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1. Introduction
Both C# and Java are languages with long and rich histories, as the first version
of C# was released in 2000 and the first version of Java in 1996. Moreover,
both languages remain popular and widely used even today. StackOverflow’s
annual survey in 2023 [1] showed that 30.55 % of respondents have done extensive
development work in Java over the past year or they plan to work in it over the
next year. For C#, 27.62 % of respondents have reported using it or intent to
use it in the following year. This puts Java and C# in seventh and eighth places,
respectively, in the list of the most widely used programming languages in 2023.
Both languages kept scoring similarly in the previous year of the survey as well.

As the both languages exist for significant amount of time and they are fairly
popular among programmers, it is clear that a lot of code has been written in
them and a lot of companies have code bases in one or both of these languages.

Both languages share similar base principles: they are garbage-collected,
JITed, object-oriented languages with C-like syntax. It is clear, therefore, that
it can be used in related scenarios, which may require interoperability between
them. For instance, part of the system written in C# may need to be integrated
with the part of the system written in Java, or C# developer may need to use a
library that has been implemented in Java.

As Section 1.3 will show, there already exist some solutions for C# – Java
interoperability problem. All of them are, however, either commercial and closed
source, tailor-made for a particular use case and impossible to use in other sce-
narios, or outdated and unmaintained. There is, therefore, a need for a general,
well-maintained, and well-documented C# - Java interoperability solution based
on modern technologies. The objective of this thesis is to implement such a
solution.

As the topic is complex and extensive, this thesis will limit itself to one of the
two possible interoperability directions: direction from C# to Java. The thesis
will aim at implementing a tool that should enable users to utilize code bases
implemented in Java from C# applications. The opposite direction: working
with constructs implemented in C# from Java programming language won’t be
supported. This leads to the first requirement of the thesis:

R1 Solution should support invocation direction from C# to Java. Opposite
invocation direction (from Java to C#) won’t be supported.

The rest of this chapter will explore potential use cases of the C# - Java
interoperability tool and will analyze similar already existing implementations.
Based on this analysis, a list of requirements the implemented tool should meet
will be assembled.

1.1 Use cases
This section will reason about potential use cases for the C# - Java interoper-
ability tool. The section will firstly discuss using C# Java interoperability within
proprietary code bases to avoid system rewrites, and secondly, it will talk about
using Java libraries from C# applications.
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1.1.1 Interoperability between proprietary systems
As the introduction to this thesis mentioned, both C# and Java are and have
been for a significant amount of time fairly popular programming languages, and
therefore, a significant amount of code has been written in them over the years,
and a lot of companies have code bases in one or both of these languages. These
companies may face a situation in which they need to integrate a part of their
system that is implemented in Java with another part that is implemented in
C#. There are several options they may consider at that point.

The first option is a reimplementation of the part of the system from one
language to the other. That can be especially tempting if the part of the system
is older or a legacy system. Full system rewrites, however, tend to be demanding,
time-consuming, and error-prone processes in which success is not guaranteed
[2, 3, 4].

Another option a company has is to host the Java part and C# part of the
system as two separate services and to manage the communication between them
by some communication protocol. There exist multiple such protocols for intra-
process communication (e.g., gRPC), the rest of this section, however, will work
with the example of microservice-like infrastructure where individual subsystems
are wrapped within a web API, and communication between them is managed
via HTTPS protocol.

This approach undoubtedly has certain advantages. Many developers espe-
cially from the area of web applications backend development are familiar with
microservice architectures and therefore system build as such will be easy for
them to orientate in.

There are also disadvantages to consider. If the part of the system is not
already a web API, it needs to be turned into one, which introduces additional
infrastructural code and requires changes to existing software components. Addi-
tionally, communication via HTTPS protocol introduces performance overhead.
Not all systems can afford this. Moreover, communication via HTTPS isn’t, in
its essence, safe. There can exist strongly typed models on both C# and Java
sides of the communication; HTTPS, however, requires JSON serialization and
deserialization, which loses type information, and one needs to make sure that
models on both sides are kept up to date and in sync with their counterparts. A
robustly designed interoperability solution can avoid all these issues.

An interoperability solution can be designed in a way that does not require
modifications on the side that is being interoperated with it (Java side in our case).
Interoperability solution can run both C# and Java part of the application in the
same process (see Section 1.3), significantly decreasing the communication cost
compared to HTTPS-based communication. It can also include the generation
of strongly typed proxies that emulate Java types in C# code, allowing C#
developers to work with Java types as if they were implemented in C#, decreasing
the cognitive load imposed on a developer. To sum it up, interoperability can be
a practical alternative to consider in the presented scenario.

1.1.2 Java libraries with no adequate alternative in .NET
A large amount of open-source and free-to-use libraries covering a huge variety of
use cases have been developed for Java over the years. For some of these libraries,
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no adequate free .NET alternative exists. For instance, based on our knowledge
when this thesis is being written, there are no freely available .NET libraries for
working with .pdf files. In the Java ecosystem, Apache PDFBox [5] library is
available for this use case. Let’s use this library as an example of a Java library
that could be used from C# via our interoperability tool.

This section will examine the common usage of the Java PDFBox library,
determining some requirements on the code constructs that our interoperability
tool should support.

Code Snippet 1.1 demonstrates the API of Apache PDFBox library on the
example of reading text from .pdf file as a string. Line 7 uses Loader class to
load existing .pdf file. Lines 8 and 9 use PDFTextStripper class to obtain string
content of the .pdf.

Code Snippet 1.1: Java: Example of Apache PDFBox library usage
1 import org.apache.pdfbox.Loader;
2 import org.apache.pdfbox.pdmodel.PDDocument;
3 import org.apache.pdfbox.text.PDFTextStripper;
4

5 static String ReadPdfAsText(String path) throws IOException {
6 File pdfFile = new File(path);
7 PDDocument pdf = Loader.loadPDF(pdfFile);
8 PDFTextStripper stripper = new PDFTextStripper();
9 String pdfContent = stripper.getText(pdf);

10 pdf.close();
11 return pdfContent;
12 }

Notice that while .pdf file is loaded by a static loadPDF method, the rest
of the API requires creating instances of objects and invoking instance methods.
Our interoperability solution should, therefore, allow users to do the same.

R2 As both Java and C# are object-oriented languages and object instances
are a crucial part of the majority of API implemented in these languages,
the solution should allow users to manipulate Java instances and invoke
Java instance methods from C#.

1.2 Introduction to Interoperability tools
The previous section provided the motivation for this thesis in the form of poten-
tial use case scenarios. Section 1.3 will place the thesis in the context of already
existing related implementations. To be able to reason about these implementa-
tions, however, it is necessary to first introduce basic interoperability tools that
related implementations are often based on. That will be the topic of this section.

Firstly, the section will introduce Java Native Interface as a canonical means
of interoperability between Java and native code (C, C++). Secondly, P/Invoke
will be presented as a means of interoperability between C# and native code.
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1.2.1 Java Native Interface
Java Native Interface (JNI) has been a canonical tool for Java to native calls from
the very beginning of the Java platform. The first version of JNI was released
with the JDK version 1.1 in 1997) [6]. In JDK release 1.2 in 1998, JNI was
extended by several methods; since then, however, the interface has remained
stable.

JNI only describes an API. Its implementation is a matter of each Java dis-
tribution on its own. Due to this fact, slight changes in the behavior of some
JNI functions can be observed across different Java distributions, and on some
distributions, particular JNI functions might not be supported at all (e.g., ART
VM does not support DefineClass JNI function [7]).

JNI is most commonly used for Java to native direction of the invocation.
However, direction from native to Java is supported as well. JNI allows program-
mers to embed JVM into a native application and subsequently to invoke Java
methods and to manipulate Java objects from the native code. Next paragraphs
will describe both directions of invocation in more detail.

Java to native invocation direction
Java language uses native keyword to mark Java methods that are under the
hood implemented in native code. JNI is used to leverage the invocation of
such methods. Code Snippet 1.2 shows a Java class containing the declara-
tion of two native methods. Notice that the static initializer of the class calls
System.loadLibrary method to load a native library that provides implementa-
tions of these methods. That is required to enable JNI to locate method imple-
mentations.

Code Snippet 1.2: Java: Example of Java class using JNI for native invocation
1 public class HelloJni {
2 public native int instanceNativeMethod(
3 int value, double doubleValue
4 );
5 public static native int staticNativeMethod(
6 int value, double doubleValue
7 );
8

9 static {
10 System.loadLibrary("MyNativeLibrary");
11 }
12 }

Unfortunately, JNI is unable to invoke arbitrary native methods. It expects
the method to accept the first two parameters of particular types. The first
parameter must be JNIEnv pointer. It allows native code to access JNI API, for
instance, to carry out callbacks back to Java. This will be described in more
detail in the section devoted to native to Java direction of invocation.

The second parameter differs depending on whether the corresponding Java
native method is declared as static or non-static. Non-static methods require
reference to Java object; for static methods, reference to Java class (instance of
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java.lang.Class) is expected. The second parameter allows the native code to
access the Java type that declares the native method or instance of that type.
The first two compulsory parameters should be followed by a list of parameters
that correspond to parameters of the Java native method.

Code Snippet 1.3 shows C-language native implementations of static and in-
stance methods from Code Snippet 1.2. Notice that the types of the first two
parameters match the JNI convention, and the rest of the parameters match the
parameters of Java native methods from Code Snippet 1.2. Also, notice that
the names of C-language methods consist of prefix Java_ followed by the name
of Java class declaring the native method (HelloJni) and the name of the Java
native method itself (either instanceNativeMethod or staticNativeMethod).
This naming convention allows JNI to locate the native implementations [8].

Code Snippet 1.3: C: Native implementation of Java methods
1 JNIEXPORT int JNICALL
2 Java_HelloJni_instanceNativeMethod(JNIEnv *env, jobject this, int

value, double doubleValue){
3 // implementation of native method
4 ...
5 }
6

7 JNIEXPORT int JNICALL
8 Java_HelloJni_staticNativeMethod(JNIEnv *env, jclass cls, int

value, double doubleValue){
9 // implementation of native method

10 ...
11 }

The requirements for the signature of native method implementation described
above force developers to implement wrappers respecting the required signature
around native functions they actually need to invoke from Java code. This effec-
tively requires Java developers to write a JNI-based C-language code, which is
not the most pleasant user experience.

R3 Solution should not require a user to modify a code of Java library in order
to make it usable from C#.

Native to Java invocation direction
Previous section described more common use case of JNI: invocation of native
methods from Java. This section will examine the direction of invocation that is
more relevant for this thesis: from native to Java.

JNI API can be divided into two parts: invocation API [6, 8], which allows
programmers to embed JVM into their native applications, and JNI interface
functions that allow native code that already runs in the same process alongside
JVM to invoke Java methods and access Java objects. JNI functions are accessible
via the JNI interface pointer. Native code obtains JNI interface pointer in one of
two ways:

• Either it is passed to the native method invoked from Java by JNI as the
first of two compulsory arguments (see Code Snippet 1.3).
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• Or JNI interface pointer is returned by the JNI_CreateJavaVM function,
which spawns a JVM instance in the process of the native application.

Code Snippet 1.4 demonstrates creating a JVM instance inside of the C++
process. Lines 4 to 14 configure JVM, setting a version of JNI and options
that would be normally passed to java command line command. Line 17 calls
JNI_CreateJavaVM function that creates a JVM instance in the current process.
This function returns (via its reference parameters) the handle of the JVM and
JNI interface pointer.

Code Snippet 1.4: C++: Embeding JVM into C++ application
1 #include <jni.h>
2

3 int main(){
4 JavaVM* jvm; // Java VM
5 JNIEnv* env; // pointer to native method interface
6 JavaVMInitArgs vm_args;
7 JavaVMOption* options = new JavaVMOption[1]; // allows to

specify options that would be normaly passed to java cmd
line command

8 // specify Java class path
9 options[0].optionString =

(char*)"-Djava.class.path=path/to/your/java/classes";
10 options[0].extraInfo = 0;
11 vm_args.version = JNI_VERSION_1_8;
12 vm_args.nOptions = 1;
13 vm_args.options = options;
14 vm_args.ignoreUnrecognized = false; // ignore unreckognized

options
15

16 // load and initialize a Java VM, return a JNI interface
pointer in env

17 auto rc = JNI_CreateJavaVM(&jvm, (void**)&env, &vm_args);
18 if (rc == JNI_OK) {
19 /* here use jvm to invoce Java methods and to manipulate

Java objects */
20 jvm->DestroyJavaVM(); // clean up
21 }
22 }

Once the JNI interface pointer is obtained, it can be used to call JNI functions
that allow native code to obtain handles of Java objects and methods, invoke Java
methods, and manipulate Java objects via these handles. We will demonstrate
this on the example of a Java class from the Code Snippet 1.5. This Java class
contains the declaration of static method myStaticMethod.
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Code Snippet 1.5: Java: Java class with static method
1 public class HelloJni {
2 public static double myStaticMethod(
3 int value, double longValue) {
4 return longValue + value;
5 }
6 }

Code Snippet 1.6 shows JNI-based C++ code that invokes this Java method.
Notice that the first FindClass JNI function is called (via JNI interface pointer
env) to obtain the handle of Java type. Then, the method id is obtained by
GetStaticMethodID JNI call.

Notice that in addition to the handle of Java type that defines the method and
the method name, GetStaticMethodID call takes the third string parameter that
encodes the method signature. In our example, the Java method that should be
located takes one integer and one double parameter and returns a double return
value. An integer is encoded as I, double is encoded as D. Parameter types are
enclosed in braces, and the return type follows these braces [8]. That gives us
method signature "(ID)D" (see line 2 in Code Snippet 1.6).

Both FindClass and GetStaticMethodID return null if the required type or
method is not found. Null checks are omitted for brevity.

Code Snippet 1.6: C++: Invocation of static method via JNI
1 jclass cls = env->FindClass("HelloJni");
2 jmethodID staticMethodId = env->GetStaticMethodID(
3 cls, "myStaticMethod", "(ID)D");
4 double res = env->CallStaticDoubleMethod(
5 cls, staticMethodId, 42, 0.73);
6 std::cout << "RES: " << res << std::endl; // RES: 42.73

The previous example demonstrated the invocation of the static Java method
from C++. The following example will show how to work with an instance of a
Java object. An example of a Java class defining constructor and instance method
can be seen in Code Snippet 1.7.

Code Snippet 1.7: Java: Java class with instance method
1 public class HelloJni {
2 private final int field;
3

4 public HelloJni(int value){
5 field = value;
6 }
7

8 public double myNonStaticMethod(int value, double
longValue){

9 return longValue + value + field;
10 }
11 }
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Code Snippet 1.8 contains C++ code that creates an instance of this class
and invokes a method on this instance. After the Java type handle is obtained,
GetMethodID function is used to obtain a method id of the constructor of the
Java type. Constructor is identified by special method name <init> and by its
signature. Notice that the return type of the constructor is V: void.

Once the constructor method id is obtained, the constructor is invoked by
NewObject JNI function. Then, the method ID of the instance method can
be obtained, and the method can be invoked by CallDoubleMethod call. No-
tice that this call takes a Java instance handle as the first parameter, whereas
CallStaticDoubleMethod call in Code Snippet 1.6 takes a Java type handle in
order to invoke the static method.

Jni also allows to access Java fields in the similar manner.

Code Snippet 1.8: C++: Working with Java object via JNI
1 jclass cls = env->FindClass("HelloJni");
2 jmethodID ctorId = env->GetMethodID(cls, "<init>", "(I)V");
3 jobject instance = env->NewObject(cls, ctorId, 42);
4 jmethodID nonStaticMethodId = env->GetMethodID(cls,

"myNonStaticMethod", "(ID)D");
5 double res = env->CallDoubleMethod(instance, nonStaticMethodId,

42, 0.73);
6 std::cout << "RES: " << res << std::endl; // RES: 84.73

Local and global references
Previous code examples worked with references to Java objects and types. JNI
distinguishes two main kinds of references: local references and global refer-
ences. [6] JNI function introduced so far (e.g. FindClass, NewObject) return
local references to Java objects. Local references are only valid in the dynamic
context of the invocation of the native method that created them. Once the native
method returns back to Java, all local references are freed. Local references are
also only valid in the thread that created them. The amount of local references
that can exist simultaneously may be fairly limited. The precise number depends
on a particular Java distribution. However, JNI specification only requires imple-
mentations to reserve slots for 16 local references [6] at a time. When the usage
of local references is more extensive, the programmer should remember to free no
longer needed local references by calling DeleteLocarRef JNI function.

Unlike local references, global references stay valid across multiple native
method invocations, and they can be used from threads other than the thread
that created them. Global reference can only be obtained from a local reference
by calling NewGlobalRef function (see Code Snippet 1.9). Global references are
never freed automatically. It is the programmer’s responsibility to free them when
they are no longer needed.

Code Snippet 1.9: C++: Creating global JNI reference
1 jobject localReference = env->NewObject(cls, ctorId, 42);
2 jobject globalReference = env->NewGlobalRef(localReference);
3 env->DeleteLocalRef(localReference); // no longer needed
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Both local and global references are GC roots of Java garbage collector. While
they are valid, they therefore keep referenced Java object alive. There also exist
JNI weak references that do not keep Java objects alive.

JNI functions for looking up method and field handles (such as previously show
GetStaticMethodID function) do not return references. They return handles that
are not considered expensive resources, and that can be cached across multiple
native method invocations [6].

JNI interface pointer
JNI interface pointer (JNIEnv) is a pointer to a thread-local data that contains a
pointer to a JNI function table (see Figure 1.1). Due to that, the JNI interface
pointer returned by JNI_CreateJavaVM call can only be used by the thread that
created JVM. If other threads need to call a JNI function, they first need to obtain
their own JNI interface pointer by calling AttachCurrentThread function.

Figure 1.1: JNI interface pointer (taken from [6])

1.2.2 P/Invoke
The previous section introduced JNI as a common interoperability tool between
Java and native code. This section will focus on P/Invoke (Platform Invoke)
[9] as a common mean of interop between .NET and native code. P/Invoke is
available since .NET Framework 1.1. [10] in form of DllImport attribute. This
attribute can be applied to static extern method that matches the signature of
a native method. Code Snippet 1.10 shows the declaration of Sleep method that
matches the signature of sleep function from kernel32.dll. When the method
is called, the native function will be invoked.
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Code Snippet 1.10: C#: Usage of DllImport attribute
1 [DllImport("kernel32.dll")]
2 static extern void Sleep(uint dwMilliseconds);

Native method invocation using DllImport attribute requires IL stub to be
generated at runtime based on annotated method signature and DllImport at-
tribute parameters. This IL stub handles marshaling of method parameters and
leverages native method invocation itself [11]. Run time code generation is prob-
lematic because it stands in the way of potential AOT compilation of .NET
[11]. Due to that, .NET 7 added LibraryImport attribute, which uses Incremen-
tal Source Generators to generate marshaling code at compile time, getting rid
of the need for runtime generated stub. LibraryImport attribute gets applied
to static partial method so that Incremental Source Generator can generate
method body. Code Snippet 1.11 demonstrates the usage of LibraryImport at-
tribute on the example of the same sleep function from kernel32.dll that was
used in Code Snippet 1.10.

Code Snippet 1.11: C#: Usage of LibraryImport attribute
1 [LibraryImport("kernel32.dll")]
2 static partial void Sleep(uint dwMilliseconds);

Under the hood, both DllImport and LibraryImport use the same mecha-
nism to leverage native method invocation; the only difference is in the mean
of generating the marshaling code. If no marshaling code is needed, the source-
generated implementation of LibraryImport method is just a method annotated
by DllImport attribute (see Code Snippet 1.12).

Code Snippet 1.12: C#: Source generated implementation of method from the
previous code snippet

1 [System.Runtime.InteropServices.DllImportAttribute("kernel32.dll",
EntryPoint = "Sleep", ExactSpelling = true)]

2 public static extern partial void Sleep(uint dwMilliseconds);

.NET 5 also added an option to cast native function pointers (represented
as IntPtr type) to strongly typed delegates that can be then invoked as normal
.NET delegates. Code Snippet 1.13 shows the usage example. Notice that un-
like when using LibraryImport or DllImport attribute, the user is required to
explicitly load the native library to obtain a function pointer.

Code Snippet 1.13: C#: Usage of unsafe function pointer
1 IntPtr kernelLib = NativeLibrary.Load("kernel32.dll");
2 IntPtr sleepPtr = NativeLibrary.GetExport(kernelLib, "Sleep");
3 unsafe
4 {
5 var sleep = (delegate* unmanaged[Stdcall]<uint, void>)sleepPtr;
6 sleep(5000);
7 }
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1.3 Overview of existing implementations
The previous section introduces the most common tools for interoperability be-
tween Java and native code and .NET and native code. The following section will
build on this knowledge and analyze existing implementations of interoperability
between .NET and Java.

1.3.1 Java interop for Xamarin.Android and .NET MAUI
One of the scenarios that requires interoperability between C# and Java is the
development of Android applications in C#.

Android operating system exposes its application framework (API for de-
veloping Android applications) in the form of Java classes [12]. The main of
these classes is android.app.Activity class [13]. Android application con-
sists of custom Activity classes that inherit base android.app.Activity class.
android.app.Activity declares a set of virtual methods that a custom Activity
developer needs to override in order to implement their functionality (e.g. OnCreate
method that is invoked by the Android application framework to initialize the
activity).

Microsoft provides a Xamarin.Android framework (and later .NET MAUI
framework), that allows to develop Android applications in C# [14]. Xam-
arin.Android applications are run in the process that contains two execution
environments running side by side (see Figure 1.2 [15]) - .NET part of the appli-
cation is run by Mono Runtime, and the Java part is run by Android Runtime
virtual machine (ART) (Android-specific implementation of Java virtual machine)
[16]. At the core of Xamarin.Android, there is a JNI and P/invoke based (see
section 1.2) interoperability engine that bridges .NET and Java worlds. .NET
MAUI shares this interoperability engine.

Figure 1.2: Xamarin.Android high-level architecture

Xamarin.Android contains .NET bindings of Java classes defined in Java
android namespace [16] (including android.app.Activity class). That allows
.NET developers to work with Java android classes as if they were implemented
in .NET, effectively allowing them to invoke Java methods from .NET. In
Xamarin.Android context, these .NET classes that serve as a binding of Java
classes are referred to as Managed Callable Wrappers (MCW) (see Figure 1.2).
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Managed Callable Wrapper of android.app.Activity Java class is
Android.App.Activity .NET class. When developing an Android application
with Xamarin.Android, .NET developer must inherit Android.App.Activity
and override its virtual methods (same process as with Java). This effectively
means that Xamarin.Android must enable overriding Java methods from
.NET.

Android custom Activity class implementation can also contain methods that
serve as event handlers for UI-induced events (e.g., button-clicked event). Java
Android application runtime must be able to look up and invoke these methods;
therefore, Xamarin.Android must enable invoking .NET methods from Java.

Last but not least, Xamarin.Android developers may need to provide .NET
implementation of Java interfaces (e.g. android.content.ComponetCallbacks
interface that sets callbacks common to multiple Android application components
[17, 18]). Xamarin.Android Interop, therefore, must enable to implement Java
interfaces in .NET.

It may seem that Xamarin.Android provides a complete and general solution
to the .NET - Java interoperability problem. Interoperability engine in Xam-
arin.Android was, however, developed solely for the purposes of Xamarin.Android
and it is strongly coupled with it. Following paragraphs will explore design and
implementation of Xamarin.Android interop in more detail to identify its issue
as well as aspects that may serve as an inspiration for this thesis.

Android Callable Wrappers
The previous paragraphs have explained that to enable development of Android
applications in .NET, Xamarin.Andriod interop must enable:

• inheriting Java classes in .NET,

• overriding Java methods from .NET,

• invoking methods defined in .NET classes from Java,

• providing .NET implementations of Java interfaces.
The problem with these actions is that to support them, one must be able

to invoke methods defined on .NET types from Java. From the point of view of
the Java type system, however, no such type exists as Android Runtime (ART)
does not support runtime registration of new classes (specifically, it does not
support JNI DefineClass function) [7], Xamarin.Android needs to generate so-
called Android Callable Wrappers (ACW) (sometimes also called Java Callable
Wrappers (JCW)) see figure 1.2. ACW are Java stub classes that correspond
to .NET classes. They are the representation of .NET classes in the Java type
system.

Xamarin.Android, to some extent, emulates Java’s inheritance hierarchy. It
exposes Java.Lang.Object class [19] that is a Managed Callable Wrapper of the
root class of Java inheritance hierarchy java.lang.Object. Android callable
wrapper will, by default, be generated for every .NET class that (directly or
indirectly) inherits Java.Lang.Object [20].

For example, for the .NET activity class in Code Snippet 1.14, the ACW in
Code Snippet 1.15 will be generated as Android.App.Activity indirectly inherits
Java.Lang.Object [21].
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Code Snippet 1.14: C#: Example of .NET implementaion of Andriod Activity
1 public class HelloAndroid : Android.App.Activity {
2 protected override void OnCreate (Bundle savedInstanceState) {
3 base.OnCreate (savedInstanceState);
4 SetContentView (R.layout.main);
5 }
6 }

At line 27 of Code Snippet 1.15 notice the declaration of native n_onCreate
method. This method will be bound to .NET OnCreate implementation that will
then be invokable from Java via JNI. Similar native method will be generated for
every .NET override of existing Java method [20]. Also, notice that ACW inherits
android.app.Activity class, which is Java equivalent of Android.App.Activity:
ACWs emulate the .NET inheritance hierarchy. The rest of the code in Code
Snippet 1.15 serves the purposes of a native method registration process that is
rather convoluted and that will be described in a bit more detail below.

Code Snippet 1.15: Java: Example generated Andriod callable wrapper
1 public class HelloAndroid extends android.app.Activity {
2 static final String __md_methods;
3 static {
4 __md_methods =
5 "n_onCreate:(Landroid/os/Bundle;)V" +
6 ":GetOnCreate_Landroid_os_Bundle_Handler\n" +
7 "";
8 mono.android.Runtime.register (
9 "Mono.Samples.HelloWorld.HelloAndroid, HelloWorld,

Version=1.0.0.0, Culture=neutral, PublicKeyToken=null",
10 HelloAndroid.class,
11 __md_methods);
12 }
13

14 public HelloAndroid () {
15 super ();
16 if (getClass () == HelloAndroid.class)
17 mono.android.TypeManager.Activate (
18 "Mono.Samples.HelloWorld.HelloAndroid, HelloWorld,

Version=1.0.0.0, Culture=neutral, PublicKeyToken=null",
19 "", this, new java.lang.Object[] { });
20 }
21

22 @Override
23 public void onCreate (android.os.Bundle p0) {
24 n_onCreate (p0);
25 }
26

27 private native void n_onCreate (android.os.Bundle p0);
28 }
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To export .NET methods that are not overrides of existing Java methods
(e.g., .NET handles of Android UI events) to ACW, Export attribute [22] must
be used. See an example of its usage in Code snippet 1.16.

Code Snippet 1.16: C#: Example of .NET implementaion of Andriod Activity
1 public class HelloAndroid : Andriod.App.Activity {
2 protected override void OnCreate (Bundle savedInstanceState) {
3 base.OnCreate (savedInstanceState);
4 SetContentView (R.layout.main);
5 }
6

7 [Java.Interop.Export("ButtonClick")]
8 public void ButtonClick(View v) {
9 // implementation

10 ...
11 }
12 }

Native method registration
The previous paragraph introduced the concept of Android Callable Wrappers,
Java stub classes that get generated for every .NET type that should be used from
Java. ACWs contain native method declaration for every .NET method that is
supposed to be callable from Java. When the Java native method gets called, the
corresponding .NET implementation should be invoked. What remains unclear,
however, is how Java (JNI) identifies the particular .NET method that should
be invoked when the native method gets called. That is handled by the native
method registration process, which will be described in this section.

Line 8 of Code Snippet 1.15 shows that the static initializer of ACW calls
mono.android.Runtime.register method. This method is the entry point of the
native method registration process. The process itself is complex and can be more
easily explained on the usage of Register attribute [23]. Register attribute is
an infrastructural attribute that is not intended to be used by common Android
application developers. It is used while manually implementing Java bindings
using Xamarin.Android JNI wrapper. The attribute serves a similar purpose as
the previously mentioned Export attribute (exporting .NET method to ACW
class), but it requires that certain infrastructural code is implemented manually,
which makes it easier to understand individual components involved in the native
method registration process.

Native method registration is eventually done via JNI call RegisterNatives
[8]. Each native method being registered is passed to the JNI RegisterNatives
function as the following struct.
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Code Snippet 1.17: C: Jni representation of native method binding
1 typedef struct {
2 char *name;
3 char *signature;
4 void *fnPtr;
5 } JNINativeMethod;

The first two struct fields identify a Java method marked with native keyword
by its name JNI type signature [8] (see Section 1.2.1). The third field is a function
pointer to the method implementation (in our case, the .NET method) that should
be invoked when the Java native method is called.

Xamarin.Android must be able to provide these 3 parameters to the JNI
RegisterNatives function for each method it exports to ACW. That is where
Register attribute becomes relevant. Code snippet 1.18 shows Register at-
tribute usage.

Code Snippet 1.18: C#: Usage of Register attribute
1 partial class ManagedAdder : Adder { // suppose that Adder is MCW

of exiting Java class
2 [Register ("add", "(II)I", "GetAddHandler")]
3 public override int Add (int a, int b) {
4 return a + b;
5 }
6 }

Notice that the attribute takes three constructor parameters. The first two
exactly correspond to the first two fields of JNINativeMethod struct (see Code
snippet 1.17), and they identify the Java method by its name and signature. The
third field of JNINativeMethod struct requires a function pointer to the method
implementation. However, as pointers are runtime entities, the third parameter
of Register attribute is the name of the method that is supposed to return
the pointer (.NET delegate) rather than the pointer itself. Such a method is in
the context of Xamarin.Android referred to as connector. Connector method
generated for the method from Code snippet 1.18 can be seen at line 3 of Code
Snippet 1.19 [20]:

Code Snippet 1.19: C#: Generated infrastural methods required during native
method registration process

1 partial class ManagedAdder : Adder {
2 static Delegate cb_add;
3 static Delegate GetAddHandler () {
4 if (cb_add == null)
5 cb_add = JNINativeWrapper.CreateDelegate ((Func<IntPtr,

IntPtr, int, int, int>) n_Add);
6 return cb_add;
7 }
8

9 static int n_Add (IntPtr jnienv, IntPtr lrefThis, int a, int
b) {
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10 Adder __this = Java.Lang.Object.GetObject<Adder>(lrefThis,
JniHandleOwnership.DoNotTransfer);

11 return __this.Add (a, b);
12 }
13 }

Notice that GetAddHandler connector method does not return a direct del-
egate to Add method, which is supposed to be invokable from Java. Instead, it
returns delegate to method n_add, which in its body calls Add method. This is
because the JNI RegisterNatives function expects that the delegate will point
to a function that has JNI compatible signature [8] (see Section 1.2.1). Due to
that, n_add marshaller method is needed. JNI RegisterNatives function will
register n_add .NET method as a “native” implementation of Java Add native
method enabling to invoke n_add from Java, transitively invoking .NET Add im-
plementation.

