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Study programme: Fyzika (B0533A110001)

Study branch: Obecná fyzika
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Abstract:

Planets form from protoplanets orbiting young stars, when gaseous disk still exists. This gas gravitationally
interacts with protoplanets, alongside mutual perturbations between protoplanets. This phenomenon is
known as planetary migration. Our aim is to investigate the role of planetary migration, specifically, in the
context of the terrestrial planets (Mercury, Venus, Earth, Mars). This has been studied previously with a
stationary prescription for migration and without simulating the evolution of the disk (Brož et al. 2021).
Instead, in this work we use formulae for migration torque based on actual profiles of the evolving disk. We
used an N-body symplectic integrator to describe motions of protoplanets (Duncan et al. 1998). Evolution
of the gas disk was modeled by 1-D hydrodynamics, considering turbulent viscosity and magnetically-driven
disk wind (Suzuki et al. 2016). Migration torques were computed according to Paardekooper et al. (2011),
from actual profiles of the disk. Moreover, our model included close encounters, collisions of protoplanets
(merging), mutual resonances, eccentricity and inclination damping. In some simulations, we also considered
the hot-trail effect (Chrenko et al. 2017), acting as eccentricity or inclination ’pumping’. Initially, we assumed
a system of 28 protoplanets, with the masses in the range 0.05 to 0.1 Earth mass (i.e., a total 2 Earth masses).
Simulations of a viscous disk with wind-driven mass loss were performed. For a high value of viscosity
(α = 8 · 10−5) and a moderate wind (CW = 1 · 10−5), dispersal of the disk is too rapid and migration has
little influence on protoplanets. The collisional rate is also too low. For a low value of viscosity (α = 8 ·10−6)
and a weak wind (CW = 1 · 10−6), a rapid migration of protoplanets occurs, but the convergence zone is too
small and high-mass planets end up close to the Sun. Eventually, an intermediate-viscosity model with strong
wind shows some features of the terrestrial zone, like low-mass planets (Mercury, Mars) at the boundaries,
and more massive planets (Venus, Earth) close to the centre. For this model, we computed a statistics of 25
simulations. There are two types of evolution: without late instabilities that leads to a larger number of low-
mass planets, and with late instabilities, which occur after gas dispersal, leading to 4-6 planets. According
to our best simulations, the hot-trail effect should excite the eccentricities of planets up to 0.07.
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Introduction
Ancient astronomers studied stars and planets by naked eyes, hence their observations and interpretations
were limited. Only relatively bright stars and planets (from Mercury up to Saturn) could be studied.
Astronomers focused on relative motions of planets with respect to stars, not so on physical characteristics;
even though it is in principle possible to measure angular sizes of planets, if they were observed during their
setting behind distant mountains. The most important attempts to catalogize stars and explain planets were
done by Hipparchus (Gysembergh et al. (2022)) and Ptolemy (see Toomer (1984)).

Today we know that the inner part of the Solar system is occupied by small low-mass planets (Mercury,
Venus, Earth and Mars), whereas the outer part by large massive planets (Jupiter, Saturn, Uranus and
Neptune). Jupiter and Saturn are considered gas giants, consisting of molecular hydrogen and in deeper
layers by metallic hydrogen; the deepest part is a rocky core. On the other hand, Uranus and Neptune are
ice giants, consisting of a rocky core, a mantle from heavier elements (water, ammonia, methane) and a thin
hydrogen envelope. The internal structure of some planets was measured in detail, by means of gravitational
perturbations, for example by missions Juno (Debras & Chabrier (2019), Durante et al. (2020)), or Cassini
(Guillot (1999), Lainey et al. (2017)).

But what are the origins of the Solar system and all the planets? And how all of this formed? Several
hypotheses concerning the origins were proposed. Immanuel Kant and then Pierre-Simon Laplace came
forward with a hypothesis of formation from collapsing nebula, which flattens due to rotation (Kant (1755),
Laplace (1796)). Later, Jeans introduced a model of the stability of a spherical nebula (Jeans (1902)). The
modern paradigm is based on much more sophisticated models, proposing formation of filaments in a nebula
(André et al. (2014)). In these filaments, many protostars surrounded by protoplanetary disks are formed
(Vázquez-Semadeni et al. (2019)). Protoplanetary disks were directly observed by the ALMA system of
radio-telescopes (Andrews et al. (2018)) or ESO VLT/SPHERE optical telescope (Avenhaus et al. (2018)),
see, e.g., Fig. 1.

Protoplanets form by gradual aggregation of dust, followed by accretion of pebbles, assisted by aerody-
namic drag (e.g., Lambrechts & Johansen (2014), Drażkowska et al. (2022)). A final stage of evolution due
to mutual collisions and perturbations between protoplanets requires a detailed understanding of a gravita-
tional interaction between protoplanets and gas. This results in migration, or changes of the semimajor axis,
as well as damping or forcing of eccentricities and inclinations (Chrenko et al. (2017)). This phenomenon
has been studied by means of semi-analytical theories (Tanaka et al. (2002), Paardekooper et al. (2011)),
or full 1D, 2D or 3D hydrodynamical simulations (e.g., Beńıtez-Llambay & Masset (2016)). Migration of
protoplanets plays a principal role in the build up of planetary systems (e.g., Brož et al. (2021)).

In this work, we study the origin of the inner Solar system. We compute a global evolution of a protoplan-
etary disk and of embedded protoplanets. influenced by migration, mutual perturbations and collisions. Our
goal is to reconstruct the possible configurations and conditions, which could lead to the observed planets
(Mercury, Venus, Earth, Mars).
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Figure 1: Images of protoplanetary disks in several early stellar systems (IM Lup, RXJ 1615, RU Lup,
MY Lup, PDS 66, V4046 Sgr, DoAr 44, AS 209) observed by the ESO SPHERE/VLT telescope. These
observations in the near-infrared light show primarily light of the central star reflected or scattered on dust
grains. Indirectly, it corresponds to the dust density in different regions, however, except the dark places,
where the central star is obscured by large amounts of dust. All images are in the same physical resolution,
thus 100 au bar applies to all images. In all images, also the scale representing 1′′ on the sky is plotted. The
intensity of light is in logarithmic scale. From Avenhaus et al. (2018).
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1. 1-dimensional hydrodynamical
models of accretion disks
In this chapter, we derive the equations of our hydrodynamical model, which will be used for modeling
evolution of a protoplanetary disk. The model is based on the work of Suzuki et al. (2016), where it is
discussed in more detail.

1.1 Derivation from 3-dimensional equations
The model describes the behaviour of gaseous component of the disk that can be modeled like a fluid moving
in the gravitational field of the central star. Moreover, we will assume a cylindrical symmetry of the disk and
also a symmetry of the vertical disk profile with respect to the mid-plane. Disks commonly contain magnetic
fields and these produce a magnetically-driven disk wind, which will be also considered in the model.

In general, inviscid fluid is described by means of the equation of continuity

∂ρ

∂t
+ v · ∇ρ = −ρ∇ · v , (1.1)

where ρ(t, r) is the field of volumetric density of the fluid and v(t, r) is the velocity field, and the equation
of motion

∂v
∂t

+ (v · ∇)v = −1
ρ

∇p⏞ ⏟⏟ ⏞
pressure gradient

−∇Φ⏞ ⏟⏟ ⏞
gravity

+ 1
ρ

1
µ0

(∇ × B) × B⏞ ⏟⏟ ⏞
Lorentz force

, (1.2)

where the first term on the right-hand side describes the acceleration due to pressure gradients, the second
term the acceleration from the gravitational potential Φ(t, r), and the third term corresponds to the Lorentz
force. We neglect the viscous term, 1

ρ ∇ · τ , where τ = µ
[︁
∇v + (∇v)T − 2

3 (∇ · v)I
]︁
, because the molecular

viscosity µ is typically low and negligible.
The disk has a magnetic field, which is related to the fact that gas is partially ionized. We suppose that

the ionized part of gas is coupled to the neutral part of gas. This can be described in the advective limit of
the induction equation,

∂B
∂t

= ∇ × (v × B) . (1.3)

We neglect the diffusion term, η∇2B, because the corresponding time scale of diffusion is typically long (Stix
(2002)).

The angular momentum density l ≡ ρr × v is better for description, because it better corresponds to
the symmetry of the problem. Moreover, if the cylindrical symmetry is assumed, then only the angular
momentum coordinate perpendicular to the plane of the disk is important, because all other coordinates are
zero. By combining Eqs. (1.1) and (1.2) and the Maxwell equation ∇ · B = 0, we get

∂

∂t
(ρrvϕ) + 1

r

∂

∂r

[︃
r2
(︃

ρvrvϕ − 1
µ0

BrBϕ

)︃]︃
+ ∂

∂ϕ

[︃
ρv2

ϕ + 1
µ0

B2
]︃

+ ∂

∂z

[︃
r

(︃
ρvzvϕ − 1

µ0
BzBϕ

)︃]︃
= 0 , (1.4)

where we still keep the term containing the ϕ-derivative, but this term will eventually disappear after an
integration along the ϕ-axis, when reducing the problem to one dimension.

