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Introduction
The Standard Model of particle physics [1] is the theoretical framework that

describes the fundamental particles and their interactions. It includes three
generations of matter particles: quarks and leptons, which interact via fundamental
forces mediated by gauge bosons. The gauge bosons include the photon for
electromagnetic interactions, the W and Z bosons for weak interactions, and the
gluons for strong interactions. The Higgs boson, discovered in 2012 at the Large
Hadron Collider (LHC) [2], is responsible for providing mass to the particles via
the Higgs mechanism [1].

Figure 1 The Standard Model of Elementary Particles [3]

Despite successfully explaining a wide range of phenomena, the Standard
Model has limitations. It does not account for gravity, dark matter, or the
matter-antimatter asymmetry observed in the universe. To address these gaps,
experiments like Belle II [4] at the SuperKEKB collider in Japan aim to probe
beyond the Standard Model by studying the properties of heavy flavor particles,
especially B mesons, charmed mesons and the tau leptons [1].

The Belle II experiment, conducted at the SuperKEKB collider, studies
electron-positron collisions to provide a clean environment for exploring the
properties of particles produced in these interactions. One of these possible mea-
surements is the precise determination of the tau lepton mass, a fundamental
parameter of the Standard Model. The tau lepton is the heaviest of the leptons
and plays a crucial role in testing the validity of the Standard Model. Precise
measurement of the tau lepton mass is essential for understanding its properties
and interactions.

The accuracy of tau mass measurement is limited by the knowledge of the
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momentum scale of the tau lepton decay products and of the collision energy, specif-
ically the centre-of-mass (CM) energy ECMS defined as ECMS =

√︂
(pe+ + pe−)2,

where pe+/− are electron/positron 4-momenta. This energy fluctuates slightly
between collisions and is described by a probability distribution—a Gaussian
curve. The author will develop a new method to measure the parameters of this
distribution, especially the spread σ, using e+e− → µ+µ− interactions recorded
by the Belle II detector. To our knowledge, this type of interaction has never been
used for energy spread measurement in the Belle II or competing experiments.
Better knowledge of the spread σ also allows for a more precise measurement of the
central value of the CM collision energy. Improving the calibration of CM energy
will enhance the precision of particle mass determinations and other important
measurements in the experiment. For example, monitoring if the SuperKEKB
truly runs at the Υ(4S) peak energy, which corresponds to the maximal production
rate of the B mesons [4, 5].

The Belle experiment, Belle II’s predecessor, made significant contributions
to the field of particle physics, including the observation of CP violation in B
meson decays, which provided crucial tests of the Standard Model and contributed
to the awarding of the 2008 Nobel Prize in Physics to Yoichiro Nambu, Makoto
Kobayashi and Toshihide Maskawa for their work on CP violation [6]. The
SuperKEKB collider, an upgrade of the KEKB collider, achieves higher luminosity
by employing a novel design that reduces the beam size at the interaction point,
allowing for more frequent collisions focused to a smaller interaction region [4].

The Belle II experiment involves extensive international collaboration. More
than 1000 scientists from around the world contribute to the detector’s devel-
opment, operation, and data analysis, ensuring a diverse and comprehensive
approach to exploring fundamental questions in particle physics.



1 The Belle II Experiment and
the SuperKEKB Collider

The Belle II experiment, conducted at the SuperKEKB collider in Tsukuba,
Japan, is a particle physics research project designed to explore the fundamental
forces and particles that constitute the universe. The Belle II experiment aims
to provide insights into phenomena such as CP violation, rare decays, and new
physics beyond the Standard Model. The SuperKEKB collider (Figure 1.1), which
collides 7 GeV electrons with 4 GeV positrons, is engineered to achieve a peak
luminosity of 8×1035 cm−2s−1 [4], 40 times greater than that of its predecessor,
KEKB, facilitating a significantly higher rate of collision events, producing 5×1010

tau-pair events per 8 years and enhancing the potential for new discoveries [4]. Like
Belle or BaBar experiments, Belle II runs at the Υ(4S) resonance, which decays
in 99% to BB̄. At the heart of the Belle II experiment is a sophisticated suite of
detectors, each designed to measure various aspects of the particles produced in
collisions. These detectors collectively form a comprehensive system capable of
high-precision tracking, particle identification, energy measurement, and muon
detection. The key components of this system are detailed below.

Figure 1.1 The SuperKEKB Collider [7]

1.1 Vertex Detector (VDX)
The Vertex Detector (VDX) (Figure 1.2) is responsible for precisely tracking

the paths of particles, especially the short-lived B mesons, as they emerge from
the collision point, known as the interaction point. The VDX is composed of two
main sub-detectors: the Pixel Detector (PXD) and the Silicon Vertex Detector
(SVD) [4, 8].
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Figure 1.2 A schematic view of Belle II’s VDX [4]

1.1.1 Pixel Detector (PXD)
The Pixel Detector (PXD) is the innermost layer of the VDX, located about

1.4-2.2 centimetres from the interaction point. It uses advanced pixel sensors to
provide high-resolution tracking of particles. The PXD consists of two cylindrical
layers of DEPFET (Depleted P-channel Field Effect Transistor) pixel sensors.
Each sensor has a pixel size of (50)×(50 − 85) micrometres, allowing for precise
measurement of the secondary vertices for example of the B mesons. The small
material budget of PXD reduces multiple scattering effects and particle energy
loss, ensuring accurate trajectory measurement [4, 8].

1.1.2 Silicon Vertex Detector (SVD)
Surrounding the PXD is the Silicon Vertex Detector (SVD), located about

3.9-13.5 cm from the interaction point, which covers a larger volume and provides
additional tracking information. The SVD consists of four layers of double-sided
silicon strip sensors arranged in a barrel configuration around the interaction
point. Each strip sensor has a pitch of 50 micrometres, allowing for high-resolution
measurements of particle tracks. The combination of the PXD and SVD enables
Belle II to achieve a vertex resolution of approximately 10 micrometers, significantly
improving the accuracy of measurements involving the decay vertices of B mesons,
e.g. the time-dependent CP violation [4, 8].