Parameters of Register attribute influence generated ACW. In Code snippet
1.20 shows ACW generated for ManagedAdder class from Code Snippet 1.18. No-
tice that mono.android.Runtime.register method gets passed the string con-
taining parameters of Register attribute: name of Java native method, encod-
ing of the type signature of this method, and the name of connector method.
Compare it with lines 5 and 6 in Code Snippet 1.15 that do the same for the
previously mentioned OnCreate method.

Code Snippet 1.20: Java: ACW for ManagedAdder .NET class
1 public class ManagedAdder extends mono.android.test.Adder {
2 static final String __md_methods;
3 static {
4 __md_methods = "n_add:(II)I:GetAddHandler\n" +
5 "";
6 mono.android.Runtime.register (/*some irrelevant

parameters*/, __md_methods);
7 }
8 @Override
9 public int add (int p0, int p1) {

10 return n_add (p0, p1);
11 }
12 private native int n_add (int p0, int p1);
13 }

Java method mono.android.Runtime.register is actually declared as native
[24], and it is a callback to the .NET method in Xamarin.Android runtime. There,
the method name and JNI signature of Java native method and the name of the
.NET connector method are parsed from the passed string, the connector is in-
voked via Reflection, and JNI RegisterNatives function is called [25]. This
process was referred to as “an unholy mess of string splitting and Reflection” by
.NET Android Tech Lead Jonathan Pryor [26, 27].

The method registration process, as described above, introduces a strong
implicit coupling between the ACW generator and native method registration.
ACW generator must produce the correct format of the string parameter of
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mono.android.Runtime.register method. The registration process then has
to be able to parse RegisterNatives function from this string.

What is more, when user-friendly Export attribute is used instead of the
internal Register attribute, equivalents of an infrastructural glue code such as
connector and marshaller .NET methods need to be generated in runtime
[26, 28], which is problematic for potential AOT compilation of .NET code using
Xamarin.Android.

R4 Solution should avoid runtime code generation.

In summary, native method registration process in Xamarin.Android interop
is convoluted, depending on string splitting magic, reflection and runtime gen-
eration of code. It also introduces implicit dependencies between components of
Xamarin.Android that would at the first glance seem independent.

Managed Callable Wrappers
Previous sections focused mainly on Java to .NET direction of interop invoca-
tion. Xamarin.Android, however, also enables the opposite direction of invoca-
tion, mainly to provide a Xamarin.Android .NET developer access to rich variety
of Java Android libraries.

Xamarin.Android is able to generate so-called Bindings libraries that bind
each class of a particular Java library to a .NET Managed Callable wrapper
class, which uses JNI to enable .NET developer to work with Java class as if
it was implemented in C#. Binding libraries can be generated from JAR files
using a Visual Studio template. Xamarin.Android tooling, however, currently
only supports binding of Java libraries that were built for Android [15].

The process of generating the Binding library itself file is quite straightforward
[15], but the potential customization of generated code is quite cumbersome. To
generate Binding library Xamarin.Android will inspect the provided JAR and
will generate a list of all packages, classes, and members to be bound. It stores
this list to api.xml file, which will be later on used to generate MCWs. api.xml
file may look as follows [29]:

Code Snippet 1.21: Example of api.xml
1 <api>
2 <package name="android">
3 <class
4 abstract="false"
5 deprecated="not deprecated"
6 extends="java.lang.Object"
7 extends-generic-aware="java.lang.Object"
8 final="true"
9 name="Manifest"

10 static="false"
11 visibility="public">
12 <constructor deprecated="not deprecated" final="false"
13 name="Manifest" static="false"

type="android.Manifest"
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14 visibility="public">
15 </constructor>
16 </class>
17 ...
18 </api>

Potential changes to generated API, however, are not done via editing api.xml
file. Rather they need to be written in one of three additional .xml files [29]:

• MetaData.xml - for renaming namespaces, classes and members, renaming
or removing them

• EnumFields.xml - for mapping between Java int constants and C# enums

• EnumMethods.xml - for changing method parameters and return types from
Java int constants to C# enums

Code snippet 1.22 [29] shows the example of metadata .xml.

Code Snippet 1.22: Example of MetaData.xml
1 <metadata>
2 <!-- Normalize the namespace for .NET -->
3 <attr path="/api/package[@name=’com.evernote.android.job’]"
4 name="managedName">Evernote.AndroidJob</attr>
5

6 <remove-node
path="/api/package[@name=’com.evernote.android.job.v14’]" />

7 <remove-node
path="/api/package[@name=’com.evernote.android.job.v21’]" />

8

9 <attr path="/api/package[@name=’com.evernote.android.job’]
10 /class[@name=’JobManager’]/method[@name=’fo

rceApi’]/parameter[@name=’p0’]"
11 name="name">api</attr>
12 </metadata>

Requiring a .NET developer to write multiple .xml to customize generated
binding classes seems a highly unpleasant developer experience. It may be ac-
ceptable in the Android context as the UI part of the Android app is declared
in .xml, and therefore, Android developers are used to it, but in the context of
general .NET development, it does not seem ideal.

R5 Configuration of generated proxies should be user-friendly and in-code.

Another option is to obtain customized .NET bindings of Java classes using
Xamarin.Android is to implement them manually using the .NET wrapper of JNI
API [20]. This process is cumbersome and requires knowledge about JNI and an
understanding of the implementation details of Xamarin.Android JNI wrappers.
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Problems
Xamarin Android interop introduced in this section has several shortcomings:

• It is dependent on MONO runtime and ART virtual machine.

R6 Solution should function on modern multiplatform .NET and on common
Java distributions and versions.

• Its API is designed for implementing Android applications in C#. Most
common activities expected within this use case (overriding OnCreate method,
generating MCW bindings without customization) can be achieved in an
easy and user-friendly manner. Any more specific action (customizing
MCW via .xml, using JNI manually) is highly user-unfriendly.

• It depends on the runtime generation of code, which stands in the way of
potential AOT compilation.

• Native method registration is cumbersome and introduces implicit strong
coupling between otherwise independent components. Today’s developers
can imagine that the process could be handled more elegantly using Incre-
mental source generators.

1.3.2 IKVM.NET
IKVM.NET [30, 31] approaches the interoperability problem on a different level
than the previously described Xamarin Java.Interop. Xamarin Java.Interop is
an API level bridge. It allows cross-language invocation of methods and cross-
language usage of objects. Using Xamarin Java.Interop, Java-side code runs
on JVM, and .NET-side code runs on CLR. IKVM.NET, however, runs Java
bytecode on top of .NET (originally .NET framework and Mono, now .NET as
well). It is an implementation of Java for the .NET platform.

IKVM.NET can be used either in dynamic mode or in static mode. Dynamic
mode reads Java class files at runtime, and JIT compiles them into CIL code.
This is heavily based on reflection. IKVM.NET even contains its own fork of
System.Reflection: IKVM.Reflection which extends reflection API by some
functionality that IKVM.NET requires.

In static mode, JAR files are AOT compiled into .NET assemblies, which can
then be used as normal .NET assemblies from .NET code.

IKVM.NET only allows Java code to run on top of .NET. It does not support
the opposite direction: running .NET code on JVM [30].

IKVM.NET contains of several components [30, 31]:

• Java virtual machine implemented in .NET,

• Java class libraries precompiled to .NET using IKVM.NET,

• .NET reimplementations of native methods is Java class path,

• static (AOT) compiler of Java bytecode to CIL,

• JIT compiler of Java bytecode to CIL.
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Project history and the current state
The project was started by Jeroen Frijters in 2002 [32]. In 2017 he decided to
abandon the project, saying: “I’ve slowly been losing faith in .NET. Looking
back, I guess this process started with the release of .NET 3.5. On the Java side
things don’t look much better. The Java 9 module system reminds me too much of
the generics erasure debacle. I hope someone will fork IKVM.NET and continue
working on it.” [33].

In 2018, Windward Studios forked IKVM from SVN to git, promising to keep
supporting it and to help to build an open-source community around it [34, 35].
They, however, did not continue the development of IKVM.NET [36].

In 2022, Jerome Haltom and others moved the project to a new GitHub or-
ganization, where they continue its development since [37].

Take away
Implementing IL code level interop as IKVM.NET does seems to be an enor-
mous task. Many aspects need to be taken into consideration to ensure that the
semantics of Java byte code stay the same when it is executed on top of .NET
[32]. This thesis does not aim to implement a. NET-based JVM. Rather, it will
attempt to implement API level interop bridge.

R7 Interop will work on API level: allowing invocation of Java methods and
usage of Java objects from C#. It won’t be IL-level interop.

1.3.3 JCOBridge and JNet
JOCBridge (JVM CLR Objects Bridge) [38] is a commercial, closed-source API
level interop solution. As Xamarin Java.Interop, JOCBridge hosts both JVM and
CRL in the same process and uses JNI to manage communication between them.
As it is closed-sourced, however, it is impossible to reason about aspects of its
implementation in more detail.

JOCBridge on its own seems to heavily depend on the usage of dynamic
objects, providing the users with late binding and lacking IntelliSense and type
safety [38].

R8 Solution should provide C# proxies for Java classes with static type safety.
Dynamic objects should not be used for the proxies.

This problem is addressed by JNet project [39], which provides a set of tools
built on top of JOCBridge and enriches JOCBridge with additional functionality.
Part of JNet is the JNetReflector command line tool [40] that statically generates
.NET proxy classes based on Java classes presented in the provided JAR file. JNet
project contains a set of pre-generated proxies for common classes from the Java
standard library; however, if the user needs to generate a proxy for their own
Java classes, they need to invoke the JNetReflector tool manually.

R9 Solution should generate .NET proxies for custom Java classes without
requiring explicitly using an external tool.

Even though JNet is open-source, it cannot be used without a commercial
JCOBridge layer.
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1.3.4 Unity Android JNI wrappers
Unity game engine (closed-source) [41] contains a JNI wrapper allowing users
to utilize Java plugins from their C# Unity scripts [42]. This wrapper is fairly
low-level. It contains AndroidJNI class [43], which is just a P/Invoke-based (see
section 1.2.2) wrapper of JNI functions (see section 1.2.1) and provides almost
none additional abstraction.

Additionally, it contains a slightly higher-level AndroidJavaClass class that
represents the concept of Java type (corresponding to java.lang.Class) and
AndroidJavaObject class that serves as a type-less interface to an instance of
any Java class, allowing to call instance methods (see Code Snippet 1.23) and to
access instance fields.

Code Snippet 1.23: Usage of AndroidJavaObject from Unity JNI wrappers
1 using (AndroidJavaObject jo = new

AndroidJavaObject("java.lang.String", text))
2 {
3 int hash = jo.Call<int>("hashCode");
4 return hash;
5 }

Code Snippet 1.23 shows that representing multiple Java types by single .NET
types makes code stringly-typed, losing static type safety and allowing the user to
attempt to invoke arbitrary methods on instances that do not implement them,
which is fairly similar to the situation when dynamic objects are used for the
proxies (see section 1.3.3), and it should be avoided in this thesis.

R10 To ensure static type safety, the solution should provide separate C# proxies
for separate Java types. It should not be possible to represent instances of a
Java type by instances of a proxy that does not correspond to that particular
Java type.

1.3.5 Other commercial implementations
In addition to the previously mentioned JCOBridge (refer to Section 1.3.3), there
are also other commercial tools available for interoperability between .NET and
Java. This section will provide a brief overview of two such tools.

JnBridge
JnBridge [44] is a complex commercial solution. It supports an in-process API-
level JNI-based interop (in the JnBridge context referred to as shared memory
communication) similar to one provided by Xamarin or JOCBridge. In addition
to that, however, it also supports interop between potentially multiple instances
of JVM and CLR running in different processes either on the same machine or
on different machines either via TCP protocol or via proprietary binary protocol.
This form of communication has significant overhead over JNI-based in-memory
solution [45].

JnBridge fully supports both directions of invocation: from .NET to Java and
from Java to .NET: both as callbacks and as normal method invocations.
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JnBridge allows user to generate proxy classes. This can be done via Visual
Studio plugin (when generating .NET proxies for Java classes), Eclipse plugin
(when generating Java proxies for .NET classes) or via JnBridge GUI.

It is a completely close source solution, and its public documentation provides
minimal insight into its internal implementation details.

Javonet
Javonet [46] claims to be a universal interop solution for the cartesian product
of languages Java (or Kotlin, Groovy, Clojure), C#(or VB.NET), Ruby, Perl,
Python, and JavaScript (or TypeScript) (see Figure 1.3). It is API-level interop.
It supports either in-process interop or TCP-based communication between run-
times running in different processes.

Figure 1.3: Javonet: interop between cartesian product of languages [46]

Javonet does not statically generate proxies, and it does not use dynamic
objects either (see Section 1.3.3). Due to that, its API is rather cumbersome as
it does not attempt to emulate working with Java objects as if they were C#
objects (see Code Snippet 1.24 [46]).

R11 Solution should generate proxies .NET that emulate Java classes so that
user experience is seamless, working with Java classes as if they were im-
plemented in C#.

Code Snippet 1.24: Usage of Javonet API
1 Javonet.Activate("your-license-key");
2 // in memory can be replaced by Tcp to get Tcp based communication
3 var calledRuntime = Javonet.InMemory().Jvm();
4 string libraryPath = resourcesDirectory + "/TestClass.jar";
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5 string className = "TestClass";
6 calledRuntime.LoadLibrary(libraryPath);
7 var calledRuntimeType = calledRuntime.GetType(className).Execute();
8 var response =

calledRuntimeType.InvokeStaticMethod("multiplyByTwo",
25).Execute();

9 var result = (int)response.GetValue();

1.3.6 Other open source solutions
In addition to the interop tools mentioned earlier there also exists a number of
other open source solutions which are currently unmaintained and were left in
various stages of production readiness.

J4net
J4Net [47] is API level JNI-based interop tool hosting both virtual machines in
the same process. It uses reflection-based proxies on the .NET side and a simi-
lar mechanism to enable callbacks (JNI RegisterNatives call and Java proxies
generated by external tool [48]) as Xamarin Android Java.Interop (Section 1.3.1).

It is Windows only [47] and no longer maintained [49].

JNetCall
Same as J4net, JNetCall [50] is a level JNI-based interop tool using reflection.
It should be multiplatform [50], and although it is no longer maintained, it was
abandoned much more recently than J4Net [51].

It is, however, completely undocumented and it seems to be created mainly
for a personal needs of the author rather then as a tool intended to be used by
other developers.

1.3.7 Summary
This section explored several existing implementations of interoperability between
.NET and Java. Based on analyzed implementations, approaches to interoper-
ability can be categorized by several aspects:

• CIL level interop (like IKVM referred to in Section 1.3.2) or API level
interop as any other mentioned implementation

API level approaches can be further categorized:

• as in-process interop hosting both JVM and CRL in the same process
(e.g., Xamarin interop in Section 1.3.1) or as inter-process interop (e.g.,
JnBridge referred to in Section 1.3.5).

• by their approach to proxies. This section showed solutions that:

– generated statically by the external tool (e.g., JnBridge referred to in
Section 1.3.5)
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– used reflection-based or dynamic proxies (e.g. JCOBridge described in
Section 1.3.3)

– did not use proxies at all (e.g., Javonet mentioned in Section 1.3.5)

According to requirement R7 this thesis will implement API level interop.
As in-process interop generally tends to have lower overhead and general proto-
cols for communication between processes already exist, the thesis will implement
in-process interop. As intuitive and easy-to-use API (R5, R9) and static type
safety is required (R8, R10) proxies will be generated statically. Incre-
mental source generators added to .NET in .NET 6 could be an ideal means of
compile-time proxy generation.

As this section demonstrated, a certain number of API-level solutions for .NET
and Java interoperability already exist. Many of them are, however, commercial
and closed-source (Sections 1.3.5 and 1.3.3) and the ones that are open source
are either specific to certain domain (as Xamarin Android Java.Interop (Section
1.3.1)) or long abandoned and using out-dated technologies or extremely hard to
use due to lack of documentation (Section 1.3.6). It seems, therefore, that there
is a need for a modern, well-documented, and maintained interop solution. What
is more, none of the examined solutions utilizes Incremental source generators to
generate proxies.

1.4 Goals of the thesis
After the potential use cases for the C# - Java interoperability tool have been
explored and existing implementations of such or similar tools have been analyzed,
the goals of this thesis can be formulated.

The objective of the thesis is to design and implement a .NET library for inter-
operability with Java. The library should enable users to use APIs implemented
in Java from C# code bases. The resulting library should meet requirements
R1 – R11 defined in this chapter.

The implemented solution should be properly tested on a set of selected
supported platforms (support for multiple platforms is required by requirement
R6). It should also be tested using a real existing Java library. Apache
PDFBox [5] library mentioned in Section 1.1.2 seems suitable for this purpose.
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2. Implementation analysis
This chapter will describe various decisions to be made while designing the in-
teroperability tool being implemented in this thesis. For each decision, chapter
will ponder alternative solutions, analyze their pros and cons and will defend the
selected approach.

2.1 Differences between Java and C#
This thesis aims at implementing an interoperability tool between C# and Java
programming languages. Though the languages share many similarities, there
are also concepts in which they differ. We have to identify such differences that
are relevant to this thesis and determine how to address them. That will be the
topic of this section.

2.1.1 Primitive and value types
.NET (and therefore C#) has so-called common type system (CTS) [52] that
unifies all types (including built-in numeric types such as int or double) so that
they share the same topmost base class (the root of inheritance hierarchy) –
System.Object. The structure of CTS is captured by Figure 2.1. Due to the
common base class, value types in C# can be implicitly boxed when needed and
used consistently with reference types.

Figure 2.1: Common type system in .NET

Java, however, does not implement this type unification [53]. That has two
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main consequences1:

1. Primitive types (such as int or double) cannot be used where reference
type is expected – e.g. they cannot be passed to methods that expect
java.lang.Object, and due to generic runtime erasure (see Section 2.1.2),
they cannot be used as generic type parameters (e.g., stored in generic col-
lections). Instead, wrapper classes (java.lang.Integer, java.lang.Double)
must be used.

2. Java does not allow for user-defined value types (equivalent of C# struct).

In the context of our interoperability tool, this leads to the following outcomes:

O1 Built-in numeric types and their wrapper types will have to be handled
separately. Wrapper types do not, in principle, differ from any other Java
classes and can be, therefore, handled as such. Built-in numeric types (also
called primitive types) will be analyzed in the following paragraph.

O2 Struct types should not be allowed in signatures of C# methods that emu-
lated Java methods (from now on referred to as proxy methods).

Primitive types
Java defines 8 primitive types: byte, short, int, long, float, double, boolean
and char [55]. Each of them corresponds to an existing C# primitive type with a
similar name – e.g., Java int can be represented by C# int (System.Int32) [56].
These pairs of types share the same memory representation; we can, therefore,
pass values between them directly.

The only exception is byte type. Unlike .NET, Java does not support unsigned
integer types (C# types such as uint and ulong do not have Java equivalent).
Java byte is therefore signed while C# System.Byte is unsigned. We have to
map Java byte to C# signed byte: System.Sbyte.

O3 Java primitive types can be represented by corresponding C# primitive
types (Java byte must be represented by C# sbyte).

O4 C# unsigned integers should not be allowed in proxy method signatures.

Other common value types
C# also defines other commonly used value types, e.g. (primitive) decimal type
[57], System.DateTime struct [58], System.Guid struct [59]. Java offers some
alternatives to these types; however, as the only value type that exists in Java are
8 primitive types listed in the previous paragraph, Java equivalents of decimal,
DateTime and Guid are reference types. They could be handled similarly to
wrapper types (such as java.lang.Integer), but that is out of the scope of this
thesis.

O5 Other C# built-in value types (such as decimal, DateTime and Guid) won’t
be allowed in proxy method signatures.

1Project Valhalla [54] that has been in progress for several years now aims at mitigating
both of these issues.
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2.1.2 Generics
Java generics significantly differ from .NET ones. Generics were added to Java
in Java 5 [60]. To keep backwards compatibility with the previous Java versions,
Java generics only exist at compile time – they are not represented in Java byte-
code. That distinguishes them from .NET generics that are represented in CIL
code and get instantiated during JIT compilation.

When Java code containing generics gets compiled to bytecode, erasure of
generic types takes place. Generic type parameters are replaced by the most
general type applicable – the type parameter upper bound (if such is imposed
using extends keyword) [61] or java.lang.Object if the type parameter is not
bounded. Due to that [62]:

• It is not possible to instantiate generic types with primitive types, because
primitive types do not inherit java.lang.Object.

• It is not allowed to have static fields of type parameter types.

O6 Generics in Java are in principle different from .NET generics. Support for
Java generics is out of scope of this thesis.

2.1.3 Enums
Another concept that significantly differs between C# and Java is enums. C#
enums are value types with the precisely defined set of values [63]. In Java, enums
are reference types with a precisely defined set of instances (see an example of
a Java enum in Code Snippet 2.1). Each instance represents one enumeration
constant and is accessible as an (equivalent of static final) field of enum type
[64] (see SUCCESS and ERROR fields in the example in Code Snippet 2.1). Unlike
in C#, enums in Java can define fields (for instance, message and code field in
Code Snippet 2.1) and methods (getCode method in Code Snippet 2.1). Java
enums are, therefore, more similar to C# classes than to C# enums.

Code Snippet 2.1: Example of Java enum
1 enum Status {
2 SUCCESS("Operation successful", 200),
3 ERROR("Operation failed", 500);
4

5 private String message;
6 private int code;
7 // constructor
8 Status(String message, int code) {
9 this.message = message;

10 this.code = code;
11 }
12 // Getter method
13 public int getCode() {
14 return code;
15 }
16 }
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Given these differences, it is clear that we cannot represent Java enums by
C# enums. It would be surely possible to design a C# proxy class that would
emulate Java enum. It is, however, out of the scope of this thesis.

O7 Support for Java enums is out of the scope of this thesis. C# enums won’t
be allowed in proxy method signatures.

2.1.4 Multi-dimensional arrays
C# supports both multi-dimensional arrays (continuous block of memory
allocated via one allocation, all "inner arrays" must have the same length) and
arrays of arrays (separate allocation for each inner array, occupied memory
doesn’t have to be a continuous block, inner arrays may have different lengths)
[65]. Code Snippet 2.2 demonstrates the difference between these two concepts
using the example of allocation of a two-dimensional array and an array containing
two arrays.

Code Snippet 2.2: C#: multidimensional array vs. array of arrays
1 int[,] twoDimensionalArray = new int[3, 4];
2

3 int[][] arrayOfArrays = new int[2][];
4 arrayOfArrays[0] = new int[4];
5 arrayOfArrays[1] = new int[3];

Java only supports arrays of arrays. It does not support multi-dimensional
arrays [66].

O8 Our solution should support arrays of arrays. Multi-dimensional arrays
should not be allowed in proxy method signatures.

2.1.5 Properties
Java does not support properties. By convention, fields are made accessible via
getter and setter methods. These methods usually follow the given naming
convention: get or set prefix, respectively, followed by the field name with the
first character capitalized [67]. Apart from that, they do not differ in any way
from any other Java methods. We will be, therefore, able to invoke them as such.

Section 2.7.2 will examine this topic in more detail.

2.1.6 Interfaces
There are not many differences between C# and Java interfaces in the latest
versions of the languages. For several language versions, Java interfaces supported
features that weren’t supported by C# interfaces: default[68], static [68] and
private [69] interface methods.

C# added these features in C# 8 [70] [71]. The concept of default and private
methods does not differ much between languages, as one of the motivations for
adding them to C# was to allow for easier interoperability with Java [70]. For
static interface methods, the situation is different as static interface methods
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in Java require default implementation in the interface, whereas C# allows for
static abstract interface methods.

O9 We can emulate Java interfaces by C# interfaces as the two concepts are
fairly similar. Support for advanced features of Java interfaces, such as
static and default methods, is out of the scope of this thesis. Section 2.8.2
will discuss the support for interfaces in more detail.

2.1.7 Nested classes and static classes
Both languages support nested classes [72, 73], but the semantics of nested classes
differ among languages.

In C#, the nesting of classes only influences visibility. There is no implicit
connection between instances of outer and nested classes.

Java distinguishes two categories of nested classes: static nested classes,
which have the same semantics as nested classes in C#, and non-static nested
classes, also called inner classes. Inner class instances hold an implicit reference
to an instance of the outer class. An inner class instance cannot be created
without an outer class instance. This is demonstrated in Code Snippet 2.3. On
line 8, notice that Inner class can access instance field outerField of Outer
class. On line 16, notice that an instance of Outer class is required to create an
instance of Inner class.

Code Snippet 2.3: Java: inner class
1 public class Outer {
2 public int outerField = 10;
3

4 public class Inner {
5 public int innerField = 20;
6

7 public void displayFields() {
8 System.out.println("Outer field value: " + outerField

+ " inner field value " + innerField);
9 }

10 }
11 }
12

13 public class Main {
14 public static void main(String[] args) {
15 Outer outer = new Outer();
16 Outer.Inner inner = outer.new Inner();
17 inner.displayFields();
18 // Outer field value: 10 inner field value 20
19 }
20 }

O10 Java non-static nested classes differ from C# nested classes, but C# proxy
class could be designed to compensate for this difference. Java static nested
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classes are fairly similar to C# nested classes. The only problem to be solved
to support them is the name resolution. Both categories of nested classes
are out of scope for now.

Static classes
Unlike C#, Java does not allow for non-nested classes to be marked as static [74].
However, as it is going to be discussed in Sections 2.3.4 and 2.4, interoperating
with Java classes as if they were static (only accessing their static members) can
be easier (as it is not required to manipulate object instances).

O11 Even though Java does not allow for general classes to be static, we will
allow users to choose to emulate Java class by C# static class if they only
intend to access static members of underlying Java class.

2.1.8 Naming conventions
There are slight differences in naming conventions between Java [75] and C# [76]:

• methods – Java uses camelCase while C# uses PascalCase,

• interfaces – Java does not prefix interface names by capital I, while C#
does

• constants – Java uses SCREAMING_SNAKE_CASE while C# uses Pas-
calCase

• packages/ namespaces – Java uses lower case for package names while
C# uses PascalCase

O12 Our solution should compensate for differences in naming conventions, al-
lowing C# code that emulates Java code to respect C# naming conventions.

2.2 Supported environments
According to the requirement R6, the implemented solution should function on
common Java distributions and their versions. This section will focus on select-
ing a set of Java distributions and their versions as well as a set of operating
systems on which the software implemented in this thesis will be tested (for more
information about automated tests, see Section 3.6).

Operating systems
The thesis software will be developed and tested on a laptop computer with
Windows 10 Pro operating system. Apart from that, we are going to select
representatives of Linux-based operating systems on which the thesis software
will be tested.

We chose Ubuntu as the most widely used desktop distribution. Further, we
opted for CentOS Stream as a free-to-use variant of the Red Hat Enterprise
Linux, which is popular in server environments. Lastly, we opted for Apline
Linux as it is a light-weight distribution commonly used in containers and as it
uses a different C-language standard library than the previous two distributions
(MUSL instead of glibc) [77].
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Java versions
According to the JetBrains Developer Ecosystem survey from 2023 [78], 50 % of
respondents that use Java as one of their three primary programming languages
are still regularly using Java 8. That makes Java 8 the most commonly used
version of Java, according to this survey. For this reason, we should test the
solution on Java 8. Apart from that, we will run tests on all LTS versions
released since Java 8: Java 11, Java 17, and Java 21 [79]. As the newest
version of Java supporting Project Panama (see Sections 2.3.4 and 2.4 ) that was
out when Project Panama was analyzed for the purposes of this thesis was Java
20, we will also test on Java 20.

JDK distributions
The thesis will be tested on Oracle OpenJDK [80] and Amazon Corretto
OpenJDK [81] distributions as these are among the most popular JDK distri-
butions [82]. It will also be tested on GrallVM [83] JDK distribution as it is
an interesting high-performance distribution whose behavior may differ in some
aspects from the previous two.

2.3 Java–native interoperability tools
To enable interoperability between C# and Java, this thesis will rely on a combi-
nation of some existing tools for interoperability between Java and a native code
and P/Invoke (see Section 1.2.2) that enables to invoke native code from C#.
This section will focus on selecting Java–native interoperability tool to be used
in this thesis.

2.3.1 Java Native Interface
Section 1.2.1 already introduced the Java Native Interface (JNI) in a sufficient
amount of detail. This section will point out the advantages and disadvantages
that JNI has for the purposes of this thesis.

The most commonly mentioned disadvantage of JNI is that it is highly user-
unfriendly for Java developers. JNI requires users to manually write boiler-plate
code for native method bindings, furthermore in C programming language. The
performance and memory safety of JNI depend on the user’s ability to imple-
ment this code correctly [84]. That, however, does not seem problematic for our
purposes as we can abstract the majority of JNI details from a user via the C#
interoperability library we will implement.

The advantages of JNI in our context are that:

• JNI itself is the native library. We can easily use JNI functionality from
C# via P/Invoke.

• JNI allows for a low-level manipulation with resources such as memory and
references to Java objects. That offers a certain flexibility and level of
control that can be useful when implementing an interoperability library.

• JNI is an inherent part of Java and has been available since JDK version 1.1
[6]. This is an advantage as according to the requirement R6, our solution
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should function on common Java distributions and versions, and as Section
2.2 has shown, older versions of Java (such as Java 8) are still being widely
used.

