
MASTER THESIS

Josef Matějka

Efficient sorting algorithms for memory
hierarchies

Computer Science Institute of Charles University

Supervisor of the master thesis: prof. Mgr. Michal Koucký, Ph.D.
Study programme: Computer Science

Study branch: Theoretical Computer Science

Prague 2024

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I want to thank my supervisor Michal Koucký for his help and guidance through
this journey, without his wisdom and insight I would be lost.

ii

Title: Efficient sorting algorithms for memory hierarchies

Author: Josef Matějka

Institute: Computer Science Institute of Charles University

Supervisor: prof. Mgr. Michal Koucký, Ph.D., Computer Science Institute of
Charles University

Abstract: In this thesis, we introduce a novel random cache-oblivious sorting
algorithm loosely based on another sorting algorithm called ColumnSort shown
in [1]. Our algorithm achieves asymptotic optimality in expected case. As it is
cache-oblivious, no further finetuning is necessary. We also demonstrate that its
implementation is straightforward and can fit in approximately 100 lines of code,
therefore we believe it is accessible and can be easily integrated into existing
systems. After we show the implementation in detail, we prove its expected and
worst running times and then we compare our implementation with the existing
implementation of FunnelSort[2] and std::sort provided by standard C++ library.

Keywords: sorting cache-oblivious, memory hierarchy

iii

Contents

Introduction 2

1 Introduction to sorting 3
1.1 Problem statement . 3
1.2 Brief overview of sorting algorithms 3

2 Description of the computation model 8
2.1 RAM model . 8
2.2 RAM model with external memory 8
2.3 Cache-oblivious sorting . 9

3 Overview of ColumnSort 10
3.1 Algorithm description . 10
3.2 Proof of correctness . 11

3.2.1 After step four . 11
3.2.2 After completion . 12

4 SquareSort algorithm 13
4.1 Algorithm overview . 13
4.2 Detailed description . 13

4.2.1 Pivot selection . 14
4.2.2 SkewTranspose . 15
4.2.3 SkewTranspose complexity analysis 17
4.2.4 Analysis expected bucket sizes 18
4.2.5 Cost of SquareSort recursive call 19
4.2.6 Best case complexity of SquareSort 20

5 Complexity of SquareSort in detail 22
5.1 About distribution of bucket sizes 22
5.2 Worst case analysis . 24
5.3 Expected case analysis . 25

6 Experiments 27
6.0.1 Results . 27
6.0.2 Cutoff . 28
6.0.3 External sorting . 29

Conclusion 31

Bibliography 32

List of Figures 34

List of Abbreviations 35

A Attachments 36
A.1 Square sort implementation . 36

1

Introduction
In this thesis, we will introduce a novel cache-oblivious sorting algorithm. Al-
though existing cache-oblivious algorithms already achieve the asymptotical opti-
mum, both in the speed and number of IO operations. The two most popular are
FunnelSort and cache-oblivious distribution sort. FunnelSort may be challenging
to implement, while distribution sort is a significantly simpler algorithm using
linear median find as a sub-routine. The verb implement means to us describing
the algorithm in a C-like pseudocode.

We thought we could develop a cache-oblivious version of the quicksort algo-
rithm. Our intuition was that random pivot selection could speed up the practical
sorting on modern computers as it is the case in Quicksort. Which has quadratic
time complexity in the worst case but is optimal on average, and it is usually
the fastest algorithm for practical sorting. In addition, random algorithms seem
easier to implement, therefore we could have an algorithm that performs well in
practice and can be described easily.

There exists a randomized cache-oblivious algorithm [3] which is mainly aimed
at multi-core parallel model. This algorithm utilizes the same approach for pivot
selection, the pivots are then used to split the array into smaller parts called
buckets that need to be sorted separately, yet their approach for dividing the
elements into the buckets differs significantly.

The main idea for all these algorithms is to recursively split n elements into
parts of size x

√
n, where usually 2 ≤ x ≤ 4. In each recursive call the number of

elements to be sorted drops exponentially therefore in a logarithmic number of
steps we reach a size of tasks that fit into the cache. FunnelSort differs the most
from other algorithms as it uses k merger to merge k sorted sequences together.
While other mentioned algorithms separate the tasks to buckets in such a manner
that any element from bucket i is less than or equal to any elements from bucket
i + 1, therefore there is no need to merge buckets after sorting we can just put
one bucket after another.

The main challenge is to select an appropriate pivot for every bucket, while the
cache-oblivious distribution sort utilizes the median-select algorithm, the square
sort and algorithm [3] utilizes randomness for pivot selection.

2

1. Introduction to sorting
Sorting is perhaps the most fundamental algorithmic problem [4]. As we will see
the problem of taking permutation of elements and ordering them in the correct
order was in some sense solved even before we were using computers. We do not
have any single algorithm that would solve all our sorting problems and therefore
there is a diverse set of algorithms solving it. We can split the algorithms into
several categories considering their time or memory complexity, stability, and
whether they are comparison-based or use other properties of the given elements.
To name a few, we have quick sort, merge sort, heap sort, bubble sort, and bucket
sort.

Each algorithm has its benefits and drawbacks, therefore it is necessary to
select the correct one for our problem since using the right sorting algorithm
can significantly reduce the time or memory complexity. For example, consider
Kruskal’s algorithm, its complexity depends on how fast we can sort the edges.
In some cases, we can use an effective algorithm for integer sorting.

All but one of the sorting algorithms we will mention here are comparison-
based sorting algorithms, which means that they need to compare elements in
order to sort them. We know, that any comparison-based algorithm must make
Ω(n log n) comparisons, but for integer sorting, we can do better. As was shown[5]
we can reduce the running time to O(n

√
log log n) in expected case.

1.1 Problem statement
As we hinted in the previous paragraphs the main problem will be sorting. We
are given elements in any order and we want to produce the sequence of the same
elements in non-decreasing order[4]. Additionally, we will require that comparison
of two elements can be done in constant time.
Input: Any permutation of n elements, a1, a2, . . . , an.
Output: A permutation of the elements, such that a1 ≤ a2 ≤ . . . ≤ an.

1.2 Brief overview of sorting algorithms
As the problem is stated we offer a short overview of current sorting algorithms.
As each of them is of theoretic interest, offers an interesting perspective to the
solution. As a bonus, all are in some way used in practice.

Radix sort

Probably the oldest sorting algorithm is Radix sort, it dates back to 1887 to the
work of Herman Hollerith on tabulating machines [6]. It represents one of the
non-comparative algorithms, which means we do not compare directly elements in
order to sort them. Instead, we assign each element to an appropriate bucket, the
buckets are already sorted and the order of the buckets imposes an order on the
elements. Suppose we have n elements consisting of at most w digits/characters.
Then the algorithm will run in w rounds, in each we create a bucket for every

3

possible digit/character and assign the element to the bucket equal to their i-th
digit.

For example suppose we have elements 542, 132, 23, 742, 11, 543, 732, 142, 131.
We will start with the least significant digit. We will create 10 buckets 0, 1, 2, 3,
4, 5, 6, 7, 8, 9 and put each number into the bucket that matches the last digit.
We obtain these buckets:

• 1 − [11, 131],

• 2 − [542, 132, 742, 732, 142],

• 3 − [23, 543],

• and the rest of the buckets are empty.

We will repeat this process, we will take the numbers in order yielded by the
buckets and put them into the new set of buckets, and match them against their
second digit.

• 1 − [11],

• 2 − [23],

• 3 − [131, 132, 732],

• 4 − [542, 742, 142, 543],

• and the rest of the buckets are empty.

Since each number has at most three digits, we will repeat the whole pro-
cess for the last time but against the last digit. This yields the sequence:
11, 23, 131, 132, 142, 542, 543, 732, 742. As we can see this algorithm has time
complexity O(nw) where n is the number of elements and w is the maximum
size of elements (in terms of digits).

Although the algorithm was known it was not utilized on early computers as
it was believed that the size of each bucket must be O(n) to hold all the elements,
therefore the algorithm would need O(nw) memory. In 1954 H. H. Seward in his
master thesis pointed out that we only need O(n + m) memory, where m is the
number of buckets.

4

Algorithm 1 RadixSort(I, w)
Input: Array I of size n.
Output: Prints elements of I in order.

1 B = makeBuckets() ; // Creates buckets, we will assume 10 buckets,
one for each digit from 0-9.

2 for i = 1, . . . , n do // Add all elements into the first bucket.
3 append(B[1], I[i]) ;
4 end
5 for i = 1, . . . , w do // For every digit.
6 B′ = makeBuckets() ;
7 for j = 1, . . . , 10 do // For every every bucket.
8 for k = 1, . . . , size(B[j]) do // For every element in the bucket.
9 digit = B[j][k][i] ; // Gets the i-th digit.

