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Abstrakt: Ćılem této práce je představit teorii Lagrangeových koherentńıch struk-
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Introduction
Scientist have always been subjected to the uneasy task to mathematically de-
scribe and model fluid dynamics. Real flows often exhibit chaotic behaviour that
is difficult to predict. An especially intriguing challenge in the world of hydro-
dynamics is determining the location of transport barriers. These curves serve
as boundaries of flow over a specified period of time. There are two approaches
used for modelling the evolution of continuum. The Eulerian and the Lagrangian
method. The Eulerian approach has been preferred in the past. It focuses on a
velocity field rather than on material trajectories. Lately, new Lagrangian meth-
ods have been developed. These methods, which are derived from the trajectories
a fluid parcel follows, have proved to be much more accurate than the outdated
Eulerian methods [Haller, 2023]. In this thesis, we focus on a method called
Lagrangian coherent structures.

Lagrangian coherent structures (LCSs) is a method first introduced in 2000 by
George Haller and Guo-Cheng Yuan (Haller and Yuan [2000]). They developed an
elegant mechanism that utilizes Cauchy-Green strain tensor, its eigenvalues and
eigenvectors and finite-time Lyapunov exponents (FTLEs). Ridges of maximal
FTLEs values can be interpreted as transport barriers. In this thesis, we will
apply a specific type of LCSs called hyperbolic LCSs. They represent transport
barriers that are either most repelling or most attracting. It is the repelling
hyperbolic LCSs that become significant when determining the edge of a polar
vortex.

Stratospheric polar winter circulation, often referred to as simply the ”polar
vortex”, is a rotating mass of air in the upper atmosphere, forming every year
at the beginning of winter months. It is present around both the North and the
South Pole. Both vortices have their specific properties and they are generally of
different significance. The Antarctic polar vortex is largely linked to the ozone
hole, a phenomenon that has huge impacts on our population, leading to health
risks and even the development of skin cancer [Zhang et al., 2017]. The Arctic
polar vortex is important regarding winter surface weather, as its collapse leads
to extreme weather events, impacting North America, northern Europe and Asia.
This incident is called sudden stratospheric warming [Waugh et al., 2017]. The
focus of this thesis is on the polar vortex located on the Northern Hemisphere.

The ability to predict the breakdown of the polar vortex would lead to im-
provements in forecasts of extreme weather events. For its great impact on the
surface weather, there have been many attempts to successfully detect the edge
of the polar vortex and trace its changes. The LCS-method has the potential to
be a more exact and more accurate method than any other approach introduced
up to date. In this thesis, we will attempt to demonstrate this method on atmo-
spheric data for the winter of 2007/2008 and analyse our results in the hopes of
detecting the edge of the polar vortex and its evolution.
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1. Fluid dynamics and LCSs
A relatively new method, first introduced by Haller and Yuan in 2000 called the
Lagrangian coherent structures (LCSs) allows for deeper study of fluid dynamical
systems. Its charm and significance lies within the usage of the Lagranginan
approach rather than the Eulerian approach. Lagrangian approach focuses on
material surfaces, following all material points and their evolution in time, as
opposed to the Eulerian approach which works with velocity fields. A grand
advantage of the Lagrangian methods is that they can (with great accuracy) not
only trace back, but also predict the movement of a mass in space [Haller, 2023].

The aim of this chapter is to bring closer the fundamentals of fluid dynamics
in the Lagrangian language and introduce the computation of LCSs. Before we
begin, let us first define the LCSs as in Haller [2023]: ”Lagrangian coherent
structures (LCSs) are codimension-1, structurally stable material surfaces that
locally extremize attraction, repulsion or shear among all nearby material surfaces
over a finite time interval [t0; t1]”.

1.1 Transport barriers
In fluid dynamics, the term transport barrier is self-explanatory; it represents
an inhibitor of flow. It is substantially important, nevertheless not necessarily
straightforward to define those barriers precisely. The endeavor to mathemat-
ically specify transport barriers yields different approaches, where one of them
(and a fairly succesful one) is the LCSs method. Especially in geophysical flows
studied in atmospheric and oceanic physics, detecting transport barriers plays a
crucial role. Observable transport barrier can be seen in Figure 1.1. An oil spill
in the Gulf of Mexico creates coherent structures visible due to the difference of
colour between blue water and red oil [Haller, 2023].

Given initial conditions (ICs), it is often important to define surfaces which
correctly follow evolution in time. Chaotic theory tells us that even the slightest
perturbations between separate individual sests of initial conditions can lead to
vast disparities. As a result, mathematical models can be assessed in terms of

Figure 1.1: Oil spill in the Gulf of Mexico. Distinctive transport barriers are
apparent, highlighted with strong colour differences. [Haller, 2023]
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Figure 1.2: True and model trajectory and transport barrier. Model trajectory
(black) does not correspond with true trajectory (red). Model transport barrier
(red) corresponds well with true transport barrier (red). [Haller, 2023]

their ability to correctly reconstruct transport barriers. An example is seen in
Figure 1.2. The model provided does not yield correct trajectories, however, the
construction of model transport barrier corresponds very well. Smooth surfaces
that can block transport locally must be codimension-1 invariant manifolds. That
is, they must exist in 2-dimensional flows and surfaces in 3-dimensional flows.
Only then can they be defined as transport barriers [Haller, 2023].

Idealized transport barriers for advective transport are manifolds of a saddle
point for all times, visualisation is seen in Figure 1.3. Let us have a fluid parcel
that is being carried by advection. It follows the trajectory of a stable manifold.
As it approaches the saddle point, it will be diverted along the unstable manifold
(red). Further in this thesis we discover that the stable manifold can be computed
as an attracting LCS and the unstable manifold as a repelling LCS [Peacock and
Haller, 2013].

In reality, it is often desired to study an area set in a specific finite continuous
time interval. The continuity of time introduces additional problems, as the
uniqueness of material surfaces is lost, the reason being the fact that many similar
trajectories could be classified as transport barriers (material surface is a manifold
of material particles that evolve in time given ICs). To resolve this discrepancy,
we study only coherent surfaces. Coherent surfaces are resilient structures that
keep their spatial integrity over a specified time interval [Haller, 2023].

1.2 Description of Lagrangian flow
In fluid dynamics, there are two approaches used to describe flow. Let us consider
an at least continuously differentiable velocity field

ẋ = v(x, t). (1.1)
In practice, the velocity field is either given or numerically computed from data
(see Section 3.4). A flowmap is a function denoting the evolution of a trajectory
given its initial position x0. It can be defined as follows:

Ft
t0 : x0 ↦→ x (t; t0, x0) . (1.2)
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Figure 1.3: Behaviour of a fluid parcel near saddle point. Fluid parcel (blue)
approaches a saddle point (black) and an unstable manifold (red), following a
stable manifold (blue). [Peacock and Haller, 2013]

This is called the Lagrangian description, which focuses on tracing the evolution
of a flow tracer (a chosen material point, typically a dye or a smoke particle) from
an initial position in time and space. In other words, the Lagrangian method
finds the trajectories of flow tracers, typically used for advection. The Eulerian
description is often used when describing deformations, as it follows the evolution
of the Eulerian vector field [Boffetta et al., 2001].

