
MASTER THESIS

Bc. Dominik Dinh

Implementation of VCM in a
fluorescence-capable path tracing

framework

Department of Software and Computer Science Education

Supervisor of the master thesis: Dr. Alexander Wilkie
Study programme: Computer science

Study branch: Visual Computing and Game
Development

Prague 2024

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to thank my supervisor Dr. Alexander Wilkie for his endless patience
and insight.

ii

Title: Implementation of VCM in a fluorescence-capable path tracing framework

Author: Bc. Dominik Dinh

Department of Software and Computer Science Education: Department of Soft-
ware and Computer Science Education

Supervisor: Dr. Alexander Wilkie, Department of Software and Computer Sci-
ence Education

Abstract: This thesis presents a novel implementation of Vertex Connection and
Merging (VCM) in a spectral framework with Hero Wavelength Spectral Sam-
pling (HWSS) support. To the best of our knowledge, this is the first work to
successfully achieve this integration. The primary objective was to enhance the
efficiency and accuracy of light transport simulations in complex spectral scenar-
ios. Additionally, the system incorporates fluorescence simulation capabilities,
although the current implementation captures only a subset of fluorescent ef-
fects. Our implementation adds support for fluorescent effects to a light tracer
and progressive photon mapper.

Keywords: spectral path tracing vcm vertex connection and merging spectral

iii

Contents

Introduction 3

1 Overview 4
1.1 Prerequisites to VCM . 4

1.1.1 Path-space integration . 4
1.1.2 Light tracing . 6
1.1.3 Bidirectional path tracing 6
1.1.4 Photon-mapping . 8

1.2 Spectral rendering . 9
1.2.1 Fluorescence . 10

Fluorescent BBRRDF . 11
Fluorescence in rendering 11

2 VCM 13
2.1 Expressing PM in path-integral framework 13
2.2 Combined framework . 15
2.3 Optimizations and path reuse . 16
2.4 Pseudocode . 17

3 Implementing VCM in ART 19
3.1 Preliminary research . 19
3.2 Brief overview of ART . 19
3.3 Camera implementation . 21
3.4 Range structure - uniform grid . 22
3.5 Image sampler and path-space integrator 23
3.6 Stochastic image sampler . 24
3.7 Backwards sampler . 24

3.7.1 Base architecture . 25
3.7.2 Tiling . 27

3.8 The VCM path-space integrator 29
3.8.1 Tracing the light paths . 29

Extending the light sources 29
A path vertex . 30
Light tracing logic . 31

3.8.2 Connections and collections 33
Direction sampling . 33
NEE . 34
Connections . 34
Merging . 35
Handling wavelength mismatch 35

3.8.3 Making fluorescence work 36
Fluorescent light tracing 37
Fluorescent photon mapping 37

4 Results 39

1

5 Conclusion 54

Bibliography 55

List of Figures 56

A Attachments 58
A.1 ART source code . 58

2

Introduction
When enough light hits the human eye, it creates a perception of the world around
us. This perception, or image, allows us to navigate the world and appreciate
how colorful it can be. Recent advancements in technology have made it possible
to capture a fraction of what we can see, save it, and share it with others. But
what if we wanted to create an imaginary, virtual world where imagination is
the limit? The answer is computer graphics, namely realistic image synthesis or
rendering for short.

The main goal of rendering is to synthesize an image from a description of
a virtual world and make it visually indistinguishable from photography. Al-
though recent advancements have made real-time graphics capable of producing
breathtaking results, they still cut corners. They cannot reproduce the plethora
of interactions that an offline Monte-Carlo renderer can.

To this day, most photorealistic renderers are unidirectional path tracers.
Undeniable advantages of a unidirectional path tracer are speed and relatively low
complexity. Thanks to that, one can partially rethink math to implement more
complex interactions, such as fluorescence. However, it can struggle with certain
scenes and light paths. For example, a scene with a light source hidden behind
a piece of scene geometry can invalidate most attempts at NEE. Also, modeling
caustics or SDS paths can pose a significant challenge since the probability of
finding a light source from a pure specular reflection is very low.

Over the years, many successful and viable alternatives have been proposed.
In his famous thesis [Vea97] Dr. Eric Veach proposed a Bidirectional path

tracing algorithm that attempts to sample light transport path samples more
efficiently. The algorithm’s basic premise is to sample light paths from the camera
and light sources. MIS is then utilized to connect eye paths to light paths.

Another viable alternative, albeit biased, is photon mapping. The algorithm
works in two passes. In the first pass, photons are traced from the light source,
creating a ’photon map.’ In the second pass, camera rays are traced through the
scene, approximating overall light energy at each point by accumulating photons
in a certain radius. This merging in a radius is what causes a slight bias and blur.

Georgiev et al. [GKDS12] combined these two algorithms into a single method,
Vertex Connection and Merging. While many implementations exists, such as
[Sma], to our knowledge, there is no implementation of VCM in a spectral
fluorescence-capable renderer.

Consequently, it is the goal of this thesis.

3

1. Overview
In this chapter, we will cover the essential math and techniques that are pre-
requisites to this thesis. We’ve divided this chapter into multiple sections, each
introducing a distinct building block this thesis stands on.

First, we will derive Vertex Connection and Merging and define the math
needed to derive it. Main focus will be on the path integral formulation 1.1.1.
Prerequisite algorithms will be mentioned to keep things complete and consistent.

Secondly, we will cover spectral rendering and hero wavelength spectral sam-
pling.

Lastly, fluorescence will be touched upon.

1.1 Prerequisites to VCM
This section focuses on the prerequisites for deriving Vertex Connection and
Merging.

First, we will review path-integral formulation, light tracing, and bidirectional
path tracing. These were presented first in the infamous thesis by [Veach], who
first proposed the idea of bidirectional path sampling.

Secondly, photon mapping will be revisited and explained.
Lastly, we will discuss the advantages and disadvantages of both techniques

and compare them side by side to see why combining the two techniques might
be beneficial.

1.1.1 Path-space integration
In 1986, [Kajiya] introduced the rendering equation

L(x, ωout) = Le(x, ωout) +
∫︂

Ω
fr(x, ωin, ωout)Li(x, ωin)cos(Θ)dωin

which states that radiance arriving at the camera from a point x coming in the
direction ωout is equal to the point’s emitted radiance Le(x, ωout) plus the integral
of incoming radiance Li(x, ωin) at point x over the hemisphere 1.1.

The function fr stands for the bidirectional scattering distribution function or
BSDF for short. It defines how the surface at point x scatters light. For example,
figure 1.1 shows a BRDF for a specular surface (in red). Specular surfaces scatter
light primarily in the direction of the lobe.

We define
Li(x, ωin) = Lo(y,−ωin)

After a short examination, we can see that the rendering equation is inherently
recursive. To get the outgoing radiance at a point x, we first need to calculate
the incoming radiance, which is the same as calculating Lo(y, ωout).

4

Figure 1.1: Incoming direction over the hemisphere. Image taken from teaching
materials by CGG group MMF UK

Eric Veach, in his thesis [Vea97] showed that we can approach the problem
from a different perspective and reformulate the problem as an integration prob-
lem

Ij =
∫︂

Ω
fj(x)dµ(x) (1.1)

We then define a path of length k as

x = x0x1...xk

The integration domain is a union of sets of paths with the length 1...∞

Ω =
∞⋃︂

k=1
Ωk

The term µ is an area measure of a path.

dµ(x) = dA(x0)...dA(xk)
While the original formulation of the measurement equation uses solid angle

and projected solid angle measures, the new formulation uses an area measure.
We can easily convert between the two using

dσ⊥x′ (ωi) = G(x↔ x
′)dA(x)

where

G(x↔ x
′) = V (x↔ x

′) |cos(θi) · cos(θ′
o)|

∥ x− x′ ∥2

V is a visibility term which equals 1 if point x is visible from point x′, otherwise
it is equal to zero. Finally, the last term that we have yet to define is the
measurement equation of a path.

fj(x) = Le(x0 → x1)G(x0 ↔ x1)We(xk−1 → xk)

·
k−1∏︂

i

fs(xi−1 → xi → xi+1)G(xi → xi+1)

5

Figure 1.2: Measurement contribution function for a path of length 4. Taken
from a thesis by Eric Veach. Image taken from teaching materials by CGG group
MMF UK

The last term We, or importance, will be defined in the later part of the thesis
1.1.2.

Formulating the problem this way has several advantages. Namely, it allows
for the usage of well-known integration techniques. Also, it simplifies the mea-
surement into a single expression and removes the recursion.

1.1.2 Light tracing
A standard unidirectional path tracer works by tracing a ray from the camera.
This is usually much more effective than tracing rays from light sources, which
is how nature does it. Purely because the probability of hitting a camera pixel
is very low, and the amount of rays needed is disproportionally higher than in a
standard path tracer.

However, certain scenarios, such as caustics or occluded light sources, might
require a light tracer to produce better results.

Recall from section 1.1.1 that the measurement equation contains a term We,
or emitted importance. Intuitively, it describes how important a contribution is
to the camera sensor. Similar to radiance, importance can be transported and
traced through the scene 1.4. Light tracing can be thought of as solving the
measurement equation for importance and path tracing for radiance.