1.2 Central Drift Chamber (CDC)
The Central Drift Chamber (CDC) (Figure 1.3) is the primary tracking device

for charged particles in Belle II. It is a large cylindrical chamber filled with a gas
mixture of helium and isobutane. The CDC is 2.3 meters long and has a radius
of 1.6 meters. It contains 56 layers of sense and field wires arranged in a helical
pattern. As charged particles pass through the CDC, they ionize the gas, creating
electron-ion pairs. The electrons drift towards the sense wires, where their arrival
times are measured. By analyzing these times, the CDC reconstructs the particles’
trajectories. The curvature of the tracks in the CDC, caused by the 1.5 Tesla
magnetic field, allows for precise determination of the charged particles’ momenta.
The CDC also helps identify particles by measuring the ionization energy loss
(dE/dx) along their paths, which varies for different particle types [8].



Figure 1.3 A cosmic muon as recoded by the Belle II’s CDC [4]

1.3 Particle Identification System (PID)
The Particle Identification System (PID) in Belle II is designed to improve the

accuracy of identifying various types of charged particles, such as pions, kaons, and
protons. It consists of several sub-detectors that measure the particles’ different
properties to identify them accurately. The PID likelihoods are obtained from a
combination of all inputs, not only TOF and ARICH, but also CDC, ECL, KLM
and VXD. For example, muons used in this thesis are characterized by small
energy deposits in the calorimeter (ECL), tracks in CDC, and a signal in KLM.

1.3.1 Time-of-Flight (TOF) Counters
The TOF system consists of an array of scintillation counters (Figure 1.4-Left)

placed around the CDC. By measuring the time it takes for particles to travel from
the interaction point to the TOF counters, the system determines their velocities.
Combining this information with the momentum measured by the CDC, the PID
system can calculate the particles’ masses and identify them [8].

1.3.2 Aerogel Ring Imaging Cherenkov (ARICH) Detector
The ARICH detector (Figure 1.4-Right) uses aerogel, a lightweight material

with a refractive index just above that of air, to produce Cherenkov radiation
when charged particles pass through it. The angle of the Cherenkov light cone
depends on the particle’s velocity, which helps distinguish between different types
of particles [8].



Figure 1.4 Belle II’s PID: TOP module counter (Left), ARICH principle of operation
(Right) [4]

1.4 Electromagnetic Calorimeter (ECL)
The Electromagnetic Calorimeter (ECL) is designed to measure the energy of

electrons and photons produced in collisions. It comprises an array of 8736 thallium-
doped cesium iodide (CsI(Tl)) scintillation crystals arranged in a barrel and two
endcaps. Each crystal is approximately 30 cm long and 5 cm in cross-section.
When high-energy particles strike the crystals, they produce scintillation light
proportional to the particles’ energy. Photodiodes coupled to the crystals detect
this light, and the ECL electronics convert the signals into energy measurements.
The ECL has an energy resolution of about 1.6% for electrons and photons with
energies around 1 GeV. This high resolution is crucial for studying processes
involving electromagnetic interactions, such as the decay of B mesons into final
states containing electrons or photons [8].

1.5 K0
L and Muon Detector (KLM)

The K0
L and Muon Detector (KLM) is designed to detect long-lived neutral

kaons (K0
L) and muons. It consists of alternating layers of resistive plate chambers

and iron absorbers positioned outside the ECL. The iron layers absorb most
particles except for muons and K0

L, which can penetrate deeper into the detector.
The KLM provides crucial information for identifying muons and reconstructing
the trajectories of K0

L particles, aiding in studying rare decay processes and CP
violation.

The KLM is divided into a barrel section and two endcaps, covering the entire
solid angle around the interaction point. It comprises 15 layers of resistive plate
chambers (RPCs) interleaved with iron absorber plates. The iron plates stop
non-muon particles, while muons, being highly penetrating, pass through and are
detected by the RPCs. The RPCs consist of two parallel resistive plates with a
gas gap in between. When a charged particle passes through, it ionizes the gas,
producing a signal that is read out by the detector electronics. The KLM can also
detect K0

L particles through their interactions with the iron plates, which produce
secondary particles that are detected by the RPCs. The KLM provides excellent
muon identification with an efficiency of over 90% and a misidentification rate of



less than 1% [4, 8].



2 Tau lepton mass and ECMS
The tau lepton is a third-generation lepton with a mass significantly higher

than that of the electron and the muon, making its precise mass measurement
critical for testing the Standard Model’s predictions and exploring potential New
Physics. Accurate determination of the tau lepton mass can provide insights into
the nature of lepton universality and the parameters of electroweak interactions [1],
demonstrated in Figure 2.1.

Figure 2.1 The graph illustrates the relationship between tau lifetime and the Branch-
ing Ratio (BR) of decaying through the τ → eνν channel (its most common decay
channel). The yellow band is the theoretical standard model expectation, with tau
mass uncertainty responsible for its width. The red point corresponds to the current
experimental value with error bars related to the world-averaged lifetime and the BR
[9].

Recent advancements in experimental techniques have led to the most precise
measurement of the tau lepton mass to date, achieved by the Belle II experiment
[10]. For the Belle II tau mass measurement, researchers led by DESY scientists
used data collected from 2019 to 2021 to study the decays of tau leptons into
three pions and a tau neutrino from electron-positron collisions at center-of-mass
energy about 10.58 GeV, applying a technique initially developed by the ARGUS
collaboration at DESY in 1992. This method relies on precise knowledge of the
absolute momentum scale of the tau decay products and the collision energy
of the electron-positron pairs. The measured tau mass (1777.09 ± 0.14) MeV
is consistent with previous results but provides the highest single-measurement
precision to date (Figure 2.2), improving our understanding of the tau lepton’s
properties and the Standard Model [4, 11].
The previous most precise tau mass measurement was accomplished at BES III tau-
factory in China [12] using the energy scan technique, where the CM collision energy
is varied around the τ+τ− production threshold, i.e. around 2mτ ∼ 3.5 GeV.
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Figure 2.2 The comparison of measured τ mass by leading experiments with statistical
and systematic uncertainties [10]

2.1 Impact of the ECMS precision on the τ mass
measurement

At B-factories such as Belle II, the measurement of the center-of-mass energy
ECMS is pivotal for several reasons. The energy of the collisions directly influences
the kinematics and dynamics of the particles produced, including the tau leptons.
At Belle II the pseudomass technique [5] is used to measure the tau lepton mass
in τ → 3πν decays. The distribution of pseudomass variable, Mmin, calculated
from the τ meson decay products momenta and center-of-mass collision energy
ECMS as:

Mmin =
√︂
M2

3π + 2 (ECMS/2 − E3π) (E3π − P3π), (2.1)

has a steep drop for Mmin = mτ which makes this variable sensitive to the value
of the tau mass. The initial-state photon radiation and detector resolution lead to
the smoothing of the step in the pseudomass Mmin. The pseudomass, as measured
by the Belle II experiment, is shown in Figure 2.3.

