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Introduction
Video games represent a complex combination of various components, en-

compassing levels, narratives, characters, visual elements, and soundscapes, each
crafted by specialists such as level designers, writers, artists, and sound engineers.
While such specialization yields high-quality assets, it entails significant time and
financial investment. Procedural content generation (PCG) circumvents the need
for human intervention in content creation, facilitating faster and cost-effective
game development while maintaining quality. PCG streamlines production and
fosters creativity by generating novel solutions to design challenges.[1]

Let’s give an example of game content creation. The development of massively
multiplayer online role-playing games like World of Warcraft exemplifies the
evolution of game development methodologies. Creating expansive worlds and
intricate ecosystems in World of Warcraft demanded sizable teams of up to 40
individuals, which later expanded to hundreds of developers to sustain quality
and complexity.1 [2] Conversely, titles such as No Man’s Sky (Hello Games, 2016),
initially developed by a team of 4 people and later by over 17 developers [3],
showcase the potential of procedural generation, offering vast, virtually infinite
game worlds.

The use of procedural generation concepts is more or less a common part of
game development nowadays. A common practice is to generate the content on the
CPU (central processing unit). However, this is not adapted to generate content
where the computation requires high parallelizability (e.g. complex terrain). For
these cases, it is advisable to generate content on the GPU (graphics processing
unit), which is much more efficient and thus saves the CPU efficiency for the
logical processes of the game.

In terms of efficiency and performance, the game architecture must also be
considered. While traditional game development often relies on object-oriented
design (OOD), data-oriented design (DOD) emerges as a paradigm tailored for
high-performance and flexible architectures, particularly relevant in contemporary
gaming. Unlike OOD’s reliance on a single main thread, DOD distributes process-
ing load uniformly across multiple threads, leveraging the efficiency of multi-core
processors [4]. Although initially less explored in academia due to OOD’s perceived
cost and development time advantages [4], the increasing accessibility of tools
such as Unity DOTS and Unreal Engine’s MassEntity framework has catalyzed
the adoption of DOD in game development.

This thesis explores the intersection of procedural generation on GPU and
data-driven design, focusing on the challenges inherent in efficiently generating
visually complex content. The research contributes to developing an upcoming
game depicted in Figure 1, that employs evolutionary simulations within a data-
oriented framework, highlighting the potential of these methodologies in shaping
the future of game development.

1In the beginning, the game’s content was created manually. Later, Blizzard Entertainment
embraced procedural generation capabilities and a symbolic change was made in the World
of Warcraft: Shadowlands expansion, where they introduced a new dungeon, Torghast, with
procedurally generated enemy spawns.

7



Figure 1 Visual game preview.
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Goals
The primary goal of this thesis is to identify and develop a method that

effectively meets the conditions set by input parameters for generating visual
entities within the game environment. Given the non-standard nature of this
approach, the research will involve an extensive exploration of existing procedures
for procedural graphics generation, shader programming and data-oriented ar-
chitecture. Through systematic experimentation and implementation within the
Unity DOTS game, the goal is to find a suitable procedural generation technique
that fits the defined game design and provide this solution for developers who
follow a similar path in combining PCG and data-driven approaches.

Specifically, the research seeks to achieve the following objectives:

Method Identification Analyze existing methods and algorithms for procedural
graphics generation, including but not limited to terrain, textures, objects,
and other visual elements relevant to the game environment.

Define inputs based on game design From the written game design, identify
possible inputs that will influence the generation process and, thus, the final
visual.

Implementation Integrate selected procedural generation techniques into the
game engine and adapt them to the specific game design requirements and
constraints of Unity DOTS. Subsequently, the generated visual effects will
be evaluated according to predefined criteria and performance.

Key findings After the evaluation, summarize the important lessons learned
during development and make recommendations for other developers who
combine GPU-based generation and the use of a high-performance environ-
ment through a data-driven approach.

Structure
In chapter 1. Analysis we explore the methods and practices of procedural

visual generation in games and the Unity game engine environment with its DOTS
framework. We introduce the basic algorithms, the Entity Component System
architecture and graphics pipeline.

In chapter 2. Game Design, we will introduce a brief game design and define
the important elements for generating the appearance of the game entities.

In order to see which generation method may be appropriate, in chapter
3. Experiments we will focus on experimenting with the observed knowledge from
the analysis.

After choosing a concrete method to generate the appropriate game graphics,
in chapter 4. Implementation we will dive into the implementation in Unity DOTS
and write the appropriate code within the ECS architecture and shaders to render
the visuals. In chapter 5. Visual Results, we will look at and analyze the results
of the chosen solution.
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Related work
Many games are using procedurally generated content. The common usage

of PCG is for generating levels, dungeons, and terrain. By far two of the most
well-known games contain procedurally generated creatures: Spore (2008) and
No Man’s Sky (2016). Regarding data-driven games, it’s worth mentioning Over-
watch (2016) from Blizzard Entertainment and Diplomacy is not an option (2022)
by Door 407.

Games using procedural content generation
Spore

Spore was developed by Maxis and published by Electronic Arts on September
4, 2008. The leading creator was game designer Will Wright, who also worked on
SimCity and The Sims, where he showed the potential of the simulation theme
in games. Spore is an evolutionary strategy game with adventure, RPG and
simulation elements. The player experiences the evolutionary development of
organisms in five stages, from a small cell in the sea to building an advanced
civilization flying into space. The fundamental aspect of the game is the creation
of creatures, which is in the player’s hands. The motivation behind this is the
idea that the player develops a greater empathy for the game if they can create
something in it. This game gives the player a ”toy” to play with and thus use
their imagination to experiment with the world.[5]

The metaball is the cornerstone of mesh generation in Spore. These are blobby
implicit surfaces that are topologically robust while lacking the ”local control” to
allow for polygon-level modelling. This method requires as much robustness as
possible, as the game gives the player all the control over the creature’s morphology
while the skin must be attached to the creature’s skeleton.[6]

Figure 2 shows the Spore creature creator, a tool in Spore that allows the

Figure 2 Spore creature creator [7]
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player to modify the shape of their creature and add rigblocks to it. Rigblocks
are pre-made geometric building blocks representing specific parts of the creature,
such as mouths or arms, that the player can attach to the creature’s body.[8]
Through combinations of modifying the body structure and attaching rigblocks,
the player can create a unique creature to his own liking. These creatures can
then be sent to the Sporepedia2 creature database, which contains all published
player creations from the world of Spore and its expansions.

No Man’s Sky

No Man’s Sky3 is a sci-fi exploration game where players start on planets
scattered around the galaxy. They can travel to other planets and discover different
types of environments. The game has a solid technical design to generate and
simulate the environments on the planets, including the creatures living on them.
Hello Games, the studio that created the game, used such algorithms to generate
worlds on a scale of two to the power of 64, so there are 18.4 quintillion planets
in the game that are generated on the fly, while the game itself requires only 5
GB of disk space. The cornerstone of the contour generation in No Man’s Sky
is voxels4. A voxel is a single point in 3D space with size, colour and opacity
comparable to a large pixel. The entire terrain of single planet is divided into
regions (36 × 36 × 36m ), and these regions consist of 1-meter voxels, where
one voxel occupies 6 bytes of data (density, 2 different materials and material
blend). [10] The pipeline consists of noise generation (e.g. Perlin worms) on GPU,
polygonisation5 on CPU and render, physics and population on both GPU and
CPU.[11]

Creatures are created by randomly selecting individual parts from a library,
with a system running in the background that automatically balances the creature’s
weight and adjusts its skeleton to make it look more realistic. For example, it
can’t happen that a creature with a small body has a huge head. [12]

Games using data-oriented approach
Overwatch

Overwatch6, a team-based first-person shooter released by Blizzard Enter-
tainment in 2016, utilizes an Entity-Component-System (ECS) architecture, a
common approach in data-oriented design. This architectural choice enables the

2https://www.spore.com/sporepedia
3https://store.steampowered.com/app/275850/No_Mans_Sky/
4Another well-known example of a game that procedurally generates its terrain using voxels

is 2009’s Minecraft, developed by Markus Persson, also known as Notch. Minecraft uses voxels
to store terrain data and uses polygon rendering to represent each voxel as a cubic block. [9]

5Polygonisation refers to the process of converting a continuous implicit surface into dis-
crete polygonal mesh. The best-known techniques are Marching Cubes and Dual Contouring
algorithms. Innes McKendrick, lead programmer at Hello Games, at his GDC 2017 lecture,
said that they selected Dual Contouring over the Marching Cubes algorithm because Marching
Cubes perform poorly with points that are not on the edge of a voxel. This makes it not very
suitable for models with sharp angles. But in No Man’s Sky, they polygonise multiple times
with different polygonisatiors to get different sets of data, including polygonisating using the
Marching Cubes algorithm as it can be seen in Figure 3. [10]

6https://overwatch.blizzard.com/en-us/
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Figure 3 No Man’s Sky generated environment generated using voxels and polygonised
using Dual Contouring and Marching Cubes algorithms. [10]

development team to achieve rich gameplay variation, optimization, improved code
readability, and control over various independent system behaviours, such as AFK
(Away from keyboard) checks, player broadcast network messages and player name
resolution. The transition to ECS began with a prototype during development,
with the legacy code being gradually refactored over three years. ECS facilitates
the integration of disparate systems with minimal coupling, simplifying the task
for engineers working on the glue code that binds all systems together. [13] Due
to the fact that ECS is modular, it is easy to add or even remove components and
systems without redoing a large amount of code. Timothy Ford, Lead Gameplay
Engineer at Blizzard Entertainment, in his GDC 2017 talk highlights this approach
as being code-friendly because it allows developers to manage the complexity of a
rapidly growing codebase. [13]

Diplomacy is not an option

A compelling example of the data-oriented approach in game development
is the real-time strategy and tower defense game Diplomacy is Not an Option7

by indie studio Door 407. In 2016, a developer known as “eizenhorn” initiated
a discussion on the Unity DOTS forum, focusing on a technology package for
the Unity game engine that supports data-oriented game development. In this
thread, eizenhorn detailed DOTS implementation in the game’s production. The
game excels in rendering vast numbers of animated assault units—ranging from
hundreds to hundreds of thousands—while simultaneously managing tens of
thousands of visualized resources and population entities. Despite this complexity,
the game remains highly optimized, maintaining high frames per second (FPS).
This efficiency is achieved using the ECS architecture combined with custom-
written shaders and a proprietary animation system 8. Additionally, the game
features procedural map generation, enhancing its dynamic and replayable nature.
Figure 4 is a screenshot taken in-game, where thousands of units are displayed in
real time and the player blows them up via an ability blast. [14]

7https://store.steampowered.com/app/1272320/Diplomacy_is_Not_an_Option/
8As of now, Unity DOTS does not provide any animation system in its package and needs

to work around this with its own systems, third-party tools, or using a hybrid approach of
GameObjects and ECS
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Figure 4 Screenshot from game Diplomacy is Not an option. [15]
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1 Analysis
In this chapter, we discuss the problem of procedural generation of game visuals

and list several approaches to generating terrain and characters. Subsequently,
the analysis will look at the basic aspects of the data-driven approach in game
development and a specific implementation in Unity DOTS. Finally, we define
the game and its game elements, which is the basis for implementing this work’s
solution.