1.2 Viscosity parametrisation
According to Shakura & Sunyaev (1973), turbulence can occur in the disk, and it is a source of effective
viscosity. In the ionized regions of the disk, the source of the turbulence is mainly the magneto-rotational
instability (MRI; Balbus & Hawley (1991)). For including this phenomenon, we introduce perturbations of
the velocity field

v(t, r) = ⟨v(t, r)⟩∆V (r) + δv(t, r) , (1.5)
where ⟨⟩∆V (r) means the mean value through some volume ∆V , centered at r; this term for simplicity will
be written ⟨v⟩. The second term means perturbations.

The terms in Eq. (1.4) then can be expressed as

ρvrvϕ − 1
µ0

BrBϕ = ρ⟨vϕ⟩⟨vr⟩ + ρ⟨vϕ⟩δvr + ρ⟨vr⟩δvϕ + ρ

(︃
δvrδvϕ − BrBϕ

µ0ρ

)︃
(1.6)
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and
ρvzvϕ − 1

µ0
BzBϕ = ρ⟨vϕ⟩⟨vz⟩ + ρ⟨vϕ⟩δvz + ρ⟨vz⟩δvϕ + ρ

(︃
δvzδvϕ − BzBϕ

µ0ρ

)︃
. (1.7)

For completeness, we show the equation for the ϕ-term

ρv2
ϕ − 1

µ0
B2 = ρ⟨vϕ⟩2 + ρ⟨vϕ⟩δvϕ + ρδv2

ϕ . (1.8)

Now we integrate Eq. (1.4) along the ϕ-axis and along the z-axis and considering the ϕ-axis symmetry

r
∂

∂t

∫︂
W

ρ⟨vϕ⟩dz + 1
r

∂

∂r

[︄
r2
∫︂

W

ρ⟨vr⟩⟨vϕ⟩dz + r2
∫︂

W

ρ

⟨︃
δvrδvϕ − BrBϕ

µ0ρ

⟩︃
ϕ

dz

]︄
+

+
[︄

ρ⟨vϕ⟩ · ⟨vz⟩ + ρ

⟨︃
δvzδvϕ − BzBϕ

µ0ρ

⟩︃
ϕ

]︄
W

= 0 ,

(1.9)

where subscript W means that the integration bounds are edges of the wind region, so integration is taken
in the central opaque part of the disk. Fluctuations, which are linear disappear, because of integration and
only quadratic fluctuations ie. correlations in fluctuations remain in Eq. (1.9).

We define the surface density
Σ(t, r) ≡

∫︂
W

ρ(t, r, z)dz (1.10)

and the parameters for the fluctuations

αrϕ ≡ 1
Σ(t, r)(c2

s )mid

∫︂
W

ρ

⟨︃
δvrδvϕ − BrBϕ

µ0ρ

⟩︃
ϕ

dz , (1.11)

αϕz ≡ 1
(ρc2

s )mid

[︄
ρ

⟨︃
δvzδvϕ − BzBϕ

µ0ρ

⟩︃
ϕ

]︄
W

, (1.12)

where cs is the sound speed defined for our model as the isothermal sound speed of the ideal gas

cs =

√︄
kBT

µmH
, (1.13)

where µ is the molecular weight of gas particles. These parameters are defined by means of the sound speed,
so if we set in our model constant α’s that means the fluctuations are considered proportional to 1/c2

s . This
is the idea of Shakura & Sunyaev (1973).

Then we approximate vϕ by the Keplerian velocity which means that the force due to radial pressure
gradient is considered negligible in comparison to the gravitational force and is not essential for our purposes.
Hence

vϕ ≈ vk = rΩ =
√︃

GM∗

r
. (1.14)

Finally, by putting definitions (1.10), (1.11), (1.12) and approximation (1.14), we get

r2Ω∂Σ
∂t

+ 1
r

∂

∂r

[︁
r3ΩΣvr + r2Σαrϕ(c2

s )mid
]︁

+ [ρvz]W r2Ω + (ρc2
s )midαzϕ = 0 . (1.15)

1.3 Accretion rate and equation for the surface density
The accretion rate Ṁ(r), defined as inflow of mass on radius r, can be expressed in terms of αrϕ and αϕz if
we combine Eq. (1.15) with the integrated equation of continuity (expressed in terms of surface density)

∂

∂t
(rΣ) + ∂Ṁ

∂r
+ rCW (ρc2

s )mid = 0 , (1.16)

where CW is another parameter, which we define as

CW ≡ [ρvz]W
(ρc2

s )mid
, (1.17)

which will be used for the description of the mass outflow due to the disk wind.
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The accretion rate is

Ṁ(r) = 2πrΣvr = − 4π

rΩ

[︃
∂

∂r
(r2Σαrϕc2

s ) + r2αϕz(ρc2
s )mid

]︃
. (1.18)

Using this expression, Eq. (1.15) can be further simplified by substituting for vr, thus the final dynamical
equation of the model, which we will use, is

∂Σ
∂t

+ 1
r

∂

∂r

{︃
− 2

rΩ

[︃
∂

∂r
(r2Σαrϕc2

s ) + r2αϕz(ρc2
s )mid

]︃}︃
+ (ρvz)W = 0 . (1.19)

The behaviour of gas in presence of turbulence and advecting magnetic field can be interpreted as a
viscous fluid, where the α-parameters are sources of effective viscosity. Then the disk can be understood as
rotating gas in the keplerian differential rotation, with viscous shear between laminae of the fluid in ϕ and
z direction and with turbulent viscosity defined as

ν ≡ αrϕc2
s

r dΩ
dr

. (1.20)

1.4 Energy balance
In our formalism, the viscosity and associated turbulence depends also on thermodynamical quantities (in
particular, α parameters and the sound speed cs depend on them). Hence our equation is not purely
dynamical, and energetic considerations are necessary.

Firstly, the following mechanical energy equation holds in our system

∂

∂t

(︃
1
2ρv2 + ρΦ

)︃
+ ∇ ·

[︃(︃
1
2ρv2 + ρΦ

)︃
v
]︃

= −v · ∇ · (pδij+ ↔
σ

(M)
) , (1.21)

where ↔
σ

(M)
is the Maxwell stress tensor. In our case of the magnetic anisotropic pressure force applied on

gas, it is defined

σ
(M)
ij ≡ B2

2µ0
δij − 1

µ0
BiBj . (1.22)

The second equation of the energetics is the first law of thermodynamics

∂u

∂t
+ ∇ · (uv) = −(pδij + σ

(M)
ij )∇ivj − ∇·F , (1.23)

where u is the density of internal energy. On the right-hand side, we consider losses of the internal energy
due to transformation to the mechanical work (through the pressure gradient) and also the energy conversion
between magnetic field and matter. Finally, losses due to thermal radiation, represented by the radiative
flux F are considered. Also irradiation from the star can be considered in this term, however, we and Suzuki
et al. (2016) use another approach, incorporating this to the gas temperature calculation instead to the flux
???.

The internal energy density can be in an ideal gas system expressed in terms of the pressure as

u = p

γ − 1 . (1.24)

Lastly, the equation of the magnetic field energy

∂

∂t

(︃
B2

2µ0

)︃
+ ∇ ·

[︃
− 1

µ0
(v × B) × B

]︃
= ∇i(σ(M)

ij vj) , (1.25)

where on the right-hand side the term corresponds to the conversion of the magnetic energy to the work and
the heat.

By summing all these equations, almost all terms on the right-hand sides vanish because these represent
only internal interactions within the system; only the radiation flux term remains. This leads to the final
energy equation

∂

∂t

(︃
1
2ρv2 + ρΦ + p

γ − 1 + B2

2µ0

)︃
+ ∇ ·

[︃(︃
1
2ρv2 + ρΦ + γp

γ − 1

)︃
v + 1

µ0
B × (v × B) + F

]︃
= 0 . (1.26)

However, this is a general form and for the purposes of our model, some approximations have to be done.
Suppose that rΩ ≫ vr, δvϕ, vz, cs, B/

√
µ0ρ and allow only terms containing these quantities in the first
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order to be in the equation. Fluctuations of velocity in other directions are negligible and considered of
second order. Interesting fact is that gas pressure is again considered negligible, because it is of the power of
two of sound speed. Similarly, pressure was considered negligible in the dynamic equation by approximating
vϕ ≈ rΩ.

