model, the entirety of the spillover anal-
ysis will be restricted to bivariate modeling. The purpose of the spillover study
is to explore the transmission between different markets. The structure of the
model enables us to test for mean, shock, and volatility spillovers. On top of
the presence of the spillovers, their direction is of great interest as well. There-
fore, we will be able to confirm or refute the expectation that the majority of
transmission will flow from foreign exchange markets to cocoa futures, possi-
bly with the exception of GHS. Finally, we strive to explore how the degree
of transmission varies across different time periods. A question of particular
interest is whether such dynamics are more or less pronounced in times of se-
vere stress in financial markets. Therefore, aside from the analysis of the full
sample, the data series is partitioned into four subsamples, one representing the
period of the GFC and the early stages of the European Sovereign Debt Crisis.
The presented research objectives are summarized by the following hypotheses,
answers to which will be given over the course of the thesis and summarized in
the concluding chapter (Chapter 7).

Hypothesis 1: There is little or no correlation between cocoa futures and
currency pairs.

Hypothesis 2: The spillover between currency pairs and cocoa futures
varies over time, depending on macroeconomic and financial conditions.
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Hypothesis 3: The most significant spillover will occur during severe stress
in financial markets, represented by Period 1 of the subsample analysis.

Hypothesis 4: The predominant direction of spillovers is from the much
larger currency markets to smaller cocoa futures markets in the case of
global currency pairs.

Hypothesis 5: The transmission exists in the direction from the cocoa
futures market to the currency market in the case of GHS.

Hypothesis 6: London Cocoa futures contract is more closely oriented to
the African production and the European processing industry. Therefore,
it leads the US Cocoa futures in terms of price.

Hypothesis 7: The degree of transmission between cocoa futures and
currencies is greater for US Cocoa as it attracts more speculative activity,
and therefore, it will be more responsive to impulses originating from
global financial markets.

The remaining parts of the thesis are organized in the following manner.
Chapter 2 presents the literature review relevant to the research field of the
thesis, and it serves a dual purpose. First, it provides foundations of the integral
theoretical framework and outlines the literature in which the methodological
tools applied in the later chapters were developed. The second part of the
chapter focuses on empirical research relevant to the area of interest, which
is the interrelation of commodities and currencies. Chapter 3 summarizes the
basic characteristics of cocoa futures trading and the cocoa supply chain. In
Chapter 4, methodological tools are described in greater detail. Univariate
GARCH is presented. Next, the VAR model is outlined since it is used as a
mean specification for the multivariate GARCH models. DCC and BEKK models
and details of the estimation technique are introduced in the remainder of
the chapter. Chapter 5 concerns the dataset used in the empirical analysis.
The construction of the dataset is described. Furthermore, basic descriptive
analysis and statistical tests are conducted in order to provide the first insight
into the data and to ensure its readiness for further analysis. Chapter 6 is
comprised of the empirical research, which is structured into three parts. First,
univariate GARCH modeling is carried out for cocoa futures contracts. Second,
the time-varying correlation between the assets is modeled. Third, the spillover
between assets in terms of mean, shocks, and volatility is explored. Chapter 7
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concludes the analysis and summarizes the results in a concise manner. Limits
of the applied tools are emphasized, and the avenues for future research are
proposed.



Chapter 2

Literature Review and
Fundamental Theoretical
Framework

This chapter provides an extensive overview of the body of literature and the
current state of knowledge concerning the crucial concepts that appear in the
latter stages of the thesis. The overview is divided into two sections.

The first section (Section 2.1) summarizes the literature in which the meth-
ods applied in the empirical analysis of Chapter 6 were developed. Those are
mainly methods that originated in the second half of the 20th century to provide
a framework for studying the dynamics concerning higher moments of random
variables in the financial time series. Since we attempt to capture the process
of volatility spillovers and the contagion between different segments of finan-
cial markets, both univariate and multivariate volatility models are of interest.
Volatility models enable the study of the time-varying nature of variance, co-
variance, and correlation of asset return series. However, they vary significantly
in terms of the econometric concepts on which they capitalize and the degree
of their complexity. Perhaps the most important theoretical concepts are con-
ditional variance and covariance. High priority is placed on a thorough grasp
of these terms as it is a prerequisite for carrying out the empirical analysis and
its sound interpretation. It is not the objective of this overview to explain the
methods used in empirical analysis in greater detail. A more rigorous treat-
ment of the model specifications and the process of estimation will be provided
in Chapter 3, which focuses exclusively on the methodology.

In the second section (Section 2.2), we turn to the existing body of empir-
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ical research surrounding the volatility dynamics of the commodity markets.
Particular focus is placed on studies concerning the spillovers between the asset
classes of commodities and foreign exchange markets. In spite of the fact that
the amount of research exploring the volatility spillovers in financial markets is
abundant, the focus on the linkages between agricultural commodities markets
and foreign exchange has been relatively limited. Therefore, the survey of exist-
ing empirical literature is not limited to research that deploys methodological
tools identical to this thesis.

2.1 Development of Key Theoretical Concepts
The spillovers of volatility are the primary concern of the empirical analysis
conducted in this thesis. The volatility of the return series interests all ac-
tors in the financial markets. As a primary measure of risk, the volatility of
the asset returns needs to be constantly evaluated by financial market partic-
ipants. It plays a crucial part in any decision-making and risk-management
practices. However, volatility is not a single quantity that can be directly ob-
served. With the genesis of financial theory, the variable representing the risk
of an asset became an integral input. Consequently, the need for a reliable
measurement of risk became exigent. Until the 1980s, the widespread practice
was to assume that the volatility does not vary over time (Engle & Granger
2003). However, the problem with this approach is to be easily identified even
when we conduct a simple visual inspection of an asset return times series
(see Figure A.1, Figure A.3, Figure A.5). We typically observe periods of low
volatility characterized by relatively small returns in both directions and peri-
ods of high volatility during which the magnitude of returns increases sharply
in both directions (Engle 2001). This notion may be internalized as a stylized
fact pertinent to the financial return series. Such phenomenon is known as
volatility clustering, and it represents a critical realization that there is a de-
gree of autocorrelation in the volatility of asset returns (Engle 2001). We can
encapsulate this crucial observation in the following simple statement. There
are riskier periods in financial markets and less risky periods. For any model to
be satisfactory, it should be able to generate this dynamic that manifests itself
as dependence in the data, for example, as a serial correlation in the squared
returns.
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The naive and most rudimentary approach to measuring volatility is the
concept of historical volatility. Historical variance (volatility squared), defined
as

σ2
t = 1

T

T∑︂
i=1

r2
t−i, (2.1)

is based on a fixed window (T ) of observations that are assigned the same
weight, regardless of how far in the past they occurred. The time-varying fea-
ture of volatility, in combination with a discretionary choice of model parame-
ters, disqualifies historical volatility as a model that would be able to capture
the volatility dynamics in accordance with reality. The fact that it is up to
our choice to decide on the length of the time window represents a significant
deficiency. The most widely used values for the parameter T correspond to the
number of trading days in a month, 22, or the number of trading days in a
year, 252 (Hurn et al. 2021). Despite the aforementioned imperfections of the
historical volatility model, the measure retains an attractive characteristic due
to its simplicity. Furthermore, it is easy to implement either on its own or as
mere input into more sophisticated models, such as spillover index models of
Diebold & Yilmaz (2009; 2012).

Another unsophisticated approach that partially responds to the short-
comings of historical volatility is the Exponentially Weighted Moving Aver-
age (EWMA) model, which measures the variance (volatility squared) as

σ2
t = (1 − λ)

∞∑︂
i=1

λir2
t−i−1 = · · · = (1 − λ)r2

t−1 + λσ2
t−1. (2.2)

Unlike the historical volatility approach, it attaches more weight to more recent
observations. However, the parameter λ still depends on the discretionary
choice of the practitioner. Such a choice is typically made to fit the modeled
data. However, the model does not allow us to estimate the model parameter,
value λ = 0.94 is the most widely used option (Hurn et al. 2021).

Engle (1982) laid the foundations of the new approach to volatility model-
ing by introducing the Autoregressive Conditional Heteroskedasticity (ARCH)
process. Many models that expand on this breakthrough have since been de-
veloped, and Robert Engle has continued contributing to the field of volatil-
ity modeling (see Engle et al. 1985; Engle & Gonzalez-Rivera 1991; Engle &
Mustafa 1992; Bollerslev et al. 1994; Engle & Kroner 1995; Engle 2001; 2002b;a;
2004). Unlike the historical and EWMA volatility models, the ARCH-based
framework does not suffer from the choice of arbitrary window length and lost
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information. Furthermore, the parameters of the model are to be estimated.
Therefore, we do not have to make a decision about which portion of past data
points is relevant and which is not.

Engle (2001) outlines a basic intuition about the need for more advanced
methods by first looking at the deficiencies of the Ordinary Least Squares (OLS)
model. The OLS model often takes on the assumption of homoskedasticity,
meaning that the expected value of the error term is constant. The viola-
tion of the homoskedasticity assumption does not cause the estimates of the
coefficients to be biased. However, the bias will arise in the standard errors
obtained by the OLS procedure, resulting in the confidence intervals being too
narrow and giving us a false sense of precision. One of the possible solutions to
the heteroskedasticity problem is the introduction of heteroskedasticity-robust
standard errors (see Eicker 1963; White 1980). However, Engle (1982) does not
attempt to correct for the heteroskedasticity. Instead, he takes the variance as
an object to be modeled, which is interesting for many financial modeling ap-
plications. The ARCH(1) model is specified as

ut = ϵth
1/2
t (2.3)

ht = α0 + α1u
2
t−1. (2.4)

The model takes advantage of the concept of conditional variance that is defined
with respect to It−1 as

ht = V ar(ut|It−1) = E[(ut − E(ut|It−1))2|It−1], (2.5)

where It−1 is σ-algebra that may be interpreted as an information set containing
all information available up to the time t − 1.

Conditional moments are integral to the GARCH framework from both theo-
retical and practical perspective. The definition of conditional moments allows
us to capture the time-varying nature of the modeled quantity as we define con-
ditional moment relative to a set of available information It−1. We are focused
on the evolution of conditional variance, described by the variance equation
(see Equation 2.5). In order to obtain the shocks ut that enter the variance
equation, we need to specify the evolution of the conditional mean as well.
The conditional mean equation specifies the link between the return, condi-
tional mean, and shock variable ut (innovation or error are alternative terms
for ut that are regularly found in literature). Moreover, from Equation 2.3, we
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may see how the shock variable provides the channel by which the conditional
variance affects the magnitude of the asset return.

While the unconditional (long-term) variance, provided it exists, is still
assumed to be constant in the ARCH model, the conditional variance does
vary over time. Consequently, the parameters of conditional variance can be
jointly estimated with the parameters of the conditional mean. Engle (1982)
defined the ARCH model by an equation in which he essentially expressed the
conditional variance as a function of past squared shocks with different weights
that are to be estimated. Furthermore, it is assumed that the shocks can be
expressed as ut = ϵth

1/2
t , where ϵt is an independent, identically distributed

(i.i.d) random variable with the mean equal to zero and the variance equal to
one, normal distribution is assumed most frequently. Engle (1982) builds up the
estimation theory for the ARCH model, specifies the characteristics regarding
the maximum likelihood estimator, and introduces Lagrange Multiplier (LM)
test in order to test for the presence of ARCH effects in the shocks ut.

Engle (1982) successfully captured key dynamics describing the conditional
variance of asset returns. However, in empirical practice, the ARCH model of-
ten requires a large number of lagged shocks to be included (Bollerslev 1986).
Bollerslev (1986) introduced GARCH model, which imposes a structure on the
conditional variance that resembles a specification of the Autoregressive Mov-
ing Average (ARMA) model. Aside from the lagged shocks, lagged values of
conditional variances are included as well. Therefore, the equation for the
conditional variance takes the form of

ht = α0 +
p∑︂

i=1
αiu

2
t−i +

q∑︂
j=1

βjh
2
t−j. (2.6)

In empirical practice, the order of the GARCH model does not exceed two for ei-
ther p or q in Equation 2.6. Engle (2004) points out that the GARCH(1,1) model
is able to model the conditional volatility of most financial series. The success
of the GARCH model is demonstrated by the immense quantity of extensions
that have been introduced over the years (see Bauwens et al. 2006; Bollerslev
2008). The extensions emerged either to augment the original model in order
to accommodate nuances of the financial returns time series (e.g., leverage ef-
fects) or to allow the modeling of phenomena that the model had previously
been incapable of. An example of the latter is the generalization of the GARCH

model from univariate into multivariate setting.
Multivariate generalization of the GARCH models brings another quantity
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into consideration, conditional covariance. This extension is not only of a
technical nature. It is a reaction to the real-world setting in which participants
hold a large number of assets in their portfolios. Therefore, the generalization
to multivariate framework comes as a natural extension that will enable us to
model the dynamics between the assets. The evolution of the covariance and
correlation measures follows a similar pattern as univariate variance measures.
Basic measures such as historical correlation

ρ12,t =
∑︁t−1

i=t−T−1 r1,ir2,i√︂
(∑︁t−1

i=t−T−1 r2
1,i)(

∑︁t−1
i=t−T−1 r2

2,i)
(2.7)

or exponential smoother correlation

ρ12,t =
∑︁t−1

i=t−T−1 λt−i−1r1,ir2,i√︂
(∑︁t−1

i=t−T−1 λt−i−1r2
1,i)(

∑︁t−1
i=t−T−1 λt−i−1r2

2,i)
(2.8)

rely on our choice of the length of the rolling window T and the weighting
parameter λ in the case of Equation 2.8. Similar to the univariate EWMA

(see Equation 2.2), the value λ = 0.94 is the common choice (Engle 2002a).
These basic measures derive value from their simplicity and may be used as a
simple descriptive tool. However, they fail to capture the dynamics between
assets in a more sophisticated manner, and they do not allow for the estimation
of the model parameters. Conditional covariance matrix, defined as

Ht = E(utut
T |It−1), (2.9)

forms the cornerstone of the multivariate GARCH analysis, and it will be the
object to be modeled. Conditional variances of single assets form the diagonal
of the conditional covariance matrix, and the off-diagonal elements are the
conditional covariances between the assets.

The VEC model by Engle & Kroner (1995) offers a straightforward way to
parametrize the multivariate model,

vec(Ht) = vec(Ω) + Avec(ut−1ut−1
T ) + BHt−1, (2.10)

where vec is an operator that stacks the elements of the matrix into a column
vector, ut−1 is n × 1 vector of shocks at the time t − 1 and A, B are n2 × n2

parameter matrices. VEC model translates the GARCH(1,1) model into multi-
variate setting in the most direct manner, with a conditional covariance matrix
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depending on the outer product of shocks and the lagged value of the condi-
tional matrix. However, two problems arise in the case of this specification.
First, the problem of dimensionality is evident as the number of parameters
will be inconveniently large, particularly for a large number of assets. Second,
the conditional covariance matrix Ht will not always be positive definite (Engle
2002a).

The issue of positive definiteness is addressed by the BEKK model of Engle
& Kroner (1995), who parametrize the model such that

Ht = Ω + Aut−1ut−1
T AT + BHt−1BT . (2.11)

The BEKK model and its versions (asymmetric BEKK, diagonal BEKK, scalar
BEKK) continue to be used in multivariate volatility modeling to this day. While
the parameters of the model cannot be interpreted directly (Tsay 2005), we can
examine the significance of the cross-parameters to explore whether volatility
spillover between assets or markets exists. The deficiency that is common to
both VEC and BEKK models is the curse of dimensionality. With an increasing
number of assets, the number of parameters to estimate sharply increases.
Therefore, in practice, the BEKK model can be effectively applied only if the
number of assets remains relatively small. However, financial practice demands
the ability to model hundreds of assets in the portfolio. Therefore, in such
applications, the ability of the BEKK model will be significantly constrained.

Bollerslev (1990) took a different approach to the parametrization by spec-
ifying the conditional covariance matrix as

Ht = DtRDt, (2.12)

where Dt is a diagonal matrix with conditional volatilities on the diagonal (ob-
tained from first step univariate modeling) and R is a correlation matrix. The
Constant Conditional Correlation (CCC) model assumes a constant conditional
correlation between assets. It is conceivable that this restriction does not nec-
essarily reflect the reality of the financial markets as market conditions change
over time and, with them, the correlations and covariances between different
assets. To reflect such eventuality, Engle (2002a) augments the CCC model by
allowing the conditional correlation to vary over time, such as

Ht = DtRtDt. (2.13)
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The DCC model has several properties that make it attractive for empirical
applications. Engle (2002a) specifies the model and its estimation in a way that
enables the estimation of large conditional covariance or correlation matrices.
Estimation is conducted in two steps. The first step is obtaining conditional
volatilities from univariate GARCH models. The second step utilizes the output
of the first step, and estimates of the conditional covariance matrix are obtained
by indirect specification.

The DCC model does not allow for the same interpretation of volatility spill-
overs as in the case of the BEKK model since conditional volatilities only enter
as univariate processes and direct spillovers are not considered. However, the
effective parametrization of the DCC model makes it appropriate for the study
of time-varying conditional correlations between a larger number of different
assets. Therefore, it is not necessary to be restricted to modeling of a lower
number of variables as in the case of the BEKK model. Engle (2002a) em-
phasizes that adding new assets into the model has no effect on the volatility
forecasts of the other assets, and there will be very limited effect on the condi-
tional correlation estimates as well. The possibility of including a large number
of assets makes the model attractive for risk management applications such as
dynamic hedging ratios (see Ku et al. 2007).

Among the mentioned multivariate volatility models, BEKK and DCC are
used in the multivariate empirical analysis in Chapter 6. There are several
publications that employ a similar approach in terms of the applied method-
ological tools. Li & Majerowska (2008) use the BEKK model to test for spillo-
vers between the emerging markets of Poland and Hungary and the developed
global stock markets of Germany and the United States. Also Worthington &
Higgs (2004) uses the BEKK model to study spillovers between developed and
emerging markets, the dynamics are investigated for Asia, and the research is
focused on the period including the Asian financial crisis. Various specifica-
tions of BEKK and DCC are also estimated by Bala & Takimoto (2017), who
once again focus on developed and emerging markets. The spillover is studied
separately among the developed, emerging and combined markets, and the em-
phasis is placed on how these dynamics differ in times of crisis. Liu et al. (2017)
combine the BEKK model with a wavelet-based approach to explore spillovers
between the oil and the stock markets of Russia and the US. Furthermore,
they consider different time periods and different wavelets for the study, an
approach partially followed in this thesis, albeit using less sophisticated tools.
Bivariate BEKK models are also used to explore spillovers in exotic asset classes.
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Katsiampa et al. (2019) model the spillover dynamics between pairs of lead-
ing cryptocurrencies (Bitcoin, Ether, Litecoin) and find significant shock and
volatility spillovers.

2.2 Current State of Empirical Research
This section provides an overview of the existing literature that explores the
spillovers between currency pairs and commodity markets in a broader sense.
The main field of interest is the research of volatility dynamics between the
agricultural commodity futures market and foreign exchange pairs. However,
the field of agricultural commodities has yet to be the subject of such intensive
research as the other commodity markets. Therefore, literature exploring inter-
relations between currencies and broader commodity markets is also outlined.

In this thesis, we study the volatility spillovers between the cocoa futures
markets and currency pairs. The body of literature and research concerning the
dynamics of the cocoa futures markets is, however, somewhat limited. There-
fore, we start with a closer inspection of the findings related directly to the area
of interest. The volatility dynamics between these two financial markets have
been studied by Jumah & Kunst (2001), who explore the volatility dynam-
ics between the dollar/sterling (USDGBP) forward exchange rates and futures
markets for coffee and cocoa in both London and New York. In this paper,
the authors present evidence that the USDGBP exchange rate volatility affects
coffee and cocoa futures prices on the London International Financial Futures
and Options Exchange (LIFFE) and Coffee, Sugar and Cocoa Exchange (CSCE).
These effects are explored in four cases, for coffee and cocoa futures in both
London and New York. In each case, the exchange rate arises as a major
source of risk for the price of the futures contracts. The interactions between
the LIFFE and CSCE futures contracts were also examined, and the statistical
evidence shows that volatility spillover across the exchanges is strong and works
in both directions. This relationship is stronger in the case of the coffee futures
contracts than in the case of the cocoa futures contracts. Since the studied
phenomenon is closely related to the interest of this thesis, it will be contribu-
tive to compare these findings with the results of our empirical analysis and
update the understanding of these dynamics 23 years after the original paper
of Jumah and Kunst was published.

Katusiime (2018) employs the volatility spillover framework by Diebold &
Yilmaz (2009; 2012) and the multivariate GARCH model to explore the volatility
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spillover dynamics between food, oil, and Ugandan Shilling (UGX)USD nominal
exchange rate which is flagged by the study as a critical macroeconomic finan-
cial stability indicator. DCC is used along with the spillover index by Diebold &
Yilmaz (2012) to explore time-varying correlation and volatility spillover. The
level of spillover is found to be weak during calm market conditions. However,
it sharply intensifies during periods of significant market turbulence, such as
the GFC or European sovereign debt crisis. Uganda shares many characteristics
with countries that heavily depend on the export of cocoa beans. Therefore,
it is highly relevant to the research subject of this thesis. The author suggests
revenue stabilization funds as a policy arrangement to bolster macroeconomic
stability and intergenerational equity and to mitigate the exchange rate volatil-
ity.