1.1 Motivation
The landscape of video game development is continuously evolving, with

technological advancements pushing the boundaries of what is possible in terms of
immersive gameplay experiences. This is why game development is fascinating and
allows game developers to try to combine established practices with original and
experimental techniques. Numerous fundamental algorithms exist for generating
terrains and natural features, and these can be adapted, enhanced, combined,
and tested with various input parameters to produce unique results suitable
for integration into video games. When focusing on generation, particularly
real-time generation, it is crucial to prioritize algorithm performance and code
optimization to ensure the game remains playable at high frames per second
(FPS) and preserves the player’s gaming experience. The Entity Component
System (ECS) architecture, a cornerstone of the data-oriented approach in game
development, supports these goals. Despite its potential, ECS architecture is not
yet widely adopted in the video game industry, making its exploration, particularly
in conjunction with procedural visual generation, a fascinating study area.

1.2 Procedural generation of visuals in games
Procedural generation (PCG) has many approaches to achieve content genera-

tion in games. We can consider PCG as a viable solution to content generation
challenges. PCG can be used to rapidly create low-detail elements like grass
to generate complex game mechanics after extensive computational processing.
Each application presents unique requirements and constraints, highlighting the
importance of speed, reliability, controllability, expressivity/diversity, creativity,
and believability. These properties are not isolated but often entail trade-offs; for
instance, achieving higher speed may compromise the quality of generated content,
while maintaining expressivity and diversity without sacrificing quality poses a
significant challenge. It is necessary to control over generated content, enabling
users or algorithms to influence specific aspects of the generated output. [1]

Several well-known algorithms are considered basic algorithms for the purpose
of procedural content generation in games. While the most well-known use is in
terrains and landscapes, the following algorithms can also generate self-similar
structures. [16] We will describe these basic algorithms and how they could be
used for this thesis.
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1.2.1 Noises
Noise functions are fundamental techniques to create realistic terrains and

landscapes in procedural content generation. When generating natural landscapes,
the resulting environments must exhibit randomness while adhering to specific
constraints and exhibiting particular characteristics. Noise is a mathematical
sequence of pseudo-random numbers used to perturb a flat surface, generating
intricate and navigable terrains. A prominent application of noise in terrain
generation is the use of heightmaps. Heightmaps are scalar fields that assign
a height value to each point on a grid, effectively defining the elevation of the
terrain relative to a baseline. To generate random terrain, one might initially
consider using a random-number generator to populate a heightmap, however,
this approach results in unrealistic, spiky terrain because it generates independent
random values, lacking the spatial correlation observed in natural landscapes.
[1] The following noise types are used to increase the realism and correct the
correlation:

Value noise

Value noise deals with interpolating random values on a coarser grid at each
point of the height map. The basis is linear interpolation (often called “lerp”).
Linear interpolation is a mathematical function that returns a value between
two given values and a parameter t in the closed unit interval from 0 to 1. Its
definition can be seen in code snippet 1.1.
float Lerp(float startingValue , float endValue , float t)
{

return startingValue + (endValue - startingValue) * t;
}

Listing 1.1 Definition of linear interpolation in C#

In two-dimensional space, bilinear interpolation is used to interpolate a
weighted average in the horizontal and vertical direction. The linear interpolation
is then used to create sharp peaks and valleys. To soften these sharp features, it
is advisable not to use a linear curve but an S-curve shape. A mathematical slope
function s(x) is commonly used,

s(x) = −2x3 + 3x2

and interpolated in both directions on a 2D grid. This method is called bicubic
interpolation. [1]

Gradient noise

An alternative method for generating peaks is to use random numbers to create
random gradients, which determine the steepness and direction of the slopes. To
calculate height values from these gradients, start by setting the height at each
lattice point to zero. Then, for each non-lattice point, calculate its height by
taking the dot product of the gradient vector at a nearby lattice point and the
vector from the lattice point to the non-lattice point. Repeat this process for all
surrounding lattice points and combine the resulting values using interpolation.
One type of gradient noise is called Perlin noise, which can be seen in the figure
1.1. [1]
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Figure 1.1 Perlin noise. Generated using Perlin Noise function from Unity Mathf
library.

1.2.2 Fractals
A fractal is a geometric shape that relies on self-similarity in nature, where

we look at a natural phenomenon on a larger scale and then see the same kind
of variation on a smaller scale. Fractals are often used in terrain generation, but
they can also be used in abstract game visuals and game design1. The classic
method is to iteratively generate noise layers at multiple scales, where we scale
by the inverse of their frequency and where these layers are then summed. If we
have a function to generate noise, we name it noise(f), where f is a frequency,
then we can use the relation 1.1 to generate a fractal to a specified level. [1]

noise(f) + 1
2noise(2f) + 1

4noise(4f) + ... (1.1)

There are many methods for generating fractals. One well-known one is the
Mandelbrot set and the related Julia set. The Mandelbrot set denotes the set
of points in the complex plane where its corresponding Julia set is continuous.
The Julia set is defined using the initial complex number

z = x + yi, (1.2)

where i2 = −1 and x, y are the coordinates of a pixel in the interval from
−2 to 2 [18]. The function for the iterative calculation is given by a complex
quadratic polynomial (a quadratic polynomial where the coefficients and variables
are complex numbers):

fc(z) = z2 + c, (1.3)
where c is the complex number given by the specific Julia set. The pixel is in the
Julia set if the maximum size is 2 [18]. The Julia set is a subset of the complex
space defined as

K(fc) = {z ∈ C : ∀n ∈ N, |fn
c (z)| ≤ R}, (1.4)

1Jonathan Blow, an American game designer and programmer, gave a talk at GDC Europe
in 2011 about highlighting fractals and looking at game design with them.[17] At the time of
this talk, he was developing The Witness (https://store.steampowered.com/app/210970/
The_Witness/), a puzzle video game released in 2016 about exploring an open-world island
filled with natural and man-made structures to solve puzzles mostly using provided tables. The
concept of fractals in game design can be seen in the game as individual puzzles, where some
build on each other when zoomed out, can be grouped together with a self-similarity element.

16

https://store.steampowered.com/app/210970/The_Witness/
https://store.steampowered.com/app/210970/The_Witness/


Figure 1.2 Visualisation of Mandelbrot set and its six Julia sets. [18]

where fn
c (z) is nth iterate of fc(z), then Julia set of this function is the boundary

of K(fc). [19] The Mandelbrot set contains Julia sets at their specific location, as
given by their parameter value c. Typically, we can see interesting Julio sets near
the edges of the Mandelbrot set [18], as shown in Figure 1.2.

Another way to create fractals is by using L-systems described in the next
section.

1.2.3 L-systems
L-systems, or Lindenmayer systems, are a formalism used to model the growth

and topology of plants by describing the relationships between cells or larger plant
modules. L-systems utilize a rewriting process, which involves iteratively replacing
parts of an initial object with a set of predefined rules or production terms. This
method of defining complex structures through simple, recursive rules is a powerful
tool for plant modelling and has been widely applied in procedural graphics. For
instance, the Koch snowflake curve is a well-known example of fractal pattern
generation through this rewriting process. The fractal nature of L-systems makes
them particularly effective for simulating the intricate and self-similar patterns
often observed in botanical structures. [20]
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The simplest class of L-systems is DOL-systems (deterministic context-free
Lindenmayer system), which, by its name, is deterministic and context-free. The
formal definition of this system is as follows.

Let us have an alphabet V , the set of all words V ∗ of alphabet V , and the set
of all non-empty words V + of alphabet V . Then the string is an ordered triple

G =< V, ω, P >, (1.5)

where V is the mentioned alphabet of the system, ω ∈ V + is a nonempty word
called axiom and determines the initial state of the system, and P ∈ V × V ∗ is a
finite set of rewrite rules. A rule (a, χ) ∈ P is written as a → χ, where a ∈ V is a
letter called predecessor and χ ∈ V ∗ is a word called successor. It is necessary
that for any letter a there exists at least one word χ. If no rule is defined for a
given predecessor, we define the identity a → a into the set of rules P . [20]

An example of using the L-system is to model the growth of the alga Anabaena
catenula, which has two types of cells that form chains. These two cell types can
be labelled as A and B in our alphabet. The initial state is A and the rewrite
rule is A → AB and B → A. So we start with A, for the first iteration AB, for
the second iteration ABA, for the third ABAAB, and so on. For this example,
the number of symbols in a given iteration is important. [20]

An interesting interpretation of the L-system is that the symbols can be read
as commands to draw or represent parts of the plant model. This rendering is
commonly interpreted using turtle interpretation. The turtle carries a state
(x, y, α) where the Cartesian coordinates (x, y) represent the position and α angle
(heading) represents the direction the turtle is facing. With the step size d and
angle increment δ defined, the turtle responds to commands given by additional
symbols. [20] For example, the following L-system:

ω : F − F − F − F

p : F → F − F + F + FF − F − F + F

specifies an approximation of a quadratic Koch island with an angle increment δ
equal to 90 degrees, and the step length d decreases between iterations. Figure 1.3
shows the sequence of iterations. [20]

L-systems are a great source for generating vegetation such as grasses, trees,
and plants. In figure 1.4 we show an example of plant generation. This kind
of generation makes it easier for environmental artists to populate the space, as
many similar artefacts that are recognizable but slightly different from each other
are needed. For example, the SpeedTree2 toolkit has been created to support
game studios in helping procedurally generate vegetation in games and movies.
This tool is used by major game companies to develop their AAA games, such as
Activision, Ubisoft, CD Projekt Red, and Epic Games.

1.2.4 Superellipsoids
Up to this point, we have given the basic methods for generating possible

contention in games, which can be found in any source on procedural generation.
Most of these can be easily applied to terrain, level, dungeon, and vegetation

2https://store.speedtree.com/
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Figure 1.3 Example of generating a quadratic Koch island for the first 3 iterations.[20]

Figure 1.4 Example of L-system fractal plants.[21]
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Figure 1.5 Superellipsoid collection with exponent parameters [23]

generation. However, in this subsection, we will look at how to generate meshes
for game creatures with a not-so-common method.