10 append(B′[digit] = B[j][k]) ;
11 end
12 end
13 B = B′

14 end
15 for j = 1, . . . , 10 do // For every every bucket.
16 for k = 1, . . . , size(B[j]) do // For every element in the bucket.
17 print B[j][k] ; // Prints elements in order.
18 end
19 end

Bubble sort

The earliest description of bubble sort (also called sinking sort) can be found in
a paper named Sorting on Electronic Computer Systems[7] where it is called the
”Sorting by exchange” algorithm. Interestingly radix sort is there also mentioned.
This algorithm iterates n times over the sequence of n elements. In each pass, it
compares two neighboring elements in the sequence and switches them whenever
they are out of order. We can imagine this process as bubbles of different sizes
going up, or alternatively as objects of different densities sinking down (hence the
second name).

For example, consider sequence 542, 132, 23, 742, 11, 543, 732, 142, 131. We
compare 542 with 132 since they are out of order we swap them. Then compare
542 with 23, and swap them again. Continuing these exchanges until we arrive
at the end of the sequence obtaining 132, 23, 542, 11, 543, 732, 142, 131. Then
we go back to the first element and repeat this process, yielding 23, 132, 11, 542,
543, 142, 131, 732, 742. In i-th such pass the i-th largest element will be at the
correct position, therefore we need to iterate through the sequence n times. The
time complexity is O(n2) and the memory complexity is O(n).

5

Algorithm 2 BubbleSort(I)
Input: Array I of size n.
Output: Array I with elements sorted.

20 for i = 1, . . . , n − 1 do
21 for j = 1, . . . , n − i do
22 if I[j] > I[j + 1] then // If I[j] is greater than I[j + 1] swap

them.
23 swap I[j], I[j + 1] ;
24 end
25 end
26 end
27 return I ;

Insertion sort

We will introduce another sorting algorithm that has the same time complexity,
quadratic, as bubble sort, but in practice is faster[8]. Its name is insertion sort.
It is a simple algorithm, which can be implemented in three lines of C++ code.
Although we have asymptotically faster algorithms than this, it is still used for
sorting arrays smaller than a given constant and it is still used in hybrid sorting
algorithms like introsort.

Suppose we are given input of n elements in array I. We start with a sorted
array O which will be empty at the start. In each step, we take the first element
from the array I and we will put it in the right place in the array O. If we take the
sequence 542, 132, 23, 742, 11, 543, 732, 142, 131 again. In the first step, we take
542 from I and put it into O, then we take 132, which in O belongs to the first
index, therefore we need to move 542 to the second one. We continue this until
there is no element left in the array I. As every insert can potentially necessitate
moving all elements from O every insert takes O(n), therefore together it takes
O(n2).

6

Algorithm 3 InsertionSort(I)
Input: An array I of size n.
Output: Array O with elements sorted.

28 O = copy(I) ; // Allocate output array O.

29 for i = 1, . . . , n do // For every element in I.
30 element = I[i] ;
31 for j = 1, . . . , i − 1 do
32 if element < O[j] then // Find the position for the element and

move all the items after it.
33 swap O[j], element ;
34 end
35 end
36 O[i] = element ;
37 end
38 return O

Heapsort

Sorting can be simplified if we use the right data structure for our data. This
approach was discovered by Williams[9] in 1964 who also discovered heap data
structure. Heapsort is also part of introsort, where it is used whenever the quick-
sort degenerates and requires too many recursive calls. In that case, we can fall
back to this algorithm which has time complexity O(n log n).

The goal is to take the input, put it into a heap, and then by n times calling
extract-min we can obtain all elements in the correct order. We can build the
heap over the input array needing only constant additional memory. Of course,
we must check and fix the heap property, meaning we want both children of any
node to be less than or equal to their parent. After that we can work with the
array as we would with a regular heap.

Quicksort

Quicksort is probably the go-to algorithm for sorting. It was discovered by
Hoare[10] already in 1959 but he published it in 1962. It is a representation
of the divide-and-conquer algorithm, it uses a theory of probability for reasoning
about its efficiency. Therefore we talk about expected time complexity, which is
O(n log n), but in worst case the complexity is O(n2). In practice, it is usually
faster than heapsort, especially on random data.

In each step, we want to split the input array into two parts, which will be in
the best-case scenario of similar lengths. For that, we select one element called
pivot. We put all elements less than pivot into the first part, while the rest will
be in the second. After that we have two smaller problems, and we recurse on
them. We do this until the size of the array is not constant.

7

2. Description of the
computation model
To be able to speak about complexity we need to define the model we will be
working with as we cannot reason about memory or time complexity if we do not
know how much each operation takes or how the memory is organized. We use a
random access machine[11][12] - which is also sometimes called register machine -
we will abbreviate it as RAM. This model approaches real computers sufficiently
well and it is commonly used for algorithm analysis.

2.1 RAM model
The model consists of registers - this is our memory. There is an infinite number
of them, but we will measure how many the algorithm needs to use. Each reg-
ister can hold any integer of size O(log n)-bits. If the size of integers would be
unbounded we could encode all the information the algorithm needs into a single
register which is unrealistic.

We can divide the instruction set of the model into four categories:

• Instructions for integer arithmetic.

• Instructions for reading/writing from/into registers.

• Instruction for control of program flow.

• Instructions for reading/printing the input/output.

We will model our instruction set as a subset of C language. For the arith-
metics we will have +, −, ∗, /, %, we will also include integer comparison like
==, <, >, <=, =>. For reading and writing, we use assignment =. For control
flow, we will have for, while loops, and if /else statements. We will also work with
functions therefore we need to be able to call them and return from them. As we
will also need random bits, we will add to the model instruction for obtaining a
single random bit. This random instruction will return either 0 or 1 with uniform
probability. Using this instruction we can also generate random integers.

The algorithm will be a sequence of instructions in read-only memory, there-
fore our theoretical machine will have Harvard architecture. The algorithm will
run until it reaches the last instruction in the sequence then it stops. As there
are instructions that control the flow, it can happen that a program will run
forever. We will not consider such programs correct, the same applies if there is
division by zero. Each instruction will take a single unit of time, therefore the
time complexity is a sum of executed instructions by the program.

2.2 RAM model with external memory
We have stated that the RAM approximates real computers sufficiently well.
This is true in terms of the instruction set and how the memory can be accessed.

8

Unfortunately, it does not account for the memory hierarchy. As reading from
memory takes in modern computers non-trivial time, we have equipped CPUs
with cache. If data is needed and it is not available in the cache the processor
must first load it into the cache and then work with them.

As real CPUs are complicated, they have several layers of cache, they can differ
in cache placement and replacement policies, we will utilize a theoretical model
called (M, B)-ideal cache model defined in [13], and [14]. This model has only
two layers of memory (cache and external memory), optimal cache replacement
strategy, and full associativity of the cache.

In our model, the registers can be thought of as the external memory. In
order to work with them we need to load them into the cache. As the size of the
cache is M - meaning we can fit M integers of size O(log n) inside, it can easily
happen that our cache is full. In that case, the cache will evict some data, our
cache model knows what data to evict in order to minimize the cache misses. A
cache miss event occurs when we cannot find data in the cache and we need to
load them. On the other hand, when the data is found in the cache, we call this
cache hit.

The other parameter B tells us how many integers fit into a single cache line.
To simulate reality we cannot load a single piece of data, but the whole cache line
only. This means that also our external memory needs to be split into these lines.
We have also one more assumption on the relation between M and B, which is
called tall cache. We want M = Ω(B2). It can be shown that this assumption is
necessary to build an optimal cache-oblivious sorting algorithm [15].

The goal is to minimize the number of cache misses the algorithm does while
it cannot use any knowledge about M and B. We call such algorithm cache-
oblivious. It means that no matter our cache hierarchy in the computer the
algorithm without any fine-tuning utilizes the cache in an asymptotically optimal
way. If we adjust the algorithm using parameters M and B we obtain a so-called
cache-aware algorithm.

Our model may seem to have too strong assumptions and maybe such a model
can be seen as impractical since we cannot create a cache that would fulfill all the
assumptions. It has been shown that any algorithm running on the ideal (M, B)
cache model can be ported to LRU (least recently used) (2M, B) cache model
while incurring at most double the number of cache misses[13]. Furthermore,
empirical results show that using this model is justified.

2.3 Cache-oblivious sorting
The IO complexity of classical sorting algorithms was studied and tested in [16].
We know that utilizing the cache can speed up the algorithm significantly despite
the fact we end with longer and more complex code. Another example of a signif-
icant increase in speed by lowering the number of cache misses is Yaroslavskiy’s
Quicksort, which uses two pivots[17][18].