Again, integration over ϕ and z is done and a substitution of the time derivative from Eq. (1.19) and the
average radial velocity vr from Eq. (1.18). The final expression for energy balance is thus

(ρvz)W

(︃
EW + r2Ω2

2

)︃
+ Frad = 3

2ΩΣαrϕc2
s + rΩαϕz(ρc2

s )mid , (1.27)

where EW is the energy per mass in wind region. In our case, the gravitational energy and the kinetic energy
of motion in r direction are considered negligible, so EW ≈ v2

z/2.

1.5 Disk wind regimes
We derived the equation representing the energetics of the disk (Eq. (1.27)), but this was not based on
fundamental understanding of the processes of energy exchange. Thus, we do not know, what fraction of the
energy losses is transformed to the wind and how much is transformed to the radiation. For this purpose,
Suzuki et al. (2016) defined various regimes, which differ in energy distribution between the wind and the
radiation.

I. No wind The simplest case for discussion is the case of a negligible wind. This practically means that
(ρvz)W , CW and EW are all negligible, and αϕz ≈ 0, because there is no coupling between the midplane and
the wind region. Then Eq. (1.27) becomes very simple, just

Frad = 3
2ΩΣαrϕc2

s . (1.28)

II. Strong wind The limit of a strong wind supposes that only the viscous heat is lost through radiation
and all other energy is transformed to the wind energy. Then,

Frad = max
[︃
−1

r

∂

∂r
(r2Σαrϕc2

s ), 0
]︃

, (1.29)

where the left term in the maximum represents the viscous heat losses, and the zero means that there is
negligible gain from the radiation, thus the flux cannot be positive. Moreover,

CW,e = max
[︃
− 1

r3Ω(ρcs)mid

∂

∂r
(r2Σαrϕc2

s ) + 2cs

rΩ αϕz, 0
]︃

, (1.30)

where we account for the case of a wind, not an infall of matter, thus the wind parameter CW,e is considered
positive.

III. Weak wind In this regime, the ratio between radiative losses and energy losses due to the wind is
set by the parameter ϵrad. Thus,

Frad = ϵrad

[︃
3
2ΩΣαrϕc2

s + rΩαϕz(ρc2
s )mid

]︃
(1.31)

and
CW,e = (1 − ϵrad)

[︃
3
√

2πc2
s

r2Ω2 αrϕ + 2cs

rΩ αϕz

]︃
= (1 − ϵrad)

[︂
3
√︁

π/2h2αrϕ +
√

2hαϕz

]︂
, (1.32)

where ΩΣ =
√

2π(ρc2
s )mid, and h = H/r =

√
2cs/(rΩ).

Final expression for CW and gas density profiles Suzuki et al. (2016) also used local shearing-box
simulations to find the wind parameter CW . This led to values in the range between 10−5 and 10−4. For
CW parameter, a minimum was used

CW = min(CW,0, CW,e) (1.33)
where CW,0 is the local shearing-box result and CW,e is an estimate based on expressions in paragraphs II
and III.

Suzuki et al. (2016) performed simulations of different wind regimes (see Figs. 1.1 and 1.2). The two
different values of αrϕ represent disks either with active MRI turbulence, or disks with suppressed turbulence,
as expected in the dead zone (Mestel (1968)).
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Figure 1.1: Surface density profiles for an MRI-active disk, with αrϕ = 8 ·10−3. Different profiles for different
modes are plotted in the graph and also their evolution (profiles at various times). The no DW means the
regime of no wind (see paragraph I), The strong DW means the strong wind regime (see paragraph II) with
CW,0 = 2 ·10−5 and with αϕz either zero or Σ-dependent (αϕz = 10−5 ·(Σ/Σint)−0.66, where Σint is the initial
surface density). The weak DW means the weak wind regime (see paragraph III) with CW,0 = 2 · 10−5,
αϕz = 0 and ϵrad = 0.9. Figure from Suzuki et al. (2016).

Figure 1.2: Same as Fig. 1.1, for an MRI-inactive disk, with αrϕ = 8 ·10−5. For the strong DW, CW,0 = 10−5

and αϕz either zero, constant (αϕz = 10−4), or Σ-dependent. For the weak DW, CW,0 = 10−5 and αϕz

Σ-dependent. Figure from Suzuki et al. (2016).
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2. Semi-analytical models of
planetary migration
Motions of protoplanets in gaseous disks and the coupling between protoplanets and gas is not trivial. Even
though full hydrodynamic simulations could provide complete comprehension of the phenomenon (see, e.g.,
Fig. 2.1), it is often computationally expensive. Consequently, semi-analytical approaches and approxima-
tions are often employed and verified by comparing them to the full hydrodynamic simulations. Using all
these approaches, several components of the torque exerted on a protoplanet were identified: the Lindbald
torque, the corotation torque, or the thermal torque. These contributions will be discussed in the following
chapter.

2.1 Linear theory
2.1.1 Lindblad torque and corotation torque
Tanaka et al. (2002) attempted to solve the problem of mutual interactions of protoplanets and a disk by
considering that the gravitational potential of a planetary-sized body causes relatively small density, pressure
and velocity-field perturbations in the disk. The smallness of these perturbations allowed for a linearization
of the Navier-Stokes equations. The potential and the perturbations were expanded onto the Fourier basis
in the φ-coordinate and a Hermite basis in the z-coordinate. Then, the transformed and linearized equation
was solved numerically.

The results showed that a perturbing body induces formation of spiral arms in the disk. These spiral arms
carry away the angular momentum because of advective transport. The angular momentum flux through
some radius is calculated as

FA(r) =
∫︂ 2π

0
dθ

∫︂ ∞

−∞
r2ρ0vφvrdz , (2.1)

where ρ0 is unperturbed density of gas, vr represents the radial coordinate of the velocity field and vφ the
angular coordinate of the velocity filed.

The flux converges for −∞ or +∞ and so the angular momentum per time unit, which the gas is loosing
and the planet is gaining through the spiral arms, is

ΓL = FA(r → +∞) − FA(r → −∞) , (2.2)

which is the so-called Lindblad torque.
The flux is non-continuous at the corotation, i.e., at the radius where the planet is orbiting (assuming

zero orbital eccentricity), due to deposition of the angular momentum from the planet to the co-rotation
region. This can be calculated as

ΓC = −[FA(r → +0) − FA(r → −0)] , (2.3)

which is the so-called linear corotation torque.
Tanaka et al. (2002) did this calculation for isothermal disks, however, for our purposes, we need an

expression, which is more general. Paardekooper & Papaloizou (2008) and Paardekooper et al. (2010)
derived an expression for the Lindblad and linear corotation torques for thin disks, considering only 2D
calculations based on the surface density perturbations. They used a similar approach to the problem as
Tanaka. Moreover, they performed 2D hydrodynamic simulations and compared them to the linear theory.
The final result from Paardekooper et al. (2010) for the Linblad torque is

γΓL/Γ0 = (−2.5 + 0.1α − 1.7β)
(︃

0.4
b/h

)︃0.71
, (2.4)

where γ is the adiabatic constant, b, the softening parameter; which describes the smoothing of the grav-
ity potential in the 2D simulation due to integration along the z-axis and modifies the potential Φp =
GM∗/

√︂
|r − rp|2 + b2r2

p.. The slope coefficients of the surface density and the temperature, α and β respec-
tively, are defined as

α ≡ −d log Σ
d log r

, (2.5)
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Figure 2.1: Full hydrodynamic simulation of a protoplanetary disk with embedded protoplanets by Chrenko
et al. (2017). This figure shows the gas surface density (top) and the pebble surface density (bottom). Spiral
arms which are causing the Lindblad torque can be seen clearly. The corotation zone can be seen barely
for the two innermost protoplanets (because the respective perturbations are relatively small). The third
protoplanet creates a partial gap in the gas disk, which means that this one is massive enough to accrete
some gas. All the protoplanets create a gap in the pebble disk, though. Figure from Chrenko et al. (2017).
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β ≡ −d log T

d log r
. (2.6)

The scaling of the torque is defined as
Γ0 ≡ (q/h)2Σpr4

pΩ2
p , (2.7)

where Σp is the surface density at the planet’s radius, rp, the planet’s orbital radius, Ωp, the gas angular
velocity at the planet’s radius, ,h := H/r, the aspect ratio, where H is the vertical scale height of the disk,
q := Mp/M∗, where Mp is the mass of the planet, M∗, the mass of the star.