Superellipsoids are part of the superquadrics family, which represent common
shapes and are used in scientific visualisation, image analysis, graphical modelling,
computer vision and robotics. In this work we will try to use this approach in
mesh generation for game creatures. In the figure 1.5 we can see a set of different
superellipsoids with exponent parameters. [22]

A superellipsoid3 is an exposed ellipse in three-dimensional space. The shape
of the superellipsoid is defined by two real numbers. Its parametric surface vector
can be obtained from the spherical product of two superelipses and its implicit
function is listed in the equation 1.6
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where parameters a1, a2 and a3 represent the size of the superellipsoid in the
x, y and z dimensions and e1, e2 determine the shape. Using this equality, we are
able to construct an inside-outside function 1.7
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3Its description can be inferred from the name. The basis is a curve. The prefix super- indicates
that the base curve is exposed. The suffix -oid indicates that it occurs in three-dimensional
space. Superquadrics also include superhyperboloids (the original curve is a hyperbola) and
supertoroids (the latter consists of trigonometric torus equations).
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where x is the vector x = (x, y, z) and λ = (a1, a2, a3, ϵ1, ϵ2) is the parameter
vector. The inside-outside function gives us information whether the point x is
inside (F < 1), on the surface (F = 1) or outside (F > 1) the elispoid. [22] We
just need 8 parameters to define the superellipsoid. These few parameters give us
the ability to make different shapes.

1.3 Entity Component System Architecture
Entity component system (ECS for short) is a software architectural pattern

used to structure code and data. The ECS principle aims to create a modular
system that can flexibly organize data and separate this data from the logic. As
a result, ECS can enable efficient in-memory data management and a parallel
environment for logical computations.

In contrast to the object-oriented approach, where several properties belong
to one object that may not always be used, ECS is appropriately based on
the principle of Composition over Inheritance4. The key to this architecture
is that components and systems are independent. As the code base increases,
ECS simplifies code refactoring and, therefore, makes the code more readable.
Conversely, this model can be discouraged by having a much larger code base
than in the classic object-oriented approach.

ECS defines 3 basic pillars: entities, components and systems.

Entities are unique identifiers often represented as integers. They do not contain
any data or logic.

Components are represented as program data. They are linked dynamically to
Entities ([24]). Components tend to be very modular; one component may
represent a position, and another component a rotation.

Systems contain the behavior of the program. This is where all program logic
occurs.

The figure 1.6 shows an example of an ECS architecture where entities A, B
and C are bounded by the Translation, Rotation and LocalToWorld components.
The defined system obtains data from the Translation and Rotation components,
performs a multiplication over the data, and stores the result in the LocalToWorld
components. Components can be added and removed at will without the need for
additional code refactoring. Systems filter the entities by the specified components,
and skip any entity that is missing.

So in this case, the Renderer component for Entity A and Entity B has no effect
on the system. For example, if we remove the Rotation component from Entity B,
the system will only run over Entity A without an error. This happens due to
the independence of components and systems in this architecture and therefore
the architecture is suitable for keeping the code clean, reusable, extensible and
working with a large number of entities.

4The most common approach in game engines such as Unity is the component-based model
(or also called the entity-component model) derived from object-oriented programming. This is
the predecessor of ECS, where components are mapped to entities, except with the difference
that components contain both data and logic over that data.
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Figure 1.6 Example diagram of ECS architecture. [25]

Figure 1.7 Structure of Arrays and Array of Structures design patterns. [26]
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Using ECS architecture can lead to the introduction of data-oriented design,
where data is a key design element. This design is used with ECS to increase game
performance in the gaming industry through efficient CPU cache utilization. Data-
oriented design thus focuses on proper cache utilization and reducing cache misses.
A common pattern for this data organization is Structures of Arrays (SoA),
which groups arrays of homogeneous data so that they are easy to read and
to use in a program. The opposite and traditional way to this is Arrays of
Structures (AoS), where all data is organized in a single class, instances of these
classes are grouped into arrays, and methods are called on each instance. [27]
Figure 1.7 shows these concepts’ differences.

1.4 Unity DOTS
Unity Data-Oriented Technology Stack (DOTS) is a set of technologies and

packages that together provide game developers with a data-driven design approach
to for developing games in the Unity engine. This suite allows Unity developers
to take advantage of the ECS architecture compatible with GameObjects, the
Burst Compiler, which translates from IL/.NET bytecode to highly optimized
native code, and the C# Job System, which allows writing parallel code. These
functionalities are divided into their own packages and in this section we will
describe each of them.

1.4.1 Burst Compiler
Burst compiler allows you to improve the performance of your application. It

is installed through the Unity Package Manager and is primarily designed to work
with the Unity Job System. It is an LLVM-based compiler that optimizes Unity
job’s system code. [27] The Burst system compiles code in different ways that
depend on the context.

Burst compiles just-in-time (JIT) code when the application is enabled
in the Editor in Play Mode. The code is compiled asynchronously. Code can
also be compiled synchronously in the Editor using the appropriate annotation
on the Job definition. When the project is built in Unity, Burst compiles all
ahead-of-time (AOT) code into the native library that Unity provides with the
resulting application. [28] The key difference between the Unity compiler and the
Burst compiler is that the Unity compiler uses the Mono runtime and Just-In-Time
(JIT) compilation, or IL2CPP for converting IL to C++ for execution, which
involves runtime dependencies and limited real-time optimizations. [29]

Burst compilation has several limitations and requirements to be followed to
use it. [28] Among them are:

1. You can’t use managed objects or reference types: char, decimal, string,
managed arrays (instead, you need to use a native container such as Na-
tiveArray

2. You cannot use Enum methods, such as Enum.HasFlag.

3. Cannot access GameObject or Component code, so better to use with ECS
architecture.
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4. Cannot write static variables

5. No support for exception catching (it is possible to throw a condition but
only in the Editor).

Using the Burst compiler is very convenient, but you must be aware of its
limitations. Another difficulty can arise when developing using the Unity ECS ar-
chitecture. The Entities package (the Unity package that provides a data-oriented
implementation of the ECS architecture) can provide operations incompatible with
the Burst compiler (when C# features beyond the aforementioned Burst limits
are used). In this case, it is recommended to specify a WithoutBurst function
when creating the Job. [25]

1.4.2 Job System
The Job system is used to create multithreaded code so that the application

uses all available CPU cores to execute it. Multithreading provides increased
application performance because regular code, without using the job system, runs
on a single main thread synchronously. Splitting the process into several smaller
chunks (jobs, a unit of work that performs a specific task), running them on
multiple cores and processing them in parallel utilizes core capacity much more
efficiently and delivers massive performance. [29]

For multithreading, Unity has its own native job system that depends on the
number of CPU cores available on the device. Developers can schedule as many
tasks as they need, and the job system itself will ensure that there are enough
worker threads available, which the CPU core capacity provides. Thus, there is
no need to know how many CPU cores are available for task management. The
job system also includes its own safety system, which captures potential race
conditions (which commonly occur when two parallel operations are run over
shared data) and related bugs. With this system, developers can safely and easily
write parallelizable code. [29]

Part of the scheduling strategy is Work stealing, where when a worker thread
processes its tasks the fastest, it takes the tasks that are assigned in the queue of
another worker thread for processing. [29]

The job system is used by the Entities package. It is also recommended to use
jobs in code wherever possible.

1.4.3 Entities
The Entities package allows developers to take a data-driven approach with

the ECS architecture. The use of this pattern in Unity is different in principle
and implementation than the object-oriented approach.

The basis for ECS in Unity is the subscene. The subscene contains all the
content in the application under development. When GameObject and MonoBe-
haviour components are added to this subscene, they will be converted into ECS
entities and components using Bakers. [25]
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Baking

Baking is the most important process in Unity DOTS. GameObject data
contains both authoring and runtime data. Although this data model provides
some flexibility, it is not required for runtime, and since Unity processes both at
the same time, performance may be degraded. However, Unity ECS is designed
to represent data much more efficiently. It splits data into two types:

Authoring data: Any data created during the editing of the application.
Scripts, assets, etc. It is readable for humans.

Runtime data: ECS processes this at runtime. It is optimized for performance
and storage efficiency. Readable for computers. [25]

The baking process transforms authoring data into entities as runtime data.
This happens in the Editor only. Baker is instantiated once and its Bake method
is called multiple times in an unpredictable order. Since incremental baking can
occur over extended periods, bakers must be stateless and access data solely
through methods, avoiding value caching to prevent issues. [25] The following
code snippet is an example of creating an authoring data and its baker:

[MaterialProperty("_Size")]
public struct RenderSize_C : IComponentData
{

public float Value;
}

public class RenderSizeAuthoring : MonoBehaviour
{

public float value;
}

public class RenderSizeBaker : Baker<RenderSizeAuthoring >
{

public override void Bake(RenderSizeAuthoring authoring)
{

AddComponent(new RenderSize_C()
{

Value = authoring.value,
});

}
}

Listing 1.2 Definition of size component in Unity DOTS project.

Authoring class must be inherited from MonoBehaviour and Baker inherits from
the Baker class. The class must be saved in a file named RenderSizeAuthoring.cs
for the Baking process to work. The Bake method is called for each authoring
component that is marked for baking. In the case of full baking, all authoring
components in the authoring scene are baked. It is also possible to perform
incremental baking, which bakes those components that have been modified or
their dependencies modified. [25]

Archetypes

What happens is that we can have many entities that have a unique combination
of component types. This is called an EntityArchetype. These are used to
group a combination of components under a unique identifier for entities. Consider
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Figure 1.8 Visualisation of entity archetype. [25]

the diagram describing the ECS architecture from section 1.3. In this example,
because Entity A and Entity B have the same components, they are grouped
into one Archetype and the components of Entity C into another Archetype. If
a Renderer component were removed from Entity A or Entity B, the entity’s
Archetype would change to the same as that assigned to Entity C. [25] The
example can be seen in the figure 1.8.

The archetype of an entity dictates the storage location of its components in
ECS. Memory is allocated in chunks, each represented by an ArchetypeChunk
object, and a chunk contains only entities of the same archetype. When a chunk
is filled, ECS allocates additional memory chunks for new entities of the same
archetype. If an entity’s components are added or removed, altering its archetype,
ECS transfers the entity’s components to a new chunk. [25]

Aspects

We can also group components into a single C# struct. Aspect is used to
organize component code and simplify queries in systems. In the code snippet
1.3, we define an Aspect with several rendering components. According to the
documentation, the Aspect definition must be a read only partial struct and
implement the IAspect interface. [25] Code snippet 1.4 shows how to use such
an Aspect when filtering entities in the system. Instead of writing down all the
components from code snippet 1.3, we can use only this Aspect that encompasses
the required components.
public readonly partial struct SpawnBeautyRenderAspect : IAspect
{

public readonly Entity Self;
public readonly RefRW<RenderColor_C > Color;
public readonly RefRW<RenderMass > Mass;
public readonly RefRW<RenderAdornmentSize_C > AdornmentSize;
public readonly RefRW<RenderAdornmentShape > AdornmentShape;
...

}

Listing 1.3 Example of Aspect in Unity DOTS project.
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foreach (var (_, s) in SystemAPI.Query<SpawnBeautyRenderAspect >()
.WithAll<Spawn_C >()
.WithEntityAccess())

{
...

}

Listing 1.4 Example of Aspect usage in system.

1.5 Graphics Pipeline
This work deals with generating graphical elements on the GPU, so it is

necessary to familiarize ourselves with the graphics pipeline and its different
elements. The graphics pipeline deals with rendering a 3D scene description on
a 2D screen and the transformation between spaces and data conversion. This
section focuses specifically on the general graphics pipeline and the usage in the
Unity engine.