• JNI allows us to spawn a JVM instance in the same process in which the
C# application is running. That is really useful as it allows us to initiate
interoperability interaction from the C# side code.

2.3.2 Java Native Access
Java Native Access (JNA) [85] is a community-driven library based on JNI. It
removes the necessity of writing C-language binding code manually by extensive
use of reflection. It is, therefore, more user-friendly and preferred among Java
programmers over direct usage of JNI. However, usage of reflection imposes a
performance overhead over direct usage of JNI [86].

For our purposes JNA does not present any advantage over JNI, as the fact
that JNI is C-language API provides an advantage not a disadvantage in our
context. JNI is therefore preferable choice for the purposes of this thesis.

2.3.3 Java Native Runtime
Java Native Runtime (JNR) [87] is a community-based library similar to JNA.
It is also based on JNI and uses dynamic code generation to avoid the necessity
of handwritten binding. JNR is said to be a less mature library than JNA [88].
Though it has better performance than JNA, its overhead is still worse than direct
JNI usage [86]. For our purposes, JNR doesn’t seem to have any advantage over
JNI.

2.3.4 Project Panama
Project Panama [89] is the current openJDK project. It aims at eventually re-
placing JNI as a tool for Java-native interoperability that is built-in to Java
programming language.

Project Panama consists of 3 parts:

• Foreign Memory API [90],

• Foreign Function API [90]

• and Vector API [91].

Vector API is not relevant to this thesis as it is not directly related to interop-
erability. It should enable Java programmers to explicitly specify that their code
should be compiled into vector (SIMD) instructions if the underlying platform
provides such [92].

The other two APIs are more relevant. Foreign Function API enables
interoperability invocations between Java and native code. Foreign Memory
API allows Java programmers to access native memory (in this context often
called off-heap memory – meaning off Java managed heap) and, as such, is used
while working with Foreign Function API.
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Foreign Memory API
The core class of Foreign Memory API is MemorySegment [93]. It allows access to
a continuous block of memory either on a Java managed heap or off-heap. It is
designed to be safe. Each MemorySegment instance has its spacial bounds and
temporal bounds – accesses to MemorySegment are checked at runtime to stop
a user from accessing out-of-bounds indices or accessing MemorySegment after it
has been freed [94].

Programmers have the option to manage the lifetime of MemorySegments ex-
plicitly – unlike older ByteBuffer API [95], MemorySegment lifetime is not nec-
essarily managed by the garbage collector. To avoid burdening programmers
with having to manage the lifetime of each MemorySegments separately, Foreign
Memory API introduces the concept of Arenas. Arena API allows to allocate
MemorySegments. All MemorySegments allocated via the same Arena share the
same lifetime. There are four categories of Arenas:

• Confined – MemorySegments allocated via the Arena are freed when the
Arena is closed. MemorySegments can only be accessed by a thread that
created the Arena.

• Shared – Allocated MemorySegments are freed when Arena is closed.
MemorySegments can be accessed by any thread.

• Automatic – Allocated MemorySegments are managed by the garbage col-
lector. They will be deallocated at some unspecified time after the Arena
becomes unreachable. MemorySegments can be accessed by any thread.

• Global – Allocated MemorySegments are never deallocated and can be ac-
cessed by any thread.

Code Snippet 2.4 demonstrates the allocation of an off-heap memory via Arena
API. As the used Arena is of Confined category (see line 1), allocated memory
gets freed when the Arena is closed on line 3.

Code Snippet 2.4: Java: Foreign memory API – allocate off-heap memory via
Arena

1 try(Arena offHeap = Arena.ofConfined()){
2 MemorySegment point = offHeap.allocate(POINT);
3 } // memory gets freed

On line 2 in Code Snippet 2.4, notice the parameter of allocate method:
POINT. POINT is an example of MemoryLayout [96] – a mean Foreign Memory
API provides to specify a layout of allocated MemorySegments. MemoryLayouts
allow programmers to avoid computing offsets manually each time they access a
MemorySegment. Foreign Memory API contains ValueLayouts [97] of primitive
types and allows to compose them into more complex MemoryLayouts of C-like
structs and arrays. A possible definition of POINT MemoryLayout is shown in
Code Snippet 2.5 [94].
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Code Snippet 2.5: Java: Foreign memory API – MemoryLayout definition
1 MemoryLayout POINT = MemoryLayout.structLayout(
2 ValueLayout.JAVA_DOUBLE.withName("x"),
3 ValueLayout.JAVA_DOUBLE.withName("y"),
4 );

Foreign Function API
Foreign Function API builds upon Foreign Memory API. Particularly it uses:

• MemorySegments to pass data between Java and the native code,

• MemoryLayouts to describe signatures of native functions to be invoked from
Java,

• Arenas to manage lifetimes.

Foreign function API [90] allows both for invocations of native functions from
Java (in Project Panama context, usually called downcalls) and for callbacks
from native code back to Java (upcalls).

Code Snippet 2.6 [94] demonstrates downcall invocation of native function
extern Point* makePoint(double x, double y) from Java via Foreign Func-
tion API. Line 1 looks up the address of makePoint native function. Line 3 uses
MemoryLayout to describe the native function signature. Line 5 combines the
address and the signature into a MethodHandle, that can be then used to invoke
makePoint native function for Java.

Code Snippet 2.6: Java: Foreign function API – downcall
1 MemorySegment makePointAddress =
2 SymbolLookup().lookup("makePoint").get();
3 FunctionDesctiptor signature = FunctionDescriptor
4 .of(ADDRESS, JAVA_DOUBLE, JAVA_DOUBLE);
5 MethodHandle makePointHandle = Linker
6 .nativeLinker()
7 .downcallHandle(makePointAddress, signature);
8 MemorySegment point = makePointHandle.invokeExact(42.73, 42.73);

Suppose that makePoint native function allocates a new instance of Point
struct (that can be described by POINT MemoryLayout showed in Code Snippet
2.5) and returns a pointer to it. Notice that native function invocation on line
8 in Code Snippet 2.6 returns Point pointer represented by a MemorySegment.
As it was already explained, for safety reasons, each MemorySegment instance
has spacial and temporal bounds. However, Java knows nothing about the spa-
tial and temporal bounds of memory returned from the native code. Therefore
MemorySegment returned from native function invocation is so called zero-length
memory segment. It represents the correct memory address but its length is
set to zero. Underlying memory, therefore, cannot be accessed from Java as that
would violate the spatial bounds of the MemorySegment. To access the memory
from Java, it is necessary to reinterpret the MemorySegment – to explicitly set
its expected spacial and temporal bounds – as shown in Code Snippet 2.7.
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Code Snippet 2.7: Java: Foreign function API – reinterpret zero-lenght memory
segment

1 try(Arena offHeap = Arena.ofConfined()){
2 point = point.reinterpret(
3 POINT, // memory layout (spacial bound)
4 offHeap, // lifetime (temporal bound)
5 point -> cleanupHandle.invokeExact(point)); // cleanup

callback
6 // access point
7 }

Reinterpret is a potentially dangerous operation – it allows a Java code to access
a memory that potentially lays outside of actual spacial bounds of the mem-
ory region returned from the native code. Therefore, reinterpret method is
one of Javas restricted methods [98] and to use it is necessary to opt-in via
--enable-native-access command line option.

Foreign Function API – upcalls
Foreign Function API enables upcalls (invocations of Java methods from the
native code) only as callbacks. Foreign function API can be used to build an
upcall stub of the Java method. This stub can then be passed to the invocation
of a native function that expects a function pointer. The native function can then
call this function pointer effectively calling back to Java [99].

Code Snippet 2.8 shows how to build an upcall stub of Java method
javaCallback shown in Code Snippet 2.9. Line 1 uses MemoryLayout to describe
the method signature. Line 3 looks up the method using MethodHandle API
[100]. Line 6 builds an upcall stub from the MethodHandle using Arena with the
global scope.

Code Snippet 2.8: Java: Foreign function API – upcall stub
1 FunctionDescriptor signature = FunctionDescriptor
2 .of(JAVA_INT, JAVA_DOUBLE);
3 MethodHandle upcallHandle = MethodHandles
4 .lookup()
5 .findStatic(MyJavaClass.class, "javaCallback",

signature.toMethodType());
6 MemorySegmemnt upcallStub = Linker
7 .nativeLinker()
8 .upcallStub(upcallHandle, signature, Arena.ofGlobal());
9 // pass upcallStub to native invocation

Code Snippet 2.9: Java: callback to be invoked from native code
1 public class MyJavaClass {
2 public static int javaCallback(double) { ... }
3 }
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Summary
As the previous examples have shown, Panama Foreign Function API is highly
Java-centered. Unlike JNI, it allows for interoperability invocations without the
necessity to write any C-code bindings. That is a big selling point for Java
programmers; however, it imposes an issue for the purposes of this thesis. As
Panama API is Java API, we cannot easily access it from C# (if we could, the
point of this thesis would be moot). Moreover, to enable C# to Java invocations,
we are interested in upcalls that Panama only enables as callbacks. That could
make it more complicated to use Panama for our purposes (Section 2.4.1 will
analyze it).

Moreover, unlike JNI, the current version of Project Panama does not allow
native code to access Java object [101].

On the other hand, Project Panama can also have some advantages over JNI
in our context:

• Its performance is supposed to be better than the performance of JNI,
especially for upcalls [101] (Section 2.4.3 will look into that).

• It is a brand new feature built-in Java. When Project Panama was analyzed
for the purposes of this thesis, it was still a preview feature (in Java 20).
Foreign Function and Foreign Memory API only moved from the preview
in Java 22 (19th March 2024)2 [102]. Project Panama may be the future of
interoperability between Java and native code, and our solution should be
prepared for that.

2.3.5 Summary
Previous sections analyzed several tools for interoperability between Java and the
native code and identified their advantages and disadvantages. This section will
choose tools that are to be used in this thesis.

JNI:

• is easy to use from C# via P/Invoke,

• enables us to spawn JVM in the process of a .NET application. Therefore,
it enables us to bootstrap interoperability interaction from C# code,

• and is available in all versions of Java since Java 1.1.

JNA (Section 2.3.2) and JNR (Section 2.3.3) do not present any advantage in
our context over a direct usage of JNI.

Project Panama:

• is not straight-forward to use from C#,

• does not enable us to spawn JVM in the process of .NET application,

• is only available as preview API since Java 19 [90] and as non-preview API
since Java 22 [102],

2Vector API still remains a preview feature in Java 22.
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• is a modern feature of Java and may be a direction that Java will take in
the future,

• and can be more efficient than JNI for upcalls.

We will, therefore, base our interoperability tool on JNI. Section 2.4 will then
explore how Project Panama can be used in this thesis and will analyze if the
resulting solution outperforms the JNI-based solution.

2.4 Project Panama for C#–Java interoperabil-
ity

Project Panama is a promising modern alternative to JNI. As the previous section
discussed, it currently does not seem possible to base our interoperability solution
solely on Panama as Panama is only supported on the newest versions of Java
(violating requirement R6), as it doesn’t allow us to spawn JVM in our process
and as it does not provide support for object yet (violating requirement R2).
We can, however, use JNI to spawn JVM instances and to handle manipulation
with objects and use Panama to optimize method invocations that do not access
object instances: invocations of static methods with primitive parameter
and return types.

2.4.1 Static methods with primitive parameter and return
types

As Section 2.3.4 explained, Panama enables the invocation of Java methods from
a native code by building un upcall stub and passing it to a native function that
expects a function pointer. We will extend this approach to leverage invocations
of Java methods from C#.

When a native function receives an upcall stub pointer, it can invoke it as a
normal function pointer. If we managed to obtain an upcall stub pointer from
our C# interoperability tool, we could also treat it as an ordinary native function
pointer – cast it to unmanaged delegate and invoke it via P/Invoke (see Section
1.2.2). The problem is, however, that Panama Foreign Function API is only
available as Java API – and we would like to use it from our C# interoperability
tool to obtain an upcall stub pointer.

We can bootstrap Panama invocation via JNI. We can implement Java method
buildPanamaStub that given a name of a Java method to be invoked from C#,
a name of a type that defines the method and the method signature, returns the
upcall stub pointer. We can use JNI to invoke buildPanamaStub method the first
time a given Java method is to be invoked from C# to obtain the upcall stub
pointer. Then, each consecutive time the Java method is invoked, we can invoke
the upcall stub pointer via P/Invoke (without any additional usage of JNI).

This approach only has advantages over a purely JNI-based approach if the
invocation of the upcall stub via P/Invoke is significantly more efficient than the
direct invocation of the Java method via JNI. Section 2.4.3 will analyze perfor-
mance implications.
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2.4.2 Strings
Project Panama does not currently provide dedicated support for accessing Java
string instances from a native code. Due to the possibility of heap compaction, we
cannot simply pass Java string reference to C# and vice versa. We can, however,
pass strings by copying them to unmanaged memory and passing a pointer to the
unmanaged copy.

The problem is that with this approach, arguments and return values passed
across the language border do not match the signature of actual Java method
being invoked – method expects string, but C# would like to pass a pointer to
an unmanaged string copy represented by long type3.

Before an actual user-defined Java method is invoked, preprocessing of string
arguments is required, reading string content from an unmanaged memory and
creating java.lang.String instance. Symmetrically, when the Java method re-
turns a string, return value postprocessing must be carried out, allocating an
unmanaged string copy and returning a pointer to it to C#. According to re-
quirement R3, our solution should not require users to modify Java-side code in
order to make it usable from C#; we, therefore, cannot rely on users to carry out
these transformations.

Luckily, Java MethodHandles API [100] provides the solution. Code Snip-
pet 2.8 has shown that to build an upcall stub of the Java method, one must
first obtain a MethodHandle of the Java method. MethodHandles API allows to
combine MethodHandles into more complex invocable structures. Among others,
it offers collectArguments method that allows to set another MethodHandle
(filter) that will be used to preprocess argument(s) of original MethodHandle
before the original method is invoked. collectArguments method produces a
new MethodHandle with signature of the original MethodHandle, but with speci-
fies parameter types replaced by parameter types of filter MethodHandle.

As a filter, we can apply a method that takes an address of a string copy in
an unmanaged memory (long) and returns a managed Java string read from that
address. Resulting MethodHandle will therefore have all occurrences of string type
among its parameters replaced by long type. We can then build an upcall stub
from this modified MethodHandle – resulting signature will directly match what
C#-side caller expects, and string arguments preprocessing will automatically
take place each time the upcall stub is invoked from C#.

Symmetrically, we can use MethodHandles.filterReturnValue method [100]
with a filter allocating a copy of java.langString in unamanaged memory to
ensure return value postprocessing.

Take away
Though the described approach allows us to pass string values between Java
and C#, it does not allow us to treat Java strings as objects on the C# side –
e.g., invoke instance methods on string instances. It may be possible to extend
the approach further to be feasible in a broader range of scenarios, but for the
purposes of this thesis, we will abandon these attempts. We will handle strings via
JNI, as the approach seems less fragile and bug-prone than the manual copying
of strings between managed and unmanaged memory. We will keep in mind that

3Java MemorySegment API represents addresses as longs [93]
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Panama could potentially be used to work with strings in future versions of the
project.

2.4.3 Benchmark: JNI vs Project Panama
This section compares the performance of the interoperability approach based on
Project Panama described in Section 2.4.1 with a purely JNI-based approach.
Based on the results, it will decide whether Project Panama is worth using in
this thesis.

The author did a more detailed analysis of the problem as the final project for
Performance Evaluation of Computer Systems class [103]; this section contains
the summary of the obtained results. All the benchmarks were executed in August
2023 on the following platform:

• CPU: 12th Gen Intel(R) Core(TM) i7-12700H, 2300 Mhz, 14 Core(s), 20
Logical Processor(s)

• RAM: 32 GB

• OS: Microsoft Windows 10 Pro, Version 10.0.19045 Build 19045

• Java version: openjdk 20.0.1 2023-04-18

• .NET version: .NET SDK 7.0.203 (.NET 7.0.5 (7.0.523.17405), X64 Ryu-
JIT AVX2)

• C++ compiler: cl C/C++ Optimizing Compiler Version 19.35.32217.1
for x64

• Power management: all experiments were run on plug-in laptop with
high performance mode enabled

Java – C++ interoperability: downcalls vs upcalls
The first set of benchmarks aims at verifying the claim [101] that Project Panama
should outperform JNI on upcalls from a native code to Java.

Figure 2.2 captures invocation times of 1000 invocations of static method
taking ten int parameters via JNI (blue and green) and via Project Panama (red
and yellow). Both upcall4 and downcall5 directions of invocations are captured.
To disregard the influence of a warm up (e.g. caused by JIT-ting of Java bytecode)
on the the measurement, displayed samples are taken from the middle of the
longer run. Iterations 5000 to 6000 are displayed.

Figure 2.2 shows that Project Panama is significantly faster for upcall invo-
cations than JNI. The mean upcall invocation time via JNI is 75.96 ns, whereas,
via Project Panama, it is 25.07 ns. That confirms the assumption that Project
Panama is more efficient on upcalls than JNI, and it makes Project Panama a
promising tool for this thesis, as the direction of invocation we are interested in
is upcalls (requirement R1).

4native to Java
5Java to native

42



Figure 2.2: Upcall vs downcall invocation times, Java – C++ interop, method
taking 10 int parameters

On downcall both Project Panama and JNI perform similarly. The mean
downcall invocation time via JNI is 10.07 ns and via Project Panama is is 12.24
ns. No matter the technology used, downcalls are more efficient than upcalls.

C# – Java interoperability: static methods with primitive parameter
types
The second set of benchmarks compares the performance of JNI and Panama

on invocation of static Java methods with primitive parameter and re-
turn types from C# using the interoperability tool being implemented
in this thesis. Benchmark explores the influence of a number of method pa-
rameters (methods with 0, 1, 5 and 10 parameters were measured) and of
parameter types (methods taking int, long, float, double or bool parameters
were measured) on the invocation time.

For all explored combinations of parameter types and counts, Project
Panama performed better than the JNI-based solution. Figure 2.3 demon-
strates it by comparing mean invocation times of Java methods taking 0, 1, 5,
and 10 double parameters via JNI and via Project Panama. Attachment A.2
then contains a table of mean invocation times of all observed methods, collected
using Benchmark .NET [104].

As Figure 2.3 shows, invocation times using JNI depend on the number of the
method parameters. The more parameters the method being invoked is accept-
ing the longer the JNI mean invocation time (the difference in mean invocation
time between a method taking zero parameters and a method taking ten double
parameters is approximately 100 ns). Panama invocation times do not seem to
be affected in this manner.
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Figure 2.3: Influence of number of parameters on mean invocation time – double
parameters

Table 2.1 shows statics considering invocations of methods taking int
parameters collected via Benchmark .NET. It demonstrates that, unlike the
Project Panama-based approach, JNI carries out heap allocations to pass
primitive type arguments from C# to Java.

Method Mean StdDev Allocated
IntParamlessMethodJni 67.90 ns 0.472 ns -
IntMethodIntParamJni 74.83 ns 0.261 ns 32 B
FiveIntParamsJni 98.19 ns 0.371 ns 64 B
TenIntParamsJni 135.71 ns 0.782 ns 104 B
IntParamlessMethodPanama 20.05 ns 0.129 ns -
IntMethodIntParamPanama 20.36 ns 0.024 ns -
FiveIntParamsPanama 19.14 ns 0.102 ns -
TenIntParamsPanama 22.35 ns 0.092 ns -

Table 2.1: Performance comparison between JNI and Project Panama on meth-
ods taking int parameters

Figure 2.4 explores the influence of parameter types on a mean invocation
time. JNI performance seems to be slightly affected by parameter type, while the
Project Panama-based approach seems indifferent to types of primitive parame-
ters passed.

To sum it up, the Project Panama-based approach is more efficient than JNI
on all observed combinations of parameter types and counts. Unlike JNI, it does
not carry out heap allocations to pass arguments, and the invocation time does not
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Figure 2.4: Influence of primitive parameter types on mean invocation time –
10 parameters method

depend on the number of arguments passed. Project Panama seems to have
a significant performance advantage over JNI on invocations of static
methods with primitive parameter and return types. We will, therefore
incorporate Project Panama as opt-in performance optimization for
these kinds of invocations. That will also encourage us to design the solution in
a modular enough way so that if the Java ecosystem moves away from JNI and
towards Project Panama in the future, it will be easier to modify our solution to
use Project Panama more broadly.

2.5 JNI layer
This section will analyze a set of decisions that had to be made while designing
JNI-based layer of the interoperability tool being implemented.

2.5.1 CreateJVM – locating JVM library
As was already mentioned, JNI can be used to create a JVM instance in the
process where the .NET application is running. To make it possible, however,
jvm native library (jvm.dll on Windows, libjvm.so on Linux) must be loaded.
This library comes with each Java version and distribution present on a hosting
machine. We need to let the user specify which Java version and distribution
should be used. The process of looking up native libraries to be loaded, however,
differs between Windows and Linux platforms (and we would like to provide a
solution working on both platforms – requirement R6).
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On Windows, we can make libraries loadable by setting their location to
PATH environment variable [105]. PATH environment variable can be modified
by running a .NET application via Environment.SetEnvironmentVariable call
[106]. This modification will affect consecutive loads of native libraries carried
out by the application.

The situation on Linux is different. To enable for a library to be dynamically
loaded, the path to the library must be set in LD_LIBRARY_PATH environment
variable [107]. This environment variable, however, must be set before the ap-
plication starts. Later changes of the variable won’t have an effect on a running
application [108] – Environment.SetEnvironmentVariable method, therefore,
cannot be used to set LD_LIBRARY_PATH for running .NET application.

On Linux, we, therefore, need a user to set LD_LIBRARY_PATH to contain a
path to jvm library to be used before an application using our interoperability
tool is launched. On Windows, we can read it either from an in-code variable
(e.g., the parameter of CreateJavaVM method) or from JAVA_HOME environment
variable [109] and set it to PATH environment variable. Section 4.1 will describe
the configuration process in a bit more detail.

2.5.2 JNIEnv pointer and multi threading
As Section 1.2.1 described, the JVM instance can be spawned in the current
process via calling JNI_CreateJavaVM function. The majority of JNI implemen-
tations, however, only allow to spawn one JVM instance per the whole lifetime
of the process [8, 110, 111].

The thread that calls JNI_CreateJavaVM function obtains JNIEnv pointer
that allows it to call other JNI functions (see Section 1.2.1). JNIEnv pointer is,
however, only valid in a thread that obtained it. If other threads need to call
JNI functions, they have to attach themselves to the JVM instance via calling
AttachCurrentThread or AttachCurrentThreadAsDeamon JNI functions that re-
turn JNIEnv valid in the given thread.

Taking this into account, we can keep JNIEnv pointer in ThreadLocal [112]
field. In the main thread, the field can be initialized by CreateJavaVm call; in
other threads, the first access of the field can initialize it via AttachCurrentThread
call.

The problem is that non-deamon attached threads will keep JVM from exiting
[8] when DestroyJavaVM function is called.

A thread can detach itself from the JVM instance by calling
DetachCurrentThread JNI function. This function, however, must be called from
the thread that is to be detached – in our case, that is going to be a user’s thread.
We, therefore, have to encourage or force the user’s thread to detach itself.

Solution: dispose pattern
We could represent the current’s thread JNIEnv pointer by a IDisposable object
and implement Dispose method that calls DetachCurrentThread JNI function.
Usage would then look as shown in Code Snippet 2.10.
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Code Snippet 2.10: C#: Using Dispose pattern to detach threads from JVM
instance

1 using(JavaVM.JNIThreadContext ctx = new()) {
2 // call Java methods
3 ...
4 }

This approach has the following problems:

• It moves responsibility for detaching threads to a user, increasing the cog-
nitive load imposed on them.

• Only threads that did not create a JVM instance need to attach and detach
themselves. Usage of the interoperability library would differ among the
main thread and the other threads – creating inconsistency in the API.

• Usage with a using block may encourage users to attach and detach threads
repeatedly, which may not be efficient.

More importantly, however, this approach is not feasible in the context of
asynchronous programming. Asynchronous programming in C# is achieved
using async and await keywords. Put very simply, a method containing async
keyword in its signature will get broken down into parts between two consecutive
occurrences of await keyword in the method body. By default, these pieces
will be executed by ThreadPool threads [113]. The two consecutive parts of
the same method can be potentially executed by the same ThreadPool thread;
however, often, they are executed by different ThreadPool threads (especially
when ConfigureAwait(false) is called).

That might be problematic in our context because if the first part of the
method explicitly attached its thread to JVM, the second part will expect to be
run in a thread that is already attached, but that may not be the case if the
second part of the method got scheduled to a different ThreadPool thread. That
makes the approach requiring a thread to be attached and detached explicitly
(using Dispose pattern) unfeasible.

To attach a tread to a JVM instance, we can use the initializer of the
ThreadLocal field storing the JNIEnv pointer – it will get called the first time
the field is accessed by a tread [112]. The question is how to ensure that a thread
detaches itself.

Solution: hooking to thread exit event
We need to make sure that a thread will detach itself before it exits [8]. We can
hook to the Thread Exit event and make sure that a clean-up callback detaching
the thread is invoked.

There is no standard mechanism in .NET to hook to a Thread Exit event.
There is, however, NuGet package UnmanagedThreadUtils [114] providing this
functionality.

Using this approach, attaching and detaching threads can be completely trans-
parent to a user and the usage of the library stays consistent between the tread
that created JVM instance and other threads.
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ThreadPool threads
The problem that remains to be addressed is ThreadPool [115] threads. A lifetime
of ThreadPool threads is managed neither by us nor by a user. We, therefore,
cannot ensure that all attached ThreadPool threads will exist – and therefore
detach themselves before the VM is supposed to exit.

We can solve this by checking if a thread that is about to attach itself to JVM is
ThreadPool thread (via Thread.CurrentThread.IsThreadPoolThread property
[116]) and if so, attach it as a daemon (via AttachCurrentThreadAsDeamon JNI
function). That way, ThreadPool threads won’t keep the JVM instance alive.

2.5.3 Strongly typed references
As Section 1.2.1 described, JNI distinguishes between local and global object
references. Local references are freed automatically when a native call returns;
global references must be freed explicitly using DeleteGlobalRef JNI function
[8].

JNI, however, does not distinguish between local and global references on
the type system level (e.g., both NewLocalRef and NewGlobalRef JNI functions
return jobject type, that represents a reference to Java object, but the type does
not hold information about what kind of reference is it). This is a common source
of issues when it comes to JNI programming, as mismatched reference types lead
to an undefined behavior (often crash).

We would like to design our inner API in a more type-safe manner. We would
also like to make sure that allocated global references will eventually get freed
via DeleteGlobalRef JNI function.

Our interoperability library is going to contain a P/Invoke-based wrapper
of the JNI function table. P/Invoke unmanaged delegates allow us to strongly
type native functions pointers – we can, therefore, decide C# signatures of JNI
function wrappers as long as P/Invoke is able to marshal between types in our
signatures and types in signatures jni.h header.

We have the following options for how to represent JNI references (which are
nothing more than C pointers):

• IntPtr type that would not hold any type information about reference
whatsoever,

• struct wrapping IntPtr with StructLayout set to LayoutKind.Sequential
– allows us to add a type information by representing different reference
kinds by different struct types,

• SafeHandles – SafeHandle class is intended to wrap unmanaged resources
[117]. It is integrated into P/Invoke – P/Invoke is able to marshal between
native pointers and C# SafeHandles. SafeHandles are designed to manage
the lifetime and ownership of unmanaged resources held from the managed
code. To use SafeHandles, one should override ReleaseHandle method to
specify how their unmanaged resources should be cleaned up. SafeHandle
class should ensure that the handle won’t be closed while it is used by a
P/Invoke invocation and that the cleanup will run even if the application
ends unexpectedly [118].
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JNI local references do not require explicit clean-up – we can represent them by
sequential layout structs. Global references can be represented by SafeHandles
that can manage the lifetime of references. We must ensure, however, that we
will never create SafeHanlde instance wrapping local reference, as clean up using
DeleteGlobalRef function would crash.

2.5.4 Type and method handles
Apart from local and global references to objects discussed in the previous section,
JNI also requires us to work with handles of Java types and methods.

As Section 1.2.1 described, to invoke the Java method via JNI, one must first
obtain a handle of defining Java type via FindClass JNI function. FindClass
function in fact returns a local reference to an java.lang.Class instance that
represents the required type [6]. As the number of Java types used by an appli-
cation is going to be limited, we can create a global reference from the returned
local reference and cache it in a static field.

When we hold the reference to a Java type, we can use it to look up a
method handle via GetMethodID JNI function. This function returns method
ID. Method ID is not a resource whose lifetime we can control. Method IDs are
managed by JVM and are valid until the defining class gets unloaded [6]. We can
therefore cache obtained method IDs in our interoperability library.

2.6 Primitive type arrays
Primitive type arrays differ significantly from other Java collection types. Because
of runtime generic erasure in Java (see Section 2.1.2), unboxed primitive types
(such as int and double) cannot be used as generic type parameters. Therefore,
they cannot be stored in any generic collections (such as ArrayList [119]). In-
stead, boxed variants of primitive types (Integer, Double) must be used. Java
arrays, however, do not suffer from this limitation. They can contain primitive
types directly while having a C-array-like memory layout – consecutive blocks of
memory containing primitive elements one next to another. Due to this special
position that arrays hold among other Java types, JNI provides a dedicated API
to work with them.

The goal of this section is to design a C# proxy class based on JNI API for
primitive arrays. The proxy should allow C# programmers to work with Java
primitive type arrays, allowing them to:

• read and write elements of Java arrays from C#,

• obtain array reference as a return value of Java method invoked from C#,

• create a new instance of Java array from C#.

Proxy API should provide as seamless user experience as possible (which is in
accordance with requirement R11) while avoiding unnecessary overhead. Partic-
ularly, the following properties are desirable:

1. From the user’s point of view, the array proxy should behave like a normal
collection data structure, abstracting the fact that it crosses the language
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border. Changes made to the array from C# should be visible to Java-side
code and vice versa.

2. API of the proxy should be user-friendly and aligned with what would be
expected from such a proxy: it would be desirable for a proxy to be generic
(with type parameter specifying array element type) and to implement an
indexer.