W (x, ωout) = We(x, ωout) +
∫︂

Ω
fr(x, ωin, ωout)Wi(x, ωin)cos(Θ)dωin

A light tracer is usually not used alone; instead, it is the basis for bidirectional
methods, such as bidirectional path tracing and photon mapping, both of which
will be introduced in the following sections. Differences and shortcomings of LT
compared to PT is shown in figure 1.3

1.1.3 Bidirectional path tracing
First introduced by [Vea97], bidirectional path tracing aims to combine the best
aspects of both standard path tracing and light tracing. The original paper

6

Figure 1.3: Comparison between a path tracer with NEE (left) and a light tracer
(right). This image shows the relative strengths and weaknesses of respective
algorithms. Light tracer, for example, converges faster at the bright light spots.
However, light sources, and especially for a pinhole camera, specular (in this case,
glass) objects will be black. Image taken from teaching materials by CGG group
MMF UK

Figure 1.4: The duality of radiance and importance. Image taken from teaching
materials by CGG group MMF UK

7

Figure 1.5: Diagram showing the different connections we can make between a
camera path and a light path. Image taken from teaching materials by CGG
group MMF UK

states that the method is a family of ’importance sampling techniques’ to solve
the measurement integral 1.1.

An individual sampling technique is a variation of vertex connections between
two independently sampled paths—one from the camera and the other from a
light source. Let us denote the number of vertices on the camera path as s and t
when on the light path. The total number of vertices in a path is k = s + t− 1.
The total number of variations we can generate this way is k + 2. An illustration
is given in figure 1.5.

Each path sampling technique has a density function (i.e. probability) ps,t.
This is important for an accurate combination using multiple-importance sam-
pling. To compute the MIS weights, for every measurement Ij we define

F =
∑︂
s≥0

∑︂
t≥0

ws,t(xs,t)
fj(xs,t)
ps,t(xs,t)

(1.2)

where ws,t represents a combination strategy, ie. balance heuristic.

1.1.4 Photon-mapping
Proposed in 1996 in an EGSR paper by Jensen [Jen96], photon mapping is an
effective, albeit biased, bidirectional method. Compared to other methods, PM
excels at sampling SDS paths (1.6).

PM works in two passes.
In the first pass, photons are traced through the scene, similar to a light tracer.

However, at each hitpoint, its path vertex is stored in a photon map. Photon
maps are most often implemented as a range structure, such as kD-trees or hash
grids, which allow for quick look-ups.

The second pass collects the stored photons. An eye ray is traced, and at each
hitpoint, the range structure is queried to gather all photons in a set radius r to
determine the overall radiant energy.

8

Figure 1.6: Photon mapping density estimation. Tracing methods struggle with
connecting SDS paths. Photon mapping does density estimation, which is much
more effective, albeit biased.Image taken from teaching materials by CGG group
MMF UK

A formula expressing the collection of radiant energy

L(x, ωout) ≈
∑︂

j

Kr(∥ x− xj ∥)fr(ωj, x, ω)Φ (1.3)

Where Kr is 2D kernel with radius r. The sum iterates over all photons found
in range r.

One attempt to mitigate some of the disadvantages of base photon mapping
and to make it consistent is progressive photon mapping [HOJ08]. At each iter-
ation, the merging radius is decreased so that total bias and variance approach
zero in infinity.

1.2 Spectral rendering
Most renderers used today are RGB-based. That means they use a simple RGB
triplet (equation 1.4) to propagate light information throughout the scene. While
simple and computationally efficient, this approach often fails to accurately cap-
ture the complex nature of light and color. One example where this approach
might fall short is wavelength-dependent effects such as dispersion or fluorescence.

⎛⎜⎝LR

LG

LB

⎞⎟⎠ (x, ωout) =

⎛⎜⎝Le,R

Le,G

Le,B

⎞⎟⎠ (x, ωout)+

∫︂
Ω

⎛⎜⎝fR

fG

fB

⎞⎟⎠ (x, ωin, ωout)

⎛⎜⎝Lin,R

Lin,G

Lin,B

⎞⎟⎠ (x, ωin) cos θdωin

(1.4)

On the other hand, spectral rendering techniques aim to model the full spec-
trum of light rather than just the three primary colors. This approach has the
potential to provide a more accurate representation of color and lighting but at

9

the cost of increased computational complexity. One disadvantage of spectral
rendering is the larger data requirements to store and process the full spectrum
information.

Adding a spectral element to the standard rendering equation is straightfor-
ward:

L(x, ωout, λ) = Le(x, ωout, λ) +
∫︂

Ω
f(x, ωi, ωo, λ)Lin(x, ωi, λ)cosθdωin

To get images in standard sRGB, we can utilize the standard CIE XYZ color
space. XYZ corresponds to individual color-matching functions defined as follows
(1.5)

X =
∫︂

λ
L(λ)x(λ)dλ

Y =
∫︂

λ
L(λ)y(λ)dλ

Z =
∫︂

λ
L(λ)z(λ)dλ

(1.5)

Figure 1.7: Individual color matching functions plotted onto a graph. Image
taken from teaching materials by CGG group MMF UK

After acquiring the values for the individual components (X, Y, Z) we can
convert them into RGB using a well-defined formula, which will be omitted for
brevity.

1.2.1 Fluorescence
Fluorescence refers to a light-matter interaction in which the material absorbs
a photon of wavelength λi and re-emits a photon with a, usually longer, wave-
length λo. Although similar to phosphorescence, fluorescence happens ’instantly,’
while there is a certain delta time between absorption and emission in the case of
phosphorescence. This difference can be easily observed in the real world: phos-
phorescent materials will continue to glow for ∆t, while fluorescent material will
quickly return to its default state.

One example where fluorescent phenomena are common is marine life. Many
types of corals exhibit fluorescence, especially in very deep waters. A better, more
useful example might be a fluorescent jellyfish, which contains a special protein

10

called GFP (1.8). This protein can be used, for example, as a reporter protein to
measure pollution.

Figure 1.8: Fluorescent jellyfish. Courtesy of Pexels, Ryotaro

Fluorescent BBRRDF

We model fluorescent surfaces with the bispectral bidirectional reflection and rera-
diation distribution function, or BBRRDF for short.

f(ωin, λin, x, λout, ωout) = d2Lout(x, ωout, λout)
Lin(x, ωin, λin) cos θindσ(ωin)dλin

(1.6)

BBRRDFs can be fully data-driven by measuring material properties in real
life, analytical, or hybrid. Data to model fluorescent behavior is usually saved in
a reradiation matrix.

Reradiation matrix is an asymmetric matrix in which rows correspond to exis-
tent wavelengths and columns correspond to incoming wavelengths. Each element
mi,j defines the probability of wavelength shift from λin to λout. Intuitively, the
diagonal refers to non-fluorescent probabilities. To preserve energy conservation,
the sum of elements in each column needs to be less than or equal to 1. Illustration
can be seen in figure 1.9.

Fluorescence in rendering

Handling fluorescence is not too difficult in a standard uni-directional path tracer.
As a path is traced through a scene, we can either hit a fluorescent or a non-

fluorescent surface. When we hit a non-fluorescent surface, we continue as usual
with the wavelength λ0 sampled at the camera. However, when we arrive at a
fluorescent vertex, a new wavelength λ11 is sampled from the BBRRDF’s emission
spectrum. Path tracing then continues with this new wavelength.

An additional component is added to the overall path PDF to account for
fluorescence. We express the extended path PDF as follows

pA(x0, λ0, ..., λk, xk) =
k∏︂

i=0
pA(xi) ·

k∏︂
i=1

pΛ(λi) (1.7)

where

11

Figure 1.9: Reradiation matrix; the diagonal shows probabilities of a non-
fluorescent interaction. The part ’above’ the diagonal represent the wavelength
shift probability, or, the ’fluorescent’ interaction. Taken from [JHD20]

pΛ(λi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
pcamera(λ0) if i = 1

pfluo(λi|λi−1) · pabs(λi|λi−1) if xi is fluorescent and λi ̸= λi−1
pnonfluo(λi|λi−1) if xi is fluorescent and λi = λi−1

1 if xi not fluorescent

(1.8)

Recently, new methods to handle fluorescence have been introduced. Notably,
[MFW18] managed to combine and implement fluorescence in an HWSS renderer
by making individual wavelengths shift freely.

Bidirectional methods got some attention as well. For example, [JHD20] treats
fluorescence as a singularity in the spectral domain - similar to how mirrors are
singularities in the geometrical domain. It then employs mollification to handle
the singularities and allow for path connections between fluorescent and non-
fluorescent vertices.

12

2. VCM
Framework proposed by Georgiev et al. [GKDS12], [Geo12] aims to efficiently
combine bidirectional path tracing and progressive photon mapping to alleviate
the respective technique weakness. The method builds upon the path-integral
framework and multiple-importance sampling to express a new common mathe-
matical framework to efficiently combine the two techniques.

Vertex Connection and Merging has been widely used in production, namely,
the Pixar’s RenderMan, V-Ray or Corona. Being employed by such well-known
and respected renderers provides proof of how solid the VCM framework is.

2.1 Expressing PM in path-integral framework
The Intuitive approach is to take a photon x∗s and express its tracing history and
collection history as an extended path. Let us define a tracing history of a photon
x∗s as x0x1...x

∗
s, where x0 is sampled on the light source and shot in the direction

of a photon x1. We then set a collection history, or PM radiance estimate, as
xsxs+1...xk. A full extended path consists of both sub-paths connected together:
x∗ = (x0x1...x

∗
s, xsxs+1...xk)

While formulating the problem this way enables the use of MIS to weigh
the individual contributions of PM, it cannot be directly used in conjunction
with BPT. The reason for that is that the extended path has an extra vertex,
x∗s. That means the pdfs of BPT are naturally expressed in relation to a different
area measure. Since MIS expects all PDFs to be expressed in relation to the same
measure, we need to make a slight adjustment to the extended-path definition.