Paardekooper et al. (2010) also calculated the linear corotation torque as

γΓc,lin/Γ0 = 0.7
(︃

3
2 − α

)︃(︃
0.4
b/h

)︃1.26
+ 0.7 2

γ
ξ

(︃
0.4
b/h

)︃1.26
+ 2.2ξ

(︃
0.4
b/h

)︃0.71
, (2.8)

where the first term is the so called barotropic torque and it is the only non-zero component of the
corotation torque in the case of barotropic gas ie., where the pressure is dependent only on the density of
gas. The second term and the third term together are the so called entropic torque, which depends on
ξ := 3/2 + (1 − 2/γ)α − 2β/γ, i.e., the slope coefficient of the pΣ−γ profile, defined analogically to α and β.
The entropic torque is the only linear corotation torque in the case of adiabatic disc.

2.1.2 Eccentricity damping
Tanaka & Ward (2004) subsequently studied the case of the planets with non-zero eccentricity or inclina-
tion. The non-zero eccentricity or inclination induce the radial or vertical waves, which tend to damp the
eccentricity and inclination to zero. They again used the expansion onto the Fourier basis. The respective
prescriptions were

1
e

⟨︃
de

dt

⟩︃
= As

r/2 + As
θ

twave
= −0.780

twave
(2.9)

and
1
i

⟨︃
di

dt

⟩︃
= Ac

z/2
twave

= −0.544
twave

, (2.10)

where As and Ac are respectively sine and cosine dimensionless amplitude coefficients of the force exerted
on the planet due to the waves. The lower indices r, θ, z indicate the coordinates of the force. ⟨⟩ denotes
average through one orbital period. twave is the characteristic time of damping,

twave ≡ q−1
(︃

Σpa2

M∗

)︃−1(︃
c

aΩp

)︃4
Ω−1

p , (2.11)

where c denotes the isothermic sound speed and a, the half-axis of the planet.

2.2 Nonlinear theory
2.2.1 Horseshoe drag
Ward (1991) studied the problem from a completely different perspective. A planet on circular orbit at
radius rp and a test particle orbiting at similar radius r were considered The question is how the presence
of the planet as a perturber changes the test particle’s orbit in the non-inertial frame of reference corotating
with the planet. Not surprisingly, if the test particle orbits close enough to the planet, it does turn, when
approaches the planet. The particle turns from an outer/inner orbit with respect to the planet to the
corresponding inner/outer orbit (of the radius 2rp − r), respectively. Hence the particle is moving on an
orbit, which looks like a horseshoe, and so it is called a horseshoe orbit. The condition for range of the
radii, in which it occurs, is

|rp − r| ≤ w =
⃓⃓⃓⃓
GMp

2AB

⃓⃓⃓⃓
, (2.12)

where A := (r/2)dΩ/dr and B := (2r)−1d(r2Ω) are the Oort constants; which are known from the galactic
mechanics Oort (1940).

When the particle does turn, it exchanges its angular momentum with the planet. The angular momentum
gain of the planet is

∆L = δm[r2Ω(r) − (2rp − r)2Ω(2rp − r)] = GMδm[r1/2 − (2rp − r)1/2] , (2.13)
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where δm denotes the mass of the test particle, Ω(r), the angular velocity profile, which is considered
keplerian.

Now, let us consider gas orbiting at the keplerian velocity. In the horseshoe region certain mass of
gas Σ(r)rΩ(r)dtdr turns from the outer orbit to the inner orbit and also the corresponding mass of gas
Σ(2rp − r) · (2rp − r) · Ω(2rp − r)dtdr turns on the same horseshoe orbit on the opposite side of the planet
from the corresponding inner orbit to the outer orbit. Because generally exchanges of the momentum between
the planet and gas are not equal on both sides according to Eq. (2.13), a torque is exerted on the planet. If
the gas density radial profile is considered locally as power-law and α is defined as in Eq. (2.5) then

Γhs = 3
4

(︃
3
2 − α

)︃
Σpw4Ω2

p . (2.14)

2.2.2 Barotropic and entropic horseshoe drag
Paardekooper et al. (2010) studied the problem in a systematic way, focusing not only on the barotropic
torque but also on the entropic gradient and non-conservation of the vorticity along streamlines.

Generally, the torque due to the horseshoe drag is calculated as

Γc,hs =
∫︂ ∫︂

R

Σ∂Φp

∂φ
rdφdr =

[︃∫︂
Σ(j − jp)(Ω − Ωp)rdr

]︃Γ2

Γ1

, (2.15)

where R means the integral over the horseshoe region, Φp, the gravitational potential of the planet and
j := rvφ. Paardekooper assumed symmetric horseshoe turns. Hence, a first order expansion of the quantities
with respect to the planet’s orbital radius leads to

Γc,hs ≈ −3
2r4

pΣpΩ2
p

∫︂
x2 Σ − Σ0

Σ0
dx , (2.16)

where x := (r − rp)/rp is relative coordinate. Σ0 is the original profile without the perturbation due to the
planet, whereas Σ is the actual density profile modified by the presence of the corotation zone.

Entropy gradient Let us consider the situation of pressure equilibrium and adiabatic situation when
the quantity s ≡ pΣ−γ is conserved along streamlines. The perturbed density can be then expressed as

Σ =
{︄

Σ0

(︂
1 − 2 ξ

γ x
)︂

if 0 < x < xs ,

Σ0 otherwise ,
(2.17)

where xs := w/rp denotes the relative width of horseshoe region and ξ := 3/2 + (1 − 2/γ)α − 2β/γ is a slope
coefficient of s, defined analogical to α and β, see Eq. (2.5).

Specific vorticity gradient The specific vorticity along a streamline satisfies the relation
D
Dt

(︂ω

Σ

)︂
= −∇Σ × ∇p

Σ3 = −∇s × ∇p

γΣ2s
, (2.18)

where D
Dt is the material derivative, representing a derivative of quantities along a streamline.

If we consider the barotropic case where p(Σ) then the derivative is equal to 0 and the vorticity is constant
along a streamline. Then perturbation of the vorticity field can be expressed simply as ω0

Σ0

(︂
1 − 2 d log ω/Σ

d log r x
)︂

if 0 < x < xs. More generally, considering also the non-barotropic case, a term corresponding to a change of
the specific vorticity along a streamline has to be added,

ω

Σ =
{︄

ω0
Σ0

(︂
1 − 2 d log ω/Σ

d log r x
)︂

+ ∆, if 0 < x < xs ,
ω0
Σ0

otherwise .
(2.19)

Non-conservation of specific vorticity along the streamline Paardekooper calculated the term ∆.
He considered the velocity along a streamline to be v = vrpΩpxs, where v is a constant determined from
simulations (v = 1.0 was determined to be in a good agreement). The respective expression is

∆(x) = 2ξ

vγ

Ωp

Σp

(︃
q

d
− 3

8x2
s

)︃
δ(x − xs) (2.20)

where d ≡
√︂

|rturn − rp|2 + b2, rturn is the turning point for the horseshoe orbit, which is the largest and
goes from the edges of the horseshoe region. Using numerical simulation, he then determined the horseshoe
width as

xs = 1.1
γ1/4

(︃
0.4
b/h

)︃√︃
q

h
(2.21)
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and d =
√︂

13γ
4 b.

Finally, the entropy and vorticity perturbations are put together,

Σ − Σ0

Σ0
= −2 ξ

γ
x + 2

(︃
α − 3

2

)︃
x − Σ0

ω0
∆ , (2.22)

inserted in Eq. (2.16) and integrated. Putting the result together with Eqs. (2.21), (2.20), leads to the
horseshoe drag

γΓc,hs/Γ0 = 1.1 0.4
b/h

(︃
3
2 − α

)︃
+ ξ

γ

0.4
b/h

(︄
10.1

√︄
0.4
b/h

− 2.2
)︄

. (2.23)

2.2.3 Saturation
Saturation due to the viscosity If a viscous timescale τvisc is much longer than a libration timescale
τlib (i.e., a time it takes to complete a horseshoe orbit), then gas is in the same state, when it returns on
the opposite side of the planet, as on the start of the libration orbit. After the turn, gas is no longer in
equilibrium with the surrounding disk. Consequently, the calculations done in Sec.2.2.2 are no longer valid.
It can be shown that after planet perturbs the gas and creates its horseshoe region, the torque will decrease
to zero (on the timescale of τlib). This process is called a saturation of the horseshoe drag. So if τvisc ≫ τlib
and if the migration of the planet is slow (ȧ/a)xs ≪ τlib then horseshoe drag can be considered as saturated
all the time, except during short intervals of times, e.g., after collisions of planets when a new horseshoe
region develops.

On the contrary, if the viscous timescale is much shorter than the libration timescale perturbations occur
only in the region close to the planet and the rest of the horseshoe region has the same densities and the same
temperatures as the overall profiles of the disk. In this case, a saturation does not occur and so Eq. (2.23)
remains valid.

