

MASTER THESIS

Anastasia Akhvlediani

Expanding the Dataspecer Tool for Streamlined API

Creation and Management

Department of Software Engineering

Supervisor of the master thesis: doc. Mgr. Martin Nečaský, Ph.D.

Study programme: Computer Science - Software and Data Engineering

Prague 2024

I declare that I carried out this master thesis independently, and only with the cited

sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No.

121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles

University has the right to conclude a license agreement on the use of this work as a

school work pursuant to Section 60 paragraph 1 of the Copyright Act.

In…Prague, Czech Republic.. date....16.07.2024... signature

Acknowledgement

I would like to thank my supervisor doc. Mgr. Martin Nečaský, Ph.D. and the project

consultant Mgr. Štěpán Stenchlák for their help and supervision of my thesis.

Separately, I would also like to thank my family for their support and encouragement.

Title: Expanding the Dataspecer Tool for Streamlined API Creation and Management

Author: Anastasia Akhvlediani

Department / Institute: Department of Software Engineering, Charles University

Supervisor of the master thesis: doc. Mgr. Martin Nečaský, Ph.D, Charles University

Abstract: The aim of this thesis is to enhance the functionality of the Dataspecer tool

which primarily focuses on modeling and maintaining schemas of data structures

which are based on various conceptual models. The extension allows the users of the

tool to generate OpenAPI specifications for the aforementioned data structures. This

thesis provides state of the art regarding the following concepts: API, REST API, API

specification and OpenAPI specification. What’s more it analyzes various sources and

defines characteristics of a good REST API (with respect to API specifications). The

developed extension facilitates generation of OpenAPI specifications that adhere to

the characteristics of a good REST API.

Keywords: Dataspecer, OpenAPI, REST, API Specification, OperationCard

Table of Contents

Introduction .. 1

Purpose of Thesis ... 1

Relevance of the Topic ... 2

Work Structure and Scope .. 3

1. Research Approach .. 4

2. APIs and their Specifications – State of the Art .. 5

2.1 API Overview ... 5

2.2 REST API Overview .. 6

2.3 API Specifications and their Benefits .. 9

2.4 OpenAPI Specifications ... 10

2.4.1 Basic Structure of OAS.. 10

2.4.2 Benefits of OAS Utilization ... 12

3. Criteria for Good APIs ... 13

3.1. Robust API Knowledge ... 13

3.2 Overview of Good API Criteria ... 15

3.3 Defining Good API .. 17

3.4 Defining Good REST API .. 17

4. Dataspecer Tool ... 21

4.1 Dataspecer Principles ... 21

4.2 Creation of Data Structures .. 24

4.3 Exploring Data Structures with Dataspecer ... 27

5. Expanding the Dataspecer Tool with Streamlined API Creation and Management

 .. 30

5.1 Requirements Analysis ... 30

5.2 Solution Design .. 36

5.3 Extension Demonstration ... 44

5.3.1 Capturing User Input and its Conceptual Alignment................................. 46

5.4 Output OAS .. 52

5.4.1 Paths and Operations ... 53

5.4.2 Components ... 59

5.4.3 Supported Constructs in the Output OAS .. 61

5.5 Architecture .. 63

5.6 Implementation ... 66

6. Evaluation .. 75

Conclusion ... 85

Bibliography ... 86

List of Figures .. 89

List of Tables.. 92

A Attachments .. 93

A.1 Accessing the Extension Application .. 93

A.2 Build Instructions .. 94

A.3 Electronic Attachments ... 95

1

Introduction

API (Application Programming Interface) represents a set of rules that dictates how

software programs communicate with each other. In particular, API specifies how one

program can access data or functionality of another program [1]. In this day and age

APIs as well as API specifications are of vital importance. What’s more, API

specification represents the backbone of successful development of an API [2].

Dataspecer [3] represents a tool that has been in development for several years at the

faculty of Mathematics and Physics at Charles University in Prague. To be more

precise, it is a tool that aims to manage as well as model schemas of data structures.

These schemas are based on conceptual models sourced from the Internet.

Furthermore, Dataspecer (semi)automates various tasks which are related to data

structure schemas. For example, the tool supports schema creation in various formats

such as XML, JSON and CSV. Despite its advanced capabilities, currently,

Dataspecer does not support creation of API specifications.

Purpose of Thesis

This thesis serves the purpose of expanding the Dataspecer tool with the features

necessary for API design. The main mission of this thesis is to create an extension

which will provide the functionality to design API specifications according to the

OpenAPI standard based on data structure schemas designed in Dataspecer. OpenAPI

specification represents a formal document holding the information about the elements

that the API contains [4], [5]. It follows the OpenAPI standard, which in turn

represents language-agnostic interface for RESTful APIs [5]. This extension will allow

the users to create OpenAPI specifications that are tailored to their specific needs. The

process of achieving the aforementioned mission is divided into following goals:

• Determination of what constitutes as a good, high-quality API: The thesis will

analyze the ways of designing good, quality APIs (with respect to API

specifications).

• Assessing the involvement of the user in the process of creating API

specification: Providing input for API specifications represents the most

critical responsibility of the user, due to the main goal of generating API

specifications that are tailored to user’s particular needs. The thesis will

specifically focus on analyzing how and where the user should be involved in

2

designing API specifications and what kinds of inputs are required to design

high-quality API specifications.

Relevance of the Topic

According to CISCO, the concept of Internet of Everything (IoE) is a networked

connection of four entities: people, process, data and things [6]. Moreover, these

entities interact as well as exchange real-time data with each-other. APIs are the point

of connection between products or services which means that they provide the

opportunity for these entities to communicate with one another. Utilization of APIs

has many advantages. Developers are able to implement new services as well as gain

an essential insight when it comes to interacting with existing functionalities [7]. Based

on this information the APIs represent a crucial part of the tech industry. More

precisely, they as the points of connection are of vital importance especially in the

context of IoE, since in this scope the connection between aforementioned four entities

(people, process, data and things) represents the core element [7].

Now that the relevance of APIs in general is already considered, the relevance of API

specifications may be discussed. API sprawl is a term which if often used nowadays

when it comes to APIs. This term is used to represent the growth of APIs inside and

outside of the companies [8]. Moreover, the term API sprawl carries some negative

context due to its usual association with inadequate planning [8].

When it comes to software development, API specifications are of vital importance

since they represent the backbone of successful development process [2]. More

precisely, API specifications help people in the tech industry navigate possible

disorder resulting from API sprawl and offer a lot of benefits to the companies as well

as the teams, regardless of their specific demographics [8].

Given the significance of the aforementioned concepts in contemporary discourse, the

relevance of the thesis topic becomes all the more apparent. The concept of API as

well as API specification will be discussed in more detail in the second chapter – APIs

and their Specifications – State of the Art.

3

Work Structure and Scope

The thesis is divided into six chapters each of which serve its dedicated purpose.

First chapter considers research approach of the thesis.

Second chapter aims to review the state of the art by providing a comprehensive

overview of APIs including an in-depth examination of REST APIs in particular.

What’s more, this chapter considers API specifications in general and specifically

OpenAPI specifications as well.

Third chapter of this thesis is concerned with understanding what is meant by a good

API. The goal of this chapter is to provide a set of characteristics that define a good,

high-quality API in the scope of REST APIs with respect to API specifications.

Fourth chapter is dedicated to Dataspecer tool. More precisely, it gives the reader

understanding of basic fundamental principles of Dataspecer. Next it highlights the

most relevant feature in the context of this thesis – creation of data structure schema.

Lastly it provides a comprehensive overview of the created data structure schema –

Tourist destination which is then utilized as a running example across this thesis.

Fifth chapter is solely concerned with “Expanding the Dataspecer tool with API

creation and Management”. This is the developed extension. This chapter considers

all relevant aspects of the project. First requirement analysis is provided. Next,

solution design is considered. What’s more, this chapter provides extension

demonstration along with the mechanism of capturing necessary input from the

user. This chapter also considers output OpenAPI specification in detail.

Architecture and Implementation [9] of the project are discussed in this chapter as

well.

Last but not least, sixth chapter considers how does the extension facilitate

generation of specifications for good REST APIs.

4

1. Research Approach

Now that the general idea of this thesis is already considered, the flow of achieving

the aforementioned goals and objectives may be discussed. This paper is based on

research project “Expanding the Dataspecer Tool for API Creation and Management”

conducted by myself in the scope of class Research Project (NPRG070) at Charles

University [9]. The research project mentioned prior, encompasses developed

software. What’s more, the project of writing software was being conducted in parallel

with the writing of this thesis. As for the workflow, firstly the Dataspecer tool was

explored. Next the schemas of the data structures created using Dataspecer were

analyzed. An important step following this process was determination of state of the

art. Based on this information as well as insights of various sources the characteristics

of a good REST API (with respect to API specifications) were defined. As mentioned,

these steps were taken in parallel to developing corresponding software. Lastly, the

results were analyzed and the project was evaluated in terms of how it facilitates

generation of API specifications for good REST APIs. The workflow is illustrated by

Figure 1.

Figure 1 – Research Workflow (Source: Author)

5

2. APIs and their Specifications – State of the Art

The aim of this chapter is to establish general understanding of following concepts:

API, REST API, API specifications and OpenAPI specifications based on relevant

academic and professional sources. Because of the fact that the extension of the

Dataspecer tool generates API specifications in accordance to REST, it is essential to

cover these particular topics. Subchapter 2.1 will focus on APIs in general whereas 2.2

will consider REST APIs. Finally, 2.3 will cover the topic of API specifications and

2.4 will consider OpenAPI Specifications in particular.

2.1 API Overview

API is an acronym for Application Programming Interface and represents protocols (a

set of rules) which allow software programs to communicate with each other and

determine the format of this communication [1]. More precisely, these rules determine

how a software program can access data and/or functionality provided by another

software program [1].

In this day and age APIs represent an essential part when it comes to software

development. As said, they aim and provide an efficient way of allowing two software

programs to communicate with one another and share functionality [1]. Due to APIs

being very flexible companies are able to connect with new partners and offer more

services to their current customers [10]. This helps them reach new markets and make

big profits while upgrading digitally [10]. What’s more, APIs make it easier to design

and develop new applications and services, as well as integrate and manage existing

ones [10]. More particularly, APIs help companies connect their (many) applications,

which often operate separately [10]. This kind of integration allows apps to work

together smoothly, automating tasks and enhancing collaboration among employees

[10]. Without APIs, companies could face information gaps, that slow down work and

reduce efficiency [10].

The foundation of the API lies in the client-server model [1]. When it comes to this

type of communication, one program – the client requests a service (or resource) from

another program – the server [1] [11]. More precisely, when the client provides a

request to the server, the server acknowledges the request, processes it, and

subsequently provides the response back to the client [12]. This process is illustrated

by Figure 2 below.

6

Figure 2 – Client-Server Communication (Source: Author)

This mechanism is also utilized in APIs – Initially a request is sent by the client to the

server [1]. The request is made using a specific protocol (commonly HTTP) and

contains information such as the operation the client needs to perform accompanied

by the necessary parameters if they exist [1]. As usual the request is sent via the

Internet or local network [1]. Once the request is received by the API server,

processing can start [1]. For instance, the API server may validate and/or authorize the

request, authenticate the client or perform other necessary operations [1]. The API

server sends a response to the client, which can comprise data, an error message, or a

status code indicating the operation's outcome [1]. Once the client receives the

response it processes it and behaves accordingly [1].

2.2 REST API Overview

Now that the general API overview is already provided, the concept of REST API may

be discussed. REST APIs conform to Representational State Transfer architectural

style [13]. It is important to note that REST functions independently of any underlying

protocol and is not inherently tied to HTTP [14]. However, HTTP is commonly

utilized as the application protocol in most REST API implementations [14].

The concept of resource represents the foundation of RESTful APIs. It encompasses

an entity which possesses a type, associated data, relationships to other resources as

well as collection of operations performing various operations on the resource itself

[15]. The type of a resource specifies its class. For example, a resource of type chair

implies that the class of this resource is chair. A REST resource has to be identifiable

via unique identifier (usually URI) [15]. For example, if the resource represents an

instance of chair class with ID 1, it has to be identifiable via a URI which resembles

the following: “/chairs/1” [16]. It is also important to note that it is possible for

7

resources to be grouped into collections [15]. When it comes to REST, each collection

of resources is homogeneous, which means that, a collection of chairs would only

contain resources of type chair. It is also possible for a resource to exist outside of a

collection as a singleton instance [15]. What’s more, sub-collections inside a resource

could also exist [15]. For example, in a chair management service each chair is a

resource. All chairs can be grouped into a chairs collection which in turn also

represents a resource. Within each chair, a sub-collection of colors could exist. It

would specify all the colors present in one chair. Furthermore, Parallels can be drawn

between resources in REST and the objects in OOP (Object-oriented Programming),

since both of these entities encapsulate state as well as behavior. However, the

behavior of RESTful resources is defined by fewer standard methods, such as GET,

POST, PUT, PATCH, DELETE [15]. Possible sample operations for chair resource

are:

• Retrieve collection of chairs (GET)

• Create a new chair (POST)

• Delete particular chair (DELETE)

It is important to consider that, like any other architectural style there are several

principles/constraints that need to be satisfied for a service interface to be considered

as RESTful. According to [13], these principles are:

• Uniform Interface

• Client-Server

• Stateless

• Cacheable

• Layered System

In general REST API has aforementioned principles, whereas in the scope of the

extension of the Dataspecer tool the aspects from only first three principles – uniform

interface, client-server and stateless are relevant. These individual concepts are

discussed below.

8

Uniform Interface

According to the principle of generality, when it comes to designing software, it is

crucial that it is free from unnatural restrictions and limitations [17]. A classic example

is Y2K problem also known as the “Millenium Bug” [17]. In this case, only two digits

were utilized in order to represent years which is an unnatural restriction [17]. At the

time when this limitation was implemented, it might have seemed reasonable [17].

However, as time went by and the year 2000 approached, the limitation led to

unforeseen consequences [17]. In particular, the systems that relied on two-digit year

numbers encountered the Y2K problem, where they couldn't distinguish between the

years 1900 and 2000, potentially causing errors or system failures [17]. As said,

uniform interface is one of the key principles when it comes to software being

considered as restful [13]. It is important to note that by applying aforementioned

principle of generality to components interface, systems architecture becomes simpler,

and the visibility of how different parts interact with each other is enhanced [13].

Moreover, there are various architectural restrictions that contribute to creating a

uniform interface as well as directing how the components should behave [13]. The

restrictions that are able to achieve a uniform REST interface are:

• identification of resources – For each resource that is involved in the client-

server communication a distinct identification needs to be provided by the

interface [13]. This means that each resource has to be identifiable usually via

a unique URI – for example: “/chairs/1” [16]. The id (1) inside the URI has to

be unique as well in order to access particular instance.