Figure 2.2: A figure showing the difference between an extended path and a
regular path. [Geo12]

Instead, we will consider conditionally accepted regular paths, where we omit
the photon x∗s. The term conditionally accepted comes from the fact that a regular
path is accepted if and only if the omitted photon x∗s falls within the radiance
estimate radius around xs (figure 2.2). The probability of accepting a said path
is then defined as

Pacc(x) = Pr(∥ xs − x∗s < r) ≈ πr2p(xs−1 → x∗s) (2.1)

13

Figure 2.1: Comparison image taken from the VCM supplemental document,
which shows the differences between PPM, BPT, and VCM. The image clearly
shows how BPT struggles with caustics and how using VCM leads to a more
consistent result. Refer to figure 2.4 to see the individual contributions of the
respective algorithms.

14

Figure 2.3: Figure showing the entire process of vertex connection and merging.
Up to the vertex connection part, the illustration is equivalent to the one used in
[Vea97].

and the pdf of a full regular path is

pV M(x) = Pacc(x)pV C(x) (2.2)
Term pV C corresponds to the BPT technique, which (could have) sampled

the path by connecting the two vertices. We now have a new path sampling
framework called ”Vertex Merging”.

2.2 Combined framework
The whole idea behind deriving the new path sampling technique, vertex merging,
was so that we can combine vertex merging and vertex connection (or BPT) and
apply MIS to weigh the contributions. Vertex merging adds k-1 new techniques
to the existing k+2 techniques provided by vertex connection.

With this definition in place, we can now derive the combined estimator,
vertex connection and merging.

IV CM = CV C + CV M =
1

nV C

nV C∑︂
l=1

∑︂
s≥0,t≥0

wV C,s,t(xl)IV C(xl)+

1
nV M

nV M∑︂
l=1

∑︂
s≥2,t≥2

wV M,s,t(xl)IV M(xl)

(2.3)

It is the original BPT estimator as first introduced in extended to also handle
vertex merging. For each pixel, we trace an eye path which is to be connected to
nV C light paths and merged with at most nV M light paths.

15

2.3 Optimizations and path reuse
The naive approach to evaluating the path weights involves independent com-
putation of all path PDFs in the denominator, which can be computationally
inefficient.

[Vea97] proposed an improved scheme for BPT by exploiting the fact that
many terms are canceled out in path PDF calculations. This method loops once
over the light and eye sub-path vertices. While this approach can be easily
extended to VCM, the efficiency is still sub-optimal as many redundant compu-
tations exist.

In a standard approach, every subpath vertex stores its throughput—the accu-
mulated contributions from all preceding subpath vertices. This allows for quick
evaluation of the unweighted contribution when connecting two vertices.

The proposed solution by [GKDS12] aims to do the same for path weight
evaluation. They first reformulated the sums in the weight formula as recur-
sive quantities that can be incrementally computed and cached at the sub-path
vertices during random walks. For brevity, we will include the derived formulas
only.

We can reformulate the balance heuristic weight as

wv,r,t = 1
nVC
nv

k+1∑︁
j=0

pVC,j
pv,s

+ nVM
nv

k∑︁
j=2

pVM,j
pv,s

(2.4)

where pv,j is the pdf for sampling a full path (of length k) using a light sub-
path with j vertices and v ∈ {V C, V M}

We can further simplify the weight calculation to

wv,s,t = 1
wlight

v,s + 1 + weye
v,s

(2.5)

where

wlight
VC,s = wVC

VC,s−1(y) + ηVMwVM
VC,s−1(y)

wVC,0 =
←−p 0
−→p 0

wVC,i =←−p i

(︄
ηVCM + 1

−→p i

+ 1
−→p i

wVC,i−1

)︄ (2.6)

for vertex connection. For vertex merging, the process is equivalent

wVM,1 = 1
−→p 1

(︄
1

ηVCM
+←−p 0

1
ηVCM

−→p 0

)︄

wVM,i = 1
−→p i

(︄
1

ηV CM

+←−p i−1 +←−p i−1wV M,i−1

)︄ (2.7)

There is still a problem with the reverse probabilities ←−p i(y), which are not
yet known at the time of sampling a vertex i. To mitigate this, computations of
individual MIS weights are split into three distinct quantities, dV CM

i , dV C
i , dV M

i ,
which are accumulated during a random walk. This way, the computation of the
reverse probabilities at←−p i(y) can be postponed until its values can be computed.

16

Figure 2.4: Image showing the relative contributions of vertex connection (BPT)
and vertex merging (PPM). As expected, vertex merging contributes more in case
of SDS paths. Image by [GKDS12]

wV C,i =←−p i

⎛⎜⎜⎜⎜⎜⎝ηV CM + + 1
−→p i⏞ ⏟⏟ ⏞

dV CM
i

+ 1
−→p i

wV C,i−1⏞ ⏟⏟ ⏞
←−p σ,i−1dV C

i

⎞⎟⎟⎟⎟⎟⎠
wV M,i = 1

−→p i⏞⏟⏟⏞
dV CM

i

1
ηV CM

+←−p σ,i−1

←−g i−1
−→p i

(1 + wV M,i−1)⏞ ⏟⏟ ⏞
dV M

i

(2.8)

Great thing about the VCM framework is that it natively allows us to use
light tracing, bi-directional path tracing or progressive photon mapping on their
own by ignoring some of the quantities.

2.4 Pseudocode
Now that we have defined the base analytical derivation of the VCM framework,
all that’s left is to provide an overview of the actual implementation. This section
will briefly review the VCM process and provide a short pseudocode (2.4) for quick
reference. We had to rethink the process during our implementation, but we will
assess that in the following chapters.

17

The reference VCM implementation separates the rendering process into two
distinct parts, not unlike other techniques like PM.

A light tracing with ‘NEE‘ takes place in the first part. At every vertex
xi, i ≥ 1; we first check if it’s a specular / mirror surface; in case it is not, we
store the vertex in a range structure to allow for vertex merging, mark it eligible
for connection and do NEE. Like NEE in a standard path tracer, we connect
the vertex to a pixel on the camera, calculate the MIS weights, and write the
contributions in a frame buffer.

During the second part, vertex connections and vertex merging happen. For
each eye sub-path pe,i we trace, we connect each non-specular vertex to vertices on
a light sub-path pl,i. After the connection, we query a range structure to gather
all neighboring vertices (photons) in a radius r and perform vertex merging.

1 function RENDER(r)
2 # Stage 1: Light path sampling
3 lightPaths = TRACELIGHTPATHS(pixelCount)
4 CONNECTTOEYE(lightVertices)
5 BUILDRANGESEARCHSTRUCT(lightVertices)
6

7 # Stage 2: Eye path sampling and pixel estimator
construction

8 for i = 1 to pixelCount do
9 eyeVertex = TRACERAY(SAMPLEPIXEL(i))

10 while eyeVertex is valid do
11 # Unidirectional sampling (US)
12 if eyeVertex is emissive then
13 ACCUM(eyeVertex, US, r, i)
14 end if
15

16 # Vertex connection (VC)
17 for lightVertex in lightPaths[i] ∪

SAMPLELIGHTPOINT() do
18 ACCUM(CONNECT(eyeVertex, lightVertex), VC, r,

i)
19 end for
20

21 # Vertex merging (VM)
22 for lightVertex in RANGESEARCH(eyeVertex, r) do
23 ACCUM(MERGE(eyeVertex, lightVertex), VM, r, i)
24 end for
25

26 eyeVertex = CONTINUERANDOMWALK(eyeVertex)
27 end while
28 end for
29 end function
30

31 # Accumulates the pixel measurement estimate due to a given
path

32 function ACCUM(path, technique, r, i)
33 contrib = MEASUREMENTCONTRIBUTION(path, technique, r)
34 pdf = PDF(path, technique, r)
35 weight = POWERHEURISTIC(path, technique, pdf)
36 image[i] += weight * contrib / pdf
37 end function

18

3. Implementing VCM in ART
This chapter will describe how we implemented VCM in a spectral renderer with
HWSS (hero wavelength super sampling) support. Extending ART to fit the
VCM framework was not trivial. However, fitting the VCM framework in such
a complex renderer system proved to be the bigger challenge. Consequently, to
our knowledge, this work is the first to make VCM fully compatible with spectra
and HWSS. This chapter is divided into multiple sections, each covering a step
of the implementation process,

3.1 Preliminary research
Given the complexity of ART, a significant initial phase of this thesis involved
an in-depth exploration and hands-on experimentation with the codebase. This
preparatory stage was crucial for comprehensively understanding the system’s
architecture and functionality.

An intermediary step was undertaken to build a solid foundation and ensure an
understanding of the underlying concepts. This involved speed-running a whole
university course on global illumination. The goal was to develop a simplified
renderer and implement both path tracing and light tracing algorithms with next-
event estimation (NEE). Successfully implementing the renderer provided hands-
on experience and served as a stepping stone before diving into a complex system
- like ART.

Luckily, VCM is very well documented. In addition to the main paper that
was published, a technical report and a reference implementation (SmallVCM)
exist, which immensely helped with the development and testing. Furthermore,
we have used images generated by SmallVCM to check that we are correctly
weighing the contributions of the respective methods, i.e., if the contribution of
VM and VC align with the reference.

3.2 Brief overview of ART
ART, or Advanced Rendering Toolkit, is a physically based research renderer
which first came about at TU Wien in 1996. It is currently maintained and
developed mainly by people at Charles University. Although not used in produc-
tion, ART offers many unique features that are absent in most (or all) systems
used today.