The formula for pseudomass Mmin directly depends on the CMS collision
energy ECMS. Employing standard uncertainty propagation technique, it can be
shown that:

δMmin = 0.085 δECMS. (2.2)

This relation indicates that, for example, a 1 MeV shift in the CM energy results
in a 0.085 MeV shift in the tau mass.

At Belle II the CMS collision energy was measured with a precision of
≈0.8 MeV, which corresponds to 0.07 MeV uncertainty on the tau mass, which
makes it the dominant systematic uncertainty source (see Table 2.1).

It is known that the collision energy at SuperKEKB has varied during the
data-taking period, therefore a precise measurement of the tau mass relies on an
accurate determination of the beam energy as the function of time [5].



Figure 2.3 Spectrum of Mmin in experimental data (dots) as measured at Belle II
[10], along with simulated background contributions from e+e− → τ+τ− events with
decays other than τ− → π−π+π−ντ (orange area with solid line), e+e− → qq̄ events
(blue area with dashed line), and other background sources (gray area with dotted line).
The value of the tau mass is indicated by a vertical gray line.

Source Uncertainty [MeV/c2]
Knowledge of the colliding beams:
Beam-energy correction 0.07
Boost vector < 0.01
Reconstruction of charged particles:
Charged-particle momentum correction 0.06
Detector misalignment 0.03
Fit model:
Estimator bias 0.03
Choice of the fit function 0.02
Mass dependence of the bias < 0.01
Imperfections of the simulation:
Detector material density 0.03
Modeling of ISR, FSR and τ decay 0.02
Neutral particle reconstruction efficiency ≤ 0.01
Momentum resolution ≤ 0.01
Tracking efficiency correction ≤ 0.01
Trigger efficiency < 0.01
Background processes < 0.01
Total 0.11

Table 2.1 Summary of systematic uncertainties in the Belle II τ -mass measure-
ment [10]. The dominant sources are related to ECMS ”Beam-energy correction” and
to the momentum scale of charged pions into which tau decays (”Charged-particle
momentum correction”).



2.2 Measurement of ECMS using B meson energy
in the CMS

The main method used for measuring the center-of-mass energy (ECMS) in
electron-positron collisions is through the process e+e− → BB̄. In this process,
electron and positron beams collide to produce pairs of bottom quarks, which
subsequently hadronize into B mesons. The kinematics of these B mesons in
CMS can be precisely measured, allowing for an accurate determination of ECMS.
Charged or neutral B mesons are used because their mass is only slightly below the
ECMS/2. Consequently, the produced B mesons are slow, and the non-relativistic
formula can be used to calculate the B mesons energy in the CMS:

E∗
B = mB + p∗2

B

2mB

, (2.3)

where E∗
B, mB, and p∗

B are one B meson’s energy, mass, and momentum in CMS.
The mass term is known with very high precision, especially thanks to the LHCb
[13, 14], the second term is much smaller, but also with much higher uncertainty.
Consequently, the systematic uncertainties originating from the precision of the
mB and from the second term are comparable. An example of the E∗

B measurement
can be seen in Figure. 2.4, where the width of the observed peak is mostly driven
by the beam energy spread.

Figure 2.4 Measured B meson energy in CMS corresponding to ECMS/2 for B0 (Left)
and B+ (Right) [5]. Blue lines represent the fits to the observed data. The precise ECMS
is obtained from the ”Mean” and ”σ” parameters of the Gaussian peak by applying
energy corrections to correct for Υ(4S) shape and photon radiation. Nominal collision
energy corresponding to the Υ(4S) mass is depicted as a vertical green line.

It is important to note that E∗
B do not directly correspond to the ECMS/2,

partially it is because of the process e+e− → BB̄γ, i.e. when part of the energy is
radiated via photon and B meson energy do not correspond to ECMS/2 anymore.
The second reason is the energy dependence of the e+e− → BB̄ cross-section,
in other words, the shape of the Υ(4S) resonance. This effect is related to the
ECMS spread, the main topic of this thesis. The ECMS slightly fluctuates between
the collisions and its spectrum can be described by the Gaussian distribution.
When the mean ECMS is slightly below the Υ(4S) resonance mass, which was
the case for most of the Belle II data, as the collision energy fluctuates event-
by-event, sometimes the ECMS value is closer to the resonance peak, other times



it is further away. For events where the ECMS is closer to the resonance mass,
the BB̄ production cross section is higher, i.e. it is more likely to produce BB̄.
Consequently, the distribution of 2E∗

B does not have the same mean value as the
ECMS but is pushed towards the Υ(4S) mass. The higher the ECMS spread, the
higher the impact. When B mesons are used for the ECMS determination, the
measured 2E∗

B value has to be corrected for effects of the photon emissions and
the energy dependence of the BB̄ cross section using so-called energy corrections.
The main uncertainty of these corrections stems from the uncertainty in the Υ(4S)
energy shape and from the value of the ECMS energy spread.

Sources of systematic uncertainties of the e+e− → BB method of ECMS are
shown in Table 2.2 and described below [5, 11, 10], for each systematic source,
the symmetrized uncertainty is provided.

• Detector uncertainty ∆2E∗
B, which is related to the uncertainty of measuring

momenta of B meson decay products (0.05 MeV).

• Uncertainty of ECMS spread σE∗ bias, which is exactly what our method is
trying to lower (0.22 MeV).