Also Kassouri & Altıntaş (2020) recognize the importance of exchange rate
dynamics for commodity-exporting African countries. They investigate the ef-
fects of terms of trade shocks on the dynamics between the prices of a wide range
of primary commodities and real exchange rates across twenty-three African
countries. Using the nonlinear panel Autoregressive Distributive Lag tech-
nique, it is discovered that the effect is asymmetric and differs in the short run
and in the long run. Notably, the evidence suggests that a positive response
of the real exchange rates to positive terms of trade shocks is prevalent in the
long run. On the other hand, in the short run, there is a pronounced negative
response of the real exchange rates to negative terms of trade shocks.

The body of literature becomes substantially more copious if a broader com-
modity space is considered. Antonakakis & Kizys (2015) use the theoretical
framework of Diebold & Yilmaz (2009; 2012) to analyze the dynamic returns
and volatility spillovers between precious metals, crude oil, and currency mar-
kets. They are motivated by the preceding body of literature that studies the
resilience of precious metals in times of financial crisis and shows their bene-
fits as a way to reduce systematic risk in the portfolio and as a diversification
element, especially in times of elevated market volatility. Furthermore, they
compare the results of static and dynamic analysis. They show that the as-
sets’ role as net transmitters or net receivers may weaken or reverse entirely
in specific periods. On the other hand, Arezki et al. (2014) point out that de-
spite their undisputed benefit as a means to store wealth securely, the precious
metals markets may also experience periods of heightened volatility.

More recently, Yıldırım et al. (2022) proceeded in a similar line of research
to analyze the volatility spillover between crude oil, precious metals, and real
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exchange rates, but they focus on the G-20 emerging market economies, namely
Mexico, Indonesia, and Turkey. In harmony with the preceding strand of lit-
erature, the transmission is found to be bidirectional during most of the ob-
served period (1993 - 2021). However, this phenomenon dissipates during crisis
periods. These findings offer evidence of protection characteristics that com-
modities possess in relation to exchange rates and their potential use in the
diversification of portfolios. Additionally, precious metals demonstrate a safe
haven behavior against exchange rates, which can be observed during the period
of extreme volatility following the outbreak of COVID-19.

Apart from investigating these interrelations, Yıldırım et al. (2022) sum-
marize two possible perspectives on the directionality of the contagion between
commodity prices and exchange rates. The first perspective comes from Chen
& Rogoff (2003), who study three Organisation for Economic Co-operation and
Development (OECD) economies with a large share of primary commodity ex-
ports, and they find that the USD price of the exported commodities evinces
significant influence on their real exchange rates. They effectively introduce a
concept of commodity currency that aligns with the view that fluctuations in
commodity prices lead to movements in the exchange rate. The second per-
spective highlights possible causality in the opposite direction, from exchange
rates to the commodity markets (Chen et al. 2010). Belasen & Demirer (2019)
give evidence in favor of such contagion, focusing on a wide range of export
commodities and export countries. They find strong causal effects from cur-
rencies to commodities in both returns and volatility, and these effects become
more widespread after the GFC. Examples of such significant dynamics are
found, especially between gold and the New Zealand dollar, Brent oil and the
Brazilian real, and copper and the Chilean peso. In some cases, these relations
are even found to be bidirectional. Furthermore, Belasen & Demirer (2019)
utilize these findings to present a case for hedging opportunities that would
capitalize on the informative value provided by the foreign exchange market to
hedge the commodity exposure.

The presence of bidirectional causalities between the currency and commod-
ity prices is in partial accordance with Zhang et al. (2016). Unlike other au-
thors, they employ a more robust approach by examining various time horizons
for potential causality that, they argue, allows to account for indirect causal
links and helps to curtail spurious findings of causation and time-aggregation
effects. Moreover, the evidence provided by the multi-horizontal approach en-
ables valuable comparison of the strength of causal relationships, therefore
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further enhancing the understanding of the directionality of such relationships.
Zhang et al. (2016) present results showing that bidirectional causalities exist
across various time horizons. However, the direction from commodity prices
to the exchange rates displays significantly greater strength, suggesting that
macroeconomic/trade-based mechanism evinces a central role in the contagion.

Overall, the presented evidence suggests that even though bidirectional re-
lationships of varying magnitude are often found, the macroeconomic/trade-
based mechanism described by Chen & Rogoff (2003) continues to play the
deciding role in understanding the dynamics that govern the interrelations be-
tween commodities and currencies of commodity-exporting countries. As can
be seen, certain patterns may be spotted across the existing research works.
However, the nuances occurring across the different markets and geographical
regions hint that studying the individual effects in greater detail is worthwhile.



Chapter 3

Cocoa Market Overview

3.1 Cocoa Futures Trading
A cocoa futures contract is an agreement to buy or sell a given quantity and
grade of cocoa beans in accordance with contract specifications provided by
the futures exchange. There are well-established futures contracts trading in
London and New York under the auspices of the Intercontinental Exchange
(ICE). Cocoa Futures (symbol CC) are traded on the ICE Futures US platform,
and they are commonly referred to as US Cocoa. Price quotation is published
in USD per metric tonne, and the contract size is 10 metric tonnes. London
Cocoa Futures (symbol C) are traded on ICE Futures Europe, and they are
commonly referred to as London Cocoa. Prices of London Cocoa are quoted
in GBP per metric tonne, and the size of a contract is 10 metric tonnes. The
dominant position of these contracts has been tested in recent years by the
introduction of new products (see CME Group 2015; ICE 2015). However,
these attempts have failed to attract significant volume. Both contracts are
accepted as benchmarks for the global price of cocoa beans.

Table 3.1: ICE Cocoa Futures contracts

Contract Symbol Contract Size Price Quotation
Cocoa Futures CC 10 metric tonnes USD/metric tonne
London Cocoa Future C 10 metric tonnes GBP/metric tonne

Source: https://www.ice.com/products; ICE (2024a), ICE (2024b)

London market tends to be oriented toward African cocoa production and
the European processing industry (Darhei Noam Ltd 2023). Eligible delivery
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points are located in proximity to major ports in northwestern Europe. Possi-
ble delivery locations are Amsterdam, Antwerp, Bremen, Hamburg, Liverpool,
London and Rotterdam (ICE 2024a). On the other hand, the US Cocoa futures
market holds the position of global benchmark, it is oriented toward process-
ing industries of America and Asia, and it is viewed to have attracted more
speculative activity than the London market (Darhei Noam Ltd 2023). The
locations for the physical delivery of US Cocoa are situated in the major ports
on the northeastern coast of the United States. The eligible delivery locations
are licensed warehouses in the ports of New York, Delaware, Hampton Roads,
Albany, and Baltimore (ICE 2024b).

The difference between both markets has varied throughout history depend-
ing on miscellaneous factors that may have had an effect on the migration of
participants between the contracts. According to Bertilorenzi (2023), the Lon-
don and New York markets were very similar in terms of the two key terminal
markets’ competitive qualities, geographical proximity to commodity produc-
tion sites, and maturity and reliability of the contracts. The regulatory en-
vironment has always had a significant influence on the competition between
New York and London futures markets. Futures exchanges in London devel-
oped as self-regulating. In the United States, imported soft commodities such
as sugar, coffee, and cocoa had functioned in a relatively light regulatory en-
vironment, unlike domestic agricultural commodities, until the Commodities
Futures Trading Commission (CFTC) was established in 1974. The weak regu-
lation was appealing particularly to the most speculative market participants
(Markham 1991). Following the regulation by the CFTC, London captured a
competitive edge, becoming suddenly more attractive to those who previously
relied on lenient regulation in the US. The accommodative environment of Lon-
don was further enhanced by the growth of the eurodollar markets, and many
US financial firms involved in commodity trading opened branches in London
during this period (Altamura 2016). This episode highlights the critical influ-
ence of factors originating purely from financial markets rather than the cocoa
industry itself.

Both cocoa futures contracts have been trading for nearly a century. Both
contracts are settled by physical delivery, and both allow for the delivery of
a wide range of cocoa bean grades. Even though the contracts are currently
traded on the ICE platforms, that has not always been the case, it is an out-
come of a long series of mergers and acquisitions. This development was not
exclusive to the soft commodity futures space. The consolidation of the finan-
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cial exchange industry has accelerated significantly in the years following the
introduction of electronic trading, leading to the ICE and National Association
of Securities Dealers Automated Quotations (NASDAQ) emerging as dominant
players. As a result, a vast majority of soft commodity futures volume has
ended up under the umbrella of the ICE.

US Cocoa Futures contracts are universally regarded as the primary global
benchmark of cocoa beans and dominate in terms of open interest. The contract
has a long tradition, and its origin can be traced back to October 1, 1925, when
the New York Cocoa Exchange first opened for trading, and it had been thriving
from the start. Early president of the Cocoa Exchange, Eugene Canalizo, cites
the main reasons that motivated the establishment of the exchange in Canalizo
(1931). First, a hedging market was desired to allow businesses to obtain
insurance against unexpected price developments by transferring the risk from
the hedger to the speculator. The second motivating factor was establishing
a centralized market where the information would be aggregated and effective
price consensus formed. Furthermore, greater liquidity, access to financing,
and fostering of cocoa trade were also emphasized as highly desirable. In 1979,
the New York Cocoa Exchange merged with the New York Coffee and Sugar
Exchange, forming the CSCE (Paul 1982). In 1998, the CSCE and the New York
Cotton Exchange became a part of the New York Board of Trade (NYBOT),
which was acquired by the ICE in 2007 during the consolidation of the exchange
industry (Hall et al. 2006; Brown 2013).

London Cocoa Futures started trading in London in 1928, following the
model of other futures exchanges that were established in the City in the sec-
ond half of the 19th century in the era of increasing international trade and
globalization (Bertilorenzi 2023). Unlike in the US, commodity exchanges in
London have long maintained their independence and specialization. In the
self-regulatory environment of London City, they cooperated in areas of com-
mon interest, such as establishing the London Produce Clearing House (LPCH)
in 1888 when raw sugar and robusta coffee futures started trading (Rees 1972).
The first wave of consolidation occurred in the 1980s when the independent
exchanges merged into the London Commodity Exchange (LCE). In 1996, LCE

merged with the financial futures exchanges of the City, leading to the creation
of the LIFFE (Bertilorenzi 2023). LIFFE itself was acquired by Euronext in 2002,
which then completed a merger with the New York Stock Exchange (NYSE) in
2007 (Euronext 2024). The latest step of the consolidation in the trading of
soft commodity futures space took place in 2013 with the acquisition of the
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NYSE Euronext by ICE, leading to the creation of ICE Europe (ICE 2013).
Today, the specifications of contracts differ only marginally. However, there

are differentiating features that are typical for each market. Darhei Noam Ltd
(2023) lists the differences as of 2023. US Cocoa tends to be more volatile,
attracting more speculative players. On the other hand, London Cocoa is more
closely linked to fundamental forces of supply and demand in the European
market, and it is used by hedgers and exporters more than the US contract.
London Cocoa offers greater flexibility in terms of deliverable origins of the co-
coa beans. Generally, the quality standards of the London contract are higher,
causing the contract to trade at a premium to its US counterpart. However,
the existence and the size of the quality premium are influenced by the foreign
exchange market conditions. The size of the premium in USD may be seen
in Figure 3.1. The magnitude of the premium was computed by converting
the price of London Cocoa to USD at the daily spot exchange rate close and
computing the difference between contracts. It can be seen that the size of
the premium is time-varying. Even though London Cocoa has been trading
at a premium over US Cocoa for the larger part of the sample period, there
has been an extended period in recent years during which the premium was
negative (approximately from 2018/1 to 2023/7).

Figure 3.1: London Cocoa premium (USD)
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Market structure and participants changed substantially with the onset of
electronic trading and the financialization of the commodity industry. The
new entrants included hedge funds, algorithmic traders, and a varied set of
financial intermediaries. New entrants brought benefits regarding market liq-
uidity, efficiency, and price discovery. Chaboud et al. (2014) show the positive
effects of algorithmic trading on the foreign exchange market. The new par-
ticipants have possibly given rise to negative effects of their activity as well.
Typically, debates regarding the negative impacts arise in times of greater price
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moves, which develop initially in response to the fundamental dynamics of the
market. The evidence of significant destabilization of commodity markets by
futures speculation is either weak or nonexistent. Kim (2015) shows that fu-
tures speculation does not exacerbate spot commodity price volatility, and, at
times, speculators even have a stabilizing effect. Managed futures is a trading
strategy closely associated with large speculative actors in commodity markets.
The possible effect of such activity on price volatility has been examined for
the 1988-1989 period by Irwin & Yoshimaru (1999), who find no evidence of
the causality.

3.2 Cocoa Production
Cocoa beans, the underlying asset of cocoa futures, originate from the Theo-
broma Cacao plant that grew originally in South America. The earliest proofs
of native populations using the plant date back to 5450-5300 years ago, various
parts of the plant were used as a food ingredient, currency, ritual object, or
medicine (Zarrillo et al. 2018). The first European to encounter cocoa and the
chocolate drink prepared by the indigenous population, xocoatl, was Columbus
in 1502 (Bergmann 1969). In 1528, Hernán Cortés brought cocoa back to Spain
(Afoakwa 2016). Even though the demand for the commodity grew very slowly
at first, the cultivation area began to spread during the era of colonization
to areas near the equator throughout the world. The crop was introduced to
Africa during the 19th century, and in 1912, Africa surpassed Latin America as
the largest producer of cocoa beans (Chauveau 1997). By the late 20th century,
Africa had established its dominant position in the production of cocoa beans.

Cocoa flourishes in the lower story of the evergreen rainforest, where it
receives only limited sunlight. This indigenous way of growing cocoa under the
shade of native forest (agroforestry method) is beneficial based on ecological
considerations (Franzen & Borgerhoff Mulder 2007). The other alternative is
to grow cocoa monoculture under full sun. Such an approach results in higher
yields. However, it is demanding for both the environment and the farmer
as a large amount of mineral fertilizer is necessary to sustain the production
(Niether et al. 2017). Despite the agroforestry method often being presented
as more resilient, Abdulai et al. (2018) presents evidence that in the presence
of weather conditions of extreme drought and heat, the method proves to be
less resilient than the production under full sun.

For the cocoa plant to thrive, the rainfall should be smoothly distributed
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over the year. Cocoa requires a minimum rainfall level of 1200-1500 mm per
year, and the number of days without precipitation should be limited to un-
der ninety (Yoroba et al. 2019). While the cocoa plant is susceptible to the
dearth of soil water, excessive rainfall may be just as detrimental. The nega-
tive effect of excessive rainfall on cocoa in Nigeria was confirmed by Lawal &
Omonona (2014), who found a significant negative relationship between rainfall
and yield. The vulnerability of cocoa production to excessive rainfall has been
on display since September 2023. The confluence of the bad weather and the
lack of supply in the storage facilities has materialized in cocoa futures prices
exhibiting unprecedented volatility (see Figure 6.1) and reaching all-time highs
(ICCO 2023). The vulnerability of cocoa production to drought, on the other
hand, was demonstrated during the 2015/16 season, when the meteorological
phenomenon El Niño resulted in the most severe drought in decades and a
significant decrease in cocoa production (Abdulai et al. 2018).

One of the consequential characteristics of cocoa is the extreme geograph-
ical concentration of its production. The concentration of such magnitude is
unparalleled in other agricultural commodity markets and poses a major vul-
nerability for the entire industry. Data on seasonal production starting 2016/17
collected by ICCO (2024) are to be found in Table 3.2. It is estimated that

Table 3.2: Seasonal production of cocoa beans by regions (000s MT)

Region 16/17 17/18 18/19 19/20 20/21 21/22 22/23 23/24

Africa 3617 3494 3645 3549 4056 3589 3669 3168
Cameroon 246 250 280 280 292 295 290 300
Côte d’Ivoire 2020 1964 2154 2105 2248 2121 2241 1800
Ghana 969 905 812 771 1047 683 654 580
Nigeria 245 250 279 250 290 280 280 270
Africa others 137 125 129 143 178 210 204 218

Americas 758 835 846 909 935 973 1061 1035
Brazil 174 204 176 201 200 220 220 220
Ecuador 290 287 322 342 365 365 454 430
Americas others 294 344 349 366 369 388 387 385

Asia & Oceania 357 319 303 283 254 265 266 247
Indonesia 270 240 220 200 170 180 180 160
Papua N.G 38 36 40 41 42 42 41 42
A&O others 49 43 43 42 42 43 45 45

World total 4731 4648 4794 4741 5245 4826 4996 4449

Source: https://www.icco.org/statistics/; ICCO (2024)

during the 2022/23 season, 73.4% of the world’s cocoa beans were grown in
Africa. Production is situated particularly in the western equatorial area. The
four African countries with the biggest production are Côte d’Ivoire, Ghana,
Cameroon, and Nigeria. Côte d’Ivoire and Ghana alone account for nearly 58%
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of the world’s total production of cocoa beans. In the case of the three largest
African producers, Côte d’Ivoire, Ghana, and Cameroon, cocoa products rep-
resent an important share of the exports. In the case of the biggest producer,
Côte d’Ivoire, cocoa products account for 30.7% of total exports (OEC 2024).
In the case of Ghana and Cameroon, cocoa products account for nearly 10% of
the total export volume (OEC 2024). Therefore, just as the producing coun-
tries are essential for the world cocoa supply chain, cocoa is just as vital for
their export revenues. While it is likely that African production will retain its
dominant position for the foreseeable future, the second most significant region,
the Americas, has been steadily increasing production in the past decade. In
the 2016/17 season, the total production of the Americas was 760,000 tonnes,
accounting for 16 % of the total production. In 2022/23, it is estimated that the
total production in the Americas rose to 1,061,000 tonnes, which now accounts
for 21.2% of the total production in the world. The region’s most significant
producer is Ecuador, which, in the latest season, produced 454,000 tonnes of
cocoa beans, making it the third-largest producer in the world. Unlike Africa’s
biggest producers, the producing countries in the Americas are not significantly
dependent on cocoa production. In the case of Ecuador, the export share of co-
coa products is just 3%, which is considerably lower than in the case of African
producers (OEC 2024).

Table 3.3: Seasonal grindings of cocoa beans by regions (000s MT)

Region 15/16 16/17 17/18 18/19 19/20 20/21 21/22 22/23 23/24

Europe 1595 1628 1703 1718 1706 1807 1771 1784 1710
Germany 430 410 448 445 430 460 440 450 440
Netherlands 534 565 585 600 600 610 610 600 590
Others 631 653 670 673 676 738 721 734 680

Africa 767 901 959 1017 998 1050 1135 1178 1094
Côte d’Ivoire 492 577 559 605 614 620 710 793 750
Ghana 202 250 310 320 292 322 295 250 210
Others 74 73 90 92 92 108 130 135 134

America 889 880 875 903 893 970 935 937 913
Brazil 225 227 230 235 221 240 223 251 253
United States 398 390 385 400 380 390 380 350 340
Others 266 262 260 268 292 340 333 336 320

Asia & Oceania 876 988 1048 1146 1109 1122 1154 1121 1063
Indonesia 382 455 483 487 480 462 460 450 430
Malaysia 194 216 236 327 318 338 375 364 345
Others 301 317 329 332 311 322 319 307 288

World total 4127 4397 4585 4784 4706 4949 4994 5020 4780

Source: https://www.icco.org/statistics/; ICCO (2024)

To complete the cocoa supply chain overview, it is instructive to outline
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where the cocoa bean grinding takes place (see Table 3.3). Grinding is a pro-
cess of pulverizing cocoa cake into powder, which is commonly referred to as
cocoa. However, since various post-harvest steps take place in the processing
plant, grinding is often used in a broader context to describe the industrial
processing of cocoa beans. This value-added process has not historically taken
place at the location of production. However, this dynamic has begun to re-
verse as producing countries attempt to capture a greater proportion of the
cocoa value chain by expanding domestic processing capacity. Early attempts
to establish domestic processing capacity occurred in the 1960s, first by West
African Mills Company (WAMCO) and then by Cocoa Processing Company,
which was established by the government and privatized in the 1980s (Darhei
Noam Ltd 2023). However, a more sustained trend has only been apparent in
recent years. Seasonal grindings may be observed in Table 3.3. In the 2015/16
season, African producers accounted for 18.6% of the world’s cocoa grindings.
In the 2022/23 season, it is estimated that African cocoa grindings accounted
for 23.5% of the total. The effort to increase the domestic processing capacity
is even more apparent from the data on total grindings in individual countries.
In the 2015/16 season, domestic grindings amounted to 492,000 tonnes in Côte
d’Ivoire and 202,000 tonnes in Ghana. Seven years later, in the 2022/23 season,
grindings in Côte d’Ivoire increased to 793,000 tonnes, and grindings in Ghana
increased to 250,000 tonnes.

3.3 Cocoa Marketing
In the previous section, it was outlined that the main producing countries exer-
cise a high level of control over the supply of cocoa beans. Therefore, marketing
systems play an essential role in understanding the upstream dynamics of the
cocoa industry. The purpose of the marketing system is to provide a framework
that will determine how a crop makes its way from a farmer to the terminal
markets. Marketing systems differ in approach to price setting, support for
farmers, and a wide range of internal market workings, such as quality control
and transport of the product. Both Côte d’Ivoire and Ghana experimented
with different systems after gaining independence from France (1960) and the
United Kingdom (1957). Currently, both countries insulate domestic actors
from intra-seasonal price variations. Therefore, the governing organizations
are heavily involved in the transfer of risk away from the producers.