Core structures and types are written in ANSI-C. Rest is written in Objective-
C.This makes it slightly more complicated to develop, compared to C++ for
example, since in recent years Objective-C is predominantly used in the Apple
ecosystem. However, we have found that Arch-based distributions and the CLion
IDE from JetBrains make the development streamlined and native. As such,
this thesis was developed partly on MacOS (XCode) and Arch Linux
(CLion).

A more detailed structure illustration is provided in figure 3.1.

19

Figure 3.1: A class structure of ART.

It is one of the few renderers with full spectral and HWSS support. Even more
commendable is that it is still the only renderer to handle fluorescent materials
and polarising effects. All of these features make it a perfect choice not only for
researchers but also for production renderers.

As such, ART does not support RGB. Everything is expressed in relation to
spectral data. While this creates complexities in certain scenarios, it allows for
physical correctness and supports wavelength-dependent phenomena.

For example, path throughput in a standard RGB renderer is relatively trivial
- path pdf, material reflectance, and light intensity can be easily stored in a single
3D vector of doubles. In a complex system such as ART, this is not possible.

Refer to figure 3.2, which shows how ART encodes attenuation (i.e., re-
flectance). It is similar to a reradiation matrix in which the diagonal contains
non-fluorescent base reflectance values, and below the diagonal is crosstalk, which
describes the crosstalk found in fluorescent materials. In polarisation mode, in-
dividual reflectance values are replaced by a Muller matrix.

Attenuation is one of many rather complex structures that must be man-
aged. Another example might be an Intersection class, which stores the hitpoint,
directions, material handles, and so on.

Also, a note about HWSS. Since HWSS works by tracing a batch of n wave-
lengths, classes such as attenuation samples, PDFs, light samples, and so on
contain n distinct values for each of the wavelengths. While in a standard ren-
derer, PDF is a single value of type double, in ART, PDF is a n-dimensional
vector.

The consequence is that storing hundreds of thousands of vertices, which
need to store path attenuations, hitpoints, PDFs, and others, becomes almost
unmanageable. The later parts of the thesis will provide more details on how we
decided to overcome the problem.

Since ART is already a fully functional and advanced toolkit, we could take
advantage of existing functionality and extend it instead of writing everything
from scratch. Of course, some parts had to be adapted, but no massive rewriting
of the core foundation was needed.

20

Figure 3.2: The ArAttenuation struct

3.3 Camera implementation
There are many ways one can implement a camera model for a renderer. The
most used, and arguably most versatile, is the projection matrix. It also makes it
easy to determine which pixel is world point covering by projecting it back onto
the camera using an inverse matrix. This can be precomputed ahead of time and
does not pose any significant performance issues.

Since the default pinhole camera implementation in ART does not use this
approach, we had to slightly rethink the camera model and implement the ma-
trix workflow. However, there is another aspect that makes this worthwhile - this
will allow us to unify scene (and camera) descriptions between ART and Smal-
lVCM. This aids in implementation, but mainly in testing, as it sets a common
base. We can then easily compare rendered images, assess the correctness of the
implementation, and possibly find irregularities.

The VCM framework, similarly to BPT, requires a camera PDF to be used
in MIS. In VCM, we calculate the surface factor and the camera PDF as follows

cos θ = cf · −dcam

img dist = cplane distance ÷ cos θ

img dist solid angle = img dist2 ÷ cos θ

surface factor = img dist solid angle · | cos ϕ| ÷ distance2

(3.1)

And we set the
PDFcam = surface factor (3.2)

Where cf is the camera forward vector, dcam is the direction to the camera
and ϕ is the angle between the surface normal and dcam.

21

3.4 Range structure - uniform grid
Due to their lookup speed, photon maps are usually implemented as a range
structure. Many existing range structures exist, from kD-trees to hash grids.

The original VCM implementation used a hash grid, in which points are as-
signed a hash, which is then used for lookup.

However, after some experimentation with hash grids, we have opted for uni-
form grids to save time and simplify matters. Uniform grids divide the space
into n3 cells. Implementation-wise, it is a 3D static array of integers. We are
not storing individual vertices as it is a big waste of space, especially when we
already have storage for vertices (the dynamic array). The better solution is to
store indexes into that dynamic array for easy look-up.

Figure 3.3: A graphical representation of a uniform / regular grid. Taken from a
wikipedia page

A regular (uniform) grid is characterized by a parameter n for each dimension,
which determines the number of cells along that dimension. To construct the grid:

• Determine the extent of each dimension (e.g., x, y, and z) by calculating
the difference between the global maximum and minimum coordinates of
all vertices in that dimension.

• For each dimension i, the size of the dimension is: dimensionSizei =
maxCoordinatei −minCoordinatei

• The cell size for each dimension is then calculated as:
cellSizei = dimensionSizei/n

The cell size in either dimension gives us imaginary breakpoints in the coor-
dinate extent. To illustrate this fact, we can look at Figure 3.3, where each black
line represents a breakpoint, and the blue rectangles represent the ”inside” of a
cell.

22

It is trivial to get the index of a cell a vertex belongs to. For each dimension
i, we can get its index as

(posi −minCoordinatei) / cellSizei (3.3)
However, more than just one cell is required. If the vertex falls close to the

edge of a cell, neighboring cells might still contain vertices within the acceptance
radius. The simplest method to mitigate this is to assume a 3x3x3 neighborhood
around the cell.

3.5 Image sampler and path-space integrator
One of the central core classes used in the rendering process is the ArnImageSam-
pler, derived from ArnImageSamplerBase. This class handles some initial set-up
and framebuffer allocations but mainly spawns worker threads and assigns work
to each of them by assigning them an execution of the ’renderProc’ function. This
function is defined in the base class declaration and contains the core rendering
routine, varying by the definition of the concrete class.

It is also a place where normalization happens, i.e. averaging the result by the
number of generated pixel samples. In a default implementation, this is mostly
equal to the number of pixel samples one (artist, user) sets as a program argument.
However, for our implementation, this had to be slightly altered. Instead of the
per-pixel count, we normalize the result by the number of thread samples. The
thread sample is calculated simply as SPP / THREADCOUNT. The reason for
that is the fact that the per-pixel count is distributed non-uniformly in a light
tracer.

Equally as important are the descendant classes of ArnPathspaceIntegrator.
As the name suggests, their job is to find a solution to the path integral 1.1. To
achieve this, they perform various tasks, such as

• Random walks: They perform random walks, construct new paths by in-
teracting with surfaces, accumulating path pds, throughput and so on

• Path evaluation: Contribution to the final image of each path is evaluated

• Sampling strategies: Such as next-even estimation, importance sampling
BSDF

To summarize this, path-space integrators contain the all the logic, that a
standard path tracer uses to compute the contributions.

In the current state of ART, there is one main path-space integrator—a path
tracer. This thesis aims to add support for four more integrators: a light tracer,
a bidirectional path tracer, photon mapping, and VCM.

These two families of classes are closely intertwined. While path-space in-
tegrators handle the core rendering logic (they are workers), image samplers
handle work distribution, scheduling, state, and overall management (they are
managers).

23

3.6 Stochastic image sampler
A sub-class of the base ArnImageSampler, ArnStochasticImageSampler is an ex-
isting class that manages the default path tracer.

Each spawned render thread iterates over the pixels in a defined order. In the
case of the StochasticImageSampler, a thread performs iterations in scanlines. A
scanline in this context is a row. For each pixel, it first generates a new hero
wavelength batch and a ray going through that pixel. It sends both items to an
integrator along with a framebuffer to perform computations. After getting a
result back from the integrator, the sampler checks the validity of contributions
and, if valid, splats them onto an image buffer using a splatting kernel - if defined.

After all the measurements are gathered for all iterations, the render threads
get destroyed and the parent ImageSampler normalizes the result and writes it
to the final image. A pseudocode is provided in 3.6

1 function RENDER(r)
2 for y = 0 to height do
3 for x = 0 to width do
4

5 #framebuffer to store the current contribution
6 pixelBuffer = new FRAMEBUFFER
7 hWavelength = GENERATE_RANDOM_WAVELENGTHS()
8 ray = GENERATE_RAY_WORLDSPACE(x, y)
9

10 integrator->CALCULATE_CONTRIBUTION(ray, wavelength
,&pixelBuffer)

11

12 if pixelBuffer is valid then
13 if USE_SPLAT_KERNEL then
14 SPLAT_ONTO_IMAGE_KERNEL(pixelBuffer,

wavelength)
15 else
16 SPLAT_ONTO_IMAGE(pixelBuffer, wavelength)
17 end if
18 end if
19 end for
20 end for
21 end function

3.7 Backwards sampler
The StochasticImageSampler is unsuitable for VCM or other integrators, as it
does not allow for intermediate steps.

Therefore, a new image sampler supporting VCM and derived integrators (LT,
BPT, PPM) was needed. The new sampler bears the name ArnStochasticBack-
wardsSampler to emphasize that VCM (and the other integrators mentioned)
always starts by tracing paths from light sources.

The architecture behind the BackwardsSampler was iteratively changed multi-
ple times during the implementation. Overall, we can summarize the generations
into two distinct architectures, which will be explained and compared.

24

3.7.1 Base architecture
The first architecture is a straightforward and somewhat intuitive extension of
the StochasticSampler.

First, shared variables are initialized.
A struct containing the ηV CM weights is one of the most essential shared

variables. They are used to properly weigh the contributions, as discussed in an
earlier chapter, but can also be used to switch between VC, VM, or VCM.

A dynamic array to store all eligible light vertices is allocated. Light vertices
are created at each hitpoint and, if the surface is not specular, get stored in
the array for later use. This is needed to perform vertex connection and vertex
merging.