• manipulation of resources through representation – The resources have to

have a uniform representation in the response sent from the server [13]. The

consumers of the API use these representations in order to modify the state of

the resource in the server [13]. This means that output models have to be

defined. In the context of chair resource example, a response model for chair

has to be established.

• self-descriptive messages – Each message has to carry sufficient information

to explain how to handle the message [13].

• hypermedia as the engine of application state – Client should only possess

initial URI of the application [13]. The client application has to dynamically

9

drive all additional resources and interactions through the utilization of

hyperlinks [13].

Client-Server

The client-server model represents an underlying structure and provides separation of

concerns [13]. Independent evolving of client as well as server components are

possible due to separation of concerns [13]. This concept is advantageous for

portability (of UI across multiple platforms) as well as scalability of server components

[13]. However, despite the fact that client and server components evolve independently

it is vital to maintain the connection between them [13].

Stateless

When it comes to software being restful, it needs to be stateless. This means that each

request sent by the client to the server has to include sufficient information so that the

server is able to understand and process the request accordingly. It is the client

applications responsibility to keep session state since the server is not able to take the

advantage of any previously stored context information on the server [13].

2.3 API Specifications and their Benefits

Having discussed APIs and REST APIs in particular, API specifications may be

considered. The term API specification describes a formal document holding the

information regarding the elements that the API has to contain [4]. What’s more,

usually the creation of API specification is the process which is done before the

development phase, which means that the specification is created before the software

engineers build the actual API [4]. In fact, according to a poll, mentioned by [18],

when it comes to deciding between spec-first and code-first approaches, the majority

of the developers lean towards the first (spec-first) option. Whilst employing a spec-

first approach a commitment focusing on intentionality is made to the consumers.

According to [18], this approach offers a lot of benefits some of which are:

• Clarity and Consistency – Due to the utilization of spec-first approach

guesswork on software engineers end is eliminated and a clear understanding

of the tasks is established.

10

• Early Error Detection – The process of specifying the behavior as well as the

requirements of the software in advance reduces the likelihood of errors by

identifying the errors in the early stages.

• Improved Collaboration – An API specification represents a shared platform

for the team of software engineers as well as different stakeholders and

promotes discussions around this topic.

• Time Efficiency – As mentioned, by utilizing spec-first approach a lot of work

is done before the development phase. This saves time during the subsequent

phases such as development, testing as well as debugging.

A related study was conducted, where the approach of API-first design as well as

various tools were assessed and examined by implementing an API as well as a

corresponding client application [2]. According to [2], the API-specification was a

central component, a core foundation for this process.

2.4 OpenAPI Specifications

OpenAPI specification (OAS) represents a special case of API specification. More

precisely, OpenAPI is a standard representing a language-agnostic interface for

RESTful APIs [5].

2.4.1 Basic Structure of OAS

OAS contains a lot of different constructs. These sections are: metadata, servers, paths

(which in turn consists of other sub-sections), input and output models as well as

authentication [19]. Each of the aforementioned sections serve their own purpose:

• Metadata – OAS metadata contains two sub-constructs – openapi and info.

▪ openapi – specifies the version of the OpenAPI defining the overall

structure of the OAS [19].

▪ info – specifies non-functional information [20]. Title, description as

well as the version of the actual API are specified in this section [19].

• Servers – specifies the base URL of API requests which means that all API

paths are relative to the base path specified in the servers [19], [20].

• Paths – specifies individual paths of the API. As mentioned, it consists of sub-

constructs – operations representing HTTP operations for particular paths. The

operations construct in turn consists of other sub-constructs. Request body

11

(requestBody) as well as responses (responses) represent two of the most

important subsections of the operations construct [19], [20].

▪ Request Body – If request body is sent by an operation, it is specified

via this subsection.

▪ Responses – Specifies the status codes as well as schema of the

response object.

• Input and Output Models – specified via components/schemas construct.

These input and output models represent the data structures which are utilized

across the API. More precisely, it is possible to reference these schemas in

different subsections of the OAS [19].

• Authentication – specified via securitySchemes and security constructs [19].

Figure 3 exemplifies the structure of an OAS for sample tourist destinations

management API specification. Openapi and info constructs represent the metadata,

whereas the base URL is specified in the servers construct. Paths construct contains

URLs exposed by the API and their respective operations while the components

construct is populated with models utilized for input and output. As for the security, it

specifies the authentication mechanism for the current API.

Figure 3 – Sample OpenAPI Specification for Tourist Destinations Management API
(Source: Author)

12

2.4.2 Benefits of OAS Utilization

OAS and in particular OpenAPI-driven API development offers a lot of benefits to its

users. [21] points out following benefits:

• Improved Developer Experience – Positive developer experience of the API

consumption is of vital importance in the context of API ecosystems. Taking

the needs of the consumers into consideration in advance allows adopting

developer-centric approach as well as catering to the end-users needs before

actually tackling the challenges of the development phase.

• Fostering Independence – The problem of different teams depending on each

other is solved by adopting the OpenAPI-driven API development approach.

More precisely, having OpenAPI specification ensures that different

stakeholders are on the same page when it comes to understanding what are the

goals of the API and what it is supposed to do.

• Accelerated Market Introduction – As mentioned in the previous point,

OpenAPI-driven development approach fosters independence of various

teams. Because of this, these teams are able to do their job in a more efficient

manner which results in a faster release of the product.

Furthermore, the utilization of OAS increases the likelihood of stable API

implementation [22]. Due to a strong open-source community and positive

performance history, OAS can seamlessly be integrated into API design process.

What’s more OAS can also represent a foundation for API documentation [22]. More

precisely, it is possible to auto-generate API documentation based on an existing

OpenAPI specification. This is beneficial not only for the developers but also for the

clients, since API documentation is frequently utilized by both sides [22].

13

3. Criteria for Good APIs

This chapter serves the purpose of defining what is a good API with respect to API

specifications. In order to do so, firstly the process of having a robust knowledge of

API will be defined. Next, the concept of having a good API will be considered. This

section will consolidate this information and will provide criteria for good, high-

quality REST APIs (with respect to API specificaitons).

3.1. Robust API Knowledge

According to [23], the notion of Robust API knowledge was defined in the context of

a developer in isolation that needs to comprehend the code using API as well as

consider options for the its utilization and implement or modify code that uses API in

order to achieve specific behavior. Robust API knowledge is structured based on three

main concepts. These concepts are: Domain Concepts, Execution Facts and API Usage

Patterns [23]. According to [23], the knowledge consolidated by these three

components give developers opportunity to have a good understanding of the API they

are trying to work with and therefore be able to successfully utilize this API. Now that

the overview of the Robust API Knowledge notion is already provided, the definition

of individual components may be considered.

Domain Concepts

According to [23], the umbrella of domain concepts consolidates two aspects. Abstract

ideas existing outside of an API that the API tries to model, represents the first aspect.

The second aspect is terminology used by the API and by the documentation in order

to refer to the concept [23]. For instance, if the API designer aims to model a chair,

they have to take essence of chair into account and refer to it as a chair. The simplest

way of explaining essence of chair would be following: it is a piece of furniture on

which people sit. What’s more it is crucial that this concept is called chair. Otherwise,

semantic errors could occur. For example, someone referring to a piece of furniture on

which people sit as a piano would result in confusion. Even though it is technically

possible to sit on a piano, it does not reflect the essence of it. On the other hand, the

definition of a keyboard musical instrument does capture the essence of piano.

14

Execution Facts

Execution facts represent declarative knowledge which is structured in the form of

simplified rules about the execution behavior of an API [23]. These execution facts

have to be sufficient for making predictions about the execution of the API as well as

understanding this process and being able to explain it [23]. More precisely, these facts

include the information about various programming concepts such as types, inputs,

outputs as well as the effects of executing different parts of an API [23]. However,

these details may vary in terms of abstraction [23]. In this case, if the API designer

would want to define execution facts for chair management API, they would specify

facts related to this concept. A lot of these facts would relate to types (classes) as well

as inputs and outputs of relevant requests/operations. For example, in order to create a

chair a developer needs to know which parameters and what kind are required for

chair creation. Understanding that in order to create a new instance of chair the

material as well as leg count need to be utilized as parameters represents an example

of execution facts.

API Usage Patterns

When it comes to API Usage Patterns, this concept mainly considers the examples that

showcase how this API can be used. To be more precise, some form of a code snippet

may be included in this section of the Robust API Knowledge [23]. According to [23],

API usage patterns should also include the rationale utilized for the construction of the

(code) pattern mentioned above. This is of vital importance because a code pattern

accompanied by the rationale carries information which is based on the other two

concepts – execution facts and domain concepts which allows developers to

understand the possibilities of changing the code in order to achieve desired behavior

[23]. Figure 4 represents an example of API usage patterns. This example illustrates

the code syntax of API utilization and corresponding comments. For instance, the

example shows the exact code snippet of camera instantiation and what’s more, this

code is provided with a corresponding comment explaining what this particular code

snippet does. In simple terms, API usage patterns represent sample code snippets for

API utilization with comments. This aspect of robust API knowledge does not focus

on API specification and is it out of scope of this project.

15

Figure 4 – Example of API Usage Patterns (Adapted from [23])

3.2 Overview of Good API Criteria

Having considered the notion of Robust API Knowledge the criteria for a good, high-

quality API may be discussed. According to [7], despite the fact that APIs are a big

part of the tech industry and in particular with respect to IoE, surprisingly there has

been done only little work in terms of researching what it means to design a high-

quality API. The research conducted by Kiesler and Schiffner [7] aims to contribute to

this matter by answering following research question “What are important factors for

developers when it comes to an API’s quality?”. The authors of the research have

conducted an online survey in order to understand the perspective of the developers

with respect to important factors for API development [7]. As for the respondents,

most of them were experienced professionals/developers [7].

According to the respondents, understanding (required effort for familiarizing)

how the API functions is a significant factor [7]. The respondents had to also answer

an open question and provide their own criteria for a good API [7]. The answers

include: “ease of use”, documentation, dependencies as well as time needed for

integration [7]. The concept “ease of use” is mentioned in other sources as a

characteristic for good APIs as well. According to [24], a well-designed API has to be

easy to read as well as easy to work with. This goes hand-in-hand with another

characteristic – “hard to misuse”. This means that implementation and integration of a

good, well-designed API have to be a straightforward whereas the likelihood of writing

incorrect code has to be low [24].

The developers were also asked if they adhere to their own rules the contrasting

answers were distributed almost evenly [7]. Furthermore, the respondents were asked

16

about important factors regarding the integration of APIs and the answers were rather

conservative [7]. To be more precise, even though no clear trend was identified, clear

structure and modularization was favored in the responses. Lastly, according to the

respondents, identified challenges related to API implementation include following:

lack of availability (if provided by third party), long-term maintenance and

compatibility. It is important to consider, that a lot of developers overcome these issues

via Developer User Experience [7]. According to [7], even though it is not stated

explicitly a lot of the answers are aimed at better Developer User Experience and the

concepts “ease of use”, “easy to learn” and community contribute to a better DevUX

[7]. This means that nowadays due to the high number of existing APIs sole

functionality is not a deciding factor anymore, the developers take other aspects such

as DevUX into consideration as well [7].

In addition to a better DevUX, completeness and conciseness of an API represents

contribute to the quality of the API [24]. A complete and concise API is a way of

creating fully fledged applications [24]. However, completing an API represents an

iterative process, which means that the people working on the API build on their past

progress (on the existing API) [24].

17

3.3 Defining Good API

Having considered not only the notion of robust API knowledge as well as other

characteristics of good, well-designed, APIs, a good API can be defined as one

exhibiting characteristics listed in Table 1.

Characteristic Definition

Robust API Knowledge • The developers are able to have a

comprehensive understanding of

the API – its domain concepts as

well as execution facts.

Usability (Usable) • The API is easy to use, intuitive.

• It hard to misuse API – the

likelihood of errors is minimized.

Structured • The API components are defined

in a well-structured manner.

• The API has modular design

promoting reusability.

Documented • The API documentation supports

the team working on this API to

understand and work with the API

in an effective manner.

• The time required by familiarizing

with the API is minimized.

Enhanced Developer User Experience • The API is easy to use and learn.

• The developers have positive

experience when it comes to

interacting with the API.

Table 1 – Characteristics of Good API (Source: [7])

3.4 Defining Good REST API

Now that the characteristics of a good API are already defined, the notion of a good

REST API may be considered. As mentioned in subchapter 2.2 a RESTful API has to

provide uniform interface and has to be stateless [13]. As noted, uniform interface

encompasses: identification of resources, manipulation of resources through

18

representation, self-descriptive messages and hypermedia as the engine of application

state [13]. However, for this research hypermedia as the engine of application state

was out of scope. It is more of an implementation choice and is not commonly utilized

in OpenAPI specifications [25], [26]. What’s more, there are notable best practices

that need to be followed when dealing with REST APIs. According to [27], some of

the notable best practices are:

Practice Definition

Utilization of recommended naming

conventions

• naming conventions have to be

not only clear and precise but also

aligned with their corresponding

functionality.

Usage of appropriate HTTP method • when it comes to selecting HTTP

method for a particular endpoint,

the choice has to be based on the

essence of the operation which is

being performed.

Management of REST API requests and

resources

• Effective management of requests

and resources of an API establish

a positive user experience as well

as effective client-server

communication

Distinction between path and query

parameters

• Path parameters aim to identify a

particular resource.

• query parameters are utilized for

different purposes – for example:

filtering

Table 2 – REST API: notable Best Practices (Source: [27])

Having considered good API characteristics as well as best practices of dealing with

REST APIs, good REST APIs may be defined. Table 3 illustrates the characteristics

of a good RESTful API (with respect to API specifications). It is important to note

that, the characteristics of a good REST API have to be reflected in its API

specification.

19

Characteristic Definition

Robust API Knowledge • The developers are able to have a

comprehensive understanding of

the API (Robust API Knowledge)

– its domain concepts as well as

execution facts.

• For each resource that is involved

in the client-server

communication a distinct

identification is provided

Usability (Usable) • The API is easy to use, intuitive.

• It hard to misuse API – the

likelihood of errors is minimized.

• Recommended naming

conventions are utilized – they are

clear and aligned with their

corresponding functionality.

• Appropriate HTTP methods are

chosen based on the essence of

performed operation.

• Requests and responses are

managed effectively.

20

Structured • The API components are defined

in a well-structured manner.

• The API has modular design

promoting reusability.

