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Study programme: Mathematical modelling

Study branch: Mathematics

Prague 2024



I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In . . . . . . . . . . . . . date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Author’s signature

i



My deepest gratitude goes to Mgr. Martin Kihoulou, DiS. for his exceptional
help with programming, code implementation and guidance throughout the de-
velopment of this thesis. His kindness, patience and attitude were invaluable.
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Department: Department of Geophysics
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Introduction
In recent decades, there has been a growing interest in studying icy ob-

jects in the outer Solar System. Missions such as Voyager, Galileo, and Cassini-
Huygens have explored the systems of Jupiter and Saturn, revealing that some of
their moons might possess large liquid subsurface oceans beneath their icy crusts
[Nimmo and Pappalardo, 2016]. Other icy bodies, such as Neptune’s moon Tri-
ton, visited by Voyager 2 in 1989 [Hansen et al., 2021], and the dwarf planet
Ceres, explored by the Dawn mission [Ermakov et al., 2017], are also believed to
have subsurface water reservoirs. Observations by the New Horizon spacecraft
suggest that liquid water may exist inside Pluto despite its surface temperature
being less than 45 K [Nimmo et al., 2016]. Notably, conditions in the oceans
on Europa, Titan, and Enceladus, as indicated by the results from Galileo and
Cassini-Huygens missions, could potentially support primitive life forms [Cock-
ell et al., 2016]. These findings make these moons promising targets for future
missions searching for life in the Solar System [Grasset et al., 2013, Lorenz et al.,
2018, Howell and Pappalardo, 2020].

Realistic models of convective heat transfer in the ice shells of icy moons are
still relatively rare. While current models usually account for the temperature
dependence of viscosity, they often assume constant thermal properties, neglect-
ing the effects of complex rheologies dependent on stress and grain size [Goldsby
and Kohlstedt, 2001]. Whether heat transfer in the ice shell is dominated by con-
duction or convection is primarily determined by the grain size [Kihoulou et al.,
2023]. However, the grain size on icy moons is a major unknown and may vary
from 0.1 to 100 mm [Barr and McKinnon, 2007], leading to variations in viscosity
spanning six orders of magnitude. Additionally, the grain size can change over
time due to stress, temperature, and the presence of impurities (e.g., bubbles,
dust particles, salts). Although several studies have described factors influencing
grain size evolution [e.g., Journaux et al., 2019], it remains unclear how changes
in grain size over time affect the heat transfer in the ice shell. This issue has only
been addressed in a few studies that modelled ice flow with variable grain size
but were simplified in other aspects [e.g., Barr and McKinnon, 2007].

In this thesis, we aim to investigate the role of grain size evolution in heat
transfer on icy moons using a numerical model that incorporates realistic consti-
tutive relations and the evolution of the grain size. Our goal is to provide the
first estimate of the impact of grain size evolution on heat transfer in the outer
shells of icy moons and to determine under which conditions the heat transfer is
dominated by convection. To achieve this, we will develop a numerical code using
the finite-element software FEniCS [Alnæs et al., 2015] and perform a series of
simulations to show the effect of the grain size on the heat transfer for different
model parameters.
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1. Thermal convection in an ice
layer

1.1 Governing equations
Thermal convection in an ice layer, particularly in the context of planetary

bodies such as icy satellites, is a complex phenomenon that plays a crucial role in
the thermal and mechanical evolution of these celestial objects. To gain a com-
prehensive understanding of this process, it is essential to formulate the problem
mathematically by deriving the appropriate governing equations.

The fundamental equations governing thermal convection in an ice layer,
expressed in the Boussinesq approximation [e.g., Kihoulou et al., 2023], are as
follows:

∇ · v⃗ = 0, (1.1)
−∇p +∇ · η(∇v⃗ + (∇v⃗)T ) + ρ g⃗ = 0⃗, (1.2)

ρ0 cp
∂T

∂t
= ∇ · (k∇T )− ρ0 cp(v⃗ · ∇T ), (1.3)

where v⃗ is the velocity, p is the pressure, T is the temperature, ρ is the density,
η is the viscosity, cp is the specific heat, k is the thermal conductivity, ρ0 is the
density at the reference temperature T0 and g⃗ is the gravitational acceleration.
The definitions of the constitutive relations for cp, k, ρ and η are further described
in section 1.3. We refer to equations (1.1), (1.2) and (1.3) as the continuity
equation, the momentum equation and the energy equation, respectively. As in
other studies, we assume that the ice is incompressible (1.1) and we neglect the
effect of adiabatic and dissipative heating (1.3), which is likely to be of minor
importance in icy moon applications (the dissipative number is ∼ 10−4 − 10−2).

1.2 Domain definition and boundary conditions
Equations (1.1)−(1.3) are solved in a 2-dimensional (2D) rectangular domain.

The choice of the planar geometry is a meaningful way to approximate the ice
shell of large icy moons, such as Europa, Titan or Ganymede, where the outer
radius is bigger than 1500 km and the thickness of the ice layer is less than 100
km [Sotin et al., 2021]. In contrast, the assumption of the 2D geometry is a clear
simplification and is only used to avoid the computational difficulties associated
with 3D simulations. The computational domain, Ω, is illustrated in Figure 1.1.
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Γbot T = Tbot

∇T · n⃗ = 0

Γtop T = Ttop

∇T · n⃗ = 0 h

l

p = 0 Ω
n⃗ · v⃗ = 0

n⃗ · t−
(︂
(n⃗ · t) · n⃗

)︂
n⃗ = 0⃗

for each boundary

x

y

Figure 1.1: Description of the computational domain and boundary conditions

Symbol l denotes the length of the domain, h is the thickness of the ice layer and
Γbot and Γtop represent the bottom and top boundaries, respectively. The Cauchy
stress tensor is denoted by t and n⃗ is the normal vector.