In VCM, each eye sub-path gets assigned exactly one light sub-path. A shared
array is used to achieve this. Each array element stores the index of the last vertex
of the ith light subpath. When eye sub-paths are traced, the light sub-path to be
used is simply queried by using the index of the current eye sub-path. A concrete
light vertex can be retrieved from the light vertex dynamic array.

A group of shared variables is only initialized when a specific integrator is
used. For example, a hash grid is only allocated and built when PPM or VCM is
used.

Pseudocode is again provided at 3.7.1 to illustrate the workings of this sam-
pler. First, light tracing occurs, which results in an array of light vertices. We
iterate over each of the vertices and check if it has any contribution (2.4) - i.e.
if we should splat it onto the image. In the second stage, we again go over the
image pixels in scan lines and compute contributions for each pixel.

This approach’s main advantage is that it is relatively trivial to implement.
For simpler RGB renderers, this might be the preferred solution (the SmallVCM
renderer has a similar implementation). Each thread performs the whole render-
ing job, and their results are normalized.

However, this solution is far from ideal for more complex spectral renderers
like ART. The memory overhead of this approach is staggering. To put it into
perspective, running a render process to generate an image with a resolution of
512x512 with just 11 threads on a machine with 32 cores took up 32GB of RAM.
The main reason is how much memory the array of vertices takes up. We will
provide more information on this in the section explaining the main VCM logic.

25

1 function SAMPLE(iter)
2 ligthVertices = DYNARRAY_ALLOC()
3 hashgrid = HASHGRID_ALLOC()
4 vcm_weights = GET_VCM_WEIGHTS_FOR_ITER(iter)
5

6 for i = 0 to LIGHT_SUB_PATH_COUNT do
7 hWavelength = GENERATE_RANDOM_WAVELENGTHS()
8 ray = GENERATE_RAY_WORLDSPACE(x, y)
9

10 integrator->CALCULATE_CONTRIBUTION(ray,
wavelength, lightVertices)

11 end for
12

13 for i = 0 do
14 if lightVertex->pixelBuffer is valid then
15 if USE_SPLAT_KERNEL then
16 SPLAT_ONTO_IMAGE_KERNEL(pixelBuffer,

lightVertex->arrivingWavelength)
17 else
18 SPLAT_ONTO_IMAGE(pixelBuffer,

wavelength)
19 end if
20 end if
21 end for
22

23 if USE_VCM or USE_PPM then
24 hashgrid->SET_UP(lightVertices)
25 end if
26

27 for y = 0 to height do
28 for x = 0 to width do
29 #framebuffer to store the current contribution
30 pixelBuffer = new FRAMEBUFFER
31 hWavelength = GENERATE_RANDOM_WAVELENGTHS()
32 ray = GENERATE_RAY_WORLDSPACE(x, y)
33

34 integrator->CALCULATE_CONTRIBUTION(ray,
wavelength, &pixelBuffer, hashGrid)

35

36 if pixelBuffer is valid then
37 if USE_SPLAT_KERNEL then
38 SPLAT_ONTO_IMAGE_KERNEL(pixelBuffer,

wavelength)
39 else
40 SPLAT_ONTO_IMAGE(pixelBuffer,

wavelength)
41 end if
42 end if
43 end for
44 end for
45 end function

26

3.7.2 Tiling
To mitigate the shortcomings of the first architecture, we had to devise a new
strategy to fully utilize the system’s resources—that is, to take advantage of all
the CPU cores and significantly reduce memory overhead. To simplify matters,
in this section, we will assume a computer with a 32-core (32-thread) CPU and
that we fully utilize the CPU.

This proved to be non-trivial, as it requires balancing BPT and PPM simul-
taneously. Without PPM, we can easily generate one full light subpath, trace a
ray from the camera, and connect the two subpaths.

However, if we assume the full VCM, this is not possible. Vertex connections
and merging are calculated during the same camera subpath walk; vertex merging
requires an already-built hash grid.

The first iteration of this method fully respected the above restriction and
tried to cut a few corners to optimize resource usage. Instead of generating a
complete set of light paths for each render thread, we’ve split the work; each
render thread now generates only a subset of the full set. These subsets are then
merged into one, which is then used in the second stage of the VCM algorithm
- as previously explained. This translates to generating one set of light paths
instead of 32 sets.

While this fixed the memory overhead, it introduced a set of new problems.
Variance has increased significantly. For example, recall that instead of having
32 unique sets to perform VCM on, we only have one set shared across the 32
render threads to perform VCM. Furthermore, the overall speed-up was minor,
making it not worth the variance increase.

In the second iteration, we tried to keep the initial idea of splitting work
into subsets or ‘buckets‘ while mitigating the constraints.

After much thought, we’ve noticed that we can further split the second stage
into two separate phases. Therefore, we can create two camera passes, one that
handles vertex connection and the other vertex merging. But this creates an
opportunity to join the light pass, and vertex connection passes into a single stage,
as is the case with many implementations of BPT. More details are presented
later. With this in mind, we can now describe how the second architecture works.

Again, we have utilized tiling to distribute work across threads. We divide
the resulting image into multiple tiles whose size is set in a macro. For example,
an image of size 512x512 and a tile size of 32x32 can be divided into 256 tiles.
These 256 tiles are then evenly distributed across the threads. The index of the
first tile is set to be the same as the thread index. The iteration step is then set
to be equal to the thread count. A thread with an index of 2 would first process
a tile of index 2. Next, it would add the thread count to the index, which, in this
case, would result in 34. This continues until the index number is higher than
the number of tiles.

Recall from the first architecture the existence of an array that holds light
path indices to be later used in the vertex connection. We can now scratch this
array. Vertex connections are now handled one by one. After generating a single
light sub-path, the light pass is done, and we can start tracing an eye sub-path.
However, we still need to save all the light paths to build a range structure for
vertex merging. This can be done by having a global two-dimensional dynamic
array. The first dimension represents the number of threads, and the second

27

represents the buckets for each thread. After the vertex connection stage, we
put a thread barrier, set one thread to merge the buckets and build the range
structure. The barrier is there to ensure that all threads operate over the same
data. With the range structure in place, we apply tiling, trace eye subpaths, and
perform vertex merging where possible.

1 #define TILE_SIZE = 32
2

3 class ArnStochasticBackwardsSampler
4 lightVertices = ARRAY_ALLOC(THREAD_COUNT, DYNARRAY_ALLOC()
5 hashgrid = HASHGRID_ALLOC()
6 end class
7

8 function SAMPLE(iter)
9 vcm_weights = GET_VCM_WEIGHTS_FOR_ITER(iter)

10 tile_count = (imageSize->x / TILE_SIZE) * (imageSize->y /
TILE_SIZE)

11

12 for i = THREAD_INDEX to TILE_COUNT step THREAD_COUNT do
13 pixelBuffer = new FRAMEBUFFER
14 hWavelength = GENERATE_RANDOM_WAVELENGTHS()
15 ray = GENERATE_RAY_WORLDSPACE(x, y)
16 path = integrator->GENERATE_LIGHT_PATH(ray,

wavelength, pixelBuffer, lightVertices[i])
17

18 integrator->CALCULATE_CONTRIBUTION(ray, wavelength
, &pixelBuffer, path)

19

20 if lightVertex->pixelBuffer and pixelBuffer is
valid then

21 if USE_SPLAT_KERNEL then
22 SPLAT_ONTO_IMAGE_KERNEL(lightVertex->

pixelBuffer, hWavelength)
23 SPLAT_ONTO_IMAGE_KERNEL(pixelBuffer,

hWavelength)
24 else
25 SPLAT_ONTO_IMAGE_KERNEL(lightVertex->

pixelBuffer, hWavelength)
26 SPLAT_ONTO_IMAGE(pixelBuffer, wavelength)
27 end if
28 end if
29

30 end for
31

32

33 if USE_VCM or USE_PPM and THREAD_COUNT == 0 then
34 hashgrid->SET_UP(lightVertices)
35 end if
36

37 THREAD_BARRIER
38

39 for i = THREAD_INDEX to TILE_COUNT step THREAD_COUNT do

28

40 #framebuffer to store the current contribution
41 pixelBuffer = new FRAMEBUFFER
42 hWavelength = GENERATE_RANDOM_WAVELENGTHS()
43 ray = GENERATE_RAY_WORLDSPACE(x, y)
44

45 integrator->CALCULATE_CONTRIBUTION(ray, wavelength, &
pixelBuffer, hashGrid)

46

47 if pixelBuffer is valid then
48 if USE_SPLAT_KERNEL then
49 SPLAT_ONTO_IMAGE_KERNEL(pixelBuffer,

wavelength)
50 else
51 SPLAT_ONTO_IMAGE(pixelBuffer, wavelength)
52 end if
53 end if
54 end for
55 end function

3.8 The VCM path-space integrator
This section will introduce the path-space integrator. The main logic behind
VCM happens here. However, there were cases where a specific functionality
resulted in modifying or extending the existing ART codebase. Such instances
will be explained in this section as well.

3.8.1 Tracing the light paths
Extending the light sources

Before implementing a functional light tracer, we first needed to extend the func-
tionality of the light source interaction. By default, there was no support for
generating a ray from a point on the light source into the scene. This is to be
expected since a path tracer does not need such a feature. We will only assume
area light sources, as they are a) plausible in the real world b) arguably most
versatile c) intuitive to implement.

First, we needed to sample a point on a light source, which will serve as
the origin of the generated ray. Much of this code was taken from the existing
sampling method, as there was no reason to develop a new approach. The result
is a point on a light source along with a normal vector.