• Includes distinction between path

and query parameters

• Manipulation of resources

through representation – server

sends the response in its consistent

format so that clients can exploit

it.

Documented • The API documentation supports

the team working on this API to

understand and work with the API

in an effective manner.

• The time required by familiarizing

with the API is minimized.

Enhanced Developer User Experience • The API is easy to use and learn.

• The developers have positive

experience when it comes to

interacting with the API.

Stateless • The client request contains

sufficient information, so that the

server can process it without

relying on stored context.

Table 3 – Characteristics of a good REST API (with respect to API specification)

(Source: [13], [27])

21

4. Dataspecer Tool

Now that the state of the art is already considered and criteria for good, high-quality

APIs are already defined, Dataspecer tool may be introduced. The Dataspecer tool

aims to model as well as manage schemas of data structures based on various

conceptual models from the internet [3]. What’s more, Dataspecer enables semi-

automation of various tasks related to data schemas including schema creation in JSON

and XML formats [3].

4.1 Dataspecer Principles

As mentioned, Dataspecer tool serves the purpose of creating as well as managing

schemas of data structures. However, it is important to note that conceptual models

available on different sources from the internet represent the foundation of these data

structures. High-Level, abstract representation of the data utilized by the companies is

portrayed by the conceptual (data) models [28]. Conceptual models aim to focus on

the bigger picture and remain technology-neutral. This means that their main goal is

to foster a shared/unified understanding of the business by pinpointing the core

elements. To be more precise, the expression – shared understanding means that

different stakeholders, involved teams are on the same page and have the same

understanding/definitions of the essential concepts [28]. What’s more, there are a lot

of advantages when it comes to conceptual data models. According to [28], these

advantages are:

• Connection between the Data Needs and Business Goals – conceptual

models connect strategic goals as well as business drivers with the facts and

business questions.

• Enhanced Clarity – conceptual models foster clarity for future models.

• Clear Scope and Context Definition – Conceptual models represent the

foundation for setting scope boundaries as well as adopting a clear framework.

• Shared Understanding – As mentioned, conceptual models provide a shared

understanding between different stakeholders, which means that they set a

common ground facilitating effective communication.

[28] also provides visual representations for conceptual models as illustrated by Figure

5.

22

Figure 5 – Transactional Conceptual Data Model (Entities and Relationships only)
(Source: Adapted from [28])

As observed, conceptual (data) model illustrated by Figure 5 only depicts essential

entities as well as relationships between them. Despite the fact that the main goal of

the conceptual models is capturing the essence of the businesses, they may be much

more complex than simply identifying entities and relationships. This means that they

may also include identifiers, different attributes as well as cardinality information.

Based on the conceptual model provided by Figure 5 various data structures could

exist. One of the examples is illustrated by Figure 6 below. As evident, Hotel data

structure has simple properties such as: hotelName, hotelId, starNumber. Room data

structure has its own simple properties: sizeInSquareMeters, wallColor and seaView.

What’s more, hotel has one or many rooms.

Figure 6 – Sample Data structures based on the Conceptual Model of Figure 5
(Source: Author)

Dataspecer utilizes complex conceptual models retrieved from various sources as the

basis for data structure (schema) creation. In the context of the Dataspecer tool,

conceptual model can be defined as a set of classes with attributes and connections

named associations. To clarify, the conceptual models represent a foundational source

for the data structure creation. Formally, in this context, data structure represents a

rooted tree-graph. The root serves as the point of reference for other nodes of the tree.

23

What’s more, the nodes represent classes, which have attributes and are connected via

hierarchical associations. Generally, both – attributes and associations can be

considered as features in this context, however the difference is that an attribute points

to something simple and primitive, whereas an association points to a complex type –

a class. Various sources, such as [29] and [30] reference “The Unified Modeling

Reference Manual” [31] when describing the concepts of attributes and associations.

According to [31], as cited by [29] and [30], attributes are mostly utilized for the

purpose of representing data types – values that have no identity. As for the

associations, they are a way of representing classes – values which do have an identity

[29], [30], [31]. In the context illustrated by Figure 6, hotelName represents a string

(primitive) attribute of a Hotel data structure. The Hotel data structure also has an

association of type Room (not primitive). It is important to note that these classes are

derived from the conceptual model representing the base for the current data structure

schema. This means that hierarchical organization of some part of the conceptual

model defines the schema of the data structure. Because of this, conceptual models

allow creation/derivation of multiple different data structures based on the same

conceptual model. For instance, there exists a conceptual model – Tourist destination.

Based on this conceptual model the users are able to create various representations

(data structure schemas) of tourist destinations. Some possible sample options are:

• An empty data structure that contains just a title.

• Data structure that contains title as well as attribute(s).

• Data structure that has a title as well as a multi-layered structure consisting of

associations and attributes.

Once the data structure (schema) is instantiated, the Dataspecer tool gives the user

opportunity to represent them as a JSON or XML schemas [3]. However, the original

version of Dataspecer does not have support for OpenAPI specification generation for

these data structures. In particular, while Dataspecer encompasses a lot of different

features, the goal of this thesis is to extend the tool with the functionality of

creating API specifications (in OpenAPI format) for the data structures designed

in Dataspecer. The primary focus of the next part of this chapter will be the structure

(schema) editor component, since it is relevant to this project.

24

4.2 Creation of Data Structures

Structure (schema) editor represents a component which is responsible for creation of

data structures (their schemas) in the Dataspecer tool. However, before proceeding to

data structure schema creation, data specification needs to be established. This is done

by the specification manager which may be accessed via this URL:

https://tool.dataspecer.com/. Once the user accesses the specification manager, they

need to click “Create Specification” button in order to create data specification as

illustrated by Figure 7 and 8.

Figure 7 – Dataspecer: Specification Manager (Source: Adapted from [32])

Figure 8 – Dataspecer: Create Data Specification (Source: Adapted from [32])

Having established data specification, data structures may be created within it. This is

achieved by clicking “CREATE DATA STRUCTURE” as shown by Figure 9.

https://tool.dataspecer.com/

25

Figure 9 – Dataspecer: Data Structure Creation (Source: Adapted from [32])

Because of the fact that this project is conducted exclusively in English, the English

language has to be chosen via utilizing the button, pointed by the yellow arrow on

Figure 9. It is important to note that before creating the data structure, source for the

vocabulary needs to be selected. The selection of vocabulary sources is possible on the

same page by scrolling down as showcased on Figure 10 below.

Figure 10 – Dataspecer: Vocabulary Sources Selection (Source: Adapted from [32])

At this point, the users can start designing their data structures. Once “CREATE

DATA STRUCTURE” is clicked, the user is redirected to structure editor (Data

Structure Editor). Next, the user needs to set the root data structure by clicking “SET

ROOT ELEMENT” button. After clicking this button, the user will be prompted to

search for a class for the data structure. This is illustrated by Figures 11 and 12.

Figure 11 – Dataspecer: Data Structure Editor (Source: Adapted from [32])

26

Figure 12 – Dataspecer: Setting Root Element in Structure Editor (Source: Adapted

from [32])

Once the root element is set, its fields may be configured. This is done by clicking the

plus button next to the root element as shown by Figure 13.

Figure 13 – Dataspecer: Adding fields to the Root Data Structure (Source: Adapted

from [32])

After this step, the user is presented with a window listing available fields for the root

data structure as shown on Figure 14.

Figure 14 – Dataspecer: Choosing the fields of the Root Data Structure (Source:

Adapted from [32])

27

As one can see, the field options are categorized into attributes and associations. The

associations may be elaborated further by following similar process. To be more

precise, each association has an adjacent plus button which, when clicked, allows the

user to design particular structure of an association. Figure 15 showcases resulting data

structure.

Figure 15 – Dataspecer: Tourist Destination, Resulting Data Structure (Source:

Adapted from [32])

4.3 Exploring Data Structures with Dataspecer

Data structure schemas designed via the Dataspecer tool represent multi-level complex

structures. Tourist destination created in previous subchapter (4.2) will be utilized as

a running example throughout this thesis. The fields of the root data structure are

categorized into attributes and associations. As mentioned prior, attributes point to

something primitive, while associations may have a multi-layered, complex structure

themselves [31].

The running example – Tourist destination, has three fields: one attribute – capacity

representing an integer and two associations – owner of type Human or person and

contact of type Contact. As illustrated in Figure 15, capacity (attribute) and owner

(association) have a relatively simple structure. As mentioned above, attributes point

to something primitive, therefore the simplicity in attributes is inherent. By definition

they do not represent a nested structure. However, the association – owner was

intentionally left unconfigured in order to showcase that associations may have a

simple structure too. In contrast, another association – contact does represent a multi-

level, complex structure itself. As observed, it has three attributes: email, URL and

28

phone number as well as one association – has contact, which in turn has its own

attribute – page. Figures 16 and 17 below illustrate the attributes and associations of

the sample data structure – Tourist destination.

Figure 16 – Running Example: Attributes (Source: Adapted from [32])

Figure 17 – Running Example: Associations (Source: Adapted from [32])

Furthermore, the attributes and associations of the data structure designed via

Dataspecer may represent collections as well as singleton objects. Table 4 illustrates

field details – mainly which field is an attribute or association, singleton object or a

collection as well as their class types.

29

Field

Name
Class Type

Is

Attribute

Is

Association

Represents

Collection

Represents

Singleton

capacity Integer ✅ ✅

owner
Human or

person
 ✅ ✅

contact Contact ✅ ✅

e-mail e-mail ✅ ✅

URL url ✅ ✅

phone

number
phone_number ✅ ✅

has

contact
Workplace ✅ ✅

page page ✅ ✅

Table 4 – Running Example: Tourist destinations - Field Details (Source: Author)

Having designed a sample data structure schema, it may be noted that not all data

structures designed via the Dataspecer tool are meaningful. As observed, there are a

lot of steps that the user needs to take while designing data structures according to their

specific needs. In particular, the user needs to set the root data structure and then

configure its fields – attributes and associations manually. What’s more, the user is

also responsible for setting meaningful types for these fields. In particular, technical

labels for associations one level below the root data structure have to resemble nouns

not verbs, for example – owner and contact are both nouns. These kinds of data

structures represent meaningful input to this project – “Expanding the Dataspecer

Tool with Streamlined API Creation and Management”. The details of this process are

discussed in the next chapters.

30

5. Expanding the Dataspecer Tool with Streamlined API

Creation and Management

Now that the structure as well as the creation process of Dataspecer data structures is

already discussed, the extension – “Expanding the Dataspecer Tool with Streamlined

API Creation and Management” may be considered. At first, this chapter will provide

the analysis of the requirements. Next it will consider the solution design as well as

demonstrate the extension. The involvement of the user and importance of their input

will be discussed along with the demonstration. Furthermore, the output OpenAPI

specification will be considered. More precisely, the chapter will focus on the main

constructs of the resulting OpenAPI specification and their alignment with the good

REST API criteria. This chapter will also consider technical aspects – architecture and

implementation. As mentioned, corresponding software was developed by myself for

the class “Research Project (NPRG070)” at Charles University and this chapter

provides details of implementation as well as an additional analysis for this paper [9].

The program operates under the assumption that the data structures designed via the

Dataspecer tool are meaningful. More precisely the program assumes unique (class)

names of root data structures and its associations across the target data specification.

This assumption ensures that there will be no conflict between the data structures in

the resulting OAS. It is important to note that this project aims to appeal to a broad

target audience, which means that users with different background (relative to tech

industry) are taken into account.

5.1 Requirements Analysis

Because of the fact that, the goal of this project is to extend the Dataspecer tool with a

feature allowing its users to generate API specifications for Dataspecer data structures

in OpenAPI format, one of the key requirements of the project was utilization of the

OpenAPI standard. The question might arise why was OpenAPI chosen as the format

of the output API specification. Having analyzed Dataspecer tool and data structure

schemas designed with it – it was concluded that the REST API resources and data

structures designed via Dataspecer are similar and compatible. As mentioned in 2.2

the resource represents the main concept when it comes to REST APIs [15]. They not

only have a type (class), but also associated data as well as relationships to other

resources [15]. What’s more, they have collection of operations performing various

31

manipulations on them as well [15]. As discussed in 4.3, the Dataspecer data structure,

it also has a type (class) as well as attributes and associations. However, the collection

of operations manipulating this data structure are not defined in the Dataspecer tool.

Table 5 as well as Figure 18 illustrate the similarities as well as distinctions.

Resource Concept in

REST

Data Structure in

Dataspecer

Meaning

Type Type Specifies the class of the

entity in both cases – in

the context of REST

resources as well as the

Dataspecer data

structures.

Associated Data Attributes Specifies simple,

primitive fields of the

entity in both cases. In the

context of the running

example the field capacity

of type integer

exemplifies this concept.

Relationships to other

Resources

Associations Specifies the connection,

dependency to other

entities in both cases. In

the context of the running

example, field contact

exemplifies this concept.

Collection of Operations Not Defined The concept of resource in

REST is accompanied by

a collection of CRUD

operations. Such

collection is not defined in

the context of Dataspecer

data structures.

Table 5 – Resources in REST and Data Structures in Dataspecer (Source: [15])

32

Figure 18 – Resources in REST and Data Structures in Dataspecer (Source: Author)

Based on these similarities and differences, it is evident that there exists a gap between

the Dataspecer data structures and the resource concept of REST APIs. In particular,

information regarding the operations performing manipulations on the Dataspecer data

structures needs to be obtained in order to achieve greater level of compatibility

between these two concepts and therefore generate a meaningful OAS. Filling this gap

represents one of the most important challenges of this project. Addressing how the

collection of operations for the purpose of manipulating Dataspecer data

structures is defined and implemented represents one of the key challenges in this

thesis. There are several possible options when it comes to addressing this matter.

Before proceeding with these options, it is crucial to define required information and

identify which parameters are essential.

As mentioned in 2.2 being stateless represents one of the key characteristics which

ensures Restfulness of an API [13]. This implies that each request sent by the client to

the server needs to capture essential information so that the server is able to

comprehend and process the request adequately [13]. As previously mentioned, when

it comes to REST APIs CRUD (Create, Read, Update, Delete) operations are

supported. Based on this information, essential parameters for each request/operation

with (respect to OpenAPI specification) are:

• Operation Name – specifies the name of the operation.

• Operation Type – specifies operation type, such as: GET, PUT, POST,

PATCH, DELETE.

• Endpoint – specifies path exposed by the API.

• Comment – is optional and specifies the summary of the operation.

33

• Request Body – specifies the parameters passed in the request body. This

parameter is not always applicable, for instance in case the operation type is

GET.

• Response Body – specifies the expected response.