Côte d’Ivoire depends on cocoa production like no other country in the
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world. Therefore, the functioning of the marketing system does not only impact
the well-being of more than 993,000 farmers, it also contributes significantly to
the national economy (Kouassi 2023). The main governing body of the cocoa
sector is the Conseil du Café et du Cacao (Conseil). The country adopted re-
forms aimed at liberalization of the industry in the 1990s. However, the course
has been reversed since then, and tighter regulations have been reestablished
(Leissle 2018). Farmers sell cocoa at the farm gate to either a cooperative or
a pisteur, an agent who acts as an intermediary between farmers and buyers
of beans (Kouassi 2023). The minimum price that the farmer receives for his
crop is determined by the Conseil. Cocoa beans are then transported by vari-
ous intermediary agents to regional hubs before the product finally makes its
way to packaging and processing facilities in the port cities of Abidjan or San
Pedro. Conseil bears responsibility for the sale of the collected crop. The sales
are currently conducted in two stages under the umbrella of the Programme
de Vente Anticipyées a la moyenne (PVAM) program (Kouassi 2023). The first
stage is carried out at the start of each season by forward sales of 70-80% of
the forecasted crop. In the second stage, the residual crop is sold on the spot
market. Furthermore, both forward and spot prices are then used to determine
Cost, insurance, and freight (CIF) price, which is further used to obtain the
minimum farm gate price.

Ghana shares the general characteristics of the marketing system with Côte
d’Ivoire. On the whole, the involvement of Ghanaian authorities is consid-
ered to be successful. Kolavalli & Vigneri (2011) lists favorable price regime,
ameliorated partially liberalized marketing, and the effort of the government
organizations to enhance productivity as the main contributors to the coun-
try’s success. Ghana produces bulk cocoa beans of the highest quality, which is
demonstrated by the premium at which the Ghanaian cocoa beans have been
historically traded. According to Gilbert et al. (2009), the premium relative
to Côte d’Ivoire origin has been increasing since the 1990s. It reached 5.7% in
2007 and 6.9% in 2008. The private-public partnership is the foundation of the
marketing system that is governed by the Ghana Cocoa Board (COCOBOD).
Private actors are responsible for the production and internal flow of the com-
modity. Meanwhile, the public sector provides support for the farmers and
conducts external sales. The internal journey of cocoa beans follows the same
pattern as in Côte d’Ivoire. The farmer sells the crop to Licensed Buying Com-
pany (LBC) for the producer price determined by the government (Kolavalli &
Vigneri 2011). LBC conducts the process of collecting and bagging of the cocoa
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beans. Furthermore, cocoa undergoes various quality assurance checks, and
it is transported to the warehouse where it is stored until COCOBOD sells the
product to either domestic or external buyers (Aning 2023). Cocoa sales and
export rights are executed at the trading desk of Cocoa Marketing Company.
The producer price for the season is determined by the government that effec-
tively absorbs any intraseasonal price risk. Aning (2023) describes the main
factors that enter the price-setting process. First, the projection of the Free
on Board (FOB) price is made by COCOBOD. Second, the Bank of Ghana sup-
plies the projection of the USDGHS exchange rate. Third, COCOBOD conducts
a forecast of crop size for the coming season.



Chapter 4

Methodology

This chapter provides an overview of the necessary tools used in the empirical
analysis of Chapter 6, where conditional volatilities, covariances, and correla-
tions are modeled. To establish the necessary theoretical foundations, we first
start with a brief overview of the GARCH model framework that will be used in
univariate volatility modeling in the form of the GARCH(1,1) process. The uni-
variate model is used to estimate the conditional volatility as well as an input
into the multivariate DCC model. Next, the multivariate tools are introduced.
In order to proceed with the multivariate GARCH methods, we first outline
the VAR framework that is used in the multivariate analysis to describe the
dynamics between returns and as the first estimation step of the multivariate
volatility analysis. Finally, DCC and BEKK models, the salient tools applied in
the empirical analysis of Chapter 6, are described jointly with the estimation
process.

While it is argued by Caporin & McAleer (2012) that DCC and BEKK mod-
els provide very similar results, we deploy both to take advantage of specific
characteristics of each model to extract the desired information. DCC requires
estimates of conditional volatility from univariate GARCH processes as inputs.
However, the generalization to multivariate case is not trivial because certain
reparametrization steps are necessary. Furthermore, it must be emphasized
that the basic DCC specification does not directly model spillovers of shocks
or volatility. First-step estimates of conditional volatilities are estimated as
univariate processes that do not depend on conditional volatilities of other as-
sets or covariances. While such parametrization may lead to neglecting certain
cross-effects between assets, the number of parameters remains under control
even for a very large number of assets. BEKK model specification, on the other
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hand, suffers from a dimensionality problem, the number of parameters grows
rapidly for a large number of included series. Therefore, we are restricted solely
to BEKK(1,1) bivariate models. The advantage of the BEKK specification, on
the other hand, is that it will allow us to model spillovers of shocks and volatility
between two assets. Therefore, we can test for the presence of such cross-effects
by examining the statistical significance of the particular parameter estimates.

4.1 GARCH(1,1) Model

4.1.1 Model Specification

Conditional random variables and conditional moments form the foundations
of the time-varying volatility models. The first and the second conditional
moments are to be found in every stage of our analysis, and therefore, before
we proceed any further, we first define these foundational concepts. Conditional
mean is defined as

µt = E(rt|It−1), (4.1)

where rt is a random variable of interest, log-return, in our case. Analogically
conditional variance is defined as

ht = E((rt − E(rt|It−1))2|It−1) = E((rt − µt)2|It−1) = E(u2
t |It−1), (4.2)

where ut denotes a shock variable, demeaned return in the simplest case. Shock,
error, or innovation are terms used interchangeably for ut. Generally, as we will
outline in model specifications in Section 4.4 and Section 4.3, shocks {ut} are
obtained as residuals from the conditional mean equation. The σ-field It−1 is an
information set that contains all the available information up to the time t − 1.
In a practical setting, by all available information, we mean all past returns
and their linear combinations (Tsay 2005). Throughout the thesis, conditional
variance ht is used predominantly to describe the second conditional central
moment of a random variable generating the return series {rt}. Occasionally,
we will refer to the square root of the conditional variance,

√
ht, conditional

volatility. Volatility is more frequently used in financial applications as it offers
benefits when interpreting the results compared to the variance.

The GARCH model was introduced by Bollerslev (1986) as an extension
of the ARCH model by Engle (1982). The GARCH model treats conditional
volatility as a time-varying process that proves its ability to emulate the salient
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stylized facts pertinent to financial returns series. Examples of such character-
istics are leptokurtic asset returns, volatility clustering and leverage effects (see
Bollerslev et al. 1994). GARCH(1,1) is the most widely used specification of the
GARCH models. It is used both as a model for univariate analysis (see Sec-
tion 6.1) and as the first-step model for the DCC specification (see Section 6.2).
Several equivalent ways to specify the GARCH(1,1) model do exist. In this
thesis, the following specification consisting of three equations is used

rt = µt + ut (4.3)

ut = ht
1/2ϵt (4.4)

ht = α0 + α1u
2
t−1 + β1ht−1. (4.5)

Furthermore, Bollerslev (1986) imposes the following parameter restrictions,
α0 > 0, α1 ≥ 0, β1 ≥ 0, α1 + β1 < 1, the first three conditions ensure positive
ht, and the fourth is sufficient condition for a wide-sense stationarity. The
relation between conditional mean µt, shock ut, and the return variable rt is
specified in Equation 4.3. The purpose of the conditional mean equation is to
dispose of linear dependencies that may be found in the raw series of returns
{rt}. Therefore, the ARMA model may be utilized in the place of µt. In the
simplest case, when no linear dependencies are to be found in the data, µt is
modeled as a constant µ0, and ut is interpreted as a demeaned return.

Equation 4.4 describes the dynamic between the innovation ut, conditional
variance in the given period ht and i.i.d process {ϵt} with zero mean and variance
equal to one. The distributional assumption for the random variable ϵt is made
based on the knowledge of the idiosyncratic characteristics of the data. The
most frequently used are the normal distribution, Student’s t-distribution, or
Student’s skewed distribution. Empirical practice hints that either Student’s
t or Skewed Student’s t distributions provide a more appropriate model (see
Bala & Takimoto 2017). Nevertheless, normal distribution is widely used due
to its convenience and ubiquity in econometric applications.

Equation 4.5 defines the evolution of the conditional variance ht. We can
see that the magnitude of the shock in the previous period ut−1 and the value
of conditional variance in the previous period ht−1 will impact the current level
of the conditional variance ht. It is straightforward how the equation translates
into the volatility dynamics of a given asset. When a large innovation occurs,
the value of the next period’s conditional variance increases as well. Conse-
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quently, the shock in the next period will also tend to be larger. Furthermore,
the lagged value of the conditional variance feeds into the process. The result-
ing dependence in the volatility series manifests itself by alternating periods of
relative calm and periods of higher volatility. This behaviour corresponds to
the stylized fact of the financial returns series called volatility clustering that
may be observed in the return series in different asset classes across financial
markets.

4.1.2 Model Estimation

The GARCH model is estimated using the maximum likelihood method, as
outlined by Bollerslev (1986). The likelihood function will take the form of

L(θ|u1, ..., un) = f(u1, ..., un|θ)
= f(uT |IT−1, θ)f(uT−1|IT−2, θ) . . . f(u2|I1, θ)f(u1|θ),

(4.6)

where θ is a parameter vector. The marginal density of u1, f(u1|θ), is often
disregarded since its form is too complicated (especially for GARCH models of
higher orders), the resulting effect will not be significant when a large sample is
available (Tsay 2010). The form of Equation 4.6 without the marginal density,
conditional likelihood function, will be used for the remainder of the chap-
ter. In order to proceed, conditional maximum likelihood estimation requires
a distributional assumption to be made for ϵt in Equation 4.4.

First, the estimation of the model with the assumption of normal distribu-
tion is outlined. Parameter vector θ = [α0, α1 β1]T is to be estimated. A shock
in the model was defined in Equation 4.4 as ut = ht

1/2ϵt. The random variable
ϵt is assumed to be i.i.d. Therefore, when ϵt ∼ N(0, 1) is assumed, it also holds
that ut|It−1 ∼ N(0, ht). Therefore, the conditional likelihood function will take
the following form

L(θ) =
T∏︂

t=2

1√
2πht

exp

(︄
− u2

t

2ht

)︄
. (4.7)

The conditional likelihood function can be transformed by natural logarithm,
and the optimization will be equivalent since the natural logarithm is a strictly
monotonic function. Therefore, after the transformation, we obtain the condi-
tional log-likelihood function

l(θ) = logL(θ) = −1
2

T∑︂
t=2

(︄
log(2π) + log(ht) + u2

t

ht

)︄
. (4.8)
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Alternatively, one may assume that ϵ follows standardized Student’s t-
distribution, ϵt ∼ St(0, 1, ν), where ν (shape parameter) is the number of
degrees of freedom of the Student’s t-distribution. Therefore, the parameter
vector θ = [α0, α1 β1, ν]T is to be estimated. Standardized t-distribution is ob-
tained in the following way. If yν

t is an i.i.d random variable following Student’s
t-distribution with ν degrees of freedom, then

ϵt = yν
t

√︄
ν − 2

ν
(4.9)

will follow the said standardized Student’s t-distribution.
Consequently, ut|It−1 ∼ St(0, ht, ν). Therefore, conditional likelihood function
with t-distributed shocks will be

L(θ) =
T∏︂

t=2

Γ(ν+1
2 )

Γ(ν
2 )

√
ν − 2

1√
ht

(︄
1 + u2

t

ht(ν − 2)

)︄−ν+1
2

. (4.10)

When the conditional likelihood function is transformed by the natural loga-
rithm, conditional log likelihood function will be obtained, such as

l(θ) = logL(θ) = (T − 2)log

(︄
Γ(ν+1

2 )
Γ(ν

2 )
√

ν − 2

)︄
− 1

2

T∑︂
t=2

loght

−ν + 1
2

T∑︂
t=2

log

(︄
1 + u2

t

(ν − 2)ht

)︄
.

(4.11)

Regardless of whether the conditional log-likelihood with the assumption
of normal (see Equation 4.8) or t-distribution (see Equation 4.11) is used,
the maximum likelihood estimate ˆ︁θML is obtained by solving the following
optimization problem ˆ︁θML = arg max

θ
l(θ). (4.12)

Numerical optimization methods are usually applied, Bollerslev (1990) pro-
posed BHHH algorithm by Hall et al. (1974) as a convenient option. In our
case, the augmented Lagrange solver solnp by Ye (1997) is used within the
rugarch R package by Galanos (2023).
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4.2 Vector Autoregressive Model
VAR is used to model the spillover across different return series and as a mean
equation in the case of both BEKK and DCC models. The VAR model is a
straightforward generalization of the univariate autoregressive process. In the
multivariate setting of the VAR model, an asset’s returns are explained not only
by its past values but also by the past values of the remaining assets included
in the model. Therefore, each regression equation contains the same set of
independent variables, with p lags included for each variable. The VAR(p)
model with n assets will be specified by the following set of n equations

r1t = µ10 +
p∑︂

i=1
ϕ11,ir1t−i +

p∑︂
i=1

ϕ12,ir2t−i + ... +
p∑︂

i=1
ϕ1n,irnt−i + u1t

...

rnt = µn0 +
p∑︂

i=1
ϕn1,ir1t−i +

p∑︂
i=1

ϕn2,ir2t−i + ... +
p∑︂

i=1
ϕnn,irnt−i + unt.

(4.13)

Alternatively, we can express the equations in a matrix form. We obtain

rt = µ0 + Φ1rt−1 + ... + Φprt−1 + ut, (4.14)

where rt is n × 1 vector of returns at time t, µ0 is a constant n × 1 vector,
Φi, i = 1, ..., p are n × n parameter matrices, and ut is n × 1 vector of errors.

Estimation of the VAR(p) model is conducted by either OLS for individual
equations or maximum likelihood. Both options are asymptotically equivalent
(Tsay 2005). The benefit of using conditional maximum likelihood estimation
rests in the availability of information criteria to determine the appropriate lag
length. The error vector ut is of particular interest to the empirical part of our
analysis, and it may be interpreted as a vector of shocks that will enter the
multivariate GARCH models. Furthermore, the VAR model is used to explore
spillover between assets that can be captured by the conditional mean equation
(unlike shock and volatility spillover that is derived from the conditional covari-
ance equation of multivariate GARCH model). Since the spillover modeled by
the VAR model takes place in the mean equation of the VAR-BEKK model, we
term this phenomenon a mean spillover in accordance with empirical literature
(see Liu et al. 2017).

An important step in VAR model construction is the selection of the lag
length p. Such choice is made based on the information criteria such as Akaike
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information criterion (AIC) (Akaike 1974), Hannan information criterion (HIC)
(Hannan & Quinn 1979) or Schwarz information criterion (SIC) (Schwarz 1978).
AIC is used in our case. The general form of the AIC is defined as

AIC(θ̂) = −2log(L̂) + 2k, (4.15)

where L̂ is the value of likelihood and k is the number of parameters to be
estimated. When applied to the VAR model, the AIC may be expressed as

AIC = log|Σ̂| + 2pn2

T
, (4.16)

where Σ̂ is the estimate of the covariance matrix of residuals from Equa-
tion 4.13, p is the given lag length, n is the number of equations in the VAR

system, and T is the number of observations (Hurn et al. 2021).
If the lag length p in Equation 4.13 or Equation 4.14 is chosen to be p = 1,

we only consider dependence between assets to be limited to one lagged return.
Furthermore, in Section 6.3, only bivariate models are considered, therefore,
n = 2 is assumed. In such case, the VAR model will have the following form⎡⎣r1t

r2t

⎤⎦ =
⎡⎣µ10

µ20

⎤⎦+
⎡⎣ϕ11 ϕ12

ϕ21 ϕ22

⎤⎦⎡⎣r1t−1

r2t−1

⎤⎦+
⎡⎣u1t

u2t

⎤⎦ (4.17)

=
⎡⎣µ10

µ20

⎤⎦+
⎡⎣ϕ11r1t−1 + ϕ12r2t−1

ϕ21r1t−1 + ϕ22r2t−1

⎤⎦+
⎡⎣u1t

u2t

⎤⎦ . (4.18)

The lag length p is chosen to be 1 in the vast majority of applications that
use the VAR-BEKK specification for spillover modeling. In our case, the lag
length is not fixed in order to achieve greater flexibility for the mean equation.
However, in order to keep the number of parameters within reasonable bounds,
the maximum lag length is restricted to p = 4. To avoid any potential ambiguity
of parameter notation, the model for n = 2 and p = 4 is explicitly stated in
Equation 4.19 and Equation 4.20.
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⎡⎣r1t

r2t

⎤⎦ =
⎡⎣µ10

µ20

⎤⎦+
⎡⎣ϕ11 ϕ12

ϕ21 ϕ22

⎤⎦⎡⎣r1t−1

r2t−1

⎤⎦+
⎡⎣ϕ13 ϕ14

ϕ23 ϕ24

⎤⎦⎡⎣r1t−2

r2t−2

⎤⎦
+

⎡⎣ϕ15 ϕ16

ϕ25 ϕ26

⎤⎦⎡⎣r1t−3

r2t−3

⎤⎦+
⎡⎣ϕ17 ϕ18

ϕ27 ϕ28

⎤⎦⎡⎣r1t−4

r2t−4

⎤⎦+
⎡⎣u1t

u2t

⎤⎦ (4.19)

=
⎡⎣µ10

µ20

⎤⎦+
⎡⎣ϕ11r1t−1 + ϕ12r2t−1

ϕ21r1t−1 + ϕ22r2t−1

⎤⎦+
⎡⎣ϕ13r1t−2 + ϕ14r2t−2

ϕ23r1t−2 + ϕ24r2t−2

⎤⎦
+

⎡⎣ϕ15r1t−3 + ϕ16r2t−3

ϕ25r1t−3 + ϕ26r2t−3

⎤⎦+
⎡⎣ϕ17r1t−4 + ϕ18r2t−4

ϕ27r1t−4 + ϕ28r2t−4

⎤⎦+
⎡⎣u1t

u2t

⎤⎦ (4.20)

To assess whether there is spillover in the mean equation of the included
assets, the notion of Granger causality by Granger (1969) is used. The concept
of Granger causality signifies the informational value of one variable for the
prediction of future values of the other. Therefore, it does not automatically
imply a causal relationship. However, if the causal relationship is, in fact,
present, then it is also reasonable to expect that such a variable will play a role
in the prediction of the other (Hurn et al. 2021).

Testing for Granger causality can be reduced to either testing for statistical
significance of the coefficient ϕ21, resp. ϕ12 in the case of the bivariate model
with one lag (see Equation 4.18) or testing for joint statistical significance of
multiple parameters that correspond to p lagged values of one variable. In
the most general case, when there are n variables and p lags in the VAR model
(see Equation 4.13), to test whether variable i Granger-causes variable j means
to test the following hypothesis

H0 : ϕji,1 = ϕji,1 = . . . = ϕji,p = 0. (4.21)

Alternatively, for the concrete case of two variables and four lags, defined by
Equation 4.20, the null hypothesis to determine whether variable r2 Granger-
causes variable r1 has the form of

H0 : ϕ12 = ϕ14 = ϕ16 = ϕ18 = 0. (4.22)

There are several alternative ways of testing the joint significance in the Granger
causality test, F-test is applied in our case.
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4.3 Dynamic Conditional Correlation Model

4.3.1 Model Specification

The generalization of GARCH models to a multivariate setting is not trivial in
most cases. Therefore, it is necessary to describe the procedure with diligence.
While the DCC model by Engle (2002a) does not allow for direct modeling
of spillovers, it is the most widely used and effective instrument for modeling
time-varying conditional correlations between different assets. The foundation
of the multivariate specification is obtained by a straightforward generalization
of the univariate counterparts (see Equation 4.3, Equation 4.4), such as

rt = µt + ut (4.23)

ut = H
1/2
t ϵt. (4.24)

In Equation 4.23, the vector of raw asset returns rt is decomposed into con-
ditional mean specification µt and the vector of innovations ut at the time t.
The vector of returns rt has dimension of n × 1, where n is the number of asset
return series. Conditional mean specification µt may take on various forms. In
the simplest case, µ is assumed to be a constant vector. Then, the innovations
ut may be interpreted as plain mean corrected returns. The flexibility of the
DCC model resides in the possibility of applying different specifications to each
univariate series. One such possibility is applying multivariate specification for
the conditional mean, allowing for interaction between the return series. Such
procedure is applied in Section 6.2. The multivariate specification, VAR model,
is described in Section 4.2. Equation 4.24 defines how the conditional covari-
ance matrix Ht influences the vector of innovations ut in a manner analogous
to the univariate counterpart described by Equation 4.4. ϵt is n×1 i.i.d random
variable vector with elements ϵit.

The generalization to multivariate setting has been straightforward so far.
However, the integral part of the DCC model is to impose a concrete structure
on the conditional covariance matrix. The conditional covariance matrix Ht

([Ht]ij = hijt), defined by Equation 2.9, is assumed to take on the form of

Ht = DtRtDt, (4.25)

where Dt = diag{
√

h1t, ...,
√

hnt} is n × n diagonal matrix of conditional
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volatilities originating from the first step of the estimation, typically univariate
GARCH(1,1) processes, as in Equation 4.5.