The domain is homogeneously heated from below and cooled from top, hence
we prescribe the Dirichlet boundary conditions for the temperature on the top
and bottom boundaries:

T = Ttop on Γtop (1.4)
T = Tbot on Γbot. (1.5)

Since the bottom boundary represents the phase interface between ice and water,
temperature Tbot corresponds to the melting temperature of ice. Additionally,
we assume isolating lateral boundaries. Hence, we prescribe the homogeneous
Neumann boundary condition on both boundaries in the form

∇T · n⃗ = 0. (1.6)

We assume that all boundaries are impermeable and free-slip. The first boundary
condition for the momentum equation then reads

n⃗ · t−
(︂
(n⃗ · t) · n⃗

)︂
n⃗ = 0⃗, (1.7)

and the boundary condition for the velocity takes the form

n⃗ · v⃗ = 0. (1.8)

Finally, we prescribe a condition for pressure by fixing p = 0 in the left top corner
of the domain.

1.3 Material properties and constitutive rela-
tions

To accurately model the thermal convection in the ice shell, we need to ac-
count for the dependence of material parameters on the temperature. Thus, we

4



incorporate temperature-dependent constitutive relations for the thermal con-
ductivity, specific heat and the density. We use the following relationship for the
thermal conductivity in the form [Carnahan et al., 2021]:

k(T ) = k1

T
. (1.9)

Then, we use the relationship for the specific heat from McCord and Sotin [2005]
in the form

cp(T ) = c1 + c2T, (1.10)
where k1, c1 and c2 are constants listed in Table 1.1. Finally, we use the rela-
tionship for density adopted from Röttger et al. [1994] and Feistel and Wagner
[2006]:

ρ(T ) = ρ0
a0 + a3T

3
0 + a4T

4
0 + a5T

5
0 + a6T

6
0 + a7T

7
0

a0 + a3T 3 + a4T 4 + a5T 5 + a6T 6 + a7T 7 , (1.11)

where ρ0 is the density at the reference temperature T0. All parameters are
summarized in Table 1.1.

Symbol Physical quantity Value Unit

h height of the domain 100 km
l length of the domain 200 km
g gravitational acceleration 1.3 m s−2

k thermal conductivity 2.1 W m−1 K−1

Q activation energy 60 kJ mol−1

R molar gas constant 8.314 J K−1 mol−1

Ttop top temperature 90 K
Tbot bottom temperature 265 K
T0 reference temperature 273 K
ηcut-off cut-off viscosity 1024 Pa s
ρ0 density of ice at temperature T0 917 kg m−3

a0 density coefficient, eq. (1.11) 128.2147 Å
a3 density coefficient, eq. (1.11) −1.3152× 10−6 Å K−3

a4 density coefficient, eq. (1.11) 2.4837× 10−8 Å K−4

a5 density coefficient, eq. (1.11) −1.6064× 10−10 Å K−5

a6 density coefficient, eq. (1.11) 4.6097× 10−13 Å K−6

a7 density coefficient, eq. (1.11) −4.966× 10−16 Å K−7

c1 constant specific heat coeffi-
cient, eq. (1.10)

185 J kg−1 K−1

c2 linear specific heat coefficient,
eq. (1.10)

7.037 J kg−1 K−2

k1 thermal conductivity coeffi-
cient, eq. (1.9)

612 W m−1

Table 1.1: Physical parameters

While the definitions of the constitutive relations for ρ, cp and k are relatively
straightforward, the constitutive relation for the viscosity η is quite complex. Ac-
cording to Goldsby and Kohlstedt [2001], ice deformation is governed by four
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primary creep mechanisms, which depend either only on the temperature (dif-
fusion creep) or both on the temperature and stress (dislocation creep, grain
boundary sliding and basal slip). Each creep mechanism is characterised by its
specific viscosity.

Following Goldsby and Kohlstedt [2001], the viscosity for temperature- and
stress-dependent mechanisms (dislocation creep, GBS, BS) is given by the follow-
ing formula:

η(T, ε̇II) = 1
2B

−1
n ε̇

1−n
n

II d
p
n exp

(︃
Q

nRT

)︃
, (1.12)

where B is the viscosity prefactor, n is the stress exponent, d is the grain size,
p is the grain size exponent, Q is the activation energy for creep, R is the molar
gas constant and T is the temperature. Finally, the second invariant of the strain
rate tensor is defined

ε̇II =
√︄

ε̇ : ε̇

2 , (1.13)

where ε̇ defined as
ε̇ = 1

2
(︂
∇v⃗ + (∇v⃗)T

)︂
. (1.14)

Note that the values for the prefactor B differ from the values A listed in Goldsby
and Kohlstedt [2001]. This is because we express the strain rate equation in
terms of ε̇II , while the constitutive relations in Goldsby and Kohlstedt [2001] are
formulated in terms of differential stress. The conversion formula yields [Durham
and Stern, 2001]

B = 1
23n+1

2 A. (1.15)

Specific values for all parameters of each creep mechanism are listed in Table 1.2.

Creep Regime A (MPa−n s−1) n Q (kJ mol−1)
Dislocation creep (T < 258 K) 4.0× 105 4.0 60
Dislocation creep (T > 258 K) 6.0× 1028 4.0 180
GBS (T < 255 K) 3.9× 103 1.8 49
GBS (T > 255 K) 3.0× 106 1.8 192
Basal slip 5.5× 107 2.4 60

Table 1.2: Rheological parameters for stress-dependent creep mechanisms
[Goldsby and Kohlstedt, 2001].