• Content type – specifies the media type of the response, for example JSON.

• Authentication – specifies authentication method, for example Bearer token.

As mentioned, there are several ways of defining this information for the purpose of

API specification generation. In particular, there are two primary alternatives:

enabling user specification of this information and automatic generation. Both of

these approaches have their advantages and disadvantages. Enabling the users to

specify essential operation details ensures that the resulting OAS is tailored to their

specific needs. This means that the users are able to generate a clear and concise

OpenAPI specification, which does not include unnecessary request information. By

adopting this approach, users only add operations that they think are essential for their

API. This would not be possible in case of auto generation of the operations. Without

any user input, the developer of this project (myself) would be compelled to consider

all possible operations and include each and every one of them in the resulting API

specification. In the case of Tourist destination, the resulting OpenAPI specification

would include all possible CRUD operations for the root data structure and all its

associations one level below. This could lead to an excessively large output with a

high likelihood of incorporating a significant amount of unnecessary

components/information. What’s more most of these operations would be

unmeaningful, because the user would not be able to specify parameters. Despite the

fact that it takes more time for users to provide operation details themselves, the

approach of enabling them to provide specifics was adopted. It results in an accurate

as well as tailored outcome which specifically aligns with the user’s needs. What’s

more, this approach makes it possible to update the details at a later point and

therefore update the resulting output. These considerations are illustrated by Table 6

and 7 below.

34

Enabling Specification of Essential Operation Details by User

Advantages Disadvantages

• Output OpenAPI specification is

tailored to users’ specific needs.

• It is possible to update OAS.

• Possibility of a clear and concise

output OAS.

• It takes time to design operations

(requests).

• Users are given more control.

Table 6 – Advantages and Disadvantages of User-Specified Details (Source: Author)

Automatic Generation of Essential Operation Details

Advantages Disadvantages

• Not time-consuming.

• Gives more control to the

developers, not the user.

• Is general.

• Does not reflect the specific

needs of the user.

• Output OAS may include a lot of

unnecessary components.

Table 7 –Advantages and Disadvantages of Automatic Generation (Source: Author)

As evident, the key requirements of the project were to extend the Dataspecer tool with

a feature that allows the users to generate OpenAPI specifications for the data

structures that were designed via the Dataspecer tool. What’s more the users have to

be able to update their progress. These requirements are satisfied by adopting the

approach of allowing the users to specify the details of each operation. It is important

to note that the data structure itself represents an input to this extension and it has to

be meaningful to ensure that the resulting OAS is also meaningful. As said, the fact

that provided data structures are meaningful is the assumption, under which the

program operates.

Last but not least, one of the main requirements of the project was to determine for

which data structures would it be appropriate to define CRUD operations. More

precisely, the discussion centered on whether the operation creation would be limited

to the root data structure or extended to its successors – associations as well. In the

context of API specification generation, it is logical to provide an option of operation

creation for the root data structure and its successor associations one level below.

35

Going beyond this level of nesting would make the UI form excessively complex for

the user and difficult for them to comprehend the key specifics of the operations.

What’s more, operations below this level may also be considered redundant since they

tend to be too granular. Having considered these aspects, it may be concluded that

supporting operations beyond the second level would complicate the user interface

without providing any significant value. Therefore, the decision was made to support

operation creation only for the root data structure (for instance – Tourist destination)

and its successors one level below (based on the running example – owner and

contact). This means that if Tourist destination were a flat data structure which

contained only attributes and no associations definition of following operations would

be possible:

• Create Tourist destination

• Retrieve Tourist destination(s)

• Update Tourist destination

• Delete Tourist destination

However, in the case of a more complex data structure like the running example it is

possible to define more operations, in particular – all of the operations mentioned

above and additionally:

• Create owner

• Retrieve owner(s)

• Update owner

• Delete owner

As well as same set of operations for association named contact. As mentioned,

operation definition below this level cultivates excessive granularity and is not

supported.

In conclusion, whilst analyzing the requirements several key decisions were made:

• The extension allows the user to specify request/operation details.

• The extension allows the user to create operations for main data structures as

well as its successors – one level below.

• The output is provided in the form of OpenAPI specification.

• The extension allows the user to update (previously saved) configuration.

36

5.2 Solution Design

As mentioned, Dataspecer data structures provided as inputs may be different, which

means that the input data structure may be flat (consisting of only attributes) or more

complex – with attributes and associations. Possible visual representations of flat and

complex data structures are illustrated by Figure 19 and Figure 20.

Figure 19 – Flat Data Structure in Dataspecer (Source: Author)

As evident, the flat data structure is relatively simple, because it only has two levels.

There is the root node at the top level, whereas the second level consists of one or

many attributes. The second level is the last level, since attributes in general point to

something primitive and cannot have children [31]. Furthermore, Figure 20 represents

the illustration for a possible deeper, complex data structure. In this case, not only

attributes but also associations are present. The top level holds the root node again.

However, the next levels may hold both – attributes and associations. The tree can

expand further, because associations may have their own children – (zero or many)

attributes and associations [3], [31].

37

Figure 20 – Complex Data Structure (Source: Author)

As mentioned in subchapter 2.2, REST principles require resources to have a uniform

representation in the response sent from the server [13]. This means that the schemas

(models) have to be defined for the resources which will be utilized for this purpose.

What’s more, as discussed in subchapters 3.3 and 3.4 a good (REST) API should be

well structured, which means that the structure of the designed models should be

modular. Considering the context of this project, from the solution perspective this

means that the schemas (models) should be (and are) defined not only for the root data

structure, but also for all the associations present within. Despite the fact that the

extension only allows operation creation for the root data structure and its successor

associations one level below, it is crucial to define models for all associations. This is

important for modularity, since the sub-models will be referenced where necessary

instead of creating one big, unstructured schema of the whole input data structure. To

be more precise, for each input data structure the number of defined schemas (in the

components construct of corresponding OpenAPI specification) will be equal to 1 +

total number of associations present in the original input data structure schema. More

precisely, the schemas of the components section include: schema for root data

structure(s) and schemas for associations. What’s more security schema is separately

defined in the components construct. As mentioned, this results in the fact that the

schema of the original (root) data structure will be able to reference the schemas of its

successor associations (one level below). What’s more, the schemas of these

associations, in turn, reference the schemas of associations below them and so forth.

38

Particular examples are discussed in the later subchapters. Furthermore, REST

principles require each resource model to have an identifier, so that the instances of

these resources may be uniquely identified [15]. From the solution perspective of this

project, it means that even though the data structure schemas created via the

Dataspecer tool do not typically include an identifier, the corresponding schemas in

the OpenAPI specification have to have a field id that would be utilized for the

identification purpose. What’s more, because of the fact that resources are identified

via URI the program provides suggestions for endpoint (path) structures. These

suggestions are based on the input data structures and utilize their names. For example,

a suggested path for getting a particular Tourist destination would be

“/Touristdestinations/{id}”. This gives the user an idea of what a path should look like

and guides them in the direction of utilizing appropriate naming conventions.

However, when it comes to the definition of paths, user makes the end decision, which

means that it is the user’s responsibility to provide actual path as input.

Another important aspect worth considering is compatibility of Dataspecer data

structure and REST resource. Based on the information provided in 2.2 as well as in

5.1, in order to achieve a greater level of compatibility between the Dataspecer data

structure and REST resource, a collection of operations (performing various

manipulations on it) need to be defined. What’s more, the API has to be stateless and

the messages have to be self-descriptive [13]. This means that each request (therefore

each operation defined in OpenAPI) has to contain sufficient information for the server

to process. Because of this, this extension allows the user to specify most parts of the

operation details – path, HTTP method as well as response code. What’s more the UI

shows short descriptions of the HTTP methods and response codes, which makes it

easier for the user to make appropriate decisions when designing operations. The user

also specifies for which data structure is this operation intended and if this operation

is manipulating a collection or not. However, JSON as the content type, as well as

utilization of Bearer tokens as the way of authentication, is set automatically by the

program and cannot be changed by the user. The particular way of capturing user input

is discussed in the next subchapters. Furthermore, when it comes to REST resources,

they may be grouped into collections [15]. The program handles resource collections

as well as single resource by utilizing “manipulate a collection” switch. This switch

determines possible HTTP method options for particular operation. More precisely, if

39

this switch is on, only GET and POST methods are available. This means that the users

can define operations to retrieve a collection of resources and to create a new resource

(and add it to the collection). However, if this switch is off, possible options: GET,

PUT, PATCH, DELETE refer to single resource instance and allow the user to define

CRUD operations for it. It is important to note, that it is user’s responsibility to set this

switch correctly. As for the response generation, the response depends on the status

code chosen by the user. In case of 200 (OK) and 201 (CREATED) [33] an instance of

the resource is sent in the response. This instance conforms to the defined schemas

(models) discussed above which again aligns with the REST principles, in particular

– the response is sent in its consistent format. If the switch about collections is on, the

response of a GET request will result in returning homogeneous collection of resource

instances. Last but not least, another switch – “association mode” is utilized to state

for which data structure (root or association one level below) is the operation defined.

Detailed examples are provided in subchapters 5.3 and 5.4. Choosing a correct data

structure fosters recommendation of a path structure (suggested path) which utilizes

the name(s) of relevant resources. These suggested paths assist the user in determining

the paths the API exposes. The program extracts path parameters from the provided

endpoint (path) and generates query parameters (for filtering) automatically for GET

requests. This means that the distinction between path and query parameters is

provided by the program which is one of the characteristics of a good REST API as

defined in 3.4. What’s more the choice of the data structure determines the schema

(model) referenced by the response. Like responses, requests are managed as well, by

allowing the user to specify the request body only when needed – in the case of

choosing POST or PATCH options.

Based on the requirements analysis provided in 5.1, it can be concluded that the most

crucial input needed from the user is details of the operations (requests). Additionally,

a way of API specification identification and versioning, needs to exist. Because of

this, metadata also represents an essential part of the user-provided input. What’s

more, a base URL is of vital importance, since it represents a starting point for the

paths exposed by the API. Therefore, the information required as the user input is:

• Metadata – API title, description and version

• Base URL

40

• Operation Details – Operation name, operation type, endpoint, request and

response bodies as well as description. The user must specify if the operation

is intended for the root data structure or its successor (association one level

below). The information whether collection operation manipulation is

performed or not needs to be provided as well.

As it was decided that this input has to collected from the user, it is entered into the

user interface (UI) and subsequently transferred to other components. To provide a

brief overview, the system contains four primary architectural components – Frontend,

Dataspecer Backend, Fetcher and OAS Generator. The Frontend component is

specifically designed to receive information from user. The structure of the user-

provided input is illustrated by Figure 21 below.

Figure 21 – Structure of User-Provided Input (Source: Author)

As evident, the user provided input is defined as form values. It not only contains the

metadata – name of the API, description, version and base URL but also collection of

simple data structures. These data structures do not represent an instance of some

standalone class. It merely is a complex attribute referencing collection of Operation.

Each data structure chosen by the user may be associated with multiple operations or

none at all. More formally, a collection of operations is bound to a single data

41

structure chosen by the user via the UI. It is crucial to note, that these data structures

are populated by selecting a desired data structure from a collection of fetched data

structures from the Dataspecer backend. This means that a connection is made

between the user input and data structure from Dataspecer. To be more precise,

in each session of OpenAPI specification generation the user has access to the data

structures contained by a single data specification. For instance, if target data

specification Furniture in Dataspecer contains multiple data structures Chair, Table

and Sofa, the user needs to select a data structure in the extension and then define

operations for it. For example, if the user chooses Chair data structure the operations

bound to it would ideally be – CreateChair, DeleteChair, etc. A sample user input

object based on the running example of Tourist destination is illustrated by Figure 22

below.

Figure 22 – Sample User Input: Tourist destination (Source: Author)

Once operations are defined for the Chair data structure, the user can stop at this point

and generate corresponding OpenAPI specification or continue in the same manner

and choose a second data structure, for example – Table and also define operations

such as CreateTable, DeleteTable, etc. for it, and generate the specification after. As

discussed, fetching data regarding the data structures contained by the target data

specification represents another notable phase of the whole process. More precisely,

one of the main technical challenges is to represent data structures in a form that would

be utilized by system components in an effective manner. As discussed, the data

structure schemas designed via the Dataspecer tool have multiple layers. The

associations present in the root data structure may also have such nested, multi-layered

structure. An object of type DataStructure illustrated by Figure 23 is able to capture

the nature of these data structures and their fields.

42

Figure 23 – DataStructure and Field Models (Source: Author)

As evident, there exist two associations between classes DataStructure and Field. On

one hand, data structure may have zero or many fields. In particular, this is a case of a

restricted aggregation since the object of type Field cannot exist without its container

– object of type DataStructure. On the other hand, a field may have zero or one data

structure. Because of their multi-layer structure, the fields may also be considered as

data structures if they are marked as associations in the Dataspecer tool. If this is the

case, Field.type is populated with the value – “Object” and Field.classType with the

actual type. Furthermore, the entire nested structure is considered by populating

Field.nestedFields. The representation of tourist destination data structure is illustrated

by Figure 24 below.

43

Figure 24 – Example of DataStucture Object - Tourist destination (Source: Author)

As demonstrated by Figure 24, tourist destination represents the root data structure.

Root data structure’s attributes and associations are represented by the fields property.

When it comes to an attribute (in this case capacity), its type (integer) is directly

written in the type property. Contact and owner represent associations of the root data

structure. Because of the fact that they represent associations, meaning that they may

also have nested, multi-layered structures (for instance, contact), their type property

holds value “Object” while the classType is populated with the actual type. As for their

actual nested structure, it is represented by Field.nestedFields property. This is

highlighted by the yellow arrows on Figure 24.

As for the actual OpenAPI specification generation process, there are two parameters

needed. The first parameter represents input from the user, illustrated by Figure 21,

whereas the second parameter represents the collection of data structures retrieved

from the Dataspecer backend illustrated by Figure 23. The generator consolidates this

information and generates corresponding OpenAPI specification as illustrated by

Figure 25 below.

44

Figure 25 – High-Level Flow Diagram: OAS Generation (Source: Author)

As illustrated by Figure 25, the OAS generation algorithm firstly initializes the

OpenAPI specification. This means that all the necessary constructs described in 2.4

are initialized. During the initialization process the values for the simpler constructs

such as – metadata, base URL as well as security are set. More complex constructs

such as components and paths are initialized as empty constructs. Next the program

checks if the collection of fetched data structures is not empty. If the collection is not

empty, the schemas for the data structures are generated which means that the value

for the components construct is set. Next the program creates paths and corresponding

operation(s) constructs. Having completed this step, the OpenAPI specification

generation is finalized and is displayed to the user. More technical details regarding

the operation of the components – Fetcher, Frontend as well as OAS Generator are

discussed in chapters 5.5 – Architecture and 5.6 – Implementation.