Tracers can be active or passive. Passive tracers are simply being carried by
the Eulerian velocity field, not otherwise interacting or impacting the original
flow. Active tracers, on the other hand, can have an effect on the field. A typical
active tracer is vorticity or kinetic energy [Haller, 2023].

If we take the gradient of the flowmap, we obtain a deformation gradient
∇Ft

t0 (x0). Since we consider an at least continuously differentiable velocity field,
the flowmap is a diffeomorphism, meaning its inverse is also its transpose. Clearly,

Ft
t0

(︂
Ft0

t (x)
)︂

= x. (1.3)

The deformation gradient is a mapping between two different tangent spaces.
As a result, it does not have a clearly defined eigenvalues and eigenvectors. A
Lagrangian tensor is a linear mapping from tangent spaces to themselves. The
deformation gradient is therefore not a Lagrangian tensor. However, using the
noted definition and the fact that the deformation gradient is a mapping between
tangent spaces, we can define the right Cauchy-Green strain tensor (CG tensor)
as follows:

Ct
t0 (x0) =

[︂
∇Ft

t0 (x0)
]︂T

∇Ft
t0 (x0) . (1.4)

Clearly, the CG tensor is an example of a Lagrangian tensor. It can read as a
linear operator mapping from the domain of the deformation gradient to the range
of its transpose. Similarly, we can define the left Cauchy-Green strain tensor as

Bt
t0 (x0) = ∇Ft

t0 (x0)
[︂
∇Ft

t0 (x0)
]︂T

, (1.5)

leading to a simple relation between the right and the left CG tensor[︂
Ct

t0

]︂−1
= Bt0

t , (1.6)
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which clearly illustrates the correlation between the right and the left Cauchy-
Green strain tensors [Haller, 2023].

The right and the left Cauchy-Green strain tensors are used in different sce-
narios. The right tensor is used for forward computations, whereas the left tensor
is used for backward computations. Since the transition between them is denoted
by the simple Relation 1.6, we will continue to only consider the right tensor, as
computations for the left tensor can be very easily derived in a similar manner.
Due to its definiton, the CG tensor has some important mathematical properties.
It is a symmetric tensor (meaning we can easily find eigenvalues and eigenvectors)
and it is positive-definite (meaning eigenvalues are positive). These properties al-
low further analysis and the derivation of the finite-time Lyapunov exponents
(FTLE) [Haller, 2023].

1.3 Finite-time Lyapunov exponents
Let us consider a material surface M(t) and trajectories x (t; t0, x0) ∈ M(t).
Here, the material surface can be defined using the flowmap Ft

t0 as

M(t) = Ft
t0 (M(t0)) . (1.7)

Similarly, infinitesimally small material perturbations ξ(t) along those trajectories
can be computed using the deformation gradient ∇Ft

t0 as

ξ(t) = ∇Ft
t0 (x0) ξ (t0) . (1.8)

Furthermore, the magnitude of the perturbation can be expressed using the CG
tensor as follows:

|ξ(t)| =
√︂

⟨∇Ft
t0 (x0) ξ (t0) , ∇Ft

t0 (x0) ξ (t0)⟩ =
√︂

⟨ξ (t0) , Ct
t0 (x0) ξ (t0)⟩. (1.9)

The braket notation used simply refers to computing the scalar product [Haller,
2023].

Taking into account the formula for finding eigenvalues λi of the CG tensor
(and their eigenvectors ξi)

Ct
t0ξi = λiξi, (1.10)

we easily obtain
|ξi(t)| =

√︂
λi. (1.11)

Therefore, the perturbation ξ aligning with the eigenvector ξi will be stretched
by the factor

√
λi, which is (by definition) both the square root of the eigenvalue

of the CG tensor and the singular value of the deformation gradient Haller [2023].
The evolution of eigenvectors in time is illustratively shown in Figure 1.4.

The exponent assosiated with the largest coefficient λn is then called the
finite-time Lyapunov exponent, defined as

FTLEt1
t0 (x0) = 1

2 |t1 − t0|
log λn (x0; t0, t1) , (1.12)

where for forward FTLEs we have t1 > t0 and for backward FTLEs we have t1 < t0.
Ridges of locally largest values of FTLE define different types of LCSs. Similarly
to streamlines (curves tangent to the velocity field) we can define strainlines,
which are curves tangent to the ξ-field [Haller, 2023].
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Figure 1.4: Evolution of eigenvectors. Eigenvectors ξ1(x0), ξ2(x0) evolve in time
t via flowmap F t

t0(x0) and eigenvalues λ1(x0), λ2(x0). [Serra et al., 2017]

1.4 Lagrangian coherent structures
Computation of FTLEs produces LCSs which allow for deep analysis of fluid dy-
namics. Let us remind the definition of LCSs given by Haller [2023] at the begin-
ning of this chapter: ”Lagrangian coherent structures (LCSs) are codimension-1,
structurally stable material surfaces that locally extremize attraction, repulsion
or shear among all nearby material surfaces over a finite time interval [t0; t1]”. We
can now specify different types of LCSs [Haller, 2023].

Attracting LCSs are denoted by the largest values of backward FTLEs. They
are often readily identifiable as visible accumulation of tracers accompanies them.
Repelling LCSs are denoted by the largest values of forward FTLEs. They play
an important role in identifying masses of fluid that do not intermix over a spe-
cific time interval. Attracting and repelling LCSs are colectively referred to as
hyperbolic LCSs [Haller, 2023].

Apart from hyperbolic LCSs we can also define elliptic and parabolic LCSs.
These structures are significant in terms of shear, in other words the tangential
shift of adjacent paths. Elliptic LCSs are material surfaces which are locally most
shearing. Similarly, parabolic LCSs are material surfaces which are locally least
shearing [Haller, 2023].