The viscosity given by the diffusion creep is determined by the relation

η(T ) = 2
3 RTd2 1

84Vm(Dv + πδDb/d) , (1.16)

where Vm is a molar volume, Dv is the volume diffusion coefficient, δ is the grain
boundary width and Db is the grain boundary diffusion coefficient. In addition,
Dv and Db are determined as

Db = D0,b exp
(︃
− Qb

RT

)︃
, (1.17)

Dv = D0,v exp
(︃
− Qv

RT

)︃
, (1.18)

6



where D0,b, D0,v are constants listed in Table 1.3. The values of the remaining
parameters are summarised in Table 1.3.

Symbol Description Value Unit

Vm Molar volume 1.97× 10−5 m3

δ Grain boundary width 9.04× 10−10 m
D0,b Preexponential, boundary diffusion 6.4× 10−4 m2s−1

D0,v Preexponential, volume diffusion 9.10× 10−4 m2s−1

Qv Activation energy, volume diffusion 59.4 kJ mol−1

Qb Activation energy, boundary diffusion 49 kJ mol−1

Table 1.3: Diffusion creep parameters [Goldsby and Kohlstedt, 2001].

The effective viscosity is then obtained by summing the reciprocals of the
viscosities of all creep mechanisms [Goldsby and Kohlstedt, 2001]:

1
η

= 1
ηdiff

+ 1
ηGBS + ηBS

+ 1
ηdisl

, (1.19)

where ηGBS, ηBS and ηdisl are viscosities given by (1.12) with corresponding pa-
rameters from the Table 1.2 and ηdiff is obtained from (1.16). Finally, we limit
the viscosity in the cold part of the domain by a maximal value ηcut-off to reduce
the viscosity contrast in the domain:

ηfinal = min{η, ηcut-off}, (1.20)

where we consider ηcut-off = 1024 Pa s.
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2. Numerical implementation
Having established the basic theoretical framework, we now turn our atten-

tion to the methodology employed in this study. With the governing equations
that mathematically describe the behaviour of the system now obtained, we must
proceed to solve them. For this purpose, we employ FEniCS, an open-source
finite-element library designed for the numerical solution of partial differential
equations [Alnæs et al., 2015, Logg et al., 2012].

2.1 Weak form of governing equations
The finite element method requires the governing equations to be in a weak

form. This involves multiplying each equation by a test function and integrating
over the domain while reducing the second-order spatial derivatives. First, we
derive the weak form of the continuity equation (1.1) by multiplying it by a scalar
test function χ and integrating over the domain Ω:∫︂

Ω
χ(∇ · v⃗) dV = 0. (2.1)

Next, for the momentum equation (1.2), we multiply each term by a vector test
function w⃗ and integrate over Ω. We obtain∫︂

Ω
w⃗ · (−∇p +∇ · η

(︂
∇v⃗ + (∇v⃗)T

)︂
+ ρ g⃗) dV = 0. (2.2)

Applying integration by parts to the pressure term, we get∫︂
Ω

w⃗ · (−∇p) dV =
∫︂

Ω
(∇ · w⃗)p dV −

∫︂
∂Ω

p(w⃗ · n⃗) dS. (2.3)

As for the viscous term w⃗ ·
(︃
∇ · η

(︂
∇v⃗ + (∇v⃗)T

)︂)︃
, we proceed as follows

∫︂
Ω

w⃗ ·
(︂
∇ · η(∇v⃗ +∇T v⃗)

)︂
dV =

∫︂
Ω

w⃗ · (∇ · 2ηε̇) dV

=
∫︂

Ω
wk

(︂
2η

∂ε̇k1

∂x1
+ 2η

∂ ̇εk2

∂x2

)︂
dV

= −
∫︂

∂Ω
2ηwk(ε̇k1n1 + ε̇k2n2) dS

−
∫︂

Ω
2η
(︂∂wk

∂x1
ε̇k1 + ∂wk

∂x2
ε̇k2
)︂

dV

=
∫︂

∂Ω
2η
(︂
w⃗ · (ε̇ · n⃗)

)︂
dS −

∫︂
Ω

2η(∇w⃗ : ε̇) dV

=
∫︂

∂Ω
w⃗ · (t · n⃗) dS −

∫︂
Ω

2η
(︂
∇w⃗ : sym(∇v⃗)

)︂
dV,

(2.4)

where sym(∇v⃗) denotes the symmetrical part of ∇v⃗, defined as

sym(∇v⃗) = 1
2
(︂
∇v⃗ + (∇v⃗)T

)︂
. (2.5)
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Combining all the terms, the weak form of the momentum equation becomes∫︂
Ω
(∇· w⃗)p− 2η

(︂
∇w⃗ : sym(∇v⃗)

)︂
+ ρ (g⃗ · w⃗) dV +

∫︂
∂Ω
−p(w⃗ · n⃗) + w⃗ · (t · n⃗) dS = 0.