1.5.1 Unity Rendering Pipelines
Unity has several rendering pipelines available. [29] Pipelines available:

• Built-In Render Pipeline (default with limited customization options),

• Universal Render Pipeline (URP, which can be customized),

• High Definition Render Pipeline (HDRP, used for strong customization
and options to high-fidelity graphics for high-end platforms).

Each pipeline is designed for different solutions in game development, and a
listing of the differences between these render pipelines is provided in the Unity
documentation5.

1.5.2 Render pipeline structure
The rendering pipeline runs in the following steps [29]:

1. Culling, which decides what objects are rendered on the screen, e.g. frustum
culling (removing objects outside the camera view), occlusion culling (hidden
objects behind other objects)

2. Rendering, where objects with their set lights are rendered into pixel buffers

3. Post-processing, where pixel buffers are modified to generate the final output
frame on screen, e.g. color grading, bloom, depth of field.

The pipeline consists of a sequence of operations where the input is vertices
and mesh textures and the output is pixel color values on the render target. The
figure 1.9 shows such a simplified sequence.

5https://docs.unity3d.com/Manual/render-pipelines-feature-comparison.html
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Figure 1.9 Overview of rendering pipeline in Direct3D version 11. [31]

At the start of this sequence, the input assembler collects all raw vertex data
from the specified buffers. Subsequently, shaders start working. A shader is a
program that runs on the GPUs and performs a computation. [30]

The Vertex Shader is triggered for each vertex and applies transformations
between object space and screen space. It then moves its data further along in
the pipeline. [30]

Hull Shader, Tessellator and Domain Shader are part of the tessellation
pipeline. The tessellation process is optional and uses the GPU to compute a more
detailed surface from a surface that was created from quad or triangle patches
or isolines. The Hull Shader produces geometry patches that correspond to each
input patch. In the Tessellator, a sampling pattern is produced that represents a
geometry patch and generates a set of smaller primitives consisting of a triangle,
point or line and these samples are connected. The Domain Shader calculates the
vertex position for each domain sample. The use of tessellation is beneficial in
memory saving, displace mapping capability, scalable rendering techniques and
improved performance. [31]

Geometry shader runs over each primitive and can discard it or create
more primitives than it received. [30] The Stream Output then connects the
primitives from Geometry Shader to output buffers.

In the Rasterizer phase, the primitives are divided into fragments (pixels)
that fill the framebuffer. This phase clips (stamps) fragments that are outside the
raster or that are behind other fragments. [30] This section also implements the
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viewport, rendering selection and primitive settings. [31]
The Pixel Shader, or Fragment Shader, is called over each pixel (fragment)

that is available after all other phases and detects the color and depth value of
that element. The output of this shader is a single pixel. [30]

The final stage of the render pipeline is Output Merger, which applies
functions to render-target blend, depth and stencil operations. The pixel is then
copied to the framebuffer, which is a buffer of the generated image and can be
sent to the user’s monitor. [31]

1.5.3 Writing shaders in Unity
In Unity, you can write any shaders that are part of the graphics pipeline. It

is also possible to write Compute shaders that run on the GPU but outside of
the normal rendering pipeline. Compute shaders are used for parallel algorithms
and often require a thorough knowledge of the GPU architecture to be effective.

There are two approaches for writing shaders. One is using the Shader
Graph, which is a Unity tool for creating shaders without writing code. It
involves creating nodes in the graph framework and linking them together. Each
node represents an operation, function or property. In Figure 1.10, we created a
lit shader graph asset (a pre-made asset from Unity) and changed the color using
the Color node. This example can be found in the project code, specifically in
Assets/Shaders/ShaderGraph.

The advantage of using Shader Graph is its simplicity and the lack of program-
ming knowledge. Changes are propagated real-time, so developers can recognize
the effect immediately. But for that price, ShaderGraph can produce performance
overhead compared to manually written shaders. Also, some more advanced
settings may be more complicated than writing it manually.

The other approach to creating shaders in Unity is ShaderLab. This is a
Unity-specific language for writing shaders by hand. It also generates output from
the Shader Graph into this type. In this thesis we will write shaders in ShaderLab
for more flexibility, convenience and challenge.

1.6 Chapter summary
In this chapter we have introduced some approaches to procedural generation

of visuals in games that can be used. We have found that using a noise function to
generate fractals is very common. We have also explored the use of L-systems for
natural similarity and added superellipsoids to these types of generation, which
are interesting to explore for content creation.

We further explored the Entity Component System (ECS) architecture. We
described its different parts and how they can interact with each other. Also
important with this architecture is the Structures of Arrays programming pat-
tern. We found that the use of ECS is very much related to the data-centric
approach and is used to make the CPU cache more efficient and game performance.
This architecture is part of the Unity DOTS suite of technologies, for which we
learned about its other sub-tools: Burst Compiler and Job System, which provide
application performance enhancements and the ability to create multithreaded
code.
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Figure 1.10 Shader graph tool.

Finally, we defined the graphics pipeline and how to write shaders in Unity.
Unity has several rendering pipelines that can be used for development and have
various advantages. The Shader Graph visual tool is used to create shaders in
Unity, however for the purpose of this thesis, shaders will be written manually
using ShaderLab.
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2 Game design
This chapter is dedicated to information about the game with the working

title “Game of Life”1. All the information is based on the game design document,
written by the author of the thesis and the head of the game development team,
Jakub Holík.

2.1 Motivation
We are fascinated by the splendour of nature’s diversity. From small, absolutely

simple steps and procedures, we can create a complex system. As humans, we are
growing and learning all the time. We build knowledge, careers, relationships, and
families. We set goals and strive to meet them. We live and survive. Motivation
is based on 4 principles based on the personal beliefs and ideas of the author and
the development team:

1. Our possibilities are limitless. The sky is the limit. We can program
anything we can think of in programming, even if we don’t know what to do.
We can cope with difficult situations. Whatever we do has a consequence.

2. The beauty of mathematics. Mathematics is based on the universe.
Everything in our lives contains numbers, calculations and relationships.
Using mathematics, we can express a relation. We can use it to describe a
powerful model. We can describe rules and dependencies. We want to let
people express themselves through mathematics.

3. Breaking problems down into sub-problems. Every problem can be
decomposed until we get to the atomic problems. They allow us to solve
the initial problem in small steps.

4. Humans. People have ideas, abilities, and experiences to contribute to the
world. They are incredible creatures that have a wide imagination. Let’s
give them the freedom to be creative or to try things out. What they come
up with, they can show to other human beings. Together, they can build
something extraordinary.

Based on this knowledge, we decided to create a game that shows the player
these fantastic aspects of our world. The game design provides the following
concepts:

• Strategy can be varied. In this game, it’s not just about being the strongest
or the fastest. It may also be about getting older more slowly or being
difficult to eat. To make a refuge and sleep through challenging weather
and so survive. Allowing the player to analyze the ecosystem of each run to
find a niche their species will fit and thrive in.

1The working title is based purely on motivation. It does not refer to Conway’s Game of Life,
a cellular automaton whose behaviour resembles the evolution of a community of living organisms.
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• Create rules using the tools provided, from which more complex rules can
be built. These are based on mathematics. The player can use them to
construct behaviours that contribute to his strategy.

• Build a diverse system from smaller steps. Complicated behaviours can be
assembled from player-defined behaviours, broken down or combined into
more sophisticated or simpler elements.

• Share the player’s experience and ideas. Anything a player does can be
shared with other players who can appreciate the creativity and thoughts
behind the solution.

2.2 Game overview
It is a 3D top-down evolutionary strategy game that focuses on analyzing

the environment and choosing an evolutionary path that can lead this species to
successful colonization of said environment. Players can accomplish given goals.
After completing the objectives, they can save their species as part of the game
and other players will have a chance to encounter that species. To evolve their
species, players have several tools for analyzing the environment and acting upon
gathered knowledge.

To analyze the environment, players can do the following:

1. Change their perception of the environment.

• This is due to changing the rendering of the game world so that the
player can discern important information. We call these renderings
Lenses.

• Within the environment, the player can choose the displayed informa-
tion available. We call these sets Perspectives. This is a display of
all information, called a God Perspective, used to analyze the entire
environment. The second view, called the Creature Perspective, shows
the player only the information available through their creature. This
method helps to analyze the behavior of your own creature towards
the environment.

2. Thoroughly examine any game entity. The player can discern what state
the entity is in and what it is doing. The player can look at the numerical
values of his creatures.

3. The player uses customized notifications to know about important events.

To evolve his or her creature type, the player can do the following:

Adapt a species. Players have a certain amount of Adaptation points for which
they can buy Adaptations. These can add new Actions to creatures of their
species, change values of attributes or enhance senses.

Change a species behaviour. Players can set the behaviour of creatures of
their species in different situations. This can happen using the Behaviour
editor.
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Define relations between values in the game. This is the core concept of
the game. With Expressions, player can define for example a new Attribute,
which value will be calculated from values of other Attributes (the more
something is red, shiny and rather small, the more foodlike it is) or they
can define a Motivation for choosing a certain Behavior (the more hungry a
Creature is the more motivated it is to start searching for food). This can
happen using the Expression editor.

2.3 Technical overview
The game is data-driven. Individual game elements are treated as assets that

can be modified by the player and shared among other players through the online
system. Such elements are Lenses, Attributes, Behaviour, Species and Expressions,
as introduced in the previous sections.

A level consists of Pieces, which are game entities visible to the player. Each
Piece has its own attributes. Creatures, inherited from Piece, can make behavioural
decisions. The player develops his own Species and can apply the adaptations
and behaviours he creates to these. Each player can have many creatures in their
Species.

Each object may or may not have multiple attributes. This may cause some
entities to have a low number of attributes, but others may have too many
attributes. The most suitable architecture for this game is the Entity Component
System architecture.

The game is developed in Unity DOTS, in C# programming language.

2.4 Visual design
The game’s visual aspect is strongly inspired by nature and its diversity.

Nature provides different shapes with unique patterns that can be simple yet very
appealing. At the same time, it must display the entity’s current state for the
player to be able to analyze. Therefore, the graphical part must be simple but
varied for the player.

The appearance of the game can be divided into two types: Beauty Lens and
Attribute Lens.

The Beauty Lens shows the world in all its attractive glory. Based on this,
the player can distinguish the size, colours, rigidity, or even the creature’s mass.
The design is abstract, with concrete elements that are manually created and
animated. These concrete elements are called Stickers, which are stuck to the
game object to represent a specific part of the entity, e.g. eyes, ears, horns, and
tail. Stickers are arbitrarily glued onto the entity by the player, and the player
can decide whether to render these elements at all. This rendering is the dominant
way to represent the world.