A visualisation of hyperbolic LCSs is shown in Figure 1.5. Streamlines (a)
represent the velocity field given, hyperbolic LCSs (b) are computed from the
velocity field. Another example is seen in Figure 1.6. We can see the evolution of
a material parcel over the time interval [t0, t1] and the corresponding hyperbolic
LCSs. Lastly, in Figure 1.7 we see comparison of hyperbolic LCSs in 2D and 3D.
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Figure 1.5: Visualisation of streamlines and hyperbolic LCSs. (a) streamlines
of a chosen velocity field (blue), (b) corresponding strainlines: attracting LCSs
(red), repelling LCSs (blue). [Haller, 2015]

Figure 1.6: Deformation of a fluid parcel. (a) attracting LCSs (blue) and stretch-
ing of the parcel, (b) repelling LCSs (red) and shrinking of the parcel, (c) both
attracting and repelling LCSs. [Peacock and Haller, 2013]

Figure 1.7: Comparison od hyperbolic LCSs in 2D and 3D. Repelling LCSs (blue)
and attracting LCSs (red) are computed at different times. (a) 2D (b) 3D. [Faraz-
mand and Haller, 2013]
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2. Stratospheric winter polar
circulation
The stratospheric winter polar circulation is often referred to as simply the po-
lar vortex. However, this term also defines a different phenomenon, that is the
circulation in the troposphere, as seen in Figure 2.1. It is therefore important
to distinguish those two, as they are not connected and have generally differ-
ent properties, e.g. the tropospheric polar vortex is much larger and it exists all
year, whereas the stratospheric polar vortex experiences seasonal changes [Waugh
et al., 2017]. In this thesis, we will use the term polar vortex when referencing the
stratopheric circulation. The term stratosphere refers to the atmospheric layer
that resides above troposphere, approximately between 6 to 50 km above sea level
(depending on latitude) [Mohanakumar, 2008].

2.1 The structure of the polar vortex
The polar vortex is marked by westerly winds in the stratosphere, stretching
from the pole to up to 30° latitudes, with the largest winds at approximately 60°
latitudes [Waugh et al., 2017].

The polar vortex generally consists of two major regions. That is the main
vortex and the surf zone, separated by the vortex edge. The main vortex is a
coherent rotating mass of cold air, whereas the surf zone is widely incoherent and
it extends into lower latitudes and interacts with warmer air [Serra et al., 2017].
Visualisation of the structure of the polar vortex can be seen in Figure 2.2.

Polar vortex exists both on the Northern Hemisphere (NH) and the Southern
Hemisphere (SH). However, despite their seeming similarities, their properties
differ. With much more diverse topography and great upward waves, the NH
generates more unstable vortex than its southern counterpart.

Figure 2.1: Stratospheric and tropospheric polar vortex. The stratospheric vortex
(blue) is smaller and located at higher altitudes than the tropospheric vortex
(red). [Waugh et al., 2017]
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Figure 2.2: Structure of the polar vortex. The main vortex (dark blue), vortex
edge, the surf zone (light blue), isentropic surface (red). [Serra et al., 2017]

2.2 Relevance of the polar vortex
As previously mentioned, the properties of the NH and SH polar vortices are
not the same. This leads to differences in their relevance. The SH polar vortex
in highly significant regarding the formation of the ozone hole, whereas the NH
polar vortex strongly influences surface weather. Let us briefly introduce those
two phenomena.

The ozone layer is a part of the stratospehere protecting the lower atmosphere
from ultraviolet radiation (UV). The UV radiation poses as a huge threat to hu-
man health, as it can cause various types of diseases, skin cancer being the most
prominent. Unfortunately, there has been evident depletion of the ozone layer,
the most significant manifestation of which is known as the ozone hole. The
ozone hole occurs in the Antarctic region, where low ozone concentrations closely
match the extent of the polar vortex [Zhang et al., 2017]. Significance of the NH
polar vortex lies in different aspects. Its stability is vital to the winter surface
weather, as its collapse can lead to extreme weather events impacting the regions
of North America, northern Europe and Asia [Thompson et al., 2002]. The event
in question is called sudden stratospheric warming (SSW ). With the breakdown
of the polar vortex, a huge mass of cold air is released, potentially creating ex-
treme changes in the surface weather. On NH, SSW occurs approximately every
two years. Therefore, determining the edge of the polar vortex and its changes
can provide useful information regarding predictions of those extreme weather
patterns [Serra et al., 2017].

An example from history is studied in Overland et al. [2020]. In 2018, the
event of SSW brought an extreme amount of snow to Eurasia. It was dubbed
the ”Beast from East”. Another example of the SSW-effects is visible though the
study of the impacts on vegetation, as in [Li et al., 2017], which focuses on boreal
Eurasia from 1982 to 2015.
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Figure 2.3: Splitting of polar vortex in 2002 on SH. Visualisation of the polar
vortex on the Southern Hemisphere with visible split in (c), also showing stable
(blue) and unstable (red) manifolds. [Curbelo et al., 2019]

2.3 Seasonal changes of the NH polar vortex
In this thesis, our focus is on the NH polar vortex. Let us now describe its
seasonal changes (including the SSW events).

With the start of winter, polar regions with polar night experience rapid
coolings, creating a gradient of temperatures between polar and tropical regions.
As a result, wind velocities in the stratosphere also increase. Due to the Coriolis
effect and the spin of the Earth, a counterclockwise rotating motion is created
with dominant westerly winds [Serra et al., 2017, Waugh et al., 2017].

When the vortex becomes unstable it collapses, freeing a mass of cool air
that descends to lower altitudes while rising polar temperatures. The breakdown
typically occurs mid-winter. Ridges, mountains and other surface discontinuities
create different areas of waves which, if strong enough, can cause changes in the
polar vortex. These waves are called the Rossby waves. The vortex can either
completely cease to exist, or smaller daughter vortices can be created. Usually,
there are two centers of the daughter vorticies, located in Siberia and North
America [Serra et al., 2017]. Splitting into two daughter vortices during a unique
event of SSW on SH in 2002 is visualized on Figure 2.3.

2.4 Methods of detecting the polar vortex
Successfully detecting the edge of the polar vortex has been a challenge for many
decades now. Eulerian diagnostic methods have been used in the past, with the
rise of Lagrangian methods [Serra et al., 2017].

A fairly popular Eulerian method works with the distribution of potential
vorticity (PV). The boundary of the vortex edge is detected as the isoline of
the maximum gradient of PV. Shortcomings of this method are that it is frame
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dependent and nonmaterial [Nash et al., 1996, Serra et al., 2017].
Another PV-based method for uncovering the edge focuses on finding the

PV isoline with minimal material stretching over a specific time interval. This
approach is more general than the one introduced by Nash et al. [1996] as it is
material. However, the frame dependency is still viable [Serra et al., 2017]. For
its properties, this method is called ”semi-Lagrangian” Chen [1994].

Visualising the edge of the polar vortex can be determined also by studying the
concentration of ozone. As discussed earlier, ozone hole strongly corresponds to
the formation of the polar vortex, with low concentrations in its center. Similarly,
we can look at the temperature field, which shows low temperatures in the center.
With both those methods, Lagrangian approaches using material structures (such
as LCSs) show remarkable compatibility [Serra et al., 2017]. Visualisation of some
of the methods discussed can be seen in Figure 2.4.

(a) NH

(b) SH

Figure 2.4: Different methods of detecting vortex boundary. Ozone, PV and
temperature methods. PV on the 460 K level, temperature on the 50 hPa level.
(a) NH, February 22, 2011 (b) SH, August 22, 2011. [[NAS]]
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3. Application of LCSs on
atmospheric data
In this chapter, we apply the theory covered in previous chapters. Given a ve-
locity field around the North Pole, we attempt to implement the computation
of Lagrangian coherent structures and analyse the results in order to study the
changes of the circulation. Many programs for computing LCSs exist in the
programming language MATLAB, however, our computations are conducted in
Python.