The next natural question is whether we can improve the speed even further
by creating an algorithm that is asymptotically optimal in IO operations. It
was shown in [19] that the optimal lower bound is O (n logM n) along with two
well-known cache-oblivious sorting algorithms, FunnelSort and distribution sort.

9

3. Overview of ColumnSort
Before we dive into the SquareSort we would like to spend a few words about
another sorting algorithm, which served as an inspiration. It is called ColumnSort
and it was discovered by Leighton[1] in his paper giving tight bounds on the
parallel sorting. While his computation model was different, as the algorithm
was developed for parallel computation with O(n) processors which will sort n
numbers in O(log n) steps, the ideas can be converted for sequential RAM and
create a cache-oblivious algorithm.

3.1 Algorithm description
Let the input I be a r×s matrix of numbers where rs = n, s | r and r ≥ 2(s−1)2.
The output O of the algorithm will be again a matrix where each column will be
sorted and any element from i-th column will be less than or equal to any column
from j-th column where 1 ≤ i < j ≤ s. Rank p for element on position i, j is
p = i + jr.

The algorithm itself consists from 8 steps. Steps 1, 3, 5, 7 sort all elements in
each distinct column, while steps 2, 4, 6, 8 permute the elements of the matrix.
The first kind of permutation done in step 2 is called ”transposition” - while it is
not transposition in the traditional sense it is similar. The entries of the matrix
will be picked column by column and we will fill rows with them. As the rows
are smaller than the columns, one column can fill multiple rows. The operation
in step 4 is inverse to the ”transposition” we will pick each row and save it into
columns.

a g m

b h n

c i o

d j p

e k q

f l r

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

a b c

d e f

g h i

j k l

m n o
p q r

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Step 2

Step 4

Figure 3.1: The transpose and untranspose permutations in Steps 2 and 4, re-
spectively.

The last kind of permutation is called shift. The entries of the matrix need
to be shifted by ⌈s/2⌉ position in each column, while the elements that do not fit
into their column anymore need to be moved to the next column. This operation
will add one column to the matrix. We fill the first half of the first column by
−∞ and the last half of the last column by ∞. We do this in step 6 and in step
8 we do the inverse operation to shift.

10

a g m

b h n

c i o

d j p

e k q

f l r

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−∞ d j p

−∞ e k q

−∞ f l r

a g m ∞
b h n ∞
c i o ∞

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Step 6

Step 8

Figure 3.2: The shift and unshift permutations in Steps 6 and 8, respectively.

3.2 Proof of correctness
The proof of correctness of the algorithm can be split into two parts. First, we
will analyze the rank of any element after step four is done, we will show that
in that case, the position of said element is within (s − 1)2 places of its correct
position. Assuming this we then will show that the rest of steps is sufficient to
sort the matrix.

3.2.1 After step four
We will define ranks(x) which is an index of element x in the sorted sequence,
this is zero-based. We also define ranki(x) which is an index in the current matrix
after the step i - if x lies in the matrix at position i, j, then its index is ri + j,
again the positions are zero-based.

Let Qi be the matrix after the i-th step of the main program. This means
that Q0 is the original matrix we will use for sorting, Q1 is the matrix after the
first sorting of the columns and Q8 is the resulting matrix. We will also establish
ranki(x) and we will compare it to ranks(x) rank of x.

Take the element x in Q3, it lies on the position i, j. Now we will calculate
how the position changes when we do the transpose operation, therefore what is
its position in Q4. As untransposition puts the rows into columns, we can see
that the new position is rank4(x) = si + j.

Now we wish to argue about some properties of x in Q3. Elements in the
columns are sorted therefore each item before x in the same column must be
lower or equal to x. This means there are i elements and if we check which
column these elements occupy in Q1 we can see that i = ∑︁s

k=1 ak. Where ak is
the number of elements in k-th column in Q1 that are currently in Q3 lower or
equal to x.

We wish to compute |rank3(x)−ranks(x)|. For each ak but last we know that
there were s lower elements in Q1 since it still holds that after step 3 the rows are
non-decreasing. Therefore we can get lower and upper bound for the ranks(x).

ranks(x) ≥
(︄

s∑︂
k=1

(ak − 1)s + j + 1
)︄

− 1

ranks(x) ≥ si − s2 + sj + s − 1 ≥ si + sj − (s − 1)2

11

For the upper bound, we will proceed in similar fashion. The number of
elements that are bigger than x in j-th column is r − i = ∑︁s

k=1 ak, this leads to

ranks(x) ≤
s∑︂

k=1
(ak − 1)s + s − j

ranks(x) ≤ rs − si − s2 + s2 − sj = si + sj

Now we only need to compare our ranks with rank4(x):

rank4(x) − si − sj + (s − 1)2 = (s − j)2 − j(s − 1) ≤ (s − 1)2

si + sj − rank4(x) = j(s − 1) ≤ (s − 1)2

Therefore we know that the rank4(x) differs from ranks(x) at most by (s − 1)2.

3.2.2 After completion
After step 5 we can observe that if x is in the top half of a column it either will end
there or it could be possibly somewhere in the bottom half of the column preceding
x. Since the current position differs from the rank at most by (s − 1)2 < r. This
is the reason we need to utilize shift, to compare the element x with elements
in the preceding column. Sort the columns again, and then proceed to unshift.
After the algorithm completes we will obtain a sorted matrix, where the sorted
sequence is given by the columns.

12

4. SquareSort algorithm
In this chapter, we will introduce our cache-oblivious sorting algorithm, which
is asymptotically optimal, yet uses a different approach than FunnelSort and
Distribution sort. It could be an easier-to-implement alternative, especially to
the FunnelSort. Our experiments also hint that SquareSort may be faster in
practice. Unfortunately, both algorithms are still slower than introsort algorithm
implemented in GCC and Microsoft standard C++ libraries.

4.1 Algorithm overview
The algorithm is inspired by the ColumnSort algorithm of Leighton[1]. It has
some resemblance to the distribution sort[14] algorithm for various cache models
and it also has some similarities with the cache-oblivious version of distribution
sort. The input is seen as m × m square matrix, where m =

√
n. It is a recursive

algorithm. In each call, it recursively sorts the columns of the matrix, and then
it performs skew transposition. Afterward, it sorts the columns given by skew
transposition again.

The main subprocedure of the algorithm called skew transposition should in
the ideal case split the matrix into m columns of size m, the transposition also
imposes order on the columns. Meaning that any element from one column is less
than or equal to any element from the next column. Therefore when the elements
inside every column are sorted the whole matrix is sorted. For the transposition,
we need m − 1 pivots that split the elements into sets of roughly equal sizes, in
this step we defer to randomness and select the pivots by chance. This approach
is similar to the quicksort pivot selection.

The key insight is that we can perform skew transposition while keeping the
number of IO operations in O(m + n/B). We utilize the divide-and-conquer
strategy that can be found in many cache-oblivious algorithms and mainly in the
cache-oblivious matrix transposition algorithm.

√
n

√
n Sort > > > > > > > > Skew

transpose

<<<<<<<

Sort

<<<<<<<

> > > > > > > >

Figure 4.1: An illustration of the SquareSort algorithm.

4.2 Detailed description
To simplify the description of the algorithm we will assume that the elements in
the input array I are distinct. We take the elements from I and return them
ordered in output array O. The elements in the input array may be permuted
after the procedure.

13

The procedure as the first step checks the size of I, if it is less than some
constant we will sort the array using any other sorting algorithm, this is our base
case. After that, the input needs to be partitioned into m columns, where each
column has size at most m =

√
n. We will store the beginning of each column in

the array Cs[1 . . . m], also for each column we will have an index pointing to the
first element after the given column in the array Ce[1 . . . m]. Once we have the
columns determined we will sort them using a recursive call.

In the next stage we need to select m − 1 distinct pivots and put them in the
array P [1 . . . m − 1], we will also define P [0] = −∞ and P [m] = ∞. Each pivot
determines a bucket of elements. The quality of the pivots determines the size
of the buckets. As we have the pivots we can compute the size of each bucket
and save this information to array Bs[1 . . . m]. Using this we can also calculate
the last index of each bucket in the output array O, we will save these indices in
the auxiliary array Bi[1 . . . m]. Now we have sufficient information to start the
SkewTranspose sub-procedure, which transposes the data from array I and puts
them to the output array O. After that, we need to sort recursively each bucket.

Algorithm 4 SquareSort(I, O, n)
Input: Arrays I and O of size n.
Output: Sorts items from I into O.