5.3 Extension Demonstration

The aim of this subchapter is to consider UI and in particular discuss and analyze

the process of capturing user input (discussed in 5.3.1). Dataspecer tool is currently

in the process of migration. A new component Dataspecer Manager is introduced

which will represent a starting point for all features of the tool. The extension is

accessible through Dataspecer Manager. The information for accessing this extension

on production environment, as well as, build instruction for the local environment are

provided in the Attachments section – A.1 and A.2. The source code is attached

electronically and A.3 showcases the structure of the electronic attachment.

45

Upon the initial access of the extension, the user is presented with a page, where the

fields of the form are empty by default. The interface is divided into two parts. The

left side is dedicated for the form and its inputs whereas the right side serves the

purpose of displaying the generated output OpenAPI specification corresponding to

the form data as illustrated by Figure 26.

Figure 26 – Dataspecer Extension: Initial View (Source: Author)

As evident, metadata such as title, description, version and base URL have to be

provided and data structure has to be added by clicking “Add Data Structure” button.

Once this is done, the user is able to choose a data structure for which in the next stage

the operations are defined by clicking “Add Operation” button as exemplified by

Figure 27.

Figure 27 – Dataspecer Extension: Select Data Structure and Start Defining

Operations (Source: Author)

Once all of the operations are defined “Generate OpenAPI Specification Button” needs

to be clicked, which results in the OpenAPI specification generation. At this point the

user-provided input is saved as well and will be displayed to the user on the next visit.

46

As illustrated by Figure 28, this specification is displayed on the right side of the page

and the user is then able to either download its JSON representation or copy it and

continue its exploration in the swagger editor.

Figure 28 – Dataspecer Extension: Output (Source: Author)

5.3.1 Capturing User Input and its Conceptual Alignment

As mentioned prior, during the requirements analysis (in subchapter 5.1) there exists

a gap that needs to be filled – in particular, the information regarding the operations

performing different manipulations on the Dataspecer data structures needs to be

obtained. As noted in 5.1, after careful consideration of different options, it was

concluded to allow the users to specify the operation (request) details. This information

is captured through the form in the user interface. OperationCard component

(displayed on Figure 29) appears once “Add Operation” button is clicked and is

utilized for this purpose.

Figure 29 – Dataspecer Extension: OperationCard Component (Source: Author)

47

As evident, this component consists of multiple sub-components such as: association

mode, collection mode (manipulate a collection), operation name, operation type,

suggested path, endpoint, comment as well as a response code. Each of these sub-

components serve a different purpose. Table 8 provides the details below.

OperationCard Sub-Component

Name
Purpose

Association Mode

Specifies if the operation is intended for

the root data structure (for instance,

Tourist destination) or its successor one

level below (in the context of running

example – owner or contact).

Collection Mode

Specifies if the operation is performing a

collection or a single resource

manipulation.

Operation Name Specifies the name of the operation.

Operation Type

Specifies the type of the operation.

Possible options are: GET, POST, PUT,

PATCH and DELETE.

Suggested Path
Suggests the structure of the operation

path (endpoint) to the user.

Endpoint

Specifies the path (endpoint) of the

operation. In most cases it is

recommended to paste the value of the

suggested path in this field.

Comment Specifies the summary of the operation.

Response Code

Specifies the response code for the

operation. Possible options are: 200,

201, 204, 400, 401, 500.

Table 8 – OperationCard Sub-Components (Source: Author)

As mentioned, these type of card needs to be created for each operation that needs to

be present in the resulting OpenAPI specification. The contents of operation card are

mapped to the operations subconstruct as well as the path construct of the OAS

mentioned in 2.4.1. This section will examine two examples of user-defined operations

48

(requests) and their alignment with the output OpenAPI specification in order to

enhance the reader’s understanding.

The first operation (request) aims to retrieve a collection of Tourist destinations. Since

this operation is intended for the root data structure, the association mode switch is off.

However, because of the fact that a collection of resources is being retrieved, collection

mode switch is on. Next a name for the operation is provided as well as an endpoint

specifying a path exposed by the API. What’s more, the program also generates a

suggested path which suggests the path structure. Furthermore, it is recommended to

utilize the structure of this path for the endpoint for the target request. Lastly an

optional comment is added to the operation and a desired response code is assigned.

This is initially reflected by the UI when filling out the operation card component for

this operation, and later after generating the API specification, this operation is

reflected in the paths construct under one of the operation subconstructs. This can be

observed in Figure 30 (UI) as well as Figure 31 (OAS) below.

Figure 30 – Retrieve Tourist Destinations: UI representation (Source: Author)

49

Figure 31 – Retrieve Tourist Destinations in OAS (Source: Author)

The second operation serves the purpose of creating new contact in the context of

tourist destinations. What’s more, the logic of the second operation proceeds in the

similar manner as the first. The key difference is that the second operation is not

intended for the root data structure – Tourist destination, but its successor (one level

below) – contact. Because of this, association mode switch is on which enables the

user to choose a new (successor) data structure. In this case collection mode switch is

on and POST is chosen as the HTTP method. This means that a new resource is created

and added to the collection. It is notable that the suggested path has evolved, indicating

that this resource is connected to another resource – the root, Tourist destination. This

is illustrated by Figures 32 (UI) and 33 (OAS) below.

50

Figure 32 – Create Contact: UI Representation (Source: Author)

51

Figure 33 – Create Contact in OAS (Source: Author)

To sum up, the contents of the OperationCard components are utilized in order to

create paths and its respective operation sub-constructs in the output OpenAPI

specification. To be more precise, endpoint which in most cases is the same as the

suggested path, represents the key to the path object of paths collection in the OpenAPI

specification. Operation type determines the operation type inside the path object. The

rest of the fields are utilized for populating the sub-sections of the operation sub-

52

construct. For instance, if appropriate, the operation in the OAS contains the request

body component specified in the UI. What’s more, the combination of the association

mode, chosen data structure (either root or successor) as well as the response are

utilized for constructing responses section. Lastly, the optional comment populates the

summary of the operation in the OpenAPI specification.

5.4 Output OAS

Previous chapter demonstrated only a portion of the output OAS – mainly the

examples of path constructs. This chapter will focus on the output OpenAPI

specification as a whole. More specifically, this chapter considers a scenario where

first version of an OpenAPI specification needs to be created according to the

following description – API specification with the title “TouristDestinationsAPI”

aims to manage tourist destinations. The base URL for initiating all requests of the

API is: “https://test.com” The API (and therefore the specification) has to support

following requests (operations):

• Retrieve collection of Tourist destinations

• Create an instance of Tourist destination with capacity and contact fields (and

add to a collection of Tourist destinations)

• Update instance of Tourist destination fully (entire instance of a particular

Tourist destination has to be updated.)

• Delete a particular instance of Tourist destination

• Create contact information (contact) with phone number, email and

has_contact fields for particular Tourist destination

• Update contact information (email and phone number of a contact) of a

particular tourist destination

This chapter considers output OpenAPI specification which was produced via this

extension of the Dataspecer tool. In particular, running example of Tourist destination

was utilized as the root data structure as shown in 5.3 to produce desired OpenAPI

specification. As demonstrated by Figure 34, output OAS contains following

constructs: openapi, info, servers, paths, components and security.

53

Figure 34 – Structure of Tourist Destination OAS (Source: Author)

As indicated, the openapi construct shows the version of the OpenAPI itself. The info

and servers constructs are populated according to the description as illustrated by

Figure 35. It is important to note, that from the perspective of the extension program

this information is provided by the user.

Figure 35 – Mapping of Metadata between UI and OAS (Source: Author)

5.4.1 Paths and Operations

Figure 35 also shows that Tourist destination was chosen as the data structure for

which the desired operations are defined. Operation definition follows the process

described in 5.3.1 which means that for each OperationCard filled in by the user

corresponding operation sub-construct is created inside their respective paths

construct. For instance, the operations for Tourist destinations retrieval and its

creation, represent examples of collection manipulation. The operation retrieving

Tourist destinations, retrieves a collection of objects of Tourist destination whereas

the request creating a new instance, creates a new Tourist destination and adds it to

54

the collection of tourist destinations. Because of this, the suggested path for both of

these operations would be “/Touristdestinations”. This means that an object in the

paths construct with a key “/Touristdestinations” would be a parent for both of these

operations which is indeed the case as shown by Figure 36 and Figure 37 below. Figure

36 illustrates operation sub-construct for Tourist destination retrieval (GET Tourist

destinations). The fields summary, operationId as well as the responses are filled in

according to the user-provided input. More precisely, the field summary corresponds

to the comment of the OperationCard component and intends to provide

documentation for the operation which in turn is a characteristic of a good (REST)

API. The operationId corresponds to name of the operation. What’s more, responses

object is constructed according to the status code set in the UI (200 in this case). Query

parameters of the operation-sub construct are generated automatically according to the

fields of the data structure for which this request (operation) is intended. This also

reflects intension of designing a good API since a distinction between path and query

parameters are provided by the program. This particular GET operation is intended for

the root data structure – Tourist destinations that has three fields – capacity, owner

and contact on its own. The field id is appended by the program automatically since

usually the data structures designed via the Dataspecer tool lack a unique identifier

which is an essential part of a REST resource (the process of adding id field to the data

structures is described in more detail in 5.6 Implementation). The request allows the

user to filter the collection of retrieved resources based on its fields – in this case:

capacity, owner, contact and id.

55

Figure 36 – GET Tourist destinations: Sample Operation (Source: Author)

56

As for the creation of Tourist destination, this POST request/operation belongs to the

same path and follows a similar structure as previously discussed GET request.

Summary and operationId are populated according to the user-input. According to the

description, a tourist destination is created according to two parameters – capacity and

contact. This is reflected in the request body. As shown, it is specified in the OAS that

this request body is required and its content holds a request body schema with two

parameters – capacity (a simple integer) and a contact. The contact represents an

association in the original Dataspecer data structure and has its own multi-layered

schema. Because of this, it has its own dedicated schema in the resulting OAS which

will be discussed later in this chapter. Therefore, instead of merely stating its type, the

request body references the schema, ensuring clarity of the OpenAPI specification.

This was done with the intension of appealing to the good (REST) API characteristics

and improve structure and usability of the output OAS.

Figure 37 – POST Tourist destination: Sample Operation (Source: Author)

57

The rest of the operations specified in the description follow the same structure. The

difference is that these operations are children of different object within the paths

construct. The operations of (full) update of Tourist destination and its deletion are

bound to a particular tourist destination. Which means that suggested path would be

“/Touristdestinations/{id}” indicating that the request is intended for a specific

resource. As for the last two operations, they are intended for the successor of the root

data structure – contact. Figures 38 and 39 show the corresponding operations

constructs of tourist destination full update (PUT) and its deletion. As shown, the

request body of the PUT request references the schema of tourist destination from the

components construct. Since the request is handling full update of the object, the user

does not need to specify the request body – it is generated automatically by the

program.

Figure 38 – PUT Tourist destination: Sample Operation (Source: Author)

58

Figure 39 – DELETE Tourist destination: Sample Operation (Source: Author)

The operations intended for the successor (one level below) – follow in the same

manner as the previous ones described above. Figure 40 illustrates creation of contact.

As shown by Figure 40, the request body satisfies the initial description by including

three desired parameters – phone number, email and has_contact. The response body

reflects the nature of the chosen response code 201. It states that created instance has

to be returned with the 201 response code. Operation summary, operationId as well as

the endpoint (path) are filled based on the values provided via the UI.

59

Figure 40 – POST contact: Sample Operation (Source: Author)

5.4.2 Components

Components construct is build based on the data structures located in the target data

specification. Discussed data specification contains one data structure – Tourist

destination (running example) which means that the components construct reflects its

60

structure. Moreover, as illustrated by Figure 41 this construct contains security schema

of the API.

Figure 41 – Security Schema in OAS (Source: Author)

As shown, the components construct contains schemas for all data structures – the root

data structure as well as all associations defined within (regardless of the level). What’s

more, this construct holds the information regarding authentication. The program

utilizes Bearer Authentication, which means that only the bearers of an access token

are able to access the API [34]. Tourist_destination represents the schema of the root

data structure – Tourist destination. This schema is constructed based on the data

structure designed via the Dataspecer tool. As shown by Figure 42, like Dataspecer

data structure Tourist destination, the corresponding schema has following fields

(properties) – capacity, owner (of type human_or_person) and contact (of type

contact). Additionally, it contains field id which ensures that this resource is

identifiable. Since owner and contact represent associations in the running example,

the schemas are also defined for their respective types (classes) – human_or_person

and contact. Figure 43 illustrates these schemas and their connection to the Dataspecer

data structure. It is important to note, that there is no structure defined for the owner.

Because of this, the description of its corresponding schema notifies the user that this

component needs to be filled in. This enhances documentation of the OAS.

61

Figure 42 – Tourist Destination Schema in Dataspecer and in OAS (Source: Author)

Figure 43 – Association Schemas in Dataspecer and in OAS (Source: Author)

What’s more, it has to be acknowledged that if the data specification included multiple

data structures, all of their schemas would be reflected in the components construct in

the same way as it is done for the running example.

5.4.3 Supported Constructs in the Output OAS

As demonstrated by the examples provided in the previous sub-chapters (5.4.1 and

5.4.2), output OAS supports basic constructs of the OpenAPI specification described

in sub-chapter 2.4. To be more precise, the output OAS contains metadata as well as

base URL of API requests. More complex constructs contained by the output are paths

with their corresponding operation sub-constructs and components. Last but not least,

the output contains security construct specifying the authentication approach of the

API. Supported constructs [9] as well as explanations of what their support entails is

encompassed by Table 9 below. It the format of output OAS is JSON. Generation of

YAML is not supported.

62

Construct of

OpenAPI

Specification

General

Description

Support in the generated OAS

Metadata: openapi Specifies OpenAPI

version

• The version is automatically set

by the program to 3.0.0

• The users are not able to change

the version

Metadata: info Specifies metadata –

title, description and

version of the API

• The user is able to set title,

description and version of the

API

Servers Specifies the base

URL of the API

server. Generally,

OpenAPI supports

having multiple

servers.

• The user is allowed to set (only

one) base URL.

• Multiple servers are not

supported.

Paths Specify individual

paths (endpoints)

and operations

defined via HTTP

methods for these

endpoints.

• Paths and their corresponding

operation constructs and sub-

constructs are created based on

the user input.