• Uncertainty caused by limited knowledge of the shape of the Υ(4S) resonance
E(BaBar), from which the B mesons originate. Measured by Belle and BaBar
experiment, which can also be lowered using our method by measuring the
Υ(4S) resonance shape at Belle II (0.50 MeV).

• B meson mass precision MPDG ave.
B , which is taken from the world mean,

dominated by LHCb measurement1 (0.48 MeV).

⟨
√
s⟩ ⟨

√
s− √

scentral⟩
[GeV] [MeV]

2E∗
B 10.57618 -0.47

∆2E∗
B [10.57659, 10.57670] [-0.06, 0.04]

σ2E∗ bias [10.57643, 10.57687] [-0.22, 0.22]√
s 10.57665 -

E (BaBar) [10.57610, 10.57709] [-0.55, 0.44]
MPDG ave.

B [10.57617, 10.57713] [-0.48, 0.48]
total [10.57587, 10.57735] [-0.78, 0.70]

Table 2.2 Summary of the average 2E∗
B and ⟨

√
s⟩ values used in the mτ measurement

and the corresponding uncertainties [5]. ECMS is sometimes labeled as ⟨
√

s⟩, where s is
one of the three Mandelstam variables describing 2 → 2 interactions [16].

2.3 Measurement of ECMS using the invariant
mass of muons in e+e− → µ+µ− interactions

An alternative and complementary method for measuring ECMS is through the
process e+e− → µ+µ−, where electron-positron collisions result in the production of

1There is a new B+ mass measurement from LHCb [15], which was not available at time of
the Belle II tau mass measurement and can reduce this systematic uncertainty.



muon pairs. This method is particularly advantageous due to the clean signatures
of muons in particle detectors and the well-understood nature of their interactions.
This approach also benefits from high statistical precision and is insensitive to
the shape of the Υ(4S) resonance. However, it suffers from large systematic
uncertainties in the absolute scale of the invariant µµ mass (Figure 2.5) related
to the systematic uncertainty of the muons momentum scale, in particular, due
to imprecise knowledge of the detector’s magnetic field. The width of M(µµ) is

Figure 2.5 The invariant µµ mass. The collision energy is related to the position of
the peak, i.e. parameter ”m0” of the fitted curve (depicted as the red vertical line in
the plot). The nominal beam energy corresponding to the Υ(4S) mass is depicted as a
green vertical line.

driven by the detector resolution and is about 40 MeV. In comparison, the energy
spread of about 5 MeV is insignificant, making it impossible to measure the energy
spread from the M(µµ) variable.

To conclude, the method based on the µµ invariant mass is good for track-
ing changes in ECMS in time but cannot be a baseline for the absolute ECMS
measurement due to the high momentum scale uncertainty of the muons.

2.4 Measurement of ECMS spread using the rapid-
ity of muons in e+e− → µ+µ− interactions

The third method, which is novel and described in this work, measures the
ECMS spread using the rapidity of muons in e+e− → µ+µ− interactions. This
method has the following advantages:

• High statistical precision.

• Independence from the shape of the Υ(4S) resonance.

• Applicability to data taken at energies outside the Υ(4S) resonance.

However, this method only measures the spread of ECMS (i.e., the sigma of the
Gaussian distribution) rather than the mean value.



For the most precise determination of ECMS, a combination of all three methods
should be employed. Each method contributes its strengths:

• The B meson energy method provides both the mean and spread of ECMS,
but has low statistical precision and suffers from theoretical uncertainty
related to the Υ(4S) shape.

• The invariant mass of muons method offers high statistical precision to
monitor the ECMS time variations and is not biased by the Υ(4S) resonance.

• The rapidity of the muons method supplies an accurate measure of the ECMS
spread.

By integrating the complementary advantages of each method, it will be possible
to achieve a more accurate and reliable measurement of ECMS. This combined
approach would mitigate the individual weaknesses and leverage the statistical
and systematic strengths, ultimately leading to a robust determination of ECMS
crucial for precise tau mass measurement and other analyses at Belle II and other
experiments.



3 The ECMS spread measurement
from di-muons

Using simulated data of e+e− → µ+µ− events, we aim to deconstruct the
detector output into convolution of functions representing detector resolution
Rdet, physics behind the interaction Rtruth and the spread in ee rapidity, which
corresponds directly to ECMS spread. The application of this deconvolution on
real detector output should then yield an accurate ECMS spread.

3.1 Implementation and Tools
In this project, we utilize C++ in conjunction with the ROOT software library [17].

3.1.1 C++
C++ is a versatile and widely-used programming language known for its perfor-

mance and efficiency. Developed as an extension of the C language, C++ supports
object-oriented programming. The Belle II analysis software (basf2) as well as
ROOT analysis framework are written mostly in the C++ language.

3.1.2 ROOT Software Library
ROOT is an open-source software framework developed by CERN, specifically

designed for data analysis in high-energy physics. It provides a comprehensive
set of tools for data handling, statistical analysis, visualization, and storage. The
library is written in C++ and offers a seamless interface with this language, enabling
efficient manipulation of large datasets.

Key features of ROOT that we will be using include:

• Data Storage and Access: ROOT’s file format (ROOT files) allows for
efficient storage and retrieval of large volumes of data. The TTree and
TBranch classes facilitate hierarchical data organization, enabling structured
data analysis.

• Statistical Analysis: ROOT includes a wide range of statistical functions
and methods for data fitting, especially the TF1 function class. Its fitting
algorithm, based on MINUIT minimization package [18], is widely used for
parameter estimation and uncertainty quantification.

• Visualization: ROOT provides many visualization tools for creating graphical
representations of data. The TCanvas, TH1, and TGraph classes allow for the
creation of histograms, scatter plots, and other graphical displays. We will
also use Plotting helper [19], a small package containing utilities to make
plotting in ROOT more user-friendly.
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3.2 Monte Carlo Simulation
Monte Carlo methods [20] are widely used in particle physics to simulate

complex processes and predict experimental measurement outcomes. In this
project, we employ the KKMC generator [21] to model electron-positron to muon-
antimuon (including photon emissions) events and GEANT4 [22] to account for
detector effects. GEANT4 contains a whole 3D model of the detector with all
the relevant materials. It models the passage of particles through the detector’s
material, deposited energy, and digitalization of the results.