The most complicated is the case of τvisc ≈ τlib, when the torque remains partially unsaturated, i.e.,
the torque does not decrease to zero but to some Γ′

c,hs non-zero value. In order to find it, Paardekooper
firstly studied an isothermal case. He used a simple saturation model based on Masset (2001). He defined a
saturation parameter

pν = 2
3

√︄
r2

pΩpx3
s

2πνp
(2.24)

and a saturation function
F (p) =

8I4/3(p)
3pI1/3(p) + 9

2 p2I4/3(p)
. (2.25)

The pν parameter decribes the saturation due to the viscosity. Since an isothermal disk is also barotropic,
only the barotropic term of the horseshoe drag is modified as

Γ
′

c,hs,baro = F (pν)Γc,hs,baro . (2.26)

Saturation due to the thermal diffusion Paardekooper then studied a general case, non-isothermal
and generally non-barotropic, when also the entropic terms are involved. He realized that the entropic terms
have a saturation dependent on the thermal diffusivity χ, as defined by the thermal diffusion equation,

∂T

∂t
= −∇ · (χ∇T ) . (2.27)

Paardekooper expressed the saturated entropic torque as

Γ
′

c,hs,ent = F (pν)F (pχ)Γc,hs,ent , (2.28)

where the saturation parameter pχ, which was in good agreement with simulations,

pχ =

√︄
r2

pΩpx3
s

2πχp
. (2.29)

A saturation of the barotropic term is the same as in the isothermal case, i.e., as in Eq. (2.26).
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Figure 2.2: A density field (more precisely, ρr1/2) around a planet embedded in a gas disk. Left: Locally
isothermal state equation of gas. Right: Adiabatic state equation. Spiral arms, clearly visible in this figure,
are the principal cause of the Lidblad torque. In both panels, a corotation zone is also visible. In the adiabatic
case, regions of perturbed density around the separatrix are more prominent though. This is caused by a
transport of gas from different heliocentric distances, because of the turn. Figure from Paardekooper &
Papaloizou (2008).

2.3 Thermal diffusivity influence on the torque
Importantly, a non-zero thermal diffusivity χ changes the expressions for all torques (Lindblad, linear corota-
tional and horseshoe drag). These changes can be incorporated by replacing the adiabatic γ on the left-hand
sides of original Eqs. (2.4), (2.8) and (2.23) by some effective γeff , dependent on the thermal diffusivity.

The Lindblad torque does not strongly depend on the viscosity, but it depends strongly on the thermal
diffusivity χ. Eq. (2.4) is derived supposing only small thermal diffusivity, so almost an adiabatic case. In the
case of high thermal diffusivity or an isothermal case, the sound speed is different and so is the dispersion
relation for waves in gas. The Lindblad torque scales with the second power of the waves’ phase speed.
Because of the dispersion relation in the form

ω2 = c2
s k2 1 − iχk2/ω

1 − iγχk2/ω
, (2.30)

where cs is the adiabatic sound speed, the Lindblad torque scales with the factor
v2

p

c2
s

= 2Q

γQ + 1
2

√︂
2
√︁

(γ2Q2 − 1)2 + (4Q − 2γQ)2 + 2γ2Q2 − 2
, (2.31)

where Q := 2χpΩp/(3hc2
s ) = 2χp/(3Ωpr2

ph3). The effective gamma is then defined

γeff := γ
v2

p

c2
s

, (2.32)

where γ is the adiabatic constant of the gas.
The corotation torque is also induced by waves and thus the same argument holds as for the Lindblad

torque.
The horseshoe drag is dependent on the width of horseshoe region instead, as seen in Eq. (2.21). This

width scales with the speed sound as c
−1/2
s (Paardekooper & Papaloizou (2009)), so the scaling is the same

as for the linear torques.

2.4 Paardekooper’s formula for the Type-I migration
The linear theory holds for small perturbations, typical for a large viscosity or a large diffusivity, which
smooth-out perturbations. In the opposite case, the corotation torque is described by the horseshoe drag
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model. An expression, which correctly describes the transition between the two regimes, must be used.
Paardekooper et al. (2011) used full hydrodynamical simulations to determine expressions describing the

transition. For the barotropic torque, he defined K(pν) and G(pν), functions of the saturation parameter
pν , as

ΓC,baro = [1 − K(pν)]Γ
′

C,lin,baro + G(pν)Γ
′

C,hs,baro (2.33)

and he estimated them as

K(p) =

⎧⎨⎩
16
25
(︁ 45π

28
)︁3/4

p3/2 if p <
√︂

28
45π ,

1 − 9
25
(︁ 28

45π

)︁4/3
p−8/3 if p ≥

√︂
28

45π ,
(2.34)

and

G(p) =

⎧⎨⎩
16
25
(︁ 45π

8
)︁3/4

p3/2 if p <
√︂

8
45π ,

1 − 9
25
(︁ 8

45π

)︁4/3
p−8/3 if p ≥

√︂
8

45π .
(2.35)

For the entropic torque, he did not use another pair of functions, instead he found that a substitution

ΓC,ent =
√︂

[1 − K(pν)][1 − K(pχ)] Γ
′

C,lin,ent +
√︂

G(pν)G(pχ) Γ
′

C,hs,ent (2.36)

led to a good agreement with simulations.
Finally, the total torque is the sum of all the torque terms

Γ = ΓL + ΓC,ent + ΓC,baro . (2.37)

2.5 Eccentricity reductions
Cresswell & Nelson (2008) performed full 3D hydrodynamical simulations of gas in the gravitational field
of a star and one planet in order to study the dependence of torque on the eccentricity and inclination.
Considering one planet of 10 MEarth mass and various initial eccentricities and inclinations (in the range of
0.05 to 0.3 and 0.5◦ to 8◦), the reduction of the standard Lindblad torque is

∆L =
{︃

Pe + Pe

|Pe|
[︁
0.07(i/h) + 0.085(i/h)4 − 0.08(e/h)(i/h)2]︁}︃−1

, (2.38)

and
Pe = 1 + [e/(2.25h)]1.2 + [e/(2.84h)]6

1 − [e/(2.02h)]4 , (2.39)

where h denotes the aspect ratio.
The corotation torque was studied by Fendyke & Nelson (2014), who used 2D hydrodynamical simulations

of disks with various aspect ratios. Planets of 5 and 10 MEarth were studied, with the initial eccentricities
in the range 0 ≤ e ≤ 0.3. It turned out that an exponential reduction of the corotation torques is in a good
agreement with the simulations. The reduction, including also the inclination dependence, introduced by
Coleman & Nelson (2014), is

∆C = exp (−e/ef)[1 − tanh (i/h)] , (2.40)

where ef := 0.5h + 0.01.
Therefore, the torque after applying the reductions is

Γ = ΓL∆L + ΓC∆C . (2.41)

2.6 Thermal torque
Lega et al. (2014) performed full 3D hydrodynamic simulations of a planet in a gas disk with thermal
diffusion. She discovered that the effects related to thermal diffusion force a planet to migrate inwards. This
is because regions of cold and dense gas in the vicinity of a planet pushing it inwards.

Subsequently, Beńıtez-Llambay et al. (2015) performed 3D simulations with of a disk with a hot planet.
He demonstrated that the heating by a planet creates hot low-density lobes and in turn leads to a reversal
of the torque.

These effects also influence eccentricities and inclinations, as demonstrated by Chrenko et al. (2017). The
influence on the eccentricity is called the hot-trail effect.
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Masset (2017) then developed a theoretical framework for all these thermal torques and using a linear
theory, he derived expressions for the total thermal force.

In Cornejo et al. (2023), the expressions for the thermal force are also given, for the case when ea ≪ λ
and ia ≪ λ, where

λ =
√︃

χ

(3/2)Ωpγ
(2.42)

denotes the characteristic thermal length-scale.
The force components are expressed as

Fx = eF0(f c
x cos Ωpt + f s

x sin Ωpt) ,

Fy = eF0(f c
y cos Ωpt + f s

y sin Ωpt) ,

Fz = eF0(f c
z cos Ωpt + f s

z sin Ωpt) ,

(2.43)

where f -coefficients are determined from the linear theory as

f c
x = −0.507; f s

x = +1.440 ,

f c
y = +0.737; f s

y = +0.212 ,

f c
z = +1.160; f s

z = +0.646 .

(2.44)

F0 is the magnitude of the force, which is a sum of the cold component and the heating component, where
the cold component accounts for torque only due to thermal diffusion, without heating from a planet. Hence,

F0 = F cold
0 + F heating

0 . (2.45)

The cold component is computed as

F cold
0 = −

γ
3
2 (γ − 1)GMpaLc

(︁ 3
2 Ωp

)︁ 1
2

2πc2
s χ

3
2

, (2.46)

where
Lc = 4πGMpχρ0

γ
, (2.47)

where ρ0 is the mid-plane gas density at the location of the planet and let’s recall that χ is the thermal
diffusivity, γ, the adiabatic constant, a, the samimajor axis and cs, the adiabatic speed sound.