• Extraction of path parameters is

supported. The user has to

specify path parameters.

• Automatic generation of query

parameters is supported for GET

requests.

• Parameter types other than path

and query are not supported.

• Request (where applicable) as

well as response bodies are

supported for each operation in

each path construct.

63

• Multiple request bodies/response

bodies are not supported.

• Only following response codes

are supported: 200, 201, 204,

400, 401 and 500.

• Content-type is set to JSON. The

user is not able to modify it.

Input and Output

Models

Specify common

definitions of the

schemas utilized

across the OAS

• Components construct and their

corresponding schemas are

generated based on the data

structures designed via the

Dataspecer tool.

• Multi-layer nested structures are

represented by referencing

necessary schemas.

Authentication Specifies

authentication

methods utilized in

the API

• Authentication is automatically

set to Bearer token

authentication.

• Changing authentication method

is not supported.

Table 9 – Supported Constructs of the Output OAS (Source: Adapted from [9])

5.5 Architecture

The aim of this section is to discuss the technical aspects such as project architecture

as well as implementation details. The source code of this project may be found in the

electronic attachment (A.3). The source code located in the src directory is organized

into several subdirectories each of which serve a different purpose. These

subdirectories are: components, custom components (customComponents), models as

well as props. The components directory represents a repository for the components

that were imported from shadcn-ui library. As for the custom components, this is

where bespoke components reside. To be more precise, they achieve the goal of

meeting the distinct needs of the project. Custom components combine not only pre-

imported but also handcrafted HTML components which ensure seamless form

operation. As the name suggests models represents a repository where the typescript

64

types as well as interfaces utilized across the whole codebase reside. As for the props,

this folder holds the data about the properties which are being passed to the

aforementioned custom components. Furthermore, multiple notable files are located

directly in the src directory. DataStructureFetcher.tsx, DataTypeConverter.tsx,

FormValidationSchema.tsx, OApiGenerator.tsx and MainForm.tsx. hold the logic

of the key architectural components and will be discussed in a detailed manner in the

later parts of this section.

Having discussed the general organization, architectural perspective of the project may

be considered. At first, the placement of this extension will be considered in the context

of the overall Dataspecer tool architecture. As mentioned above, Dataspecer represents

a complex tool. This means that it consists of many architectural components.

However, there are three key components which are relevant in the context of this

projects scope. These components are: Dataspecer Backend, Structure Editor

(discussed in 4.2) and Dataspecer Manager. Each of these architectural components

have their distinctive purpose:

• Dataspecer Backend – is a critical component in the overall Dataspecer

architecture. It represents a central hub when it comes to communication in

the Dataspecer tool ecosystem. Dataspecer Backend component

communicates with other components and facilitates data exchange.

• Structure Editor – serves the purpose of creation and management of data

structures.

• Dataspecer Manager – represents a primary interface for initiating various

functionalities of the Dataspecer tool.

Component API-Specification Generator (this extension project generating OpenAPI

specifications) is located on the same level as these three components. It also

communicates with the Dataspecer Backend in order to store and receive data. The

high-level representation of these components and their relationship with each other is

illustrated by Figure 44 below.

65

Figure 44 – High-Level Architecture: Integration with Dataspecer (Source: Author)

Having considered the architectural perspective within the broader context, the

architecture of API-Specification Generator component may be discussed. When it

comes to API-Specification Generator the main components are:

• Fetcher – Fetches and processes information regarding the data structures in

the target data specification from the Dataspecer Backend.

• Frontend

▪ Gets data (metadata and operation/request details) from the user.

▪ Receives the information about the data structures fetched from the

Fetcher component.

▪ Receives (if available) pre-saved configuration (operation details)

from the Dataspecer Backend.

▪ Sends all of the information mentioned to the Generator.

▪ Sends the configuration – metadata and request (operation) details to

the Dataspecer Backend for future maintenance.

• OAS Generator – consolidates data sent by the Frontend component and

generates corresponding OpenAPI specification.

The high-level interpretation of the flow is illustrated by Figure 45 below.

66

Figure 45 – API-Specification Generator: High-Level Flow Diagram (Source: Author)

5.6 Implementation

As mentioned in 5.4, there are several architectural components to this project. One of

the most crucial components is the Fetcher. The logic of this component is located in

DataStructureFetcher.tsx. Fetcher component is responsible for the integration of

this extension within the Dataspecer tool. More precisely, it serves the purpose of

retrieving data regarding desired data structures from the Dataspecer backend and

conforming them to the form illustrated by Figure 23 from 5.2. Fetching data structure

information represents the initial step when it comes to program operation. In

particular, the URL of the current window of the browser holds an id which identifies

target data specification. The fetcher utilizes this id and retrieves information regarding

target data specification. This data contains unique identifiers for the data structures

defined in the data specification. Therefore, as the next step the information about each

individual data structure is obtained, resulting in a collection of unprocessed data

structures in their raw form. Having retrieved a collection of unprocessed data

structures, the processing may start. Once the processing phase is complete, a

collection of the processed data structures is produced. Figure 46 illustrates the high-

level flow of the Fetcher component.

67

Figure 46 – Fetcher: High-Level Flow Diagram (Source: Author)

Complex, multi-level structure of data structure schemas in Dataspecer make their

processing challenging. The information stored on the Dataspecer backend regarding

individual data structure holds various properties. More precisely, the name as well as

details regarding its attributes and associations are stored. Given their complexity and

multi-level structure, the associations may also be treated as data structures

themselves. This means that when it comes converting the collection of unprocessed

data structures into a collection of processed data structures, the associations are

processed recursively in order to consider whole representation of the root data

structure. As illustrated by Figure 47, association fields are processed recursively until

they are reduced to simple structures – attributes. Once primitivity is reached, the

processing phase is complete. An example of processed data structure is illustrated by

Figure 24 in 5.2.

68

Figure 47 – Fetcher: High-Level Flow Diagram – Processing Fields (Source: Author)

As shown by Figure 45 in 5.5, Frontend (MainForm.tsx) represents the focal point of

the system. It communicates with all other components. It not only receives data from

the user, but also from the Dataspecer Backend and the Fetcher components. The user

directly interacts with the frontend by providing metadata as well as operation details

in order to generate output OAS. However, in order to do so, data structure needs to

be chosen for which the operations will be defined. Because of this, the frontend

receives collection of processed data structures from the fetcher component. This

allows the user to select their target data structure and define corresponding operations.

Because of the fact, that the program also supports maintenance of the API

specifications, the frontend component receives data from the Dataspecer Backend (if

available). This data is pre-saved configuration – operation details and metadata

entered and saved by the user, whilst generating the OpenAPI specification previously.

What happens is that upon submission of the form details, the configuration – metadata

and operation details, are saved on the Dataspecer Backend for future reference.

Moreover, the output OpenAPI specification is generated and displayed on the right

side of the page as illustrated on Figure 28 in subchapter 5.3. What’s more, the frontend

component utilizes validation schema (FormValidationSchema.tsx) in order to ensure

the validity of the output OAS and appeal to the characteristics of a good (REST) API.

The most important restrictions defined in the validation schema are:

• Operation names must be unique.

• The combination of operation type (HTTP method) and path must be unique.

To be more precise, operation name is translated as opertionId in the resulting

OpenAPI specification. Since it represents an identifier of the operation inside the path

construct, duplicates are unwanted and OpenAPI standard does not allow operations

69

with the same identifier (operation name). The second restriction states that each path

has to contain operations with different operation types (HTTP methods). This means

that, one path construct cannot contain two operations having DELETE (for example)

as operation type. If these constraints are not met during the submission, the form is

not submitted and corresponding error messages are displayed as illustrated by Figures

48 and 49. These restrictions ensure that the resulting OAS is concise and free from

redundant operations.

Figure 48 – Error message: combination of path and HTTP method has to be unique
(Source: Author)

Figure 49 – Error Message: operation name must be unique (Source: Author)

As for the OAS generator (located in OApiGenerator.tsx), it receives all essential

information for the production of OpenAPI specification from the frontend

component. To be more precise, two types of inputs are received – user-provided

configuration as well as data structure information. User-provided configuration holds

the metadata, base URL as well as operation details which were provided by the user

via the user interface. As for the data structure information, this is the collection of

data structures fetched and processed by the Fetcher component. The OAS generator

component is structured in multiple methods. The method

generateOpenAPISpecification represents a central point invoking its helper methods

– handlePathOperations and createComponentSchema. The method

handlePathOperations serves the purpose of generating paths and their respective

operations constructs whereas the method createComponentSchema aims to generate

components construct containing schemas of the components. These helper methods

call their respective sub-helper methods to handle smaller sub-construct generation.

The high-level flow of the OAS generator is already considered by Figure 25 in 5.2,

however, there are some notable aspects that need to be discussed in more detail.

Figure 50 illustrates the process of component schema creation. Component schema is

created for each data structure fetched by the fetcher component, which means that

component schema creation method is called for each data structure in this collection.

70

The method firstly validates passed data structure. In case it is not null it proceeds with

formatting its name according to the OpenAPI rules – any non-accepted character is

converted to underscore. Next the method checks if a schema with such name already

exists in order to prevent duplication. If not, a properties sub-construct is created based

on the fields of the passed data structure. The last step of this method is setting the

values for the fields (type, description, properties and required) of the schema object.

Figure 50 – Flow Diagram: Creating Schemas in Components Construct (Source:

Author)

When it comes to populating the schema object there are two possibilities. If the passed

data structure has properties (fields) configured in the Dataspecer, then the values of

the schema are set according to these fields. If not, a schema with empty values is

created with the name of the data structure and a description is set notifying the user

that this component needs to be filled in. This is illustrated by Figure 51 below.

71

Figure 51 – Flow Diagram: Populating Schema Object (Source: Author)

What’s more, creation of properties sub-construct for a particular schema is also a

challenge. The method responsible for property sub-construct creation

(createProperties) is invoked by schema creation function. Two parameters are passed

to property creation method – OAS and fields of the current data structure. The

properties of the component schemas are managed in a nested structure. The program

examines each property (field). In case of handling an association, the method

createComponentSchema is invoked on the field which means that a component

schema is generated for the nested data structures (associations) as well. To be more

precise, when it comes to property creation, the function firstly initializes this sub-

construct and then validates each field of the data structure. If the field is not null the

method checks if the field is an attribute or association. In case it is an attribute, the

program determines if this attribute represents a collection or not. If it represents a

collection, the openAPI specification will mark this property as an array. Next, it

checks whether the field should be marked as required. If so, it appends this field to

the required sub-construct of the schema construct. The same process is performed in

case of associations, however in this case firstly a schema is created for the association

itself too. This is because an association, like the root data structure may have a multi-

level structure and therefore may be considered as a data structure too. Lastly, the

program checks if the properties construct of a data structure schema has a property

named id. If not, the program appends id to the properties so that the resource is

72

identifiable. The process described above is illustrated by Figure 52 below.

Figure 52 – Flow Diagram: Schema Properties Construction (Source: Author)

Another important challenge is to generate paths and their respective operations

constructs. The method for handling paths and operations constructs is invoked for

each operation of each data structure from the user-provided input. It receives the

fetched data structures collection, data structure of the current iteration, the operation

of the current iteration as well as OAS (initialized at the beginning of the OAS

generation process) as parameters. Initially, the method checks if such path already

exists and if not, a path construct is initialized. This path construct represents parent

construct for its corresponding operation sub-constructs. Next the method proceeds

with extraction of path parameters. Then it creates operation construct. In case of GET

operation, query parameters are generated automatically based on the fields of the

target data structure. Lastly created operation object is added to its parent path

construct. Figure 53 below illustrates this process.

73

Figure 53 – Flow Diagram: Creating Path and Operation(s) constructs (Source:

Author)

Creation of individual operation sub-constructs is another notable aspect to consider.

The sub-helper method dedicated for operation sub-construct creation

(createOperationObject) is invoked by the function (handlePathOperations)

described above. As illustrated by Figure 54, it sets operation sub-construct based on

the user-provided input provided via OperationCard component discussed in 5.2.1.

The creation of response body is handled via a helper method and is based on the status

code provided via OperationCard component from the UI. The generation of request

body sub-construct is handled in this method as well. In case of POST or PATCH

methods, the request body is generated based on the passed fields via the UI. Because

of the fact that PUT response represents full update of the response, in this case the

request body references corresponding data structure schema from the components

construct.

Figure 54 – Flow Diagram: Operation Sub-Construct Construction (Source: Author)

In conclusion, the generation of OpenAPI specification relies on the collaboration

between aforementioned components. Dataspecer Backend stores pre-saved

configuration as well as information about the data structures defined within the data

specification. The Fetcher retrieves these data structures and processes them. The

74

Frontend receives necessary information from the Dataspecer Backend, Fetcher as

well as the user and passes it to the OAS generator. The generator consolidates this

information and provides resulting OpenAPI specification.

75

6. Evaluation

The definition of a good REST API has been provided in 3.4. A good REST API allows

the developers to have a robust knowledge of the API. What’s more, a good REST

API is characterized as usable, structured, stateless and documented. Furthermore, it

provides enhanced developer user experience. The exact explanations of these

characterizations may be found in Table 3 of subchapter 3.4. The aim of this

subchapter is to determine whether the extension facilitates generation of API

specifications for good REST APIs.

Robust API Knowledge

The extension allows the user/developer to have robust API knowledge of current

API via generated OpenAPI specification. In the scope of this project two aspects of

the robust API knowledge are considered – domain concepts and execution facts. As

mentioned in sub-chapter 3.1, the domain concepts represent abstract ideas that the

API tries to model along with the corresponding terminology [23]. As for the execution

facts, they focus on the expectations of the API, which means that this concept focuses

on aspects like types (classes), as well as possible inputs and outputs [23]. Running

example Tourist destination is modeled via meaningful attributes and associations.

What’s more these fields are named properly. To be more precise, generally a tourist

destination may have an owner, it may also have a contact information and a capacity.

Contact information may in turn consist of email, phone number and other relevant

attributes. This means that domain concepts and part of the execution facts is supported

by the Dataspecer tool itself, because it gives the user ability to design data structures

based on conceptual models. While the user is designing a data structure, they are

somewhat encouraged in designing meaningful data structures. For example, if the

user is designing a chair data structure, choosing material as an attribute will be an

easy choice because it will be provided in the possible options in the Dataspecer tool.

What’s more, the process of designing data structure schemas in the Dataspecer tool

allows the user to set the types of the fields as well as their cardinalities. Understanding

what are the types (classes) of the attributes and associations belongs to the execution

facts aspect. The extension generating corresponding OpenAPI specification

strengthens robust API knowledge. Firstly, the program appends field id which serves

the purpose of resource identification. Next, the program allows the user to specify the

operation details which is part of the execution facts. More precisely, the essential parts

76

needed for successful request creation are listed on the OperationCard component.