The simulation generates three types of particle four-momenta:

1. The four-momenta of the incoming electrons and positrons, denoted as pe+

and pe− .

2. The four-momenta of the outgoing truth-level muons, denoted as ptruth
µ+ and

ptruth
µ− .

3. The four-momenta of the outgoing detector-level muons, as reconstructed
by the detector (the effective detector output), denoted as pdet

µ+ and pdet
µ− .

Monte Carlo simulations provide a detailed description of the kinematics
involved in the particle interactions. By generating a large number of simulated
events, we can statistically analyze the properties and behavior of the particles.
The simulations take into account both the theoretical model of the interaction
and the response of the detector, allowing for a realistic representation of the
experimental setup.

The four-momenta of the incoming electrons and positrons (pe+ and pe−) serve
as the initial conditions for the simulation. Those four-momenta are not fixed,
they slightly vary for each event, and these variations are assumed to obey the
Gaussian probability distribution. The nominal energies of the particles in the
electron and positron beams are 7.007 GeV and 4.000 GeV and beams collide with
the nominal crossing angle of 83 mrad (i.e. not exactly head-on). Nominal energy
spreads are 4.41 MeV for electrons and 3.08 MeV for positrons [8, 23]. These
parameters lead to a nominal CM collision energy of 10.579 GeV with a spread
of 5.26 MeV which is also Gaussian. The real values of the CM energy and the
spread differ from its nominal values, and the goal of the thesis is to measure the
real value of the CM spread using e+e− → µ+µ− interactions.

The generated four-momenta of the outgoing muons (ptruth
µ+ and ptruth

µ− ) reflect
the theoretical predictions of the interaction. To incorporate the effects of the
detector resolution, these momenta are further processed to obtain the effective
detector output (pdet

µ+ and pdet
µ− ).

3.3 Data Transformation
First, we arranged the four-momenta into the TLorentzVector form for easier

manipulation. Next, we moved from the laboratory frame (LAB) to the center
of mass system (CMS). The center of mass system is a reference frame in which
the total momentum of the system is zero, making it particularly useful for
studying particle collisions as it simplifies the analysis of kinematic properties.



Our transformation also rotates the system in a way that ensures the collisions of
particles happen along the z-axis.

To achieve this transformation, we developed a custom function that performs
Lorentz transformations. The Lorentz transformation is a linear transformation
that preserves the spacetime interval between events in special relativity, account-
ing for both time dilation and length contraction. This transformation is essential
for accurately converting the four-momenta between different reference frames. At
Belle II the particles do not collide exactly head-on, consequently, 5 parameters
are needed to describe the Lorentz transformation to the CMS. The three of them
are components of the velocity vector of the CMS and the remaining two are the
rotation angles that ensure that in CMS the particles collide along z-axis. For the
analysis of MC events, the parameters of the Lorentz transformations are derived
from the truth average momenta of the incoming particles, whereas for data
the parameters of the transformation are obtained from dedicated calibrations
measuring the CMS velocity vector (so-called boost vector) and the incoming
electron direction in the boosted frame [24].

It is important to notice that by our definition, the parameters of the Lorentz
transformation do not incorporate residual event-by-event variations of the elec-
tron(positron) energies caused by the energy spread of the beams, i.e. the
transformation is derived from the central values of the beam’s momenta. Conse-
quently, on average, the total momentum in the CM system is zero, but there are
small fluctuations on the event-by-even basis due to the beam energy spreads -
something we intend to measure. This mimics the situation with the real data,
where we also know only values averaged over many events.

Once in the CMS, we converted the four-momenta of all muons into rapidity
along the z-axis. Rapidity is a measure used in particle physics that is related to
the angle w.r.t. z-axis and the particle velocity. It is particularly useful because,
unlike regular velocity, rapidity is additive under Lorentz transformations along
the z-axis. The rapidity y is defined in terms of the particle’s energy E and the
longitudinal component of its momentum pz as follows:

y = 1
2 ln

(︄
E + pz

E − pz

)︄
(3.1)

For highly relativistic particles with velocities close to the speed of light,
rapidity becomes almost identical to pseudorapidity, which depends only on the
polar angle θ of the particle’s momentum relative to the beam axis and is given
by:

η = − ln
(︄

tan θ2

)︄
(3.2)

This approximation is significant because our rapidity y depends primarily on
the angle θ and only slightly on the magnitude of the momentum p. Since the
precision of measuring the angle (direction of the particle’s flight) is much higher
than that of measuring the magnitude of the momentum, which is related to the
curvature of the track, this relationship allows for more accurate measurements.

For each event, the muons’ rapidity y is calculated as the average of the
rapidities of the two muons with opposite charges, i.e., µ+ and µ−. At the



detector-level the muons rapidity is:

ydet = yµ+

det + yµ−

det
2 (3.3)

Similarly, the truth-level muons rapidity ytruth is calculated as:

ytruth = yµ+

truth + yµ−

truth
2 (3.4)

For the electrons and positrons, the summed rapidity of both beams yee
(further just ’beam rapidity’) is calculated using the boost vector β. A boost
vector describes the velocity of one reference frame relative to another and is
essential for calculating the rapidity of particles in different frames. The rapidity
yee of the e+e− system is given by:

yee = atanh pee

Eee
, (3.5)

where pee is the size of the total three-momentum of the electron-positron system
and Eee is the total energy.