In the vast majority of empirical applications that employ the DCC model,
the n × n matrix of conditional correlations Rt is the object of main interest.
Before proceeding any further, there are two issues that need to be addressed.
First, the conditional covariance matrix Ht needs to be positive definite. Since
it was defined as Ht = DtRtDt and the diagonal matrices Dt are positive
definite by definition (diagonal elements of Dt are positive), we can see that Rt

needs to be positive definite for each t. Second, all elements of the conditional
correlation matrix Rt ([Rt]ij = ρijt) need to lie in the interval [−1, 1] to preserve
the interpretation of its elements ρij as correlation coefficients.

In order to satisfy the aforementioned requirements, the indirect specifica-
tion by Engle (2002a) proceeds with the following steps. Standardized inno-
vation may be expressed as ϵt = Dt

−1ut, and each element is computed as
ϵit = uit/

√
hit. Furthermore, the ij-th element of the conditional covariance

matrix of ϵt (E(ϵtϵt
T |It−1)) will be

E(ϵitϵjt|It−1) = E(uitujt|It−1)√︂
hithjt

= hijt√︂
hithjt

= ρijt. (4.26)

Therefore, the conditional covariance of the standardized innovations ϵt will be
Rt, conditional correlation of innovations ut. Then, the conditional correlation
is modeled indirectly as a matrix Qt ([Qt]ij = qijt) that is described by the
equation

Qt = (1 − a − b)Q + aϵt−1ϵt−1
T + bQt−1. (4.27)

Similarly to the univariate GARCH model, Engle (2002a) imposes restrictions
on the parameters such that a ≥ 0, a ≥ 0 and a + b < 1. The last restriction is
particularly important as it ensures mean reversion to the long-run value. Q

is unconditional covariance matrix of the standardized innovations. A natural
estimator of Q, using all T observations in the sample, is

ˆ︂Q = 1
T

T∑︂
t=1

ϵtϵt
T . (4.28)

Finally, it is necessary to state how the auxiliary correlation matrix Qt relates
to Rt. Let’s define QD

t = diag{√
q11t, ...,

√
qnnt}, a diagonal matrix of square

roots of diagonal elements of Qt.
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Then, the following expression highlights how the matrix Qt is standardized
to obtain the original conditional correlation matrix Rt,

Rt = (QD
t )−1Qt(QD

t )−1, (4.29)

therefore, for element-wise expression, it will hold that

ρij = qijt√
qitqjt

∈ [−1, 1] . (4.30)

4.3.2 Model Estimation

Estimation of the DCC model is conducted by means of maximum likelihood.
Since the maximum likelihood is a parametric estimation method, a distri-
butional assumption for either innovations ut or standardized innovations ϵt

needs to be made. Both normal and Student’s t-distribution are considered in
the empirical analysis in Section 6.2. Therefore, both likelihood functions are
formulated. Engle (2002a) proposes a two-step estimation of the parameter
vector θ = {θ1, θ2}.

First, we start with the assumption of normal distribution for our model.
Let

ϵt ∼ N(0, I), (4.31)

then, since ut = Ht
1/2ϵt, the following holds for the innovation vector,

ut|It−1 ∼ N(0, Ht). (4.32)

The first stage estimation concerns parameters of the univariate GARCH(1,1)
model θ1i = {α0i, α1i, β1i} for i = 1, ..., n, where n is the number of assets in
the model. In the second stage, parameters of the DCC model θ2 = {a, b} are
estimated. Likelihood function takes the form of

L(θ) =
T∏︂

t=1

1
(2π)n/2|Ht|1/2 exp

(︃
−1

2ut
T Ht

−1ut

)︃
, (4.33)

where |Ht| denotes the determinant of the conditional covariance matrix
Ht.

Furthermore, when the likelihood function is transformed by natural loga-
rithm, the log-likelihood function is obtained,
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l(θ) = logL(θ) = −1
2

T∑︂
t=1

(︂
nlog(2π) + log|Ht| + ut

T Ht
−1ut

)︂
, (4.34)

where we can substitute for Ht according to Equation 4.25, therefore

l(θ) = −1
2

T∑︂
t=1

(︂
nlog(2π) + log|DtRtDt| + ut

T Dt
−1Rt

−1Dt
−1ut

)︂
. (4.35)

Using properties of logarithm, Dt can be isolated. The first term in Equa-
tion 4.35 and the isolated elements with Dt may be treated as constants (they
were already estimated in the first stage of estimation), and they are redundant
for the optimization process of the second stage. Furthermore, we can substi-
tute ut = Ht

1/2ϵt for ut in Equation 4.35. Therefore, we obtain the second
stage log-likelihood with normally distributed innovations such as

l(θ) = −1
2

T∑︂
t=1

log|Rt| + ϵtRt
−1ϵt. (4.36)

Alternatively, it may be assumed that the innovations are t-distributed.
Such an assumption may be formulated with the use of standardized innova-
tions ϵt as

ϵt ∼ St(0, I, ν), (4.37)

or with the use of innovations ut as

ut|It−1 ∼ St(0, Ht, ν). (4.38)

The first stage estimation concerns parameters of the univariate GARCH(1,1)
model θ1i = {α0i, α1i, β1i, νi} for i = 1, ..., n, where n is the number of assets
in the model. In the second stage, parameters of the DCC model θ2 = {a, b, ν}
are estimated. Then, the likelihood function takes the form of

L(θ) =
T∏︂

t=1

Γ
(︂

ν+n
2

)︂
Γ
(︂

ν
2

)︂ (︂√︂
π(ν − 2)

)︂n/2
|Ht|1/2

(︄
ut

T Ht
−1ut

ν − 2

)︄−n+ν
2

, (4.39)

where Γ denotes the gamma function, and ν is the degrees of freedom in the
second step likelihood function. By taking the logarithm and using the DCC

structure for the conditional covariance matrix defined in Equation 4.25, we
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can substitute for Ht, and we obtain log-likelihood function such as

l(θ) = logL =
T∑︂

t=1
logΓ

(︃
ν + n

2

)︃
− logΓ

(︃
ν

2

)︃
− n

2 log(π(ν − 2))−

−1
2 log|DtRtDt| − ν + n

2 log

(︄
1 + ut

T Dt
−1Rt

−1Dt
−1ut

ν − 2

)︄
.

(4.40)

Finally, we use the product and power properties of the natural logarithm
function and the fact that ϵt = Ht

−1/2ut. Furthermore, the matrix Dt is
redundant for the second stage of the estimation. Therefore, the second stage
log-likelihood function for t-distributed innovations is

l(θ) =
T∑︂

t=1
logΓ

(︃
ν + n

2

)︃
− logΓ

(︃
ν

2

)︃
− n

2 log(π(ν − 2))−

−1
2 log|Rt| − ν + n

2 log

(︄
1 + ϵt

T Rt
−1ϵt

ν − 2

)︄
.

(4.41)

Regardless of whether we use the log-likelihood with the assumption of normal
or t-distribution, the maximum likelihood estimate ˆ︁θML is obtained by solving
the following optimization problem

ˆ︁θML = arg max
θ

l(θ). (4.42)

The optimization is conducted within the rmgarch R package by Galanos
(2022). Similarly, as in the case of univariate GARCH estimation (see Sec-
tion 6.1), the augmented Lagrange solver solnp by Ye (1997) is used.
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4.4 BEKK Model

4.4.1 Model Specification

BEKK model by Engle & Kroner (1995) is a model specification used to model
a conditional covariance matrix. Unlike CCC or DCC models that impose con-
crete structure for the conditional covariance matrix (see Equation 4.25), BEKK

specification is constructed in a more direct manner. Similar to the most direct
multivariate vec-GARCH specification, it suffers from an excessive number of
parameters. However, the dimensionality problem can be contained when the
number of assets in the model is significantly constrained. Therefore, to address
the problem of dimensionality and to allow for reasonable interpretation of the
estimation results, only bivariate BEKK models are considered. Therefore, we
assume that N = 2 and the conditional covariance matrix takes the following
form

Ht =
⎛⎝h11t h12t

h21t h22t

⎞⎠ . (4.43)

The following equations state the conditions for such a matrix to be positive
definite

h11t > 0 (4.44)

h11th22t − h21th12t > 0. (4.45)

The first condition (see Equation 4.44) is straightforward as it states that
the conditional variance of the first series is positive. The second condition
(see Equation 4.45) is more sophisticated. Hurn et al. (2021) offer an inter-
pretation of Equation 4.45 as a range condition for the correlation coefficient
between the two series. Therefore,

−1 <
h12t√

h11t

√
h22t

< 1. (4.46)

General form of BEKK(1,1,1) model by Engle & Kroner (1995) for N assets is

Ht = CT C + AT ut−1uT
t−1A + GT Ht−1G, (4.47)

where C is a lower triangular N × N matrix, CT C may be seen as a decompo-
sition of the constant matrix. Therefore, the parameters of the matrix C have
no practical interpretation. The n × 1 vector ut−1 contains shocks lagged by
one period, and Ht−1 is a lagged N × N conditional covariance matrix. A, G
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are N × N parameter matrices that will be estimated.
The fact that the BEKK model is a relatively straightforward generalization

of the univariate GARCH(1,1) model may be demonstrated when we set N = 1.
In such case, the model simplifies to

h11t = c2
11 + a2

11u
2
t−1 + b2

11h11t−1, (4.48)

which is equivalent to the univariate GARCH(1,1) model (with the exception of
squared parameters).

4.4.2 Model Estimation

Similar to other GARCH model specifications, the maximum likelihood frame-
work is applied in the process of model estimation. Only bivariate models are
considered in the empirical analysis (see Section 6.3). BEKK model with the
assumption of normally distributed shocks is applied. Therefore, we assume

ut|It−1 ∼ N(0, Ht), (4.49)

where ut is a 2 × 1 vector of shocks and Ht is a 2 × 2 conditional covariance
matrix. The likelihood function based on the multivariate normal distribution
is

L(θ) =
T∏︂

t=1
(2π)−1|Ht|−1/2exp

(︃
−1

2ut
T Ht

−1ut

)︃
. (4.50)

After transformation by natural logarithm is conducted, we obtain the log-
likelihood function of the following form

l(θ) = logL(θ) = −T log(2π) − 1
2

T∑︂
t=1

log|Ht| − 1
2

T∑︂
t=1

ut
T Ht

−1ut. (4.51)

The estimate of the parameter vector is then obtained by solving the following
optimization problem ˆ︁θML = arg max

θ
l(θ). (4.52)

Engle & Kroner (1995) recommend the BHHH algorithm by Hall et al. (1974)
for the estimation. In this thesis, BEKKs package is applied for the estimation
process. Within the BEKKs, Fülle et al. (2022) use the BHHH-based method
inspired by the study of Hafner & Herwartz (2008).
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4.4.3 Equations of Bivariate BEKK Models

In the empirical analysis of spillovers between currency pairs and cocoa futures
(see Section 6.3), the bivariate BEKK model is used. In order to outline how
the spillovers are modeled, it is instructive to break down the model in greater
detail. The BEKK model contains information about the dynamics of condi-
tional variances h11, h22 and the conditional covariance term h21. For N = 2
in Equation 4.47, the BEKK model becomes⎡⎣h11t h12t

h21t h22t

⎤⎦ =
⎡⎣c11 c21

0 c22

⎤⎦⎡⎣c11 0
c21 c22

⎤⎦+
⎡⎣a11 a21

a12 a22

⎤⎦⎡⎣u1t−1

u2t−1

⎤⎦ [︂u1t−1 u2t−1
]︂ ⎡⎣a11 a12

a21 a22

⎤⎦
+
⎡⎣g11 g21

g12 g22

⎤⎦⎡⎣h11t−1 h12t−1

h21t−1 h22t−1

⎤⎦⎡⎣g11 g12

g21 g22

⎤⎦ .

(4.53)
Then, simple matrix multiplication in 4.53 gives Equation 4.54, Equa-

tion 4.55, and Equation 4.56 for h11t, h12t, and h22t, respectively. The elements
of the constant matrix CT C are disregarded as they carry no informational
value for the purpose of our analysis.

h11t = a2
11u

2
1t−1 + 2a11a21u1t−1u2t−1 + a2

21u
2
2t−1

+ g2
11h11t−1 + 2g11g21h12t−1 + g2

21h22t−1 (4.54)

h12t = a11a12u
2
1t−1 + u1t−1u2t−1(a11a22 + a12a21) + a21a22u

2
2t−1

+ g11g21h11t−1 + h12t−1(g11g22 + g21g12) + g21g22h22t−1 (4.55)

h22t = a2
12u

2
1t−1 + 2a12a22u1t−1u2t−1 + a2

22u
2
2t−1

+ g2
12h11t−1 + 2g12g22h21t−1 + g2

22h22t−1 (4.56)

From the equations above, the evolution of conditional variances h11t, h22t,
and conditional covariance h12t (note that h12t = h21t) may be observed. In
Section 6.3, spillovers are studied between two assets at the time. By testing for
the significance of a12 and a21, we examine the presence of shock spillover from
asset 1 to asset 2 and from asset 2 to asset 1, respectively. In the same way, by
testing for the significance of g12 and g21, we examine the presence of volatility
(or variance) spillover from asset 1 to asset 2 and from asset 2 to asset 1,
respectively. Therefore, only Equation 4.54 for h11t and Equation 4.56 for h22t
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are of interest to the empirical analysis of spillovers conducted in Section 6.3,
and we may disregard Equation 4.55 for h12t from the consideration altogether.



Chapter 5

Data Description and Preliminary
Analysis

5.1 Construction of the Dataset
This chapter provides details on the construction of the dataset, together with
a preliminary analysis comprising a variety of descriptive measures and tests
for the data used in the empirical analysis. The price data on two asset classes,
cocoa futures, and spot currency rates, were collected from Refinitiv Eikon
on May 4, 2024. Data on closing prices are sampled with daily and weekly
frequency for a period from July 5, 2007 to May 3, 2024. The choice of the
time span for the analysis is made with consideration to the availability of
data and the fact that Third GHS was instituted as the legal tender in Ghana
starting on July 2, 2007, and it remains in place to this day.

Futures contracts expire when the delivery month approaches. Therefore,
continuous futures price series need to be constructed. We use a continuation
price series that uses the second to earliest futures contract for both US Cocoa
Futures and London Cocoa Futures. Rolling to the next contract is conducted
on the last trading day of delivery months (March, May, July, September,
December), one day before the last notice day. The last notice day occurs ten
business days prior to the last business day of the delivery month (ICE 2024b).
Therefore, in both cases, the rolling procedure occurs eleven days before the
last business day of the delivery month. We avoid using the contract with the
earliest delivery month, the front month, because the informational value of
the futures price may get distorted as the contract nears its delivery. Such
distortions may occur in the period close to the contract expiry as both volume
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and open interest tend to plummet. On the other hand, the second to earliest
contract displays greater stability in terms of open interest and volume, and
it even dominates the front-month contract in these measures for a significant
portion of time.

Closing prices are used for both daily and weekly data. For weekly data,
the closing Friday price is used. US Cocoa Futures daily close is at 13:30
New York local time or 18:30 London local time, respectively. London Cocoa
Futures daily close is at 16:55 London local time or 11:55 New York local time,
respectively. The foreign exchange market opens on Sunday at 17:00 New York
local time and stays open until 17:00 New York local time on Friday. Therefore,
the trading hours of the considered assets are not synchronous. The difference
in the trading hours between both futures contracts is not too large, as trading
in both contracts overlaps to a great extent.

The difference in the trading hours between ICE futures markets and foreign
exchange is more problematic. However, even though the potential effects
of these discrepancies need to be acknowledged, they will not cause serious
detriment to our analysis. First, the models focus on the effects of the previous
day’s data on the next day’s data, therefore, the distortion will be limited.
Second, only pairs of European currencies, GHS, and USD are considered. In
practice, a large part of the traded volume in these foreign exchange pairs will
occur during London and New York trading sessions. Consequently, major
currency moves tend to take place during these hours as well, overlapping with
the trading hours of the cocoa futures contracts. In empirical work, the problem
of nonsynchronous trading hours is addressed depending on its severity. One
solution is to use lower frequency data, such as weekly returns, which will
alleviate the problem significantly. However, such action comes with a trade-
off as we disregard the dynamics of the higher time-frequency, which may be
of greater interest than those of lower frequency. The approach adopted in
this thesis is to work with both daily and weekly data, not only to address
the aforementioned phenomena but also to explore the studied dynamics from
different time frequency perspectives.

The price series for the spot currency rates are constructed using the daily
mid price, obtained as an average of daily closing bid and ask prices. Currencies
of interest for the analysis are USD, GBP, EUR, CHF, and GHS. The choice of cur-
rencies has been made based on their importance for the global financial system
(EUR, GBP, CHF) and their relevance to the study of the cocoa sector (GHS).
The currency pairs are then formed to obtain USD and GBP-denominated cur-
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rency pairs suitable for the empirical analysis. Therefore, eight currency pairs
are used in total. EURUSD, GBPUSD, CHFUSD, GHSUSD, USDGBP, EURGBP,
CHFGBP and GHSGBP. Currency rates are expressed such that they convey
how much of the second currency we need to buy one unit of the first currency
in the given pair. Therefore, the price of EURUSD equal to 1.5 means that 1.5
units of USD are necessary in order to purchase 1 unit of EUR.

Days for which cocoa futures data are unavailable, typically US or UK mar-
ket holidays, are disregarded from the analysis altogether. Visual inspection of
price plots (see Figure 5.1, Figure 5.2, Figure 5.3) hints that the price series
most likely contain some form of unit root. In order to obtain weakly stationary
time series, price data points need to be differenced. Therefore, the series of
returns are obtained. In accordance with empirical practice, continuously com-
pounded returns rt are used. Continuously compounded returns are computed
as

rt = log
Pt

Pt−1
, (5.1)

where log is a natural logarithm, and Pt is the price of an instrument at the
time t. Plots of daily return series for cocoa futures may be found in Figure A.1,
for USD-denominated currency pairs in Figure A.3, and for GBP-currency pairs
in Figure A.5. Plots of weekly returns for cocoa futures may be found in
Figure A.2, for USD-denominated currency pairs in Figure A.4, and for GBP-
denominated currency pairs in Figure A.6. Based on the visual inspection, it
is likely that the return series satisfy the properties of constant mean, vari-
ance, and covariance necessary for the time series to be weakly (covariance)
stationary. To confirm such a conclusion, stationarity tests will be carried out
in Section 5.3.
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5.2 Descriptive Statistics

Table 5.1: Descriptive statistics for daily returns

Statistic N Mean St. Dev. Min Max Skewness Kurtosis
US Cocoa 4,175 0.032 1.757 −17.076 9.191 -0.38 7.601
London Cocoa 4,175 0.044 1.510 −15.653 9.640 -0.251 9.134
EURUSD 4,175 −0.005 0.584 −2.785 3.733 0.087 5.362
GBPUSD 4,175 −0.009 0.619 −8.402 3.090 -0.85 13.862
CHFUSD 4,175 0.009 0.668 −9.090 17.141 3.59 116.803
USDGBP 4,175 0.009 0.619 −3.086 8.408 0.845 13.836
EURGBP 4,175 0.004 0.528 −3.142 6.003 0.505 9.364
CHFGBP 4,175 0.017 0.699 −8.015 17.456 3.684 104.962
GHSUSD 4,175 −0.061 1.027 −15.338 15.954 0.336 47.385
GHSGBP 4,175 −0.051 1.211 −15.233 15.413 0.414 27.666

Note: All presented descriptive statistics are for returns as %, i.e. log(Pt/Pt−1)× 100.
The values are rounded to 3 decimal places.

Daily sample return series data span from July 6, 2007, to May 3, 2024.
Therefore, after all adjustments, there are 4175 observations of daily returns.
To make the results more suitable for interpretation, descriptive statistics in
Table 5.1 are computed for log returns multiplied by 100 to enable interpre-
tation of the values as daily % returns. For both cocoa futures contracts, the
basic characteristics are qualitatively and quantitatively alike. The mean re-
turns, though positive, are close to 0%. Standard deviation is larger for the
US Cocoa, meaning that the US contract is more volatile than its London
counterpart. Maximum returns are within the bounds of 10% for both futures
contracts. Maximum returns for US Cocoa occurred on April 18, 2024, and for
London Cocoa on March 25, 2024. Minimum returns are of larger magnitude
for US Cocoa (-17.076%) than for London Cocoa (-15.653%), both occurred on
April 29, 2024. Both futures contracts are moderately negatively skewed and
exhibit excess kurtosis, indicating that the distribution of returns is leptokurtic.
Based on the values of kurtosis, the distributional properties of cocoa futures
returns are likely to be nonnormal. Fat tails are present, and extreme values
will occur with higher frequency than in the case of normal distribution.

In the case of foreign exchange returns, the values of the descriptive statis-
tics are significantly more diverse. It can be observed that the descriptive statis-
tics get progressively more tilted towards extreme values as we shift from the
most traded currency pairs of the developed world, such as EURUSD, GBPUSD,
and EURGBP, to pairs with less volume that involve CHF and GHS in particular.
EURUSD and EURGBP share similar characteristics. They are the least volatile
of all considered instruments, the mean of returns is close to 0, and they are
both positively skewed. However, the skewness of EURGBP (0.505) is of sig-
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nificantly larger magnitude, and based on the values of minimum (-3.142%),
maximum (6.003%), and kurtosis (9.364), it may be stated that more extreme
values exist in EURGBP series. USDGBP evinces similar behaviour to that of
EURGBP, but its tendency towards more extreme moves is even more pro-
nounced with the higher values of standard deviation (0.619), skewness (0.845),
and kurtosis (13.836). It is necessary to note that USDGBP and GBPUSD are
mere inverse values of each other, representing the exchange rate between GBP

and USD. However, both GBPUSD and USDGBP are used in Chapter 6 in their
respective forms, therefore, it is useful to conduct descriptive analysis and sta-
tistical tests for both series. Any minor discrepancies between the two, apart
from the inverse relation, are consequences of bid-ask spread and rounding of
the data.