The Attribute Lens helps the player analyze the world more thoroughly. It
displays individual attributes and their values in a way that is clearly discernible
to the player. Thus, the graph plotting method, such as radar chart (Figure 2.1)
or coxcomb chart (Figure 2.2), is recommended. The player can compare the
creatures with each other and can tell at a glance how similar they are.
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Figure 2.1 Examples of radar chart. [32]

Figure 2.2 Examples of coxcomb chart. [33]
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Figure 2.3 Visual target

It is desirable that the visuals of the game be generated in addition to Stickers.
The figure 2.3 shows the design for Beauty Lens created in 3D Max by the

project leader, Jakub Holík. Each object consists of smaller particles called adorn-
ments. The height, width, shape and colour of each object can be distinguished.

2.5 Visual requirements
Based on the design document, visual requirements related to game visuals

were written.

VR01: The desired appearance must be continuous. Attributes change
over the course of the game, and a slight change in the value of one attribute
must not significantly change the appearance of one Piece nor entire game
world.

VR02: The visual appearance must show the state of the individual
entities. The player can analyze the environment and his creatures through
this display.

VR03: Abstract visual elements should be complemented by concrete
visual elements. These concrete elements are called Stickers and are used
to recognize the entity by player in more detail.

VR04: The generation of the appearance must be robust. It is possible
to create a sufficient variety of different shapes. At the same time, it must
not produce nonsensical shapes for given inputs, i.e. arbitrary combinations
of attribute values must always produce a meaningful shape.

VR05: Appearance generation must be efficient and real-time. Changes
to attribute values are reflected in the visual immediately.
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VR06: The appearance generation process should be extensible. It is
possible to slightly modify or improve the generation method. Individual
parts can be reusable.

VR07: The shape of creatures must be 3D.

2.6 Chapter summary
This chapter outlined the game’s design, tentatively titled Game of Life. The

game is a data-driven, 3D top-down evolutionary strategy inspired by natural
processes and human cognition. The objective is to complete tasks and develop
an efficient species of creature. We discussed various game concepts and the
architecture based on the Entity Component System (ECS) principle. Additionally,
we detailed the desired visual aesthetics, divided into two categories: Beauty Lens
and Attribute Lens. The Beauty Lens features abstract visuals enhanced with
Stickers that add concrete elements. The Attribute Lens includes graph elements
that allow players to analyze the state of the objects.
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3 Experiments
This chapter deals with experimenting with visuals for the game. Several

methods were used in this thesis and tested to meet the visual requirements. We
then select the most suitable solution to implement in the next chapter.

3.1 2D Shape Interpolation
One of the most straightforward ways to create a mesh is to interpolate between

existing shapes. We created several 2D shapes (square, circle, triangle, pentagon)
to interpolate between. For this purpose, we will use the Lerp function provided
by the Unity Mathf library. The figure 3.1 shows the example of interpolation.
This method is insufficient, but we can combine it to generate terrain and creatures
as unique visual additions. Interpolating shapes also gets us closer to the visual
target, and we will call these additions adornments as we have defined them in
the 2 Game Design section.

3.1.1 Adornments
For generation purposes, let’s make it more interesting. Let’s generate multiple

of these adornments within a single mesh. For each vertex, we’ll generate its
own adornment using the geometry shader. This means we generate four more
vertices for each vertex, which we position around the original vertex and set to
height. We can randomize the position of the adornments to a certain distance
and influence it with the displacement map. Figure 3.2 shows an example of such
adornments applied to a plane mesh.

3.2 Golden ratio
As an experiment for a natural look, we tried using Golden Ratio. Golden

ratio is the relationship between two numbers if their ratio is the same as the
ratio of their sum to the larger of the two quantities. This variable is denoted by
the Greek letter Φ and indicates the number 1.618…. The Golden Ratio is related
to the Fibonacci numbers, where ratio of two subsequent numbers of the sequence
is very close to the Golden Ratio.

Figure 3.1 Shape interpolation. The interpolation starts with a circle to a pentagon
(the shape on the left), then from the pentagon to a square (the shape in the middle)
and from the square to a triangle (the shape on the right).
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Figure 3.2 Adornments.

Figure 3.3 Generation using Golden ratio and 2D shape interpolation.

The beauty of the golden ratio lies in its depiction of natural aspects. Tree
leaves and pine cone seeds grow in a patterning that is around the golden ratio and
the petal spirals approach Φ value. This motivated us to try spirals in generating
our visuals as well and the result can be seen in figure 3.3. Indeed, we are able
to generate spirals that give us natural aspects, but the resemblance to plants is
very concrete and can be distracting when large in number. Nevertheless, it is a
very interesting idea to generate at least 2D creatures or some plant object in an
environment.

3.3 Fractals
Fractals, a natural phenomenon that rely on self-similarity, as described in

Chapter 1 Analysis, section 1.2.2 Fractals, were also explored for generating visuals.
The advantage of fractals is that they give infinitely many possibilities to explore.
The problem is that if we create a fractal, such as a Mandelbrot set, containing
values from the attributes of a given environment or creature, a slight change in
one attribute would cause the fractal to change significantly. Although fractals can
be fascinating to look at visually, we need something continuous into which we can
project attribute values, especially for generating creatures. Fractals deepen their
detail through their iterations, which is not appropriate for creature generation.

The question may be whether we can use fractals to generate a level environ-
ment. In the picture we have a generated part of a Mandelbrot set, created in
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Figure 3.4 Subset of the Mandelbrot fractal.

ShaderToy12. Such a visual could be used for a 2D space. However, in the context
of game design, each level fractal needs to exhibit a logical sense of place, why it
appears there and what is in that particular place.

3.4 L-Systems
L-systems may provide the possibility of generating natural phenomena in the

landscape or the possibility of growth of the generated creature. As for fractals,
this is inconsistent with the visual requirement for robustness, as the generated
L-system looks similar to other attribute values. Also, like fractals, they have the
problem of not operating in a continuous space, i.e., if the value of one attribute
is changed slightly, the generated shape is reshaped entirely.

3.5 Superellipsoids
This thesis challenges the use of super ellipsoids. In terms of shape generation

in 3D space, it seems particularly suitable for creature generation. We can control
the shape using only a few parameters.

As part of this thesis, we have tested an algorithm to generate a superellipsoid
based on a paper [22] by Paulo Ferreira (2018). The first step is to generate
a point cloud. Thanks to the paper mentioned above, we can also obtain each
vertex’s normals to the generated point cloud. We then process these on the GPU
to create the creature’s imaginary skin.

3.5.1 Point sampling
To sample points, we need to use the superellipse description. Superellipses

can be described as
x(θ) =

[︄
a cosϵ(θ)
b sinϵ(θ)

]︄
(3.1)

1Code available: https://www.shadertoy.com/view/XXyXR1
2ShaderToy is an online community tool for writing shaders using WebGL and share them

between other users. It is suitable for quick experimenting, learning and visualising.
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where a1 and a2 are the semiaxis and ϵ is the roundness parameter. We use
the relation to calculate the ∆θ(θ) as described by Pilu and Fisher (1995) [34]

∆θ(θ) = D(θ)
ϵ

⌜⃓⃓⎷ cos2(θ) sin2(θ)
a2 cos2ϵ(θ) sin4(θ) + b2 sin2ϵ(θ) cos4(θ) (3.2)

where D(θ) is the arclength and can be set to a constant. The angles of θ are
obtained by iteratively updating θi in a dual manner:

θi = θi−1 + ∆θ(θ), θ0 = 0, θi <
π

2 (3.3)

θi = θi−1 − ∆θ(θ), θ0 = π

2 , θi > 0 (3.4)

where first, we increment θ from 0 while to less than π
2 , and for the second,

we decrement from π
2 to 0.

The author of the paper, Paulo Ferreira (2018), used these relations and
adapted them for 3D space, i.e., for both supervises used as spherical products of
superquadrics. The definition of the superellipsoid as the spherical product of two
superellipses is

r(η, ω) =
[︄

cosϵ1 η
a3 sinϵ1 η

]︄
⊗
[︄
a1 cosϵ2 ω
a2 sinϵ2 ω

]︄
=

⎡⎢⎣a1 cosϵ1 η cosϵ
2 ω

a2 cosϵ1 η cosϵ
2 ω

a3 sinϵ1

⎤⎥⎦ , (3.5)

− π

2 ≤ η ≤ π

2 , −π ≤ ω < π

To sample η angles for the first superellipse according to the paper, we substitute
for the equation 3.5

θ = η, ϵ = ϵ1, a = a1, b = a2 (3.6)
and for the ω angles, we substitute

θ = ω, ϵ = ϵ2, a = 1, b = a3. (3.7)

The superellipsoids are symmetric concerning the three axes, so we only sample
from 0 to π

2 and mirror the result.
We will put this knowledge into practice. When generating points, we create

two arrays of calculated θ, one for parallel and one for meridian, where the
parameters for parallel are 3.7 and for meridian are 3.6. We use the function to
update θ, described in equation aquation 3.2 and aquation 3.3, which returns
the ∆θ. We do this update in an iteration until the newly computed θ is greater
than π

4 (we use the Clamp method on these values afterwards to keep the interval
(0, π

2 )).
Having obtained these θ values, we can now move on to sampling the points

using the equation 3.5 relation to calculate the coordinates on each axis. We
should note that the exponentiation using epsilon is a signed power function, thus

cosϵ(θ) = sign(cos θ)| cos θ|ϵ. (3.8)

The figure 3.5 shows an example of generated superellipsoid point clouds.
Since we control the shape with parameters ϵ1 and ϵ2, we get a unit sphere in
Figure 3.6a by defining these parameters ϵ1 = ϵ2 = 1 and a1 = a2 = a3 = 1.
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(a) ϵ1 = 1, ϵ2 = 1, D = 0.1 (b) ϵ1 = 0.8, ϵ2 = 1.8, D = 0.1

(c) ϵ1 = 2, ϵ2 = 2, D = 0.1 (d) ϵ1 = 0.15, ϵ2 = 0.5, D = 0.1

Figure 3.5 Superellipsoid point sampling for various parameters

3.5.2 Normal calculation
To compute the normals for each vertex, we use the relation obtained from

the paper by Paulo Ferreira (2018):

n(η, ω) =

⎡⎢⎣
1
x

cos2 η cos2 ω
1
y

cos2 η sin2 ω
1
z

sin2 η

⎤⎥⎦ (3.9)

Figure 3.6 shows the calculated normals. As can be seen, the computed
normals are not optimal, and the non-uniform distribution of vertices can be seen
as well. This can cause us problems when setting certain parameter values.

3.5.3 Shading
Now, for the calculated point cloud and normals, we are able to give this shape a

”skin.” We will use the adornment rendering method from section 3.1.1 Adornments,
where we generate one adornment for each vertex in the compute shader. Examples
of already-known shapes can be seen in Figure 3.7. The different shapes have
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(a) ϵ1 = 1, ϵ2 = 1, D = 0.1 (b) ϵ1 = 0.8, ϵ2 = 1.8, D = 0.1

(c) ϵ1 = 2, ϵ2 = 2, D = 0.1 (d) ϵ1 = 0.15, ϵ2 = 0.5, D = 0.1

Figure 3.6 Superellipsoid normal sampling for various parameters

different settings, such as adornment shape, size and adornment variability, to
show the variety between these shapes. We can see that shape 3.7d contains a
few holes. Again, these holes are due to the non-uniform distribution of vertices.