(2.6)
Now we take into account the boundary conditions and further modify the equa-
tion. From the free-slip condition for velocity also follows the free-slip condition
for the test function

v⃗ · n⃗ = 0 ⇒ w⃗ · n⃗ = 0. (2.7)
This means that ∫︂

∂Ω
−p(w⃗ · n⃗) dS = 0 (2.8)

From the free-slip condition for t, which is

n⃗ · t−
(︂
(n⃗ · t) · n⃗

)︂
n⃗ = 0⃗, (2.9)

we get ∫︂
∂Ω

w⃗ · (t · n⃗) dS = 0 (2.10)

Thus, the final weak form of the momentum equation is∫︂
Ω
(∇ · w⃗)p− 2η

(︂
∇w⃗ : sym(∇v)

)︂
− ρ g(e⃗y · w⃗) dV = 0. (2.11)

Regarding the energy equation (1.3), we multiply it by a scalar test function
τ and integrate over the domain Ω. This gives∫︂

Ω
τ
(︂
ρ0 cp

∂T

∂t

)︂
=
∫︂

Ω
τ
(︂
∇ · (k∇T )− ρ0 cp(v⃗ · ∇T )

)︂
dV. (2.12)

Next, we reduce the second-order derivative on the right-hand side∫︂
Ω

τ
(︂
∇ · (k∇T )

)︂
dV =

∫︂
∂Ω

τ(k∇T · n⃗) dS −
∫︂

Ω
k(∇τ · ∇T ) dV

= −
∫︂

Ω
k(∇τ · ∇T ) dV +

∫︂
∂Ω

τ(q⃗ · n⃗) dS.
(2.13)

The heat flux through the boundary is zero from the boundary condition, which
means that ∫︂

∂Ω
τ(q⃗ · n⃗) dS = 0. (2.14)

The final form of the energy equation in the weak form is∫︂
Ω

ρ0 cp
∂T

∂t
τ + k(∇τ · ∇T ) + ρ0 cp(v⃗ · ∇T )τ dV = 0. (2.15)

Lastly, regarding our implementation, we use the Taylor-Hood element [Tay-
lor and Hood, 1973], which is well-suited for solving incompressible flow problems.
The Taylor-Hood element uses the polynomial of degree k for the velocity and
the polynomial of degree k − 1 for the pressure. We set k = 2. This method is
pressure-robust. For the representation of the temperature, we choose a quadratic
element.
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2.2 Time derivative discretization and time step
criterion

For the numerical solution of the equation (1.3), we employ the semi-implicit
Crank-Nicholson scheme. This scheme replaces the time derivative with a finite
difference approximation:

∂T

∂t
= F −→ T − Tk

∆t
= 1

2(F + Fk), (2.16)

where F refers to the term k(∇τ · ∇T ) + ρ0 cp(v⃗ · ∇T )τ . The energy equation in
its discretized form reads∫︂

Ω
ρ0 cp

T − Tk

∆t
τ + 1

2

[︃(︂
k(∇τ · ∇T ) + ρ0 cp(v⃗ · ∇T )τ

)︂
⏞ ⏟⏟ ⏞

F

+
(︂
k(∇τ · ∇Tk) + ρ0 cp(v⃗ · ∇Tk)τ

)︂
⏞ ⏟⏟ ⏞

Fk

]︃
dV = 0.

(2.17)

To regulate the length of the time step, we use the Courant–Friedrichs–Lewy
(CFL) criterion in the form

∆t = 1
2min

{︃
xmin

vmax
, x2

min
ρcp

k

}︃
, (2.18)

where xmin is the shortest element in the mesh and vmax is the highest velocity
on the domain. The temperature-dependent quantities in equation (2.18) are
evaluated at a constant temperature Tmean taken as the average of the top and
bottom temperature boundary conditions.

2.3 Initial condition
To initialize the simulation, we need the initial condition for the temperature

and velocity. The initial temperature is obtained by solving the stationary form
of the energy equation (1.3), which is in the form

∇ ·
(︂
k(T )∇T

)︂
= 0. (2.19)

Since equation (2.19) is non-linear, we solve it iteratively, starting with linear
profile

T = Tbot + Ttop − Tbot

h
y. (2.20)

For details of the iterative method, see Algorithm 1.
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Algorithm 1 Computational scheme of the conduction profile
Tk ← linear temperature profile (2.20)
tempDifference ← 0
while tempDifference > 10−3 do

Solve Laplace problem (2.19)
T ← solution
tempDifference ← 1

h l

∫︂
Ω

|Tk − T |
T

dV

Tk ← T
end while

In addition, all ice creep regimes, except the diffusion creep are stress-
dependent. As we do not know before the first time loop the stress and also
the strain rate, we omit the effect of stress-dependent mechanisms in the first
time step. Therefore, we use the diffusion creep to determine the viscosity of
ice in the system and we use the temperature field obtained from Algorithm 1.
Lastly, to facilitate the onset of convection, we prescribe a variation in the initial
temperature profile in the form

Tinit = Talg + acos
(︂πx

l

)︂
sin
(︂πy

h

)︂
, (2.21)

where Talg is the temperature obtained from Algorithm 1 and a is the amplitude
of the variation. In our case, we set a = 0.05 K.

2.4 Treatment of nonlinearities
During the simulation, we proceed through the main computational loop,

where the Stokes problem (equations (1.1), (1.2)) and then the energy equation
(equation (1.3)) are solved. The governing equations are due to the temperature-
dependent parameters ρ, cp, k and η nonlinear. The nonlinearity of the material
parameters in the energy equation (1.3) is only weak, therefore we linearise it by
evaluating them by the temperature from the previous time step. The momentum
equation contains the term with viscosity depending not only on the temperature
but also on the velocity as ε̇II figures in the formula (1.12) for η. Simply using the
velocity field from the previous time step would result in inaccuracies. Therefore,
to obtain a sufficiently accurate solution, we use the Picard iterative algorithm
[Picard, 1890], which is schematically illustrated in Algorithm 2.