3. Solution should minimize copying of array elements as much as possible.
The rest of this section will attempt to fulfill these requirements to the best

extent possible within the limitations imposed by JNI and C# programming
language.

2.6.1 Selection of JNI functions
This section will analyze various functions that JNI provides for accessing primi-
tive array elements, identifying the variant offering the best user experience while
minimizing the overhead of copying.

Each of the functions described in the rest of this section exists in 8 vari-
ants: one for each Java primitive type. Behavior of the type variants, however,
does not, in principle differ, and therefore, we will not distinguish between them
in the rest of this section. Names of JNI primitive array functions contain a
name of primitive type functions work with. The rest of this section will use
[PrimitiveType] placeholder instead of the name of a particular primitive type
in JNI function names to indicate that the reasoning applies to all the type vari-
ants of the function.

Get/ReleaseArrayElements JNI functions
The first pair of JNI functions to discuss are Get[PrimitiveType]ArrayElements
and Release[PrimitiveType]ArrayElements functions.
Get[PrimitiveType]ArrayElements returns a pointer to elements of Java array.
According to JNI specification [8] Get[PrimitiveType]ArrayElements function
either pins Java array on Java managed heap and returns a direct pointer to it,
or it allocates an unmanaged buffer, copies array elements into the buffer and
returns a pointer to this copy.

Release[PrimitiveType]ArrayElements function either unpins the Java ar-
ray (if it has been pinned) or copies the content of the buffer to the original Java
array and frees the buffer (when the array was copied). Either way, the pointer to
array elements is no longer valid after Release[PrimitiveType]ArrayElements
function returns.

As our goal is to provide seamless propagation of array elements changes
between C# and Java while minimizing an overhead of copying elements, pinning
Java array on Java heap and providing C# code a direct access to it
would be ideal. The problem is, however, that
Get[PrimitiveType]ArrayElements JNI functions do not let a user decide if a
Java array will be pinned or copied.

As was already mentioned in Section 1.2.1, JNI only describes an interface.
Implementation of the interface is a matter of each Java distribution. JNI speci-
fication [8] suggests that if JVM implementation supports pinning
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Get[PrimitiveType]ArrayElements function should return a direct pointer to
a pinned array. It, however, leaves JVM the possibility of not pining an array
to accommodate JVMs that do not support pinning. It seems, however, that
today’s JVM implementations do not follow this recommendation.

It is not easy to look up information about the implementation details of JNI
by particular Java distributions. IBM’s J9 VM documentation explicitly states
that their implementation of Get[PrimitiveType]ArrayElements JNI function
always copies array elements [120] for other JVM implementations. However,
available information is fairly limited.

Get[PrimitiveType]ArrayElements function informs a user if it pinned or
copied a Java array by returning isCopy flag. We carried out an experiment,
observing values of isCopy flag when Get[PrimitiveType]ArrayElements JNI
function is called with various sizes of an array on several Java distributions and
versions. Concretely, we experimented with:

• primitive element types: int, double, signed byte,

• array sizes: 10, 100, 1000, 10000, 100000 elements,

• Java distributions and versions:

– openJdk 21
– openJdk 20
– openJdk 17
– openJdk 11
– openJdk 8
– graal VM 21
– correto VM 21

In all observed scenarios, Get[PrimitiveType]ArrayElements function al-
ways performed copying. It is important to realize, however, that observing this
result, we cannot conclude that pinning does not occur with any other combina-
tion of Java distribution and array size.

Get/ReleaseArrayCritical JNI functions
The other pair of functions JNI provides to access elements of primitive arrays
are GetPrimitiveArrayCritical and ReleasePrimitiveArrayCritical. Ac-
cording to JNI specification [8] GetPrimitiveArrayCritical function is more
likely to return a direct pointer to a Java array even when JVM does not support
pinning 6. Specification, however, does not guarantee that a direct pointer will
be returned. Copying can still occur 7.

Furthermore, there are strict restriction on actions that can be performed
while critical array reference is held. Most importantly, no other JNI functions can
be called before the reference is released. That makes Critical alternative
of array functions unusable in our context.

6e.g., by temporarily disabling garbage collection while the array reference is held
7For instance documentation of J9 VM [120] states that GetPrimitiveArrayCritical func-

tion will return a direct pointer to Java array unless Java array is too big and is not stored in
one consecutive block of memory.
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Get/SetArrayRegion JNI functions
The last pair of functions to discuss are Get[PrimitiveType]ArrayRegion and
Set[PrimitiveType]ArrayRegion. Get[PrimitiveType]ArrayRegion function
takes JNI reference to Java array and pointer to a buffer, and it copies a specified
region of elements of Java array to the provided buffer.
Set[PrimitiveType]ArrayRegion takes the same parameters but copies in the
opposite direction: from the provided buffer to the Java array.

The advantage of these functions over
Get/Release[PrimitiveType]ArrayElements functions is that
Get/Set[PrimitiveType]ArrayRegion function allows us to specify our own
buffer (so we can copy elements directly to or from C# array) and that they
allow us to specify array region to be copied (avoiding the necessity to copy
whole array when it is not required). They, however, can never take advantage
of the possibility of pinning: copying is guaranteed to occur.

Working with copies of Java arrays makes it problematic to propagate array
changes between Java and C#. Java arrays are reference types. Therefore, any
Java method invoked from C# may access any array (the method can hold some
reference to an array even if it does not take an array as its parameter). To make
sure that changes that C# code makes to an array are always visible to Java,
it would be necessary to copy all arrays C# holds a reference to Java before an
arbitrary Java method is invoked. Symmetrically, to ensure that C# code always
sees array changes Java carried out, it would be necessary to reload all arrays
C# holds a reference to every time an arbitrary Java method returns to C#.
That would introduce an unbearable amount of overhead. In contrast, obtaining
a direct reference to a pinned Java array removes this synchronization struggle
as well as the overhead of copying array elements. We cannot, however, enforce
Java array pinning via JNI.

Considering these facts, it is necessary to somewhat relax requirements on
the seamlessness of change propagation, as it is impossible to completely abstract
change propagation from users without introducing an unacceptable amount of
overhead. Users know their use case better, and they know when they need
changes to be propagated across the language border. We need to design an
array proxy API to allow them to do so as easily as possible.

Solution: Get/SetRange methods
We can build proxy API upon the usage of Get[PrimitiveType]ArrayRegion
and Set[PrimitiveType]ArrayRegion JNI functions, allowing the user to copy
specific ranges of elements between managed C# arrays and Java arrays. Names
of API methods must, however, make it obvious that copying is taking place
and that changes made to an array of elements returned from Java won’t affect
the Java array itself. We opted for GetCopyOfArray and GetCopyOfRange for
the names of methods copying elements from Java array to C# array and for
SetRange for a method coping elements from C# array to Java. Code Snippet
2.11 demonstrates the potential usage of this API.
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Code Snippet 2.11: C#: Array API based on Get/Set[PrimitiveType>
1 //returns reference to array [0,0,0,0,0] from Java
2 using JavaPrimitiveArrayProxy<int> arrayProxy =

JavaStaticClassProxy.ReturnArrayFromJava();
3 int[] valuesToSet = [1, 2, 3];
4 arrayProxy.SetRange(valuesToSet, startIndex:2);
5 int[] contentOfJavaArray = arrayProxy.GetCopyOfArray(); // [0, 0,

1, 2, 3]

Solution: Indexer
As we aim to provide an intuitive API, we would like to allow users to access
elements of Java arrays via the C# indexer.

Get<PrimitiveType>ArrayRegion and Set<PrimitiveType>ArrayRegion JNI
functions could be potentially used to implement an indexer on primitive array
proxy type. Such an indexer would, however, have to carry out separate JNI calls
for each primitive array element access (read or write), which would be inefficient.

We could use Get[PrimitiveType]ArrayElements function to obtain a pointer
to elements of Java array (either pined or copied) and implement the indexer via
pointer arithmetic using this pointer. The problem is that if
Get[PrimitiveType]ArrayElements function copies, changes made via this in-
dexer would be visible to Java–side code until
Release[PrimitiveType]ArrayElements function is called.

This motivates us not to store array elements pointer directly in C# primitive
array proxy class but rather represent it by a separate class. This class may im-
plement IDisposable interface so that the user can obtain an instance in a using
block, and Dispose method will be automatically called when the block is left
invoking Release[PrimitiveType]ArrayElements under the hood. A potential
usage example can be seen in Code Snippet 2.12.

As Code Snippet 2.12 shows, using this approach, the indexer can be im-
plemented on class representing array elements (JavaPrimitiveArrayElements
class in Code Snippet 2.12) rather than on array proxy class itself. That pro-
vides us with another advantage. User will only be able to obtain an instance of
JavaPrimitiveArrayElements class by calling LoadJavaArrayElements method
that gains access to an element by invoking Get[PrimitiveType]ArrayElements
function. Therefore, we can be sure that when the user accesses array elements
via indexer, array elements have already been made available to C# code.

Code Snippet 2.12: C#: Array API based on Get<PrimitiveType>ArrayElements
JNI function

1 using JavaPrimitiveArrayProxy<int> arrayProxy =
JavaStaticClassProxy.ReturnArrayFromJava();

2 using (JavaPrimitiveTypeArray<int>.JavaPrimitiveArrayElements
arrayElements = arrayProxy.LoadJavaArrayElements()) {

3 for (int i = 0; i < arrayProxy.Lenght; i++) {
4 arrayElements[i] = i;
5 }
6 }
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2.6.2 Generic proxy over non-generic JNI functions
The previous section decided which JNI function should be used to implement
primitive array proxy and how to build proxy API methods above them. One
more problem, however, remains to be solved. JNI is a C-language API, and
as such, it has no concept of generics. As the previous section mentioned, each
of the discussed JNI functions actually exists in 8 variants – one for each Java
primitive type. These variants differ both in function parameter types and in
function names (as primitive type name is a part of function name). Our goal
is to build a user-friendly C# API based on this set of non-generic functions.
As discussed in the introduction to this section, such API should preferably be
generic.

It would be easy to implement non-generic array proxies for each primi-
tive type separately. This design would result in a set of proxy classes such
as JavaIntArrayProxy and JavaDoubleArrayProxy and so on. The resulting
code would contain a lot of duplicities.

Duplicities could be avoided by moving array access logic to a generic parent
class. Parent class could define a set of abstract delegates and use these delegates
to implement array access logic. Non-generic child class could be implemented
for every primitive element type, implementing abstract delegates as invocations
of JNI primitive array functions corresponding to particular primitive type. This
approach would avoid code duplicities but it would not result in generic API we
would prefer.

The goal, therefore, is to implement generic primitive array proxy that
under the hood uses different sets of JNI functions based on the type
parameter provided. Such a thing would be easy to achieve using C++ tem-
plates as they support explicit specialization - a custom implementation of a
template for a specific type. C# generics, however, do not support this feature
[121].

We could attempt to carry out a dispatch based on type parameter in runtime
using switch expression as demonstrated in Code Snippet 2.13. This Code
Snippet, however, would not build as C# cannot cast int[] or double[] to an
array of type parameter type.

Code Snippet 2.13: C#: Runtime dispach base on type parameter - does not build
1 internal TElem[] GetArrayRegion(int start, int len) {
2 return typeof(TElem) switch {
3 Type type when type == typeof(int) =>

(TElem[])_env.GetIntArrayRegion(
4 _arrayInstance, start, len),
5 Type type when type == typeof(double) =>

(TElem[])_env.GetDoubleArrayRegion(
6 _arrayInstance, start, len),
7 /* ... */
8 };
9 }

Even if the approach from Code Snippet 2.13 worked, it would introduce
an overhead of runtime dispatch to each invocation of the JNI primitive array
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function. It would be better to minimize the amount of times this dispatch occurs.
We can represent JNI primitive array functions by generic delegates, store

these delegates in the static dictionary by the type they work with, and retrieve
particular delegate from the dictionary during the static initialization of primitive
array proxy based on specified type parameter. This approach is demonstrated
in Code Snippet 2.14.

Code Snippet 2.14: C#: type dispatch during static initialization
1 private static PrimitiveArrayJniFunctions<TElem>

_primitiveArrayJniFunctions =
(PrimitiveArrayJniFunctions<TElem>)

2 JNIPrimitiveArrayFunctionTable.Table[typeof(TElem)];

This way the dispatch will occur once per static initialization of generic type,
therefore once per each specialization of this type, which is much more efficient
then dispatch during each invocation.

The only problem that remains to be solved is how to store different generic
specializations of delegates in the same collection. Code Snippet 2.14 has already
hinted at the solution. We can implement a generic class encapsulating the set
of delegates, and we can inherit this class from the non-generic parent as is
demonstrated in Code Snippet 2.15

Code Snippet 2.15: C#: Class wrapping generic delegates of JNI primitive array
functions

1 internal abstract class PrimitiveArrayJniFunctionsBase { }
2

3 internal class PrimitiveArrayJniFunctions<TElem> :
PrimitiveArrayJniFunctionsBase {

4 internal NewPrimitiveArrayGlobalDelegate<TElem>
5 NewPrimitiveArray { get; }
6 internal GetArrayElementsDelegate<TElem>
7 GetArrayElements { get; }
8 internal ReleaseArrayElementsDelegate<TElem>
9 ReleaseArrayElements { get; }

10 internal GetArrayRegionDelegate<TElem>
11 GetArrayRegion { get; }
12 internal SetArrayRegionDelegate<TElem>
13 SetArrayRegion { get; }
14 }

Every specialization of the generic delegate wrapper class will, therefore, in-
herit the parent and can, therefore, be stored in the collection of parent type.
This collection can be initialized as follows (Code Snippet 2.16).
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Code Snippet 2.16: C#: Dictionary of JNI primitive array function delegates
1 internal static readonly Dictionary<Type,

PrimitiveArrayJniFunctionsBase> Table = new()
2 {
3 { typeof(int), new PrimitiveArrayJniFunctions<int>(
4 NewIntArrayGlobal, GetIntArrayElements,
5 ReleaseIntArrayElements, GetIntArrayRegion,
6 SetIntArrayRegion )},
7 { typeof(double), new PrimitiveArrayJniFunctions<double>(
8 NewDoubleArrayGlobal, GetDoubleArrayElements,
9 ReleaseDoubleArrayElements, GetDoubleArrayRegion,

10 SetDoubleArrayRegion )},
11 ...
12 }

As Code Snippet 2.14 showed, when the value is retrieved from this dictionary
in static initializer of primitive array proxy, we must cast it back to generic child
type. As we, however, have complete control over static initialization of the
readonly dictionary, this does not seem to be an issue.

2.7 Proxy design
The previous sections focused on low-level aspects of building a JNI-based inter-
operability engine: accessing JNI functions from different threads, dealing with
JNI references, calling methods, and allowing users to work with arrays. Accord-
ing to the thesis requirement R11, however, the implemented solution should
also provide a seamless user experience while working with arbitrary Java objects
via generating .NET proxies of Java classes. And according to the requirement
R5, the configuration of such proxies should be user-friendly and in-code. This
section will be devoted to designing such a user-friendly proxy API.

According to the requirement, R9 solution should not require the user to use
an external tool to generate .NET proxies. To fulfill this requirement, we can use
incremental source generators added to .NET in .NET 6 [122] 8. Incremental
source generator allows us to hook into the compilation process of .NET assembly
and generate additional code based on the code already contained in the assembly.
The generated code will be added to the compilation. We can use an incremental
source generator to generate C# proxies of Java classes that the user wants to
work with.

Source generators work conveniently in combination with partial methods
(that were tweaked in .NET 5 to accommodate source generation [123]) and
partial types. Users can define a signature of a partial method and have the
body of the method generated by a source generator. Usually, a source generator
library also defines dedicated marker attributes that are used to annotate
partial methods and types whose implementation should be generated by the
particular source generator [124].

8Incremental source generators are an improvement upon source generators that were added
to .NET in .NET 5.

56



We are going to use this approach to allow users to invoke Java methods from
C#. The user will define a partial method whose name and signature match
the Java method they want to invoke. User will also annotate this method by
JavaImport9 marker attribute. The incremental source generator will locate the
method by the marker attribute and will generate the method implementation
that will use our interoperability library to leverage the interop invocation. Im-
plementation of the source generator will be analyzed in more detail in Section
2.9

Source-generating bodies of partial methods are the user-friendly way to em-
ulate Java methods from C#. To allow users to work with Java objects from C#,
we would, however, also like to support other language features such as fields and
constructors. It would be nice to emulate Java constructors by C# constructors
and Java fields by C# properties, as that would result in an intuitive and easy-to-
use API. C# constructors and properties, however, cannot be marked as partial
[125]. Thus, the approach described for methods cannot be directly applied to
them. This section will address this limitation. It will analyze alternative ways
how to allow users to specify that the generated proxy class should emulate a
given constructor or field implemented on the underlying Java class. The last
part of this section will then look at how to best represent strings in C# proxy
method signatures.

2.7.1 Emulating Java constructors
As the introduction of this section mentioned, we would like to emulate con-
structors of Java classes by constructors of C# proxy classes. Concretely,
if the Java class defines a constructor that takes int and long parameters (as
shown in Code Snippet 2.17), we would emulate this constructor by the construc-
tor of the proxy type with the same signature (demonstrated in Code Snippet
2.18).

Code Snippet 2.17: Java: Java class with constructor
1 public class Coffee {
2 public Coffee(int abraka, long dabra) { ... }
3 }

Code Snippet 2.18: C#: Goal: proxy class emulating Java constructor by C#
constructor

1 [JavaClassProxy]
2 public class CoffeeProxy {
3 public CoffeeProxy(int abraka, long dabra) {
4 // use JNI to invoke Java constructor
5 ...
6 }
7 }

9The name of the attribute is inspired by LibraryImport and DllImport attributes that are
a part of P/Invoke (ses Section 1.2.2).
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As the constructor cannot be partial, we cannot let the user specify the con-
structor signature, and then the source generates the constructor implementation
(as we can do with ordinary methods). The question is then: how can we let a
user specify the signature of a particular constructor of the underlying Java class
they want to invoke from C#?

The designed solution should also support specifying multiple constructors
with different signatures for a proxy class.

Marker attribute parameters
Our solution already uses marker attributes to direct source generation. We use
JavaImport attribute to mark proxy methods and JavaClassProxy attribute (see
Code Snippet 2.18) to mark proxy classes. We could use an attribute applied to
a non-static proxy class to specify constructor parameters10.

To specify the constructor signature, the user needs to be able to spec-
ify a list of pairs: parameter type and parameter name. We can define
CtorParameter structure to represent this pair (as shown in Code Snippet 2.19).
We would like to define JavaImportCtor attribute that would take an array of
these structures as its parameter. Such attribute could be applied to proxy class
as shown in Code Snippet 2.20.

Code Snippet 2.19: C#: Structure to specify constructor parameter
1 public record struct CtorParameter(Type parameterType, string

parameterName);

This approach would allow us to specify multiple constructor signatures for
a single proxy class as we can allow for multiple instances of JavaImportCtor
attribute to be applied to a proxy class definition11.

Code Snippet 2.20: C#: Does not build: unsupported type of attribute parameter
1 [JavaImportCtor(
2 new CtorParameter(typeof(int), "abraka"),
3 new CtorParameter(typeof(long), "dabra"))]
4 [JavaClassProxy]
5 public partial class CoffeeProxy
6 {
7 }

The problem with this approach, however, is that Code Snippet 2.20 is not
valid C# code. C# only allows attribute parameters to be primitive types,
enums, strings, and instances of System.Type type or one-dimensional arrays
of these types [126]. We are trying to provide an array of custom CtorParameter
structures as the attribute parameter, which is not supported.

We could try to work around this problem by changing the definition of
JavaImportCtor attribute so that it takes two separated arrays – an array of
parameter types (array of System.Type instances) and an array of parameter

10We don’t want to JavaClassProxy attribute directly to specify constructor parameters as
this attribute can also be applied to static classes, for which constructors do not make sense.

11By applying AttributeUsage attribute to JavaImportCtor attribute definition and setting
Allowmultiple field to true).
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names (array of strings). That way, it would meet the type restriction imposed
on attribute parameter types. This version of the attribute could be applied to a
proxy class as shown in Code Snippet 2.21.

Code Snippet 2.21: C#: Attempt to design ctor attribute
1 [JavaImportCtor(
2 new Type[] {typeof(int), typeof(long)},
3 new string[] {"abraka", "dabra"})]
4 [JavaClassProxy]
5 public partial class CoffeeProxy{
6 }

Though the code in Code Snippet builds and allows users to specify the sig-
natures of Java constructors, it does not provide a pleasant user experience as it
is easy to mismatch parameter name and parameter type when they are defined
separately.

Factory method
As the previous paragraph shows, specifying Java constructor signature via at-
tribute parameters does not lead to a user-friendly API. Let’s try to approach
the problem differently.

C# partial methods are very convenient for specifying signatures of Java
methods to emulate. C# constructor itself cannot be partial, so it cannot be
used in this manner. Users can, however, specify a signature of partial factory
method. An example of such a method is shown in Code Snippet 2.22. On
line 3, notice that the factory Create method is annotated by JavaImportCtor
attribute. Thanks to that, the source generator can distinguish factory methods
from partial methods emulating ordinary Java methods (annotated by JavaImport
attribute).

Code Snippet 2.22: C#: Definition of partial factory mehtod
1 [JavaClassProxy]
2 public partial class CoffeeProxy {
3 [JavaImportCtor]
4 public static partial CoffeeProxy Create(
5 int abraka, long dabra);
6 }

The factory method itself can be used to create instances of a proxy class.
Our goal is, however, to emulate Java constructors by constructors of C# proxy
classes. To achieve that, we can generate a constructor taking the same
parameters as the factory method. That is demonstrated in Code Snippet
2.23. The generated constructor (line 9) handles JNI invocations necessary for
creating a new instance of an underplaying Java class (JNI implementation details
are omitted from the example as they are not relevant to this section). The
generated body of the factory just invokes the generated constructor (line 5).
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Code Snippet 2.23: C#: Source generated implementation of factory method and
related constructor

1 public partial class CoffeeProxy {
2 // generated implementation of factory method
3 public static partial CoffeeProxy Create(
4 int abraka, long dabra) {
5 return newCoffeeProxy(abraka, dabra);
6 }
7

8 // generated ctor
9 public CoffeeProxy(int abraka, long dabra) {

10 /* invoke Java ctor via JNI */
11 ...
12 }
13 }

Using this approach, users can choose if they will create instances of proxy
classes via the factory method or via the constructor. That may be viewed as
a slight disadvantage as a redundant factory method is added to a proxy API.
This approach, however, allows users to specify signatures of Java constructors
in a user friendly manner that is consistent with specifying signatures of ordinary
proxy methods. It also allows to define multiple constructors for single proxy
class. The advantages of the approach, therefore, seem to compensate for this
slight disadvantage.

The last problem to consider is that JavaImportCtor attribute specifying the
factory method should only be applied to the static method defined in the non-
static class, where the return type of the method matches the class in which the
method is defined. However, as incremental source generators can emit diagnos-
tics that will manifest themselves as compiler errors or warnings, we can ensure
the desired usage of our attributes quite easily (see Section 3.5.2).

2.7.2 Emulating Java fields
This section will focus on designing an API for accessing Java fields from C#.
As in C#, fields in Java usually are not part of a public API of a class. An
exception can be constants: public final fields, which will be discussed later
in this section. C# usually exposes private fields via properties. As Section 2.1.5
explained, in Java, the concept of properties does not exist. Instead, fields are
exposed via getter and/or setter methods.

Java getter and setter methods
From the point of view of JNI, getter and setter methods do not in any way differ
from any other Java methods. Our solution is therefore able to emulate them as
methods annotated by JavaImport attribute. That allows C# programmer to
access Java fields via their setter and getter methods. That, however, is not an
API C# programmer would expect.

It would be more user-friendly for C# programmers if we managed to emulate
Java getter and setter methods by C# property. We could require a user to an-
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notate methods that are emulating getter and setter by a different attribute than
JavaImport attribute: for instance JavaImportGetter and JavaImportSetter
attributes as shown in Code Snippet 2.24. Based on these methods (their names
and signatures), we could potentially generate C# property.

Code Snippet 2.24: C#: Methods emulationg Java getter and setter methods
1 [JavaImportGetter]
2 public partial int GetAbraka();
3

4 [JavaImportSetter]
5 public partial void SetAbraka(int value);

This approach provides a slightly more user friendly API for C# programmers.
It, however, does not enable any new functionality. We therefore won’t included
in the scope of the thesis. It may be implemented as a future improvement.

Accessing Java fields directly
In some contexts, it may make sense to access Java fields from C# directly (not
by invoking getter or setter methods). An example of such a situation may be
accessing public final field (Java constant) or working with Java API that
does not comply with the best practices and exposed fields as a part of public API
(according to requirement R3 our solution should not require a user to modify a
Java-side code in order to be able to work with it from C#).

In general, our solution consists of the incremental source generator and
the interoperability library that provides the logic that source-generated code
uses to handle interop invocations. Using the interoperability library directly, we
can implement the C# property that accesses the Java field. An example of such
a property is shown in Code Snippet 2.25. Line 1 obtains a JNI handle (by calling
GetFieldId JNI function) that can be used to access a field called Abraka of Java
class whose type is represented by _javaType variable. The second parameter of
GetFieldId function specifies that the type of the field is int (see Section 1.2.1
for an explanation of how JNI encodes type signatures). The rest of Code Snippet
2.25 defines a getter and a setter that use JNI to access the field represented by
the obtained JNI field handle.

Code Snippet 2.25: C#: Property emulating Java field
1 private static Lazy<JniField> _jni_abraka = new Lazy<JniField>(
2 () => _javaType!.GetFieldId("Abraka", "I"));
3

4 public int Abraka {
5 get {
6 return Instance.GetIntField(_jni_abraka.Value);
7 }
8 set {
9 Instance.SetIntField(_jni_abraka.Value, value);

10 }
11 }
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To implement the code in Code Snippet, 2.25, the user would be required to
have some knowledge of JNI API (for instance, they need to know that before
accessing a field, a field handle must be obtained via GetFieldId function and
have to understand JNI type signatures). That is surely not a user-friendly API.
We would like to use an incremental source generator to generate the code in
Code Snippet 2.25 automatically.

If C# allowed for partial properties, a user could specify a name and a
type of a Java field as a partial property, and we could source generate the
implementation of the property as shown in Code Snippet 2.25. Unfortunately,
C# does not support partial properties [123]. There is an open issue in the
.NET repository on GitHub [127], asking for support for partial properties for
the purposes of source generation, but it has not yet been implemented.

We could try to let the user to specify a name and type of Java field
they want to access by defining a C# field of corresponding name and
type (as shown in Code Snippet 2.26) and to source generate property such as
the one in Code Snippet 2.25 based on this field.

Code Snippet 2.26: C#: Specify Java field by C# field
1 [JavaImportField]
2 private int _abraka;

Similar approach is used by MVVM Community Toolkit [128] to imple-
ment observable properties [129]. There a user specifies a field as shown in
Code Snippet 2.27 [129] and based on it a source generator generates a property
shown in Code Snippet 2.28 [129].

Code Snippet 2.27: C#: MVVM Community Toolkit: backing field for observable
property

1 [ObservableProperty]
2 private string? name;

Code Snippet 2.28: C#: MVVM Community Toolkit: generated property
1 public string? Name
2 {
3 get => name;
4 set => SetProperty(ref name, value);
5 }

The difference between MVVM Comunity Toolkit observable property exam-
ple and our situation is that observable properties actually use the user defined
field as their backing field. Therefore the field is not just uselessly taking up
additional memory in proxy instances and its value is in sync with the value of
generated property.

In our scenario, the generated property would not use the user-
defined field as its backing field. The backing field of the property would be
the Java field accessed via JNI API. The C# field would be only used to specify
the name and the type of the Java field and, therefore, of the generated property.
In runtime, the field should never be used; it would just take up memory in proxy
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class instances. Moreover, there is no way to keep the value of the C# field in
sync with the actual value of the Java field. Therefore, the field may be confusing
for a user. That is not an efficient or user-friendly option.

Another option would be to access Java field via getter and setter meth-
ods defined on C# side. The user would specify signatures of partial methods,
and the source generator would generate method bodies using JNI to access the
Java field (in the same way as the property in Code Snippet 2.25 accesses it).

As discussed previously, the resulting API would not be what a C# program-
mer would expect. Moreover, if Java-side code happens to define getter and
setter methods for the given field, C#-side getter and setter methods accessing
Java fields via JNI could be mixed up with C# proxies of Java-side getter and
setter methods (that invoke Java-side getter/setter via JNI). Therefore, the whole
API could easily become convoluted.

As none of the described options seems like a reasonable alternative and as
there is a hope that some of the future versions of C# will introduce partial
properties that will allow for a more user-friendly way of accessing Java fields
from C#, the dedicate API for accessing Java fields won’t be in the
scope of this thesis. If the user has a real need to access the Java field directly,
they can manually implement the property shown in Code Snippet 2.25.

2.7.3 String parameter and return types
The next topic to discuss is how to represent strings in proxy method signatures.
Java and .NET use the same string representation: UTF-16 encoding, endianness
depending on the underlying architecture, and most importantly, strings in both
languages are immutable [130, 131, 132]. We can use these similarities to our
advantage.

Passing C# string to Java
As for arrays, JNI provides dedicated functions to work with strings. To pass a
C# string as a parameter to the Java method, a new instance of
java.lang.String with the same content must be allocated on the Java heap
via NewString JNI function. This function takes as a parameter a pointer to a
buffer from which it initializes the content of the new Java string instance. As
Java and C# use the same string encoding, we can let JNI copy directly from the
pinned instance of managed C# string, avoiding a need for additional copying
(e.g., to an unmanaged buffer).

However, using this approach, we still have to copy the string once (from
C# heap to Java heap). Passing a string from C# to Java can, therefore, be
considered an expensive operation. That leads to the question of how to represent
strings in JNI method signatures.