3.1 Data
Initially, we tried to analyse ERA5 hourly data [ERA]. However, our computa-
tions never yielded any satisfactory results. Later we discovered that the data
provided are static and do not evolve in time. This finding led us to search
for a better set of data that would generate correct velocity field. The data
that proved satisfactory and are used for our final computations are MERRA2
[ERA](Modern-Era Retrospective analysis for Research and Applications, Version
2).

We look at the wind velocity u = (u, v), where u denotes zonal winds and v
denotes meridional winds. Our set of data focuses on the winter period December
2007 to February 2008 using 3-hourly data in netCDF format. The polar region
studied covers the area of latitudes from 30 °N to 90 °N for all longitudes. We
subsequently look at four pressure levels: 20 hPa, 10 hPa, 5 hPa and 1 hPa.

3.2 The velocity field
Before any computations leading to the LCSs, we can examine the magnitudes
of the components of wind (the u- and v-components) for different times and
different pressure-levels. First, let us compare the u- and v-components. In
Figure 3.1 we look at data at 10 hPa for December 01, 2007, January 19, 2008 and
February 27, 2008. These time slots were chosen randomly for simple illustration.
We can see that the westerly winds are highly predominant. Specially, on January
19, 2008 we can distinctively see a fully formed polar vortex. Although the v-
components are significant for computing LCSs, their visualisation does not give
us any additional information. For that, we will further restrict ourselves to only
visualising the u-components of wind.

As stated, data for January 19, 2008 show a formed circulation. The early
days of February, 2008 show similar velocity field (Figure 3.2). Stable polar vortex
is distinctly recognizable. We can see it rotate, however, there are not visible any
great changes in shape. Zonal winds reach up to over 100 m/s.

Another approach to visualise our data is to look at different pressure levels.
To further examine the stable polar circulation we look at February 03, 2008
(Figure 3.3). Comparing the velocity fields at 20 hPa, 10 hPa, 5 hPa and 1 hPa,
we can see that the vortex slightly rotates and decreases in size as it stretches to
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(a)

(b)

Figure 3.1: Comparison of the u- and v-components of wind at 10 hPa. (a) u-
(b) v-components of wind for December 01, 2007, January 19, 2008 and February
27, 2008

Figure 3.2: The u-components of wind at 10 hPa. Evolution over February 01,
02, 03, 04, 05 and 06, 2008.
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Figure 3.3: The u-components of wind at different pressure levels. Computation
for 20 hPa, 10 hPa, 5 hPa and 1 hPa on February 03, 2008.

higher altitudes, with more distinguished shape at lower altitudes. However, for
lower pressure levels, velocities highly increase, with maximum velocities up to
almost 140 m/s.

3.3 The program
For our computations we used the Python programming language. Haller [2023]
provides a Python script for calculating different types of transport barriers,
including hyperbolic LCSs, which will be the focus of our research. However, the
script provided must be modified, as there are several major disparities between
the code given and the essential properties of our data. The initial program takes
in a small amount of data and interpolates it over a rectangular meshgrid. Since
we look at a large polar region, the code must be adjusted so that it can

• take large-scale high resolution data,

• convert velocities from units m/s to deg/3h,

• interpolate over a spherical grid,

• compute over the pole without any singularity.

3.4 The RK4 method
Before we give a detailed description of our computations we must first introduce
the numerical method used for calculating trajectories from velocity field. The
method used is called the Fourth Order Runge-Kutta (RK4 ). We will not go into
much detail, as examining numerical solutions is not the main purpose of this
thesis. We will only explain the main principles.

Let us consider a differential equation with an initial condition

ẋ(t) = v(t, x), x(t0) = x0. (3.1)
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Choosing a stepsize h, such that tn+1 = tn + h, we obtain iteration

xn+1 = xn + hẋ. (3.2)

Using the Taylor series, we can rewrite the expression as

xn+1 = xn + h
q∑︂

i=1
ωiki, (3.3)

where ωi and ki are specific coefficients from the Taylor series. Clearly, the higher
q, the higher the precision of the computation. This approach is called the Runge-
Kutta method [Süli and Mayers, 2003].

A specific selection q = 4 gives a simplified form

xn+1 = xn + h

6 (k1 + 2k2 + 2k3 + k4) , (3.4)

where

k1 = v (tn, xn) , (3.5)

k2 = v(tn + 1
2h, xn + 1

2hk1), (3.6)

k3 = v(tn + 1
2h, xn + 1

2hk2), (3.7)

k4 = v (tn + h, xn + hk3) . (3.8)

This approach, using q = 4, is called the Fourth Order Runge-Kutta method.
Using this method, trajectories (and subsequently the flowmap) can be easily
computed from the given velocity field [Süli and Mayers, 2003]. The visualisation
of RK4 can be seen in Figure 3.4.

Figure 3.4: Visualisation of the RK4 method. Four computed derivatives of xn
(dots 1, 2, 3 and 4) leading to the expected position of xn+1. Trajectory is shown
using a dashed line. [Teukolsky et al., 1992]

With an established method to compute trajectories, we can now further
explore the code, highlight the problems we encountered throughout and follow
the computation process covered in Chapter 1.

3.5 The trajectories
The aim of this section is to succesfully apply the RK4 method introduced in
Section 3.4 and generate a flowmap. The steps required are:
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1. define data on a grid (time, longitude, latutide, u-component of wind, v-
component of wind),

2. interpolate data,

3. use the RK4 method for

• a specific set of ICs (used for calculating one specific trajectory) or
• all possible ICs (used for calculating LCSs).

We are given the following data:

• velocity field u, where [u] = m/s,

• velicity field v, where [v] = m/s,

• longitude coordinates x, where [x] = °,

• latitude coordinates y, where [y] = °,

• time t, where [t] = 3h.