And this information needs to be provided by the user. This means that in case of

meaningful user input, the developer will have understanding through generated OAS

(as seen in 5.4) of following:

• For which data structure is operation intended (root data structure or successor

association)

• If a collection of resources is manipulated or not

• What is the name of the request/operation

• What parameters (if any) need to be passed in the request body

• What kind of response is expected and what is its media-type

• If and how (with what query parameters) can the result be filtered

• What is the description of the request/operation

• What is the endpoint exposed by the API for sending the request

Usability

Another key characteristic of a good REST API is usability. The extension facilitates

creation of a usable REST API specification in OpenAPI format. While

considering the implementation of the project (subchapter 5.6), it was mentioned that

the program restricts the user of creating operations with the same name for a given

data structure. For instance, in the context of the running example, this would mean

that, there cannot exist two operations named “createTouristDest”. What’s more, the

program restricts same HTTP methods for a particular path. For example, the user

cannot define two delete requests (deleting tourist destination) for the same path. This

ensures that the generated OpenAPI specification is as clean as possible from the

redundant requests which in turn increases the likelihood that the output API

specification and therefore its corresponding API is easy to use and hard to misuse.

Another important aspect connected to the usability is naming conventions. Because

of the fact that the user is responsible for providing values of the operation details, it

is users job to follow the rules of naming conventions and choose meaningful names

for various fields. This means that, if the user disobeys the rules of naming conventions

on purpose and provides unmeaningful data, the output will not be elegant. Despite

this fact, the program tries to facilitate this aspect and provides suggested paths to the

user. The suggested path specifies suggested structure for the endpoint. Each suggested

77

path structure is based on the target data structure – either root or its association one

level below, which means that each suggested path (structure) is based on their names.

In the context of the running example, some of the sample suggested paths could be:

“/Touristdestinations”, “Touristdestinations/{id}/owners”. The user is able to set a

different endpoint, however it is possible and, in most cases, recommended to use

suggested paths directly as the operation endpoints. Because of the fact that the

program appeals to a broad target audience with different experience, the user is

provided with the description of possible HTTP methods and response codes as

illustrated by Figure 55.

Figure 55 – OperationCard: Demonstration of HTTP Method Descriptions (Source:

Author)

Comprehending the general meaning of the HTTP method (operation type) as well as

expected response code gives the user opportunity to understand the essence of the

request/operation. This increases the likelihood that meaningful names will be utilized

for operation name and operation type fields. Furthermore, having information about

the meaning of each possible HTTP method increases the likelihood that the user

chooses appropriate option. For example, it is easy to make a mistake whilst creating

a request that aims to update a resource. Considering a scenario when the user wants

to update only a particular property of tourist destination. If there were no descriptions

provided, a user with a limited experience would not know which HTTP method to

use – PUT or PATCH. Since each option is appended with a description, it is easier to

make a correct choice.

78

Last but not least, requests and responses are managed effectively. The extension

allows the user to specify the request body only in the cases where it is needed – POST

and PATCH requests. This means that resulting OpenAPI specification is free of

redundant request-body sub-constructs ensuring clarity and accuracy of structure. As

for the responses, in case of success (response codes 200 and 201) either a

homogeneous collection of resources is returned or a single instance, depending on the

operation nature. This conforms to the REST principles since REST requires resources

to have a uniform representation in the response [13]. Figure 56 exemplifies single

instance resource whereas Figure 57 exemplifies collection response.

Figure 56 – Sample Response: Single Instance (Source: Author)

Figure 57 – Sample Response: Collection (Source: Author)

Structured

Because of the fact that OpenAPI was chosen as the format of generated API

specification, the output OAS is structured into the constructs that are specific to the

OpenAPI standard. These constructs are: openapi and info (forming the metadata),

servers, paths, components (input and output models) and security (authentication).

This means that the decision of choosing OpenAPI standard as the output format

ensures the resulting API specification is structured. However, OpenAPI specifications

can be structured poorly as well. If the components construct was not modularized and

the schemas of sub-components were placed directly in the parent schema, it would

79

violate the principle of being well-structured. This is not the case when it comes to the

output of this extension. More particularly, when it comes to the schemas inside

components, the parent schema references its child schemas fostering modularity and

clarity. Figure 58 below illustrates example of bad structure and Figure 59 exemplifies

a good, modular structure. Positive example was generated via this extension of

Dataspecer. As evident, in the negative example (Figure 58) modularity is being

neglected and everything is placed in one schema. This screenshot is only a fraction,

since this way the schema gets too long and not manageable. On the other hand, the

schema generated via the Dataspecer extension is clear and concise since it references

other schemas. Referenced schemas are defined separately.

Figure 58 – Example of a bad,

unstructured Schema (Source:

Author)

Figure 59 – Example of a good, structured schema
(Source: Author)

As mentioned, prior, the program provides distinction between path and query

parameters which as defined in 3.4 is another characteristic of a good REST API. This

enhances the structured quality of the specification, since the developer is able to

distinguish path and query parameters clearly. Figure 60 illustrates query parameter

whereas Figure 61 showcases path parameter.

Figure 60 – Query Parameter in OAS (Source: Author)

80

Figure 61 – Path Parameter in OAS (Source: Author)

Documented

Another characteristic of a good API which needs to be reflected in the API

specification is being (well) documented. First and foremost, it has to be noted that

API specification by its essence already somewhat represents a form of documentation

for the actual API implementation. As noted in subchapter 2.3, API specification is a

formal document which holds the information regarding the elements that the API has

to contain [4]. However, API specification and in this particular case OpenAPI

specification needs to be documented too. Having a documented API specification

supports the teams working on the API by allowing them to understand the essence of

the API as well as work with it in an effective manner. Developed extension of the

Dataspecer tool facilitates specification documentation by allowing the user to provide

descriptions for various constructs. First, the user is prompted to provide API

description in the metadata section. Moreover, the extension gives the user possibility

to document each operation by providing a meaningful description. This again is the

responsibility of the user. Furthermore, empty schemas are automatically appended

with a description that this component needs to be filled in, which draws the

user’s/developer’s attention to it. The examples of these descriptions are illustrated by

Figures 62, 63 and 64. What’s more, automatically generated (filtering) query

parameters also include descriptions as illustrated by Figure 60.

Figure 62 – API Description (Source: Author)

81

Figure 63 – Operation (Request) Summary (Source: Author)

Figure 64 – Empty Schema Description (Source: Author)

Stateless

Being stateless is another important characteristic of a good REST API which needs

to be reflected in the corresponding OpenAPI specification. This is achieved by

imposing a dedicated component in the frontend – OperationCard. As mentioned,

throughout this thesis, each API request in the UI has a corresponding OperationCard

component that gathers essential information for interaction with the server. The

program is able to recognize path parameters and extract them. It also supports request

body sub-construct generation, which means that all the necessary parameters can be

gathered. The content-type is automatically set to JSON and does not need user

interference. As mentioned in the previous chapters, the user has to specify exact

parameters by choosing desired fields in the request body and specifying the path of

the operation is user’s responsibility as well. Suggested paths may be utilized for path

endpoints as mentioned before. As for the authentication, utilization of JWT Bearer

tokens is chosen automatically by the program. This enhances the statelessness of the

OpenAPI, because the token is a self-contained entity [35]. This means that since the

token contains necessary information for request authentication, there is no need for

the server to maintain user’s state [35]. Due to the fact that necessary information can

be gathered by the OperationCard component and content-type and authentication

approach are chosen automatically, each request defined in the output is populated so

that, the server does not need to rely on the stored context while processing this request.

82

Enhanced Developer Experience

The concept of enhanced developer experience encompasses ensuring that the

developers have a positive interaction with the API. This is achieved through API’s

usability. As discussed above, this extension of the Dataspecer tool facilitates

generation of usable APIs. This means that when OpenAPI specifications are easy to

use, developers are more likely to have a positive experience whilst interacting with

the API. Another important factor facilitating enhanced developer experience is

exposure of clear API paths. In the context of this extension this is achieved by

defining a base path and additional paths with corresponding operations. Each path

acts as an entry point. For example, the path “/Touristdestinations” represents an entry

point for the collection of tourist destinations, while the path

“/Touristdestinations/{id}” allows accessing particular instance of tourist destination.

As for the HTTP methods (GET, POST, etc.) they provide ways for clients to create,

read, update and delete (CRUD) API resources. In conclusion, generated OpenAPI

specification offers enhanced developer experience by its usability as well as by the

utilization of clearly exposed relative paths. Despite the fact that user is responsible

for providing paths, this job is simplified by suggested path structures which in most

cases can be directly utilized as the paths (endpoints) for the operation.

The electronic attachment (structure described in A.3) of this thesis contains two

sample OpenAPI specifications which were generated via this extension of the

Dataspecer tool. The first OpenAPI specification originates from a data specification

which contains only one data structure – Tourist destination (running example). The

title of the OpenAPI specification is TouristDestinationsAPI. As mentioned, it is

possible from this extension to copy the output OpenAPI specification and open it in

the swagger editor. Figure 65 illustrates this process and shows exposed paths and

supported operations by this API. As evident, no errors are displayed by the Swagger

editor when opening TouristDestinationsAPI OpenAPI Specification.

83

Figure 65 – TouristDestinationsAPI in Swagger Editor (Source: Author)

On the other hand, the second OpenAPI specification originates from a data

specification containing two data structures – album and concert. Data structures

album and concert are illustrated by Figures 66 and 67 below.

Figure 66 – Data Structure: album (Source: Adapted from [32])

Figure 67 – Data Structure: concert (Source: Adapted from [32])

84

As evident none of the input data structures are flat, on the contrary they also include

associations. Both album and concert contain associations one level below the root –

performer and country which means that operations may be defined for them as well.

An OpenAPI specification named MusicManagementAPI was generated for this data

specification utilizing these data structures as well. The specification includes CRUD

operations for the root data structure as well as associations one level below. The

exposed paths and their respective operations are illustrated by Figure 68. It also

showcases that there are no errors present when validating this OpenAPI specification

with Swagger editor.

Figure 68 – MusicManagementAPI in Swagger Editor (Source: Author)

85

Conclusion

To sum up, while the original version of the Dataspecer tool did not have support for

OpenAPI specification generation, this extension expands its capabilities and allows

the users to generate OpenAPI specifications for the Dataspecer data structures.

Resulting OpenAPI specifications are tailored to users’ particular needs. In order to

achieve this goal, firstly the Dataspecer tool was explored and its data structures were

examined. Work carried out for this thesis includes the state of the art of relevant

concepts such as – APIs, REST APIs, API specifications, as well as OpenAPI

specifications. What’s more, this thesis defines characteristics of a good REST API

with respect to the API specifications. The solution focuses on these characteristics

along with necessary user-provided input in order to provide resulting OpenAPI

specification. In particular, the construction of the output OAS depends on the input

data structure(s) and user-provided information representing operation details. What’s

more the tool supports API maintenance, which means that the user-provided

configuration is saved and it is possible to update it at a later time. Since the field of

technology including OpenAPI standard is ever-evolving, further research into this

subject is warranted in order to maintain compatibility with the current trends. While

the future work related to this topic would entail additional advancements such as

determining if and how it is possible to change output OAS manually and reflect these

changes back in the Dataspecer environment, this paper should be utilized as a

testament to the potential of OpenAPI specifications and as a foundation of this

separate future work.

86

Bibliography

[1] Contentful, "What is an API? How APIs work, simply explained," 23 July

2023. [Online]. Available: https://www.contentful.com/api/#what-is-an-ap.

[Accessed 2024].

[2] O. Hämäläinen, "API-First Design with Modern Tools (Bachelor's Thesis),"

May 2019. [Online]. Available:

https://www.theseus.fi/bitstream/handle/10024/226493/Hamalainen_Oona.pdf?

sequence=2&isAllowed=y. [Accessed 2024].

[3] Dataspecer, "The problematics behind data modeling," [Online]. Available:

https://dataspecer.com/docs/tutorial/data-modeling-problematics/. [Accessed

2024].

[4] Davor, "API Documentation vs. Specification vs. Definition: What’s the

Difference?," 2024. [Online]. Available: https://www.archbee.com/blog/api-

documentation-specification-definition-difference. [Accessed 2024].

[5] Jeremy Whitlock et.al, "OpenAPI Specification v3.0.0," 2017. [Online].

Available: https://spec.openapis.org/oas/v3.0.0. [Accessed 2024].

[6] Cisco and/or its affiliates, "The Internet of Everything," 2013. [Online].

Available: https://www.cisco.com/c/dam/en_us/about/business-

insights/docs/ioe-value-at-stake-public-sector-analysis-faq.pdf. [Accessed

2024].

[7] N. Kiesler and D. Schiffner, "What is a Good API? A Survey on the Use and,"

in EAI IoECon 2023 - The Second EAI International Conference on the

Internet of Everything, Guimarães, Portugal, 2023.

[8] F. Kilcommins, "https://nordicapis.com/," 14 July 2022. [Online]. Available:

https://nordicapis.com/the-benefits-of-using-api-specifications/. [Accessed

2024].

[9] A. Akhvlediani, "Expanding the Dataspecer Tool for API Creation and

Management," 2024. [Online]. Available:

https://dataspecer.com/docs/projects/api/. [Accessed 2024].

[10] M. Goodwin, "What is an API (application programming interface)?," IBM, 09

April 2024. [Online]. Available: https://www.ibm.com/topics/api. [Accessed

2024].

[11] TechTarget, "client-server," [Online]. Available:

https://www.techtarget.com/searchnetworking/definition/client-server.

[Accessed 2024].

[12] "Client-Server Model," [Online]. Available:

https://www.geeksforgeeks.org/client-server-model/. [Accessed 2024].

[13] L. Gupta, "What is REST?," 12 December 2023. [Online]. Available:

https://restfulapi.net/. [Accessed 2024].

87

[14] M. Ekuan, C. Kittel, R. Downer, A. Buck, J. Bouska and M. Alberts, "RESTful

web API design," 03 August 2023. [Online]. Available:

https://learn.microsoft.com/en-us/azure/architecture/best-practices/api-design.

[Accessed 2024].

[15] G. Jansen, "Thoughts on RESTful API Design - Resources," 2012. [Online].

Available: https://restful-api-design.readthedocs.io/en/latest/resources.html.

[Accessed 2024].

[16] R. Fadatare, "Identify Resources in RESTful API Design," [Online]. Available:

https://www.javaguides.net/2018/06/how-to-identify-rest-resources.html.