Disadvantages of representing java.lang.String by System.String
The most intuitive for a user would be to emulate Java java.lang.String by
C# System.String. That would, however, require us to allocate a new string
instance on the Java heap each time a C# string is passed to Java, even if an
(immutable) string with the same content has already been allocated to be passed
from C# to Java. That is not an efficient solution.
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One possible solution would be to implement a string cache as a part of our
library. Once a string instance is allocated on the Java heap via NewString func-
tion, the returned JNI reference can be used as an argument of a Java method
an unlimited amount of times before it is freed. It can, therefore, be cached.
The user could pass a string as C# System.String to a method annotated by
JavaImport attribute. We could check if the cache already contains JNI refer-
ence to a java.Lang.String instance with the same content, and if so, reuse
the reference. This would be possible without changing code semantics because
strings in both languages are immutable.

The problem with this approach is determining the parameters of the cache.
We are implementing a general tool that should allow users to work with arbitrary
Java code from C#. Therefore, We can’te, make any assumptions about the
common string workload a user will have because these workloads can widely differ
between use cases. For some use cases, the cache may be useless as they won’t
pass the same strings repeatedly (in which case the cache would unnecessarily
keep alive two copies of each string – Java copy and C# copy). For others, the
optimal size of the cache may differ. We could make the cache (its size and if it is
used at all) configurable, but that seems unnecessarily complex for the purposes
of this thesis.

Representing java.lang.String by JavaLangStringProxy
Instead, we can let the user decide if it makes sense to reuse string references
in their context. We can represent Java strings by JavaLangStringProxy C#
proxy class. This class will hold JNI reference to java.lang.String instance
allocated on the Java heap. Such reference can either be obtained by allocated
new Java string from C# via NewString JNI function or as a return value of
a string Java method called from C#. Users will be able to use an instance of
JavaLangStringProxy as an argument of the Java method an arbitrary amount
of times (possibly caching the reference if they need it).

Representing strings by JavaLangStringProxy instances is convenient for
more advanced users who want to take advantage of some form of caching of
string references. It may, however, present unnecessary cognitive load for other
users as it requires them to use JavaLangStringProxy type in order to be able
to pass strings between C# and Java.

We can provide a more user-friendly API by supporting both
JavaLangStringProxy and System.String types in proxy method signatures.
Internally, we will still work with strings as JavaLangStringProxy instances;
we can, however, implement conversion operators between System.String and
JavaLangStringProxy, allowing the user to pass System.String instance to Java
proxy method and converting it to JavaLangStringProxy (allocating string in-
stance on the Java heap) internally.

Consider the Java method javaMethod shown in Code Snippet 2.29.

Code Snippet 2.29: Java: Example of method with string type in its signature
1 public static String javaMethod(
2 String abraka, String dabra) { ... }

Due to the approach described above, the user can choose which occurrences
of java.lang.String in the Java method signature are to be represented by
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System.String type and which by JavaLangStringProxy type. That may result
in various potential signatures of the C# proxy method invoking javaMethod.
Code Snippet 2.30 shows the variant where the user opted for representing all
strings by System.String type. Code Snippet 2.31 captures a variant where the
user wants to take advantage of string reference caching for strings passed as
parameter abraka (and therefore represents it by JavaLangStringProxy type)
but does not need to cache strings passed as dabra parameter.

Code Snippet 2.30: C#: Signature of proxy method represnting strings via dedi-
cated proxy

1 [JavaImport]
2 public static partial string JavaMethod(
3 string abraka, string dabra) { ... }

Code Snippet 2.31: C#: Signature of proxy method represnting strings via dedi-
cated proxy

1 [JavaImport]
2 public static partial string JavaMethod(
3 JavaLangStringProxy abraka, string dabra) { ... }

This approach allows users to reuse string references if it makes sense in their
context while still allowing for intuitive proxy method signature for less proficient
users or in contexts where string reference caching does not provide any benefit.

2.8 Emulating Java type system
The previous section focused on designing a user-friendly API for C# proxies
of Java classes. This section will focus on how to make these proxies the best
possible C# representation of the Java-side type system they are emulating.

2.8.1 Creating proxy instances
Requirement R10 states that it should not be possible to represent instances of
a Java type by instances of C# proxy type that does not correspond to that
Java type. In other words, if Java class Coffee is represented by C# proxy
CoffeeProxy, then from the user point of view, it should not be possible to
create an instance of CoffeeProxy class that would hold the reference to any
other Java type than Coffee class (or some class inherited from Coffee class).

Two conflicting aspects need to be considered in this context:

1. Proxies of Java classes will be defined in users assembly, and their
implementation will be source generated by incremental source generator.
As the generated code will be a part of the user assembly, it can only
access public members of the interoperability library.

2. Proxies must be able to emulate Java methods returning object. JNI
returns objects in the form of (local or global) references (see Section 1.2.1).
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JNI references are going to be wrapped by proxy instances for users’ conve-
nience. Generated proxy code must, therefore, be able to create instances
of (other) proxy classes.

To sum up these two requirements: generated proxy code must be capa-
ble of creating proxy instances from JNI object references using only
public API of interoperability library.

At the same time, however, once we expose the possibility of creating a proxy
instance from a given JNI reference to a user, a user can easily and potentially
accidentally violate requirement R10, creating a proxy instance with mismatched
Java type. We cannot, however, easily move the proxy instance creation inside
the interoperability library (without using reflection) as constructors cannot
be a part of the interface contract.

Another related problem to take into consideration is support for arrays
of objects. Arrays of objects will be represented by the generic proxy class that
will be a part of the interoperability library (similar to the primitive type array
discussed in Section 2.6). The array element type (which should always be a
proxy type) will be specified by a generic type parameter. When an element of
an object array is being accessed, it is necessary to create an instance of the proxy
type to return to a user. The proxy type is, however, only specified as a type
parameter, and C# does not enable to require other than parameterless
constructor via type parameter constraints.

To sum up the problem, we need to be able to generate a code that uses only
the public API of the interoperability library, and given JNI reference to a Java
object, it is able to create an instance of a user-defined proxy whose type is only
specified as a generic type parameter. At the same time, we want to deter users
from creating proxy instances wrapping arbitrary JNI references as that would
violate requirement R10.

Solution: Static abstract interface methods
To tackle these problems, we can take advantage of static abstract interface
methods. Static abstract interface methods were added to C# in C# 11 [133].
Since then, it has been possible to have static methods as part of an interface
contract.

We can define an interface that will require proxy classes to implement the
static CreateProxyInstance method. We can ensure that every proxy class will
implement this interface by source-generating base list and interface implemen-
tation.

CreateProxyInstance method is part of the interface contract and, therefore,
can be invoked from the interop library. Moreover, the static interface method
can be invoked on a generic type parameter, and therefore, we can use it in the
interoperability library to implement a generic method accessing an object array
element and returning it as an instance of a proxy class.

Other advantage of this approach is that it moves the responsibility for the
process of proxy instance creation to proxy itself while keeping instance creation
API consistent among proxy type. This allows us to implement specialized logic
for creating instances of proxies implemented manually in library (such as object
array proxy) while being able to invoke this logic in the same manner as code
generated logic of user defined proxies.
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Solution: JniInternalMarker
What remains to be solved is that as with any other interface method, static
interface method CreateProxyInstance is part of a public interface contract,
and therefore, it is accessible to a user (potentially violating requirement R10).
We can, however, discourage a user from invoking this method by not allowing a
user to obtain instances of types that CreateProxyInstance method expects as
parameters. We can add an additional parameter of JniInternalMarker type.
JniInternalMarker type will be a public singleton type provided by our library.
Its singleton instance, however, will be internal to our library. Therefore, the
type itself may appear in the user’s code (e.g., in CreateProxyInstance method
signature), but the user will be unable to obtain an instance of this type (by
standard means). A potential definition of such type is shown in Code Snippet
2.32.

Code Snippet 2.32: C#: Public singleton of which user will never obtain an instance
1 [EditorBrowsable(EditorBrowsableState.Never)]
2 public sealed class JniInternalMarker {
3 internal static JniInternalMarker Instance = new();
4 private JniInternalMarker() { }
5 }

Users can still obtain an instance of JniInternalMarker type via reflection.
That would, however, require an active attempt on a user’s part to try to use
the library in a manner that was not intended. It does not seem necessary to
try to prevent this behavior. Our goal is to discourage a well-meaning user from
accidentally breaking our invariants. If users are actively trying to break things
for themselves, consequences are their to bear.

2.8.2 Returning interface
The previous section focused on creating instances of user defined proxies, al-
lowing us to emulate Java methods returning object, to access elements of Java
object arrays (and potentially to access Java object fields). This section will focus
on supporting interfaces in the same scenarios.

From the point of view of this section, interface types differ from class types
because, unlike class type, interface type does not determine a runtime
type to return. If we are emulating a Java method that has Java Coffee class
type as its return type, we know that any instance returned at runtime from Java
will be an instance of Coffee (or some class inherited from Coffee class). On
the C# side, we can, therefore, represent returned values by CoffeeProxy proxy
class.

The situation is different when working with interface types. We can emulate
Java interface (e.g., Shape) by C# interface (e.g., IShape) (the two concepts do
not significantly differ, see section 2.1.6). At runtime, when invoking the Java
method returning Shape type, however, we have to return an instance of some
C# proxy class that implements IShape proxy interface. The problem is that
we do not know what type it should be. Statically, we only know that the type
returned from Java implements the Java Shape interface; we don’t know which
C# proxy should be used to represent this type.
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Default interface proxy
The previous section focused on creating instances of user-defined proxies, al-
lowing us to emulate Java methods returning objects to access elements of Java
object arrays (and potentially to access Java objects We can solve this problem
by generating an artificial class proxy for each interface proxy – a default inter-
face proxy class. This proxy won’t represent any existing Java class. It will be
used to wrap returned JNI references to a Java class implementing an interface.
Given that Java Shape interface is implemented as shown in Code Snippet 2.33,
default C# proxy class for this interface can be ShapeDefaultProxy shown in
Code Snippet 2.34. In Code Snippet 2.34, notice that ShapeDefaultProxy imple-
ments interface methods via JNI invocations. As ShapeDefaultProxy instances
will at runtime wrap reference to existing Java class that implements Java inter-
face, JNI will handle the virtual method dispatch and invoke methods on correct
Java method.

Code Snippet 2.33: Java: Example of Java interface
1 public interface Shape {
2 int intInterfaceMethod(int a);
3 double doubleInterfaceMethod(double a);
4 }

Code Snippet 2.34: C#: Default proxy class for Java interface
1 public interface ShapeDefaultProxy {
2 public int IntInterfaceMethod(int a) {
3 /*handle method invocation using JNI */
4 ...
5 }
6 public double DoubleInterfaceMethod(double a) {
7 /*handle method invocation using JNI */
8 ...
9 }

10 /* other JNI-based code */
11 ...
12 }

Described approach, however, looses a part of a type information. It
could happen that the Java type returned at runtime already has a dedicated
C# proxy type. We would, however, represent the returned reference by the
default interface proxy. From the C# type system point of view, however, this
default interface proxy is not related in any way to the existing dedicated proxy
type. It would not be impossible to cast the default proxy to dedicated
proxy type, even though both would hold a reference to the same Java type at
runtime.

The best effort to capture correct runtime type
Equipped with incremental source generators and JNI, we can improve upon the
solution.
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JNI provides GetObjectClass function [8] that, given an object instance ref-
erence, returns a reference to java.lang.Class instance representing the runtime
type of the instance. We can apply this JNI function at runtime to get a run-
time type of the object returned from the Java method. What remains
to be solved is how to create an instance of C# proxy type corresponding to this
Java type if such C# proxy type exists.

Using Roslyn API in the source generator, we can find all the classes in a
given assembly that implement a given interface (in our example IShape inter-
face representing Java Shape interface). We can use this information while source
generating interface proxy to be able to map Java runtime type to C# delegate
that creates a C# proxy instance of a correct proxy type. As was described in Sec-
tion 2.8.1, each C# proxy class will implement CreateProxyInstance method,
which creates a proxy class instance and can be therefore used to instantiate this
delegate.

Mapping can be implemented by a static dictionary generated as a part of
the C# interface proxy type. An example of such a dictionary is shown in
Code Snippet 2.35. Notice that the dictionary maps Java type name (that can
be obtained via JNI invocations given JNI object reference) to a delegate to
CreateProxyInstance method.

Code Snippet 2.35: C#: Generated dictionary enableling to match runtime Java
return type of methods returning interface type

1 public interface IShapeProxy : IJavaInterface<IShapeProxy> {
2 private static readonly Dictionary<string, ProxyCreator>

_interfaceImplementations = new() {
3 {
4 "javasources.testclasses.Circle",
5 new ProxyCreator(Circle.CreateProxyInstance)
6 },
7 {
8 "javasources.testclasses.Square",
9 new ProxyCreator(Square.CreateProxyInstance)

10 },
11 };
12 }

The described approach allows us to match the runtime type of the Java
instance represented statically by interface type with the correct C# proxy type.
It will only work, however, if such proxy type exists in the C# assembly
that defines proxy of the given interface. We still need to provide the
default interface implementation proxy (as shown in Code Snippet 2.34)
as a fall-back when C# proxy class corresponding to the runtime type of Java
object is not present.

CreateProxyInstance method for interface proxies
To be able to work with interface proxies in the same manner (described in Section
2.8.1) as with other proxy types, we need an interface proxy to implement the
static CreateProxyInstance method. This method can apply the steps described
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previously in this section to return an instance of the best possible proxy class
that implements a given interface.

2.9 Incremental source generator
The last part of the solution is an incremental source generator that is going to
generate implementation of proxy classes and methods. This section discusses
some design decisions made while developing it.

2.9.1 Generating via string or Roslyn API
An incremental source generator allows us to hook into the compilation process
of a user-implemented assembly, inspect a user-written code using Roslyn API,
and generate an additional source code that gets added to the compilation (as
if it was written by the user). Generated source code is always added to the
compilation in the form of a string. We are, however, given an option to either
generate it directly as a string or to use Roslyn API to generate a syntax tree
that gets converted to a string directly before it gets added to the compilation.

Though generating source code via string concatenation can be readable and
easy to understand in simple scenarios, in our context, it would result in con-
fusing and hard-to-maintain implementation of the source generator. We need
to generate relatively complex code that is heavily parameterized based on user-
implemented input. Roslyn API allows for a more modular design of the source
generator and results in an implementation that is easier to maintain. We will,
therefore, opt to generate source code in the form of Roslyn AST rather than
concatenating strings.

2.9.2 Method overloading
As Section 2.5.4 described, to invoke Java methods, a generated proxy class will
need to hold the JNI method IDs of these methods. These IDs are not expensive
resources and are valid while the corresponding Java class is loaded. Therefore,
the proxy class can cache them in static fields, as demonstrated in Code Snippet
2.36.

Code Snippet 2.36: C#: Static field caching JNI method ID in generated C#
proxy class

1 private static readonly Lazy<JniStaticMethod> jnimyMethod = new
(() => _javaType!.GetStaticMethodID("myMethod",
"(ILmy/classes/MyClass;)V"));

2 public static partial void MyMethod(int number, MyClass myClass)
{ ... }

In order to produce a valid C# code, the source generator must produce
a unique name for every method ID field in a given class. Code Snippet 2.36
demonstrates using the name of a related Java method in the method ID field
name. This approach, however, is not general enough: Java methods can be
overloaded, allowing for multiple methods with the same name defined in the
given type.
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Solution – encoding parameter types
We can address this problem by encoding method parameter types into method
field names. We can use the name mangling strategy similar to one that JNI
uses to specify signatures of methods to be looked up. This strategy has first
been mentioned in Section 1.2.1 and is also demonstrated in Code Snippet 2.36.
The second parameter of GetStaticMethodID method is a string representa-
tion myMethod method signature. Each Java primitive type is represented by
a dedicated letter; for reference types, the full name is encoded. Consider-
ing this, we can source generate method handle field related MyMethod e.g.,
called jnimyMethod_I1Lmy_classes_yClass1 (replacing characters that are not
allowed in identifiers).

This approach works well in common cases, but unfortunately, it is not a
completely general solution. According to a specification [134] Java methods can
accept up to 255 arguments. We did not find any formally specified limitation
on the length of the C# identifier. We have experimentally found out that when
a C# solution is being built from Visual Studio, there is either no limit on the
identifier length or the limit is so high that we did not manage to reach it, and
then it is irrelevant in our context. When a C# solution is being built in the
command line via dotnet build command, however, the limit of the identifier
length seems to be 1023 bytes in UTF-8 encoding. Java method accepting a lot
of non-primitive parameters can exceed this limit when its argument types are
encoded into a field name.

Solution – counter
We can try to achieve uniqueness in field names differently – by appending a
value of a counter to a method name to form a unique field name. The counter,
however, cannot be global, as an incremental source generator pipeline should
be stateless and as we cannot be sure that all methods defined in one proxy
type will be processed by the same invocation of the source generator transform
method (see Section 3.5 for an explanation of the incremental source generator
implementations). The proxy class is partial; the user can potentially separate the
proxy class definition into multiple parts, and then each of these parts would get
processed separately. We, therefore, cannot use a local per-proxy-class counter.

Solution – GUID
Instead of appending a counter value, we can append a generated GUID to a Java
method name to produce unique field name. The disadvantage of this approach
is that it makes source generation non-deterministic, which is not recommended
as it interferes with incremental source generator caching.

In common cases, we can use the approach of encoding method parameter
types into a field name when the resulting field name doesn’t overflow the length
limit of 1023 bytes. If the length limit should be exceeded, GUID can be used
instead. As Java methods accepting a large number of arguments that the field
name limit should be exceeded are going to be rare, it does not seem necessary
to optimize for them. We only need to make sure that the code produced by the
source generator is valid, even in these corner cases.
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2.9.3 Incremental source generator caching
Incremental source generators extensively use caching, which is useful because,
especially in IDEs, they can be rerun often. Incremental source generators are
implemented as stateless pipelines (see Section 3.5 for more details), and outputs
of each pipeline stage are cached. If some pipeline stage produced the same out-
puts in two consecutive runs of an incremental source generator, later stages of
the pipeline can be skipped in the second of the runs [122]. This provides incre-
mental source generators with a significant performance advantage over earlier
introduced source generators.

However, in order for an incremental source generator to be able to detect
that the stage produced the same output as the last time it was run, the incre-
mental source generator has to be able to compare data transfer objects (DTOs)
returned by individual pipeline stages by value [135].

Solution: EqualityComparer
Comparison of pipeline stages results by value can be achieved by implement-

ing EqualityComparers [136] for DTOs types returned by pipeline stages. This
EqualityComparers must be set to particular pipeline stages via WithComparer
method [137].

This approach, however, can be error-prone as it creates separate comparison
semantics for DTOs that are only used in the source generator pipeline. More-
over, implementation of EqualityComparer for more complex DTOs is rather
cumbersome.

Solution: Records
Another option is to implement DTOs in a way that they are by themselves
comparable by value. To achieve this, we can use record types [138] as they
are comparable by value by default. We just need to make sure that our records
do not contain fields of any complex types that are comparable by reference.
For example, we cannot pass Roslyn syntax nodes or type symbols between
pipeline stages as they are very likely to stand in the way of caching. Instead,
we need to extract data that we need in later stages of the pipeline into fields of
simpler types.

Another issue comes with having fields of collection types in our DTOs be-
cause collections are, by default, comparable by reference. Luckily, Andrew Lock
comes up with the solution in his blog post [135], where he suggests implementing
an array wrapper that implements value comparison semantics [139]. In this blog
series, he also shows how to test that caching actually hits between incremental
source generator pipeline stages [140] when the approach of using DTOs that are
inherently comparable by value is used. We can adopt this approach in source
generator unit tests.

As the approach of making DTOs inherently comparable by value seems less
error prone and easier to maintain, we will opt for it.
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3. Implementation
documentation
The previous chapter went through a set of decisions that had to be made while
designing software implemented in this thesis. This chapter will describe the
main aspects of the software architecture that was created as the result of these
decisions.

The resulting solution enables interoperability invocations from C# to Java
and manipulation with Java objects from a C# code. It focuses on making these
interoperability interactions as seamless as possible from the user’s perspective
through extensive usage of the incremental source generator. Figure 3.1 shows the
high-level view of components that play role in the interoperability interaction.
Let’s describe them in more detail.

Figure 3.1: High-level view of components playing a role in interoperability
invocations

Suppose that a user wants to access Coffee Java class shown in Code Snip-
pet 3.1 from C#. User will define a skeleton of a C# proxy class (for ex-
ample, as shown in Code Snippet 3.2) – left side of Figure 3.1. Incremental
source generator will locate the proxy class skeleton by applying marker at-
tributes (JavaClassProxy, JavaImport in Code Snippet 3.2), it will analyze it
using Roslyn API and will generate its implementation. This implementa-
tion will use the API provided by the interoperability library to carry out
interoperability invocations to Java-side code.

Code Snippet 3.1: Java: Example of Java class
1 public class Coffee {
2 public static Coffee brew(int gramsOfCoffee) { ... }
3 }
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Code Snippet 3.2: C#: Example of proxy class
1 [JavaClassProxy]
2 public static unsafe partial class CoffeeProxy {
3 [JavaImport]
4 public static partial CoffeeProxy Brew(int gramsOfCoffee);
5 }

For more details about the usage see Chapter 4.

3.1 Solution structure
The described behavior is implemented as a .NET solution (.sln) consisting of
13 .NET projects (.csproj), including two testing projects and a benchmarking
project. The solution depends on a small amount of Java code enabling usage of
Project Panama and providing Java classes the solution can be tested on.

Figure 3.2: Overall solution structure

Figure 3.2 captures the high-level structure of the solution (on the level of
individual projects).
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The core of the solution is Interoperability library that consists of three
projects:

• JavaInterop.JNI – contains JNI-based interoperability logic designed in
Sections 2.5 and 2.6. This project handles invocations of Java methods and
manipulation with Java objects via JNI API.

• JavaInterop.Panama – enables invocations of static Java methods with
primitive parameter types using Project Panama, providing opt-in opti-
mization for these invocations over JNI-based solution. This project de-
pends on a small amount of Java code – Panama Helpers – that enables the
C#-side part of the library to use features of Java-based Project Panama.
Section 2.4 focused on designing this part of the solution.

• JavaInterop.Common – contains a bit of shared code, mainly Marker at-
tributes used by an incremental source generator (see Section 2.7).

The API provided by the interoperability library is used by the Incremental
source generator. Incremental source generated composes this API into source
generated C# proxies of Java classes. Source generation is separated into two
phases:

1. Scanning a user-written code and collecting metadata about proxy
classes that should be generated. This phase is handled by
JavaImport.SourceGenerator project.

2. Source generating C# code based on collected metadata. This phase
is handled by JavaInterop.SourceGenerator.JNI for JNI-based proxy
classes and by JavaInterop.SourceGenerator.Panama for proxies using
Project Panama.

An interface between these two phases is provided by
JavaInterop.SourceGenerator.Common project that defines a set of data trans-
fer objects (DTOs) used to pass proxy classes metadata from the scanning phase
to the generating phase. This project also contains a bit of shared source-
generating logic. An incremental source generator was designed in Section 2.9.

JavaInterop.Proxies project contains predefined proxies of a few commonly
used Java classes intended to be used by a user. The following sections will
describe these components in more detail.

Other projects shown in Figure 3.2 serve for testing and benchmarking pur-
poses. Section 3.6 looks at testing in more detail.

As the implemented solution is a functional prototype of production-ready
software, some TODOs were intentionally left in the code to mark places of possible
future improvements. Section 5.2 analyses these possible improvements.

3.2 Interoperability library – JNI
The first component to describe is the JNI-based part of the interoperability
library implemented by JavaInterop.JNI project.

This component consist of several layers of abstractions. This section will
describe them starting in JNI-based core of the library and progressing up to
user-level API.
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3.2.1 JavaVM and JniEnv

Figure 3.3: Using JNI invocation API to spawn JVM instance

Before any interoperability invocation from C# to Java can occur, a JVM
instance must be spawned in the process where a .NET application is running.
JVM instance can be spawned via JNI Invocation API [8]. Figure 3.3 cap-
tures steps that our interoperability library carries out in order to spawn a JVM
instance.

Interoperability library represents JVM instance via JavaVM class. JavaVM
class uses P/Invoke (see Section 1.2.2) to access JNI Invocation API (which is
native-code API). When CreateJavaVM function from JNI Invocation API [8] is
called, the JVM instance spawned in the current process. Once the JVM instance
is created, it can be accessed via JavaVM class. As at most one JVM instance is
allowed per the lifetime of the process (see Section 2.5.2), JavaVM is static.

The majority of JNI API is provided in the form of functions in JNI Function
Table. This table is accessible via the JNI interface pointer, commonly referred
to as JNIEnv pointer (see Section 1.2.1). JNIEnv pointer is only valid in a thread
that obtained it. The thread that spawns the JVM instance will obtain JNIEnv
pointer returned from CreateJavaVM function. Other threads have to attach
themselves to the JVM instance using JNI Invocation API to obtain JNIEnv
pointer.

Within our C# interoperability library, JavaVM class is responsible for at-
taching threads to the JVM instance it manages. It contains ThreadLocal in-
stance of JNIEnv class. JNIEnv class is C# representation of JNIEnv pointer. Its
ThreadLocal instance gets initialized by CreateJavaVM call in the thread that
spawned JVM and by AttachCurrentThread call in other threads.

Once a thread holds its JNIEnv instance, it can be used to invoke Java methods
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Figure 3.4: Invocation of Java code using JNI

via JNI. This process is captured by Figure 3.4. First, P/Invoke is used to invoke
a function in the JNI Function Table. The invoked JNI function then calls the
required Java method (or accesses an instance of a Java object).

As Figure 3.5 shows, JNIEnv class accesses the JNI Function Table via a set of
P/Invoke-based unmanaged delegates. It also contains an additional layer of ab-
stractions in the form of wrapper methods that invoke unmanaged delegates and
abstract other parts of the library from low-level details related to JNI interoper-
ability invocations. For example, they handle exceptions that occur in Java-side
code and propagate them as C# exceptions; they also manage low-level details
of passing strings and arrays to the native JNI code (pinning, stack-allocating).

3.2.2 Safe handle layer – typing JNI references
JNI functions access Java objects via JNI references. On the type system level,
JNI distinguishes multiple types of references depending on the type of object
the reference is pointing to. The full list can be seen in the first column of Table
3.11.

Apart from these reference types, JNI also distinguishes two orthogonal kinds
of references (see Section 1.2.1 for more details):

• local references that:

– are only valid in a thread that created (obtained) them,
– are only valid until the control flow returns to Java,
– do not require explicit cleanup.

1JNI defines all these types as typedef aliases of the same pointer type.
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Figure 3.5: Layer of abstraction wrapping JNI Function Table

• global references that:

– are valid in any thread,
– are valid until they are explicitly freed,
– requires explicit cleanup.

JNI, however, does not distinguish between local and global references on the type
system level. Any of the types from the first column of Table 3.1 can represent
either local or global reference. That proves to be tricky, as some JNI functions
will crash if an incorrect reference kind is passed.

Our library aims at typing JNI references more safely. We have a certain
freedom when it comes to typing JNI references. We can specify signatures of
unmanaged delegates invoking JNI functions as we please as long as the P/Invoke
marshaller is able to marshall between JNI types and types we provided (see more
in Section 2.5.3). The rest of this section will talk about local and global references
in more detail.

Local references
As Section 2.5.3 decided, JNI local references are represented by sequential layout
structs wrapping IntPtr (example is shown in Code Snippet 3.3).

Code Snippet 3.3: C#: Representation og JNI local reference
1 [StructLayout(LayoutKind.Sequential), NativeCppClass]
2 public struct JniObjectLocalRef {
3 internal IntPtr _handle;
4 }
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JNI type C# local reference C# global reference
jobject JniObjectLocalRef JniObjectSafeHandle
jclass JniClassLocalRef JniClassSafeHandle
jthrowable JniThrowableLocalRef JniThrowableSafeHandle
jstring JniStringLocalRef JniStringSafeHandle
jarray JniArraySafeHandle
jbooleanArray JniArrayLocalRef<bool> JniPrimitiveArraySafeHandle<bool>
jbyteArray JniArrayLocalRef<sbyte> JniPrimitiveArraySafeHandle<sbyte>
jcharArray JniArrayLocalRef<char> JniPrimitiveArraySafeHandle<char>
jshortArray JniArrayLocalRef<short> JniPrimitiveArraySafeHandle<short>
jintArray JniArrayLocalRef<int> JniPrimitiveArraySafeHandle<int>
jlongArray JniArrayLocalRef<long> JniPrimitiveArraySafeHandle<long>
jfloatArray JniArrayLocalRef<float> JniPrimitiveArraySafeHandle<float>
jdoubleArray JniArrayLocalRef<double> JniPrimitiveArraySafeHandle<double>
jobjectArray JniObjectArrrayLocalRef JniObjectArraySafeHandle

Table 3.1: Mapping between JNI reference types and interoperability library
types

Several similar struct were implemented to represent individual types of JNI
references. The second column of Table 3.1 shows the full list. The table also
captures the mapping between these types and JNI types in the first column.

All JNI functions apart from NewGlobalRef function return local reference.
For some of these functions, it is clear what type of local reference is returned –
e.g., it is clear that NewIntArray returns a reference to an int array (jintArray).
The type returned from some other JNI functions, however, is less clear. For
instance, CallObjectMethod JNI function is used to invoke arbitrary non-static
Java method returning arbitrary non-primitive type – returned type can be string,
array, user-defined class, etc. As we represent local references by structs and
structs do not allow for polymorphism, we introduce a separate type of local ref-
erence – JniLocalRef – to represent these undetermined local references. Section
3.2.5 will talk about typing in these cases.

Global references
To represent global references, we use instances of classes inherited from
SafeHandle class [117]. SafeHadle is a standard library class intended to wrap
unmanaged resources. It manages the clean up of these resources. It is integrated
into P/Invoke – P/Invoke is able to marshal between native pointers and C#
SafeHandles.

We implement several classes inherited from SafeHandle class to represent
individual types of JNI references. The third column of Table 3.1 lists these
types. Figure 3.6 captures the inheritance hierarchy between them. Polymor-
phism presents an advantage for us because it allows us to pass more specialized
types to unmanaged delegates that expect JniObjectSafeHandle. That, for ex-
ample, allows us to invoke instance methods on string instances.