First, we need to correctly transform the data so that they satisfy our com-
putations. The code is as follows.

import numpy as np

d e f c o n v e r t v e l o c i t y ( x , y , u , v , p r e s s u r e , d a t a h e i g h t ) :

y co = 90 − y
x rad , y rad = np . r a d i a n s ( x ) , np . r a d i a n s ( y co )
X, Y = np . meshgrid ( x rad , y rad )

u rad3h , v rad3h = x rad . copy ( ) , y rad . copy ( )

p r e s s u r e l e v e l = [ 2 0 , 1 0 , 5 , 1 ]
p o s i t i o n = np . where ( p r e s s u r e l e v e l == p r e s s u r e )
p = p o s i t i o n [ 0 ] [ 0 ]
H = d a t a h e i g h t [ : , p , : , : ]

# Radius o f the Earth i n m
R = 6370 ∗ 1000

f o r i i n range (X. shape [ 0 ] ) :
f o r j i n range (Y. shape [ 1 ] ) :

u rad3h [ : , i , j ] = ( u [ : , i , j ] / ( np . cos (Y[ i , j ] ) ∗ (R+H [ : , i , j ] ) ) ) ∗ 3 6 0 0 ∗ 3
v rad3h [ : , i , j ] = ( v [ : , i , j ] / (R+H [ : , i , j ] ) ) ∗ 3 6 0 0 ∗ 3

r e t u r n u rad3h , v rad3h

U, V = c o n v e r t v e l o c i t y ( x , y , u , v , p r e s s u r e , d a t a h e i g h t )

We first transform our coordinates to radians (the reason for will be explained
later). Variables u and v are our given velocity fields in the shape np.shape(u),
np.shape(v) = (Nt, Ny, Nx), where Nt, Ny, Nx denote the number of t, y,
x inputs. Transition from cartesian to spherical coordinates is rather complicated,
as we are given pressure levels, not above sea levels. This problem is fixed by
introducing an additional set of data (also MERRA2), that will provide the height
for each point on our meshgrid. We call them data height. Lastly, we choose
a specific pressure level we want to examine and we acquire u in the units of
rad/3h.

The next step is the interpolation of data. Here, we encounter a rather com-
plex problem as the North Pole acts as a singularity. The script provided by Haller
[2023] does not work with poles, therefore further adjustments must be done. One
possible solution could be shifting the singularity from pole to the equator - an
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Figure 3.5: Shifting singularity from the pole to the equator. (a) original coordi-
nate system (b) new coordinate system [Serra et al., 2017]

approach introduced by Serra et al. [2017]. The study focused on finding LCSs
around the North Pole with computations carried via MATLAB. The idea be-
hind shifting the pole is visualised on Figure 3.5. Unfortunately, we could not
overcome this modelling problem using Python. Despite hours of work, this part
of the code remains unresolved. As a result, further computations of trajectories
are not appropriately corresponding to the velocity field studied. However, there
is still potential to calculate LCSs and examine our results, even if the initial
computation of trajectories is slightly different from the actual trajectories.

Before we continue with the computations of trajectories, let us briefly display
the relevance of computing LCSs from our inexact trajectories on Figure 3.6. The
figure shows a trajectory from February 01, 2008 to February 03, 2008 and cor-
responding computed repelling LCSs. We can see that the LCS acts as a barrier
which the particle following the computed trajectory does not cross. Regard-
ing repelling LCSs, that is the exact result we would expect. We will cover the
computations of LCSs in more detail in Section 3.6.

Let us return to the interpolation. In the original script, interpolation is
performed over a rectangular grid. Clearly, our spherical area requires a more
complex solution. We use spherical interpolation RectSphereBivariateSpline
from the library scipy.interpolate. This function requires a meshgrid of coor-
dinates in radians, thus explaining our former need to transform velocities from
degrees to radians. It also requires the input of colatitudes rather then latitudes.
The code reads as follows.

from s c i p y . i n t e r p o l a t e import R e c t S p h e r e B i v a r i a t e S p l i n e as RSBS
import numpy as np

d e f i n t e r p o l a n t s p h e r e ( x , y ,U,V) :

y co = 90 − y
x rad , y rad = np . r a d i a n s ( x ) , np . r a d i a n s ( y co )
X, Y = np . meshgrid ( x rad , y rad )

I n t e r p o l a n t = [ [ ] , [ ] ]

f o r j i n range (U. shape [ 0 ] ) :

I n t e r p o l a n t [ 0 ] . append (RSBS(Y [ : , 0 ] , X [ 0 , : ] , U[ j , : , : ] ) )
I n t e r p o l a n t [ 1 ] . append (RSBS(Y [ : , 0 ] , X [ 0 , : ] , V[ j , : , : ] ) )

r e t u r n I n t e r p o l a n t

I n t e r p o l a n t = i n t e r p o l a n t s p h e r e (X,Y,U,V)

I n t e r p o l a n t u = I n t e r p o l a n t [ 0 ]
I n t e r p o l a n t v = I n t e r p o l a n t [ 1 ]
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Figure 3.6: Comparison of trajectory and repelling LCSs. Computed trajectory
from February 01, 2008 to February 03, 2008 with corresponding computed re-
pelling LCSs.

We tried to dispose of the singularity using the RectSphereBivariateSpline
function, as it is promoted as one of the properties of the function (see [RSB]).
However, the problem with singularity was not resolved and it continues to be a
major resctriction regarding our analysis. It is the best approximation we were
able to obtain for interpolation of large-scale high resolution data on a sphere.

The interpolation is then used for finding the exact values of velocities at
specific time- and space-positions, which is incorporated into the RK4 numerical
method. Obtained trajectories create a flowmap, from which we compute the
LCSs. We can show the Python script for the computation using the RK4 method
below.

import numpy as np

d e f v e l o c i t y ( t , x , I n t e r p o l a n t u , I n t e r p o l a n t v ) :

f o r i i n range ( x . shape [ 1 ] ) :
i f x [ 1 , i ] < 0 :

x [ 1 , i ] = −x [ 1 , i ]
x [ 0 , i ] = np . p i − x [ 0 , i ]

k = i n t ( t )

u = I n t e r p o l a n t u [ k ] ( x [ 1 , : ] , x [ 0 , : ] , g r i d = F a l s e )
v = I n t e r p o l a n t v [ k ] ( x [ 1 , : ] , x [ 0 , : ] , g r i d = F a l s e )

v e l = np . array ( [ u , v ] )

r e t u r n v e l

d e f RK4( t , x , dt , I n t e r p o l a n t u , I n t e r p o l a n t v ) :

k1 0 = v e l o c i t y ( t , x , I n t e r p o l a n t u , I n t e r p o l a n t v ) [ 0 ]
k2 0 = v e l o c i t y ( t + . 5 ∗ dt , x + . 5 ∗ dt ∗ k1 0 , I n t e r p o l a n t u , I n t e r p o l a n t v ) [ 0 ]
k3 0 = v e l o c i t y ( t + . 5 ∗ dt , x + . 5 ∗ dt ∗ k2 0 , I n t e r p o l a n t u , I n t e r p o l a n t v ) [ 0 ]
k4 0 = v e l o c i t y ( t + dt , x + dt ∗ k3 0 , I n t e r p o l a n t u , I n t e r p o l a n t v ) [ 0 ]

k1 1 = − v e l o c i t y ( t , x , I n t e r p o l a n t u , I n t e r p o l a n t v ) [ 1 ]
k2 1 = − v e l o c i t y ( t + . 5 ∗ dt , x + . 5 ∗ dt ∗ k1 1 , I n t e r p o l a n t u , I n t e r p o l a n t v ) [ 1 ]
k3 1 = − v e l o c i t y ( t + . 5 ∗ dt , x + . 5 ∗ dt ∗ k2 1 , I n t e r p o l a n t u , I n t e r p o l a n t v ) [ 1 ]
k4 1 = − v e l o c i t y ( t + dt , x + dt ∗ k3 1 , I n t e r p o l a n t u , I n t e r p o l a n t v ) [ 1 ]

x update u = x [ 0 ] + dt ∗ ( k1 0 + 2 ∗ k2 0 + 2 ∗ k3 0 + k4 0 ) / 6
x update v = x [ 1 ] + dt ∗ ( k1 1 + 2 ∗ k2 1 + 2 ∗ k3 1 + k4 1 ) / 6

x update = np . array ( [ x update u , x update v ] ) . reshape (2 , −1)
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Figure 3.7: Examples of computed trajectories. Computed trajectories at 10 hPa
for December 02, 2007, January 07, 2008 and February 20, 2008. Initial position
35 °E, 40 °N. In the background, u-component of wind.