Then, we created histograms containing all the events to visualize the distri-
butions of the different rapidities. The histograms include:

• The e+e− rapidity histogram (yee as defined in (3.5))

• Truth-level muons rapidity histogram (ytruth as defined in (3.4))

• Detector-level muons rapidity histogram (ydet as defined in (3.3))

(a) Detector-level muons rapid-
ity histogram

(b) Truth-level muons rapidity
histogram

(c) The ee rapidity histogram

Figure 3.1 The ee, Truth-level and Detector-level rapidity histograms

At first glance, all the histograms (Figure 3.1) seem to follow Gaussian distri-
bution, but that is the case only for 3.1(c). The other two have slowly decreasing
tails, like a power function which is mostly caused by the photons radiation.
Additionally, we created resolution histograms to analyze the differences between
the calculated rapidities:

• Total resolution histogram (ydet − yee for each event)

• Truth resolution histogram (ytruth − yee for each event)



• Detector resolution histogram (ydet − ytruth for each event)

To further verify the accuracy of our transformations and the behavior of our
simulation, we generated two-dimensional histograms and sliced both of them into
five sectors to ensure that the resolutions don’t depend on the input:

• Two-dimensional histogram slices of Beam rapidity vs. Truth
resolution (yee vs. ytruth − yee)

• Two-dimensional histogram slices of Truth-level muon rapidity vs.
Detector resolution (ytruth vs. ydet − ytruth)

(a) Truth-level muons rapidity vs. Detector
resolution

(b) The ee rapidity vs. Truth resolution

Figure 3.2 Slices of two-dimensional histograms showing the relationship between
the resolution functions and their input.

These graphs (Figure 3.2) demonstrate that the resolution functions do not
heavily depend, at least in the relevant intervals, on their input, which makes
them reliable to use and are not tailored just to the data they were created on.

3.4 Convolution
Convolution is a mathematical operation that combines two functions to

produce a third function, representing how the shape of one function is modified
by the other. It is commonly used in signal processing, physics, and statistics to
analyze the effects of various filters and system responses. The convolution of two
functions f and g is defined as:

(f ⊗ g)(x) =
∫︂ ∞

−∞
f(t)g(x− t) dt (3.6)

Our motivation is to deconstruct the Detector-level muon rapidity (fµµ(ydet))
into three components: Detector Resolution Function (Rdet), Truth Resolution
Function (Rtruth) and Beam Rapidity Spread (fee(yee)):

fµµ(ydet) = Rdet ⊗Rtruth ⊗ fee(yee) (3.7)



3.4.1 Analytical Convolution of Two Functions
In a few cases, the convolution of two functions can be computed analyti-

cally. For instance, when convoluting a Gaussian function with another Gaussian
function, the resulting function is yet another Gaussian function with mixed
parameters. The degree of smearing depends on the σ parameter of the Gaussian
function. Analytical convolutions like these can be computed using software such
as Wolfram Alpha [25].

3.4.2 Numerical Convolution of Two Functions
When an analytical solution is not feasible, the convolution can be computed

by numerical integration. We will be using the Gauss-Kronrod quadrature method
[26], which is precise and uses only a handful of points, so it’s fast. This way, we will
convolute a symmetrical double-sided Crystal Ball function [27] with a Gaussian
function. The Crystal Ball function is commonly used in high-energy physics
to model the resolution of particle detectors, combining a Gaussian core with a
power-law tail to account for non-Gaussian resolution effects. The symmetrical
double-sided Crystal Ball function (from now denoted just as CB) has power tails
on both sides, and because it is symmetrical, they are the same. The functional
form of the CB function is:

CB(x;α, n, x̄, σ) = N

⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp

(︂
− (x−x̄)2

2σ2

)︂
for − α < x−x̄

σ
< α

A
(︂
B − x−x̄

σ

)︂−n
for x−x̄

σ
≤ −α

A
(︂

x−x̄
σ

−B
)︂−n

for α ≤ x−x̄
σ

(3.8)

where A and B are constants defined to ensure continuity and N ensures that the
function is normalized to 1.

Another way of computing the convolution of two functions is by using the
Fourier Transform (FT) [28], specifically the Fast Fourier Transform (FFT). The
Fourier transform is a mathematical transformation that decomposes a function
into its constituent frequencies. The FFT is exactly the same transformation, just
using a different - faster algorithm that reduces the computational complexity
from O(n2) to O(n log n), making it practical for large datasets. The FFT is an
efficient algorithm for computing the discrete Fourier transform (DFT) and its
inverse. By converting the functions into histograms, we can apply the FFT to
perform the convolution in the frequency domain and then use the inverse FFT to
transform the result back into the rapidity domain. For instance, we will use it to
compute the middle convolution in (CB ⊗G+G) ⊗ (CB ⊗G+G), the CB ⊗G
will be taken care of by the Gauss-Kronrod method.

3.4.3 Monte Carlo Convolution of Two Functions
To verify the correctness of our analytical and numerical convolutions, we use

Monte Carlo convolution [29]. This involves generating random samples from the
two functions we wish to convolve and then combining these samples to produce
a new distribution. By comparing the resulting histogram from the Monte Carlo
convolution with those obtained from analytical and numerical methods, we can
check for consistency.



Monte Carlo convolution works by:

1. Generating a random number based on the first distribution function.

2. Generating a random number based on the second distribution function.

3. Summing the two numbers (one from each function) and filling it into a
histogram.

4. Repeating steps 1-3 until we are satisfied with the number of entries in the
histogram.

This method is particularly useful when dealing with complex functions for
which analytical or numerical methods are challenging or infeasible.

3.5 Acquisition of ECMs Spread from Detector
Output

To determine the functions that best fit our histograms, we conducted several
trials and ultimately chose a custom function consisting of a smeared CB function
plus a Gaussian.This function has eight parameters: the core sigma of the CB
σCB, a shared mean µ, the α and n parameters of the CB, the smearing sigma
σ2, the sigma of the Gaussian σ3, and normalization factors for both components.
Importantly, this function is normalized, so adjusting the parameters (excluding
the normalization factors) does not affect its integral.

3.5.1 Fitting the Resolution Histograms
We fitted this custom function to both partial-resolution histograms. The

ee rapidity histogram exhibits a purely Gaussian character. All fittings were
performed on two datasets: one with a beam rapidity smear σee of 4.707 × 10−4,
and one where the beam rapidity was modeled as a delta function (no smear,
σee = 0). Shown fits on (Figure 3.4) are those of σee = 4.707 × 10−4 as the
resolution functions of the data without smearing were the same and fee(yee) was
a delta function. The graphs also contain pulls; ”pulls” are statistical measures
used to quantify the difference between observed data and theoretical predictions,
normalized by the uncertainty, often used in high-energy physics.