Clean up of JniObjectSafeHandle and inherited classes invokes
DeleteGlobalRef JNI function. This function will crash if a local reference
gets passed to it. To make sure that a safe handle instance wrapping local
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Figure 3.6: Safe handle inheritance hierarchy

reference never gets created (as cleanup of such safe handle would crash), we
obtain a global reference from (local) reference directly in the constructor of
JniObjectSafeHandle class.

3.2.3 JavaObject layer – abstracting implementation de-
tails

All proxies of Java classes a user gets to interact with under the hood wrap JNI
global references, represented by safe handles. The code of proxy classes is gen-
erated by an incremental source generator and gets added to the user’s assembly.
It can, therefore, only access public methods and types of the interoperability
library. To avoid leaking implementation details of our library, to avoid allowing
users to manipulate with safe handles directly, and to keep safe handles imple-
mentation as slim as possible (safe handles only represent a reference, they do
not implement any additional functionality), we have wrapped safe handles into
one additional layer of an abstraction – JavaObject layer.

Figure 3.7 shows all the layers of abstraction implemented inside the interop-
erability library. In the core of the interoperability library is JNIEnv class that
manages JNI invocations via strongly typed unmanaged delegates. These del-
egates work with JNI global references as with safe handles. Safe handles are
further wrapped to another layer of abstraction to hide implementation details
from a user – JavaObject layer. Users will interact with source-generated proxy
classes on Proxy Layer that use API provided by JavaObject layer to emulate
the API of Java classes they access.

There are two classes on JavaObject layer that deserve closer attention:

• JavaObject class represents a notion of a Java object. It wraps
JniObjectSafeHandle. It enables invoking instance methods and accessing
instance fields of the Java instance it represents.

• JavaType class represents a notion of Java type. It wraps
JniClassSafeHandle. It allows the invocation of static Java methods and

80



Figure 3.7: Layers of abstraction of interoperability library

accessing static Java fields. It also allows to look up both static and non-
static Java methods and fields that are to be used from C# (before the
method is to be called via JNI, it has to be looked up - read more in
Section 1.2.1).

3.2.4 Proxy layer – providing pleasant user experience
The last layer of abstractions shown in Figure 3.7 is the proxy layer. This
layer provides API that users of our library should interact with. It consists
of individual proxy classes (such as CoffeeProxy from Code Snippet 3.2) that
emulate the API of existing Java classes and enable a user to access it from C#.

Each C# proxy type corresponds to exactly one existing Java type. That
distinguishes proxies from JavaObject class that can represent a reference to an
instance of any Java class and holds no type information about the Java type it
references. On the other hand the type of proxy class determines the type
of Java class it emulates2.

Figure 3.8 captures the relation between JavaObject, JavaType, C# proxy in-
stances, and Java instances. Each C# proxy instance contains a field of JavaObject
type that references the Java instance the proxy instance works with. The proxy
class then contains a static field of JavaType type that references Java type
(java.lang.Type instance) the proxy type emulates.

The majority of proxy classes will be source-generated based on user-written
code. Section 3.4 will be devoted to source-generated proxies. There are, however,
a few proxies implemented manually in the interoperability library:

2The relation is not necessarily bijection between C# proxies and Java classes that are to be
accessed from C# as a user can define multiple C# proxy types referencing the same Java type
if they so please. All instances of a particular Java type should, however, reference instances of
the same Java type (or possibly types inherited from this Java type).
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Figure 3.8: Relation between JavaObject, JavaType, C# proxy instances and
Java instances

• JavaLangObjectProxy – represents java.lang.Object type, which is the
root of Java inheritance hierarchy. Each (user-defined or in-library imple-
mented) C# proxy of a Java class (directly or indirectly) inherits
JavaLangObjectProxy class.

• JavaLangStringProxy – represents java.lang.String type and imple-
ments some string-specific functionality, e.g., conversion between Java strings
and C# string.

• JavaPrimitiveArrayProxy – represents a reference to a Java primitive type
array. Accepts a generic type parameter, specifying a type of an array el-
ements. The source generator emits diagnostics to ensure that only sup-
ported primitive types can be specified (see Section 3.5.2) 3. This class does
not hold array elements (therefore, it does not implement an indexer). It
enables access to blocks of an array via GetCopyOfRange/SetRange meth-
ods or to obtain access to all array elements – returned as IDisposable
JavaPrimitiveArrayElements instance implementing an indexer. Section
2.6 justifies related design decisions.

• JavaObjectArrayProxy – represents a Java array of Java objects. Accepts
generic type parameter specifying a type of an array an elements, which
has to be a Java class proxy type. Supports multidimensional arrays by
passing JavaObjectArrayProxy as the type parameter. That imposes a
complication for the source generator because it has to be able to handle
types that are parameterized by types. Unlike for primitive type arrays,
underlying JNI API for object arrays is relatively straightforward, allowing
the implementation of an indexer directly on JavaObjectArrayProxy type.

3.2.5 Creating proxy instances
A user of our interoperability tool will work with Java object instances via in-
stances of generated C# proxy classes. Therefore, when a Java method returning

3C# itself does not allow to specify granular enough generic constraint. unmanaged [141]
constrain is close, but not all primitive types it includes can be mapped to existing Java primitive
types (see Section 2.1.1).
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an object is called via an invocation of the corresponding C# proxy method, it is
necessary to create an instance of the correct C# proxy class to return to a user.
Section 2.8 analyzed some aspects that make creating proxy instances tricky. This
Section will provide a high-level description of the solution implemented based
on this analysis.

The solution is explained using the example of makeCoffee method (see Code
Snippet 3.4) returning an instance of Coffee class. Figure 3.9 captures the whole
process of invoking a method that returns a proxy instance.

Code Snippet 3.4: Java: Example of Java class
1 public class CoffeeMachine {
2 public static Coffee makeCoffee() { ... }
3 }

Figure 3.9: Returning an instance of a proxy class

To access the Java makeCoffee method, a user has to declare a partial proxy
method (similar to the method shown in Code Snippet 3.2). Source-generated
implementation of this proxy method uses JNIEnv class (step 1 in Figure 3.9)
to invoke the Java method via JNI (step 2). JNI function returns Coffee class
instances as JNI reference (step 3). This JNI reference needs to be wrapped in
the correct class proxy instance.

Each proxy type implements IJavaProxy<TProxy> interface that requires
static CreateProxyInstance method. Proxy classes implement this method to
create their own instance from a given JNI reference. That moves the respon-
sibility for the proxy instance creation to proxy classes themselves. For source-
generated proxy classes, the implementation of CreateProxyInstance method
can be source-generated, and in-library proxy classes can implement a custom
logic if required.

Wrapper methods (see Figure 3.5 for an explanation) of JNI functions return-
ing Java object instances are generic by a C# proxy type corresponding to the
returned Java type. They can, therefore, invoke CreateProxyInstance method
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of a particular proxy type (step 4 in Figure 3.9) as static interface methods can be
invoked on generic type parameters. Instances created by CreateProxyInstance
method can be returned to a user.

Interfaces
Our solution also supports invocations of Java methods returning interface types.
As Section 2.8.2 explained, interface return type further complicates the situation
as it is not immediately clear an instance of which C# proxy classes should be
used to wrap a returned object reference.

Our solution represents Java interfaces by C# proxy interfaces. When a Java
method returning an interface is to be invoked, a type specified as a type pa-
rameter of the JNIEnv wrapper method will be an interface proxy type (ICoffee
type in the example in Figure 3.10). As Section 2.8.2 decided, interface proxy
types also implement static CreateProxyInstance method. That gets invoked
from the JNIEnv wrapper method (step 4 in Figure 3.10, previous steps are the
same as in the previous case). Source-generated implementation of this method
uses InterfaceProxyFactory to create an instance of a correct proxy type (step
5).

Figure 3.10: Returning Java instance wrapped in an interface type

Source-generated interface proxy contains a dictionary (such as the one shown
in Code Snippet 3.5) that maps Java type names to C# delegates to
CreateProxyInstanceForInterface methods defined by corresponding proxy
classes. This dictionary contains one record for each C# proxy class defined in the
given assembly that implements the proxy interface (in our example, suppose that
Java classes Cappuccino and Espresso implement Java Coffee interface and that
C# assembly contains proxies of these Java classes that implement ICoffee proxy
interface). CreateProxyInstanceForInterface method serves the same purpose
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as CreateProxyInstance method and is also required by IJavaProxyInterface.
The difference between methods will be explained later in this section.

Code Snippet 3.5: C#: Source generated dictionary that maps Java type names to
delegates creating instances of corresponding C# proxy classes – example for ICoffee
interface

1 private static readonly Dictionary<string, ProxyCreator>
_interfaceImplementations = new() {

2 {
3 "javasources.testclasses.Cappuccino",
4 new ProxyCreator(
5 CappuccinoProxy.CreateProxyInstanceForInterface)
6 },
7 {
8 "javasources.testclasses.Espresso",
9 new ProxyCreator(

10 EspressoProxy.CreateProxyInstanceForInterface)
11 },
12 };

InterfaceProxyFactory needs to find out the Java name of a runtime type
of JNI reference it obtains (step 7) to look up a correct
CreateProxyInstanceForInterface delegate in the dictionary (step 8). To find
out the Java type name, it first needs to create JavaObject instance from the JNI
reference (step 6). Once InterfaceProxyFactory holds the correct delegate, it
can invoke the corresponding CreateProxyInstanceForInterface method (step
9) that will create an instance of a proxy class that can be then returned to a
user.

Unlike CreateProxyInstance, CreateProxyInstanceForInterface method
accepts JavaObject as its parameter. Therefore, JavaObject instance created
to figure out the Java type name can be passed to it, and no redundant instance
needs to be created. On the other hand, CreateProxyInstance method accepts
JNI reference directly, and the method implementation is free to wrap it in an
instance of a more specific type inherited from JavaObject if necessary.

3.3 Interoperability library – Panama
As section 2.3.4 explained, Project Panama is a brand new feature in Java that
could potentially replace JNI for interoperability invocations between Java and
a native code. The current version of Project Panama does not provide support
for working with Java objects. We managed, however, to use Project Panama to
enable invocations of static Java methods with primitive parameter and return
types from C#. As Section 2.4.3 shows, the performance of the solution using
Project Panama is superior to the one of the purely JNI-based solution. Project
Panama can, therefore, be used as an opt-in optimization for this specific kind
of invocation when a new enough version of Java is used. This section explains
how.
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Figure 3.11: The first invocation of a particular Java method using Project
Panama

Figure 3.12: The second and any other consecutive invocation of a particular
Java method using Project Panama

Figure 3.11 demonstrates the process of the first invocation of a particular
Java method from C# using Project Panama. To be able to invoke the Java
method via Project Panama, we first need to obtain a pointer to an upcall stub
of this method. As Project Panama is only available as Java API, an upcall stub
can only be built from Java code. We, therefore, need to bootstrap the process
via JNI invocation4 of Java method that builds an upcall stub and returns a
pointer to it (number 1 and 2 in Figure 3.11).

Once a C# code holds un upcall stub pointer, P/Invoke can be used to invoke
this function pointer, effectively invoking the Java method the upcall stub belongs
to (number 3 in Figure 3.11).

An upcall stub pointer can be cached on the C# side. Any consecutive invo-
cation of the given Java method can, therefore, avoid the JNI bootstrapping step
and directly invoke the upcall stub pointer via P/Invoke (as Figure 3.12 shows).

4As the Java method that creates an upcall stub accepts non-primitive (string) parameters,
Panama cannot be used to invoke it.
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3.4 Generated Proxies
This section will describe significant aspects of different kinds of source-generated
proxies. It will build on what was explained in previous sections of this chap-
ter, providing an overview of how the concepts introduced are composed into
generated proxy classes.

3.4.1 Static class proxy
First, let’s introduce a more straightforward case of static proxy classes. Even
though Java does not support non-nested static classes, we allow a user to mark
their C# proxy class of (non-static) Java class as static as far as it only accesses
static members of the Java class. That allows for simpler proxy classes in this
simpler scenario.

As Sections 3.3 mentioned, our solution allows for the invocation of static
methods with primitive parameter and return types either via JNI or via Project
Panama. This section will first describe the JNI-based proxy; then it will look
at the Panama-based proxy. Both kinds of proxies will be introduced using the
example of the Java class shown in Code Snippet 3.6. Real project would usually
contain only one of these proxies, depending on if a user opted-in the usage of
Project Panama.

Code Snippet 3.6: Java: Example of simple Java class that can be represented by
a static proxy class

1 public class JavaStaticClass {
2 public static void voidParamlessMethod() { ... }
3 }

JNI-based static proxy
Code Snippet 3.7 shows an example of JNI-bases static proxy of Java class
from Code Snippet 3.6. Any JNI-based proxy class contains _javaType field
of JavaType type that references the Java type that the given proxy class corre-
sponds to (line 3). This field gets initialized in the static constructor of the proxy
class. JavaType constructor uses JNI to obtain a handle of the corresponding
Java type.

For each Java method that should be accessible from C#, a proxy class con-
tains the method ID field (jni_voidParamlessMethod) field in Code Snippet
3.7. These fields are defined as Lazy, and the first access initializes them via JNI
invocation, looking up the Java method to be invoked (line 10).

Proxy method of static Java method (VoidParamlessMethod in our example)
then uses _javaType field and method ID field (jni_voidParamlessMethod) to
invoke Java method via JNI (lines 13 to 16).
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Code Snippet 3.7: C# JNI-based proxy of Java static class
1 public static unsafe partial class JavaStaticClassJNI {
2 // java type reference
3 private static readonly JavaType _javaType;
4

5 static JavaStaticClassJNI() {
6 _javaType = new

JavaType("javasources/testclasses/JavaStaticClass");
7 }
8

9 // java method ID
10 private static readonly Lazy<JniStaticMethod>

jni_voidParamlessMethod = new(() =>
_javaType!.GetStaticMethodID("voidParamlessMethod", "()V"));

11

12 // java method proxy
13 public static partial void VoidParamlessMethod() {
14 _javaType.CallStaticVoidMethod(
15 jni_voidParamlessMethod.Value, args:

Span<JniValue>.Empty);
16 }
17 }

Panama-based static proxy
Code Snippet 3.8 shows a Panama-based proxy of the same Java class (shown
in Code Snippet 3.6). Notice that no JavaType field is required. Instead of
JNI-based method ID, unmanaged delegate panamaPtr_voidParamlessMethod
(line 5) is used to invoke the Java method. This delegate is initialized in the
method that uses(VoidParamlessMethod) it via BuildPanamaStub invocation,
that under the hood uses JNI to invoke Panama-based Java method that returns
an upcall stub pointer. panamaPtr_voidParamlessMethod field cannot be Lazy,
as unmanaged delegate types cannot be used as generic type parameters.

After the delegate is initialized, VoidParamlessMethod invokes it, effectively
invoking the Java method (line 18).

Code Snippet 3.8: C# Panama-based proxy of Java static class
1 public static unsafe partial class StaticClassProxyPanama {
2 private const string _javaTypeName =

"javasources.testclasses.JavaStaticClass";
3

4 // upcall stub pointer
5 private static delegate* unmanaged<void>

panamaPtr_voidParamlessMethod;
6

7 // java method proxy
8 public static partial void VoidParamlessMethod() {
9 if (panamaPtr_voidParamlessMethod == default) {

88



10 nint _stubAddr = PanamaCallbackHelpers
11 .BuildPanamaStub(
12 _javaTypeName, "voidParamlessMethod", "()V")
13 .Address;
14 panamaPtr_voidParamlessMethod = (delegate*

unmanaged<void> )_stubAddr;
15 }
16

17 // invoke unmanaged delegate
18 panamaPtr_voidParamlessMethod();
19 }
20 }

3.4.2 Non-static class proxy
Code Snippet 3.9 shows an example of Java Coffee class defining a constructor.
Such a class cannot be emulated by static proxy; instead, non-static proxy has
to be used. Code Snippet 3.10 demonstrates user-written non-static partial
skeleton of C# proxy class emulating Java Coffee class. Notice that instead
of defining a constructor, a proxy class defines static factory method CreateMe.
The factory method is used to determine the signature of the constructor to be
generated (see Section 2.7.1 for an explanation). The name of the factory method
is not significant; it suffices that the method is annotated by JavaImportCtor
attribute.

Code Snippet 3.9: Java: class defining constructor
1 public class Coffee {
2 public Coffee(int gramsOfCoffee) { ... }
3 }

Code Snippet 3.10: C#: non-static proxy skeleton
1 [JavaClassProxy]
2 public unsafe partial class Coffee {
3 [JavaImportCtor]
4 public static partial Coffee CreateMe(int gramsOfCoffee);
5 }

Code Snippet 3.11 shows a proxy class implementation that would get gener-
ated based on the skeleton from Code Snippet 3.10. Some implementation details
were omitted for brevity.

On line 2, notice that the proxy class gets generated so that it inherits
JavaLangObjectProxy type (see section 3.2.4) and implements IJavaProxy in-
terface. Lines 16 and 20 implement methods required by this interface –
CreateProxyInstance, CreateProxyInstanceForInterface (Section 3.2.5 de-
scribed the purpose of these methods) and GetJavaType method that is used
when the user works with Java object array from C#.

On lines 4 and 5, notice that apart from _javaType field referencing Java
type, the non-static proxy also contains non-static _javaObject field referencing

89



Java object instance a given proxy instance corresponds to. This field gets ini-
tialized in instance constructors. Two utility constructors were omitted from the
example: private constructor used by CreateProxyInstance and
CreateProxyInstanceForInterface methods and protected constructor used
when another proxy class inherits the given proxy class.

Code Snippet 3.11: C#: non-static generated proxy
1 public unsafe partial class Coffee
2 : JavaLangObjectProxy, IJavaProxy<Coffee> {
3 // java type and java instance references
4 private static readonly JavaType _javaType;
5 private readonly JavaObject? _instance;
6

7 static Coffee() {
8 _javaType = new JavaType("javasources/testclasses/Animal");
9 _jniCtor_I = _javaType.GetMethodID("<init>", "(I)V");

10 }
11

12 // utility constructors omitted
13 ...
14

15 // implementation of IJavaProxy interface
16 static Coffee IJavaProxy<Coffee>.CreateProxyInstance(
17 JniInternalMarker marker, JniLocalRef javaObjectPtr)
18 { ... }
19

20 public static new Coffee CreateProxyInstanceForInterface(
21 JniInternalMarker marker, JavaObject javaObject)
22 { ... }
23

24 static JavaType
IJavaProxy<Coffee>.GetJavaType(JniInternalMarker marker)

25 { ... }
26

27 // constructor generated bases Brew factory method omitted here
28 private static JniMethod _jniCtor_I;
29 ...

Static constructor of the Coffee proxy class initializes _jniCtor_I field (line
9 in Code Snippet 3.11). This field represents the JNI method ID of the emu-
lated Java constructor represented by factory method CreateMe (Code Snippet
3.10). Code Snippet 3.12 shows the generated implementation of CreateMe fac-
tory method and the constructor generated based on this method (with the same
signature). Constructor uses _javaType and _jniCtor_I fields to invoke Java
constructor via JNI (line 6). The factory method just invokes the generated
constructor.
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Code Snippet 3.12: C#: generated proxy constructor
1 // ctor generated based on the factory method
2 private static JniMethod _jniCtor_I;
3 public Coffee(int gramsOfCoffee) :

base(JniEmptyCtorMarker.Instance) {
4 JniValue[] argsArr = { JniValue(gramsOfCoffee) };
5 Span<JniValue> args = new Span<JniValue>(argsArr);
6 _instance = _javaType.InvokeCtor(jniCtor_I, args);
7 }
8

9 // generated body of the factory method
10 public static partial Coffee CreateMe(int gramsOfCoffee) {
11 return new Coffee(gramsOfCoffee);
12 }

If Coffee class defined a non-static method, it would have been emulated
similarly to the static method shown in Code Snippet 3.7. The only difference
would be using _javaObject field instead of _javaType field to invoke the Java
method.

3.4.3 Interface proxies
Code Snippet 3.13 shows an example of a user-written skeleton of C# proxy em-
ulating Java interface. Code Snippet 3.14 captures the generated implementation
of the interface proxy based on this skeleton.

Code Snippet 3.13: C#: Skeleton of interface proxy
1 [JavaInterfaceProxy]
2 public partial interface ICoffee {
3 [JavaImport]
4 void Drink();
5 }

On line 1 in Code Snippet 3.14, notice that the generated interface type ex-
tends IJavaInterface interface. IJavaInterface extends IJavaProxy interface,
therefore it also requires static CreateProxyInstance,
CreateProxyInstanceForInterface and GetJavaType methods. The generated
interface provides a default implementation of these methods. They were, how-
ever, omitted from the Code Snippet 3.14 as they have already been shown in
Code Snippet 3.11.

Apart from these methods, IJavaInterface requires one additional method –
GetProxyTypeRecord method. This method is used by InterfaceProxyFactory
to obtain a delegate to CreateProxyInstanceForInterface method of a partic-
ular class proxy when the Java method with an interface return type is called
(see Section 3.2.5).

GetProxyTypeRecord tries to look up the delegate in
_interfaceImplementations dictionary (initialization of the dictionary is omit-
ted from the Code Snippet 3.14 because it has already been demonstrated in
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Code Snippet 3.5). If the dictionary does not contain a record for a given Java
type name, _defaultInterfaceImplementation field is returned. This field con-
tains a delegate to CreateProxyInstanceForInterface method of the default
interface implementation proxy class. Such proxy class is generated along
with each proxy interface. It does not correspond to any existing Java class.
It is used to represent return values of the Java method returning interfaces if
no more appropriate proxy class is available. Otherwise, the default interface
implementation proxy does not significantly differ from other non-static proxy
classes.

Code Snippet 3.14: C#: Generated interface proxy
1 public partial interface ICoffee : IJavaInterface<ICoffee> {
2 private static JavaType _javaType = new

JavaType("javasources/testclasses/Coffee");
3

4 // dictionary of interface implementations -- initialization
omitted

5 private static readonly Dictionary<string, ProxyCreator>
_interfaceImplementations = new() { ... }

6

7 // identify default proxy class implementing this interface
8 private static readonly ProxyCreator

_defaultInterfaceImplementation =
new(CoffeeDefaultProxy.CreateProxyInstance);

9

10 // implementation of IJavaInterface interface
11 static ProxyCreator

IJavaInterface<ICoffee>.GetProxyTypeRecord(string
javaTypeName) {

12 if (_interfaceImplementations.TryGetValue(javaTypeName,
out ProxyCreator typeRecord)) {

13 return typeRecord;
14 }
15 return _defaultInterfaceImplementation;
16 }
17

18 // implementation of IJavaProxy interface omitted
19 ...
20 }

3.5 Incremental source generator
The implementation of class and interface proxies shown in the previous section
is generated by an incremental source generator. Incremental source generator
allows us to hook into the process of compilation of a user-implemented assembly,
inspect a user-written code using Roslyn API, and generate additional source code
that gets added to the compilation [142, 122] (as if a user implemented it).
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Incremental source generators are an improvement upon source generators
that were added to .NET in .NET 5 [143]. Source generators tended to slow
down IDEs, as the whole source generator had to be carried out during each
compilation, which can happen on each keystroke in IDE. Therefore, .NET 6
introduced incremental source generators [122] that are implemented as stateless
pipelines. The output of each pipeline stage gets cached, which allows skipping
the following pipeline stages if some pipeline stage produces the same output
as it produced during the previous run. That improves the source generator’s
performance.

Incremental source generator is implemented as a class that implements
IIncrementalGenerator interface. This interface requires one method –
Initialize – that is called exactly once and sets up the incremental source
generator pipeline [122].

Figure 3.13 shows a typical structure of the incremental source generator
pipeline. Usually, one of the first methods called in the pipeline is
CreateSyntaxProvider method5. This method allows the incremental source
generator to analyze a user-written code. It takes two parameters: a delegate to
predicate method and a delegate to transform method [144].

Figure 3.13: Common structure of incremental source generator pipeline

predicate delegate will be invoked for every syntax node. It should return
true for syntax nodes that are potentially relevant for the future pipeline phases.
It is going to be invoked very often. Therefore, it should be fast, even if it will
produce occasional false positives – e.g., it should not access the semantic model,
and the filtering should only be based on the syntax tree.

transform delegate gets invoked for syntax nodes for which predicate re-
turned true. It can access the semantic model and perform additional checks to
filter out predicate’s potential false positives. Then, it usually extracts relevant
data from the syntax node and its related semantic information (ITypeSymbol)
to a custom DTO that gets passed to the following pipeline stages.

CreateSyntaxProvider method returns IncrementalValuesProvider [145]
specialized to whatever type the transform delegate returns. The following
stages of the pipeline can carry out further transformation, eventually produc-
ing IncrementalValuesProvider<string> that contains a generated source code
and can be passed to RegisterSourceOutput method to add this source code to
the compilation.

3.5.1 Source generator structure
The previous section introduced a general concept of an incremental source gen-
erator pipeline. Now, let’s describe how this pipeline is implemented in our

5Unless the generator does not need to analyze a user-written code, for instance, because it
generates source code based only on additional files [122]
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JavaInteropSourceGenerator.
The pipeline is separated into two phases: scanning phase and generating

phase. Scanning phase analyzes a user-written code, locates proxy types and
methods, and collects all the required metadata to generate their implementa-
tions. Generating phase uses this metadata to generate the implementation
and adds it to the compilation.

To decouple these phases, the implementation of JavaInterop incremental
source generator is separated into four projects as shown in Figure 3.14. The main
source generator project JavaInterop.SourceGenerator defines the incremental
source generator pipeline and carries out the scanning phase. The generating
phase is separated into two projects – JavaInterop.SourceGenerator.JNI and
JavaInterop.SourceGenerator.Panama – each of which is responsible for gen-
erating the code of proxies based on the given interoperability technology (JNI
or Panama). The interface between the scanning and generating phase is given
by a set of data transfer objects (DTOs) that are defined by
JavaInterop.SourceGenerator.Common project.

Figure 3.14: Architecture of JavaInteropSourceGenerator

Separation into the scanning and generating phase allows for potential other
sources of metadata DTOs than is the current scanning of a user-written C# code
via Roslyn API. As a future improvement, a parser of Java .class files could be
added to the solution, allowing JavaInterop source generator to inspect Java
bytecode. That would allow for generating of C# proxy classes based directly on
Java code they interoperate with – without requiring a user to implement partial
proxy skeletons. Or, when a user implements these partial skeletons, we could
provide static (compile time) control that the skeletons match types and methods
that actually exist in a provided Java bytecode.

3.5.2 Scanning phase
Figure 3.15 shows the whole incremental source generator pipeline of
JavaInteropSourceGenerator. The scanning phase starts with our implemen-
tation of incremental source generator predicate delegate (see introduction of
Section 3.5) – CouldBeJavaImportAttribute method. This method gets called
for every syntax node in a user’s assembly, and it provides the first filter to
determine if the given syntax node could be relevant for the following stages
of the pipeline. It returns true if the given syntax node syntactically corre-
sponds to an annotation by one of marker attributes defined by our library –
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JavaClassProxyAttribute, JavaImportCtorAttribute, JavaImportAttribute
or JavaInterfaceProxyAttribute.

Figure 3.15: JavaInterop incremental source generator pipeline

transform delegate is implemented by
GetJavaProxyTypesMetadataOrDiagnostics method. This method checks that
the syntax node it receives matches the marker attribute not only syntactically
but also semantically. Then it retrieves the syntax node that represents a decla-
ration annotated by the attribute (either class, interface, method or constructor
declaration depending on an attribute type) and gets its semantic information.

If the syntax node represents a type declaration (class or interface declaration),
the given invocation of GetJavaProxyTypesMetadataOrDiagnostics method pro-
cesses the whole type and all relevant proxy methods and constructors it contains,
collecting all metadata required by following pipeline stages. If the syntax node is
a method or constructor declaration, GetJavaProxyTypesMetadataOrDiagnostics
invocation only validates if the method or the constructor is defined in the
type annotated by our marker attribute. If so, it is ignored because it will
be processed by GetJavaProxyTypesMetadataOrDiagnostics processing the an-
notated type. If not, the method or constructor is not considered valid, and
GetJavaProxyTypesMetadataOrDiagnostics method returns Diagnostics ob-
ject that will be emitted as a compiler error during the generation phase. That
will inform a user about the incorrect usage of our attributes (see the upper part
of Figure 3.15).

GetJavaProxyTypesMetadataOrDiagnostics method also carries out other
validations – e.g., it checks that the proxy types and methods are partial and
that proxy method signatures only contain supported types. If some of the re-
quirements are violated, a diagnostic is returned. If the error is severe enough,
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the given type or method is not propagated to the further pipeline stages (and,
therefore, is omitted from the source generation).

Figure 3.16: Generator static classes

As Section 3.4 described, we are distinguishing several kinds of type proxies
– static class proxies, instance class proxies and interface proxies6. Each
of these proxy kinds will require slightly different metadata to be generated. The
incremental source generator pipeline, however, requires us to collect metadata
of all proxy kinds by the same method. Therefore, this method must provide
some kind of polymorphism in its outputs. We solved this by implementing an
inheritance hierarchy between DTOs types representing metadata of individual
proxy types – as shown in Figure 3.16.

As Section 2.9.3 described, all DTOs are implemented to be comparable by
value and, therefore, compatible with incremental source generator caching mech-
anism.

Separating
Once metadata DTOs are returned by
GetJavaProxyTypesMetadataOrDiagnostics, they are separated by their types
(corresponding to proxy kinds) by the following stage of the pipeline (separate
step in Figure 3.15). Each proxy kind is, from that point on, processed separately.

Grouping
As proxy types are partial, the definition of a user-defined proxy skeleton can be
separated into multiple parts that will be processed by multiple invocations of
GetJavaProxyTypesMetadataOrDiagnostics method and will therefore produce
multiple metadata DTOs, each containing a part of the methods defined in the
proxy type. Before a source generation can proceed, it is necessary to “group”
proxy methods so that only one type DTO exists per proxy type and that it
contains metadata of all proxy members defined in that type. This is done by
group stage of the pipeline (see middle part of Figure 3.15). Grouping slightly
differs for individual proxy kinds and is therefore carried out after separate
phase.