r e t u r n x update

The code has two specifics that need further clarification. First, in the
velocity function we can see that we must be careful when computing nega-
tive colatitudes. The program itself, as previously stated, is not optimal around
the pole. From the structure of the grid, we can see that the instance of negative
colatitudes is in fact a positive value of colatitude with the appropriate longitude
being complementary to π. The second fact we should address is that in the
RK4 function, for positions in the y-direction (meaning using the v-component of
wind), we take negative values of velocities. That is due to the fact that our coor-
dinates changed from latitudes to colatitudes. Lastly, we provide some examples
of computed trajectories, as seen in Figure 3.7. We can see that on December 02,
2007 the trajectory very clearly corresponds with the velocity field, as it moves
with a part of the polar vortex. On January 07, 2008, we see a clearly formed
polar vortex, however, the trajectory computed is outside the main vortex, likely
in the surf zone, where the velocities are not as high.

Lastly, on February 20, 2008 we see the behaviour of a trajectory around the
North Pole not exactly reflecting the velocity field. As discussed earlier, the pole
does set restrictions to our computations. Nevertheless, we see that our process
for computing trajectories is satisfactory, even with its limitations.

3.6 The LCSs
The rest of the computations does not require many significant changes to the
original code provided by Haller [2023]. The algorithm follows the mathematical
foundations covered in Chapter 1. However, there are some variables that need
to be determined. That is

• the step size for integration,

• the threshold distance to locate local maxima,
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• the maximum length of a strainline,

• the number of relevant strainlines,

• the minimum threshold on rate of attraction of a strainline,

• the threshold number of iterations.
We set those values as (in the same order): 0.05, 0.5, 5, 20, 0, 100.

Using the program, we inspect three events: the formation, stabilization and
collapse of the polar vortex. We compute LCSs over a period of four days for
pressure levels 20 hPa, 10 hPa, 5 hPa and 1 hPa. Visualisation of the velocity
field along with the corresponding LCSs is in Figures 3.8, 3.10 and 3.12. Fur-
ther computations showing LCSs over subsequent time periods can be seen in
Figures 3.9, 3.11 and 3.13. We will analyse those results in Chapter 4.

(a) 20 hPa

(b) 10 hPa

(c) 5 hPa

(d) 1 hPa

Figure 3.8: Formation of the polar vortex. The u-component of wind for Decem-
ber 01, 02, 03 and 04, 2007 with corresponding repelling and attracting LCSs
computed during the same time frame. Computations for pressure levels (a) 20
hPa, (b) 10 hPa, (c) 5 hPa, (d) 1 hPa.
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(a) 20 hPa

(b) 10 hPa

(c) 5 hPa

(d) 1 hPa

Figure 3.9: LCSs for the formation of the polar vortex. Computed repelling
(black) and attracting (red) LCSs over a period of four days. Time stamp above
each computation denotes the starting point for each computation: December 01,
02, 03 and 04, 2007. Data for four pressure levels are shown (a) 20 hPa, (b) 10
hPa, (c) 5 hPa, (d) 1 hPa.
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(a) 20 hPa

(b) 10 hPa

(c) 5 hPa

(d) 1 hPa

Figure 3.10: Stable circulation. The u-component of wind for February 01, 02, 03
and 04, 2008 with corresponding repelling and attracting LCSs computed during
the same time frame. Computations for pressure levels (a) 20 hPa, (b) 10 hPa,
(c) 5 hPa, (d) 1 hPa.
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(a) 20 hPa

(b) 10 hPa

(c) 5 hPa

(d) 1 hPa

Figure 3.11: LCSs for stable circulation. Computed repelling (black) and attract-
ing (red) LCSs over a period of four days. Time stamp above each computation
denotes the starting point for each computation: February 01, 02, 03 and 04,
2008. Data for four pressure levels are shown (a) 20 hPa, (b) 10 hPa, (c) 5 hPa,
(d) 1 hPa.
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(a) 20 hPa

(b) 10 hPa

(c) 5 hPa

(d) 1 hPa

Figure 3.12: Collapse of the polar vortex. The u-component of wind for February
21, 22, 23 and 24, 2008 with corresponding repelling and attracting LCSs com-
puted during the same time frame. Computations for pressure levels (a) 20 hPa,
(b) 10 hPa, (c) 5 hPa, (d) 1 hPa.
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(a) 20 hPa

(b) 10 hPa

(c) 5 hPa

(d) 1 hPa

Figure 3.13: LCSs for the collapse of the polar vortex. Computed repelling (black)
and attracting (red) LCSs over a period of four days. Time stamp above each
computation denotes the starting point for each computation: February 21, 22,
23 and 24, 2008. Data for four pressure levels are shown (a) 20 hPa, (b) 10 hPa,
(c) 5 hPa, (d) 1 hPa.
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4. Analysis of results
In Section 3.6 we performed several computations of hyperbolic LCS on atmo-
spheric data for winter 2007/2008. In this chapter, we study the results in detail
and analyze their interpretations. We ran computations for three different time
periods with the efforts of capturing the formation, stabilization and collapse of
the polar vortex. Repelling LCSs (black) should give us the boundary of the vor-
tex, whereas the attracting LCSs (red) should show the area of biggest material
accumulation over a selected time period.

4.1 Formation of the polar vortex
The first computation we carried was for the time period of the early days of De-
cember 2007 (Figure 3.8). We can see the beginning of formation of the vortex.
First, let us examine the velocity field. With lower pressure levels we can see in-
crease in the magnitude of zonal winds. That is, the maximum the u-component
achieves at 20 hPa lies around 40 m/s, whereas for higher altitudes, such those
at 1 hPa, it increases up to over 120 m/s. However, we can clearly see the circu-
lar movement throughout the whole span of pressure levels. Computed repelling
LCSs resemble a U-shape, uncovering a detectable circular motion. Looking at
Figure 3.8c and Figure 3.8d, we can even spot closed curves, indicating a stable
circulation. Thus we can determine that in higher altitudes (Figure 3.8c, Fig-
ure 3.8d), the circulation has somewhat stabilized, whereas in the lower altitudes
(Figure 3.8a, Figure 3.8b), there is a circular pattern visible (especially in the
first quater), however, there are no closed curves visible.