Secondly, we had to add a new utility function to generate a cosine-weighed
direction sample, i.e., a direction along a hemisphere. For the direction to be
usable, we also needed to transform it w.r.t the normal vector. That is because
the generated direction is oriented w.r.t to the word up-vector.

Finally, we need the PDF. Two probabilities are at play here: a direct PDF
and an emission PDF. A direct pdf is simply

1
area

(3.4)

29

Where area is the area of the light source. The emission pdf is slightly more
complicated. It is a joint probability of generating the direction (cosine weighed)
and the direct pdf: √

r2

π
∗ 1

area
(3.5)

The term r2 is a random generated number.

A path vertex

One of the most essential pieces of the puzzle is the path vertex. A path vertex
stores all the information accumulated during random walks, such as throughput.
Essentially, path vertices are the intersection points of a random path walk.

In ART, a path vertex must store a non-trivial amount of data:

• Intersection

• Path attenuation

• Light sample

• Camera contribution

• Path PDF

• Incoming and outgoing wavelengths

• VCM sub-weight values dV C , dV CM , dV M

ArcIntersection in ART is a class that gives us access to the world hit point,
the normal vector, distance traveled, function handles to interact with the surface
material, etc.

In a simpler (usually RGB-based) renderer, path throughput can be expressed
easily using a 3D vector of type double since its value is cumulatively calculated
at each intersection point as

thrtpt ∗ = reflectance

pdf

or
thrpt ∗ = light

(3.6)

As discussed in the introductory piece about ART, this approach is unusable.
Therefore, the throughput is split into three parts combined later: attenuation,
light sample, and pdf.

The camera contribution plays the role of a framebuffer, which stores the
contribution of s = 1 paths, as briefly discussed in the section about samplers
3.7.1.

30

Light tracing logic

With this in place, we can finally describe how light tracing is implemented.
Now that we have extended the light source sampling logic, we can generate

a light sample with a direction. We then use the sampling PDFs to initialize the
MIS sub-weights.

We trace a ray until (or if) we hit a surface. If we hit a light source, we
immediately terminate the light tracing algorithm and return back to the sampler.

In the case of a valid surface, we query the intersection to get the cosine theta
of the fixed direction. The cosine is used to update the MIS sub-weights

dV CM *= dist2

dV CM = dV CM

cos θ

dV C = dV C

cos θ

dV M = dV M

cos θ

(3.7)

For non-specular surfaces, we first calculate the camera contribution, i.e s=1
paths, which will differ depending on the algorithm used. In the case of a pure
light tracer, no MIS weights are calculated. In either case, we have to query the
camera for the surface factor and camera PDF.The surface factor is multiplied
by the light subpath count and used to normalize the contribution.

The wlight is computed as
−−−−→
pdfcam

nlight
· (ηV M + dV CM + dV C ·

←−−−
pdfbsdf) (3.8)

and the wV C as
wV C = 1

wlight + 1 (3.9)

This formula begs a question: how do we plug in the probabilities? Recall that
ART has full HWSS support, which means that all values, such as PDF or at-
tenuation, are n-dimensional vectors, and not single values, as in other renderers.
Do we evaluate the weight for each wavelength?

The answer to that question stems directly from the philosophy behind HWSS:
All decisions are made based on the HERO wavelength. Therefore, we can safely
calculate the MIS weight using only the HERO probability.

It is important we do not forget to include HWSS weights in the calculation.
The HWSS weight is calculated from the current path PDF and appended to the
MIS weights.

whwss · wmis (3.10)
Contribution normalization happens by dividing by

nlight

factor (3.11)

Then, the information gathered so far is saved into a new path vertex, which
is then pushed into the dynamic array. This vertex will then be potentially used
for vertex connection or vertex merging.

31

Surfaces causing singularities, i.e., specular surfaces, don’t allow for vertex
connection or merging, so we don’t calculate the camera contribution, nor do we
save the path vertex.

The final step of an iteration is performing a random walk, during which we
sample the BSDF to get continuation direction and the pdfs to update the MIS
sub-weights.

This alone gives us a fully functional light tracer with an NEE equivalent.
But mainly, it sets up the base for the whole VCM framework.

32

3.8.2 Connections and collections
Having established the foundation of our rendering system with light sub-path
generation, we now turn our attention to a more advanced technique that builds
upon this groundwork. The next phase of our implementation involves integrating
VC and VM.

As previously discussed, our implementation splits up the camera subpath
generation stage. Camera paths for connections and merging are now traced
separately.

The render loop of the camera tracer is more complicated than the loop of a
light tracer. That is not surprising—it is the stage where we collect all the light
vertices, perform connections on them, and query the space for all neighboring
vertices.

We begin by casting rays from the camera into the scene. At each intersection
point along these camera paths, several important computations are performed:

• Update of MIS sub-weights. This is the same as in light tracing.

• Direction sampling: A light source is directly hit, we need to weigh the
contribution to the image, as so-called t=0 paths

• NEE: At each point, t=1 paths are also to be evaluated. This is standard
NEE, in which we sample a point on a light source and perform an explicit
connection

• Vertex connection: The last step is to the current vertex and try to connect
it with the light sub-path vertices.

• Random walk: sampling the BSDF, updating the MIS sub-weights. In this
case, pretty much identical to the light tracer

Vertex merging is excluded from this list on purpose. While in the original
implementation, vertex merging is just another step after the Vertex connection, it
stands alone in our implementation. More specifically, a separate camera tracing
loop is utilized to perform vertex merging. The reasons for that were already
discussed.

Direction sampling

At each stage of the loop, there exists a non-trivial probability of hitting an
area light source. Obviously, for point lights, this probability is zero. For MIS
purposes, we again need the direct pdf and the emission pdf. In this context, one
is the probability of hitting the light source, which intuitively is

1
area

(3.12)

and the other is the probability of emitting a photon in the reverse of the incident
direction

cos θ · 1
π
· 1

area
(3.13)

where θ is the angle between the normal and the direction.

33

NEE

Next event estimation, or direct light sampling, is a popular technique for variance
reduction and is frequently used in path tracers. In the context of BPT, they
play the role of t = 1 paths, where we have a camera subpath with s vertices and
try to append the generated light vertex.

Again, a light source is sampled for a point, spectral intensity, and PDFs. The
emission pdf remains the same. In the case of direct PDF, we have to include a
Jacobian factor to convert between measures:

1
area

· distance2

cos θ
(3.14)

Finally, BSDF is evaluated at the surface, and MIS weight is calculated.
For wlight we get

wlight =
−→
pdf

plight · pdfdirect

(3.15)

and for wcamera

wcamera = pdfemission · cos θ

cos ϕ · pdfdirect

· (ηV CM + dV CM + dV C ·
←−−−
pdfbsdf) (3.16)

where θ is an angle at the surface and ϕ is an angle at the light source. Putting
it all together, we get

wV C = 1
1 + wlight + wcamera

wV C = wV C · whwss

(3.17)

Connections

Now, we can make connections for non-specular surfaces (vertices). As discussed,
a light subpath is passed from the sampler to make connections.

We iterate over all light subpath vertices for the current eye vertex and try
to perform connections. First, we need to check for any occlusion; if there is, we
skip it. Secondly, we have to make sure that the hero wavelengths match between
vertices. This is always true for non-fluorescent scenes since we are tracing the
eye path with the same wavelength batch as the light path.

Next, we evaluate the BSDF at both surfaces to get attenuations, PDFs, and
reverse PDFs. Then, we convert the forward PDFs from the solid angle measure
to the area measure, calculate the geometry term between the two surfaces, and
combine all values using MIS.

wlight =
−−−−−→
pdfA

camera · (ηV CM + dV CM + dV C ·
←−−−−
pdfσ

light)

wcamera =
−−−−→
pdfA

light · (ηV CM + dV CM + dV C ·
←−−−−−
pdfσ

camera)

wV C = whwss

1 + wlight + wcamera

(3.18)

The resulting MIS weight must also be weighed by the HWSS weight, which
we only evaluate for the eye subpath pdf. The reason we don’t have to evaluate

34

HWSS weights for the light subpaths is that they are already weighed during
light tracing.

Merging

The last step to make VCM functional is to allow for vertex merging/photon
mapping.

The path generation loop in the case of vertex merging is much simpler than in
the case of vertex connection. This is because we only calculate the contributions
of vertex merging and direct radiance, for cases when we hit a light source.

At each intersection, we update the MIS sub-weights, query the range struc-
ture, and perform a random walk In case pure PPM is used, we stop the loop at
the first non-specular surface.

As discussed in 3.4, we need to query the range structure to get the nearby
vertices. The implementation itself is done so that we can pass a single vertex,
and the grid will return the collected contribution. Essentially, we are distilling
all collected photons into a single weighted photon.

For each photon in an acceptance radius r, we weight it by wV M and accu-
mulate its contribution:

wlight = dphoton
V CM · ηV CM + dphoton

V M ·
−−−−−→
pdfcamera

wcamera = dcamera
V CM · ηV CM + dcamera

V M ·
←−−−−−
pdfcamera

wV M = wlight
hwss

1 + wcamera + wlight

(3.19)

The resulting contribution is then weighed again by the eye subpath through-
put and HWSS weight - not to be confused with the HWSS weight used in
equation 3.19, which was calculated from the light subpath PDF!

Handling wavelength mismatch

However, wavelength mismatch can happen even in non-fluorescent scenes, un-
like in VC. That is to be expected; each traced light subpath is assigned a ran-
domly generated wavelength, and in a single neighborhood, there might be higher
thousands of vertices. The natural consequence is that we may discard most of
the vertices, which introduces significant variance. Since the contributions are
normalized by the number of light subpaths (recall section about VCM), the
brightness is also affected.