6Future versions of the project can potentially add more kinds, e.g., enum proxies or inner
class proxies
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Interface implementations
As Section 3.4.3 showed, to generate an implementation of interface proxy, we
need to have a list of proxy classes in the given assembly that implements the
proxy interface. As the list is needed when an interface proxy is being generated,
it should be a part of JavaInterfaceDto metadata. It, however, cannot be
collected when GetJavaProxyTypesMetadataOrDiagnostics method processes
the interface proxy itself because that would require scanning the whole assembly
each time an interface is processed. Instead, when the instance proxy class is being
processed, information about the proxy interfaces that it implements is stored.
The later stage of the pipeline then retrieves this information from instance class
proxy DTOs and passes it to the stage that processes proxy DTOs (see the middle
part of Figure 3.15).

3.5.3 Generation phase
The generation phase receives proxy types metadata DTOs produced by the scan-
ning phase. It uses Roslyn API to build the syntax tree of the proxy types
implementations (implementations were demonstrated in Section 3.4). Then, it
uses Roslyn API to convert these syntax trees to string and to add them to a
compilation (see the right part of Figure 3.15).

Source code generation is mostly the process of building syntax trees based on
proxy types of metadata DTOs. This process is handled by a set of static classes,
each responsible for generating a particular part of the proxy implementation.
The overview of these static Generator classes is shown in Code Snippet 3.17.
Arrows in this Figure indicate that one class uses the other to obtain a part of
the generated AST.

Implementing the source generation via a set of static classes rather than by
instance methods of proxy metadata DTOs allows us to decouple data from logic
and to decouple the scanning and generation phases.

Figure 3.17: Static generator classes
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3.6 Unit tests
Unit tests of the solution are separated into two projects –
JavaInterop.UnitTests and JavaInterop.UnitTests.Panama. Our tool only
supports Project Panama on Java versions 20, 21, and 22. Separation into two
projects allows us to easily run general tests on all tested versions of Java and
Panama-based tests only on Java versions where we expect them to function.

GitHub actions were used [146] to test the solution on multiple Java versions,
Java distributions, and operating systems. Table 3.2 captures test results on all
tested combinations of Java version, distribution, and operating system. As the
table shows, the solution currently passes tests on the majority of tested environ-
ments. It only fails with older versions of OpenJDK on the CentOS operating
system, where the solution fails to locate Java sources to be interoperated with.
The solution, however, functions on the CentOS operating system with newer
Java versions and functions with older Java versions on other platforms. Prob-
lems encountered with this particular combination of the operating system and
Java version do not seem to be crucial and can be fixed during future improve-
ments.

Java version /
OS and distribution 8 11 17 20 21 22

Ubuntu
OpenJdk ✓ ✓ ✓ ✓ ✓ ✓

Ubuntu
Corretto – – – – ✓ –

Ubuntu
GrallVM – – – – ✓ –

Alpine
OpenJdk ✓ ✓ ✓ ✓ ✓ –

Alpine
Correto – – – – ✓ ✓

CentOS
OpenJdk ✗ ✗ ✗ ✓ ✓ ✓

CentOS
Corretto – – – – ✓ –

CentOS
GrallVM – – – – ✓ –

Windows 10 Pro
OpenJdk ✓ – – ✓ ✓ ✓

Table 3.2: Test result for various environments
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4. User documentation
This chapter describes the intended usage of the tool implemented in this thesis.
The tool enables interoperability between C# and Java code. Its intended user
is a developer developing a C# application that needs to interoperate with some
code base implemented in Java programming language.

This chapter is written in the form of tutorials. Each section introduces a
particular feature of the library and instructs a user on how to use that feature.
All the code presented in examples throughout this chapter can be found in the
thesis attachments in folder /src/LanatraDemo/ and can be run by running the
following command in that folder (tutorial number must be an integer from 1 to
8):

1 dotnet run --project LanatraDemo <tutorial-number>

4.1 Setup
The tool will be distributed in the form of NuGet package
Lanatra.JavaInterop.nupkg. For the purposes of submission in the thesis, the
NuGet package has not yet been published online, but it has been built, and it
is available locally as an attachment of the thesis (in folder
/src/LanatraDemo/artifacts/). To use the tool, one must add a package ref-
erence to Lanatra.JavaInterop.nupkg by adding the following to the .csproj
file:

1 <ItemGroup>
2 <PackageReference Include="Lanatra.JavaInterop"

Version="1.0.0" PrivateAssets="None" />
3 </ItemGroup>

To use a local NuGet package, one must configure the local package source
via nuget.config file [147]. An example of such a file can be found as a thesis
attachment in folder /src/LanatraDemo/.

4.1.1 Tutorial 0 – Create Java VM
Before a user can interoperate with a Java code from C#, they have to create a
JVM instance in the process of running a .NET application. That can be done
via calling JavaVM.Create method provided by our tool. In order for the method
to succeed, our tool needs to be able to locate the Java distribution to be used.
The way of setting the path to the Java distribution, however, differs between
Linux and Windows platforms.

Setting path to Java distribution – Linux
On Linux, it is necessary to set two environment variables before our tool can be
used. JAVA_HOME environment variable must be set to the root directory of the
Java distribution to be used. LD_LIBRARY_PATH environment variable must be set
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to the location of libjvm.so file, which is usually located in JAVA_HOME/lib/server
folder. The setup can, therefore look for example as follows:

1 export JAVA_HOME=/usr/lib/jvm/java-21-openjdk
2 export LD_LIBRARY_PATH=/usr/lib/jvm/java-21-openjdk/lib/server

After setting these environment variables JavaVM.Create call should succeed,
and it should produce an output as follows:

Code Snippet 4.1: C#: Create Java VM
1 JavaVM.Create();
2 // Class path: ...
3 // Using java version 21.0.3

Setting path to Java distribution – Windows
On Windows, it is only necessary to specify the path to JAVA_HOME. Users
can either set it via environment variable as on Linux, or they can specify it via a
parameter of JavaVM.Create method as it is demonstrated in Code Snippet 4.2.
The parameter of JavaVM.Create method is considered to have a higher priority
than setting JAVA_HOME environment variable. On Linux, this parameter
cannot be used.

Code Snippet 4.2: C#: Setting JAVA_HOME via JavaVM.Create parameter
1 JavaVM.Create(pathToJavaHome:

"C:\\Users\\Name\\.jdks\\openjdk-20.0.1_windows-x64\\jdk-20.0.1");
2 // Class path: ...
3 // Using java version 20.0.1

Apart from locating Java executable, our tool also needs to be able to locate
Java code with which a user wishes to interoperate. A user has to specify Java
Class Path via a parameter of JavaVM.Create method to contain a path to .jar
files or to directories containing .class files a user wishes to use from C#. Mul-
tiple paths can be specified, as it is demonstrated in Code Snippet 4.3. Apart
from user-specified paths, our tool automatically adds the content of AppContext
to the classpath.BaseDirectory property [148].

Code Snippet 4.3: C#: Setting Java class path
1 JavaVM.Create(javaClassPaths:

["path\\to\\jar-files\\my-javalib1.jar",
"path\\to\\jar-files\\my-javalib2.jar",
"path\\to\\folder\\with\\class-files\\"]);

2 // Class path: -Djava.class.path=-Djava.class.path=
3 // SolutionDir\project\bin\configuration\dotnet-version\
4 // :path\to\jar-files\my-javalib1.jar
5 // :path\to\jar-files\my-javalib2.jar:
6 // path\to\folder\with\class-files\
7 // Using java version ...
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Passing JVM options
JavaVM.Create method also enables specifying options for Java VM instance
being created. Users can specify the same set of options that can be applied to
java command when it is run in the command line. Code Snippet 4.4 shows the
example.

Code Snippet 4.4: C#: Setting JVM options
1 JavaVM.Create(jvmOptions: [
2 "-verbose:class", "-XX:+PrintCompilation"]);

4.2 Static proxy classes
Once a Java VM instance is created, we can call some Java methods. To be able
to invoke a Java method from C#, a user must first define C# partial proxy
class that will emulate the Java class containing the method to be invoked. Then,
they must define a partial proxy method that will emulate the method itself.
Both a class and a method must be annotated with specific attributes defined
in our library. The rest of this chapter will describe all the processes in much
more detail. Once a user assembly contains correctly annotated partial classes
and methods, the incremental source generator will be used to generate their
implementation, leveraging the interop invocation.

Java does not allow non-nested classes to be static. Our tool, however, allows
proxy classes to be static as long as they only access static members of the
corresponding Java classes. This use case is simpler than full-fledged working
with Java objects, and therefore, we will start tutorials by describing it.

4.2.1 Tutorial 1 – Invoke static Java method
Suppose that a user has Java class CoffeeMachine defining a few static Java
methods as shown in Code Snippet 4.5 and they want to invoke these methods
from a C# code.

Code Snippet 4.5: Java: Java class with static methods
1 package javalib;
2

3 public class CoffeeMachine {
4 public static void turnOn() { ... }
5 public static void refill(
6 byte gramsOfCoffee, int millilitersOfWater) { ... }
7 public static byte getGramsOfCoffee() { ... }
8

9 // other methods and fields are omitted
10 ...
11 }

To use this Java class from C#, a user has to define a partial proxy class as
shown in Code Snippet 4.6. Notice that:
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• C# namespace name matches Java package name (apart from the casing,
which follows conventions of respective languages),

• C# proxy class name matches Java class name apart from the fact that
it contains an additional (and optional) Proxy suffix,

• C# proxy class is annotated by JavaClassProxy attribute,

• proxy class contains proxy methods that:

– are partial
– are annotated by JavaImport attribute
– have names and signatures that match respective Java methods –

Java primitive types are represented by corresponding C# primitive
types (e.g C# int by Java int). The only exception among primitive
types is Java byte type that is signed and is therefore represented by
C# sbyte type (see methods Refill and GetGramsOfCoffee).

Our tool will resolve the full name of Java class corresponding to the
declared proxy class from the full name of the proxy class. C# namespace name
determines Java package; casing in the namespace name does not play a role
because, by convention, Java package names are lowercase. If a proxy class
name contains suffix Proxy, this suffix won’t be considered when looking up
the corresponding Java class. Java methods are located by their names and
signatures. Naming conventions for methods differ between Java and C# in the
casing of the first letter. Upper-case first letter of C# method names will be
considered lower-case when looking up Java method.

Code Snippet 4.6: C#: Basic proxy class containig static proxy methods
1 using JavaInterop.Common.Attributes;
2 namespace Javalib;
3

4 [JavaClassProxy]
5 public static partial class CoffeeMachineProxy {
6 [JavaImport]
7 public static partial void TurnOn();
8 [JavaImport]
9 public static partial void Refill(

10 sbyte gramsOfCoffee, int millilitersOfWater);
11 [JavaImport]
12 public static partial sbyte GetGramsOfCoffee();
13 }

Once a user has implemented this proxy, they can invoke proxy methods as
shown as shown in Code Snippet 4.7 effectively calling Java methods from C#.
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Code Snippet 4.7: C#: Using static proxy class
1 CoffeeMachineProxy.TurnOn();
2 sbyte gramsOfCoffee = CoffeeMachineProxy.GetGramsOfCoffee(); \\ 0
3 CoffeeMachineProxy.Refill(gramsCoffee: 42, millilitersWater: 500);
4 gramsOfCoffee = CoffeeMachineProxy.GetGramsOfCoffee(); \\ 42

Method generation mode
In the example in Code Snippet 4.6 all proxy methods were explicitly annotated
by JavaImport attribute. That gives a user more flexibility: the proxy class could
potentially contain non-proxy methods implemented in C#.

However, a user may often want to implement a proxy class that directly rep-
resents the corresponding Java class. Then, all methods declared in the proxy
class will be proxy methods of some Java methods, and it would be unneces-
sarily verbose to annotate each of them separately. In that case, a user can set
javaImportMode parameter of JavaClassProxy attribute to Declared, and all
the methods declared in the proxy class will be automatically considered proxy
methods without having to be annotated with JavaImport attribute. Code Snip-
pet 4.8 demonstrates that. The proxy class declared in Code Snippet 4.8 is
semantically equivalent to the one from Code Snippet 4.6.

Notice also that CoffeeMachine proxy class in Code Snippet 4.8 does not
contain optional Proxy suffix in its name, and yet it will be resolved to the same
Java class as CoffeeMachineProxy class shown in Code Snippet 4.6.

Code Snippet 4.8: C#: Setting MethodGenerationMode
1 using JavaInterop.Common.Attributes;
2 namespace Javalib;
3

4 [JavaClassProxy(javaImportMode: JavaImportMode.Declared)]
5 public static partial class CoffeeMachine {
6 public static partial void TurnOn();
7 public static partial void Refill(sbyte gramsOfCoffee, int

millilitersOfWater);
8 public static partial sbyte GetGramsOfCoffee();
9 }

Specifying classes and methods names
So far, the names of Java methods and classes corresponding to C# proxies
were resolved automatically based on the names of proxies. The described name
resolution mechanism requires a user to declare their namespace hierarchy so
that it mirrors the Java package structure and names their classes and methods
so that the names match Java names. Though that may make the code using
proxy classes easier to read in some cases, sometimes a user may wish not to
respect a structure and naming imposed by Java.

In that case, a user is given the option to specify the full name of the corre-
sponding Java class explicitly via parameters of JavaClassProxy attribute and
to specify the name of the corresponding Java method via the parameter of
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JavaImport attribute. Then, they are free to name their C# classes and methods
as they please. Code Snippet 4.9 demonstrates that. Notice that names specified
as attribute parameters directly correspond to Java methods and class names
from Code Snippet 4.5. CoffeeMachineWithChangedNames proxy class is equiva-
lent to both CoffeeMachine and CoffeeMachineProxy classes shown previously
in this section.

Code Snippet 4.9: C#: Specifying Java class and method names explicitly
1 using JavaInterop.Common.Attributes;
2 namespace LanatraDemo.Tutorials.T1.Static.Proxies;
3

4 [JavaClassProxy(javaTypeFullName:"javalib.CoffeeMachine")]
5 public static partial class CoffeeMachineWithChangedNames {
6 [JavaImport(javaMethodName: "turnOn")]
7 public static partial void Start();
8 [JavaImport(javaMethodName: "refill")]
9 public static partial void AddCofeeAndWater(sbyte gramsCoffee,

int millilitersWater);
10 [JavaImport(javaMethodName: "getGramsOfCoffee")]
11 public static partial sbyte GetRemainingCoffee();
12 }

Remember that in order for Java (and therefore for our tool) to be able to
locate a given Java class, Java Class Path combined with the package name
must form the whole path to the folder where .class file implementing the class is
located. Otherwise, an exception will be thrown the first time the corresponding
C# proxy class is used.

4.2.2 Tutorial 2 – Enable Panama
If a user uses our tool with Java version 20, 21, or 22, an opt-in optimiza-
tion based on Project Panama is available for certain kinds of invocations. To
enable the optimization, a user has to opt-in twice – once by a parameter of
JavaVM.Create method and the second time on the assembly level via a param-
eter of JavaImportAssembly attribute. Code Snippet 4.10 demonstrates that. If
the optimization is opted-in but a sufficient Java version is unavailable at runtime,
an exception will be thrown.

Code Snippet 4.10: C#: Opt-in usage of Project Panama
1 [assembly: JavaImportAssembly(
2 jniPanamaUsage: JniPanamaUsageOption.Panama)]
3 ...
4 JavaVM.Create(enablePanama: true);

Once Panama optimization is enabled, an invocation of each method that
meets the following criteria will be optimized using Project Panama:

• method is declared in an assembly annotated as shown in Code Snippet
4.10
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• method is static,

• it only accepts primitive type parameters,

• it has a primitive return type,

• it is declared in the static proxy class.

Methods that do not fulfill these criteria won’t be optimized (their invocation
will be leveraged via JNI as usual). The optimization can also be opted-out for
individual methods via optOutPanama parameter of JavaImport attribute. Code
Snippet 4.11 provides an overview of these situations. If Panama optimization
is enabled for an assembly containing PanamaCoffeeMachine proxy class, meth-
ods TurnOn and Refill will be optimized because their signatures allow for it.
GetGramsOfCoffee method won’t be optimized because optimization is opted-
out for it, and GetStatus method won’t be optimized because the string return
type is not supported by Panama optimization.

Code Snippet 4.11: C#: Proxy class using Project Panama
1 [JavaClassProxy(javaTypeFullName: "javalib.CoffeeMachine")]
2 public static partial class PanamaCoffeeMachine {
3 // uses Panama
4 [JavaImport]
5 public static partial void TurnOn();
6 // uses Panama
7 [JavaImport]
8 public static partial void Refill(sbyte gramsOfCoffee, int

millilitersOfWater);
9 // uses JNI, because Panama is opted-out

10 [JavaImport(optOutPanama: true)]
11 public static partial sbyte GetGramsOfCoffee();
12 // uses JNI, because Panama does not support method signature
13 [JavaImport]
14 public static partial string? GetStatus();
15 }

4.3 Objects
Java is an object oriented language, therefore when interoperating with Java code
it will often be necessary to manipulate with Java object instances. This section
will described how it can be done using our tool.

4.3.1 Tutorial 3 – Working with Java object instances
Suppose that Java CoffeeMachine class shown in Code Snippet 4.5 defines static
MakeCoffee method that returns an instance of Coffee Java class shown in Code
Snippet 4.12.
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Code Snippet 4.12: Java: Example of Java class
1 public class Coffee {
2 public Coffee addSugar() { ... }
3 public Coffee addMilk(){ ... }
4 public void printStatus() { ... }
5 ...
6 }

To invoke a Java method that returns (or takes) an instance of a Java class, a
user has to define a non-static C# proxy class for the given Java class. Non-static
proxy class for Coffee Java class class shown in Code Snippet 4.12 can look as
demonstrated in Code Snippet 4.13. Notice that apart from not being static, the
proxy class does not differ in any way from the static proxies introduced in the
previous section.

Code Snippet 4.13: C#: Non-static proxy class
1 namespace Javalib;
2

3 [JavaClassProxy(javaImportMode: JavaImportMode.Declared)]
4 public partial class CoffeeProxy {
5 public partial CoffeeProxy AddSugar();
6 public partial CoffeeProxy AddMilk();
7 public partial void PrintStatus();
8 }

Then the proxy method of Java MakeCoffee method returning a Coffee in-
stance can be defined as shown in Code Snippet 4.14.

Code Snippet 4.14: C#: Proxy method returning object instance
1 [JavaClassProxy]
2 public static partial class CoffeeMachine {
3 [JavaImport]
4 public static partial CoffeeProxy MakeCoffee(sbyte

useGramsOfCoffee);
5 }

Code Snippet 4.15 demonstrates the usage. Call to MakeCoffee proxy method
returns a reference to an instance of Java Coffee class represented by C#
CoffeeProxy proxy class. Instance methods can then be invoked on this proxy
instance, effectively invoking methods on the corresponding instance of Java class,
which is demonstrated in Code Snippet 4.15. AddSugar and AddMilk methods
modify Java Coffee instance and PrintStatus method displays these changes.

Code Snippet 4.15: C#: Working with Java object instance
1 CoffeeProxy coffee = CoffeeMachineProxy.MakeCoffee(27);
2 coffee.PrintStatus();
3 // [Java] Amount of coffee: 27 grams
4 // [Java] Contains sugar: No
5 // [Java] Contains milk: No

106



6

7 coffee.AddSugar()
8 .AddMilk();
9 .PrintStatus();

10 // [Java] Amount of coffee: 27 grams
11 // [Java] Contains sugar: Yes
12 // [Java] Contains milk: Yes

Invoking Java constructors
In the previous example, a C# code obtained an instance of Java Coffee class
as a return value of static MakeCoffee method. Such a factory method, however,
often won’t be available in Java API, and then a user may need to create a Java
object instance by invoking a constructor.

Suppose that Java Coffee class defines constructors as shown in Code Snippet
4.16 – the parameter-less constructor and the constructor taking one int param-
eter.

Code Snippet 4.16: Java: Example of Java class with constructors
1 public class Coffee {
2 // methods shown previously omitted
3 ...
4 public Coffee() { ... }
5 public Coffee(int gramsOfCoffee) { ... }
6 }

To be able to invoke these constructors, a user must add static factory methods
to CoffeeProxy class definition as shown in Code Snippet 4.17. These factory
methods must:

• be static,

• be annotated by JavaImportCtor attribute,

• accept the same parameter types as the desired constructor,

• return defining type (CoffeeProxy type in our example).

A user can choose a name of the factory arbitrarily (the example in Code
Snippet 4.17 uses the name Brew).

Code Snippet 4.17: Java: Example of Java class with constructors
1 namespace Javalib;
2

3 [JavaClassProxy(javaImportMode: JavaImportMode.Declared)]
4 public partial class CoffeeProxy {
5 // methods shown previously omitted
6 ...
7 [JavaImportCtor]
8 public static partial CoffeeProxy Brew();
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9 [JavaImportCtor]
10 public static partial CoffeeProxy Brew(int gramsOfCoffee);
11 }

Based on factory methods annotated with JavaImportCtor, the incremen-
tal source will generate a C# constructors accepting the same parameter types
as factory methods accept. Invoking these constructors effectively invokes Java
constructors with the corresponding signature. Users can, therefore, create Java
object instances from C# by invoking C# proxy constructors, as shown in Code
Snippet 4.18.

Code Snippet 4.18: C#: Invoke Java constructors
1 CoffeeProxy coffee1 = new CoffeeProxy();
2 CoffeeProxy coffee2 = new CoffeeProxy(gramsOfCoffee: 35);

Though using generated constructors to create proxy instances is preferable, a
user can also create proxy instances using the static factory method (Brew method
in our example).

4.3.2 Tutorial 4 – Proxies with inheritance
A commonly used concept in object-oriented languages is inheritance. Our tool
is able to emulate inheritance between Java classes by inheritance between C#
proxy classes.

Suppose that a user needs to work with Java classes Animal, Cat, and Fish
that inherit one another (shown in Code Snippet 4.19). Notice that Animal base
class defines abstract method makeSound, which inherited classes implement.

Code Snippet 4.19: Java: Classes with inheritance
1 package javalib;
2

3 public abstract class Animal {
4 public abstract void makeSound();
5 }
6

7 public class Cat extends Animal {
8 @Override
9 public void makeSound() {

10 System.out.println("Meow");
11 }
12 }
13

14 public class Fish extends Animal {
15 @Override
16 public void makeSound() {
17 System.out.println("<quiet>");
18 }
19 }
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A user can represent these Java classes by C# proxy classes as shown in
Code Snippet 4.20. Proxy classes mirror the Java inheritance hierarchy. Notice,
however, that the base proxy class AnimalProxy is not abstract (unlike Java
Animal class) and that it defines the non-abstract proxy method MakeSound.
Also, notice that inherited proxy classes CatProxy and FishProxy do not provide
any override of MakeSound method.

For the purposes of our example, CatProxy and FishProxy classes define
static factory method CreateMe, based on which parameterless constructors of
these classes get generated (as was explained in Section 4.3.1). These constructors
will emulate default parameterless constructors of Java Cat and Fish classes and
allow us to create instances of these classes from C#.

Code Snippet 4.20: C#: Proxies with inheritance
1 namespace Javalib;
2

3 [JavaClassProxy(javaImportMode:JavaImportMode.Declared)]
4 public partial class AnimalProxy {
5 public partial void MakeSound();
6 }
7

8 [JavaClassProxy]
9 public partial class CatProxy : AnimalProxy {

10 [JavaImportCtor]
11 public static partial CatProxy CreateMe();
12 }
13

14 [JavaClassProxy]
15 public partial class FishProxy : AnimalProxy {
16 [JavaImportCtor]
17 public static partial FishProxy CreateMe();
18 }

Code Snippet 4.21 shows the usage of proxy classes from Code Snippet 4.20.
Line 2 calls MakeSound proxy method, which invokes the correct Java implemen-
tation of the method based on the proxy runtime type.

Code Snippet 4.21: C#: Using proxy classes with inheritance
1 List<AnimalProxy> animals = [new CatProxy(), new FishProxy(), new

CatProxy()];
2 animals.ForEach(animal => animal.MakeSound());
3 // Meow
4 // <quiet>
5 // Meow

4.3.3 Tutorial 5 – Working with interfaces
Suppose a user needs to invoke a Java method with Java interface as its return
or parameter type. For that, it is necessary to be able to represent the concept
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of Java interfaces in C# code.
Code Snippet 4.22 shows Java class UIManager that defines two methods:

addElement method that accepts a parameter of UIElement type and
getElementById that returns UIElement type. Supposes that UIElement type is
Java interface defined as shown in Code Snippet 4.23.

Code Snippet 4.22: Java: Class working with Java interface
1 package javalib;
2

3 public class UIManager {
4 public static void addElement(UIElement element) {
5 System.out.println("Adding element");
6 element.draw();
7 ...
8 }
9 public static UIElement getElementById(int id) { ... }

10 }

Code Snippet 4.23: Java: Example of Java interface
1 package javalib;
2

3 public interface UIElement {
4 void draw();
5 int getId();
6 }

To be able to call Java addElement and getElementById methods from C#,
a user must first define a C# proxy of Java interface UIElement. That can
be done as shown in Code Snippet 4.24. Java interface is represented by C#
interface that is annotated by JavaInterfaceProxy attribute. The Proxy inter-
face declares methods that correspond to methods declared by the Java interface.
Methods are not marked as partial but are annotated by JavaImport attribute.

Code Snippet 4.24: C#: Proxy of Java interface
1 namespace Javalib;
2

3 [JavaInterfaceProxy]
4 public partial interface IUIElementProxy {
5 [JavaImport]
6 void Draw();
7 [JavaImport]
8 int GetId();
9 }

Suppose that Java provides 2 classes that implement UIElement interface:
Button, Label. User can represent these classes as C# proxy classes that imple-
ment C# proxy interface IUIElementProxy. Example is shown in Code Snippet
4.25.
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Code Snippet 4.25: C#: Proxy class implementing an interface
1 namespace Javalib;
2

3 [JavaClassProxy(javaImportMode: JavaImportMode.Declared)]
4 public partial class ButtonProxy : IUIElementProxy {
5 [JavaImportCtor]
6 public static partial ButtonProxy Create(int id);
7 public partial void Draw();
8 public partial int GetId();
9 }

Suppose that a user has also defined a proxy class for Java UIManager class
itself, using IUIElementProxy interface for the parameter type of AddElement
method and the return type of GetElementById method. Then, they can work
with Java UIManager class from C# code as shown in Code Snippet 4.26.

Code Snippet 4.26: C#: Usage of proxy interface
1 UIManagerProxy.AddElement(new ButtonProxy(_button1Id));
2 UIManagerProxy.AddElement(new LabelProxy(_labelId)));
3

4 IUIElementProxy element1 =
UIManagerProxy.GetElementById(_button1Id);

5 element1.Draw(); // drawing Button
6 Debug.Assert(element1 is ButtonProxy);
7

8 IUIElementProxy element2 = UIManagerProxy.GetElementById(_labelId);
9 element2.Draw(); // drawing Label

10 Debug.Assert(element2 is LabelProxy);

A user does not have to implement proxy classes for all Java classes that
implement an interface. If the Java method returning interface type at runtime
returns an instance of Java class for which C# assembly does not define a ded-
icated proxy class, default interface implementation proxy will be used to
represent this instance on the C# side. Code Snippet 4.27 demonstrates this,
supposing that GetElementById call on line 1 returns an instance of Image Java
class that implements UIElement interface but no ImageProxy class is imple-
mented in the current C# assembly. Invocation of Draw method on line 2 will
invoke correct Java implementation of the method provided by Image Java class,
even though the C# side code has no knowledge about the existence of this class.

Code Snippet 4.27: C#: Default interface implementation
1 IUIElementProxy element3 = UIManagerProxy.GetElementById(_imageId);
2 element3.Draw(); // drawing Image
3 Debug.Assert(element3 is UIElementDefaultProxy);
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4.3.4 Tutorial 6 – Working with strings
Suppose a user wants to invoke Java method concat shown in Code Snippet 4.28,
that accepts string parameters and returns a string return value.

Code Snippet 4.28: Java: Method working with strings
1 public static String concat(String s1, String s2){
2 return s1 + s2;
3 }

When defining a proxy method for Java concat method, a user can choose
if they are going to represent Java strings (java.lang.String) by C# string
(System.String) or by the dedicated proxy type – JavaLangStringProxy. This
decision can be made for each occurrence of the string type in the method signa-
ture separately. Potential definitions of the proxy method invoking Java concat
method can, therefore, look as shown in Code Snippet 4.29. The first proxy
method variant uses C# string to represent all occurrences of a string in the Java
method signature; the second one uses JavaLangStringProxy, and the third uses
their combination.

On line 2, notice that when the C# string is used to represent the Java string
return type, the C# string must be nullable. This is because Java has no concept
of nullable annotations, and any string returned from Java can potentially be
null.

Code Snippet 4.29: C#: Variants of proxy method of Java method working with
strings

1 [JavaImport]
2 public static partial string? Concat(string s1, string s2);
3

4 [JavaImport(javaMethodName:"concat")]
5 public static partial JavaLangStringProxy ConcatProxy(
6 JavaLangStringProxy s1, JavaLangStringProxy s2);
7

8 [JavaImport(javaMethodName: "concat")]
9 public static partial JavaLangStringProxy ConcatCombined(

10 string s1, JavaLangStringProxy s2);

The advantage of using C# string is the user convenience and the more intu-
itive signature of a proxy method. It is, however, less effective alternative as each
time a string is passed from C# to Java a new string instance must be allocated
on the Java heap. JavaLangStringProxy represents a reference to an existing
Java string instance and can be therefore passed to proxy methods repeatedly
without the necessity of further allocations. That makes JavaLangStringProxy
a preferable option for representing strings in situations when the same string
instances are passed between languages repeatedly. Otherwise more intuitive
approach using C# string can be used.
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4.3.5 Tutorial 7 – Working with arrays
Suppose that a user wants to obtain a reference to a Java primitive type array
and modify the array from C#. We will describe this situation in the example of
int array. Arrays of other Java primitive types would be handled similarly.

Given Java methods returning and taking int array shown in Code Snippet
4.30, the user can define corresponding C# proxy methods as shown in Code
Snippet 4.31. Notice that the Java int array gets represented by the generic
JavaPrimitiveArrayProxy type in proxy method signatures. The generic type
parameter specifies an array element type – int in our example.