39 if n ≤ 16 then
40 simple sort(I, O, n); ; // sort small arrays directly
41 end
42 m = ⌈

√
n⌉;

43 Allocate arrays Cs[1 . . . m], Ce[1 . . . m], P [1 . . . m], Bs[0 . . . m], and Bi[0 . . . m];
44 for i = 1, . . . , m do // calculate span of each column
45 Cs[i] = 1 + min((i − 1) ∗ m, n); Ce[i] = 1 + min(i ∗ m, n);
46 end
47 for i = 1, . . . , m do // sort each column of I into O
48 SquareSort(I[Cs[i], Ce[i] − 1], O[Cs[i], Ce[i] − 1], Ce[i] − Cs[i]);
49 end
50 Sample uniformly at random set S of m − 1 distinct elements from I \ {min(I)}

and sort S ∪ {−∞, ∞} into P [0 . . . m] ; // select pivots

51 Calculate Bi[1 . . . m], where Bs[j] = 1 + |{t ∈ {1, . . . , n}; O[t] < P [j]}|
52 SkewTranspose(I, O, m, Cs, Ce, m, P, Bi); ; // skew transpose I into O

53 Set Bi[0] = 1 ; // SkewTranspose shifted Bi[1 . . . m] by one position
54 for j = 1, . . . , m do // sort each bucket from I into O
55 SquareSort(I[Bi[j − 1], Bi[j]], D[Bi[j − 1], Bi[j]], Bi[j] − Bi[j − 1]);
56 end

4.2.1 Pivot selection
The selection of the pivots can be done by sampling m − 1 elements from D
uniformly at random. Whenever any element is picked multiple times we can
restart the sampling. Analyzing this is akin to analyzing the famous Birthday
paradox, but in our case, we do not have 365 days, but n. Nevertheless, the

14

probability that we pick any element multiple times is bounded by a constant.
Therefore in expectation, there will be also a constant number of restarts. We
also can add further requirements to the pivots, we wish that the least pivot is
distinct from the least element in I. This can be verified by checking the least
element in each sorted column.

To show this we start by bounding the probability that no element was picked
multiple times denoted as p(n) where n is the number of pivots we wish to choose.
In our algorithm the n > 16, therefore m

n
< 1

2 . This can be expressed as

p(m − 1) =
m−2∏︂
k=1

(︄
1 − k

n

)︄
≥

m−2∏︂
k=1

e−2 k
n .

We used the well known bound 1−x > e−2x which holds for x ∈ [0, 1
2][20]. We

can sum the exponents utilizing another well known expression ∑︁n
i=1 i = n(n+1)

2 .

p(m − 1) ≥ e− (m−2)(m−1)
n = e−1+ 3

m
+ 2

n >
1
e

> 0.3

4.2.2 SkewTranspose
A skew transposition takes pivots P , bucket indices Bi and sizes Bs, input I, and
output O array and transforms the data from I columns to buckets in O. As each
bucket is defined by its pivot, it holds that any element from i-th bucket is less
than any element from j-th bucket, where i < j, therefore as the buckets itself
become sorted the whole output array O will be sorted.

To better illustrate how SkewTranspose works we start with a naive version.
The idea is to iterate through each sorted column Cs[i] for i ∈ [1 . . . m]. For every
element e in the column, we want to determine to which bucket belongs meaning
we are looking for i such that P [i − 1] < e ≤ P [i]. Then we move e to A[Bi[i]]
and increment Bi[i] by one.

Algorithm 5 NaiveSkewTranspose(I, O, ℓ, Cs, Ce, k, P, Bi)
Input: A source array I, a destination array O, starting positions Cs[1, ℓ] of

sorted sub-columns in I, Ce[1, ℓ] upper-bound positions of sub-columns
in I, k pivots P [1, k] and positions Bi[1, k] of free slots in corresponding
buckets in O.

Output: Moves items of sub-columns Cs[1, ℓ] that are less than P [k] into their
respective buckets in O. Updates Cs[1, ℓ] and Bi[1, k] which are passed
by reference.

57 for i = 1, . . . , k do
58 for j = 1, . . . , ℓ do
59 while Cs[j] < Ce[j] and O[Cs[j]] ≤ P [i] do
60 O[Bi[i]] = I[Cs[j]];
61 Bi[i] = Bi[i] + 1;
62 Cs[j] = Cs[j] + 1;
63 end
64 end
65 end

15

The problem with this approach is that we can incur a cache miss for each
element of a column if each element belongs to a different bucket. This means
that the whole transposition can take O(n) IO operations, which is as bad as
it can get. As we have a constant number of IOs for every element. We want
to lower this to O(n/B), which utilizes the caches in an asymptotically optimal
manner.

As is common in cache-oblivious algorithms we will employ the divide and
conquer strategy. There is no need to transform the whole column before we
move to the next one. In fact, at the start, we can divide the work into four
parts. One part will solve the first half of columns [1 . . . m/2] using the first
half of buckets, the second part will solve the second half of buckets in the same
columns, and analogously third and fourth parts will solve columns [m/2 . . . m].
Notice that we solve every part by a recursive call to SkewTranspose. We continue
this division of work until the size of the column to be transposed is trivial, now
we can employ the naive approach.

P [1] ≤

Cs[i]

< P [ℓ]

i

Ce[i]
ℓ

Bi[j]j

Figure 4.2: Illustration of a call to SkewTranspose. Pointers Cs[i] and Bi[j] will
advance during the procedure.

Another important detail is that we need to pass the arrays Cs and Bi as a
reference (memory pointer) since we modify them in each NaiveSkewTranspose
call. The Cs serves as a mark where in each column we have ended and what
element needs to be taken of next and in a similar matter Bi tells us at which
index we put the next element to the appropriate bucket.

16

Algorithm 6 SkewTranspose(I, O, ℓ, Cs, Ce, k, P, Bi)
Input: A source array I, a destination array O, starting positions Cs[1, ℓ] of

sorted sub-columns in I, Ce[1, ℓ] upper-bound positions of sub-columns
in I, k pivots P [1, k] and positions Bi[1, k] of free slots in corresponding
buckets in O.

Output: Moves items of sub-columns Cs[1, ℓ] that are less than P [k] into their
respective buckets in O. Updates Cs[1, ℓ] and Bi[1, k] which are passed
by reference.

66 if ℓ < 4 or k < 4 then
67 NaiveSkewTranspose(I, O, ℓ, Cs, Ce, k, P, Bi).
68 end
69 ℓ′ = ⌊ℓ/2⌋;
70 k′ = ⌊k/2⌋;
71 SkewTranspose(I, O, ℓ′, Cs[1, ℓ′], Ce[1, ℓ′], k′, P [1, k′], Bi[1, k′]);
72 SkewTranspose(I, O, ℓ − ℓ′, Cs[ℓ′ + 1, ℓ], Ce[ℓ′ + 1, ℓ], k′, P [1, k′], Bi[1, k′]);
73 SkewTranspose(I, O, ℓ′, Cs[1, ℓ′], Ce[1, ℓ′], k − k′, P [k′ + 1, k], Bi[k′ + 1, k]);
74 SkewTranspose(I, O, ℓ−ℓ′, Cs[ℓ′ +1, ℓ], Ce[ℓ′ +1, ℓ], k−k′, P [k′ +1, k], Bi[k′ +1, k]);

4.2.3 SkewTranspose complexity analysis
Procedure SkewTranspose is an integral part of the SquareSort algorithm and
it can lead to cache-oblivious sorting only if it is asymptotically optimal in the
number of possible IO operations. We will analyze its cache complexity in this
section. Assume that we have array I with its columns sorted, the length of I is
n ≥ 4. Let m =

√
n, we have arrays Cs[1, . . . , m], and Ce[1, . . . m] which store

starting and ending indices for every column in I. We have also selected m + 1
pivots and put them in the array P [0, . . . , m], the first and last elements are
P [0] = −∞, P [m] = ∞, while the rest is randomly selected from elements of I.
We also have array Bi[1, . . . , m] which stores the starting index of every bucket
in the array O.

Lemma 4.2.1. There exists cST > 0 such that for any n ≥ 4, m = ⌈
√

n⌉, B ≥
cST , M ≥ B2, SkewTranspose(I, O, m, Cs, Ce, m, P, Bi) causes at most O(1 +
n/B) IO’s.

Proof. We start with an observation about the relation between arguments ℓ
and k during the recursive calls. For the first call to SkewTranspose we have
ℓ = k = m, we claim that in each call |l − k| ≤ 1. We analyze two cases:

• k = l then |l′ − k′| = 0, |l′ − k + k′| ≤ 1, |l − l′ − k′| ≤ 1, |l − l′ − k + k′| ≤ 1,

• |l−k| = 1 then |l′−k′| = 1, |l′−k+k′| ≤ 1, |l−l′−k′| ≤ 1, |l−l′−k+k′| = 1.