Now, there are two potential fixes.
The first is arguably more straightforward. Instead of generating a random

wavelength batch for each subpath, we generate one wavelength batch at the
start of each sample, i.e., each sample is assigned a global wavelength. For scenes
without fluorescence, this will make all vertices eligible for merging.

Sadly, this might introduce color variance and require much higher sample
counts to distribute the queried wavelengths along the spectrum properly.

The second solution required extending the renderer functionality but may
produce better results. It is inspired by the paper in which Wilkie et al.[WND+14]
introduced HWSS.

35

For each potential merge, we check whether any of the light vertex’s wave-
lengths in a batch match the hero wavelength of the camera subpath. If they do,
we cyclically rotate the batch to match the hero wavelengths and proceed with
the merge. Matching a wavelength perfectly is almost impossible, so we allow
an error margin. The absolute difference between the two wavelengths cannot
exceed 5NM.

To support this attenuation, PDFs and light samples had to be extended so
that we could rotate the elements. This required implementing new interface
handles and support for piece-wise element assignment.

Indeed, this significantly increases the number of mergeable vertices, but it is
still relatively low. However, we still need to include the probability of being able
to perform the rotations.

The entire visible spectrum in ART is 320 NM and since we allow 5NM error
margin, the probability of any two wavelengths matching is

2d

320 = 10
320 = 1

32 (3.20)

where d is the margin. We also have to factor in that we are not tracing one
wavelength; hwss works by tracing wavelength batches. The size of the batch is
a changeable parameter, nh.

10 · nh

320 = nh

32 (3.21)

The default nh count in ART is four (this allows for SIMD operations), which
would make this probability simply

1
8 (3.22)

Combining this probability with the rotated light vertex path PDF then yields
the desired results.

3.8.3 Making fluorescence work
Implementing fluorescence in a renderer is a complex task. As such, fluorescence
is relatively underresearched compared to other branches of computer graphics.
Just months before this thesis, a dissertation that resulted in a BPT handling
fluorescence using mollification was finally published.

After consulting with the authors of [JHD20], the most significant challenge
would seem to be correct calculations of MIS weights, with added dimensionality
of VM. As such, adding fluorescence into a complete VCM framework would
require more time to conduct research.

However, despite the limitations, we have added support for some fluorescent
phenomena to a light tracer and a photon mapper. The photon mapper has one
drawback: it does not support HWSS when handling fluorescence.

ART is already fully fluorescent capable, which significantly helped with the
implementation. Most fluorescence-related calculations are greatly abstracted.
Fluorescent probabilities or wavelength shifts all happen in the background when
we interact with a surface.

36

For example, when we sample a BSDF in ART, it returns a new wavelength
(the same as the previous one in case of non-fluorescent interactions), direction,
attenuation, and PDF. This is standard behavior. We then use these values to
update the path throughput and continue the random walk. In the case of a
fluorescent surface, the probability of shifting a wavelength is already included in
the returned PDF.

The only time we have to explicitly ask a surface for a new wavelength or
a probability of shifting from wavelength a to b is when we are evaluating a
BSDF, i.e., in NEE. Why? Evaluating a BSDF in ART requires two wavelengths
(incoming and outgoing), and we don’t have the outgoing wavelength. Therefore,
we ask the surface for a new wavelength (again, for non-fluorescent surfaces, it’s
just the incoming wavelength), and along with a new wavelength, we also get the
probability. Reminding the reader that fluorescent probabilities are taken from
the reradiation matrix of a fluorescent surface 1.9.

We will now present our propositions for handling fluorescence in LT and
PPM. Their validity is supported by their consistency in output and visual sim-
ilarity to results produced by a reference path tracer, disregarding noise. The
solution for photon mapping is especially prone to color variance, due to omit-
ting HWSS.

Fluorescent light tracing

As we have defined previously, light tracer functionality in ART is closely similar
to a path tracer with NEE. As such, we can take inspiration. In a path tracer,
wavelength shift probabilities are combined with the sample PDF (direct pdf) we
get from a light source.

In our implementation of a light tracer, the surface factor plays the role of an
NEE PDF. As such, we can now write

nlight

factor →
nlight

factor · pdfshift

(3.23)

Fluorescent photon mapping

Due to the complexity that HWSS introduces in this case, we’ve decided to make
photon mapping work in plain spectral mode as the minimal solution. However,
this introduces significant color noise. That is to be expected and is the main
motivation for techniques like HWSS to exist in the first place.

This solution was inspired by the work of Jung et al. [JHD20], in which they
solved fluorescence in a standard BPT. The main idea behind their method is to
mollify a BSDF, which effectively extends the range at which wavelengths can be
connected.

This solution might also aid in future work of extending it to VCM.
Similar to how the collection radius in VCM (PPM) is iteratively reduced, the

mollification range is also shrunk with each iteration.
First, we define d0 as the initial mollification range. The actual range is then

defined as
d = d0 · n−s (3.24)

37

where n is the current iteration and s is the shrinkage factor. We have set
d0 = 50nm and s = 1

4 .
At each potential merge, we check that the distance between the traced wave-

length and the photon’s wavelength is at most d.

|w0 − wp| ≤ d (3.25)

The probability of such a connection is then intuitively defined as

2d

320 (3.26)

where 320 is the range of the visible spectrum.

Results are presented in Figures 4.15 and 4.8.

38

4. Results
In this chapter we present the results of implementing VCM. Most of the images
will focus heavily on SDS paths, as they are the main motivator for using VCM.

One such scene can be seen in Figure 4.1. In a standard CornellBox, we made
the floor and the back wall with OrenNayar materials; the rest are Lambertian.
There are four spheres in total, each of them specular. The sphere near the light
source is glass. The grooved scenes add great variety in light scattering. Figure 4.1
and Figure 4.4 show a difference between a perfectly smooth glass sphere and such
grooved spheres. Thanks to the placement of the sphere, the difference between
PT and VC is text-book-like, where the path tracer struggles with sampling SDS
paths and caustics. Figure 4.3 then shows a zoomed in comparison.

Both Figure 4.1 and Figure 4.4 clearly illustrate individual techniques’ relative
strengths and weaknesses. For example, in the light-traced image, we can see how
it handles caustics much better than a path tracer. However, it also clearly shows
the main shortcoming of LT - light sources are black, as we cannot splat specular
surfaces onto an image.

Figure 4.1 (and Figure 4.4) also show that VCM (or PPM for that matter)
handles SDS paths better then BPT. Figure 4.2 shows zoomed-in images for more
clarity.

To properly compare and test VC vs VCM, we’ve set up two scenes which
should produce sharp caustics: 4.9, 4.10, 4.13 and 4.12. A zoomed in detail view
is provided in 4.11.

We’ve taken inspiration from the original paper and generated an image simi-
lar to 2.4, i.e, plot out the relative contributions of individual techniques 4.6. We
can see that this is consistent with figures 4.2 or 4.4.

Interesting results were achieved in Figures 4.15 and 4.8, where we show how
our implementations of LT and PPM handle fluorescent surfaces. Figure 4.15
contains two grooved spheres with synth fluorescent surfaces enclosed in a Cornell
box with white diffuse surfaces. Besides variance or color noise in the case of PPM,
results seem to be consistent. In Figure 4.8, we’ve swapped the diffuse surface
with the same synth fluorescent material.

Surprising might be the slow convergence. All of these images were rendered
for almost 2 hours, but there is still visible color noise. Especially in PT in
4.8. Unsurprisingly, omitting HWSS, lead to significant color noise for images
rendered with PPM.

39

(a) VC (b) VCM

(c) PT (d) LT

Figure 4.1: Images from the left: BPT, VCM, PT with NEE, and LT. Comparison
of 4 different rendering methods, with 2000 SPP (divided among the threads).
Path tracer was given to have a few hundred samples more, which is why the
floor is much smoother. This was done for various reasons. Mainly to show how
much more effective the other algorithms are in certain scenarios.

40

Figure 4.2: Zoomed in images of VC and VCM from figure 4.1 to show the
convergence rate difference between them on a specular surface. This is consistent
with the results presented in the original paper 2.1

41

Figure 4.3: Great illustration of how efficiently VCM samples SDS paths. Al-
though we have given the PT an edge, which can be seen on the bright spot on
the floor, PT did a very bad job in this instance.

42

(a) PT (b) VC

(c) VCM

Figure 4.4: Images from the left: BPT, VCM, PT with NEE, and LT. SDS com-
parison with smoother specular objects. This scene contains a perfectly smooth
glass sphere and a cone plus a mirror sphere down on the floor.

43

Figure 4.5: Another Comparison between BPT (VC) and VCM. In this example,
BPT struggles with sampling the caustics in the cone.

44

Figure 4.6: Relative contribution of VC vs VM. Red is more VM and Blue is
more VC

45

(a) PT (b) LT

(c) PPM

Figure 4.7: Sample count set to 12000 SPP. The walls are white Lambertian
surfaces, and the spheres have a synthetic fluorescent material assigned. Besides
the visible noise, the results seem to be consistent with PT. Notice the color noise
in the case of PPM. That is a consequence of not using HWSS but tracing a single
wavelength at a time.

46

(a) PT (b) LT

(c) PPM

Figure 4.8: Same setting as with 4.15, but all objects (and walls) have the same
synth fluorescent material. The PT solution produced significant variance (fire-
flies). Again, PPM struggles with color noise.

47

Figure 4.9: Scene with a cone in the middle of the scene, causing a focused caustic
on the floor. As expected, the BPT struggles with caustics reflection.