Finally, the heating component is

F heating
0 =

γ
3
2 (γ − 1)GMpaL

(︁ 3
2 Ωp

)︁ 1
2

2πc2
s χ

3
2

, (2.48)

where L denotes the luminosity of the planet. When L = Lc, a reversal of the torque occurs, thus Lc is
called the critical luminosity.
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3. Implementation and validation
In this work we want to present a global model of a protoplanetary system’s evolution. For this purpose,
the global 1D hydrodynamic model of a gas disk, introduced by Suzuki et al. (2016) and presented in
Chap. 1, has been combined with the symplectic N-body integrator for protoplanets Duncan et al. (1998).
It was necessary to implement a computation of the torque, based on actual profiles of the disk, using the
semi-analytical theory of migration developed by Paardekooper et al. (2011), described in Chap. 2. In the
following chapter, we will present how this was done, by describing our program, developed in FORTRAN
90.

3.1 Structure of the program
3.1.1 Main cycle
The main part of the program is a cycle, coordinating the hydrodynamic simulation with the N-body
simulation. (the do while cycle in the code). Generally, N-body simulations require much smaller time
steps than hydrodynamics, because N-body have to discretise sufficiently even one orbital period of the
innermost possible planet, where orbital period could be of order of days. For sufficient discretization at
least 10 points per orbit are necessary (for the inner boundary of simulation set at 0.1au, it corresponds to
the step length of approximately 1 day). Hydrodynamic simulation requires time scales allowing to simulate
properly waves and flows in gas, which can reach the order of the soundspeed. This time step then depends
on the size of a cell, but is generally orders of magnitude greater than the N-body step. Thus, the N-body
cycle (the subroutine symba step p1) is performed in each iteration of the main cycle and in each step a
check of the conditions for performation of the hydro’s time step is done (the subroutine kick disk).

Even before the main cycle, an initialization of the program has to be run. MigrationMapInput() allo-
cates the 2D arrays of the migration maps and loads input parameters related to the maps. Migration maps
serve as a storage of values of the Lindblad and corotation torques, for a certain range of planet’s masses and
semimajor axes. OgiharaInit() allocates fields used by the hydrodynamical simulation (the temperature,
the surface density array, etc.), loads input parameters related to the disk and calls BoundaryConditions()
and Radiative() subroutines (see Sec. 3.1.2). Because it is often useful to start the hydro and wait some
time, until disk relaxes and developes a bit, the following subroutine PrerunOfHydro(t prerun) starts hydro’
and lets it run for t prerun.

1 ...
2 call MigrationMapInput ()
3 call OgiharaInit ()
4 call PrerunOfHydro ( t_prerun )
5

6 do while ((t.le. tstop ).and .( nbod.gt .1))
7

8 call kick_disk (t,nbod ,mass ,xh ,yh ,zh ,vxh ,vyh ,vzh , dthalf )
9

10 i1st =0 ! to calculate barycentric velocities each time
11

12 call symba7_step_pl (i1st ,t,nbod ,nbodm ,mass ,j2rp2 ,j4rp4 ,
13 & xh ,yh ,zh ,vxh ,vyh ,vzh ,dt ,lclose ,rpl ,isenc ,
14 & mergelst ,mergecnt ,iecnt ,eoff ,rhill , mtiny )
15

16 call kick_disk (t,nbod ,mass ,xh ,yh ,zh ,vxh ,vyh ,vzh , dthalf )
17

18 t = t + dt
19

20 ...
21 enddo
22 ...
23 call MigrationMapsFinish ()
24 call OgiharaFinish ()

Subroutine kick disk The subroutine kick disk is called twice, the first step uses input parameters
before their actualization by SyMBA and the second uses already actualized parameters; in principle similar
idea to the trapezoidal rule in numerical integration.

The first part of the kick disk subroutine is the check for the hydro step. If time condition is fulfilled
than OgiharaCycle() is called and hydro step is performed. After that MigrationMaps() is called, which
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calculates migration maps (Gamma L, Gamma C) from the new updated temperature and density profiles of the
disk.

The next part contains cycle through all the planets. For each planet contains the calculation of the
torque and actualization of the acceleration and the velocity. In this cycle also inclination and eccentricity
damping and hottrail (according to the selected regime of the hottrail in intput files) is calculated and applied
on the planet.

Torques (migration maps) are calculated on discrete grid, so bi-linear interpolation for actual planet’s
position and mass has to be done. Coefficients of it are stored in the arrays (Gamma L a00, Gamma L a10,
Gamma L a01, Gamma L a11, Gamma C a00, Gamma C a10, Gamma C a01, Gamma C a11) and potentially reused.

1 use , intrinsic :: ieee_arithmetic , only: IEEE_Value , IEEE_QUIET_NAN
2 use const
3 use parameters
4 use dependent , only: GridSpacing , Nrad , Rmin , Rmax
5 use fields
6 use ogihara_cycle_mod
7 use MMigrationMaps
8 use MInterpolation2D
9

10 subroutine kick disk(t, nbod , mass , xh , yh , zh , vxh , vyh , vzh , dt)
11 ...
12 double precision , parameter :: MIN = 1.d -50 , MAX = 1. d50
13

14 ! CHECK FOR HYDRO ’
15

16 if (t.ge.time/yr) then
17 call OgiharaCycle ()
18 call MigrationMaps ()
19 ...
20 end if
21

22 ! LOOP OVER BODIES
23

24 ! j .. bodies
25 ! k .. radius - index
26 ! l .. mass - index
27

28 do j = 2,nbod
29

30 gm = mass (1)+mass(j)
31 call orbel_xv2aei (xh(j),yh(j),zh(j),vxh(j),vyh(j),vzh(j),gm ,ialpha ,a,e, cos2i )
32

33 ! SI units ...
34

35 a = a*au
36 r = sqrt(xh(j)*xh(j)+yh(j)*yh(j)+zh(j)*zh(j))*au
37 m = (mass(j)*au **3/ yr **2)/G
38

39 l = int( M_p_size *( sqrt(m)-sqrt( M_p_1 ))/( sqrt( M_p_2 )-sqrt( M_p_1 )) + 1.0 d0)
40 if ((m.lt.M_p(l)).and .(l > 1)) l = l -1
41

42 if ( GridSpacing (1:1) .eq.’S’) then
43 k = int(Nrad *( sqrt(r)-sqrt(Rmin))/( sqrt(Rmax)-sqrt(Rmin)) + 1.0 d0) ! square -root
44 if ((r.lt.Rmed(k)).and .(k > 1)) k = k -1
45 else
46 k = int(Nrad *(r-Rmin)/( Rmax -Rmin) + 0.5 d0) + 1 ! linear
47 endif
48

49 if (k < 1) cycle
50 if (k > Nrad -1) cycle
51 if (l < 1) cycle
52 if (l > M_p_size -1) cycle
53

54 ! do not compute what has been computed ...
55 if ( Gamma_indicator (k, l).eq .0) then
56 Gamma_indicator (k, l) = 1
57

58 call BilinearInterpolation (Rmed(k), Rmed(k+1) , M_p(l), M_p(l+1) , &
59 Gamma_L (k,l), Gamma_L (k,l+1) , Gamma_L (k+1,l), Gamma_L (k+1,l+1) , &
60 Gamma_L_a00 (k,l), Gamma_L_a10 (k,l), Gamma_L_a01 (k,l), Gamma_L_a11 (k,l))
61

62 call BilinearInterpolation (Rmed(k), Rmed(k+1) , M_p(l), M_p(l+1) , &
63 Gamma_C (k,l), Gamma_C (k,l+1) , Gamma_C (k+1,l), Gamma_C (k+1,l+1) , &
64 Gamma_C_a00 (k,l), Gamma_C_a10 (k,l), Gamma_C_a01 (k,l), Gamma_C_a11 (k,l))
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65 end if
66

67 Gamma_L_value = InterpolatedValues ( Gamma_L_a00 (k,l), Gamma_L_a10 (k,l), &
68 Gamma_L_a01 (k,l), Gamma_L_a11 (k,l), r, m)
69

70 Gamma_C_value = InterpolatedValues ( Gamma_C_a00 (k,l), Gamma_C_a10 (k,l), &
71 Gamma_C_a01 (k,l), Gamma_C_a11 (k,l), r, m)
72