As the depth of the recursion is given by ℓ or k and they differ by at most
one, we can observe that it is bounded by log2 m + 1. The arguments of each
call consist of references and integers only, we pass arrays as references and span
inside them as two indices, therefore we can bound each call by a constant. This
means that the memory needed to remember all recursive calls is bounded by
O(log m).

17

The next portion of our proof consists of determining the size of k and ℓ
such that we can load the whole computation of SkewTranspose into memory
and determine the number of IO operations during the computation. Consider
k < B/4 which implies l ≤ k + 1 ≤ B/4. The subsequent depth of recursion is
also bounded by min(ℓ, k) < B/4, the local variables and parameters of recursion
of each SkewTranspose call is bounded by a constant (we will assume that it fits
into a single cache line). To hold each relevant block of data from arrays Cs, Ce, P ,
and Bi we need a constant number of cache lines. Finally, we need a cache line
for each column/bucket we are transforming the data from/to, therefore we need
≤ B/2 lines. Therefore as k < B/4 we can fit the whole computation into cache.

The number of cache misses depends on the number of elements we move
from the columns to the buckets. Consider sets I and J , which consist of sets
of indices from [m]. Each set i ∈ I corresponds to columns, and each set j ∈ J
corresponds to buckets we are working with in each SkewTranspose call where
k < B/4. Therefore, |i|, |j| ≤ B/4. In each such call we move ni,j elements,
where ∑︁(i,j)∈I×J ni,j = n. From that, for each (i, j) pair as we can fit all necessary
information into the cache, we have B + 2ni,j

B
IO’s.

The outermost call to SkewTranspose with k = m will need to visit every
(i, j) ∈ I × J , this is also the number of calls to SkewTranspose with k < B/4,
which is bounded by (︃⌈︃8m

B

⌉︃)︃2
≤ 128n

B2

Each internal node of the recursive call tree we have presented will incur one
IO operation on a call stack as the parameters and local variable fit into one
cache line. Therefore the number of IO operations given by the outermost
SkewTranspose is given by:

128n

B2 +
∑︂

(i,j)∈I×J

(︃
B + ni,j

B

)︃
≤ 128n

B2 + 128nB

B2 + n

B
≤ 131n

B

If n ≤ B2/8 ≤ M/8 we can store the call stack and arrays I and O in the
cache, therefore utilizing only a constant number of operations, which gives the
complexity O(1 + n/B) of IO operations.

4.2.4 Analysis expected bucket sizes
The complexity of the whole SquareSort algorithm depends on the size of buckets
which is given by the quality of sampled pivots from our array I. In each call
of SquareSort we are tasked with selecting m =

√
n pivots P [0 . . . m] where

P [0] = −∞, P [1] ̸= min(I), and P [m] = ∞. We will denote the distribution
of the bucket sizes by µm

n , we will also denote size of each bucket by numbers
n1, . . . , nm.

Lemma 4.2.2. Let P be array of m selected pivots at random without repetition
from the (n − 1) elements of array I without the least element min(I). Then the
expected size of bucket given by P is

n

m
.

18

Proof. Consider the array P with the elements sorted, they have been selected
uniformly at random from I without the min(I) element. Consider it sorted,
then each element has a single index it lies on, consider this index to be the rank
of the element. We will focus on the expected distance between ranks of two
neighboring pivots P [i] and P [i + 1]. Take the first pair P [1] and P [2] then

E [P [1]|P [2] = r] =
r−1∑︂
i=1

i

r
= r

2

as P [1] can be any number with rank between 1 and r − 1 with equal probability.
This observation can be extended for every P [j] : j ∈ {2, . . . , m−2}. Similarly,

we fix values P [j − 1] = r and P [j + 1] = s, then we have an equal probability to
select any number from span r + 1, . . . , s − 1 which gives

E [P [j]|P [j − 1] = r ∧ P [j + 1] = s] =
s−r+1∑︂

i=1

i

s − r
= s − r

2 .

Lastly the same rationale goes for the last P [m − 1], where we consider the
distance between rank of P [m − 2] and the maximum rank n − 1:

E [P [m − 1]|P [m − 2] = r] =
n−r∑︂
i=1

i

n − 1 − r
= n − 1 − r

2 .

From our analysis, we can conclude that whenever we pick three neighboring
pivots, the expected size of two given buckets is the same. We say that rank of
P [0] = 0 and rank of P [m+1] = n then we can claim E [P [1]] = E [P [2] − P [1]] =
· · · = E [P [j] − P [j − 1]] = · · · = E [P [m]]. Therefore the expected size of each
bucket is

n

m
.

4.2.5 Cost of SquareSort recursive call
We want to observe how much memory each call to SquareSort needs, as we men-
tioned before since we only need pointers to the necessary arrays and start/end
indices, each call therefore cost a constant memory to store the arguments. Then
we allocate five arrays (Cs, Ce, P, Bs, Bi) of size m ≤ ⌈

√
n⌉, in each call we shrink

the array I by at least m − 1 elements. Summing these memory requirements
together we observe, that each call needs at most cam memory and the whole
stack needs O(n) memory since in each call the array shrink by m − 1 elements.

In SquareSort we call SkewTranspose, its memory requirements can be also
bound by c1n where c1 is a constant. We also call merge sort for sorting the
pivots, again we can bound the memory requirements by c2n > c2m log m. Let’s
bound both these constants by cst. This means that as n shrinks to a size below
αM , where α = 1

2(cst+2) we can fit the whole computation into cache and we add
only O(1 + n

B
) IO operations.

For the n ≥ αM , the memory requirements for argument calls are still con-
stant. We need to allocate arrays of size m that can be done in O(1 + n

B
) IO’s.

Selecting pivots repeats constant times in expectation, therefore for this part,

19

we obtain O(1 + n
B

) IO’s. Sorting done for n < 16 can be bound by a constant
number of IO’s. Therefore the amount of cache misses excluding the calls to
SquareSort are in O(1 + n

B
), this means that the complexity for n ≥ αM can be

expressed as T (n) = mT (m) +∑︁m−1
i=0 T (ni) + O(1 + n

B
), where ni represent a size

of i-th bucket obtained from the pivot selection.

4.2.6 Best case complexity of SquareSort
In this section we will be focused on complexity SquareSort in the best case
scenario. The amount of work can be described by recursive formula W (n) =
2
√

nW (
√

n) + O(n) as in the procedure we make two recursive calls to the
SquareSort, one call SkewTranspose and prepare arrays Cs, Ce, Bi and P . Since
the size of each bucket will be m =

√
n the second call to SquareSort will take

the same amount of work as the first one.
We can represent the formula as a recursive tree with a root. The root has√

n children, each operating on a column of size
√

n, and each such node has
4
√

n children with column size also 4
√

n, we continue this on each level we apply
square root on number of children and the size of the column. This means that
the depth of the tree can be found by solving

n
1

2d = 2,

1
2d

log2 n = 1,

log2 log2 n = d.
On each i-th level of the tree, we need to perform 2i · O(n) work, therefore

the total amount of work is given by

log2 log2 n∑︂
i=0

2i · O(n) ≤ 2 log2 n · O(n) = O(n log2 n).

Which can be solved using well known formula ∑︁n
i=0 2i = 2n+1 − 1. Therefore

from the point of time complexity is our algorithm optimal in expectation.
The number of IO operations follows a similar recursive formula, but now we

need to consider two cases. One is when we can bound the used memory by a
universal constant α times the size of cache M , while the second case applies
whenever the used memory is over αM .

T (n) ≤

⎧⎨⎩O
(︂
1 + n

B

)︂
, if n ≤ αM

2
√

nT (
√

n) + O
(︂
1 + n

B

)︂
, n > αM.

Again we can solve this recurrence using the same logic as before. The depth
of recursion changes slightly as whenever the size of work is less than αM , since
from that point we can solve the sorting using only a constant number of IO
operations. Therefore

n
1

2d = αM ,
1
2d

logαM n = 1,

20

log2 logαM n = d.
We combine this result with our previous analysis of the tree yielding the IO
complexity of 2 logαM n · O(1 + n

B
) therefore we obtain

O
(︃

1 + n

B
(1 + logαM n)

)︃
.

21

5. Complexity of SquareSort in
detail
In the previous chapter we have introduced the SquareSort algorithm along with
its complexity analysis in the best case, but we have to yet discuss the distribution
µm

n which is a distribution of bucket sizes given by randomly selected pivot. We
would like to give bounds on the probabilities that the size of a bucket is in the
desired span and ultimately show that the expected complexity is not far from
the best case. Also, we cannot forget to talk about the worst-case complexity,
when we are unlucky and we cannot hit the appropriate pivots in our selection.