CHFUSD and CHFGBP exhibit more volatile behaviour than the aforemen-
tioned pairs, and both manifest highly similar dynamics that may be explained
by the unique role of the Swiss Franc as a safe haven asset (see Antonakakis &
Kizys 2015). Therefore, it is a desirable investment in times of financial stress,
which was demonstrated during the period of GFC and the European Sovereign
Debt Crisis when CHF appreciated immensely against both USD and GBP (see
Figure 5.2, Figure 5.3). Both CHFUSD and CHFGBP are more volatile based
on the values of standard deviation than previously examined pairs. Returns
of larger magnitudes are present in both directions, e.g., the largest return for
CHFUSD is 17.141%, and the smallest return is −9.090%. The occurrence of
extreme returns manifests itself through the high magnitude of kurtosis, which
is 116.803 for CHFUSD and 104.962 for CHFGBP. Furthermore, the distribution
of returns for both pairs is highly positively skewed.

GHS is the only developing currency that is considered in the empirical anal-
ysis in Chapter 6. Both GHSUSD and GHSGBP have a negative mean of return,
which is in accordance with the long-term negative trend of GHS depreciation
(see Figure 5.2, Figure 5.3). Both pairs are the most volatile among the cur-
rency pairs, with a standard deviation of GHSUSD equal to 1.027 and a standard
deviation of GHSGBP equal to 1.212. Returns are positively skewed. Extreme
values are present in both series, which can also be observed in minimum and
maximum values of returns exceeding 15%. The large values of the kurtosis
measure also indicate the presence of extreme values in the return series and
distributional properties that are likely different from normal distribution.
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Figure 5.1: Daily price of cocoa futures contracts
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Table 5.2: Descriptive Statistics for weekly returns

Statistic N Mean St. Dev. Min Max Skewness Kurtosis
US Cocoa 878 0.153 3.937 −26.288 15.813 −0.347 6.884
London Cocoa 878 0.205 3.520 −26.525 16.733 −0.084 8.791
EURUSD 878 −0.027 1.274 −6.033 4.966 −0.249 4.869
GBPUSD 878 −0.054 1.357 −8.206 6.766 −0.515 6.871
CHFUSD 878 0.034 1.477 −11.433 16.785 1.361 25.651
USDGBP 878 0.054 1.357 −6.767 8.203 0.512 6.907
EURGBP 878 0.027 1.169 −7.621 5.351 −0.068 7.095
CHFGBP 878 0.087 1.491 −9.345 16.849 1.444 23.619
GHSUSD 878 −0.306 2.276 −20.493 35.656 3.84 86.102
GHSGBP 878 −0.253 2.706 −21.672 36.595 2.397 48.932

Note: All presented descriptive statistics are for returns as %, i.e. log(Pt/Pt−1)× 100.
The values are rounded to 3 decimal places.



5. Data Description and Preliminary Analysis 53

Figure 5.2: Daily spot price of USD-denominated currency pairs
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Figure 5.3: Daily spot price of GBP-denominated currency pairs
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Descriptive statistics for weekly returns (see Table 5.2) share most qualita-
tive characteristics with their daily data counterparts. Volatility is higher in
the case of all weekly series. With few exceptions, minimum and maximum
values for weekly returns are higher than those of daily returns. These dif-
ferences are especially large for cocoa futures contracts and both GHS pairs.
Log returns have an additive property, meaning we may express the weekly
return as a sum of five daily returns. Consequently, a possible interpretation
is that weekly returns will be systematically higher when there is a degree of
autocorrelation in daily returns. The degree of autocorrelation in the returns
will be examined in Section 5.3, which will provide results of Ljung-Box tests
for various lag lengths. Furthermore, weekly returns of GHS currency pairs and
cocoa futures are the most volatile and have the largest absolute mean returns.

To conclude the presentation of basic descriptive measures, unconditional
correlation matrices of daily and weekly returns have been computed for the full
sample of data (see Table 5.3, Table 5.4). The only two highly correlated return
series in the data are cocoa futures contracts. US Cocoa is weakly positively
correlated with EURUSD and GBPUSD, such a relationship is expected since
US Cocoa is denominated in USD. Therefore, if EURUSD and GBPUSD are
taken as proxies for the strength of USD, then the appreciation of EUR or GBP

(USD depreciation) is expected to partly coincide with the rise in cocoa futures
price. In the daily returns correlation matrix, the largest coefficient between
currencies and US Cocoa is 0.23 between US Cocoa and GBPUSD. When weekly
returns are used, US Cocoa correlates the most with EURUSD, with a correlation
coefficient equal to 0.29. The correlation between other currency pairs and
US Cocoa is either very weak or nonexistent. London Cocoa correlates very
little with currency pairs in general. The only correlation coefficients with 1%
statistical significance are those with EURGBP. The coefficient of correlation
between London Cocoa and EURGBP is 0.09 when daily returns are used and
0.15 when the coefficients are based on weekly returns.

The correlation structure between cocoa futures contracts and currency
pairs is generally weak. However, basic Pearson correlation measure can only
provide the most superficial understanding of the relationship between two
assets. In order to explore the cross-asset dynamics in greater depth, more
sophisticated tools have to be used. First, the correlation between assets may be
time-varying. Such a possibility will be explored in Section 6.2 using the DCC-
GARCH model. Second, the transmission of information between two return
series may flow via channels that cannot be captured by the simple correlation
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measure. Dynamics of higher conditional moments are one such possibility.
The analysis conducted in Chapter 6 focuses on dynamics surrounding the
second conditional moment, conditional variance. For such purpose, DCC (see
Section 4.3, Section 6.2) and BEKK (see Section 4.4, Section 6.3) models are
utilized.
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5.3 Statistical Tests
In order to explore the return series in a more sophisticated manner than can
be achieved by the basic descriptive statistics presented in Section 5.2, a set of
statistical tests is conducted. A standard 5% threshold is used for hypothesis
testing, but the outcomes for 10% and 1% levels are also reported in the results.
First, we test for the presence of a unit root in every return series. The presence
of a unit root would be in conflict with stationarity, the weak form of which is a
necessary assumption for the models applied in Chapter 6. Three different tests
for unit root are conducted, Augmented Dickey-Fuller (ADF) test by Dickey &
Fuller (1979), Phillips-Perron (PP) by Perron (1988); Banerjee et al. (1993)
and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) by Kwiatkowski et al. (1992).
ADF and PP tests assume the presence of a unit root under the null hypothesis.
Meanwhile, the KPSS test assumes stationarity under the null hypothesis.

To explore autocorrelation in the data, Ljung-Box test by Ljung & Box
(1978) is carried out. Ljung-Box tests statistic was developed by augment-
ing Portmenteau statistic by Box & Pierce (1970). The null hypothesis of
both assumes that first m autocorrelation coefficients are jointly equal to zero.
Therefore, if the null hypothesis is rejected, it indicates that at least one of the
autocorrelation coefficients is different from zero. Ljung-Box test was further
adapted to test for the effects of conditional heteroskedasticity by McLeod &
Li (1983). The test differs from the original Ljung-Box in using r2

t in place of
rt. Hence, it tests for the presence of autocorrelation in the squared series of
returns. In such a case, we test for a linear dependence in the magnitude of
the returns, regardless of the sign and possible presence of volatility clustering
in the data. For both autocorrelation tests, lag lengths of 1,5 and 10 are used.
A similar test was developed, along with the introduction of the ARCH model
by Engle (1982). ARCH-LM test for linear dependence in the series, unlike the
previous tests, constructs a linear regression of the past m lags and then con-
ducts a standard F-test of joint significance of m lagged values. ARCH-LM test
with two lagged values is used.

Finally, to assess the distributional properties of the returns, Jarque-Bera
test by Jarque & Bera (1980) is used to test for the normality of returns.
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5.3.1 Tests for Daily Data

First, the described statistical tests are performed for daily data. The values
of test statistics, along with indicated statistical significance at 10% (∗), 5%
(∗∗), and 1% (∗∗∗) levels, are reported in Table 5.6 and Table 5.5. The null
hypothesis of the unit root can be rejected for both the ADF test and PP test for
each series. In the case of the KPSS test, the null hypothesis is not rejected for
any series. Therefore, based on the results, the assumption of weak stationarity
is reasonable. Based on the values of the Jarque-Bera test statistic, the null
hypothesis of normality is rejected for every series.

Table 5.5: Unit root and normality tests for daily returns

Phillips-Perron KPSS ADF Jarque-Bera
US Cocoa −64.033∗∗∗ 0.289 −15.382∗∗∗ 3, 783.060∗∗∗

London Cocoa −61.742∗∗∗ 0.310 −14.623∗∗∗ 6, 589.189∗∗∗

EURUSD −64.311∗∗∗ 0.034 −15.499∗∗∗ 975.624∗∗∗

GBPUSD −62.020∗∗∗ 0.063 −15.819∗∗∗ 21, 026.760∗∗∗

CHFUSD −64.434∗∗∗ 0.063 −16.352∗∗∗ 2, 261, 930.000∗∗∗

USDGBP −62.099∗∗∗ 0.064 −15.811∗∗∗ 20, 921.700∗∗∗

EURGBP −62.455∗∗∗ 0.122 −16.168∗∗∗ 7, 223.222∗∗∗

CHFGBP −63.834∗∗∗ 0.153 −16.132∗∗∗ 1, 817, 946.000∗∗∗

GHSUSD −72.137∗∗∗ 0.077 −16.395∗∗∗ 342, 776.500∗∗∗

GHSGBP −69.145∗∗∗ 0.097 −16.717∗∗∗ 105, 956.400∗∗∗

Notes: ∗,∗∗ ,∗∗∗ indicate statistical significance at 10%, 5%, 1% levels.
All presented values are test statistics rounded to 3 decimal places.

Based on the Ljung-Box test, no serial correlation is found in US Cocoa
return series. In London Cocoa returns, however, there is a significant serial
correlation for each selected lag. In the case of the Ljung-Box test for squared
returns, a significant serial correlation is present in all lags for both futures
contracts. In the case of EURUSD, serial correlation in the returns is found only
for the Ljung-Box(10) test. When squared returns are considered, a signifi-
cant serial correlation is found. For GBPUSD, USDGBP, EURGBP, GHSUSD, and
GHSGBP, the null hypothesis of no serial correlation is rejected in every single
case for returns as well as for squared returns. Notably, neither CHF currency
pairs evince significant serial correlation. The only significant test statistic
is Ljung-Box(10) for CHFGBP at 5% significant level. Furthermore, no serial
correlation is found in their squared returns. ARCH-LM test rejects the null hy-
pothesis that there are no ARCH effects in each series. Therefore, ARCH-based
methods are appropriate tools for the volatility modeling of univariate series.
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5.3.2 Tests for Weekly Data

Table 5.8: Unit root and normality tests for weekly returns

Phillips-Perron KPSS ADF Jarque-Bera
US Cocoa −27.561∗∗∗ 0.279 −8.756∗∗∗ 569.448∗∗∗

London Cocoa −26.201∗∗∗ 0.340 −8.090∗∗∗ 1, 227.830∗∗∗

EURUSD −29.850∗∗∗ 0.030 −9.763∗∗∗ 136.865∗∗∗

GBPUSD −30.618∗∗∗ 0.088 −8.515∗∗∗ 586.944∗∗∗

CHFUSD −31.626∗∗∗ 0.083 −10.235∗∗∗ 19, 040.470∗∗∗

USDGBP −30.662∗∗∗ 0.088 −8.513∗∗∗ 596.632∗∗∗

EURGBP −30.922∗∗∗ 0.150 −10.335∗∗∗ 614.075∗∗∗

CHFGBP −31.172∗∗∗ 0.259 −9.481∗∗∗ 15, 858.090∗∗∗

GHSUSD −27.406∗∗∗ 0.059 −10.702∗∗∗ 254, 802.000∗∗∗

GHSGBP −28.178∗∗∗ 0.086 −10.805∗∗∗ 78, 023.130∗∗∗

Notes: ∗,∗∗ ,∗∗∗ indicate statistical significance at 10%, 5%, 1% levels.
All presented values are test statistics rounded to 3 decimal places.

The identical statistical tests that have been conducted for daily returns are
conducted for the returns based on the weekly price series. The null hypothesis
of the unit root is rejected by ADF and PP tests for every return series. For
KPSS, the null hypothesis of level stationary series is not rejected in any case.
Therefore, we can assume that the weekly returns behave as weakly stationary
series. The results of the Jarque-Bera test show that the null hypothesis of
normality for weekly returns is rejected in each case. Results of Ljung-Box tests
indicate that both futures contracts have similar autocorrelation structure as in
the case of daily returns. The null hypothesis of no serial correlation is rejected
for London Cocoa for Ljung-Box(1) and Ljung-Box(10), although only at 10%
significance level for Ljung-Box(5). In the case of US Cocoa, no significant
serial correlation is found. The Ljung-Box tests for squared returns point to
the presence of autocorrelation in squared returns for both futures contracts.
When the tests are performed for squared returns, serial correlation is found
in every case except for CHF currency pairs. The null hypothesis of no serial
correlation is only rejected for Ljung-Box(5) for CHFGBP. Therefore, as in the
case of daily returns series, little or no serial correlation in squared returns
is found for CHFUSD and CHFGBP. ARCH-LM test results in rejection of the
null hypothesis for every weekly return series, which indicates a presence of
ARCH-effects. Ljung-Box tests for weekly returns of currency pairs reveal serial
correlation patterns that resemble those of daily returns. Generally, the tests
indicate that serial correlation becomes weaker when the weekly returns are
used.
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5.4 Subsample Periods for Study of Time-varying
Spillovers

One of the objectives of Chapter 6 is to determine whether the channels of trans-
mission stay constant or change in different periods depending on the general
level of volatility in financial markets. In order to explore such phenomena, the
data is divided into four subsamples of periods that slightly exceed four years.
The choice of such periods is not arbitrary, each is supposed to capture certain
fundamental dynamics of the world economy. However, it is necessary to em-
phasize that the choice of cutoffs between the periods is subject to the author’s
personal bias and the necessity to obtain subsamples of approximately uniform
time periods. To assess the risk environment of individual periods, the CBOE
Volatility Index (VIX) daily closing prices are used, and the average value for
each period is reported in Table 5.9. The VIX index does not directly relate to
commodity or foreign exchange markets. However, it is the most widely used
measure of stress in financial markets, with the ability to gauge the overall
risk environment with a single measure. Furthermore, the relevance of the VIX

for the commodity markets has intensified due to commodity financialization.
According to Cheng et al. (2015), increases in VIX in times of crisis lead to
financial traders reducing their net long positions in agricultural commodities.

The first period corresponds to the time of financial stress and sharp eco-
nomic downturn caused by the GFC and the European Sovereign Debt Crisis.
It is the period with the highest average VIX value (26.94). Therefore, for the
purpose of subsample analysis performed in Section 6.3, this period will be
regarded as a proxy to test whether spillovers are more extensive in times of
great uncertainty in the financial markets.

The second period is characterized by subsiding aftershocks of the crisis and
the period when the world economy began to recover. It can be seen that the
average value of the VIX index is significantly subsided in comparison with the
previous period, decreasing to 16.52.

The third period represents a period in which both the European Union
and the United States economy returned to moderate growth. European Crisis
was brought to an end, and the environment of low interest rates persisted.
Based on the VIX, it is the least volatile period of the four, with the average
daily closing VIX value being 14.79.

The last period, commencing in February 2020, may be characterized by a
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number of global supply and demand shocks. Firstly, the COVID-19 pandemic
resulted in the shutdown of the world economy, creating imbalances in aggre-
gate supply and demand that led to the most significant inflation increase in
the developed world in the past 40 years, further exacerbated by the Russian
invasion of Ukraine in February 2022. Furthermore, to tackle the runaway in-
flation, central banks abandoned the policy of low interest rates, leading to the
United States Government Bond 10-year yield reaching 5% for the first time
since 2007. Average VIX attains a higher value (22.32) compared with Period
2 and Period 3, however, it remains well below the level of Period 1.

Table 5.9: Time periods for analysis of time-varying spillovers

Period duration N VIX
Period 1 2007/7/6 - 2011/9/30 1049 26.94
Period 2 2011/10/3 - 2015/11/30 1038 16.52
Period 3 2015/12/1 - 2020/1/31 1039 14.79
Period 4 2020/2/3 - 2024/5/3 1049 22.32

Source: VIX closing prices were obtained from https://www.cboe.com ; CBOE (2024)



Chapter 6

Empirical Analysis

Empirical analysis of dynamics between cocoa futures and currency pairs is
structured into three sections as follows. In the first section (Section 6.1), uni-
variate GARCH(1,1) models are estimated for both cocoa futures return series.
Univariate analysis has a dual purpose. First, it serves as a further extension
of the descriptive analysis conducted in Section 5.2, where the simple measure
of volatility was computed. Second, univariate GARCH(1,1) models effectively
enter as inputs into the DCC-GARCH model estimated in the subsequent anal-
ysis.

The second section (Section 6.2) of the empirical analysis uses the VAR-DCC-
GARCH model to explore the dynamics between assets using DCC parametriza-
tion. The time-varying correlation between cocoa futures contracts is explored.
Descriptive analysis carried out in Section 5.2 revealed very strong correlation
between both cocoa futures contracts and weak or nonexistent correlation be-
tween the cocoa contracts and currency pairs. Therefore, the DCC analysis
aims to answer whether the same is true when a more sophisticated approach
able to capture time-varying dynamics is used.

The third section (Section 6.3) presents the estimation of the VAR-BEKK

model that allows for spillovers in returns, shock, and volatility between return
series of different assets. The analysis of spillovers is an integral part of the
thesis. Full sample analysis is conducted for both daily and weekly data. Such
an arrangement is utilized to analyze the spillover effects in two different time
frequencies. Additionally, the use of either daily or weekly data requires us
to make a trade-off between the robustness of weekly data to nonsynchronous
trading and the ability of daily data to capture greater nuance in information
transmission. Apart from the full sample analysis, the VAR-BEKK model is



6. Empirical Analysis 65

estimated for subsample periods (see Section 5.4) to determine whether the
degree of spillover between markets varies across different time spans.

The analysis in Section 6.2 and Section 6.3 is organized into three parts.
The first part concerns the interrelation between US Cocoa and London Co-
coa. The second part concerns dynamics between USD-denominated assets, US
Cocoa, EURUSD, GBPUSD, CHFUSD, and GHSUSD. Similarly, the third part ex-
plores the relations between GBP-denominated assets, London Cocoa, USDGBP,
EURGBP, CHFGBP, and GHSGBP. The outlined structure may be used to pro-
vide the following interpretation. Since US Cocoa is an asset denominated in
USD and London Cocoa is an asset denominated in GBP, the outlined structure
of the models allows us to test for spillover and explore time-varying correlation
between the currency and the given futures contract. For example, when the
spillover between US Cocoa and EURUSD is being examined, then both may be
treated as USD-denominated assets. Therefore, the results of the model may
be interpreted as an interrelation between the US Cocoa futures contract and
EUR.

6.1 Univariate GARCH Models
Univariate GARCH models for both cocoa futures contracts are estimated in
the simplest specification form in which the mean equation for each asset is
specified as

rt = µ + ut. (6.1)

Therefore, µt from Equation 4.3 is not modeled as ARMA process, it is plainly
estimated as a constant µ. The simplified approach is warranted by the fact
that in the multivariate analysis, we employ the VAR model as a mean equation.
Therefore, the results of the univariate GARCH models presented here do not
directly enter the multivariate models of the subsequent Section 6.2, where VAR

specification is used for the mean equation. Instead, GARCH(1,1) is estimated in
the simplest form to demonstrate the phenomena of the univariate return series,
such as time-varying volatility or persistence of volatility and shocks. Based on
the preliminary analysis results in Section 5.3, it is reasonable to assume that
the distribution of returns differs from a normal distribution. Both daily and
weekly return series exhibit excess kurtosis (see Table 5.1, Table 5.2), which
is associated with leptokurtic returns following a distribution more similar to
that of Student’s t than normal. Therefore, the univariate GARCH(1,1) models



6. Empirical Analysis 66

are estimated with the assumption of normal as well as Student’s t-distribution
as described in Section 4.1. Therefore, we may use the value of information
criteria (AIC, Bayes Information Criterion (BIC)) and log-likelihood of the fitted
models to determine which distributional assumption provides a better model
for the univariate series.