Algorithm 2 Picard iterations of the Stokes problem
v⃗k ← solution of the Stokes problem
velDifference ← 0
while velDifference > 10−3 do

Solve the Stokes problem
v⃗ ← solution

velDifference ← 1
h l

∫︂
Ω

√︃
(v⃗ − v⃗k) · (v⃗ − v⃗k)

v⃗ · v⃗
dV

v⃗k ← v⃗
if iterations > 10 then

break
end if

end while

11



The number of Picard iterations is either restricted by the difference of so-
lutions between two iterations or by the upper limit of 10 iterations. The whole
computational scheme is illustrated in Algorithm 3.

Algorithm 3 Computational scheme
Define mesh, function spaces, functions on mesh, equations, boundary condi-
tions, initial conditions
Define endtime
time ← 0
Tk ← linear temperature profile (2.20)
tempDifference ← 0
while tempDifference > 10−3 do

Solve Laplace problem (2.19)
T ← solution
tempDifference ← 1

h l

∫︂
Ω

|Tk − T |
T

dV

Tk ← T
end while
Add temperature variation
v⃗k ← solution of Stokes problem from the diffusion creep
while time ≤ endtime do

velDifference ← 0
while velDifference > 10−3 do

Solve the Stokes problem
v⃗ ← solution

velDifference ← 1
h l

∫︂
Ω

√︄
(v⃗ − v⃗k) · (v⃗ − v⃗k)

v⃗ · v⃗
dV

v⃗k ← v⃗
if iterations > 10 then

break
end if

end while
Update ∆t from CFL criterion
Solve Energy equation
Tk ← solution
time ← time + ∆t

end while
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3. Program testing

3.1 Thermal convection benchmark
In chapter 1, we have established the required relationships to begin sim-

ulating the thermal convection. In this chapter, we create a model of thermal
convection with simple rheology. This model is compared to the thermal con-
vection benchmark [Blankenbach et al., 1989] using two parameters which we
introduce later. For the benchmark, unlike in chapter 1, we consider constant
material properties and we further assume that the density in the momentum
equation (1.2) is given by the linear relationship

ρ = ρ0
(︂
1− α(T − T0)

)︂
, (3.1)

where ρ0 is the density at the reference temperature T0 and α is the thermal
expansion coefficient. Here, for a moment, we do not omit the term ρ0

dv⃗

dt
on the

right side of the momentum equation (1.2).
Let us introduce the following non-dimensional parameters:

x⃗ = Dx⃗′, t = D2

κ
t′, v⃗ = κ

D
v⃗′, p = ρ0 gDp′, T = Ttop + ∆TT ′,

(3.2)

where D is the characteristic dimension, in our case, the height of the domain h,
and g is the magnitude of the gravitational acceleration; the thermal diffusivity
κ, kinematic viscosity ν and ∆T are defined as follows:

κ = k

ρ0 cp

, ν = η

ρ0
, ∆T = Tbot − Ttop. (3.3)

Then the governing equations after incorporating the dimensionless parameters
become

∇′ · v⃗′ = 0, (3.4)

−∇′p′ +∇′ · η′(∇′v⃗′ + (∇′v⃗′)T ) + Ra(T ′ − T ′
0)e⃗z = 1

Pr

dv⃗′

dt′ , (3.5)
∂T

∂t
= −v⃗′ · ∇′T ′ + ∆′T ′, (3.6)

where Ra and Pr,

Ra = ρ0α∆TD3g

ηκ
, Pr = ν

κ
, (3.7)

denote the Rayleigh and the Prandtl numbers, respectively.
In the case of thermal convection in the ice shell of icy moons, the Prandtl

number can be estimated from below as

Pr = ν

κ
= ηcp

k
≥ 2.5× 1019, (3.8)
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where we have computed the quantities of the material properties in (3.8) for
Tbot. Therefore, the whole term 1

Pr

dv⃗′

dt′ can be neglected.
For the benchmark, we use the non-dimensional equations (3.4) − (3.6). We

compare our results with those published by Blankenbach et al. [1989] for three
different Rayleigh numbers:

1a) Ra = 104

1b) Ra = 105

1c) Ra = 106

Now, let us introduce the parameters, which rate the properties of a convecting
system. The Nusselt number is a non-dimensional parameter, which is defined
as the ratio of a convective to a conductive (total) heat flux through the top
boundary:

Nu = qconv

qcond
. (3.9)

The next value, which we are going to compare with the benchmark, is the root
mean square velocity, defined as

vrms = 1
h l

√︄∫︂
Ω

v⃗ · v⃗ dV . (3.10)

In each numerical simulation, we wait for the convection to reach a steady state
and then we compare the statistical properties defined above with the values from
Blankenbach et al. [1989].

3.2 Domain definition and boundary conditions
We perform the benchmark test in a box with an aspect ratio of 1. The

bottom temperature is set to 1 and the top temperature is set to 0 as illustrated
in Figure 3.1. All other boundary conditions remain the same as in Figure 1.1.

Tbot = 1Γbot

∇T · n⃗ = 0

Ttop = 0Γtop

∇T · n⃗ = 0

p = 0

h = 1

l = 1

Ω

n⃗ · v⃗ = 0⃗

n⃗ · t−
(︂
(n⃗ · t) · n⃗

)︂
n⃗ = 0⃗

for each boundary

x

y

Figure 3.1: Convection benchmark domain description
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The resolution of the box is chosen 50 × 50 cells for Cases 1a) and 1b), and
100× 100 cells for Case 1c).