5.1 About distribution of bucket sizes
We start by bounding the probability that i-th bucket size denoted ni will be
greater than t

√
n ≤ ni where is t > 1. This bound allows us to investigate

µm
n distribution and therefore the behavior of the algorithm better. Let us just

reiterate, that the buckets are derived from the pivots, which are sampled at
random without repetition from the input array I.

Lemma 5.1.1. For any n ≥ 100, m = ⌈
√

n⌉, i ∈ {1, . . . , m}, t > 1 the
Pr(n1,...,nm)∼µm

n
[ni ≥ t

√
n] ≤ e−0.9t+0.1.

Proof. As the probabilities on distribution for any ni are the same, we will fix
i = 1. This means that the bucket size is given by how many elements in I are
≤ P [1], where P [1] denotes the first sampled pivot, or equally we can say that
we are interested in the rank of this pivot. The pivots are unique, we selected
m − 1 elements from I universally at random, but whenever we sample any
element multiple times, we restart this process. In the previous chapter, we have
concluded that this sampling can take constant restarts in expectation.

We start by bounding the probability that the i-th selected element does have
rank in {2, . . . , ⌈t

√
n⌉}, then we take the complement of this probability and we

are interested in the intersection of this event over all possible i. This gives

Pr
n1∼µm

n

[n1 ≥ t
√

n] ≤
(︄

1 − t
√

n − 1
n

)︄√
n−1

≤ e− (t
√

n−1)·(
√

n−1)
n ≤ e−t· n−

√
n

n
+

√
n−1
n ,

which can be further simplified. As we are interested only in minimum possible
value for fraction n−

√
n

n
and maximum for

√
n−1
n

. Since solving these gives the
upper bound on the probability. Therefore we can conclude that the probability
is

≤ e−0.9t+0.1.

We are not only interested in the probability of buckets being greater than
desired but also in buckets that are much smaller than needed. For this, we will
bound the probability of bucket i having size ni ≤ s where s ≥ 2. In contrast to
the first bound, this bound tells us about buckets that have at most ”constant”
size, where the constant is given by the parameter s.

22

Lemma 5.1.2. For any n ≥ 100, m = ⌈
√

n⌉, i ∈ {1, . . . , m}, s ≥ 1 the
Pr(n1,...,nm)∼µm

n
[ni ≤ s] ≤ 2s√

n
.

Proof. As in the last proof we fix i to be 1, therefore we are only interested in n1.
This means at least one selected pivot must have a rank from the set {2, . . . , s},
therefore the probability of a pivot having such rank can be upper bound by
s
n
.Therefore we are interested in probability, that one from m − 1 pivots is in the

desired range. We will use the union bound which gives this upper bound:

Pr
(n1,...,nm)∼µm

n

[ni ≤ s] ≤ (m − 1) s

n
≤

√
n

s

n
≤ s√

n

In order to show the expected complexity we also need to be able to bound
the following expected value E(n1,...,nm)∼µm

n
[∑︁m

i=1 ni log ni]. For this, we will use
the following lemma.

Lemma 5.1.3. For any n ≥ 16 and m = ⌈
√

n⌉:

E(n1,...,nm)∼µm
n

[︄
m∑︂

i=1
ni log ni

]︄
≤ 1

2n log n + 4en.

Proof. We start by analysing the bucket n1 for this we use the previous lemma
5.1.1 from which we derive: Pr(n1,...,nm)∼µm

n
[t

√
n ≤ ni < (t + 1)

√
n] ≤ e−0.9t+0.1.

We group the possible sizes of n1 as follows:

E
[︄

m∑︂
i=1

n1 log
⌈︄

n1√
n

⌉︄]︄
=

n−1∑︂
l=1

Pr[n1 = l]l log
⌈︄

l√
n

⌉︄
≤
∑︂
t≥0

Pr[t
√

n ≤ n1 < (t + 1)
√

n](t + 1)
√

n log(t + 1)

≤
√

n
∑︂
t≥0

e0.9t+0.1(t + 1)2

≤ 3en

From linearity of expectation we obtain:

E
[︄

m∑︂
i=1

ni log ni

]︄
= E

[︄
m∑︂

i=1
ni log

(︄
ni

√
n√
n

)︄]︄

≤ E
[︄

m∑︂
i=1

ni log
√

n + ni log
(︄

ni√
n

)︄]︄

≤ n log
√

n +
m∑︂

i=1
3en

≤ n log
√

n + 4en

23

5.2 Worst case analysis
The main problem with the worst-case analysis is that we cannot say much about
the recursive function when the size of the buckets is an arbitrary sequence of
n1, . . . , nm such that ∑︁m

i=1 ni = n. Since the complexity stems directly from the
tree of recursion, we cannot easily show which of the possible sequences leads to
the worst case.

Therefore we offer this upper bound, suppose that for our call the i-th bucket
has size ni = m + ci > m, where 0 < ci < n − m. Our goal is to keep unpacking
the recursive part in the formula until it can be bounded by W (m). Therefore at
first, we obtain this:

W (m + ci) =
√

m + ciW (
√

m + ci) +
√

m+ci∑︂
j=1

W (nj) + cT (m + ci).

As m + ci < n then also
√

m + ci <
√

n = m. Then we again have the sum
of W (nj) where possibly some nj can be greater than m, but each nj is strictly
smaller than m + ci. This will help us to create the bound. As each call with
m + ci can have at most ci recursive calls with a value greater than m we can
bound the expression like this:

W (m + ci) ≤ cimW (m) + cimW (m) + cT ci(m + ci).

Since we now know how to bound each call such that we end up with W (m)
only. We can continue with the worst-case analysis. At the start, we have:

W (n) = mW (m) +
m∑︂

i=1
W (ni) + cT n.

We take each ni < m and bound it by m. For each ni > m we use our bound, we
know that for each such ni we add ci levels and on each level, we add cimW (m)
where m + ci = ni. As the sum of all ci must be less than n − m we obtain:

W (n) ≤ mW (m) + 2(n − m)mW (m) + cT (n − m)n = 2nmW (m) + cT n2.

We already know what the depth of our bound will be, log log n. In level d+1
of recursion we will obtain

cT n2−d+12d
d∏︂

i=1
n

3
2i

of work done. The resulting complexity is the sum of levels 1 through log log n.
We can simplify the expression by utilizing the partial sum for the geometric
series for the exponent. This gives an exponent in level d + 1:

1
2d−1 +

d∑︂
i=1

3
2i

= 1
2d−1 + 3

2

(︄
1 − 1

2d

1 − 1
2

)︄
= 3 − 3

2d−1 + 1
2d+1 < 3.

Since on each level, we can bound the work by O(n3 log n) the whole procedure
takes O(n3 log n log log n) steps. Utilizing our analysis for IO complexity we can
directly translate our result also for the worst case IO operations, in this case,
the depth of the recursion log logM n which results in O

(︂
n3

B
log2 n log2 logαM n

)︂
.

24

5.3 Expected case analysis
As we showed the best and worst-case scenario, the next step is to show what is
the expected running time. We want to show this by using induction. For some
trivial n, in our case n < 16 we sort the data in constant time incurring constant
number of IO operations. This will serve as our base case.

Lemma 5.3.1. There exist constants cI , cM such that expected time W (n) and
IO complexity T (n) can be bound by:

E [W (n)] ≤ cIn log n,

E [T (n)] ≤ cMn

B
logαM n.

Proof. While this holds for n − 1, we want to show that it holds also for n.
Therefore in the induction step we obtain:

E [W (n)] = E [mW (m)] + E(n1,...,nm)∼µm
n

[︄
m∑︂

i=1
W (ni)

]︄
+ cT n,

E [T (n)] = E [mT (m)] + E(n1,...,nm)∼µm
n

[︄
m∑︂

i=1
T (ni)

]︄
+ cT

n

B
.

As
√

n = m ≤ n − 1 we can bound the first part of both expression utilizing our
claim.

E [W (n)] ≤ cI

2 n log n + E(n1,...,nm)∼µm
n

[︄
m∑︂

i=1
W (ni)

]︄
+ cT n,

E [T (n)] ≤ cM

2B
n logαM n + E(n1,...,nm)∼µm

n

[︄
m∑︂

i=1
T (ni)

]︄
+ cT

n

B
.