Table 6.1: GARCH(1,1) univariate models for cocoa futures

Daily
US Cocoa (norm) US Cocoa (t) London Cocoa (norm) London Cocoa (t)

µ 0.0003(0.0002) 0.0005(0.0002)∗∗ 0.0004(0.0002)∗∗ 0.0005(0.0002)∗∗

ω 0.0000(0.0000) 0.0000(0.0000) 0.0000(0.0000) 0.0000(0.0000)
α1 0.0385(0.0019)∗∗∗ 0.0354(0.0019)∗∗∗ 0.0474(0.007)∗∗∗ 0.0445(0.0052)∗∗∗

β1 0.9599(0.0017)∗∗∗ 0.9628(0.0016)∗∗∗ 0.9487(0.0075)∗∗∗ 0.9504(0.0057)∗∗∗

ν 9.3469(1.3979)∗∗∗ 7.0863(0.6956)∗∗∗

AIC −5.4119 −5.4294 −5.7421 −5.7751
BIC −5.4059 −5.4218 −5.736 −5.7676
LogLik 11301.4248 11338.8664 11990.5374 12060.611

Weekly
US Cocoa (norm) US Cocoa (t) London Cocoa (norm) London Cocoa (t)

µ 0.0012(0.0011) 0.0016(0.0011) 0.0019(0.0009)∗∗ 0.0019(0.0009)∗∗

ω 0.0000(0.0000)∗∗ 0.0000(0.0000)∗ 0.0000(0.0000)∗ 0.0000(0.0000)∗

α1 0.1191(0.0239)∗∗∗ 0.0966(0.0241)∗∗∗ 0.1204(0.0233)∗∗∗ 0.1051(0.0239)∗∗∗

β1 0.8577(0.0306)∗∗∗ 0.8887(0.0294)∗∗∗ 0.8699(0.0259)∗∗∗ 0.8863(0.0266)∗∗∗

ν 11.8276(3.9951)∗∗∗ 15.6494(7.0577)∗∗

AIC −3.7963 −3.8099 −4.095 −4.0996
BIC −3.7746 −3.7827 −4.0732 −4.0724
LogLik 1670.5828 1677.5644 1801.6957 1804.7274

Notes: ∗,∗∗ ,∗∗∗ indicate statistical significance at 10%, 5%, 1% levels. All presented values are
rounded to 4 decimal places, while the original values are for for computations. AIC denotes
Akaike Information criterion. BIC denotes Bayes Information Criterion. LogLik denotes the value
of log-likelihood.

The estimated parameters, along with information criteria and the value of
log-likelihood, can be found in Table 6.1. GARCH parameters α1 and β1 are
found to be significant at 1% level in each case. From the high values of β1,
it may be observed that there is a high level of persistence in the conditional
variance for both assets. Notably, the persistence is greater in the case of
models for daily data. Based on the information criteria and the values of log-
likelihood, it can be stated that the model with t-distributed errors performs
better than the model that assumes normal distribution. The benefit of the
t-distributed errors is more pronounced in the case of daily data. The same is
unequivocally true for the weekly returns in the case of US Cocoa. However,
the benefit of using t-distributed errors is not definite for the weekly model of
London Cocoa. While AIC and log-likelihood slightly favour the t-model, BIC

favours the normal model.
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Values of conditional volatility
√

ht can be extracted from the model as
fitted values. Using the models with t-distributed errors, conditional volatility
is plotted for both US Cocoa futures and London Cocoa futures. In Figure 6.1,
daily conditional volatility fitted values are plotted (for weekly estimates, see
Figure A.7).

Figure 6.1: Conditional volatility estimates for cocoa futures
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From Figure 6.1, it is apparent that the conditional volatility of cocoa fu-
tures varies over time. There has been a significant variation in the values of
conditional volatility over the sample period, which signifies the presence of
placid and volatile periods. However, the extreme values starting at the begin-
ning of 2024 dwarf all prior developments. Therefore, it can be observed that
despite the long-term convergence of conditional volatility to its unconditional
value, there is no evident ceiling to values that conditional volatility can attain
in the short run.
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6.2 VAR-DCC-GARCH Models
This section expands the superficial analysis of asset dynamics into multivariate
setting by capitalizing on the VAR-DCC model that allows us to examine cross-
asset spillovers in the mean equation and dynamic time-varying correlation.
First, the dynamics between London Cocoa Futures and US Cocoa Futures
contracts are studied. Next, the US Cocoa is modeled with USD-denominated
currency pairs (EURUSD, GBPUSD, CHFUSD, GHSUSD). Lastly, dynamics be-
tween London Cocoa futures and GBP-denominated currency pairs (USDGBP,
EURGBP, CHFGBP, GHSGBP) are modeled. Both daily and weekly returns are
used in this section. Emphasis is placed on the study of conditional correlation
between assets. While VAR models are estimated as a component of the VAR-
DCC-GARCH model specification, they will not be interpreted in this section.
Instead, bivariate VAR models will be examined more closely in Section 6.3 as
a device to study mean spillovers.

6.2.1 Model for Cocoa Futures

Deliverable products of both US Cocoa and London Cocoa futures do not differ
except for discrepancies of minor character. Therefore, the price action of both
futures contracts is expected to be closely linked. This expectation is confirmed
by strong unconditional correlation of 0.88 for daily returns (see Table 5.3) and
0.9 for weekly returns (see Table 5.4). In spite of the very strong correlation,
there are factors that may cause the trading in both contracts to become less
correlated. The exchange rate channel is one such factor. Large swings in
GBPUSD will result in a change in the relative value of both contracts. In the
efficient market, such opportunity is arbitraged away by market participants
almost instantaneously, resulting in the repricing of the futures contracts that
was not induced by any new incoming information about the cocoa market
per se. Another possible scenario arises from the traditional assumption that
London Cocoa is more closely linked to African production due to geographical
location and historical ties. Therefore, if relevant news about African pro-
duction arises, it is reasonable to hypothesize that the price reaction will be
initially more concentrated in the London Cocoa and then gradually spill over
to US Cocoa.

The results of the VAR-DCC-GARCH model for US and London Cocoa can
be found in Table 6.2. Based on the information criteria (AIC, BIC) and the
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value of log-likelihood, we can see that the model with t-distributed innova-
tions performs better in both daily and weekly data. Therefore, models with
t-distributed errors are used to model the dynamic conditional correlation be-
tween two futures contracts. VAR model has been used as a mean equation (for
VAR results, see Table A.6 for the daily model and Table A.7 for the weekly
model), and the required lag length is determined based on the AIC criterion.
The lag length was chosen to be 1 for both daily and weekly models. Both the
first-stage (ωi, α1i, β1i, νi) and the second-stage (a, b, ν) parameter estimates are
presented. There are only marginal differences between the first-stage estimates
in this model and the univariate estimates for both futures contracts (see Ta-
ble 6.1). The minor discrepancies are caused by the different specifications of
the mean equation, the estimation procedure of the second-stage parameters
α1 and β1 is, however, equivalent.

Table 6.2: DCC model for US Cocoa and London Cocoa

Daily Weekly

DCC(norm) DCC(t) DCC(norm) DCC(t)

ω(US) 0.0000∗∗∗ 0.0000∗∗ 0.0000∗ 0.0000∗

α1(US) 0.0388∗∗∗ 0.0361∗∗∗ 0.1203∗∗∗ 0.0948∗∗∗

β1(US) 0.9596∗∗∗ 0.9622∗∗∗ 0.8568∗∗∗ 0.8907∗∗∗

ν(US) 9.5474∗∗∗ 11.5002∗∗∗

ω(London) 0.0000 0.0000 0.0000∗ 0.0000∗

α1(London) 0.048∗∗∗ 0.0456∗∗∗ 0.1203∗∗∗ 0.1047∗∗∗

β1(London) 0.948∗∗∗ 0.949∗∗∗ 0.8689∗∗∗ 0.8864∗∗∗

ν(London) 7.0721∗∗∗ 14.5451∗∗∗

a 0.0325∗∗∗ 0.0317∗∗∗ 0.0486∗∗∗ 0.0578∗∗∗

b 0.9538∗∗∗ 0.9583∗∗∗ 0.9222∗∗∗ 0.9106∗∗∗

ν(multi) 6.1845∗∗∗ 10.0015∗∗∗

AIC −12.5909 −12.7451 −9.4586 −9.5234
BIC −12.5681 −12.7178 −9.377 −9.4255
LogLik 26298.5232 26623.4825 4167.3432 4198.7717
V AR lag 1 1 1 1

Notes: ∗,∗∗ ,∗∗∗ indicate statistical significance at 10%, 5%, 1% levels.
All presented values are rounded to 4 decimal places. AIC denotes
Akaike Information criterion. BIC denotes Bayes Information Criterion.
LogLik denotes the value of log-likelihood.

From the evolution of conditional correlation (see Figure 6.2), it is apparent
that both contracts maintain strong correlation for a vast portion of the time
period. However, there are occasions when the relationship may weaken or
break down on a temporary basis. For the weekly model, the correlation stays
within the narrower band in comparison with the daily model. Two notable
local minima of the weekly model are 0.67 on July 23, 2010, and 0.69 on
June 12, 2020. In the daily model, the values of conditional correlation show
more significant downside potential. The minimum value of the sample period
occurred on June 28, 2016, when the conditional correlation bottomed out
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Figure 6.2: Conditional correlation between US Cocoa and London
Cocoa
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at 0.14. This particular episode can be attributed to the sharp decrease in
GBPUSD that followed the 2016 United Kingdom European Union membership
referendum. Other evident troughs may be found at 0.54 on July 19, 2010, and
0.63 on December 5, 2022. Noteworthy development can be observed at the end
of the sample. In the case of both daily and weekly models, both conditional
correlation values reached their maximal values for the sample period (0.96 on
May 3, 2024, for the daily model and 0.95 on April 19, 2024, for the weekly
model). Therefore, while the sharp decrease in correlation appears to be coming
from outside of the cocoa market, the rise in correlation at the end of the sample
takes place in confluence with unprecedented volatility in both markets that is
primarily driven by the fundamentals of the cocoa market.

A simple explanatory analysis is performed for the daily model to assess
the influence of volatility on the dynamic conditional correlation between US
Cocoa and London Cocoa futures. Six simple linear regression models are esti-
mated with dynamic correlation retrieved from the DCC model as a dependent
variable. Measures of volatility are used as independent variables. Conditional
volatilites for both futures contracts (see Table 6.1; Figure 6.1) and condi-
tional volatility computed for GBPUSD (see Figure A.10) are used along with
the VIX as explanatory variables for the linear regression. GBPUSD is included
since it is the currency pair directly linking the USD-denominated US Cocoa
futures and GBP-denominated London Cocoa futures. Conditional volatilities
are multiplied by 100 to allow for easier interpretation of the results.

From the fitted linear regression (see Table 6.3), it can be seen that all
included volatility measures have a statistically significant effect on the time-
varying correlation between cocoa futures contracts. When the only indepen-
dent variables included (Models (1) and (2)) are the conditional volatilities,
the effect on the conditional correlation is positive, and the magnitude of the
coefficients is of the same order. When both volatilities are included (Model
(3)) along with the VIX (Model (4)), the effect of the US Cocoa turns nega-
tive, while the effect of London Cocoa remains positive and of large magnitude.
Furthermore, we can see that, while statistically significant, the effect of VIX is
relatively small, though not negligible (an increase of 10 points in VIX causes
a decrease of the correlation by 0.01). It is important to emphasize that the
explanatory power of the first four models is fairly limited. The highest value of
the Adjusted R2 is 0.093 for the Model 4. Next, the conditional volatility of the
GBPUSD currency pair is considered. Modeling of the interrelations between
currency pairs and cocoa futures contracts will be conducted in the subsequent
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sections. Only GBPUSD is included at this stage as it is the most direct for-
eign exchange link between the two contracts. First, it is included as a sole
independent variable (Model 5). It can be observed that the volatility of the
currency pair causes a large decrease in the correlation. Additionally, adjusted
R2 indicates that the explanatory power of the model increased significantly in
comparison with the preceding models. Finally, all the volatility measures are
included in the Model 6. The effect of

√
hGBP USD remains negative, and the

magnitude of the coefficient has increased in comparison with Model 5. The
effect of the conditional volatilities of the futures contracts was flipped when
compared to Models 3 and 4. The effect of the volatility of US Cocoa (

√
hUS)

has become positive and of a larger magnitude than the effect of the volatility
of London Cocoa (

√
hL), which has turned negative. Moreover, the effect of

the VIX remains very limited, although it is now positive. The value of the Ad-
justed R2 attains the highest value (0.501). It is necessary to emphasize that
this use of linear regression models entails severe limitations, and it should only
be considered as an auxiliary device for a better understanding of the results
obtained from the DCC model. Taking the aforementioned caveat into account,
the most remarkable information that can be extracted from the analysis is the
significant negative effect of

√
hGBP USD on the correlation between US Cocoa

and London Cocoa futures contracts.

Table 6.3: Linear regression model for Dynamic Conditional Correla-
tion and volatility measures

Dependent variable:

Conditional Correlation between cocoa futures contracts Rt

(Model 1) (Model 2) (Model 3) (Model 4) (Model 5) (Model 6)

VIX −0.001∗∗∗ 0.001∗∗∗
√

hUS 0.025∗∗∗ −0.047∗∗∗ −0.013∗∗ 0.063∗∗∗
√

hL 0.037∗∗∗ 0.084∗∗∗ 0.056∗∗∗ −0.013∗∗
√

hGBP USD −0.196∗∗∗ −0.269∗∗∗

Constant 0.822∗∗∗ 0.810∗∗∗ 0.821∗∗∗ 0.833∗∗∗ 0.977∗∗∗ 0.906∗∗∗

Observations 4,172 4,172 4,175 4,172 4,172 4,172
R2 0.028 0.053 0.068 0.094 0.346 0.501
Adjusted R2 0.028 0.053 0.067 0.093 0.346 0.501
R.S.E 0.067 0.066 0.065 0.065 0.055 0.048
F Statistic 119.128∗∗∗ 234.223∗∗∗ 151.931∗∗∗ 144.273∗∗∗ 2,207.056∗∗∗ 1,047.233∗∗∗

Notes: ∗,∗∗ ,∗∗∗ indicate statistical significance at 10%, 5%, 1% levels. All presented values are
rounded to 3 decimal places.



6. Empirical Analysis 73

6.2.2 Model for US Cocoa Futures

Dynamics between US Cocoa futures and USD-denominated currency pairs
(EURUSD, GBPUSD, CHFUSD, GHSUSD) are modeled in this section. The es-
timation results of the DCC-GARCH model are to be found in Table 6.4. The
optimal lag for the VAR model that is used as a mean equation is equal to 3
for daily data and 1 for weekly data (for VAR results, see Table A.8 for the
daily model and Table A.10 for the weekly model). When information criteria
and the value of log-likelihood are considered, models with t-distributed shocks
perform better in both cases. Furthermore, particularly in the case of the daily
normal model, there is a large number of statistically insignificant variables
that become significant when the model with t-distributed errors is estimated
instead. Therefore, conditional correlations from models with t-distribution
are used to depict the time-varying correlation between US Cocoa futures and
the currencies.

It can be observed that the evolution of conditional correlation in Figure 6.3
largely confirms the conclusion based on the unconditional correlation that the
correlation between the cocoa futures and the currencies is weak or nonexis-
tent. The largest unconditional correlation coefficient (see Table 5.3) was 0.23
between US Cocoa and GBPUSD. It can be seen that in comparison with the
other pairs, this relation has been slightly more stable, and the value of con-
ditional correlation has remained in the positive area for the vast majority of
the sample period, only to deteriorate significantly into negative territory at
the end of the sample period.
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Table 6.4: DCC model for US Cocoa and currency pairs

Daily Weekly

DCC(norm) DCC(t) DCC(norm) DCC(t)

ω(US) 0.0000∗∗∗ 0.0000∗∗ 0.0000∗ 0.0000
α1(US) 0.0383∗∗∗ 0.0353∗∗∗ 0.116∗∗∗ 0.0895∗∗∗

β1(US) 0.96∗∗∗ 0.963∗∗∗ 0.8624∗∗∗ 0.8991∗∗∗

ν(US) 9.3365∗∗∗ 11.1699∗∗∗

ω(EURUSD) 0.0000 0.0000 0.0000 0.0000
α1(EURUSD) 0.0399∗∗∗ 0.0408∗∗∗ 0.0915∗∗∗ 0.0878∗∗∗

β1(EURUSD) 0.9575∗∗∗ 0.9574∗∗∗ 0.8912∗∗∗ 0.8938∗∗∗

ν(EURUSD) 10.9891∗∗∗ 15.518∗∗

ω(GBP USD) 0.0000 0.0000 0.0000 0.0000
α1(GBP USD) 0.0712 0.0464∗∗∗ 0.1081∗∗∗ 0.1051∗∗∗

β1(GBP USD) 0.9165∗∗∗ 0.9462∗∗∗ 0.8611∗∗∗ 0.8589∗∗∗

ν(GBP USD) 8.0254∗∗∗ 13.9744∗∗∗

ω(CHF USD) 0.0000 0.0000 0.0000 0.0000∗∗∗

α1(CHF USD) 0.066 0.0408∗∗∗ 0.2192∗∗∗ 0.0998∗∗∗

β1(CHF USD) 0.9228 0.9503∗∗∗ 0.7511∗∗∗ 0.8493∗∗∗

ν(CHF USD) 7.0451∗∗∗ 6.9332∗∗∗

ω(GHSUSD) 0.0000 0.0000 0.0000 0.0000
α1(GHSUSD) 0.1483∗∗∗ 0.2878∗∗∗ 0.5649∗∗∗ 0.5623∗∗∗

β1(GHSUSD) 0.8507∗∗∗ 0.7112∗∗∗ 0.4341∗∗∗ 0.4367∗∗

ν(GHSUSD) 3.0689∗∗∗ 3.2995
a 0.0162 0.026∗∗∗ 0.0101 0.0368∗∗∗

b 0.7652 0.9731∗∗∗ 0.7406∗∗∗ 0.9251∗∗∗

ν(multi) 8.0382∗∗∗ 8.2072∗∗∗

AIC −36.3043 −37.4851 −28.752 −29.3297
BIC −36.1419 −37.3136 −28.4418 −28.9869
LogLik 75892.2378 78363.1294 12679.1307 12938.7288
V AR lag 3 3 1 1

Notes: ∗,∗∗ ,∗∗∗ indicate statistical significance at 10%, 5%, 1% levels. All
presented values are rounded to 4 decimal places. AIC denotes Akaike
Information criterion. BIC denotes Bayes Information Criterion. LogLik denotes
the value of log-likelihood.
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Figure 6.3: Daily conditional correlations for US Cocoa and currency
pairs
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6.2.3 Model for London Cocoa Futures

The last DCC model explores dynamics between London Cocoa futures contract
and GBP-denominated currency pairs (USDGBP, EURGBP, CHFGBP, GHSGBP).
The model estimation results can be found in Table 6.5. An identical procedure
to the prior DCC model is used. VAR model is applied as the specification for
the mean equation. The optimal lag for the VAR model is determined based
on AIC. In the case of the daily model, the optimal lag is chosen to be 4.
Meanwhile, for the weekly model, the optimal lag is selected to be 1 (for VAR

results, see Table A.9 for the daily model and Table A.11 for the weekly model).
In the same way, as in the case of the model for US Cocoa, the information
criteria and log-likelihood value indicate that the DCC model with t-distributed
innovations is more appropriate. Also, it is observed that several items that
are not significant in normal distribution models for daily and especially for
weekly data become statistically significant when t-distributed errors are used.

The unconditional correlation coefficients did not reveal any meaningful
level of correlation between the currencies and London Cocoa (see Table 5.3).
The evolution of the conditional correlation between the currency pairs and the
London Cocoa shows that conclusions derived from the unconditional correla-
tion matrix also translate into the conditional correlation setting. The path of
conditional correlations evolves in an erratic manner without an evident struc-
ture, and the values fluctuate freely between positive and negative territory.

In conclusion, it may be stated that no stable patterns are easily discerned
in the conditional correlation between the currencies and both cocoa futures
contracts. These results confirm that these assets may be treated as uncorre-
lated, at least from the long-term perspective. That is in accordance with the
lack of shared fundamental drivers for both asset classes. Naturally, the price
of a currency pair will be influenced by a wide range of relevant macroeconomic
factors. Meanwhile, the price of the cocoa futures will depend predominantly
on the cocoa’s supply-demand dynamics. However, these findings do not re-
fute that spillovers exist on a more precipitous basis. Such dynamics will be
explored in the subsequent section.