3.5.2 Convolution Properties and Parameter Reduction
Using the properties of convolution, we expressed the convolution of the beam

spread (fee(yee)) and the Truth Resolution Function (Rtruth) as follows:

(CB ⊗G1 +G2) ⊗G3 = CB ⊗G1 ⊗G3 +G2 ⊗G3 = CB ⊗G13 +G23, (3.9)

where G12 is a Gaussian function with parameters σ2
12 = σ2

1 +σ2
2 and µ12 = µ1 +µ2,

likewise for G13. Given these properties, we computed the convolution of the beam
spread (fee(yee)) and Rtruth by simply adjusting the parameters, as the beam spread
has a Gaussian character. In this way, we create function F ′ = Rtruth ⊗par fee(yee),



(a) Beam rapidity histogram fitted by fee(yee)
with pulls.

(b) Detector resolution histogram fitted by
Rdet with pulls.

(c) Truth resolution histogram fitted by
Rtruth with pulls.

Figure 3.3 Function fitting with pulls. Both the resolution functions and the beam
spread function fits are based on minimizing χ2/ndf.

where ⊗par stands for convolution by altering the sigma parameters. To verify
the correctness of this approach, we compared the result with the truth-level
muon rapidity histogram (ytruth) and with the Monte Carlo convolution of the
fee(yee) ⊗mc Rtruth (Figure 3.4(a)).

Following this verification, we convolved the resulting function F ′ numerically,
using the FFT method, with the Detector Resolution Function (Rdet), and checked
against the detector-level muon rapidity histogram (ydet) and the Monte Carlo
convolution of all three functions (Rdet ⊗mc Rtruth ⊗mc fee(yee)). Since the beam
spread acts as a single parameter (σee) in the overall convolution, we removed it
to obtain the Rdet ⊗Rtruth function. We then transformed this into a function F
with a single parameter σ2

ee, which we fitted to the detector-level muon rapidity
histogram and received σee = 4.771(6) × 10−4 which is not very far of from
the actual value σreal = 4.708 × 10−4. All of those 4 distribution are shown on
(Figure 3.4(b)). The F ′ ⊗fft Rdet (Green) and F (Red) are almost the same, as
the sigma parameter didn’t change much during the fitting.



(a) Truth-level convolutions with pulls. Con-
volution made by altering the sigma pa-
rameters F ′ = Rtruth ⊗par fee(yee) (Red),
Monte Carlo convolution of fee(yee) ⊗mc

Rtruth (Blue), Truth-level muon rapidity his-
togram (Black) and χ2/ndf of Truth-level
muon rapidity histogram vs F ′.

(b) Detector-level convolutions and F fit
with pulls. FFT convolution Rdet ⊗fft F ′

(Green), Monte Carlo convolution (Rdet ⊗mc

Rtruth ⊗mc fee(yee) (Blue), Detector-level
muon rapidity histogram (Black), One pa-
rameter function F fitted on detector-level
muon rapidity histogram (Red) and χ2/ndf
of Detector-level muon rapidity histogram vs
F .

Figure 3.4 Resolution functions convolved with fee, compared to truth-level and
detector-level muon rapidity spread. Contains χ2/ndf, convolutions made by the Monte
Carlo method, and pulls.

3.5.3 Testing and Calibration Curve
Next, we applied this single-parameter function to another six simulated

datasets to derive a calibration curve. Below is a table (Table 3.1) containing all
relevant information, including the statistical uncertainties of measured parameters;
the i stands for an imaginary unit, as the squared value corresponding to it
was negative. Also, there are 2 versions of the calibration curve. In the first
(Figure 3.5(a)), we use σmeasured parameter that we obtained from the fit and
σreal, which was known from the simulated data sets. If our method was perfect,
we would expect the regressions in the form of y = ax + b to have a = 1 and
b = 0. That is not the case, but the fit is close. In the second calibration curve
(Figure 3.5(b)), their squared values are used because the σ2

measured parameter that
we are actually getting from the fit yielded a negative value for the data without
smearing. Therefore, it cannot be included in the first one, and it’s not part of the
regression in the second one. We can see that even the result from data without
any smear is fairly close to the curve. This point doesn’t hold any real value for
our curve, as it wasn’t used in the regression. However, it shows that our method
isn’t too far off, even for values far from the relevant ones.

The third and final calibration curve (Figure 3.6) also incorporates the direct
relationship between rapidity spread and ECMs spread. The relationship between
rapidity spread and center-of-mass energy spread in positron-electron collisions
can be expressed through the following derivation: ECMS in positron-electron
collisions is defined as:

ECMS = 2
√︂
Ee+Ee− (3.10)



Data σreal [10−4] σ2
real [10−7] σmeasured [10−4] σ2

measured [10−7]
Original 4.708 2.216 4.771(6) 2.276(6)

No Smearing 0 0 i1.331(8) -0.177(2)
ECMS = 4.0 MeV 3.781 1.429 3.799(6) 1.443(5)
ECMS = 4.5 MeV 4.254 1.809 4.308(6) 1.856(6)
ECMS = 5.0 MeV 4.726 2.233 4.804(6) 2.308(6)
ECMS = 5.5 MeV 5.199 2.700 5.301(7) 2.811(7)
ECMS = 6.0 MeV 5.672 3.209 5.800(7) 3.384(8)
ECMS = 6.5 MeV 6.144 3.775 6.300(7) 3.970(9)

Table 3.1 Table of real σreal and measured σmeasured rapidity spread values for different
data sets.

(a) Calibration Curve for σreal(σmeasured)
with linear regression.

(b) Calibration Curve for σ2
real(σ2

measured)
with linear regression and with a data point
from data without smearing shown but not
included in the regression.

Figure 3.5 Calibration curves for σmeasured

Taking the logarithm of both sides yields:

2 ln ECMS

2 = lnEe+ + lnEe− (3.11)

The boost β, defined as β = Ee+ −Ee−
Ee+ +Ee−

, can be expressed as:

ln 1 + β

1 − β
= lnEe+ − lnEe− (3.12)

The left-hand side is related to the rapidity y, i.e.:

2y = lnEe+ − lnEe− (3.13)

lnEe+ and lnEe− are not sharp values, so the spread of the right sides of both
3.11 and 3.13 is the same. Therefore we can write:

σ
(︃

2 ln ECMS

2

)︃
= σ (2y) (3.14)

σ (lnECMS − ln 2) = σ (y) (3.15)



Figure 3.6 Calibration Curve for σreal(σmeasured).