It also holds, that each ni < n − 1 as we have m buckets and each bucket has a
size of at least one. Therefore we can again use our claim to obtain:

E [W (n)] ≤ cI

2 n log n + E(n1,...,nm)∼µm
n

[︄
m∑︂

i=1
cIni log ni

]︄
+ cT n,

E [T (n)] ≤ cM

2B
n logαM n + E(n1,...,nm)∼µm

n

[︄
m∑︂

i=1

cM

B
ni logαM ni

]︄
+ cT

n

B
.

We can plug our result from the previous chapter 5.1.3 which will result in:

E [W (n)] ≤ cI

2 n log n + 1
2n log n + 4en + cT n,

E [T (n)] ≤ cM

2B
n logαM n + 1

2B
n logαM n + 4en

B
+ cT

n

B
.

Now we can bound 4en + cT n by (4e + cT)n log n for time complexity. For IO
complexity it is a tad bit more complicated. As long as n ≥ αM which means
logαM n ≥ 1 we can bound 4en + CT n by (4e + cT)n logαM n, but otherwise, we
must bound it by itself, so by 4en + CT n. From this we can derive the constants
CI and CM as both must be CI , CM ≥ 1+8e+2cT for n ≥ αM , but for the other

25

case, we know that we can bound the number of IOs by a constant. This proves
the claim:

E [W (n)] ≤ cIn log n,

E [T (n)] ≤ cM

B
n logαM n.

26

6. Experiments
To provide a comparison among SquareSort and other sorting algorithms, we
compare SquareSort with std::sort and FunnelSort. The first algorithm is a part
of the C++ standard library defined in header ”algorithm.h” on g++ and im-
plemented as an Introsort algorithm. The Introsort algorithm is a hybrid sort
algorithm that combines Quicksort and Heapsort. FunnelSort is another cache-
oblivious algorithm; we use its implementation by Rønn [2] which is also written
in C++.

We will compare the time each algorithm takes to sort an array of integers. In
each step, we want to sort arrays of the total size of one-third of the memory. The
arrays will consist of 32-bit signed integers. Since both std::sort and SquareSort
are Las Vegas algorithms, the running time is a random variable. We repeat each
test on multiple instances and take the average running time. All tests are run
on the Linux operating system, the algorithms are written in C++ and compiled
by the g++ compiler.

We start with the size of 1000 elements and in each round, we proportionally
increase the size of the arrays. We will compare totally four distinct distributions
of input elements: a random permutation of numbers in {1, . . . , n}, a random
sequence of binary values, a random sequence of integers from {1, . . . , n} selected
uniformly at random, and a sequence of integers selected uniformly at random
from the range {1, . . . ,

√
n}. We tested the algorithms on an AMD Ryzen 7

1800X Eight-Core Processor with three levels of caches with sizes of 96K (L1
per core), 512K (L2 per core) and 16MB (L3 shared) respectively, and 32 GB of
main memory. (Measurements on other systems gave similar-looking results.) In
the implementation of SquareSort whenever the size of an array is less than 1000
elements we sort it directly using std::sort, also in procedure SkewTranspose, we
transpose elements directly whenever that given region has less than 10 columns
or the number of buckets is less than 10.

6.0.1 Results
For each size, we measure the average time in nanoseconds. As all three algo-
rithms have the same asymptotic time complexity, we normalize the measured
average time t as t/n log n, where n is the size of the sorted array. We plot this
normalized time per item as it depends on the number of elements n.

For each type of array, std::sort was the fastest, then SquareSort, and last came
the FunnelSort. As in the SquareSort, we split the problem into approximately√

n problems of size
√

n, this is the reason why we can observe a sudden increase
around 106, since here we add another recursive call in expectation.

27

103 104 105 106 107 108 109

4

6

8

10

12

Array size n

T
im

e
(n

s) sqr
std
fnl

103 104 105 106 107 108 109
0

2

4

6

8

Array size n

T
im

e
(n

s) sqr
std
fnl

Figure 6.1: Time per item to sort a random permutation (left) and a random
binary sequence (right).

103 104 105 106 107 108 109

2

4

6

8

10

Array size n

T
im

e
(n

s) sqr
std
fnl

103 104 105 106 107 108 109

4

6

8

10

12

Array size n

T
im

e
(n

s) sqr
std
fnl

Figure 6.2: Time per item to sort a random sequence of elements from the universe
of size n (left) and of size

√
n (right).

6.0.2 Cutoff
One of the parameters in the SquareSort algorithm is the size of an array that
we sort directly by std::sort at the bottom of the recursion; we will call this
parameter cutoff. We have tested the previous experiment on multiple different
cutoffs ranging from 100 to 958. We were interested in how this parameter affects
the running time. We present one graph with four cutoffs: 100, 256, 493, and
958. Again we normalize the running time for each size.

The cutoff parameter mainly determines at what size we add an additional
recursive call to SquareSort. At cutoff 100 the additional call happens around
104 items and then next at 108 items. As we increase the cutoff the additional
call is added later and for 958 the call is added around one million.

28

103 104 105 106 107 108

5

6

7

8

Array size n

T
im

e
(n

s)

100
256
493
958

Figure 6.3: Time per item to sort a random permutation with different cutoffs.

6.0.3 External sorting
In order to test our algorithm in more diverse hierarchy of memories we decided
to compare the three algorithms running external sort. The goal was to sort files
whose sizes exceed the available RAM. As such program needs to access and load
data from its external storage and each such accesss can significantly slower the
sorting process.

We were testing in on computer with AMD Ryzen 5 7600 6-Core Processor
with 8 GB of memory and as an external memory we used ssd disk Samsung SSD
970 EVO Plus 1TB. Our experiments start with small arrays of unsigned 64bit
integers we increase the size of arrays until we cannot fit more integers into 64
GB of memory. The graphs are again normalized in the same manner, the time
represents time spent on sorting on element of the array, the x axis corresponds
to array size.

29

103 104 105 106 107 108 109 1010

5

10

15

20

25

Array size n

T
im

e
(n

s) sqr
std
fnl

Figure 6.4: Comparison of all three algorithms in external sorting experiment.

Since there was no change in the relative speed of algorithms, we have been
testing the arrays with random elements from [n]. While we can fit the whole
array in the memory the relative order of the algorithms agrees with our previous
result, the std::sort is fastest, followed by SquareSort and then by FunnelSort.
We can see sharp rise in time taken around size of 860 millions elements, this is
due to inability to fit the whole array into memory. From that size further we
can notice sharp rise in time spend for the std::sort.

30

Conclusion
After a short introduction to the problem of sorting and introducing the external
memory model in the first two chapters, we have shown the ColumnSort algo-
rithm that served as an inspiration for the SquareSort. In the fourth chapter, we
introduced SquareSort, and showed the basic idea and intuition behind the algo-
rithm, in the next chapter we showed the correctness and the complexity. In order
to test our theoretical result we compared our algorithm to the implementation
of FunnelSort and std::sort which implements introsort.

We showed that SquareSort is optimal both in speed and in IO operations.
Furthermore, our tests also suggest that this algorithm may be in practice faster
than FunnelSort, but still does not beat the introsort algorithm implemented
in the standard C++ library. On the other hand, when the sequence does not
fit into the memory anymore our algorithm together with FunnelSort was faster
than std::sort. This also shows that our algorithm behaves towards CPU cache
and memory better than std::sort. We also believe that it is easier to implement
SquareSort than FunnelSort. Our implementation fits under 125 lines of C++
code.

As it is a random algorithm the question for potential future work is whether
we can derandomize it without increasing the IO or time complexity, another
course of research is whether we can implement this algorithm in place, or at
least reduce significantly the amount of temporary memory necessary, this could
improve the speed significantly as non-trivial time is spend on copying the element
from input array to the auxiliary arrays.

31

Bibliography
[1] Tom Leighton. Tight bounds on the complexity of parallel sorting. In Pro-

ceedings of the sixteenth annual ACM symposium on Theory of computing,
pages 71–80, 1984.

[2] Frederik Rønn. Cache-oblivious searching and sorting. Diss. Diplomarbeit,
Department of Computer Science (University of Copenhagen), 2003.

[3] Neeraj Sharma and Sandeep Sen. Efficient cache oblivious algorithms for
randomized divide-and-conquer on the multicore model. arXiv preprint
arXiv:1204.6508, 2012.

[4] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.
Introduction to algorithms. MIT press, 2022.

[5] Yijie Han and Mikkel Thorup. Integer sorting in 0(n sqrt (log log n)) expected
time and linear space. In Proc. 43rd Symposium on Foundations of Computer
Science (FOCS), pages 135–144, 2002.

[6] E Knuth Donald et al. The art of computer programming. Sorting and
searching, 3(426-458):4, 1999.

[7] Edward H Friend. Sorting on electronic computer systems. Journal of the
ACM (JACM), 3(3):134–168, 1956.