3.5.4 Results
Creating a point cloud and calculating the normals may take more time for

more extensive sampling. We measured the time of the initial creation and the
update time of the existing superellipsoid instance, and the result is in the following
table 3.1. Measurements were performed in Unity version 2023.3.0b5 on hardware:
CPU Processor 13th Gen Intel(R) Core(TM) i7-13700F, 2100 Mhz, 16 Core(s), 24
Logical Processor(s) and GPU NVIDIA GeForce RTX 4070 Ti.

The initial generation takes around three to four milliseconds, and each frame
update takes around two milliseconds. This is all assuming D = 0.1. However, we
would like to know if we can safely decrease (or increase) this parameter with no
performance dept. Fewer vertexes are sampled as this parameter increases, which
helps performance, but the algorithm’s performance suffers with more extensive
vertex sampling.
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(a) ϵ1 = 1, ϵ2 = 1, D = 0.1 (b) ϵ1 = 0.8, ϵ2 = 1.8, D = 0.1

(c) ϵ1 = 2, ϵ2 = 2, D = 0.1 (d) ϵ1 = 0.15, ϵ2 = 0.5, D = 0.1

Figure 3.7 Shader applied superellipsoids for various parameters.

Let’s take one of the example parameters, the sphere. We change its size (the
parameters a1, a2 and a3 in the equation 3.5), and the parameter D. Table 3.2
contains the measured values for various D and parameters a1, a2 and a3. We
can see that the lower the value of D, the longer the generation time increases,
as well as increasing values of width and height. This means that for optimal
entity generation, we would have to choose a constant and highest possible D for
which the generated visual would make sense. It is more complicated for width
and height, as these will be affected by the entity attributes if the entity grows.
From our observations, the generation time tripled if we changed only height and
width with the same D.

3.6 Voxel-based superellipsoids
The idea of voxel-based generation is already present in games that pride

themselves on procedural generation. Voxels are also a beneficial approach in our
case.

Instead of generating a point cloud of the superellipsoid, we generate uniform
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Parameters Create time (ms) Avg. update time (ms)
(a) ϵ1 = 1, ϵ2 = 1, D = 0.1 3.8017 1.9178

(b) ϵ1 = 0.8, ϵ2 = 1.8, D = 0.1 1.5609 1.5214
(c) ϵ1 = 2, ϵ2 = 2, D = 0.1 3.7189 1.8864

(d) ϵ1 = 0.15, ϵ2 = 0.5, D = 0.1 4.9804 2.5908

Table 3.1 Superellispoid generation measurements.

Parameters Create time (ms) Avg. update time (ms)
D = 0.1, a1 = a2 = a3 = 0.5 0.9633 0.9660
D = 0.05, a1 = a2 = a3 = 0.5 3.2408 3.0929

D = 0.1, a1 = a2 = a3 = 1 3.8017 1.9178
D = 0.05, a1 = a2 = a3 = 1 9.387 9.4190
D = 0.1, a1 = a2 = a3 = 2 9.2289 8.6747
D = 0.05, a1 = a2 = a3 = 2 35.914 54.4560

Table 3.2 Measurments of the superellipsoid’s sphere for various D, height and width.

vertices in a cube. This achieves the desired uniform distribution of vertices
that we could not achieve in the previous section (the used paper promised a
close-to-uniform result due to nonlinear computations). We also don’t have to
recalculate the point cloud for different superellipsoid parameters, which allows
us to have a more stable generation time.

We created a script to generate a voxel point cloud. The resulting points are
sent to the shaders for processing, which moves the problem of Superellipsoid and
normal calculation to the shaders.

We will use the Inside-Outside function of Superellipsoid 1.7 from Chapter 1.5,
Section 1. This function represents whether a given point is inside the Superellip-
soid, on the surface, or outside. Since we already have the vertex information, we
can call this function and, if the vertex falls within the Superellipsoid, continue to
work with it (generate an adornment for it). Regarding normals, we can use the
equation 3.9 and implement it in the shader.

The resulting voxel point cloud and the rendering of the Superellipsoid within
this voxel are shown in Figure 3.8. The complexity of generating points in a voxel
is O(n3). On the test hardware, the generation takes about 1.8 ms. This approach
gives us an advantage over Superellipsoid’s point cloud generation because we are
not parameter-dependent.

3.7 Chapter summary
In this chapter, we experimented with the knowledge gained from the analysis

and explored ways to generate visuals. Our experiments found that to get closer to
the visual target defined in the previous Game Design chapter; it was appropriate
to use 2D shape interpolation and adornment generation through the geometry
shader. We can combine the generation of adornment with another way to generate
visuals. For now, a plain surface combined with adornments and the possible use
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Figure 3.8 Superellipsoid generation within a voxel. The point cloud voxel is shown
on the left; the superellipsoid is plotted on the right.

of noise will be enough to create the environment. We will use the superellipsoid
function to generate the creatures, as it seems the most efficient of all the methods
and in line with the visual requirements. At the end of our experimentation,
instead of generating the point cloud on the CPU, which is a laborious process,
we can create the point cloud as a voxel grid, where we process the vertices that
fall into the Superellipsoid on the GPU.
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4 Implementation
In this chapter, we will describe the practical part of the thesis. We will

explain the setup of Unity DOTS, creating an attribute as input to shaders, and
discuss in detail the required solution from the previous chapter 3 Experiments
for terrain and creature generation.

The source code can be found in the thesis appendix (A.1). The source code
is a part of the game under development, which has been trimmed down to only
the part this thesis focuses on and the author has worked on. Thus, there may
be empty systems in the code or additional comments about functionality that
are beyond the scope of the thesis and are there because of dependencies between
systems (e.g., order of execution of systems or having necessary components).

4.1 Unity DOTS Setup
First, we need to set up the appropriate DOTS environment. When we create

a project, we need to download two packages via Package Manager: Entities and
Entities Graphics. These packages will also download other dependent packages,
such as Mathematics and Burst, needed for ECS to work. That’s it for running
Unity DOTS and using the ECS architecture. We must create a Subscene to
create the first entity. A Subscene is specific to ECS. All objects under the
Subscene are converted into entities using the Baking process as described in
section 1.4.3 Entities.

4.2 Generation pipeline
To generate visuals, we need to prepare the inputs for our shaders. The figure

4.1 shows a diagram of how we can pass these inputs from components to the
shader and what systems are needed to run the generation and rendering. First,
we need to determine what components we need. Such elements are different for
terrain, creatures, and the Lens type.

Components are added and removed according to the selected Lens. At the
beginning of the run, we start the Render Init System, which prepares the default
Lens and sets up the necessary components in the game’s first frame. When the
Lens is changed, the Render Init System is run to remove the original components
from the previous Lens and add components to the newly selected Lens. After
Lens change, the Pass Attributes System takes control over passing values from
attributes to render components. We need a third system, the Render Mesh
System, that regenerates the mesh and sets up the material when the Lens is
changed. Then, the values from the components are passed to the input of the
shader of the set material.

This scheme applies to both terrain and creatures. We aim to use the same
logic to render anything from an ECS perspective. However, we need to distinguish
creatures from terrain in these systems, and it is worth considering splitting into
multiple systems so that terrain rendering is not dependent on creature rendering
and vice versa.
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Figure 4.1 Scheme of the ECS architecture and pass data into material’s shaders
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Terrain Creature
Color Color

Adornment size Adornment size
Adornment shape Adornment shape

Roughness Roughness
X coordinate Mass
Y coordinate Fuzziness

Variance
Height
Width

Hardness

Table 4.1 Creature and Terrain components in Beauty Lens.

4.3 Component and Render systems preparation
According to Game Design, there are two types of lenses: Beauty Lens and

Attribute Lens. Specific components define these Lenses. We can render these
specific components when creatures and terrain have these components. In Table
4.1, we define the components for Beauty Lens.

We use bold-coloured components for both creatures and terrain. Each has
some extra components.

As for the Attribute Lens, this consists of generic components that the player
will be able to define in terms of the values involved. That’s why we’ll generously
name them Attribute1, Attribute2, etc. This thesis has a maximum of 5 attributes
in the Attribute Lens. We have created it only for creatures1.

4.3.1 Create a component
We showed an example of creating a component in 1.2, section 1.4.3 Baking

of the Analysis chapter. We want to store the value of each render component.
The script in which the component we defined must follow the <component
name>Authoring convention. We recommend putting Baker components in the
same script.

For the component’s value to be written to the shader in the set material, the
component must have the [MaterialProperty(<Property name>)] annotation.
This annotation marks the component data as input in the material property in
the shader. The name of the property we insert into this annotation must be the
same as the name of the property we define in the shader.

In this way, we have created the components we need for rendering. We
store all these rendering components that are used for creatures and terrain in
the path Assets/Scripts/Render/LensValuesComponents under the convention
Render<name>Authoring.

In addition to the rendering components, we will also create components for
the Lens itself. These components reference the attributes that affect the rendering

1Attribute Lens will also be made for terrain in the future (for the sake of analyzing terrain),
but this method is not yet designed, nor is it part of the game’s minimum viable product.
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and define the given Lens. The definition for Beauty Lens creatures (we call them
SpawnBeautyLens) is in the following code snippet 4.1.

We reference each Attribute using a SerializableGuid. This Guid is generated
automatically when we create the Attribute.

public struct SpawnBeautyLens : IComponentData
{

public SerializableGuid AdornmentSizeAttribute;
public SerializableGuid AdornmentShapeAttribute;
public SerializableGuid ColorAttribute;
...

Listing 4.1 Spawn Beauty Lens component.

4.3.2 Create an attribute
To put a component on a given entity, we create an Attribute for the component.

All the Attributes are stored in Assets/Data/Attributes. Attributes are game
assets that we load when the game starts, and their values are affected during the
game. Their Attribute values are linked to the rendering components, affecting
the rendering.

An Attribute is a ScriptableObject2 that contains the values of a component.
In the current state of the work, these are values such as Max (the maximum
value that the component can reach), Min (the minimum value), Absolute Value
(the absolute value of the component with adaptations and buffs applied), Relative
Value (the relative value of the component), and so on. For our work, we only
need the absolute and relative values as the input to the shader.

4.3.3 Add components to Lens
Both attributes and Lenses are assets. We add a reference to attribute assets

within the asset Lens through the UI. The attribute assets defined in the Lens
asset must match the attributes defined in the Lens component. The figure 4.2
shows such an asset definition with attributes and its generated Guid. We can
also fill in the Summary (description of the Lens) and Creator3 (Guid of the Lens
creator). Lenses created by game authors have zero Guid.

We use the Aspect functionality described in Analysis 1.4.3 to link the values
from the attributes to the render components. This Aspect bundles all the render
components and has methods to add or remove them and update the component
values from the attributes.

This pipeline is the same for Attribute Lens creation.