73 h = height (k)+( height (k+1) -height (k))/( Rmed(k+1) -Rmed(k))*(r-Rmed(k))
74 inc = acos( cos2i )/2 d0
75 e_f = 0.5 d0*h + 0.01 d0
76 tmp = 1.0d0 -(e /(2.02 d0*h))**4
77 if (tmp.ne .0.0 d0) then
78 ! Cresswel & Nelson (2008) , Izidoro et al. (2017)
79 P_e = (1.0 d0 + (e /(2.25 d0*h)) **1.2 d0 + (e /(2.84 d0*h))**6)/tmp)
80 Delta_L = 1.0 d0 /( P_e + P_e/abs(P_e) *(0.07 d0 *( inc/h) + 0.085 d0 *( inc/h)**4 - &
81 0.08 d0 *(e/h)*( inc/h)**2))
82 else
83 Delta_L = 0.0 d0
84 endif
85

86 ! Coleman & Nelson (2014) , Izidoro et al. (2017)
87 Delta_C = exp(-e/e_f) *(1.0 d0 - tanh(inc/h))
88

89 Gamma_ = Gamma_L_value * Delta_L + Gamma_C_value * Delta_C
90

91 ! Tanaka & Ward (2004)
92 c_s = sqrt(k_B*Temp(k)/( molar_mass *m_u))
93 Omega_p = sqrt(G*M_s/r**3)
94

95 t_wave = ((m/M_s)**( -1) * ( Sigma (k)*a**2/ M_s)**( -1) * (c_s /(a* Omega_p ))**4 * Omega_p **( -1)
)

96

97 te = t_wave /0.780 d0
98 ti = t_wave /0.544 d0
99

100 ! au , yr , au **3/ yr **2 units ...
101 a = a/au
102 r = r/au
103 te = te/yr
104 ti = ti/yr
105 Gamma_ = Gamma_ /( M_s*au **2* yr **( -2))
106 Omega_p = Omega_p *yr
107 m = m/M_s
108

109 ! ACCELERATION FROM TORQUE
110

111 dadt = 2* Gamma_ /(m*r)/ Omega_p
112

113 v2 = vxh(j)*vxh(j)+vyh(j)*vyh(j)+vzh(j)*vzh(j)
114 if (v2.ne .0.0 d0) then
115 K = 0.5 d0*dadt*gm /(a*a*v2)
116 else
117 K = MAX
118 endif
119

120 axh = K*vxh(j)
121 ayh = K*vyh(j)
122 azh = K*vzh(j)
123 vxh(j) = vxh(j) + axh*dt
124 vyh(j) = vyh(j) + ayh*dt
125 vzh(j) = vzh(j) + azh*dt
126

127 ! definitions of various hot - trail regimes
128 select case ( hottrail )
129 case (0)
130 continue
131 case (1)
132 if (e > hottrail_e ) then
133 te = te /(1.0 d0 - hottrail_e /e+MIN)
134 else
135 te = MAX
136 endif
137 if (inc > hottrail_i ) then
138 ti = ti /(1.0 d0 - hottrail_i /inc+MIN)
139 else
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140 ti = MAX
141 endif
142 ...
143 end select
144

145 ! ECCENTRICITY DAMPING OR FORCING
146

147 rv = xh(j)*vxh(j)+yh(j)*vyh(j)+zh(j)*vzh(j)
148 r2 = r*r
149 K = -2.d0*rv /( r2*te)
150

151 ! updating velocity and acceleration of the planet
152 ...
153

154 ! INCLINATION DAMPING OR FORCING
155

156 kx = 0. d0
157 ky = 0. d0
158 kz = 1. d0
159 kv = vzh(j)
160 K = -2.d0*kv/ti
161

162 ! updating velocity and acceleration of the planet
163 ...
164 enddo
165 return
166 end subroutine

3.1.2 Hydrodynamical part
Spatial discretiazation The spatial range is determined by the following input parameters: Rmin – the
inner boundary, Rmax – the outer boundary. This range is divided in Nrad cells and the resulting 1D spatial
grid is stored in the following arrays: Rinf – the inner boundary of each cell, Rsup – the outer boundary
of each cell, and Rmed – the center of each cell. The exact shape of grid depends on the type of spatial
discretization, which can be arithmetic, logarithmic or square-root.

The arithmetic means that the spatial range is divided into cells of equal size, independently of the
distance from the star, thus

Rinf(r̂) = Rmin + (Rmax − Rmin)(r̂ − 1)/Nrad , (3.1)

where Rinf(r̂) is the lower boundary of r̂-th cell (r̂ is index of the array), Rmax, Rmin are the boundaries of
simulated range and Nrad is the number of cells into which this range is divided.

The logarithmic discretiztion uses cells which size is proportional to the distance from the star, thus

Rinf(r̂) = exp[log Rmin + (log Rmax − log Rmin)(r̂ − 1)/Nrad] . (3.2)

The square-root discretization is a ’compromise’ between the two

Rinf(r̂) =
[︂√︁

Rmin +
(︂√︁

Rmax −
√︁

Rmin

)︂
(r̂ − 1)/Nrad

]︂2
. (3.3)

Temporal discretization The hydro-dynamical step is controlled by adaptive time scale. This is because
for properly simulating the fluid the fastest possible motion and waves propagating in gas must be computed
correctly. In a subsonic fluid, it is often the speed of sound, which limits the speed of interaction in gas and
the maximal speed of waves. Hence, the time step has to be less than the minimum of cell’s size divided by
the local sound speed. This is called the Courant criterion; it is impemented in the function courant(dt ),
which returns the length of the time step. Thus, we use the time step which is calculated as

dt = min(CFL dR(r̂)/cs(r̂)) , (3.4)

where min means the minimum over all the cells, dR(r̂), the width of the r̂-th cell and cs(r̂), the sound speed
in the r̂-th cell. CFL represents the Courant number, typically a number of the order of 0.1, depending on
the particular equation which is being solved. It is determined by the maximal signal speed in the problem,
relative to the sound speed of the medium.

Additionally, we use the upper limit DT (maximal step), so if the time step from the Courant criterion is
greater than the maximal step then hydro step is performed once each DT. This ensures some regularity in
the hydrodynamical part of simulation and allows for the output of hydro’s arrays at certrain multiples of
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DT (the variable Ninterm then determines after how many DTs output files are printed). Also the total time
span of the simulation is specified as Ntot, the number of DT segments to be done.

Eventually, we use the minimal size of the step dtmin, which prevents stopping of the simulation due to
too small steps. This is case of extreme unrelaxed initial conditions and is chosen reasonably small in order
to ensure fulfilment of the Courant criterion in the rest of the simulation (it is only used in order to manage
these extreme cases).

Arrays for profiles of the disk Our hydrodynamical simulation operates on 1D arrays, which contain
all important quantities’ profiles of the disk. Each array is of size Nrad and its cells correspond to the spatial
grid. Specifically, Sigma contains the surface density Σ, Temp, the temperature T , cs, the adiabatic sound
speed cs, kappa R, the Rosseland opacity κR, F rad, the radiative outflow flux Frad (see Chap. 1 Sec. 1.5),
C w, the wind parameter CW, alpha phiz and alpha rphi, the viscous parameters αϕz and αrϕ, and vrad,
the radial velocity vr.

These fields and the grid are allocated in soubroutines allocate fields() and grid(), which are called
from OgiharaInit().

Initial conditions Arrays are initialized in the soubroutine initial conditions(), which is also called
from OgiharaInit(). Initially, the surface density profile is set as a power law with an exponential cut-off,

Σ = Σ0[Rmed/au]−α0 exp (−Rmed/Rcut) , (3.5)

where α0 is the slope of the power law (often set similarly as in the minimum mass solar nebula profile).
Rcut limits the extent of the disk and causes that density decreases steeply at distances greater than Rcut;
in the simulation, it is specified by input parameter Rcut.

The temperature is set initially as −0.5 power of the distance,

T = (280 K)[Rmed/au]−0.5 (3.6)

and subsequently in the subroutine OgiharaInit(), it is relaxed by the subroutine Radiative() to an
equilibrium profile.

The radial velocity vrad is set to zero.

Boundary conditions To constrain gas on the inner and outer boundaries, we use the following boundary
conditions.

Inner conditions – For the surface density, we set density in the innermost cell equal to the second
innermost cell,

Σ(1) = Σ(2) . (3.7)

The temperature on the boundary is set as a power law, relatively to the second innermost cell,

T (1) = T (2)
[︃

Rmed(1)
Rmed(2)

]︃−0.5
. (3.8)

Outer conditions – The surface density is set as a power law (−1.5, corresponding to the minimum mass
solar nebula profile), relatively to the second innermost cell,

Σ(Nrad) = Σ(Nrad − 1)
[︃

Rmed(Nrad)
Rmed(Nrad − 1)

]︃−1.5
. (3.9)

The temperature is again set as a power law but with a fixed coefficient,

T (Nrad) = (280 K)[Rmed(Nrad)/au]−0.5 . (3.10)

Numerical methods Eq. 1.19 is solved numerically using either the FTCS scheme or the BTCS scheme,
as is specified in the input file.