Code Snippet 4.30: Java: example of methods working with primirtive type array
1 public class ArrayUtils{
2 public static int[] returnJavaArray() {
3 return new int[]{1, 2, 3, 4, 5};
4 }
5 public static void printArray(int[] array) { ... }
6 }

Code Snippet 4.31: C#: Proxy methods working with Java int array
1 [JavaClassProxy(javaImportMode:JavaImportMode.Declared)]
2 public static partial class ArrayUtils {
3 public static partial JavaPrimitiveArrayProxy<int>

ReturnJavaArray();
4 public static partial void PrintArray(
5 JavaPrimitiveArrayProxy<int> array);
6 }

JavaPrimitiveArrayProxy type represents a reference to a Java array. It does
not, however, hold the array elements, so it does not implement an indexer. To ac-
cess array elements, a user must first load them by calling LoadJavaArrrayElements
method as shown on line 2 in Code Snippet 4.32. Once a user holds array ele-
ments, they access them via an indexer, reading and modifying them. Once the
dispose method is called on an object representing array elements, changes made
to the array are propagated to Java.

Code Snippet 4.32: C#: Accessing elements of Java primitive type array
1 using JavaPrimitiveArrayProxy<int> array =

ArrayUtils.ReturnJavaArray();
2 using(var arrayElements = array.LoadJavaArrayElements()) {
3 // do some computation with array elements
4 for (int i = 0; i < arrayElements.Length; i++) {
5 if (arrayElements[i] % 2 == 0)
6 arrayElements[i] += 42;
7 }
8 } // here array changes get propagated to Java
9

10 ArrayUtils.PrintArray(array); // [JAVA] 1 44 3 46 5
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JavaPrimitiveArrayProxy also allows to access Java array elements by ob-
taining their copy stored in C# array via GetCopyOfArray method. That is
demonstrated in Code Snippet 4.33. On line 2, a new Java array is allocated on
the Java heap from C# code. The Java modifyArray method can then modify
this array. Afterwards, C# can observe the changes by obtaining a copy of Java
array elements (line 4).

Code Snippet 4.33: C#: Getting copy elements of Java primitive type array
1 // allocate new array on Java heap
2 using JavaPrimitiveArrayProxy<int> array = new([1, 2, 3, 4, 5]);
3 ArrayUtils.ModifyArray(array);
4 int[] copy = array.GetCopyOfArray(); // [C#] 1 44 3 46 5

Object Arrays
Conciser Java method petAnimals (shown in Code Snippet 4.34) that accepts an
array of instances of Animal class (defined in Code Snippet 4.19). Suppose that
a user wants to invoke this Java method from C#.

Code Snippet 4.34: Java: Example of Java method accepting objetc array para-
mater

1 public static void petAnimals(Animal[] animals){
2 for (int i = 0; i < animals.length; i++ ){
3 animals[i].makeSound();
4 }
5 }

Java object array (such as Animal[]) can be represented by generic
JavaObjectArrayProxy type in C#. The generic type parameter specifies the
proxy type that represents Java object array element type (AnimalProxy from
Code Snippet 4.20 in our example). Therefore, the C# proxy method of Java
petAnimals method may look as shown in Code Snippet the method from the
Code Snippet 4.34 may look as shown in Code Snippet 4.35.

Code Snippet 4.35: C#: Proxy method accepting object array paramater
1 [JavaImport]
2 public static partial void

PetAnimals(JavaObjectArrayProxy<AnimalProxy> animals);

Code Snippet 4.36 shows an example of invoking PetAnimals proxy method.
First, JavaObjectArrayProxy is created from the C# array of proxy classes,
effectively allocating a new object array on the Java heap. Then, this array
proxy can be passed to the PetAnimals method.

As lines 5 to 7 of Code Snippet 4.36 demonstrate, JavaObjectArrayProxy
defines an indexer that can be used to access individual elements of the Java
object array.
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Code Snippet 4.36: C#: Using object array proxy
1 using JavaObjectArrayProxy<AnimalProxy> animals = new(
2 [new CatProxy(), new FishProxy(), new CatProxy()]);
3 ArrayUtils.PetAnimals(animals); // Meow <quiet> Meow
4

5 animals[0].MakeSound(); // Meow
6 animals[1].MakeSound(); // <quiet>
7 animals[2].MakeSound(); // Meow

Multidimensional Arrays
Our library also allows a user to work with multidimensional Java arrays. Suppose
that a user wants to invoke following Java method flatten2DArray accepting
two-dimensional array of int and returning its flatten (one-dimensional) variant
(Code Snippet 4.37).

Code Snippet 4.37: Java: Example of Java method accepting 2D int array
1 public static int[] flatten2DArray(int[][] array2D){ ... }

Our library also allows a user to work with multidimensional Java arrays. Sup-
pose that a user wants to invoke the following Java method flatten2DArray ac-
cepting a two-dimensional array of int and returning its flatten (one-dimensional)
variant (Code Snippet 4.37).

Code Snippet 4.38: C#: Proxy method accepting 2D int array parameter
1 [JavaImport]
2 public static partial JavaPrimitiveArrayProxy<int> Flatten2DArray(
3 JavaObjectArrayProxy<JavaPrimitiveArrayProxy<int>> array2D);

Flatten method proxy can be used as shown in Code Snippet 4.39. Line 4
creates a 2D array proxy from 3 int array proxies created previously. Line 6
passes this 2D array to the Java flatten method that returns it flatten as 1D
int array.

Code Snippet 4.39: C#: Using 2D array proxy
1 using JavaPrimitiveArrayProxy<int> arr1 = new

JavaPrimitiveArrayProxy<int>([1, 2, 3]);
2 using JavaPrimitiveArrayProxy<int> arr2 = new

JavaPrimitiveArrayProxy<int>([4, 5]);
3 using JavaPrimitiveArrayProxy<int> arr3 = new

JavaPrimitiveArrayProxy<int>([6, 7, 8, 9]);
4 using JavaObjectArrayProxy<JavaPrimitiveArrayProxy<int>> array2D =

new([arr1, arr2, arr3]);
5

6 JavaPrimitiveArrayProxy<int> flatten =
ArrayUtils.Flatten2DArray(array2D); // 1 2 3 4 5 6 7 8 9

Arrays with more dimensions and multidimensional arrays of objects can be
used similarly.
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4.4 Tutorial 8 – Using existing library
Section 1.1.2 introduced the Apache PDFBox library as an example of an existing
Java library that could be used via our tool from a C# code. Code Snippet 1.1
demonstrated the usage of the library on the example of reading text from .pdf
file as a string. Code Snippet 4.40 contains a copy of this example for a reader’s
convenience.

Using our tool we can now implement the same functionality of reading text
from .pdf file via Apache PDFBox library from C# code. Code Snippet 4.41
demonstrates that. Notice That once proxy classes are defined, Java library can
be used from C# code in the same manner as it is used from Java code (compare
Code Snippets 4.40 and 4.41). Code Snippet only captures usage of proxy classes,
their definitions are omitted for brevity. The example from Code Snippet 4.41 and
definitions of all proxy classes that appear in it can be found in thesis attachments
(in folder /src/LanatraDemo/LanatraDemo/).

Code Snippet 4.40: Java: Example of Apache PDFBox library usage
1 import org.apache.pdfbox.Loader;
2 import org.apache.pdfbox.pdmodel.PDDocument;
3 import org.apache.pdfbox.text.PDFTextStripper;
4

5 static String ReadPdfAsText(String path) throws IOException {
6 File pdfFile = new File(path);
7 PDDocument pdf = Loader.loadPDF(pdfFile);
8 PDFTextStripper stripper = new PDFTextStripper();
9 String pdfContent = stripper.getText(pdf);

10 pdf.close();
11 return pdfContent;
12 }

Code Snippet 4.41: C#: Using Apacha PDFBox library from C#
1 using Org.Apache.Pdfbox.Loader;
2 using Org.Apache.Pdfbox.Pdmodel.PDDocument;
3 using Org.Apache.Pdfbox.Text.PDFTextStripper;
4

5 public static string? ReadPdfAsText(string filePath) {
6 FileProxy file = new FileProxy(filePath);
7 PDDocumentProxy pdf = LoaderProxy.LoadPDF(file);
8 PDFTextStripperProxy stripper = new PDFTextStripperProxy();
9 string? pdfContent = stripper.GetText(pdf);

10 pdf.Close();
11 return pdfContent;
12 }
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5. Conclusion
The conclusion of this thesis first evaluates whether the thesis managed to meet
its goals. Then, it suggests several possible extensions that could be implemented
to improve the developed software in the future.

5.1 Evaluation of thesis goals
The objective of the thesis was to design and implement a .NET library for
interoperability with Java that should enable users to use APIs implemented in
Java from C# code bases. This library should:

• fulfill requirements R1 – R11 defined in the thesis introduction,

• be tested on the set of supported platforms selected in Section 2.2,

• and be tested using selected existing Java library Apache PDFBox [5].

Let’s first go through requirements R1 – R11 and evaluate whether they have
been met.

R1 Solution should support invocation direction from C# to Java.
Opposite invocation direction (from Java to C#) won’t be sup-
ported.
As multiple sections of this thesis have shown, the implemented solution
allows a user to invoke static and instance Java methods from C#. It also
allows invoking Java constructors and manipulating Java objects from C#.
Invocation of C# methods from Java is not supported, even though Section
1.3.1 hinted at how this invocation direction could possibly be implemented.

R2 As both Java and C# are object-oriented languages and object
instances are a crucial part of the majority of API implemented
in these languages, the solution should allow users to manipulate
Java instances and invoke Java instance methods from C#.
As was demonstrated in Section 4.3.1, our solution allows users to manipu-
late Java object instances from a C# code – to create them, to pass them
to methods or return them from methods, and to invoke instance meth-
ods on them. As Section 4.3.2 mentioned, the solution also allows the user
to emulate Java inheritance hierarchy by inheritance between C# proxy
classes.

R3 Solution should not require a user to modify a code of a Java
library in order to make it usable from C#.
The solution does not impose any particular requirements on Java methods
and classes it accesses (in the manner in which JNI restricts signatures of
native methods it is able to invoke from Java – Section 1.2.1). However, as
some features of Java programming language are not yet supported, we are
not able to access all arbitrary Java constructs. For instance, our solution
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does support Java enums; it is therefore not capable of invoking methods
that accept enum parameters. Users may want to circumvent this limitation
by implementing a Java adapter layer wrapping unsupported features into
methods with supported signatures. To sum it up, our solution conceptually
meets requirement R3, but as its current version lacks support for certain
Java features, a user can be motivated to implement an adapter layer on
the Java side to make a particular Java code usable from C#.

R4 Solution should avoid runtime code generation.
No part of the solution depends on a runtime code generation. Incremental
source generator (Section 3.5) is used to generate code at compile time.

R5 Configuration of generated proxies should be user-friendly and
in-code.
A user configures generated proxy classes by implementing their partial
skeletons and annotating them by marker attributes. No external configu-
ration is required. Section 2.7 was devoted to designing certain aspects of
generated proxies in a user-friendly manner.

R6 Solution should function on modern multiplatform .NET and on
common Java distributions and versions.
Section 2.2 analyzed a set of Java versions, Java distributions, and operating
systems on which the solution should function. As section 3.6 described,
GitHub Actions were used to test the solution on these platforms. The
solution passes tests on the majority of tested platforms.

R7 Interop will work on API level: allowing invocation of Java meth-
ods and usage of Java objects from C#. It will not be IL-level
interop.
The solution does not attempt to interpret Java bytecode on CLR. Rather,
it uses JNI or Foreign Function API from Project Panama to invoke Java
methods and manipulate Java objects.

R8 Solution should provide C# proxies for Java classes with static
type safety. Dynamic objects should not be used for the proxies.
The solution does not use dynamic objects. It represents Java classes by
compile time generated C# proxy classes, providing static type safety.

R9 Solution should generate .NET proxies for custom Java classes
without requiring to use external tool explicitly.
User is not required to use any external tool to generate proxy classes. Proxy
classes are generated by incremental source generator during the build of
the project that uses our library.

R10 To ensure static type safety, the solution should provide separate
C# proxies for separate Java types. It should not be possible to
represent instances of a Java type by instances of a proxy that
does not correspond to that particular Java type.
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Each generated C# proxy class corresponds to a particular Java class. In-
stances of the proxy class can only represent instances of that given Java
class (or Java classes inherited from that class). The user is strongly discour-
aged from creating proxy instances representing instances of mismatched
Java types. Section 2.8 focused on designing this aspect of the solution.

R11 Solution should generate proxies .NET that emulate Java classes,
so that user experience is seamless, working with Java classes as
if they were implemented in C#.
Chapter 4 demonstrated the usage of our solution. Solution emulates Java
classes by C# proxy classes, Java methods by C# proxy methods, and Java
constructors by C# constructors. As Section 4.4 shows, C# code that uses
Java library via our tool reasonably resembles equivalent Java code that
uses the library directly from Java.

Given the above evaluation, we consider requirements R1 – R11 to be
reasonably fulfilled, and therefore, we consider the first goal of the thesis to be
met.

The next goal was to test the solution on the set of selected supported
platforms. As Section 3.6 described a reasonable amount of unit tests was
implemented and these tests were run on the selected set of platforms using
GitHub actions. We therefore consider this goal to be met.

Lastly, the solution should be tested using existing Java library Apache
PDFBox [5]. Code Snippet 4.41 in Section 4.4 demonstrated that the imple-
mented solution enables a user to use this Java library from C# code for a simple
use case of reading .pdf file text as a string.

Writing any text to .pdf file using Apache PDFBox library, however, requires
specifying text font via calling setFont method on PDPageContentStream in-
stance as shown in Code Snippet 5.1 [149]. This method takes a parameter of
PDFont type, which is the abstract type, and usually, an instance of inherited
PDType1Font is provided [149] as shown in Code Snippet 5.1. Constructor of
PDType1Font, however, accepts parameter of Standard14Fonts.FontName type
(line 2 in Code Snippet 5.1), which is a nested Java enum. Here, our ability to
emulate Java features fails us because the current version of the library does not
support either enums or nested Java types.

Code Snippet 5.1: Java: Using Apacha PDFBox to write text to .pdf file
1 PDPageContentStream contentStream = new PDPageContentStream(pdf,

firstPage);
2 PDType1Font font = new

PDType1Font(Standard14Fonts.FontName.COURIER);
3 contentStream.setFont(font, 14);
4 contentStream.beginText();
5 contentStream.newLineAtOffset(50, 700);
6 contentStream.showText("abraka dabra");

Our solution, therefore, is usable with a real Java library, however, only to a
limited extent. To enable users to use arbitrary Java API from C#, we would
have to provide support for a broader range of Java features. Enums, nested
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types and field accesses are missing features with the highest priority to be sup-
ported. However, we managed to create functional and carefully tested
prototype that can be easily extended into a full-fledged solution.

5.2 Possible future improvements
This section analyzes potential extensions that could be implemented to improve
the software developed in this thesis in the future.

5.2.1 .class file parser
Using a current version of the solution, a user must define a partial skeleton of
C# proxy for every Java class and method they want to work with from C#.
That can be cumbersome. Incremental source generator could be extended to
read Java .class files and generated C# proxy classes based directly on existing
Java classes.

Apart from analyzing user-written assembly, an incremental source generator
can also read so-called additional files – non C# external files whose content
can be used during source generation. Our JavaInteropSourceGenerator in-
cremental source generator could, therefore, read Java .class or .jar files as
additional files. Then a C# parser of .class file format would be required to
parse provided .class files1 and to build DTOs that are expected as an input of
the generating phase (see Section 3.5.3) of JavaInteropSourceGenerator. That
way, JavaInteropSourceGenerator could generate C# proxy classes based on
the content of provided .class files.

Additional files
In order for a file to be accessible as an additional file of a source generator, it
has to be registered in .csproj file of the project that uses the source generator
(as shown in Code Snippet 5.2). Our current solution expects that the path to
Java sources to be used is specified at runtime via javaClassPath parameter of
JavaVM.Create method (see Section 4.1.1). The approach to this configuration
would have to be changed.

Code Snippet 5.2: Registering Java library as additional file of incremental source
generator in .csproj of a project that uses the generator

1 <ItemGroup>
2 <AdditionalFiles Include="path/to/javalib.jar" />
3 </ItemGroup>

Once additional files are registered, the incremental source generator can ac-
cess them in its pipeline. Code Snippet 5.3 captures a part of incremental source
generator Initialize method that sets up the pipeline step accessing additional
files [151].

1.jar format is just a .zip archive of .class files [150]
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Code Snippet 5.3: Acceess additional files from the source generator
1 context.AdditionalTextsProvider
2 .Where(text => text.Path.EndsWith(
3 ".jar", StringComparison.OrdinalIgnoreCase))
4 ... // process additional files

.class file parser
In order for .class file parser to be usable from the source generator, it has to be
compliant with netstandard2.02. To our knowledge, no such implementation of
.class file parser is currently available. .class file parser could be potentially
implemented using Katai Struct C# Runtime library [152, 153] or implemented
from scratch, according to .class format specification [134].

Generation mode
It does not seem efficient to, by default, generate C# proxy classes for all Java
classes present in a given .jar file. Users should be allowed to configure which
Java classes they intend to use from C#. According to requirement R5, this
configuration should be user-friendly and in-code. We can let users specify which
Java classes should have their C# proxy generated by defining a partial proxy
class (as it is done now). We can, however, add new GenerationMode called,
e.g., JavaDeclared (GenerationMode parameter of JavaClassProxy attribute
was introduced in Section 4.2.1). This mode will use .class file parser to obtain
metadata for all public methods and constructors defined in the corresponding
Java type and will generate proxy methods for these Java methods without re-
quiring a user to specify method signatures manually. Users will still be allowed
to specify proxy method signatures explicitly if they need to adjust the signature
in some way (e.g., use JavaLangStringProxy instead of C# string to represent
some string parameter – see Section 4.3.4).

If a user specifies signatures of proxy methods explicitly, .class file parser
could be used to provide static checks across the language border to make sure
that a signature of the C# proxy method is compatible with the signature of the
corresponding Java method.

5.2.2 Callbacks from Java
In accordance with requirement R1, our solution only supports the invocation of
Java methods from C#. Invocation of C# methods from Java is not supported
– not even in the form of callbacks.

Callbacks could be enabled by allowing C# classes to inherit Java classes or
to implement Java interfaces. Then, a proxy method that expects a proxy of a
Java class or Java interface could accept a C# class inherited from that proxy
class or implementing that proxy interface. Java method corresponding to that
proxy method can then invoke methods required by the Java interface or by the
Java parent class, effectively invoking their C# implementations.

2Because the source generator itself has to target netstandard2.0 to be able to function in
Visual Studio IDE [122].
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Even though our solution does not currently support this, Section 1.3.1 ana-
lyzed, how is this functionality implemented by Xamarin.Android Java.Interop.

Summary of Xamarin.Android approach to callbacks
To enable Java to invoke C# methods, it is necessary to generate Java “proxy”
class that corresponds to the C# class defining these methods (in Xamarin.Android,
these Java classes are called Android Callable Wrappers (ACW) or Java Callable
Wrappers (JCW)). This class must contain declarations of native methods,
whose signatures correspond to C# methods to be invoked (see Code Snippet
1.15 for the example).

These Java native methods then have to have their C# implementation reg-
istered via RegisterNatives JNI function [8].

To make the registration possible, one additional layer of abstraction is re-
quired. JNI imposes restriction on the signature of the method that can be used as
an implementation of Java native method – it has to accept the first two param-
eters of expected types (see Section 1.2.1). Therefore, the arbitrary C# method
cannot be used as the implementation of the Java native method. JNI compati-
ble C# wrapper method must be generated (in the context of Xamarin.Android,
this method is referred to as marshaller).

Implications for our solution
In our context, marshaller methods could be easily generated at compile time
by the incremental source generator. RegisterNatives JNI function can be
potentially called from the source-generated static constructor of the type that
inherits a proxy class or implements the proxy interface. The problem is source-
generating Java proxy classes.

Ideally, we would like to generate them via incremental source generator, as it
can inspect user-written assembly and collect metadata about what Java classes
and what Java native methods need to be generated. The problem is, however,
that the source generator is not allowed to produce any other output than a code
that gets added to the .NET compilation. It cannot emit external files such as
.java or .class files containing Java proxies.

There are two alternative solutions:

• JNI DefineClass function could be used. This function takes a bytecode
of a Java class and loads this class to JVM. However, as we can only invoke
at runtime when a JVM instance exists, it means that the bytecode of Java
proxy classes would be generated at runtime, which violates requirement
R4. Moreover, not all Java distributions are guaranteed to support the
JNI DefineClass function (e.g., ART VM does not support it [7]).

• External tool could be implemented to scan a user-written assembly and
to generate an implementation of Java proxy classes (possibly source code,
but preferably bytecode). The disadvantage of this approach is that a user-
written assembly would have to be scanned twice – via an external tool and
an incremental source generator. Furthermore, a user would be required to
explicitly use external tools, which violates requirement R9.
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Support for callbacks would undoubtedly make our tool more general and
usable in more scenarios. Therefore, one of the requirements mentioned above
will probably have to be relaxed so that support for callbacks can be provided.

5.2.3 Support more Java features
The current version of the solution only supports a subset of Java features. In
the future we could add support for example for:

• Accessing Java field – as Section 2.7.2 described, the current version of
our JNI-based interoperability library is capable of accessing Java fields
from the C# code base. However, as C# does not currently support partial
properties, we postponed designing a Java field proxy that would make this
functionality accessible for a user (Section 2.7.2 explained the reasoning
behind this decision).

• Java enums – Section 2.1.3 described that enums in Java conceptually
differ from C# enums. Java enums are reference types. C# proxy could be
designed to represent Java enums. This proxy would probably be a C# class
rather than a C# enum type. If support for partial properties was added
to C#, they could be used to represent individual enumeration variants of
Java enum type.

• Nested classes – as Section 2.1.7 described, Java distinguishes two kinds
of nested classes – static and non-static (inner) nested classes. Static nested
classes are semantically equivalent with C# nested classes, and support for
them would require only slight changes in JavaInteropSourceGenerator.
Non-static classes are conceptually different and support for them would
require designing a dedicated proxy.

• Generics – as Section 2.1.2 explained, generics in Java are implemented
using runtime erasure. They, therefore, only exist at compile time; at
runtime, generic type parameters are replaced by the most general type ap-
plicable. It should, therefore, be possible to invoke generic Java methods
from C# via JNI if we specify a method signature so that occurrences of
type parameter type are replaced by the most general type applicable.
Runtime erasure is also carried out for Java generic classes. Therefore,
at runtime, they should be indistinguishable from non-generic classes, and
it should be possible to manipulate them from C# via JNI. The obvious
problems are:

– designing C# proxy class so that it emulates generic API over non-
generic Java bytecode and non-generic JNI API,

– obtaining information about generic signature of a class or a method by
parsing .class file. It seems that even though the bytecode itself does
not capture the concept of generics, .class file contains metadata,
including signatures of generic types and methods before the erasure
for the purposes of reflection and debugging [134]. This metadata
could be potentially read by .class file parser and used to generate
generic C# proxies.
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5.2.4 Other improvements
This section list a several more miscellaneous possible improvements.

• Runtime dispatch generation mode – the current version of the solution
decides whether a given Java method will be invoked via JNI or Project
Panama at a compile time. Project Panama can, however, only be used if a
supported Java version is available at runtime. If such a Java version is not
available, an attempt to call the Panama-based proxy method will throw an
exception. It could be helpful to provide a mixed method proxy that will
check the available Java version at runtime and, based on it, decide which
interoperability technology (JNI or Panama) should be used to leverage the
invocation. This adds a small overhead to every method invocation and
doubles the size of generated method proxies. It would, however, enable
users to use our tool so that an application using the tool can be deployed
to the platform with any Java version, and Panama-based optimization can
be used where it is applicable.
This feature was not a priority for the thesis as it does not conceptually
bring anything new. However, it could be useful for the practical use of our
tool.

• Fix lookup of Java sources for older Java versions on CentOS – as
Section 3.6 stated, the implemented solution has been tested on a variety
of Java versions, distributions, and operating systems. In the majority of
them, the tests pass without any issues. However, with older versions of
OpenJDK Java on the CentOS operating system, the solution has a problem
with locating Java sources it should interoperate with. For the purposes
of the thesis, this does not seem to be a major issue as the solution passes
tests on the majority of tested environments. However, during the project’s
future development, the cause of the issue should be identified and fixed.

• Incremental source generator: caching for diagnostics – Section
2.9.3 analyzed how to design DTOs that get passed between stages of in-
cremental source generator pipeline in the way that incremental source gen-
erator can take advantage of caching of stages results. In this thesis, we
designed proxy types DTOs to comply with incremental source generator
caching, and we implemented tests ensuring that caching is actually used
when these DTOs are passed between pipeline stages.
Apart from proxy classes DTOs, our incremental source generator pipeline
also works with Diagnostic objects, which allows us to emit compiler er-
rors when a user attempts to use marker attributes in a way that is not
intended. These Diagnostics objects, however, do not meet conditions
listed in Section 2.9.3, which would allow incremental source generator to
cache them. As this was discovered in the final phase of the development,
time did not allow us to refactor the mechanism of emitting diagnostics in
a way that would comply with caching. Therefore, an incremental source
generator will be able to take advantage of caching when a user-written
code is correct and does not cause any of our custom diagnostics. If diag-
nostics are emitted, caching is unlikely to work. The diagnostic emitting
mechanism should be refactored in the future.
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A. Attachments
A.1 Overview of electronic attachments

.
bin - binary version of the implemented solution
src - source code of the implemeted solution and demo examples

JavaInterop - source code of the solution
BuildScripts - scripts used during a build
Docker - scripts and dockerfiles used for testing in GitHub
actions

JavaInterop - JNI part of the interoperability library
JavaInterop.Benchmarks - benchmarks
JavaInterop.Common - shared part of interoperability library
JavaInterop.DebugConsoleApp - debugging console app, mainly
enabeling stopping on breakpoints in incremental source generator

JavaInterop.NuGet - project enabling packaging solution as
NuGet package

JavaInterop.Panama - Panama part of
the interoperability library

JavaInterop.Proxies - proxy classes
JavaInterop.SourceGenerator - the main part of incremental
source generator

JavaInterop.SourceGenerator.Common - shared part of incremental
source generator

JavaInterop.SourceGenerator.JNI - JNI focused part of incremental
source generator

JavaInterop.SourceGenerator.Panama - Panama focused part of
incremental source generator

JavaInterop.Proxies - JNI based proxy classes used for testing
JavaInterop.Proxies.Panama - Panama based proxy classes used
for testing

JavaInterop.UnitTests - unit tests
JavaInterop.UnitTests.Panama - Panama unit tests
javasources - Java source code used by the solution

panama - helpers usage of Project Panama
testclasses - Java classes used to test the solution

LanatraDemo - source code of user documentation tutorials
artifacts - folder containing solution packaged as NuGet package
javalib - custom Java classes used in demo examples
LanatraDemo - main demo examples
LanatraDemo.Panama - Panama based demo examples
pdfFiles - .pdf files used in examples

tex - folder containing LATEXsource code of the thesis text
images - thesis text images

readme.txt - file describing structure of thesis attachments
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thesis.pdf - text of this thesis in PDF/A format
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A.2 Results of JNI vs Project Panama bench-
mark

Method Mean StdDev Allocated
VoidParamlessMethodJni 45.52 ns 0.237 ns -
VoidParamlessMethodPanama 20.35 ns 0.032 ns -
IntParamlessMethodJni 67.90 ns 0.472 ns -
IntMethodIntParamJni 74.83 ns 0.261 ns 32 B
FiveIntParamsJni 98.19 ns 0.371 ns 64 B
TenIntParamsJni 135.71 ns 0.782 ns 104 B
IntParamlessMethodPanama 20.05 ns 0.129 ns -
IntMethodIntParamPanama 20.36 ns 0.024 ns -
FiveIntParamsPanama 19.14 ns 0.102 ns -
TenIntParamsPanama 22.35 ns 0.092 ns -
LongParamlessMethodJni 67.18 ns 0.196 ns -
LongMethodLongParamJni 76.51 ns 0.329 ns 32 B
FiveLongParamsJni 91.91 ns 0.330 ns 64 B
TenLongParamsJni 144.08 ns 0.774 ns 104 B
LongParamlessMethodPanama 17.79 ns 0.175 ns -
LongMethodLongParamPanama 20.73 ns 0.009 ns -
FiveLongParamsPanama 21.81 ns 0.013 ns -
TenLongParamsPanama 22.67 ns 0.113 ns -
FloatParamlessMethodJni 70.73 ns 0.484 ns -
FloatMethodFloatParamJni 78.06 ns 0.293 ns 32 B
FiveFloatParamsJni 108.87 ns 0.833 ns 64 B
TenFloatParamsJni 138.43 ns 0.367 ns 104 B
FloatParamlessMethodPanama 19.64 ns 0.014 ns -
FloatMethodFloatParamPanama 22.42 ns 0.020 ns -
FiveFloatParamsPanama 22.73 ns 0.036 ns -
TenFloatParamsPanama 23.12 ns 0.011 ns -
DoubleParamlessMethodJni 71.78 ns 0.181 ns -
DoubleMethodDoubleParamJni 76.73 ns 0.323 ns 32 B
FiveDoubleParamsJni 96.89 ns 0.478 ns 64 B
TenDoubleParamsJni 145.46 ns 1.191 ns 104 B
DoubleParamlessMethodPanama 20.92 ns 0.037 ns -
DoubleMethodDoubleParamPanama 21.53 ns 0.019 ns -
FiveDoubleParamsPanama 22.68 ns 0.045 ns -
TenDoubleParamsPanama 23.90 ns 0.030 ns -
BoolParamlessMethodJni 68.60 ns 0.118 ns -
BoolMethodBoolParamJni 84.37 ns 0.310 ns 32 B
FiveBoolParamsJni 121.82 ns 0.788 ns 64 B
TenBoolParamsJni 146.51 ns 0.399 ns 104 B
BoolParamlessMethodPanama 21.13 ns 0.013 ns -
BoolMethodBoolParamPanama 21.22 ns 0.086 ns -
FiveBoolParamsPanama 23.32 ns 0.043 ns -
TenBoolParamsPanama 22.27 ns 0.008 ns -
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