6. Empirical Analysis 77

Table 6.5: DCC model for London Cocoa and currency pairs

Daily Weekly

DCC(norm) DCC(t) DCC(norm) DCC(t)

ω(London) 0.0000 0.0000∗ 0.0000∗ 0.0000
α1(London) 0.0476∗∗∗ 0.0455∗∗∗ 0.1117∗∗∗ 0.0975∗∗∗

β1(London) 0.9481∗∗∗ 0.9488∗∗∗ 0.8769∗∗∗ 0.8955∗∗∗

ν(London) 6.854∗∗∗ 12.8733∗∗∗

ω(USDGBP ) 0.0000 0.0000 0.0000 0.0000
α1(USDGBP ) 0.0712 0.0491∗∗∗ 0.1087∗∗∗ 0.1057∗∗∗

β1(USDGBP ) 0.9166∗∗∗ 0.9431∗∗∗ 0.8612∗∗∗ 0.8588∗∗∗

ν(USDGBP ) 8.0884∗∗∗ 14.4671∗∗∗

ω(EURGBP ) 0.0000 0.0000 0.0000 0.0000
α1(EURGBP ) 0.0548∗∗∗ 0.0513∗∗∗ 0.1007∗∗ 0.1073∗∗∗

β1(EURGBP ) 0.9418∗∗∗ 0.9458∗∗∗ 0.8816∗∗∗ 0.8661∗∗∗

ν(EURGBP ) 7.8962∗∗∗ 12.0553∗∗∗

ω(CHF GBP ) 0.0000 0.0000 0.0000 0.0000∗∗

α1(CHF GBP ) 0.081∗∗∗ 0.0802∗∗∗ 0.0869 0.1267∗∗∗

β1(CHF GBP ) 0.905∗∗∗ 0.8982∗∗∗ 0.7648∗∗∗ 0.7931∗∗∗

ν(CHF GBP ) 6.3027∗∗∗ 6.2070∗∗∗

ω(GHSGBP ) 0.0000 0.0000∗∗ 0.0000 0.0000∗∗∗

α1(GHSGBP ) 0.1272∗∗∗ 0.1588∗∗∗ 0.385∗∗ 0.2506∗∗∗

β1(GHSGBP ) 0.8703∗∗∗ 0.8125∗∗∗ 0.614∗∗∗ 0.6846∗∗∗

ν(GHSGBP ) 4.887∗∗∗ 4.9974∗∗∗

a 0.0405∗∗∗ 0.0331∗∗∗ 0.0606 0.0574∗∗∗

b 0.8737∗∗∗ 0.9653∗∗∗ 0.7992 0.9248∗∗∗

ν(multi) 7.6288∗∗∗ 7.4285∗∗∗

AIC −36.1944 −37.6214 −28.4698 −29.3352
BIC −35.9941 −37.412 −28.1596 −28.9924
LogLik 75687.8348 78672.7708 12555.2468 12941.1538
V AR lag 4 4 1 1

Notes: ∗,∗∗ ,∗∗∗ indicate statistical significance at 10%, 5%, 1% levels. All
presented values are rounded to 4 decimal places. AIC denotes Akaike
Information criterion. BIC denotes Bayes Information Criterion. LogLik denotes
the value of log-likelihood.
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Figure 6.4: Daily conditional correlations for London Cocoa and cur-
rency pairs
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6.3 VAR-BEKK-GARCH Models
Analysis of spillovers between cocoa futures contracts and currency pairs is con-
ducted in this section. VAR-BEKK model, as described in Section 4.4, is used
to explore spillovers in mean, shocks, and volatility. For full sample analysis,
estimation is conducted for two data frequencies, daily and weekly. Differ-
ent data frequencies give insight into two different information transmission
channels. The daily frequency model offers a more short-term view, while the
weekly model offers a more long-term-oriented perspective. Next, to explore
the time-varying nature of the transmission mechanism, subsample analysis is
performed. Subsamples were predetermined and described in Section 5.4. In
order to preserve sufficiently large sample sizes, only daily data are used for the
subsample estimation. Furthermore, in the subsample analysis, it is desirable
to focus on precipitous dynamics that may be lost in the weekly data.

6.3.1 Full Sample Analysis

The full sample analysis studies the spillover using daily and weekly returns.
The results of the full sample analysis for daily data may be found in Table 6.6,
where the results of the bivariate VAR-BEKK models are presented. A concise
summary of the presence and direction of spillovers uncovered by the VAR-
BEKK model for daily data may be found in Table 6.8. Similarly, the results
of the full sample analysis for weekly data may be found in Table 6.7, and the
direction of the detected spillovers is indicated in Table 6.9.

It may be observed that there is mean spillover in both frequencies from
London to US Cocoa, which can be interpreted as London Cocoa leading US
Cocoa in terms of price. Therefore, the informational content of London Cocoa
contract has predictive value for US Cocoa. The volatility model uncovers
bidirectional spillovers in shocks and volatility. Volatility spillover is present in
the daily model, and shock spillover occurs in the model for weekly returns.

In the daily model, US Cocoa receives mean spillover from both EURUSD

and GBPUSD, and there is volatility spillover from EURUSD. There is no trans-
mission between US Cocoa and these currencies present in the weekly data.
Similarly, spillovers exist between London Cocoa and USDGBP and EURGBP.
However, no such transmission may be found in the weekly model.

Spillover between the futures contracts and CHF only occurs in the weekly
model. US Cocoa receives mean spillover from CHFUSD, and the spillover of
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shocks is bidirectional. There is also a shock spillover from CHFGBP to London
Cocoa futures contract.

Transmission between GHS and cocoa futures is observed in the case of both
contracts and both frequencies. US Cocoa and GHSUSD in the daily model dis-
play the most abundant exchange of information with shock spillover from US
Cocoa to GHS and bidirectional volatility spillover. Shock spillover from cocoa
futures to GHS is present in all four instances where dynamics between futures
contracts and GHS are modeled. Therefore, these results indicate significant
cross-asset volatility dynamics between cocoa futures contracts and GHS.

The results largely confirm that the spillovers between cocoa futures con-
tracts and currency pairs are limited, but they do exist. The direction of spill-
overs is predominantly from foreign exchange pairs to futures contracts in the
case of global currencies (USD, EUR, GBP, CHF). However, the dynamics differ
in the case of GHS. The direction of shock and volatility spillovers between
cocoa futures and GHS is either bidirectional or from cocoa to the currency.
These findings indicate that cocoa’s importance to the Ghanaian economy re-
sults in the ability of cocoa futures contracts to influence the volatility of GHS

exchange rates.
The number of significant spillover relations between cocoa futures contracts

and currency pairs is greater for US Cocoa Futures in both daily and weekly
models. Although the difference is not extensive, it is in accordance with US
Cocoa being subject to more speculative activity and, therefore, exchanging
more spillover with other asset classes. The hypothesis of higher speculative
activity in US Cocoa is further supported by higher levels of standard deviation
in comparison with London Cocoa for both daily (see Table 5.1) and weekly
(see Table 5.2) data. However, it is necessary to emphasize that gauging the
amount of speculative activity solely based on the amount of spillover entails
significant limitations as it disregards a plethora of other factors.
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Table 6.8: Summary of spillovers in daily data

Mean Spillover Shock Spillover Volatility Spillover

US Cocoa - London Cocoa ← − ↔
US Cocoa - EURUSD ← − ←
US Cocoa - GBPUSD ← − −
US Cocoa - CHFUSD − − −
US Cocoa - GHSUSD − → ↔
London Cocoa - USDGBP − ← ←
London Cocoa - EURGBP − − →
London Cocoa - CHFGBP − − −
London Cocoa - GHSGBP − → −

Notes: Indicated spillovers are based on 5% significance level. The arrows ”← ”, ”→ ”
signify the direction of spillovers, ”− ” means no significant spillover.

Table 6.9: Summary of spillovers in weekly data

Mean Spillover Shock Spillover Volatility Spillover

US Cocoa - London Cocoa ← ↔ −
US Cocoa - EURUSD − − −
US Cocoa - GBPUSD − − −
US Cocoa - CHFUSD ← ↔ −
US Cocoa - GHSUSD − → −
London Cocoa - USDGBP − − −
London Cocoa - EURGBP − − −
London Cocoa - CHFGBP − ← −
London Cocoa - GHSGBP − → −

Notes: Indicated spillovers are based on 5% significance level. The arrows ”← ”, ”→ ”
signify the direction of spillovers, ”− ” means no significant spillover.

6.3.2 Subsample Analysis

So far, the spillover dynamics between cocoa futures contracts and currency
pairs have been assessed using the full sample of data. However, it is reasonable
to expect that the degree of interrelation between the assets will differ across
different periods. Four subsample periods were defined in Section 5.4 with
respect to the macroeconomic and financial fundamentals of the world economy.
The detailed estimation results of the VAR-BEKK models for each of the four
periods are to be found in Appendix A (see Table A.2, Table A.3, Table A.4,
and Table A.5). Findings of significant spillovers (at 5% significance level) and
their direction for each period are presented in Table 6.10 (Period 1), Table 6.11
(Period 2), Table 6.12 (Period 3), and Table 6.13 (Period 4).

Spillovers in Period 1 (July 2007 - September 2011) are ubiquitous across
all studied relations and vastly more frequent than in any other period (see Ta-
ble 6.10). The first period represents the GFC and the initial stages of the Eu-
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ropean Sovereign Debt Crisis, accompanied by economic downturn and severe
stress in financial markets. Therefore, the findings confirm that the spillover
dynamics become more pronounced in periods of high volatility and financial
crisis. Spillover in shocks and volatility is significant between US Cocoa and
London Cocoa across all periods, while mean spillover is significant only in Pe-
riod 1, and it follows the same direction as in the full sample analysis. While
the direction of the shock and volatility dynamics between the futures contracts
is not entirely uniform, it tends to be either bidirectional or directed from US
Cocoa to London Cocoa. The exception is Period 4, where the significant shock
spillover is directed from London Cocoa to US Cocoa. Such dynamics are also
in accordance with full sample analysis. Therefore, in general, it may be stated
that while there is mean spillover from London to US Cocoa, the spillovers
in shocks and volatility tend to be either bidirectional or flow in the opposite
direction.

Relations between currency pairs and cocoa futures reveal similar patterns
in Period 1 as in the full sample analysis. Period 1 (see Table 6.10) is charac-
terized by a high degree of spillover concentrated in both mean and variance
equations. The direction of significant mean spillovers is from the currency
market to cocoa futures. US Cocoa receives mean spillover from EURUSD and
GBPUSD. Meanwhile, London Cocoa receives mean spillover from EURGBP.
Shock and volatility spillover from major currencies share similar characteris-
tics with a few notable exceptions. Spillover between CHFUSD and US Cocoa
is found to be bidirectional, and there is shock spillover from London Cocoa
to EURGBP. In the case of spillover between the futures and GHS, the spillover
structure follows a pattern that differs from that of major currencies. Shock
and volatility spillovers exist from US Cocoa contracts to GHSUSD. In the case
of the channel between GHSGBP and London Cocoa, the shock spillover flows
from currency to the futures contract. However, the case of volatility spillovers
reveals a bidirectional relation. Moreover, the number of significant spillo-
vers between cocoa futures and currency pairs is larger for US Cocoa Futures,
pointing to closer ties of US Cocoa to the financial markets

The degree of spillover between these segments of financial markets was
significantly subdued in Period 2 (October 2011 - November 2015) (see Ta-
ble 6.11). There is both shock and volatility spillover between US Cocoa and
London Cocoa. Shock spillover flows from US Cocoa to London Cocoa. The
volatility spillover is bidirectional, as in the case of the full sample. Among the
currencies, the only spillovers between both futures contracts and GHS remain
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Table 6.10: Summary of daily spillovers in Period 1
(July 2007 - September 2011)

Mean Spillover Shock Spillover Volatility Spillover

US Cocoa - London Cocoa ← ↔ →
US Cocoa - EURUSD ← ← ←
US Cocoa - GBPUSD ← ← ←
US Cocoa - CHFUSD − ↔ ↔
US Cocoa - GHSUSD − → →
London Cocoa - USDGBP − ← ←
London Cocoa - EURGBP ← → −
London Cocoa - CHFGBP − ← −
London Cocoa - GHSGBP − ← ↔

Notes: Indicated spillovers are based on 5% significance level. The arrows ”← ”, ”→ ”
signify the direction of spillovers, ”− ” means no significant spillover.

significant. Notably, the direction of the spillover from US Cocoa to GHSUSD

remains consistent with Period 1. The relationship between London Cocoa
and GHSGBP is weaker, the only significant volatility spillover is from London
Cocoa to GHSGBP. The number of spillovers is larger for US Cocoa by a small
margin.

Table 6.11: Summary of daily spillovers in Period 2
(October 2011 - November 2015)

Mean Spillover Shock Spillover Volatility Spillover

US Cocoa - London Cocoa − → ↔
US Cocoa - EURUSD − − −
US Cocoa - GBPUSD − − −
US Cocoa - CHFUSD − − −
US Cocoa - GHSUSD − → →
London Cocoa - USDGBP − − −
London Cocoa - EURGBP − − −
London Cocoa - CHFGBP − − −
London Cocoa - GHSGBP − − ←

Notes: Indicated spillovers are based on 5% significance level. The arrows ”← ”, ”→ ”
signify the direction of spillovers, ”− ” means no significant spillover.

Period 3 (December 2015 - January 2020) displays a higher degree of inter-
connectedness between US Cocoa and major currency pairs (see Table 6.12).
Between US Cocoa and EURUSD, there is a bidirectional spillover in shocks and
volatility from US Cocoa to EURUSD. Furthermore, both shock and volatility
spillover are significant in the direction from GBPUSD to US Cocoa. Similarly,
shock spillover from CHFUSD to US Cocoa is present, and the same holds for
mean spillover between these two assets. The spillovers between cocoa futures
are significant in shock and volatility, both exhibiting a direction from US Co-
coa to London Cocoa. The mean spillover is not significant. Consistent with
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the previous period, there is no spillover between major currency pairs and
London Cocoa. The relation between cocoa and GHS is relatively subdued
compared to other periods, and only shock spillover from London Cocoa to
GHSGBP is significant. Therefore, the number of significant spillovers for US
Cocoa in Period 3 is substantially larger. This phenomenon is consistent with
the full sample analysis and previous periods, adding evidence to the notion
of US Cocoa being more speculative and more intertwined with other asset
classes, currency pairs in this case.

Table 6.12: Summary of daily spillovers in Period 3
(December 2015 - January 2020)

Mean Spillover Shock Spillover Volatility Spillover

US Cocoa - London Cocoa − → →
US Cocoa - EURUSD − ↔ →
US Cocoa - GBPUSD − ← ←
US Cocoa - CHFUSD ← ← −
US Cocoa - GHSUSD − − −
London Cocoa - USDGBP − − −
London Cocoa - EURGBP − − −
London Cocoa - CHFGBP − − −
London Cocoa - GHSGBP − → −

Notes: Indicated spillovers are based on 5% significance level. The arrows ”← ”, ”→ ”
signify the direction of spillovers, ”− ” means no significant spillover.

Spillovers between cocoa contracts in both shock and volatility are signifi-
cant in Period 4 (February 2020 - May 2024) (see Table 6.13). Shock spillover
is present in the direction from London Cocoa to US Cocoa, and volatility
spillover is significant in both directions. Relations between currencies and co-
coa futures were weak in general. The only mean spillover that was found to
be statistically significant was from London Cocoa to CHFUSD. The only sig-
nificant dynamics uncovered by the variance model relate to cocoa futures and
GHS, where significant volatility spillover is found from GHSUSD to US Cocoa,
and significant shock spillover exists from London Cocoa to GHSUSD. There-
fore, this period is an exception in terms of London Cocoa displaying more
spillover dynamics with currency pairs than US Cocoa, although the difference
is not substantial as the overall extent of spillovers in Period 4 was very limited.
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Table 6.13: Summary of daily spillovers in Period 4
(February 2020 - May 2024)

Mean Spillover Shock Spillover Volatility Spillover

US Cocoa - London Cocoa − ← ↔
US Cocoa - EURUSD − − −
US Cocoa - GBPUSD − − −
US Cocoa - CHFUSD − − −
US Cocoa - GHSUSD − − ←
London Cocoa - USDGBP − − −
London Cocoa - EURGBP − − −
London Cocoa - CHFGBP → − −
London Cocoa - GHSGBP − → −

Notes: Indicated spillovers are based on 5% significance level. The arrows ”← ”, ”→ ”
signify the direction of spillovers, ”− ” means no significant spillover.



Chapter 7

Conclusion

The analysis conducted in this thesis explores the volatility dynamics of cocoa
futures contracts and their interrelation with foreign exchange markets for the
sample period spanning from July 2007 to May 2024. The interdependence
between the assets is studied from time different perspectives, and various
methodological tools within the GARCH framework are employed. Cocoa fu-
tures contracts traded on the ICE US (US Cocoa) and ICE Europe (London
Cocoa) are both considered. Global currency pairs selected for the analysis are
USD, EUR, GBP, and CHF. Furthermore, GHS is included in the analysis as a
currency of Ghana, a cocoa-dependent country.

The univariate GARCH models confirm that the level of conditional volatility
varies significantly over time, and the values attained in the first half of 2024
are unprecedented for the whole sample period.

The level of conditional correlation between US Cocoa and London cocoa
futures contracts extracted from the DCC-GARCH model remains very high
during the majority of the sample period for both daily and weekly models.
However, it has been shown that certain occasions do exist when the level of
dynamic correlation decreases significantly for a short period of time. One
source of decreasing correlations uncovered by the analysis of the daily model
is the conditional volatility of the GBPUSD currency pair, which highlights the
relevance of the exchange rate risk for the cocoa futures contracts.

Over the sample period, cocoa futures contracts evince only little or no
unconditional correlation with currency pairs. DCC analysis for both US and
London Cocoa confirms such assessment as no apparent correlation structure
arises between cocoa futures and the respective currency pairs.

Analysis of spillovers in mean, shock, and volatility is conducted by esti-
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mating the VAR-BEKK-GARCH model. The mean equation represented by the
VAR model reveals the direction of the mean spillover from London Cocoa to
US Cocoa futures. Therefore, it confirms that London Cocoa tends to lead the
US counterpart in price. The spillovers in volatility and shocks between cocoa
futures contracts are bidirectional, which is in accordance with the previous
study of Jumah & Kunst (2001). In terms of the spillovers between cocoa
futures and global currency pairs, most detected spillovers are directed from
currencies to cocoa futures. In contrast with the major currencies, GHS displays
spillover dynamics that flow either from cocoa futures to GHS or in both direc-
tions. These dynamics hint that developments occurring in the cocoa futures
market have a significant effect on the GHS exchange rates. Furthermore, the
results show that this transmission unfolds primarily via the shock spillover
channel. A larger number of significant spillovers is uncovered for US Cocoa
than London Cocoa, providing some evidence that more speculative activity
is concentrated in this contract and that US Cocoa is likely more intertwined
with currency markets.

Subsample analysis reveals that the spillovers are substantially more ex-
tensive in the period of high volatility and stress in financial markets. Such
findings confirm the previous studies examining the effect of financialization of
the commodity futures asset class. Furthermore, apart from certain consistent
patterns (e.g., the presence of shock and volatility spillover between cocoa fu-
tures contracts), the presence and directionality of the spillover dynamics differ
across the four periods. More spillover dynamics between cocoa futures and
currency pairs are found in US Cocoa than in London Cocoa for three of the
four periods. Similar to the full sample analysis, such findings indicate moder-
ately greater interconnectedness of US Cocoa with the currency markets when
compared to London Cocoa.

Several avenues for future research hold the prospect of expanding on our
findings and further exploring the studied dynamics using different method-
ological frameworks. The spillover index framework by Diebold & Yilmaz
(2009; 2012) is a natural pathway for further exploration of interconnected-
ness between cocoa futures contracts and the currency-cocoa futures channel.
The study of time-varying correlation in Section 6.2 demands further attention.
The absence of apparent correlation structures emerging between cocoa futures
contracts and currency pairs in our analysis does not necessarily prove that
such structures are entirely nonexistent in reality. The DCC model was applied
over a relatively long period, during which, as we argued, significant structural
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changes stemming from commodity financialization continued to unfold in the
markets. The conditional correlation in the DCC model tends to be too suscep-
tible to local dynamics, and the persistence may be overstated in the presence
of structural breaks (Silvennoinen & Thorp 2013). Double Smooth Transition
Conditional Correlation (DSTCC) model by Silvennoinen & Teräsvirta (2015)
may remedy such issues as it allows for switching between different regimes
governed either by time or by financial indicators such as VIX (Silvennoinen
& Thorp 2013). Furthermore, the spillover analysis in Section 6.3 could be
replicated with the application of a wavelet-based VAR-BEKK model as in Liu
et al. (2017), which allows for analysis of spillovers across different frequency
dimensions in a more sophisticated manner than one applied in this thesis.



Bibliography

Abdulai, I., P. Vaast, M. P. Hoffmann, R. Asare, L. Jassogne,
P. Van Asten, R. P. Rötter, & S. Graefe (2018): “Cocoa agroforestry
is less resilient to sub-optimal and extreme climate than cocoa in full sun.”
Global change biology 24(1): pp. 273–286.

Afoakwa, E. O. (2016): Chocolate science and technology. John Wiley &
Sons.

Akaike, H. (1974): “A new look at the statistical model identification.” IEEE
transactions on automatic control 19(6): pp. 716–723.

Altamura, C. E. (2016): European banks and the rise of international finance:
The post-Bretton Woods era. Routledge.

Aning, A. F. K. (2023): “Feasibility study on africa cocoa exchange (afcx)
appendix ii.” techreport, ICCO. Available at https://www.icco.org/icco-
documentation/#publications.

Antonakakis, N. & R. Kizys (2015): “Dynamic spillovers between commod-
ity and currency markets.” International Review of Financial Analysis 41:
pp. 303–319.

Arezki, R., D. Lederman, & H. Zhao (2014): “The relative volatility of com-
modity prices: a reappraisal.” American Journal of Agricultural Economics
96(3): pp. 939–951.

Bala, D. A. & T. Takimoto (2017): “Stock markets volatility spillovers
during financial crises: A dcc-mgarch with skewed-t density approach.” Borsa
Istanbul Review 17(1): pp. 25–48.

Banerjee, A., J. J. Dolado, J. W. Galbraith, & D. Hendry (1993): Co-
integration, error correction, and the econometric analysis of non-stationary
data. Oxford university press.



Bibliography 92

Basak, S. & A. Pavlova (2016): “A model of financialization of commodities.”
The Journal of Finance 71(4): pp. 1511–1556.

Bauwens, L., S. Laurent, & J. V. Rombouts (2006): “Multivariate garch
models: a survey.” Journal of applied econometrics 21(1): pp. 79–109.

Belasen, A. R. & R. Demirer (2019): “Commodity-currencies or currency-
commodities: Evidence from causality tests.” Resources Policy 60: pp. 162–
168.

Bergmann, J. F. (1969): “The distribution of cacao cultivation in pre-
columbian america.” Annals of the Association of American Geographers
59(1): pp. 85–96.

Bertilorenzi, M. (2023): “Futures of europe: The city of londonâ€™s com-
modity exchanges, the european economic community, and the global reg-
ulation of futures trading (1960s–1980s).” Enterprise & Society 24(3): pp.
731–758.