4.3.4 Create Render Systems
For rendering, we have systems that meet the following three requirements:

• When a player starts the game, set the default Lens and, with it, the
necessary components. We set components for all terrain and creature

2ScriptableObject is a data container. [29]
3In the future, players can create their Lenses to pass to other players in the Asset store.
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Figure 4.2 Spawn Beauty Lens Asset definition in Unity Editor.

entities. During the gameplay, if player changes the Lens, remove the
components of the current Lens and assign the components needed for the
next Lens. 4

• Pass data from attribute components (4.3.2) to render components (4.3.1).
This way, the render components will have the current values and render
the objects correctly. 5

• Generate a mesh according to the current Lens and register its correct
material. If the current Lens is a Beauty Lens, generate a point cloud voxel.
If the current Lens is an Attribute Lens, create a point cloud for the 2D
plane (4 vertices). 6

4.4 Terrain
This section details the creation of the game’s terrain. We specify the terrain’s

characteristics and outline the processes for generating and integrating the terrain
into the game. A simple terrain is sufficient for current purposes, as the work
has become more focused on creature generation. In this thesis, we only consider
Beauty lens for the terrain.

4.4.1 Terrain Characteristics
The overall terrain in the game is characterized by a 2D grid, where each

square is an entity, we call tile. We can freely add and remove components to each
square. This is desirable because the components define the square characteristics:
whether the field is grassy, whether an object surrounds it, whether it is accessible,
etc.

4Code: Assets/Scripts/Render/RenderInitSystem.cs
5Code: Assets/Scripts/Render/PassAttributeDataToRenderComponentsSystem.cs
6Code: Assets/Scripts/Render/RenderMeshSystem.cs
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Figure 4.3 Terrain with generated colour using Perlin Noise

4.4.2 Terrain Creation Pipeline
We created our own tool, “GridCreator”, for terrain generation. It gets tile

prefab, colour data, feature shape, and roughness on its input. The scene needs
the GridPrototype prefab to generate it in the scene. In GridCreationUtils7

script, we define methods for generating individual tilings by specified width and
height and processes of applying textures to material and initial components from
them.

Generating terrain means creating a new level. At the moment, each level
contains only one generated terrain. To generate a terrain and, therefore, create a
new level, it is necessary to do the following:

1. Create a new scene and add GridPrototype prefab into the scene.

2. Create a new level creator asset. With this creator asset, we generate a
terrain with our specific or generated input data.

3. Create a new level asset. We connect the scene with the terrain to the
level asset.

4.4.3 Terrain Rendering
We render a 2D grid with minor adjustments for terrain and adornments. In

the shader, we get data from attributes, i.e. Adornment Shape, Adornment Size,
Roughness and Color as input. We add extra variables to the shader, such as
displacement strength, scale, and wind. This data is mainly used in the Geometry
shader, where we create either a square grid (to which we can apply displacement,
see figure 4.5) or adornments (to which we can apply wind). The rendering of
adornments is based on the experiments chapter (3.1.1). We create quads over
a given grid, and in the Fragment shader, we apply an Adornment shape to it
through clipping. Figure 4.4 shows a wireframe of several tiles.

7Code: Assets/Scripts/Grid/Editor/GridCreationUtils.cs
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Figure 4.4 Wireframe of shaded terrain tiles with adornments.

Figure 4.5 Example of displacement in tile rendering. The left picture is before
displacement; right picture is with displacement (Displacement strength = 0.51, Dis-
placement scale = 2.1)
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4.5 Creatures
This section deals with the implementation of creature creation and creature

rendering. Based on chapter 3 Experiments, we decided to render the mesh using
a voxel point cloud and use the idea of superellipsoids in Beauty Lens rendering
(3.6). This section also continues to deal with Attribute lens rendering.

4.5.1 Creating Creature mesh
The RenderMeshSystem creates the mesh and then updates it. A filter query

is called according to the deployed components in its Update loop. If the mesh
hasn’t been created, it will be. Otherwise, the current mesh is updated, which is
especially important for setting the height at which the creature occurs, and the
correct material is applied. We set the material from the RenderMesh component,
which contains the necessary materials for Lenses. The principle of creating a
mesh and updating it also applies to Attribute Lens. The difference between these
two lenses lies in their components. When deciding whether to use a mesh for
the Beauty lens or the Attribute lens, the query checks a component that belongs
exclusively to either the Beauty lens or the Attribute lens. It doesn’t matter what
that particular component is, but it matters to which Lens it belongs. As a result,
one component can’t belong to both Lenses. Another critical situation in this
system is that we can’t use the Burst compiler because we are access managed
types. We will address this problem in the future.

4.5.2 Creature Beauty Lens Rendering
To render the creature, we need a mesh with the material correctly generated

and the rendering components properly set up. The creature is rendered using
Beauty Lens through the following steps8:

1. Based on the voxel grid size and spacing, the vertex shader computes new
vertex positions. Voxel grid spacing depends on the size of the adornments.
This size is provided as an input to the shader, which we obtain from the
attribute. Position modifications such as variance and fuzziness are then
applied to the vertex.

2. In the geometry shader, we use the inside-outside function to detect a
point in the superellipsoid. Using equation 1.7 and the parameters a1, a2 as
width of the creature and a3 as height of the creature, we determine if the
vertex is inside or on the surface of the ellipsoid. If it is, we then compute
the normals using the equation 3.9 and generate the adornments for it. We
generate the adornments for the creatures bilaterally to avoid holes and
thus the possible passing of the light beam through the creature.

3. In the fragment shader, we set the adornment shape and clip everything
outside the given shape. In this situation, we also consider the value of
the creature’s mass. If the creature’s mass is less than 1, we clip certain
fragments based on the Mass map. Then, we set the surface and light data.
We use the available lighting model Blinn Phong from Unity.

8Code: Assets/Shaders/SpawnBeautyVoxelSuperelipsoid.hlsl
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Figure 4.6 Attribute lens render.

4.5.3 Creature Attribute Lens Rendering
The creature’s Attribute Lens is intended for the player to analyze the values

of the creature’s attributes. The player can use this view to decide if the two
creatures are similar. We chose to render these values using a Coxcomb chart.
Any five attributes the player can choose will be input to the shader9.The chart
is generated in the fragment shader by dividing the circle into segments, with
each segment’s size corresponding to the value of a particular attribute. Each
segment is then assigned a distinct color. Then, we discard the fragments that
are not coloured so that only the chart is rendered. Figure 4.6 shows an example
of coxcomb chart for one entity.

4.6 Stickers
Stickers are concrete elements rendered on abstract bodies of creatures10. These

elements are created manually and animated manually by an external animator,
who can plug them into the Unity editor. Therefore, the Sticker functionality
must be user-friendly, even for a non-programmer. Stickers are again stored as
game assets.

To make Stickers function properly, several components are required, each
serving a distinct purpose:

• Sticker component11, where we store values for the position of the Sticker
on the creature (meridian and parallel), the height and width of the creature
and the generated Guid of the Sticker asset.

• The player can choose whether to render the Sticker. Another component,
ShouldRenderStickers, does this and serves as a “tag” for whether to
render a Sticker on the entity.

9Code: Assets/Shaders/SpawnAttribute.hlsl
10We want to make Stickers available for terrain in the future
11Code: Assets/Scripts/Render/Sticker/StickerAuthoring.cs
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• The Species Sticker component12 determines what Stickers are avail-
able for the player’s Species monsters. This component implements the
IBufferElementData interface, which allows this component to be stored
in a dynamic buffer. In this component, we store the same data as the base
Sticker component, except that we have a direct reference to the Sticker
entity.

• Spawn Sticker component13 that stores a reference to the Sticker entity.
This component is deployed on specific creatures.

The Sticker Init System14 handles sticker initialization. It reads the Sticker
assets associated with a given creature asset and instantiates a Sticker entity for
each entity with a Spawn Sticker component on it.

4.6.1 Sticker Rendering and Animation
The Sticker contains a shader15 to render the texture. The input is a sprite

sheet that includes the individual frames of the drawn element. In figure 4.7,
we have hand-created a sprite sheet of the eyes we would like to glue onto the
creature. Unity DOTS doesn’t have its own animation module, but there are a
bunch of third-party plugins to handle animations in the ECS world. We took
the hybrid animation path. Since it involves switching frames in the sprite sheet,
we’re still feeding frame count data to our shader input and will switch between
frames directly in the shader using texture offset. Code snippet 4.2 shows the
texture scale calculation to display only one frame, setting the offset and then the
texture transformation.

float offset = 1.0 / _FrameCount;
float2 uvMultiplier = float2(offset, 1);
float2 uvOffset = float2(offset * _AnimationFrame , 1);
uv = TRANSFORM_TEX((IN.uv * uvMultiplier) + uvOffset , _BaseMap);

Listing 4.2 UV scale and offset calculation for Sticker sprite sheet.

In the figure 4.8, we adjust the frame number and the effect gives us a simple
animation. Unity’s Animator component takes care of setting the frame number
value. This animation can also be handled on the GPU side, but the Animator
provides us with the state machine we want to use for Stickers (Sticker eyes can
have an animation for opening and closing eyes as a “blink” or an eye animation
for sleeping). The Animation Controller can be set to influence the Animation
Frame parameter through the material as we show in Unity editor in figure 4.9,
making it easy to animate the Sticker.

4.6.2 Spawning an entity
The RunFactory script16 takes care of the initial data loading. When the

game starts, it loads the level asset and sets up the UninitializedTag and
12Code: Assets/Scripts/Render/Sticker/SpeciesStickerAuthoring.cs
13Code: Assets/Scripts/Render/Sticker/SpawnStickerAuthoring.cs
14Code: Assets/Scripts/Render/Sticker/StickerInitSystem.cs
15Code: Assets/Shaders/SpawnBeautySticker.hlsl
16Code: Assets/Scripts/Run/RunFactory.cs
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Figure 4.7 Sticker eyes sprite sheet.

Figure 4.8 Creature with animated Sticker eyes. The Animation Frame parameter
starts at 0 (left image) and increments by one until it reaches the last frame (right
image).

NeedsSpeciesInit components, which trigger specific systems to handle the data
loading. Creatures are created in the game in the Spawning System17, then
spawned at a random location in the level (via Movement System1819).

4.6.3 Lens switch
The player can change the Lens while playing. Currently, we can shift Lenses

using the command line. We use the Quantum Console20 plugin for the command
line, which adds in-game command console functionality using Command annotation
to the methods to be executed. We have a function to change the Lens in
the Lens Utils script21. Calling the function to change the Lens only makes
minimal changes: it adds the NextLens component to the queried Lens and the
PreviousLens component to the original Lens. These components don’t carry
extra data; they act as tags. The Render Init System removes components from
the original Lens with the PrevousLens tag and adds components from the Lens
with the NextLens tag. Then the Render Mesh System detects the current Lens
and sets the mesh and material accordingly, as described in 4.5.1.