3.3 Convection benchmark results
The steady states obtained for the three considered cases, are shown in Fig-

ures 3.2 − 3.4 for each Case 1a) − 1c), where the black contours illustrate the
isotherms. The corresponding table comparing our results with those of Blanken-
bach et al. [1989] together with relative errors are shown in Table 3.1. The
evolutions of Nu and vrms for all studied cases are shown in Figure 3.5.

Figure 3.2: Steady state, Ra = 104 Figure 3.3: Steady state, Ra = 105

Figure 3.4: Steady state, Ra = 106
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Blankenbach et al. [1989] This study Relative error

(1a)
Nu 4.884 4.895 0.225%
vrms 42.865 42.851 0.033%
(1b)
Nu 10.534 10.625 0.863%
vrms 193.215 193.214 0.0005%
(1c)
Nu 21.972 22.207 1.069%
vrms 834.990 833.438 0.186%

Table 3.1: Comparison of our results with those of Blankenbach et al. [1989]

Figure 3.5: Comparisons of Nu and vrms for the three cases considered in the
convection benchmark. The values obtained by Blankenbach et al. [1989] are
shown by the red lines.

The convection in Figures 3.2 − 3.4 takes place over the whole domain and
reaches a steady state in each case. We have verified that our values for Nu and
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vrms match the values from Blankenbach et al. [1989] with satisfactory precision,
indicating that we can proceed with simulating thermal convection in the ice layer
using realistic physical parameters. Hence, we will again consider the dimensional
form of the governing equations.
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4. Thermal convection with a
constant grain size

Before turning our attention to the problem of evolving grain size, we will
develop a model of thermal convection with the rheology described in chapter 1,
but we will assume that the grain size is constant in space and time. We are
faced with the question of choosing the grain size. To explore the influence the
grain size has on the behaviour of the convecting system, we perform numerical
simulations for three different values of the grain size. The grain sizes are chosen
such that the viscosity given by the diffusion creep at the bottom boundary is
equal to

2a) η0 = 1014 Pa s

2b) η0 = 1015 Pa s

2c) η0 = 1016 Pa s

The grain size is derived from the diffusion creep formula (1.16) which can be
transformed to the form

RTd3 − 2
3 84dDvη0Vm −

2
3 84πδDbη0Vm = 0. (4.1)

Solving this equation for each η0 in Cases 2a), 2b) and 2c), we obtain the following
grain sizes:

2a) d = 0.45 mm

2b) d = 1.42 mm

2c) d = 4.48 mm

The evolution of the system for each grain size is simulated over a time period of
100 million years. The final states are compared in Figures 4.1, 4.2 and 4.3 for
Cases 2a), 2b) and 2c), respectively.

Figure 4.1: Case 2a)
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Figure 4.2: Case 2b)

Figure 4.3: Case 2c)

Inspection of the figures suggests that the convection in the ice shell with
the realistic rheology with constant grain size occurs only for the grain sizes 0.45
mm and 1.42 mm, whereas the system enters a conductive mode for the grain
size 4.48 mm. Thus, the critical value of the grain size which determines, whether
the system is in the convective or the conductive regime lies between 1.42 mm
and 4.48 mm. The vigour of the convection is significant for Case 2a), which we
can observe in Figure 4.1. The system acts chaotically and the Nusselt number
takes on the value 2.863. On the other hand, Figure (4.2) illustrates the creation
of two convective cells for Case 2b) and the Nusselt number acquires the value
1.984. Finally, the system in Case 2c) is fully in the conductive regime and no
convection occurs.

19



5. Grain size evolution
In this chapter, we develop a model where we dynamically adjust the grain

size throughout the simulation. This novel approach to modelling thermal con-
vection incorporates the evolution of the grain size with realistic rheology. Several
studies describing the grain size evolution have been published to this date [e.g.,
Behn et al., 2021, Linow et al., 2012, Wang et al., 2024]. Our model is based on
the findings of Behn et al. [2021], who suggests that grain size growth is driven
by the Arrhenius-type relationship stated below, while the grain size reduction
is influenced by dislocation creep and grain boundary sliding (GBS) creep. The
parameters describing the grain size evolution were derived from the investigation
of the laboratory and ice core data obtained from the GRIP (Greenland Ice Core
Project) measuring.

5.1 Consititutive relations
According to Behn et al. [2021], the grain size evolution is given by the

formula in the form
ḋ = ḋgg − ḋred, (5.1)

where ḋ is the rate of the grain size change, ḋgg is the rate of the grain growth
and ḋred is the rate of the grain size reduction. The formula for ḋgg is given by
the Arrhenius-type relationship

ḋgg = p−1
gg d1−pggKggexp

(︃
−Qgg

RT

)︃
, (5.2)

where pgg is the grain growth exponent, Kgg is the grain growth constant and Qgg

is the activation energy for the grain growth; specific values for these constants
are listed in Table 5.1. The Arrhenius dependence indicates, that the fastest
growth rate is expected for high temperatures at the interface of the ice shell and
the subsurface ocean, whereas the smallest growth of the grain is likely to occur
in the colder areas on the surface. The formula for the grain size reduction is
determined as

ḋred = (λGBS − βλGBS + βλdisl)d2

cγ
σII ε̇II , (5.3)

where c, γ, λGBS, λdisl are constants described in Table 5.1 and β can be expressed
as

β = ε̇II,disl

ε̇II,GBS + ε̇II,disl
. (5.4)

Additionally, the values for λdisl and λGBS are uncertain and are not determined
independently [Behn et al., 2021], thus we further assume that λdisl = λGBS.
Hence, for simplicity, let us denote λ = λdisl = λGBS.
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Symbol Description Value Unit
Qgg Activation energy for grain growth 42 kJ mol−1

Kgg Grain growth rate constant (lab) 1.36× 10−20 m7.1 s−1

Kgg Grain growth rate constant (lab+ice
core)

9.15× 10−18 m6.03 s−1

pgg Grain growth exponent (lab) 7.1 -
pgg Grain growth exponent (lab+ice core) 6.03 -
γ Average specific grain boundary energy 0.065 J m−2

λ
Fraction of work done by dislocation
and GBS creep to change grain bound-
ary area

0.005–0.05 -

c Geometric constant 3 -

Table 5.1: Grain size evolution parameters [Behn et al., 2021].