[8] Oluwakemi Sade Ayodele and Bamidele Oluwade. A comparative analy-
sis of quick, merge and insertion sort algorithms using three programming
languages i: Execution time analysis. African Journal of Management In-
formation System, 1(1):1–18, 2019.

[9] J. W. J. Williams. Heapsort. Communications of the ACM, 27(6):347–348,
1964.

[10] Charles AR Hoare. Quicksort. The computer journal, 5(1):10–16, 1962.

[11] Peter van Emde Boas. Machine models and simulations. 1987.

[12] Stephen A Cook and Robert A Reckhow. Time-bounded random access
machines. In Proceedings of the fourth annual ACM symposium on Theory
of computing, pages 73–80, 1972.

[13] Matteo Frigo, Charles E Leiserson, Harald Prokop, and Sridhar Ramachan-
dran. Cache-oblivious algorithms. In 40th Annual Symposium on Founda-
tions of Computer Science (Cat. No. 99CB37039), pages 285–297. IEEE,
1999.

[14] Harald Prokop. Cache-oblivious algorithms. Master’s thesis, MIT, 1999.

[15] Erik D Demaine. Cache-oblivious algorithms and data structures. Lecture
Notes from the EEF Summer School on Massive Data Sets, 8(4):1–249, 2002.

32

[16] Anthony LaMarca and Richard E Ladner. The influence of caches on the
performance of sorting. Journal of Algorithms, 31(1):66–104, 1999.

[17] Sebastian Wild and Markus E Nebel. Average case analysis of java 7’s dual
pivot quicksort. In European Symposium on Algorithms, pages 825–836.
Springer, 2012.

[18] Shrinu Kushagra, Alejandro López-Ortiz, Aurick Qiao, and J Ian Munro.
Multi-pivot quicksort: Theory and experiments. In 2014 Proceedings of the
Sixteenth Workshop on Algorithm Engineering and Experiments (ALENEX),
pages 47–60. SIAM, 2014.

[19] Alok Aggarwal and S. Vitter, Jeffrey. The input/output complexity of sorting
and related problems. Commun. ACM, 31(9):1116–1127, sep 1988.

[20] Jǐŕı Matoušek and Jan Vondrák. The probabilistic method. Lecture Notes,
Department of Applied Mathematics, Charles University, Prague, 2001.

33

List of Figures

3.1 The transpose and untranspose permutations in Steps 2 and 4,
respectively. 10

3.2 The shift and unshift permutations in Steps 6 and 8, respectively. 11

4.1 An illustration of the SquareSort algorithm. 13
4.2 Illustration of a call to SkewTranspose. Pointers Cs[i] and Bi[j]

will advance during the procedure. 16

6.1 Time per item to sort a random permutation (left) and a random
binary sequence (right). 28

6.2 Time per item to sort a random sequence of elements from the
universe of size n (left) and of size

√
n (right). 28

6.3 Time per item to sort a random permutation with different cutoffs. 29
6.4 Comparison of all three algorithms in external sorting experiment. 30

34

List of Abbreviations
• RAM - Random Access Machine, a computational model used in this thesis.

• CPU - Central Processing Unit, the main processing unit in a computer.

• IO - Input Output, referring to the operation that loads data from/to ex-
ternal memory.

35

A. Attachments

A.1 Square sort implementation
#include "stdio.h"
#include <time.h>
#include <bits/stdc++.h>
using namespace std;

typedef int64_t T;

void add_bucket_sizes(T A[], T size, T pivots[], T pivot_cnt,
T bucket_size[]) {
T i=0;
T j=0;
pivot_cnt--;
for(;i<pivot_cnt;i++) {

while((j < size) && (A[j] <= pivots[i])) {
bucket_size[i]++; j++;

}
}
bucket_size[pivot_cnt] += size-j;

}

void sample_pivots(T A[], T size, T sample[], T sample_cnt) {
T i;
for(i = 0; i < sample_cnt; i++) {

sample[i] = (random64() & (0x7FFFFFFFFFFFFFFFLL)) % size;
}
sort(sample, sample + sample_cnt);
for(i = 0; i < sample_cnt; i++) {

sample[i] = A[sample[i]];
}
sort(sample, sample+sample_cnt);
sample[sample_cnt-1] = T_MAX;
for(i = 0; i < sample_cnt - 1; i++) {

if(sample[i] == sample[i+1]) {
sample[i]--;

}
}

}

void naive_skew_transpoze(T A[], T B[],
T col_start[], T col_end[], T col_cnt, T bucket_start[],
T bucket_cnt, T pivots[]) {
T i=0;
T j=0;

36

for(i=0; i<bucket_cnt; i++) {
for(j=0; j<col_cnt; j++) {

while((col_start[j] < col_end[j])
&& (A[col_start[j]] <= pivots[i])) {
B[bucket_start[i]] = A[col_start[j]];
bucket_start[i]++;
col_start[j]++;

}
}

}
}

void skew_transpoze(T A[], T B[],
T col_start[], T col_end[], T col_cnt, T bucket_start[],
T bucket_cnt, T pivots[]) {
if((col_cnt < 10)||(bucket_cnt < 10)){

naive_skew_transpoze(A, B, col_start, col_end, col_cnt,
bucket_start, bucket_cnt, pivots);

return;
}
T half_col_cnt = col_cnt /2;
T half_bucket_cnt = bucket_cnt /2;
skew_transpoze(A, B, col_start, col_end,

half_col_cnt, bucket_start, half_bucket_cnt,
pivots);

skew_transpoze(A, B, col_start+half_col_cnt,
col_end+half_col_cnt, col_cnt - half_col_cnt,
bucket_start, half_bucket_cnt, pivots);

skew_transpoze(A, B, col_start, col_end,
half_col_cnt, bucket_start + half_bucket_cnt ,
bucket_cnt - half_bucket_cnt, pivots + half_bucket_cnt);

skew_transpoze(A, B, col_start+half_col_cnt,
col_end+half_col_cnt, col_cnt - half_col_cnt,

bucket_start + half_bucket_cnt, bucket_cnt - half_bucket_cnt,
pivots + half_bucket_cnt);

}

void square_sort(T A[], T B[], T size,
T col_start[], T col_end[], T bucket_start[],
T pivots[], T buf_size) {
T i,j;
if(size < 1000){

for(i=0;i<size;i++) B[i]=A[i];
sort(B,B+size);
return;

}
int new_size = sqrt(size);
sample_pivots(A, size, pivots, new_size);

37

for(i=0;i<new_size;i++){
col_start[i]=new_size*i;
col_end[i]=new_size * (i+1);
bucket_start[i]=0;

}
bucket_start[new_size]=bucket_start[new_size+1]=0;
col_end[new_size-1] = size;
if(buf_size <= new_size+2)

throw std::logic_error("Not enough memory for recursion");
for(i=0;i<new_size;i++){

square_sort(A+col_start[i],B+col_start[i],
col_end[i] - col_start[i], col_start+new_size,
col_end+new_size, bucket_start+new_size+2,
pivots+new_size, buf_size - new_size-2);

add_bucket_sizes(B+col_start[i], col_end[i] - col_start[i],
pivots, new_size, bucket_start+2);

}
for(i=2;i<new_size+1;i++) {

bucket_start[i] += bucket_start[i-1];
}
skew_transpoze(B, A, col_start, col_end,

new_size, bucket_start+1, new_size, pivots);

for(i=0;i<new_size;i++){
if((i>0)&&(pivots[i]==pivots[i-1]+1)){

for(j=bucket_start[i];j<bucket_start[i+1];j++)B[j]=A[j];
}
else

square_sort(A+bucket_start[i],B+bucket_start[i],
bucket_start[i+1] - bucket_start[i],
col_start+new_size, col_end+new_size,
bucket_start+new_size+2, pivots+new_size,
buf_size - new_size-2);

}
}

38

	Introduction
	Introduction to sorting
	Problem statement
	Brief overview of sorting algorithms

	Description of the computation model
	RAM model
	RAM model with external memory
	Cache-oblivious sorting

	Overview of ColumnSort
	Algorithm description
	Proof of correctness
	After step four
	After completion

	SquareSort algorithm
	Algorithm overview
	Detailed description
	Pivot selection
	SkewTranspose
	SkewTranspose complexity analysis
	Analysis expected bucket sizes
	Cost of SquareSort recursive call
	Best case complexity of SquareSort

	Complexity of SquareSort in detail
	About distribution of bucket sizes
	Worst case analysis
	Expected case analysis

	Experiments
	Results
	Cutoff
	External sorting

	Conclusion
	Bibliography
	List of Figures
	List of Abbreviations
	Attachments
	Square sort implementation