σ (lnECMS) = σ (y) (3.16)

Given that σ (ECMS) ≪ ECMS, we can take the derivative of the left side and get:

1
ECMS

σ (ECMS) = σ (y) , (3.17)

where at Belle II the beam energy is close to the Υ(4S) mass, i.e. ≃10.58 GeV in
the studied data. The calibration curve (Figure 3.6) provides a straightforward
method for acquiring ECMs spread by fitting a single function to the detector
output and applying a simple equation. Our final regression equation is:

σECMS = [(10006 ± 28) × σy + (0.197 ± 0.014)] MeV (3.18)

Now, we would expect the regression parameter a to be equal to the ECMS ≃
10580 MeV as derived in 3.17. Which makes our a 5% from the expected value.

3.6 Application on real data
Use our model F on the real data from the Belle II experiment, we first had

to correctly convert them into rapidity histograms in CMS. The data consisting
of 1223084 events were taken from about 400 separate runs, the same runs used
in [24] , where each run ran on slightly different collision angles (Figure 3.7), so
the Lorentz transformation to CMS had to be adjusted. Then, we fit our function
F on the histogram (Figure 3.8), we just had to manually adjust the mean of F
to the mean of real data rapidities, as it was shifted a bit and then it converged
without any problems to the same value of σ = 5.08(1) × 10−4 for multiple choices
of the values of initial sigma parameter. Then, by using the regression equation
3.18, we got a result for σECMS = 5.28(1) MeV, where the uncertainty is just the
statistic one.



Figure 3.7 The time dependence of the electron (HER) and positron (LER) beam
angles in the xz and yz plane. In addition, the positron beam energy is plotted on the
right plot.[24]

Figure 3.8 Real Belle II data fitted with F .



4 Discussion
The primary objective of this thesis was to develop a novel method to measure

the center-of-mass energy spread (σECMS) using the rapidity of muons from e+e− →
µ+µ− interactions recorded by the Belle II experiment. This approach leverages
the high precision and statistical power of muon rapidity measurements, offering
an independent and potentially more accurate method compared to a traditional
technique based on B meson CMS energy, which is reliant on the shape of Υ(4S)
resonance.
Our result of σECMS = 5.28(1) MeV can be compared to 2 other results. The first
result is from the method based on B meson energy used in [5], which measured
σB meson

ECMS
= 5.4(5) MeV. Our results match, and we believe that our method will

have smaller systematic uncertainties than the B meson one; the improvement in
the statistical uncertainty is evident. The second result comes directly from the
SuperKEKB accelerator experts and is based on parameters of the accelerator
optics [23] with the electron beam spread of 4.41 MeV and the positron beam
spread of 3.08 MeV, which makes σSuperKEKB

ECMS
= 5.26 MeV. The σSuperKEKB

ECMS
should

have lower uncertainty than σB meson
ECMS

, however the exact uncertainty in unknown.

Figure 4.1 The corrected σ√
s values (i.e., σECMS) and the various uncertainties are

shown for the events used in the tau mass analysis. The average value of σ√
s during

this data-taking period is estimated as σaverage√
s

= 5.4(5) MeV [5]. The x axis is related
to the time-axis as it spans over three years of the data taking (2019-2021). It can be
seen that within the large uncertainties, the spread is consisted with a constant.

We can make an estimation of our result’s systematic uncertainty by taking
the real rapidity spread value from data σreal

y = 5.08(1)×10−4 and the model value
by putting it into the calibration curve’s regression (Equation in Figure 3.5(a))
to get σmodel

y = 4.99 × 10−4 which makes a 2% uncertainty (taking fit bias as
the model uncertainty). The other sources of uncertainty, like the precision of
the detector simulation or the precision of the parameters entering the Lorentz
transformation, are not considered in this thesis. However, we believe they will
be significantly lower than those of the B meson method of ≃ 10%. The high
statistical precision of the result would allow us to see changes in the energy
spread in time and monitor the accelerator performance.
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Our method’s precision could be improved by employing more complex func-
tions for smoother fitting and, thus, more precise convolutions. The truth-level
resolution function, which was fundamental in the final convolution, could use a
better fit on its steep peak. Truth-level resolution functions accurate determina-
tion is paramount, as it uses the sigma parameter of the rapidity beam spread
directly.

The robustness of the method was tested using MC samples with a wide range
of CMS energy spreads. By fitting the convolution-derived function to the rapidity
distributions obtained from real data, we were able to extract σECMS with a high
degree of statistical confidence.
An accurate knowledge of ECMS spread will also improve the ECMS precision,
which is crucial in knowing if the accelerator runs in the right operation point -
the Υ(4S) resonance, where the B mesons thrive. The ECMS measurement based
on B meson method will be improved if its ECMS spread input is known better,
as it can’t measure it very well on its own (see Figure 4.1).

The next step for the development of our method would be systematic un-
certainty derivation, including the detector simulation uncertainties, Lorentz
transformation parameters uncertainties used in the transformation to CMS, and
revision of the fitting functions - our model’s uncertainty, as mentioned above.



Conclusion
In conclusion, this thesis presents a new method for measuring the center-of-

mass energy spread in e+e− collisions using the rapidity of muons from e+e− →
µ+µ− interactions. The method’s robustness is validated through extensive
simulations and application to real data, yielding precise and reliable σECMS

values.
The successful implementation and validation of this technique will enhance

the Belle II experiment’s capability to perform high-precision measurements. By
improving the accuracy of ECMS spread measurements, this method supports
more precise determinations of particle masses and other fundamental parameters,
ultimately advancing our understanding of particle physics and the Standard
Model.

Future work should focus on further refining this method, especially by deriving
the systematic uncertainties, exploring its application to other collision energy
regimes, and integrating it with complementary measurement techniques for a
comprehensive approach to high-precision energy calibration at Belle II and similar
experiments.
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