Computations of LCSs over subsequent days in Figure 3.9 give further insight.
The calculations were also carrier over the duration of four days with differenti-
ating starting days. The differences between the lower and higher altitudes are
very illustrative. First, let us analyze the pressure level 1 hPa (Figure 3.9d). For
each time stamp, with the exclusion of December 02, 2007, we can see a promi-
nent oval shape at the pole, signaling a stable structure. This gives us a definite
conclusion, that during those four days, the circulation at 1 hPa was coherent.
The exception of December 02, 2007 can be caused by either wrong computations
(e.g. singularity at pole, small number of chosen relevant strainlines,...) or some
abnormalities in the flow that would temporaly influence the coherence of the
material boundary. In Figure 3.9c the formation of the vortex is visible. There
is no exact apparent pattern, however, there are noticible circular shapes. At
different times, those shapes are either close or unclosed, indicating the complex
evolution of the vortex. For lower altitudes seen in Figure 3.9a and Figure 3.9b
there are no closed shapes visible, with a persisting U-shape in the first quater.

The attrating LCSs calculated do not give us any additional information re-
garding the boundary of the vortex. Examining all results in Figure 3.8 we can
say that they are most present in the first and second quater which corresponds
with the highest magnitudes of the u-velocity.

The analysis of Figure 3.8 and Figure 3.9 shows that at lower pressure lev-
els, the circulation was already somewhat stable, whereas at higher pressures
the stabilisation is yet to occur. Such conclusions could not be obtained from
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only visualisating the velocity field. Here, the repelling LCSs show promising
results regarding the different behaviour of air mass at different pressures in the
stratosphere.

4.2 Stable circulation
Let us show an example of stable circulation in the winter of 2007/2008. After
browsing through different time periods, we found a fitting illustation for the first
four days of February, 2008. Following the same format as in Section 4.1, we now
discuss the results seen in Figure 3.10 and Figure 3.11.

In Figure 3.10 the velocity field shows a clear image of a stable vortex. A
particularly intresting is the comparison of different pressure levels. The vortex
seems to be changing its tilt with altitude. This is an interesting observation,
showing that the vortex is not a well defined cylinder, but rather a cylinder-like
spiraling object. With respect to time, we can highlight the fact that the shape
of the vortex does not significantly change, although it does slightly alter its
direction. Nevertheless, the circulation itself seems to be stable.

Examining the results shown in Figure 3.11 will give us a better insight into
the stability of the vortex in question. The best results for a stable vortex are seen
for higher pressure levels 20 hPa and 10 hPa in Figure 3.11a and Figure 3.11b.
We would expect closed circular-like curves represented by the repelling LCSs
that do not change significantly in time. At 20 hPa, we see a trend of a closed
area in the lower half of the polar plot. We better understand this trend when
we look at 10 hPa. Here, there are visible closed structures great in size, clearly
indicating a coherent structure. From those results the conclusion of a stable
circulation is only fitting. In Figure 3.11c there is a similar trend in the shape
of the repelling LCSs as in Figure 3.11a. In Figure 3.11d, however, there is no
circulation visible. Nonetheless, we do see very similar structures for all four days
with a slight exception of the results for February 02, 2008.

Attracing LCSs do not show any particular significance. There does not seem
to be any specific tendency concerning their shape. The only consistent pattern
is their pole-ward orientation.

After the previous analysis of our results regarding stable circulation of the
polar vortex, we can conclude the following. Using the method of repelling LCSs,
the polar vortex is seen to be stable at the beginning of February, 2008 around the
10 hPa level. For both lower and higher pressure levels, its coherence decreases,
more predominantly for the lower levels. At 1 hPa, there seems to be no apparent
circulation, although coherent movement is detected.

4.3 Collapse of the polar vortex
The last part of our analysis concerns the collapse of the polar vortex. Ideally,
evident SSW would be detected. This was the trickiest part of our computations,
as even after a long search for clear sightings, we could not, with high certainty,
observe an undefiable event of SSW. We ran several computations. Splitting
of the vortex was not detected. We did manage to detect a collapsed vortex.
However, no clear event of the ongoing breakdown of the vortex was found. The
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best results (here, best means best illustrative) were given for the time period of
February 21 to February 24, 2008. We show the results in Figures 3.12 and 3.13.

Figure 3.12 shows the remains of the polar vortex in the lower altitudes (Fig-
ures 3.12a and 3.12b), whereas in the higher altitudes the polar vortex is not
detectable at all. Specifically, we can see reverse directions of the zonal winds,
indicating major changes in the circulation. Computed LCSs are shown in detail
in Figure 3.13. For lower altitutudes, we see a few closed curves, although not
circular in shape. Especially in Figure 3.13a we see a trend of two closed curves,
suggesting splitting into two daughter vortices. However, the visualised velocity
field does not support this hypothesis. It is possible that this computation was
highly affected by the singularity at pole, thus showing not conclusive results.
Results shown in Figures 3.13b and 3.13c show hints of circular motion, however
there seems to be any significant structure. In Figure 3.13d we see chaotic curves,
from which we cannot draw any definite conclusions.

The attracting LCSs show highly different behaviour in comparison with Fig-
ures 3.9 and 3.11. Their shapes are irregular, they no longer have a distinctive
direction to the pole. This finding can support our observation of not coherent
flow around the North Pole.

Thus, the stratospheric motion during the time period February 21 to Febru-
ary 24, 2008, shows a collapsed vortex, with no indications of coherent flow in
the higher altitudes. In the lower altitudes, there are some remains. This time
period therefore experiences the disintegration of the polar vortex. However, the
results are not very distinctive.
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5. Discussion
In this chapter, we discuss the strengths and shortcomings of our computations
and introduce possible improvements for future research.

5.1 The program
The premise of this thesis was jeopardized at its beginning with the realisation
that there are no accessible Python programs that would be suitable for the study
of the polar vortex. We were faced with an unexpected task, that is to find and
successfully rewrite a code that somewhat satisfies our conditions. This task was
not entirely successful, as explained in Chapter 3. The singularity at pole was the
biggest obstacle we encountered. Nevertheless, we decided to show our results
despite its faults. Therefore, it is important to keep in mind that our results are
impaired by inaccurate computations of trajectories from a given velocity field.

These hardships could be bypassed or resolved by using different techniques.
There are accessible scripts written in the MATLAB programming language. If
further examined, these programs could eventually solve the singularity problem
using approaches we did not discover. In our calculations, we used the RK4
method. As this thesis is not numerical based, we did not attempt to find other
numerical solutions. There could be more accurate approaches to determine the
flowmap from a velocity field. However, examining them would require a deeper
understanding of mathematical modelling that highly surpasses the objective of
this thesis. Lastly, the problem itself could be possibly resolved at its root by
changing the coordinate system, as briefly mentioned in Chapter 3. This is the
approach we investigated, unfortunately to no competent outcomes. Further
research could lead to potentially fixing the problem at hand.