Black, F. & M. Scholes (1973): “The pricing of options and corporate
liabilities.” Journal of political economy 81(3): pp. 637–654.

Bollerslev, T. (1986): “Generalized autoregressive conditional heteroskedas-
ticity.” Journal of econometrics 31(3): pp. 307–327.

Bollerslev, T. (1990): “Modelling the coherence in short-run nominal ex-
change rates: a multivariate generalized arch model.” The review of eco-
nomics and statistics pp. 498–505.

Bollerslev, T. (2008): “Glossary to arch (garch).” CREATES Research paper
49.

Bollerslev, T., R. F. Engle, & D. B. Nelson (1994): “Arch models.”
Handbook of econometrics 4: pp. 2959–3038.

Box, G. E. & D. A. Pierce (1970): “Distribution of residual autocorrelations
in autoregressive-integrated moving average time series models.” Journal of
the American statistical Association 65(332): pp. 1509–1526.

Brown, L. C. (2013): “Rise of intercontinental exchange and implications of
its merger with nyse euronext.” JL & Com. 32: p. 109.



Bibliography 93

Canalizo, E. A. (1931): “New york cocoa exchange.” The ANNALS of the
American Academy of Political and Social Science 155(1): pp. 140–145.

Caporin, M. & M. McAleer (2012): “Do we really need both bekk and
dcc? a tale of two multivariate garch models.” Journal of Economic Surveys
26(4): pp. 736–751.

CBOE (2024): “Vix.” https://www.cboe.com/tradable_products/vix/.
Accessed on 24/5/2024.

CFTC (2008): “Staff report oncommodity swap dealers & index traderswith
commission recommendations.” Technical report, Commodity Futures Trad-
ing Commision.

Chaboud, A. P., B. Chiquoine, E. Hjalmarsson, & C. Vega (2014): “Rise
of the machines: Algorithmic trading in the foreign exchange market.” The
Journal of Finance 69(5): pp. 2045–2084.

Chauveau, J.-P. (1997): “Cocoa as innovation: African initiatives, local con-
texts and agro-ecological conditions in the history of cocoa cultivation in
west african forest lands (c. 1850-c. 1950).” Paideuma pp. 121–142.

Chen, Y.-c. & K. Rogoff (2003): “Commodity currencies.” Journal of inter-
national Economics 60(1): pp. 133–160.

Chen, Y.-C., K. S. Rogoff, & B. Rossi (2010): “Can exchange rates forecast
commodity prices?” The Quarterly Journal of Economics 125(3): pp. 1145–
1194.

Cheng, I.-H., A. Kirilenko, & W. Xiong (2015): “Convective risk flows in
commodity futures markets.” Review of Finance 19(5): pp. 1733–1781.

CME Group (2015): “Cme group announces the launch
of cocoa futures on cme europe.” https://investor.
cmegroup.com/news-releases/news-release-details/
cme-group-announces-launch-cocoa-futures-cme-europe. Accessed on
18/7/2024.

Darhei Noam Ltd (2023): “Feasibility study on africa cocoa ex-
change (afcx).” techreport, ICCO. Available at https://www.icco.org/
icco-documentation/#publications.

https://www.cboe.com/tradable_products/vix/
https://investor.cmegroup.com/news-releases/news-release-details/cme-group-announces-launch-cocoa-futures-cme-europe
https://investor.cmegroup.com/news-releases/news-release-details/cme-group-announces-launch-cocoa-futures-cme-europe
https://investor.cmegroup.com/news-releases/news-release-details/cme-group-announces-launch-cocoa-futures-cme-europe
https://www.icco.org/icco-documentation/#publications
https://www.icco.org/icco-documentation/#publications


Bibliography 94

Dickey, D. A. & W. A. Fuller (1979): “Distribution of the estimators for au-
toregressive time series with a unit root.” Journal of the American statistical
association 74(366a): pp. 427–431.

Diebold, F. X. & K. Yilmaz (2009): “Measuring financial asset return and
volatility spillovers, with application to global equity markets.” The Eco-
nomic Journal 119(534): pp. 158–171.

Diebold, F. X. & K. Yilmaz (2012): “Better to give than to receive: Predic-
tive directional measurement of volatility spillovers.” International Journal
of forecasting 28(1): pp. 57–66.

ECB (2011): “Monthly bulletin october 2011.” https://www.ecb.europa.
eu/press/economic-bulletin/mb/html/index.en.html. Accessed on
18/7/2024.

Eicker, F. (1963): “Asymptotic normality and consistency of the least squares
estimators for families of linear regressions.” The annals of mathematical
statistics 34(2): pp. 447–456.

Engle, R. (2001): “Garch 101: The use of arch/garch models in applied
econometrics.” Journal of economic perspectives 15(4): pp. 157–168.

Engle, R. (2002a): “Dynamic conditional correlation: A simple class of mul-
tivariate generalized autoregressive conditional heteroskedasticity models.”
Journal of Business & Economic Statistics 20(3): pp. 339–350.

Engle, R. (2002b): “New frontiers for arch models.” Journal of applied econo-
metrics 17(5): pp. 425–446.

Engle, R. (2004): “Risk and volatility: Econometric models and financial
practice.” American economic review 94(3): pp. 405–420.

Engle, R. F. (1982): “Autoregressive conditional heteroscedasticity with esti-
mates of the variance of united kingdom inflation.” Econometrica: Journal
of the econometric society pp. 987–1007.

Engle, R. F. & G. Gonzalez-Rivera (1991): “Semiparametric arch models.”
Journal of Business & Economic Statistics 9(4): pp. 345–359.

https://www.ecb.europa.eu/press/economic-bulletin/mb/html/index.en.html
https://www.ecb.europa.eu/press/economic-bulletin/mb/html/index.en.html


Bibliography 95

Engle, R. F. & C. W. Granger (2003): “Time-series econometrics: cointe-
gration and autoregressive conditional heteroskedasticity.” Advanced infor-
mation on the Bank of Sweden Prize in Economic Sciences in Memory of
Alfred Nobel 95: p. 98.

Engle, R. F., D. F. Hendry, & D. Trumble (1985): “Small-sample prop-
erties of arch estimators and tests.” Canadian Journal of Economics pp.
66–93.

Engle, R. F. & K. F. Kroner (1995): “Multivariate simultaneous generalized
arch.” Econometric theory 11(1): pp. 122–150.

Engle, R. F. & C. Mustafa (1992): “Implied arch models from options
prices.” Journal of Econometrics 52(1-2): pp. 289–311.

Euronext (2024): “Our journey.” https://www.euronext.com/en/about/
our-journey. Accessed on 16/7/2024.

Franzen, M. & M. Borgerhoff Mulder (2007): “Ecological, economic
and social perspectives on cocoa production worldwide.” Biodiversity and
conservation 16: pp. 3835–3849.

Fülle, M. J., A. Lange, C. Hafner, & H. Herwartz (2022): “Bekks: An
r package for estimation of conditional volatility of multivariate time series.”
Available at SSRN 4233296 .

Galanos, A. (2022): rmgarch: Multivariate GARCH models. R package ver-
sion 1.3-9.

Galanos, A. (2023): rugarch: Univariate GARCH models. R package version
1.5-1.

Gilbert, C. L. et al. (2009): “Cocoa market liberalization in retrospect.”
Review of business and economics 54(3): pp. 294–312.

Gorton, G. & K. G. Rouwenhorst (2006): “Facts and fantasies about
commodity futures.” Financial Analysts Journal 62(2): pp. 47–68.

Granger, C. W. (1969): “Investigating causal relations by econometric mod-
els and cross-spectral methods.” Econometrica: journal of the Econometric
Society pp. 424–438.

https://www.euronext.com/en/about/our-journey
https://www.euronext.com/en/about/our-journey


Bibliography 96

Hafner, C. M. & H. Herwartz (2008): “Analytical quasi maximum likeli-
hood inference in multivariate volatility models.” Metrika 67: pp. 219–239.

Hall, A. D., P. Kofman, & S. Manaster (2006): “Migration of price dis-
covery in semiregulated derivatives markets.” Journal of Futures Markets:
Futures, Options, and Other Derivative Products 26(3): pp. 209–241.

Hall, B., R. Hall, & J. Hausman (1974): “Estimation and inference in
nonlinear structural models.” Annals of economic and social measurement 3:
pp. 653–666.

Hannan, E. J. & B. G. Quinn (1979): “The determination of the order of an
autoregression.” Journal of the Royal Statistical Society: Series B (Method-
ological) 41(2): pp. 190–195.

Hurn, S., V. Martin, P. C. Phillips, & J. Yu (2021): Financial Econometric
Modeling. Oxford University Press Oxford.

ICCO (2023): “International cocoa organization monthly reviews.” https:
//www.icco.org/statistics/. Accessed on 2024-5-24.

ICCO (2024): “International cocoa organization statistics.” https://www.
icco.org/statistics/. Accessed on 11/5/2024.

ICE (2013): “IntercontinentalExchange completes acquisition of NYSE
Euronext.” https://ir.theice.com/press/news-details/2013/
IntercontinentalExchange-Completes-Acquisition-of-NYSE-Euronext/
default.aspx. Accessed on 16/7/2024.

ICE (2015): “Intercontinental exchange announces launch of 44 new
contracts; including energy and euro cocoa futures and options.”
https://ir.theice.com/press/news-details/2015/Intercontinental-Exchange-
Announces-Launch-of-44-New-Contracts-Including-Energy-and-Euro-
Cocoa-Futures-and-Options/default.aspx. Accessed on 18/7/2024.

ICE (2024a): “ICE Futures Europe London Cocoa Futures.” https://
www.ice.com/products/37089076/London-Cocoa-Futures. Accessed on
11/5/2024.

ICE (2024b): “ICE Futures U.S.Cocoa Futures.” https://www.ice.com/
products/7/Cocoa-Futures. Accessed on 11/5/2024.

https://www.icco.org/statistics/
https://www.icco.org/statistics/
https://www.icco.org/statistics/
https://www.icco.org/statistics/
https://ir.theice.com/press/news-details/2013/IntercontinentalExchange-Completes-Acquisition-of-NYSE-Euronext/default.aspx
https://ir.theice.com/press/news-details/2013/IntercontinentalExchange-Completes-Acquisition-of-NYSE-Euronext/default.aspx
https://ir.theice.com/press/news-details/2013/IntercontinentalExchange-Completes-Acquisition-of-NYSE-Euronext/default.aspx
https://www.ice.com/products/37089076/London-Cocoa-Futures
https://www.ice.com/products/37089076/London-Cocoa-Futures
https://www.ice.com/products/7/Cocoa-Futures
https://www.ice.com/products/7/Cocoa-Futures


Bibliography 97

Irwin, S. H. & D. R. Sanders (2011): “Index funds, financialization, and com-
modity futures markets.” Applied Economic Perspectives and Policy 33(1):
pp. 1–31.

Irwin, S. H. & S. Yoshimaru (1999): “Managed futures, positive feedback
trading, and futures price volatility.” Journal of Futures Markets: Futures,
Options, and Other Derivative Products 19(7): pp. 759–776.

Jarque, C. M. & A. K. Bera (1980): “Efficient tests for normality, ho-
moscedasticity and serial independence of regression residuals.” Economics
letters 6(3): pp. 255–259.

Jumah, A. & R. M. Kunst (2001): “The effects of dollar/sterling exchange
rate volatility on futures markets for coffee and cocoa.” European review of
Agricultural economics 28(3): pp. 307–328.

Kassouri, Y. & H. Altıntaş (2020): “Commodity terms of trade shocks
and real effective exchange rate dynamics in africa’s commodity-exporting
countries.” Resources Policy 68: p. 101801.

Katsiampa, P., S. Corbet, & B. Lucey (2019): “Volatility spillover effects
in leading cryptocurrencies: A bekk-mgarch analysis.” Finance Research
Letters 29: pp. 68–74.

Katusiime, L. (2018): “Investigating spillover effects between foreign exchange
rate volatility and commodity price volatility in uganda.” Economies 7(1):
p. 1.

Kim, A. (2015): “Does futures speculation destabilize commodity markets?”
Journal of Futures Markets 35(8): pp. 696–714.

Kolavalli, S. & M. Vigneri (2011): “Cocoa in ghana: Shaping the success
of an economy.” Yes, Africa can: success stories from a dynamic continent
201: pp. 258643–1271798012256.

Kouassi, A. P. (2023): “Feasibility study on africa cocoa exchange (afcx)
appendix i.” techreport, ICCO. Available at https://www.icco.org/icco-
documentation/#publications.

Ku, Y.-H. H., H.-C. Chen, & K.-h. Chen (2007): “On the application of the
dynamic conditional correlation model in estimating optimal time-varying
hedge ratios.” Applied Economics Letters 14(7): pp. 503–509.



Bibliography 98

Kwiatkowski, D., P. C. Phillips, P. Schmidt, & Y. Shin (1992): “Testing
the null hypothesis of stationarity against the alternative of a unit root:
How sure are we that economic time series have a unit root?” Journal of
econometrics 54(1-3): pp. 159–178.

Lawal, J. O. & B. T. Omonona (2014): “The effects of rainfall and other
weather parameters on cocoa production in nigeria.” Comunicata Scientiae
5(4): pp. 518–523.

Leissle, K. (2018): Cocoa. John Wiley & Sons.

Li, H. & E. Majerowska (2008): “Testing stock market linkages for poland
and hungary: A multivariate garch approach.” Research in International
Business and finance 22(3): pp. 247–266.

Liu, X., H. An, S. Huang, & S. Wen (2017): “The evolution of spillover ef-
fects between oil and stock markets across multi-scales using a wavelet-based
garch–bekk model.” Physica A: Statistical Mechanics and its Applications
465: pp. 374–383.

Ljung, G. M. & G. E. Box (1978): “On a measure of lack of fit in time series
models.” Biometrika 65(2): pp. 297–303.

Markham, J. W. (1991): “Federal regulation of margin in the commodity
futures industry-history and theory.” Temp. LR 64: p. 59.

McLeod, A. I. & W. K. Li (1983): “Diagnostic checking arma time series mod-
els using squared-residual autocorrelations.” Journal of time series analysis
4(4): pp. 269–273.

Niether, W., I. Smit, L. Armengot, M. Schneider, G. Gerold, &
E. Pawelzik (2017): “Environmental growing conditions in five produc-
tion systems induce stress response and affect chemical composition of co-
coa (theobroma cacao l.) beans.” Journal of agricultural and food chemistry
65(47): pp. 10165–10173.

NY FED (2023): “Fx volume survey.” https://www.newyorkfed.org/fxc/
fx-volume-survey. Accessed on 25-5-2024.

OEC (2024): https://oec.world/en. Accessed on 24/5/2024.

https://www.newyorkfed.org/fxc/fx-volume-survey
https://www.newyorkfed.org/fxc/fx-volume-survey
https://oec.world/en


Bibliography 99

Paul, A. B. (1982): “The past and future of the commodities exchanges.”
Agricultural History 56(1): pp. 287–305.

Perron, P. (1988): “Trends and random walks in macroeconomic time series:
Further evidence from a new approach.” Journal of economic dynamics and
control 12(2-3): pp. 297–332.

Rees, G. L. (1972): Britain’s commodity markets.

Schwarz, G. (1978): “Estimating the dimension of a model.” The annals of
statistics pp. 461–464.

Silvennoinen, A. & T. Teräsvirta (2015): “Modeling conditional correla-
tions of asset returns: A smooth transition approach.” Econometric Reviews
34(1-2): pp. 174–197.

Silvennoinen, A. & S. Thorp (2013): “Financialization, crisis and com-
modity correlation dynamics.” Journal of International Financial Markets,
Institutions and Money 24: pp. 42–65.

Tang, K. & W. Xiong (2012): “Index investment and the financialization of
commodities.” Financial Analysts Journal 68(6): pp. 54–74.

Tsay, R. S. (2005): Analysis of financial time series. John wiley & sons.

Tsay, R. S. (2010): Analysis of Financial Time Series, volume 762. John
Wiley & Sons.

White, H. (1980): “A heteroskedasticity-consistent covariance matrix estima-
tor and a direct test for heteroskedasticity.” Econometrica: journal of the
Econometric Society pp. 817–838.

Worthington, A. & H. Higgs (2004): “Transmission of equity returns and
volatility in asian developed and emerging markets: a multivariate garch
analysis.” International Journal of Finance & Economics 9(1): pp. 71–80.

Ye, Y. (1997): Interior point algorithms: theory and analysis. Wiley-
Interscience.

Yıldırım, D. Ç., F. Erdoğan, & E. N. Tarı (2022): “Time-varying volatility
spillovers between real exchange rate and real commodity prices for emerging
market economies.” Resources Policy 76: p. 102586.



Bibliography 100

Yoroba, F., B. K. Kouassi, A. Diawara, L. A. Yapo, K. Kouadio, D. T.
Tiemoko, Y. K. Kouadio, I. D. Koné, P. Assamoi et al. (2019): “Evalu-
ation of rainfall and temperature conditions for a perennial crop in tropical
wetland: a case study of cocoa in côte d’ivoire.” Advances in Meteorology
2019.

Zarrillo, S., N. Gaikwad, C. Lanaud, T. Powis, C. Viot, I. Lesur,
O. Fouet, X. Argout, E. Guichoux, F. Salin et al. (2018): “The use
and domestication of theobroma cacao during the mid-holocene in the upper
amazon.” Nature ecology & evolution 2(12): pp. 1879–1888.

Zhang, H. J., J.-M. Dufour, & J. W. Galbraith (2016): “Exchange rates
and commodity prices: Measuring causality at multiple horizons.” Journal
of Empirical Finance 36: pp. 100–120.



Appendix A

Appendix A

Table A.1: Supply and Demand of cocoa beans per season (000s MT)

Crop year Gross crop Grindings Stocks Surplus/Deficit Stock/Grindings(%)

2008/09 3592 3557 1557 19 43.8
2009/10 3634 3737 1418 -139 37.9
2010/11 4309 393 1746 328 44.3
2011/12 4095 3972 1828 82 46.0
2012/13 3943 4180 1552 -276 37.1
2013/14 4370 4335 1543 -9 35.6
2014/15 4252 4152 1600 57 38.5
2015/16 3994 4133 1421 -179 34.4
2016/17 4768 4391 1750 329 39.9
2017/18 4647 4576 1775 25 38.8
2018/19 4811 4742 1796 21 37.9
2019/20 4752 4685 1815 19 38.7
2020/21 5245 4949 2059 224 41.6
2021/22 4826 4994 1843 -216 36.9
2022/23 4996 5020 1769 -74 35.2
2023/24 est. 4449 4779 1395 -374 29.2

Source: https://www.icco.org/statistics/; ICCO (2024)
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A. Appendix A VI

Figure A.1: Daily returns of cocoa futures contracts

US Cocoa futures returns

−
0

.1
5

−
0

.0
5

0
.0

5

2007 2011 2015 2019 2023

London Cocoa futures returns

−
0

.1
5

−
0

.0
5

0
.0

5

2007 2011 2015 2019 2023



A. Appendix A VII

Figure A.2: Weekly returns of cocoa futures contracts
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A. Appendix A VIII

Figure A.3: Daily returns of USD-denominated currency pairs
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A. Appendix A IX

Figure A.4: Weekly returns of USD-denominated currency pairs
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A. Appendix A X

Figure A.5: Daily returns of GBP-denominated currency pairs
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A. Appendix A XI

Figure A.6: Weekly returns of GBP-denominated currency pairs
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A. Appendix A XII

Figure A.7: Weekly conditional volatility estimates for cocoa futures
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A. Appendix A XIII

Figure A.8: Weekly conditional correlations for US Cocoa and cur-
rency pairs
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A. Appendix A XIV

Figure A.9: Weekly conditional correlations for London Cocoa and
currency pairs
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A. Appendix A XV

Figure A.10: Conditional volatility estimates for GBPUSD
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Table A.6: VAR results for daily VAR-DCC-GARCH model for cocoa
futures

USCt−1 LCt−1 µi

USCt −0.0804∗∗ 0.1159∗∗∗ 0.0003
LCt −0.0205 0.0678∗∗ 0.0004∗

Notes: VAR results are presented in the cross
table of variables and their lagged values.
∗,∗∗ ,∗∗∗ indicate statistical significance at
10%, 5%, 1% level. The values of presented
parameter estimates are rounded to 4 decimal
places. USC stands for US Cocoa futures,
LC stands for London Cocoa futures, µ stands
for a constant in the VAR model.

Table A.7: VAR results for weekly VAR-DCC-GARCH model for co-
coa futures

USCt−1 LCt−1 µi

USCt −0.1553∗∗ 0.2479∗∗∗ 0.0013
LCt −0.073 0.1581∗∗ 0.0019

Notes: VAR results are presented in the cross
table of variables and their lagged values.
∗,∗∗ ,∗∗∗ indicate statistical significance at
10%, 5%, 1% level. The values of presented
parameter estimates are rounded to 4 decimal
places. USC stands for US Cocoa futures,
LC stands for London Cocoa futures, µ stands
for a constant in the VAR model.
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Appendix B

Materials for Replication of
Econometric Analysis

The original R code used to conduct the econometric analysis along with a
brief commentary may be accessed at the author’s GitHub repository at https:
//github.com/MatyasSvehla/cocoa-currency-spillover.git.

https://github.com/MatyasSvehla/cocoa-currency-spillover.git
https://github.com/MatyasSvehla/cocoa-currency-spillover.git
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