17Code: Assets/Scripts/Run/RunFactory.cs
18Code: Assets/Scripts/Grid/MovementSystem.cs
19Movement system is not an ideal place to spawn a creature when you already have a Spawning

System. However, this is modified for the thesis, as other spawn methods are implemented in
the original systems. However, this is beyond the scope of this thesis

20https://assetstore.unity.com/packages/tools/utilities/quantum-console-211046
21Code: Assets/Scripts/Render/LensUtils.cs

Figure 4.9 Example of setting keyframes for material property Animation frame in
Animation Controller.
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Figure 4.10 In-game Beauty Lens.

Figure 4.10 shows a sample of the visual when the game is running. You can
see Beauty Lens on the terrain and the creatures. We can switch the current Crea-
ture Lens to any other using the DebugChangeSpawnLens <entityID> <version>
command. At the moment, we only have the Attribute Lens available. We need
to look in the Entity Inspector to get the entity ID and version of the Attribute
Lens. We can find the entity with the SpawnAttributeLens component there.
We can then run the command, and the Attribute Lens visuals on the creatures
will appear, as shown in Figure 4.11.

4.7 Chapter Summary
In this chapter, we have discussed the implementation in Unity DOTS. We have

designed a pipeline for generating visuals, described the creation of components for
the required Lenses, and prepared the systems that operate on the data and run
the functions for the generation and rendering functionality. We have discussed
terrain and creature rendering in detail and supplied specific visual components,
Stickers, that add a touch of realism to the visuals. Towards the end, we covered
how entity spawning works and how to change Lens on the fly.

57



Figure 4.11 In-game Attribute Lens.
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5 Visual Results
In this chapter, we will examine the results of implementing the visual rendering

of the game under development. We will examine their relation to the visuals
required from the game design and its described visual target. For creature
rendering, we will see what results can be achieved with a given solution under
different parameters, i.e., what variability the solution has.

5.1 Meeting visual requirements
We will look at the visual requirements described in the Game Design chapter

and verify that the implemented solution meets these requirements.

VR01: The desired appearance must be continuous. The range of values
in the parameters is continuous. There are no jumps between values, and it
is not reflected in the game’s visuals. Slight changes to parameters do not
disrupt creature or terrain changes either. This requirement is met with the
chosen solution.

VR02: The visual appearance must show the state of the individual
entities. Attributes define the states of game entities. Terrain and creatures
have specific attributes written into the rendering components, which affect
the rendering. Based on attributes, the state of an entity can, therefore, be
discerned. For example, the height or width of a creature will be reflected
in its appearance. This means that the requirement is fulfilled.

VR03: Abstract visual elements should be complemented by concrete
visual elements. By abstract visual elements, we refer to shape entities.
We have added concrete visual elements, the Stickers. They are currently
only available for creatures, and assigning Stickers to a generated shape
adds a more realistic look to the creature. This way, we have fulfilled the
requirement.

VR04: The generation of the appearance must be robust. Modifying the
parameters for generating visuals produces results that are coherent and
free of glitches. The parameter values are limited because they do not form
an infinite set. Thus, we have satisfied the requirement.

VR05: Appearance generation must be efficient and real-time. Changes
to attribute values are immediately reflected in the game. This is thanks
to the GPU generation and the use of ECS architecture. Burst compila-
tion on Lenses would provide further performance improvements, but it is
unnecessary and is more of a premature optimization. The requirement is
met.

VR06: The appearance generation process should be extensible. Thanks
to the ECS architecture, we can add or remove attributes or rendering
components that affect the visuals. In doing so, they have no dependencies
on other components, so it doesn’t break the visual or the rendering. The
requirement is fulfilled.
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VR07: The shape of creatures must be 3D. Thanks to superellipsoids we
are able to generate 3D shapes. The requirement is fulfilled.

All requirements have been met, and so the solution is suitable for the basis
of the defined game design.

5.2 Terrain
Regarding terrain generation, the variability is only in surface colour and

adornment settings. However, this thesis aimed not to generate more sophisticated
terrain that would provide more options for generating varied terrain, so this is
sufficient for us. In Figure 5.1, we show possible variations of 10 x 10 terrains that
can be created by changing the parameters of texture color, adornment shape,
adornment size, and displacement.

5.3 Creatures
We generated several types of creatures with different parameters. In the

provided solution, there may be very similar looks, but we also added some
variance parametes to add to the variability of the look. The Figure 5.2 shows
several generated creatures with different parameters.
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(a) Terrain A (b) Terrain B

(c) Terrain C (d) Terrain D

(e) Terrain E (f) Terrain F

Figure 5.1 Terrain showcase with random parameters.
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(a) Creature A (b) Creature B

(c) Creature C (d) Creature D

(e) Creature E (f) Creature F

Figure 5.2 Creature showcase with random parameters.
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Conclusion
In this thesis, we aimed to identify and implement a method suitable for gener-

ating visuals in a game world based on different input values in a high-performance
environment using Unity DOTS and shaders. We reviewed standard procedural
generation methods, and explored their application in game visuals, specifically
proposing the use of superellipsoids for shape generation. We prototyped with the
proposed methods and evaluated their suitability for the game under development,
based on the visual requirements outlined in its design. Our findings indicated
that voxels were well-suited for the overall game design, while superellipsoids were
most appropriate for creating creature shapes. The results of the implemented
method are positive because they meet the game design’s visual requirements and
can produce many assets that can help game developers in time.

However, additional work is needed to refine the visuals for the early version
of the game. The current solution does not yet achieve an acceptable FPS
while running the game, but it is an excellent cornerstone for further work and
improvements.

Further Work
This thesis has explored several issues in procedural terrain and creature gen-

eration while implementing it and delving into the data-oriented world. Therefore,
these different areas need to be explored in greater detail individually, which is
beyond the timeframe of this thesis.

For terrain generation, the plan is to redesign how the level is generated. In
the current situation, we generate terrain through our own editor tool and save
the level as a subscene. However, this method is unsustainable, and components
must be assigned to individual fields at runtime. This means that we have no
idea what a given level might look like and work with before generating it for the
player. As we develop the game, we plan to implement the saving of individual
assets (creatures, expressions, and levels), where components will also be saved in
the asset data. This will eliminate the need for component matching and, thus,
possible generation errors.

As far as entity rendering is concerned, much work must be done to perfect it.
As the game continues to expand, we will have more options to render creatures or
terrain more accurately based on new attributes. Terrain rendering is fundamental,
and over the course of future development, we will rework this way of terrain
creation to make the terrain more exciting and provide an incentive to explore.

The next steps include enhancing Stickers by developing an editor that allows
players to position Stickers on their creatures. Currently, there is no functionality
to modify the position of Stickers.

Game development is a very complex business, specially when we are both
developers and designers of the game. In the process, we may develop new thoughts
and ideas that we can incorporate into the visuals to make them more special or
customizable. However, the current work serves to prototype these ideas and help
us to complete the development.
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Key findings
Creating data-oriented games and generating creature visuals is rare in practice.

Immersing yourself in a different programming approach can increase development
time. During the development process, we observed a few key insights that may
help future developers, especially in Unity DOTS.

1. Have a thorough knowledge of ECS architecture, Burst compilation
and Job system. Unity DOTS has good documentation, many resources,
examples of using the ECS architecture, descriptions of Burst compilation,
and a Job System on the internet. It is also necessary to understand the
context of memory management to achieve the potential that Unity DOTS
provides. This also relates to data design efficiency to avoid unnecessary
cache misses.

2. In our opinion, developing in Unity DOTS is much easier and more
beneficial when done synchronously and without Jobs first. The
Job system is sound as an optimization solution, but it is also hard for a
beginner to understand. Therefore, we see the initial development without
Jobs as practical for developers to think about how the Job system can help
them.

3. Unity DOTS provides tools for debugging, profiling, and inspecting
additional entity and system windows. Use the Unity profiler1, which
shows information about specific Entity modules for profiling. Entities
Journaling2 is the core for debugging ECS. It is helpful to enable the
Entities Hierarchy3 and Systems4 windows for scene overview. In Entities
Hierarchy, you can find out everything you need to know about the deployed
components on an entity (Components tab), the aspects (Components tab)
and which systems the components on the entity are used in (Relationships
tab). The System window lists all systems, lists the queries called (Queries
tab) and which entities match a particular query (Relationships tab). There
are also Archetypes5 and Components6 windows, which we rarely use
during development and debugging.

4. Frame Debugger7 is very useful for debugging visuals. This provides
information about the rendering of the frame being captured, such as what
textures are used, what shader is used, the number of vertexes, etc. Unity

1https://docs.unity3d.com/Packages/com.unity.entities@0.50/manual/
profiler-modules-entities.html

2https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/
entities-journaling.html

3https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/
editor-hierarchy-window.html

4https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/
editor-systems-window.html

5https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/
editor-archetypes-window.html

6https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/
editor-components-window.html

7https://docs.unity3d.com/Manual/FrameDebugger.html
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has also introduced shader debugging through Visual Studio8, which can be
helpful.

5. Follow the latest news in Unity DOTS development. Unity is
constantly evolving its technology, and even though Unity DOTS advanced
to version 1.0 in September 2022, Unity developers still need to add a
large amount of functionality, such as the character controller and animation
module or fix known bugs with lighting. We recommend following the Unity
DOTS Roadmap9 and Known Issues page10 in their documentation.

6. We highly recommend posting on the Unity forum11 for questions,
confusion, issues with Unity DOTS, and anything related to game
development in Unity tools. The Unity developer community is large
and supportive of resolving development issues. Posting on the Unity forum
helps other developers in a similar situation. There are also discussion
threads regarding using Unity DOTS in production for promotional and
motivational purposes.

The future of game development is bright and full of potential. This thesis’s
key findings, tips, and best practices provide a solid foundation for creating
high-performance, visually stunning applications and open up a world of creative
possibilities. Embracing the principles of Unity DOTS, procedural generation,
and mastering the art of shader programming empowers developers to push the
boundaries of what is possible in interactive experiences. By harnessing the full
power of modern hardware and optimizing every aspect of our code, we can
deliver immersive, responsive, and visually captivating games and applications
that stand out in a competitive market. As we progress, it is crucial to stay curious,
keep experimenting, and never stop learning. The world of game development is
constantly evolving, and our ability to adapt and grow will ensure that we remain
at the forefront of this dynamic field.

8https://docs.unity3d.com/Manual/SL-DebuggingD3D11ShadersWithVS.html
9https://unity.com/roadmap/unity-platform/dots

10https://docs.unity3d.com/Packages/com.unity.entities.graphics@1.3/manual/
known-issues.html

11https://forum.unity.com/forums/entity-component-system.147/
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A Attachments
A.1 Unity Project

The Unity project is stored in the source folder. It contains most of the visual
generation experiments mentioned in this thesis, the implementation of the chosen
graphics solution using voxels and Superellipsoids, and its integration in Unity
DOTS. The project is stored in Unity version 2023.3.0b5.

A.2 User Documentation
User documentation describes how to start and navigate a Unity project. It

also includes how to start the game running and lists options to modify the
parameters of various generation methods. User documentation is stored in the
documentation folder.
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