[Accessed 2024].

[17] "Principles of Software Engineering," [Online]. Available:

https://www.d.umn.edu/~gshute/softeng/principles.html. [Accessed 2024].

[18] A. Helton, "Seriously, Write Your API Spec First," 27 September 2023.

[Online]. Available: https://www.readysetcloud.io/blog/allen.helton/seriously-

write-your-spec-first/. [Accessed 2024].

[19] Swagger, "OpenAPI Guide - Basic Structure," [Online]. Available:

https://swagger.io/docs/specification/basic-structure/. [Accessed 2024].

[20] N. M. E. G. P. Aikaterini Karavisileiou, "Ontology for OpenAPI REST

Services," 2020. [Online]. Available:

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9288198.

[21] K. Vasudevan, "The Benefits of OpenAPI-Driven API Development," 2018.

[Online]. Available: https://swagger.io/blog/api-strategy/benefits-of-openapi-

api-development/. [Accessed 2024].

[22] M. Mendoza, "How Businesses Can Benefit from OpenAPI Specification,"

2020. [Online]. Available: https://www.altexsoft.com/blog/openapi-

specification/. [Accessed 2024].

[23] K. Thayer, S. E. Chasin and A. J. Ko, "A Theory of Robust API Knowledge,"

2021. [Online]. Available: https://dl.acm.org/doi/10.1145/3444945. [Accessed

2024].

[24] Swagger, "Best Practices in API Design," [Online]. Available:

https://swagger.io/resources/articles/best-practices-in-api-

design/#:~:text=In%20general%2C%20an%20effective%20API,who%20work

%20with%20it%20constantly.. [Accessed 2024].

[25] A. Redko, "The Hypermedia APIs support in JAX-RS and OpenAPI: a long

way to go," 2019. [Online]. Available: https://redko1.rssing.com/chan-

8348961/article64.html?nocache=0. [Accessed 2024].

[26] A. Redko, "RESTful services with HATEOAS. Documenting Hypermedia

APIs," 15 May 2020. [Online]. Available:

https://www.javacodegeeks.com/restful-services-with-hateoas-documenting-

hypermedia-apis.html#hyperschema. [Accessed 2024].

88

[27] "7 REST API Best Practices for Designing Robust APIs," [Online]. Available:

https://www.getambassador.io/blog/7-rest-api-design-best-practices. [Accessed

2024].

[28] S. Rivera, "3 examples of conceptual data models for data and analytics,"

2023. [Online]. Available: https://www.thoughtspot.com/data-trends/data-

modeling/conceptual-data-model-examples. [Accessed 2024].

[29] P. Asman, "Attributes and Associations in Object Modeling," 1999. [Online].

Available:

https://www.hillside.net/plop/plop99/proceedings/asman/Attributes.pdf.

[Accessed 2024].

[30] IBM, "Attributes versus Aggregate and Composite Associations in Rose

RealTime," 2018. [Online]. Available:

https://www.ibm.com/support/pages/attributes-versus-aggregate-and-

composite-associations-rose-realtime. [Accessed 2024].

[31] I. J. G. B. James Rumbaugh, "The Unified Modeling Language Reference

Manual," 1999. [Online]. Available:

https://idsi.md/files/file/referinte_utile_studenti/The%20Unified%20Modeling

%20Language%20Reference%20Manual.pdf. [Accessed 2024].

[32] Dataspecer, "Dataspecer specification manager," [Online]. Available:

https://tool.dataspecer.com/. [Accessed 2024].

[33] w3schools, "HTTP Status Messages," [Online]. Available:

https://www.w3schools.com/tags/ref_httpmessages.asp. [Accessed 2024].

[34] Swagger, "Bearer Authentication," [Online]. Available:

https://swagger.io/docs/specification/authentication/bearer-authentication/.

[Accessed 2024].

[35] Secret Double Octopus, "Stateless Authentication," [Online]. Available:

https://doubleoctopus.com/security-wiki/network-architecture/stateless-

authentication/. [Accessed 2024].

[36]

Dataspecer, "Dataspecer packages," [Online]. Available:

https://tool.dataspecer.com/manager/. [Accessed 2024].

[37] Š. Stenchlák et.al, "Dataspecer", GitHub. [Online] Available:

https://github.com/mff-uk/dataspecer/. [Accessed 2024].

89

List of Figures

Figure 1 – Research Workflow (Source: Author) .. 4

Figure 2 – Client-Server Communication (Source: Author) .. 6

Figure 3 – Sample OpenAPI Specification for Tourist Destinations Management API

(Source: Author)... 11

Figure 4 – Example of API Usage Patterns (Adapted from [23]) 15

Figure 5 – Transactional Conceptual Data Model (Entities and Relationships only)

(Source: Adapted from [28]) .. 22

Figure 6 – Sample Data structures based on the Conceptual Model of Figure 5 (Source:

Author) ... 22

Figure 7 – Dataspecer: Specification Manager (Source: Adapted from [32]) 24

Figure 8 – Dataspecer: Create Data Specification (Source: Adapted from [32]) 24

Figure 9 – Dataspecer: Data Structure Creation (Source: Adapted from [32]) 25

Figure 10 – Dataspecer: Vocabulary Sources Selection (Source: Adapted from [32])

 .. 25

Figure 11 – Dataspecer: Data Structure Editor (Source: Adapted from [32]) 25

Figure 12 – Dataspecer: Setting Root Element in Structure Editor (Source: Adapted

from [32]) ... 26

Figure 13 – Dataspecer: Adding fields to the Root Data Structure (Source: Adapted

from [32]) ... 26

Figure 14 – Dataspecer: Choosing the fields of the Root Data Structure (Source:

Adapted from [32]) .. 26

Figure 15 – Dataspecer: Tourist Destination, Resulting Data Structure (Source:

Adapted from [32]) .. 27

Figure 16 – Running Example: Attributes (Source: Adapted from [32]) 28

Figure 17 – Running Example: Associations (Source: Adapted from [32]) 28

Figure 18 – Resources in REST and Data Structures in Dataspecer (Source: Author)

 .. 32

Figure 19 – Flat Data Structure in Dataspecer (Source: Author) 36

Figure 20 – Complex Data Structure (Source: Author) ... 37

Figure 21 – Structure of User-Provided Input (Source: Author) 40

Figure 22 – Sample User Input: Tourist destination (Source: Author) 41

Figure 23 – DataStructure and Field Models (Source: Author) 42

90

Figure 24 – Example of DataStucture Object - Tourist destination (Source: Author)

 .. 43

Figure 25 – High-Level Flow Diagram: OAS Generation (Source: Author)............. 44

Figure 26 – Dataspecer Extension: Initial View (Source: Author) 45

Figure 27 – Dataspecer Extension: Select Data Structure and Start Defining Operations

(Source: Author)... 45

Figure 28 – Dataspecer Extension: Output (Source: Author) 46

Figure 29 – Dataspecer Extension: OperationCard Component (Source: Author) 46

Figure 30 – Retrieve Tourist Destinations: UI representation (Source: Author) 48

Figure 31 – Retrieve Tourist Destinations in OAS (Source: Author) 49

Figure 32 – Create Contact: UI Representation (Source: Author) 50

Figure 33 – Create Contact in OAS (Source: Author) ... 51

Figure 34 – Structure of Tourist Destination OAS (Source: Author) 53

Figure 35 – Mapping of Metadata between UI and OAS (Source: Author) 53

Figure 36 – GET Tourist destinations: Sample Operation (Source: Author)............. 55

Figure 37 – POST Tourist destination: Sample Operation (Source: Author) 56

Figure 38 – PUT Tourist destination: Sample Operation (Source: Author) 57

Figure 39 – DELETE Tourist destination: Sample Operation (Source: Author) 58

Figure 40 – POST contact: Sample Operation (Source: Author) 59

Figure 41 – Security Schema in OAS (Source: Author) .. 60

Figure 42 – Tourist Destination Schema in Dataspecer and in OAS (Source: Author)

 .. 61

Figure 43 – Association Schemas in Dataspecer and in OAS (Source: Author) 61

Figure 44 – High-Level Architecture: Integration with Dataspecer (Source: Author)

 .. 65

Figure 45 – API-Specification Generator: High-Level Flow Diagram (Source: Author)

 .. 66

Figure 46 – Fetcher: High-Level Flow Diagram (Source: Author) 67

Figure 47 – Fetcher: High-Level Flow Diagram – Processing Fields (Source: Author)

 .. 68

Figure 48 – Error message: combination of path and HTTP method has to be unique

(Source: Author)... 69

Figure 49 – Error Message: operation name must be unique (Source: Author) 69

91

Figure 50 – Flow Diagram: Creating Schemas in Components Construct (Source:

Author) ... 70

Figure 51 – Flow Diagram: Populating Schema Object (Source: Author) 71

Figure 52 – Flow Diagram: Schema Properties Construction (Source: Author) 72

Figure 53 – Flow Diagram: Creating Path and Operation(s) constructs (Source:

Author) ... 73

Figure 54 – Flow Diagram: Operation Sub-Construct Construction (Source: Author)

 .. 73

Figure 55 – OperationCard: Demonstration of HTTP Method Descriptions (Source:

Author) ... 77

Figure 56 – Sample Response: Single Instance (Source: Author) 78

Figure 57 – Sample Response: Collection (Source: Author) 78

Figure 58 – Example of a bad, unstructured Schema (Source: Author) 79

Figure 59 – Example of a good, structured schema (Source: Author) 79

Figure 60 – Query Parameter in OAS (Source: Author) .. 79

Figure 61 – Path Parameter in OAS (Source: Author) ... 80

Figure 62 – API Description (Source: Author) .. 80

Figure 63 – Operation (Request) Summary (Source: Author) 81

Figure 64 – Empty Schema Description (Source: Author) .. 81

Figure 65 – TouristDestinationsAPI in Swagger Editor (Source: Author) 83

Figure 66 – Data Structure: album (Source: Adapted from [32]) 83

Figure 67 – Data Structure: concert (Source: Adapted from [32]) 83

Figure 68 – MusicManagementAPI in Swagger Editor (Source: Author) 84

Figure 69 – Dataspecer Manager: List of Data Specifications (Source: Adapted from

[36]) ... 93

Figure 70 – Dataspecer Manager: Create new OpenAPI Specification (Source:

Adapted from [36]) .. 93

Figure 71 – Dataspecer Manager: Accessing Extension (Source: Adapted from [36])

 .. 94

Figure 72 – Necessary part of URL (Source: Author) ... 95

Figure 73 – Electronic Attachment Structure (Source: Author) 96

92

List of Tables

Table 1 – Characteristics of Good API (Source: [7]) .. 17

Table 2 – REST API: notable Best Practices (Source: [27]) 18

Table 3 – Characteristics of a good REST API (with respect to API specification)

(Source: [13], [27]) ... 20

Table 4 – Running Example: Tourist destinations - Field Details (Source: Author) . 29

Table 5 – Resources in REST and Data Structures in Dataspecer (Source: [15]) 31

Table 6 – Advantages and Disadvantages of User-Specified Details (Source: Author)

 .. 34

Table 7 –Advantages and Disadvantages of Automatic Generation (Source: Author)

 .. 34

Table 8 – OperationCard Sub-Components (Source: Author) 47

Table 9 – Supported Constructs of the Output OAS (Source: Adapted from [9]) 63

93

A Attachments

A.1 Accessing the Extension Application

The aim of this attachment is to provide information how to access the Dataspecer tool

extension on production environment. As mentioned, Dataspecer is in the process of

migration which means that the Dataspecer Manager will represent starting point for

various features of the tool. This extension is accessible via Dataspecer Manager as

well.

First the user needs to navigate to the manager via following URL:

https://tool.dataspecer.com/manager/. Having accessed this link, the user will be able

to view the data specifications created prior as illustrated by Figure 69.

Figure 69 – Dataspecer Manager: List of Data Specifications (Source: Adapted from

[36])

For the purpose of generating OAS the user needs to navigate to the desired data

specification and click the plus button. Once this button is clicked, the option OpenAPI

needs to be chosen as showcased by Figure 70.

Figure 70 – Dataspecer Manager: Create new OpenAPI Specification (Source:

Adapted from [36])

Once OpenAPI Specification is chosen, the user needs to provide name and description

and save changes. Once the initialization is complete, the user will see the newly

created package/model under desired data specification as illustrated below by Figure

https://tool.dataspecer.com/manager/

94

71. Once the user clicks “open” pointed by the green arrow, the user is redirected to

the extension application and can start designing their API.

Figure 71 – Dataspecer Manager: Accessing Extension (Source: Adapted from [36])

Sample Data Specification and Sample Data Specificaiton 2 were utilized in order to

generate electronically attached OpenAPI specifications –

MusicManagementOpenAPI.json and TouristDestinationOpenAPi.json.

A.2 Build Instructions

Following steps [9] need to be taken in order to build the application:

1. Firstly, whole mono repository [37] needs to be cloned via git clone …

2. Next, local environment needs to be set by firstly creating file .env.local in

following directory: dataspecer/applications/api-specification. In this file a

local environment variable called VITE_BACKEND has to be defined and its

value needs to be set to the backend URL: https://backend.dataspecer.com.

3. Running npm install in the root of the repository represents the next step which

is responsible for installing all necessary packages.

4. Next npm run build needs to be run in order to build the dependencies of this

package.

It is important to note that, in case building only this application (the extension) is

required, npm run build can be run from the current directory

(dataspecer/applications/api-specification). Running the live server is also possible

via npm run dev (from the current directory as well). However, in case the user wants

to run this application locally, he/she has to manually update the URL in the browser.

The part of URL can be copied from the production environment as illustrated by

Figure 72 below.

https://backend.dataspecer.com/

95

Figure 72 – Necessary part of URL (Source: Author)

In this case the user’s URL would resemble:

http://localhost:PORT_NUM /?package-iri=https%3A%2F%2Fofn.gov.cz%2Fdata-

specification%2F26bfd105-3d19-4664-ad8b-d6f84131d099&model-iri=0c2ed0d2-

7386-490e-a672-488ac7ebc322.

It is also important to note that, for the full experience on the local environment aside

from the current application, other components of Dataspecer need to be run. These

components are:

• Structure editor (directory: dataspecer/applications/client)

• Dataspecer Manager (directory: dataspecer/applications/manager)

• Backend (directory: dataspecer/services/backend)

A.3 Electronic Attachments

This electronic attachment contains the source code and OpenAPI specifications

generated via this extension and is included as an archive. Figure 73 below illustrates

the structure of the archive (only notable files are demonstrated).

96

Figure 73 – Electronic Attachment Structure (Source: Author)