5.2 Numerical implementation
The equations (5.2) and (5.3) describe changes in the size of individual ice

grains, which are advected with the flow. We have to treat the information about
the grain size as a material property of ice and advect it with the flow. For this
purpose, we utilize a tracer method developed by Kihoulou [2024]. Advection
of Lagrangian tracers is a numerical method for solving the transport part of
the partial differential equations, representing the advected quantity by a finite
number of infinitesimal points. Each tracer holds information about its position
and size.

In the beginning, tracers are regularly distributed within each cell of the
mesh with a given number of tracers inside the cell. Tracers are advected using
the obtained velocity field through the second-order Runge-Kutta method:

v⃗1 = v⃗ i−1(r⃗ i−1),

v⃗2 = v⃗ i−1/2
(︄

r⃗ i−1 + ∆t

2 v⃗1

)︄
,

r⃗ i = r⃗ i−1 + ∆tv⃗2,

(5.5)

where r⃗ is the position vector. Throughout the simulation, the number of tracers
in each cell is monitored, and when it falls below a minimum threshold, additional
tracers are introduced to prevent the occurrence of empty cells. The grain size
within each cell is determined by the arithmetic mean of the grain sizes of the
tracers within that cell. This averaged grain size is then used in our rheological
relationships for viscosity (1.12) and (1.16). Subsequently, the grain size of each
tracer is updated using the equations (5.2) and (5.3).

Moreover, we limit the grain size from above with the value dmax = 1.5 mm,
so as not to dampen the convection. This step is justified by the presence of
impurities (bubbles, dust, ions and microparticles) in ice which prevent further
growth. Conversely, we allow the grain size to decrease even when it reaches the
maximum size dmax. The grain size evolution process is outlined in Algorithm 4.
We choose d = 1.5 mm as the initial grain size on the whole mesh. The modified
version of the computational scheme is illustrated in Algorithm 5.
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Algorithm 4 Grain size evolution scheme
dold = d
dgrowth = min

{︂
dmax, dold + ḋgg ·∆t

}︂
dnew = dgrowth − ḋred ·∆t
d = dnew

Algorithm 5 Computation scheme
Define mesh, function spaces, functions on mesh, equations, boundary conditions,
initial conditions
Introduce tracers on the mesh and set the initial grain size
Define endtime
time ← 0
Tk ← linear temperature profile (2.20)
tempDifference ← 0
while tempDifference > 10−3 do

Solve Laplace problem (2.19)
T ← solution
tempDifference ← 1

h l

∫︂
Ω

|Tk − T |
T

dV

Tk ← T
end while
Add temperature variation
v⃗k ← solution of the Stokes problem from the diffusion creep
while time ≤ endtime do

Add tracers to cells
velDifference ← 0
while velDifference > 10−3 do

Solve the Stokes problem
v⃗ ← solution

velDifference ← 1
h l

∫︂
Ω

√︄
(v⃗ − v⃗k) · (v⃗ − v⃗k)

v⃗ · v⃗
dV

v⃗k ← v⃗
if iterations > 10 then

break
end if

end while
Update ∆t from CFL criterion
Solve Energy equation
Tk ← solution
Update grain size of each tracer with Algorithm 4
Advect tracers
Interpolate grain size on the mesh using the tracers
time ← time + ∆t

end while
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5.3 Verification of tracer advection module
Before performing the simulations of the thermal convection with grain size

evolution, we test the correctness of the advection of tracers by performing a
benchmark test specified in Fullsack [1995]. We prescribe a vortex velocity field
and let the tracers advect during the simulation. In the beginning, we label each
tracer with a value reflecting its starting position and then compare the label of
the nearest tracer with an analytical solution of the vortex flow.

The angular velocity is prescribed analytically as

ω(r) = ω0
r

r0
exp

(︃
− r

r0

)︃
, (5.6)

where r =
√

x2 + y2 is the radial distance from the origin, ω0 = 0.3 and r0 = 0.25.
In the beginning, we regularly distribute 60 × 60 tracers into a [−0.3, 0.3] ×
[−0.3, 0.3] square. We assign each tracer with the scalar quantity F (x, y, t) defined
for each tracer as

F (x, y, 0) = x. (5.7)
The tracers are advected by the velocity field (5.6) using the second-order Runge-
Kutta method. Here, we choose a constant time step ∆t = 1. Then, we compare
the analytical solution for the evolution of F , given by

F (x, y, t) = xcos(ω(r)t) + ysin(ω(r)t) (5.8)
with the quantity of F of the nearest tracer at coordinates:

• (r = 0.2r0, 0)

• (r = 0.4r0, 0)

• (r = 0.6r0, 0)
The results which we obtain for each point are shown in Figure 5.1.