5.2 The data
Obtaining sufficient data was met with struggles as well, leading to unnecessary
weeks of work until the discovery that the ERA5 data had been corrupted from
the beginning. As a result, we opted to use MERRA2 data instead, which proved
to give expected results regarding the velocity field around the North Pole during
winter months. Our data set contained time periods with the step size of 3 hours.
To gain more precise results, we could apply data sets with the step size of 1 hour,
which are generally accessible by ERA5 (had it not been corrupted).

The velocity field with which we ran our computations was in the units of
m/s. To interpolate over our grid, which was in spherical coordinates, we needed
to transform metres to radians. We did so using the radius of the Earth set
as R = 6370 m. We took this constant from the original program provided by
Haller [2023]. Better results could be obtained from adjusting the constant with
reference to the position on the longitude-latitude grid.
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5.3 The results
We decided to show the visualisation of the u-components of the wind, rather
than showing the v-components, or even both. To show the v-component as well
was thought redundant, as the main flow occurs in the x-direction. However, to
show both of the components could provide a better understanding of the velocity
field. The judgement to visualise one component using a colour meshgrid rather
than visualising both the u- and v-components using arrows as vectors was done
as a result of highly detailed grid. Our efforts to pleasantly visualise using arrows
were met with no great success.

In Section 3.6 we state the inputs of our variables regarding the computations
of LCSs. We tried to optimize the outputs for our data, where we ran com-
putations for various different values and determined the final values based on
observation. We kept the values of the variables set throughout all calculations.
It is possible that different threshold numbers would yield different results, signifi-
cant to our analysis. A possible extension of our paper could see the examination
of the results given for different variable inputs and their mutual comparison,
thus providing us with the opportunity for deeper analysis.

The computation of the LCSs was also affected by subjectivity as the struc-
tures are dependent on the chosen time frame for which they are studied. For
our analysis we chose to compute for the time interval spanning over four days.
After running many test calculations, we determined it to be the best time frame,
yielding both appropriate results and being sufficient to visualise and interpret.
A viable extension of this paper could be to investigate different lengths of time
intervals and compare the results.

For our analysis, we chose three specific events in the winter of 2007/2008.
To apply the LCSs for the whole time period provided by our data set would be
inessential and possibly confusing, as the aim of this paper is to demonstrate the
application of the LCSs qualitevly, not quantitevly. Nevertheless, our results are
restrained to only three events. To evaluate LCSs at many other time periods
could present another possible extension of this paper. Additionaly, comparisons
of the same time periods during the winter season but in different years could be
an interesting insight into the yearly changes of the vortex.

We ran computations only for hyperbolic LCSs, as that was the main aim
of this thesis. It could be intriguing to additionally compute elliptic and/or
parabolic LCSs and compare the results, thus finding the best method for deter-
mining the boundary of the vortex. For visualising the velocity field, extra data
such as e.g. the ozone concentration could be also provided and compared.

5.4 The analysis
Our analysis was based purely on observations and our interpretation of the LCSs
over a polar grid. Our conclusions were drawn by examining the shape of the
strainlines. There, repelling LCSs showed as the most valuable in the search for
the vortex edge. Attracting LCSs served as a secondary source of information, as
they also showed a certain type of coherence over the specified time period.

We examined three events. The formation and the stabilisation of the vor-
tex were fairly conclusive, allowing us to draw satisfactory deductions from our
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computations, even with their shortcomings regarding the singularity at pole.
The collapse of the vortex was also detected, although the actual disintegration

of the vortex would need better computations. We cannot state the exact time
period of the SSW. This restriction is likely in our program, rather than in the
method LCSs provide. It is also possible that in the winter 2007/2008 there was
no abrupt case of SSW. We can only speculate where the biggest malfunction
of our program lies but can definitely argue that solving the singularity problem
would eliminate the largest obstacle this thesis faced. It is most likely that only
after would we receive much better results.

5.5 Further insights
Although our results have their shortcomings, the illustation of the possible ad-
vantages of using the hyperbolic LSCs regarding the polar vortex was sufficiently
examined. Even with slightly disturbed flowmap, we received qualitevly impor-
tant results, once again demonstrating the potential the LCS-method introduces.

Had we been provided with functional program for computing, this thesis
would indulge in a more thorough examination of the polar vortex, with possi-
bilites stated in the previous sections of this chapter. However, as no applicable
program was available, we were faced with a challenge to optimize and rewrite an
unsuitable program provided by Haller [2023]. This optimalization took months,
but we can safely say, that our efforts were not in vain, as we provide and analyse
results that nonetheless carry value to the study of the polar vortex.
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Conclusion
In this thesis, we introduced the topic of Lagrangian coherent structures and
demonstrated this method on atmospheric data of winter 2007/2008.

In Chapter 1 we explained the construction of LCSs, focusing on both the
mathematical and the physical aspect. We described the computation of LCSs,
different types of LCSs and their significance.

In Chapter 2, we gave a characterization of the polar vortex, defining its
variations (stratospheric, tropospheric, northern and southern). We aimed our
focus on the stratospheric polar winter circulation on the Northern Hemisphere,
examining its seasonal changes. We also discussed different techniques and the
importance of detecting the edge of the polar vortex.

In Chapter 3 we showed the process of our computations, describing the dif-
ficulties regarding programming in the Python language. We detailed the parts
of our program that needed adjusting and discussed the problems encountered,
the main one being the singularity at pole. That was an issue we could not, even
after numerous attempts, resolve. We also introduced a numerical method RK4
used for deriving trajectories from a velocity field.

We further illustrated the velocity field, giving its examples at different pres-
sure levels and different times. Finally, we ran our computations to find hyper-
bolic LCSs. We opted for showing three distinctive events in the winter period:
the formation, the stabilisation and the collapse of the vortex. All computations
were performed for pressure levels 20 hPa, 10 hPa, 5 hPa and 1 hPa and calculated
for the duration of four days.

In Chapter 4 we analysed the results from Chapter 3. We were able to detect
the behaviour of the polar vortex at the event of its formation and stabilization.
A collapsed polar vortex was observed, however, the results were not persuasive,
as in this part of the computations, it is likely that the singularity at pole was
significant. A clear event of SSW was not found.

In Chapter 5 we explained the shortcomings of our computations and possible
improvements for the future. We also stated that, despite its challenges, out aim
to demonstrate the application of hyperbolic LCSs on the stratospheric polar
winter circulation was successful.

Lagrangian coherent structures remain a powerful tool for characterizing fluid
dynamics. Their prospects of possible applications are vast, with a large amount
of opportunities for further research. Their significance in detecting the edge of
the polar vortex seems to be non-negligible. The complexity of their computation
remained to be an obstacle in this thesis, however, further endeavors could provide
more precise outcomes.
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