48

Figure 4.10: Same scene as 4.9, but rendered using VCM, showing that it handles
caustics much better.

49

Figure 4.11: Same scene as 4.9, but rendered using VCM, showing that it handles
caustics much better.

50

Figure 4.12: Scene with a smaller light source, rendered using VCM. Again, to
simulate SDS paths and compare VC and VCM.

51

Figure 4.13: Scene with a smaller light source, rendered using VC. Again, to
simulate SDS paths and compare VC and VCM.

52

(a) VCM (b) VC

Figure 4.14: Side by side comparison of Figures 4.13 and 2.1

(a) VCM (b) VC

Figure 4.15: Side by side comparison of Figures 4.9 and 4.10

53

5. Conclusion
This thesis presents an implementation of Vertex Connection and Merging (VCM)
in a spectral renderer, incorporating Hero Wavelength Spectral Sampling (HWSS).
This is the first work to successfully integrate these advanced light transport tech-
niques within a spectral framework.

The implementation demonstrates VCM’s strength compared to path tracing
or BPT and the benefits of combining VCM’s robust light transport simulation
with the accuracy of spectral rendering and the efficiency of HWSS. This integra-
tion allows more physically accurate representations of complex light interactions.

Furthermore, we have made advances in incorporating fluorescence into ad-
vanced light transport algorithms. While full integration of fluorescence into
VCM remains an unsolved challenge, we successfully implemented fluorescence
in light tracing and progressive photon mapping. This lays the groundwork for
future research in this area.

Key contributions of this work include:

• The first known implementation of VCM in a spectral renderer

• Successful integration of HWSS with VCM, enhancing rendering efficiency
significantly

• Partial incorporation of fluorescence effects in advanced light transport tech-
niques

While we have not achieved all goals we’ve set, we believe we’ve made a big
enough contribution to the rendering research.

54

Bibliography
[Geo12] Iliyan Georgiev. Implementing vertex connection and merging. Tech-

nical report, Saarland University, 2012.

[GKDS12] Iliyan Georgiev, Jaroslav Křivánek, Tomáš Davidovič, and Philipp
Slusallek. Light transport simulation with vertex connection and
merging. ACM Trans. Graph., 31(6):192:1–192:10, November 2012.

[HOJ08] Toshiya Hachisuka, Shinji Ogaki, and Henrik Wann Jensen. Progres-
sive photon mapping. 2008.

[Jen96] Henrik Wann Jense. Global illumination using photon maps. 1996.

[JHD20] A. Jung, J. Hanika, and C. Dachsbacher. Spectral mollification for
bidirectional fluorescence. 2020.

[MFW18] M. Mojźık, A. Fichet, and A. Wilkie. Handling fluorescence in a
uni-directional spectral path tracer. 2018.

[Sma] http://www.smallvcm.com/.

[Vea97] Eric Veach. Robust monte carlo methods for light transport simula-
tion. 1997.

[WND+14] A. Wilkie, S. Nawaz, M. Drozke, A. Weidlich, and J. Hanika. Hero
wavelength spectral sampling. 2014.

55

List of Figures

1.1 Incoming direction over the hemisphere. Image taken from teach-
ing materials by CGG group MMF UK 5

1.2 Measurement contribution function for a path of length 4. Taken
from a thesis by Eric Veach. Image taken from teaching materials
by CGG group MMF UK . 6

1.3 Comparison between a path tracer with NEE (left) and a light
tracer (right). This image shows the relative strengths and weak-
nesses of respective algorithms. Light tracer, for example, con-
verges faster at the bright light spots. However, light sources, and
especially for a pinhole camera, specular (in this case, glass) ob-
jects will be black. Image taken from teaching materials by CGG
group MMF UK . 7

1.4 The duality of radiance and importance. Image taken from teach-
ing materials by CGG group MMF UK 7

1.5 Diagram showing the different connections we can make between a
camera path and a light path. Image taken from teaching materials
by CGG group MMF UK . 8

1.6 Photon mapping density estimation. Tracing methods struggle
with connecting SDS paths. Photon mapping does density estima-
tion, which is much more effective, albeit biased.Image taken from
teaching materials by CGG group MMF UK 9

1.7 Individual color matching functions plotted onto a graph. Image
taken from teaching materials by CGG group MMF UK 10

1.8 Fluorescent jellyfish. Courtesy of Pexels, Ryotaro 11
1.9 Reradiation matrix; the diagonal shows probabilities of a non-

fluorescent interaction. The part ’above’ the diagonal represent
the wavelength shift probability, or, the ’fluorescent’ interaction.
Taken from [JHD20] . 12

2.2 A figure showing the difference between an extended path and a
regular path. [Geo12] . 13

2.1 Comparison image taken from the VCM supplemental document,
which shows the differences between PPM, BPT, and VCM. The
image clearly shows how BPT struggles with caustics and how
using VCM leads to a more consistent result. Refer to figure 2.4
to see the individual contributions of the respective algorithms. . 14

2.3 Figure showing the entire process of vertex connection and merg-
ing. Up to the vertex connection part, the illustration is equivalent
to the one used in [Vea97]. 15

2.4 Image showing the relative contributions of vertex connection (BPT)
and vertex merging (PPM). As expected, vertex merging con-
tributes more in case of SDS paths. Image by [GKDS12] 17

3.1 A class structure of ART. 20
3.2 The ArAttenuation struct . 21

56

3.3 A graphical representation of a uniform / regular grid. Taken from
a wikipedia page . 22

4.1 Images from the left: BPT, VCM, PT with NEE, and LT. Com-
parison of 4 different rendering methods, with 2000 SPP (divided
among the threads). Path tracer was given to have a few hundred
samples more, which is why the floor is much smoother. This was
done for various reasons. Mainly to show how much more effective
the other algorithms are in certain scenarios. 40

4.2 Zoomed in images of VC and VCM from figure 4.1 to show the
convergence rate difference between them on a specular surface.
This is consistent with the results presented in the original paper 2.1 41

4.3 Great illustration of how efficiently VCM samples SDS paths. Al-
though we have given the PT an edge, which can be seen on the
bright spot on the floor, PT did a very bad job in this instance. . 42

4.4 Images from the left: BPT, VCM, PT with NEE, and LT. SDS
comparison with smoother specular objects. This scene contains
a perfectly smooth glass sphere and a cone plus a mirror sphere
down on the floor. 43

4.5 Another Comparison between BPT (VC) and VCM. In this exam-
ple, BPT struggles with sampling the caustics in the cone. 44

4.6 Relative contribution of VC vs VM. Red is more VM and Blue is
more VC . 45

4.7 Sample count set to 12000 SPP. The walls are white Lambertian
surfaces, and the spheres have a synthetic fluorescent material as-
signed. Besides the visible noise, the results seem to be consistent
with PT. Notice the color noise in the case of PPM. That is a con-
sequence of not using HWSS but tracing a single wavelength at a
time. 46

4.8 Same setting as with 4.15, but all objects (and walls) have the same
synth fluorescent material. The PT solution produced significant
variance (fireflies). Again, PPM struggles with color noise. 47

4.9 Scene with a cone in the middle of the scene, causing a focused
caustic on the floor. As expected, the BPT struggles with caustics
reflection. 48

4.10 Same scene as 4.9, but rendered using VCM, showing that it han-
dles caustics much better. 49

4.11 Same scene as 4.9, but rendered using VCM, showing that it han-
dles caustics much better. 50

4.12 Scene with a smaller light source, rendered using VCM. Again, to
simulate SDS paths and compare VC and VCM. 51

4.13 Scene with a smaller light source, rendered using VC. Again, to
simulate SDS paths and compare VC and VCM. 52

4.14 Side by side comparison of Figures 4.13 and 2.1 53
4.15 Side by side comparison of Figures 4.9 and 4.10 53

57

A. Attachments

A.1 ART source code
Source code of the Advanced Rendering Toolkit (ART) with a functional VCM
implementation is provided in the attachment. To compile it, follow the instruc-
tions provided in the ART Handbook
https://cgg.mff.cuni.cz/ART/assets/ART_Handbook.pdf.

It is recommended to try and compile the code under Arch Linux (or any sub-
sequent distro). Any Linux distribution should be functional, but the installation
process might not be as streamlined.

A scene presented in the thesis 4.10 is provided with the source code in
Gallery/CornellBox/CornellBox.arm.

To do a test render, one can run

artist /art_loc/Gallery/CornellBox/CornellBox.arm

which will save an .exr image in the same location. To open EXR files, we
recommend using TEV.

58

https://cgg.mff.cuni.cz/ART/assets/ART_Handbook.pdf

	Introduction
	Overview
	Prerequisites to VCM
	Path-space integration
	Light tracing
	Bidirectional path tracing
	Photon-mapping

	Spectral rendering
	Fluorescence
	Fluorescent BBRRDF
	Fluorescence in rendering

	VCM
	Expressing PM in path-integral framework
	Combined framework
	Optimizations and path reuse
	Pseudocode

	Implementing VCM in ART
	Preliminary research
	Brief overview of ART
	Camera implementation
	Range structure - uniform grid
	Image sampler and path-space integrator
	Stochastic image sampler
	Backwards sampler
	Base architecture
	Tiling

	The VCM path-space integrator
	Tracing the light paths
	Extending the light sources
	A path vertex
	Light tracing logic

	Connections and collections
	Direction sampling
	NEE
	Connections
	Merging
	Handling wavelength mismatch

	Making fluorescence work
	Fluorescent light tracing
	Fluorescent photon mapping

	Results
	Conclusion
	Bibliography
	List of Figures
	Attachments
	ART source code