Figure 5.1: Comparison of analytical solution with the quantity of F of the nearest
tracer

The simulations were performed on the mesh with a resolution of 50 × 50
cells. The results show that the analytical solution matches the quantity F of
the nearest tracer with sufficient precision at each point and inaccuracies occur
because of interpolating to the nearest tracer. However, both numerical and ana-
lytical solutions have the same amplitude and frequency, which confirms that the
advection is implemented correctly and we can proceed to simulate the convection
in the ice shell with evolving grain size.
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5.4 Results
We now get to the core of this study as we perform the simulations of thermal

convection in the icy shell with evolving grain size. Based on the parameters from
Behn et al. [2021], two sets of values exist for parameters in Table 5.1 - lab and
lab+ice core obtained either from the laboratory (lab) or from the GRIP project
(lab+ice core). The values of λ vary from 0.005 to 0.05. Hence, we perform a
simulation combining each set of parameters (lab, lab+ice core) with the limit
values of λ. This gives us 4 options:

4a) lab, λ = 0.005

4b) lab, λ = 0.05

4c) lab + ice core, λ = 0.005

4d) lab + ice core, λ = 0.05
The snapshots of temperature fields and grain sizes from the simulations of each
case are shown in Figures 5.2 − 5.5. Each snapshot was taken at a different time
because we chose a state where two convective cells are visible and the convection
is more stable. It is then clear where the grains change their sizes.

Figure 5.2: Case 4a), 96 Myr

Figure 5.3: Case 4b), 96 Myr

Figure 5.4: Case 4c), 50 Myr
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Figure 5.5: Case 4d), 85 Myr

The choice of parameters does not strongly affect the behaviour of the conven-
tion. We observe the creation of two convective cells for each case. Furthermore,
the choice between the lab and ice core data does not affect the size of the grains,
because the variations of the grain size for the same λ are nearly identical. On
the other hand, the choice of λ does influence the range of the grain size, as we
observe, that for Case 4b) the grain size varies from 1.233 mm to 1.5 mm and for
Case 4d) the grain size varies from 1.252 mm to 1.5 mm. For Cases 4a) and 4c),
the grain size attains the values from 1.462 mm to 1.5 mm and from 1.446 mm
to 1.5 mm, respectively. We therefore deduce that the higher values of λ help
reduce the grain size faster while the lower values tend to slow down the grain
size reduction.

To conclude, all simulations show again the creation of two convective cells.
In the snapshots illustrating the grain size, we can observe that the grain size is
notably reduced on the boundary of each convective cell, to a small extent inside
the cell and around each ascending and descending current of ice. The smallest
grains occur on the upper boundary of the convecting part where the two cells
meet.

The phenomenon of grain size reduction around the ascending currents is
primarily driven by the high magnitude of the velocity gradient, which results in
increased stress in these areas, thereby reducing the grain size. Similarly, around
the descending currents, the grain size reduction is influenced by the high velocity
gradient that creates higher stress, accelerating the reduction process and also by
lower temperatures that inhibit the grain growth. This interplay of factors leads
to the smallest grains being found within these regions. Additionally, small grain
sizes can be observed on the upper boundaries of the convective cells, where
higher temperatures and slightly increased stress are present compared to the
non-convective parts or the cell interiors. Examination of convection patterns
indicates that areas with smaller grain sizes correspond to regions with higher
stress, typically found at the boundaries and around the ascending and descending
currents. The smallest grain sizes are observed at the upper interface between two
neighbouring convective cells, a result of the combination of lower temperatures
and higher stress.

The behaviour of the convection in each case is very similar to the simulation
in Case 2b) (Figure 4.2) with the constant grain size 1.42 mm. We can also observe
that the grain reaches the size dmax almost everywhere. This underlines the
significant role of the choice of the grain size limit dmax. Moreover, we can assume
that the grains would further increase their size because, for the temperature 265
K, the grain can grow at the order of 0.05 mm/year. Therefore, the grains,
without imposing the upper limit on this size, would further grow to the point
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when it would start to dampen the convection in the icy shell.
Furthermore, the grain size changes very rapidly with respect to the flow

speed. This finding is based on (i) the evaluation of the grain growth rate from
the previous paragraph and (ii) on the observation that despite the quick changes
in the shape of the convective cells, the regions with smaller grain size copy the
boundaries of the convective cells and also the ascending and descending currents.
This suggests that since the grain size advection has only a minor effect, the
equilibrium grain size can be computed directly on the mesh in every time step
without solving the advection.
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Conclusion
In this study, we developed a numerical model to explore the effects of the

grain size on thermal convection within the ice layers of icy moons. The finite-
element method was employed to solve the governing equations, incorporating
temperature and stress-dependent material properties and dynamically evolving
grain size.

Our simulations with the constant grain size demonstrate that the grain size
plays a pivotal role in determining the convection regime within the ice layers.
The results indicate that smaller grain sizes enhance convective activity, leading
to chaotic convection for grains 0.45 mm large. For the grains 1.42 mm large, we
observe the formation of multiple convective cells and decreased heat transfer, as
evidenced by the higher Nusselt number. In contrast, for the grain size 4.48 mm,
the system is fully in a conductive regime.

Finally, we implemented into our model of the thermal convection the grain
size evolution [Behn et al., 2021]. The advection of the ice grains was performed
by the Lagrangian tracer method [Kihoulou, 2024]. By including the grain size
evolution model, the grain can reduce its size to 1.233 mm from 1.5 mm at
points where the descending currents of the neighbouring cells meet. We then
observe that grain size reduces its size around the ascending and descending
currents inside each convective cell, while elsewhere, the grain size acquires its
maximum threshold. Our study also demonstrates the great importance of the
maximum grain size threshold in the icy shells of the moons since the majority
of ice particles attain this value. Therefore, future research should focus on
discovering this threshold to determine the behaviour of icy shells of the outer
Solar System satellites.
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