Let’s have equation of form
∂u

∂t
= f(∂2u

∂r2 ,
∂u

∂r
, u, r, t) , (3.11)

for the function u(t, r). On a discrete spatial and temporal grid (let’s denote t̂ and r̂ indices of grid) it can
be solved numerically by:
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1. FTCS scheme – u(t̂ + 1, r̂) is expressed in terms of u(t̂, r̂ − 1) , u(t̂, r̂) and u(t̂, r̂ + 1) as

u(t̂ + 1, r̂) = u(t̂, r̂) + R(u(t̂, r̂ − 1), u(t̂, r̂), u(t̂, r̂ + 1))∆t , (3.12)

where R(u(t̂, r̂−1), u(t̂, r̂), u(t̂, r̂+1))) represents the right-hand side of the equation, where the first derivative
is replaced by a difference,

∂u

∂r
(t̂, r̂) = u(t̂, r̂ + 1) − u(t̂, r̂ − 1)

2∆r
(3.13)

and the second derivative by

∂2u

∂r2 (t̂, r̂) = u(t̂, r̂ + 1) − 2u(t̂, r̂) + u(t̂, r̂ − 1)
(∆r)2 . (3.14)

2. BTCS scheme - u(t̂ + 1, r̂) is expressed in terms of u(t̂, r̂) , u(t̂ + 1, r̂ − 1) and u(t̂ + 1, r̂ − 1). Thus

u(t̂ + 1, r̂) = u(t̂, r̂) + R(u(t̂ + 1, r̂ − 1), u(t̂ + 1, r̂), u(t̂ + 1, r̂ + 1))∆t (3.15)

and the derivatives are instead of in t̂ expressed in t̂ + 1. Then Eq. (3.15) describes u(t̂ + 1, r̂ − 1), u(t̂ + 1, r̂)
and u(t̂ + 1, r̂ + 1) in terms of u(t̂, r̂). This seems insufficient but the Eq. (3.15) represents a system of
equations, not an isolated equation. These equations can be written concisely in matrix formalism as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

b(0, t̂) c(0, t̂)
a(1, t̂) b(1, t̂) c(1, t̂)

a(2, t̂) b(2, t̂) c(2, t̂)
. . .

. . .
a(n − 1, t̂) b(n − 1, t̂) c(n − 1, t̂)

a(n, t̂) b(n, t̂)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

u(0, t̂)
.
.
.
.
.

u(n, t̂)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

u(0, t̂ − 1)
.
.
.
.
.

u(n, t̂ − 1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(3.16)

where a,b and c are functions depending on particular equation, which is being solved. This system is then
solved by a matrix-solving algorithm.

OgiharaCycle() subroutine This subroutine repeatedly calls all the hydrodynamical subroutines until all
hydro-steps together reach DT, then it returns to the kick disk().

The subroutine pointer step ptr(dt ) points to a numerical scheme, either FTCS or BTCS. The sub-
oroutine radiative() contains a gradient descent algorithm for solving the energetics, Eq. (1.27), and
updating the temperature profile.

1 subroutine OgiharaCycle ()
2 ...
3 use MMigrationMaps
4 ...
5

6 tout = time+DT
7 ! inner cycle
8 do while (time.lt.tout)
9 dt_ = courant (dt_)

10 dt_ = min(dt_ ,tout -time)
11 time = time+dt_
12 call step_ptr (dt_)
13 call check ()
14 call boundary_conditions ()
15 call radiative ()
16 call boundary_conditions ()
17 enddo
18

19 ...
20 end subroutine OgiharaCycle

3.1.3 Migration maps
Migration maps are 2D arrays, storing values of relevant torques dependent on the radial distance and the
mass (of a planet). We use two arrays; one of them stores the Lindblad torque and the other one the
corotation torque. Migration maps are actualized once per DT period, when torques are calculated according
to the Paardekooper’s formulae, see Chap. 2 Sec. 2.4.
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Two modules were implemented to update the migration maps: MMigrationMaps and MPaardekooper.
The first one contains a cycle, which goes through these 2D arrays and calls the function Paardekooper
sequentially for all radial distances and masses. Moreover, it calculates α and β profiles, based on the
actual profile of the disk. The power law coefficients α and β are calculated as a linear fit of logarithm
of profiles, which is done within some ’window’, i.e., set of cells centered on the cell, for which α and β
are being calculated (cf. the subroutine ExponentialFit(Rmed, Sigma, alpha)). A larger window means
more softening of the profile, whereas a small window can be toe sensitive to artefacts (e.g. wavy profile).

1 module MMigrationMaps
2 double precision , dimension (:) , allocatable :: M_p
3 double precision , dimension (: ,:) , allocatable :: Gamma_ , Gamma_L , Gamma_C , Gamma_L_a00 ,

Gamma_L_a10 , Gamma_L_a01 , Gamma_L_a11 , Gamma_C_a00 , Gamma_C_a01 , Gamma_C_a10 ,
Gamma_C_a11 , Gamma_indicator

4 integer :: no
5 double precision , dimension (:) , allocatable :: alpha , beta , height
6 integer :: M_p_size , r_size
7 double precision :: M_p_1 , M_p_2
8 integer :: Nmig , Nmass
9

10 contains
11

12 subroutine MigrationMaps ()
13 use const
14 use parameters
15 use dependent
16 use fields
17 use grid_mod
18 use MExponentialFit
19 ...
20

21 call ExponentialFit (Rmed , Sigma , alpha )
22 call ExponentialFit (Rmed , Temp , beta)
23

24 do i = 1, Nmig
25 c_s = sqrt(k_B*Temp(i)/( molar_mass *m_u))
26 Omega_p = sqrt(G*M_s/Rmed(i)**3)
27 height (i) = c_s /( Rmed(i)* Omega_p )
28 end do
29

30 do j = 1, size(M_p)
31 do i = 1, Nmig
32 Gamma_ (i,j) = Paardekooper ( Sigma (i), alpha (i), T(i), beta(i), nu(i), kappa (i),

GravConst *M_p , r(i), GravConst *M_star , adiabatic_gamma , molar_mass , Gamma_L (i,j),
Gamma_C (i,j))

33 end do
34 end do
35

36 end subroutine MigrationMaps
37

38 end module MMigrationMaps

Module MPaardekooper It is responsible for a calculation of torques. It contains the function Paardekooper,
with Gamma L and Gamma C beign the output parameters. Moreover, it contains F(p), K(p) and G(p) func-
tions, which are called from within the function Paardekooper. They are used to Eqs. (2.25), (2.34) and
(2.35).

1 module MPaardekooper
2 use const , GravConst => G
3 use parameters
4

5 contains
6

7 ! Paardekooper et al. (2011)
8 function F(p)
9 double precision :: F

10 double precision , intent (in) :: p
11 double precision :: ri_4_3 , ri_1_3 , rk , rip , rkp
12

13 call bessik (p, 4.0 d0 /3.0d0 , ri_4_3 , rk , rip , rkp)
14 call bessik (p, 1.0 d0 /3.0d0 , ri_1_3 , rk , rip , rkp)
15

16 F = 8.0 d0 /(3.0 d0*p* ri_1_3 / ri_4_3 +9.0 d0 /2.0 d0*p**2)
17 end function F
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19 ! Paardekooper et al. (2011)
20 function G(p)
21 double precision :: G
22 double precision , intent (in) :: p
23

24 if (p >= sqrt (8.0 d0 /(45.0 d0*PI))) then
25 G = 1.0d0 -9.0 d0 /25.0 d0 *(8.0 d0 /( PI *45.0 d0)) **(4.0 d0 /3.0 d0)*p**( -8.0 d0 /3.0 d0)
26 else if (p >=0.0 d0) then
27 G = 16.0 d0 /25.0 d0 *(45.0 d0*PI /8.0 d0) **(3.0 d0 /4.0 d0)*p **(3.0 d0 /2.0 d0)
28 else
29 print *, " WARNING : p in function G(p) is negative ."
30 G = 0.0 d0
31 end if
32 end function G
33

34 ! Paardekooper et al. (2011)
35 function K(p)
36 double precision ::K
37 double precision , intent (in)::p
38 if (p >= sqrt (28.0 d0 /(45.0 d0*PI))) then
39 K = 1.0d0 -9.0 d0 /25.0 d0 *(28.0 d0 /( PI *45.0 d0)) **(4.0 d0 /3.0 d0)*p**( -8.0 d0 /3.0 d0)
40 else if (p >=0.0 d0) then
41 K = 16.0 d0 /25.0 d0 *(45.0 d0*PI /28.0 d0) **(3.0 d0 /4.0 d0)*p **(3.0 d0 /2.0 d0)
42 else
43 print *, " WARNING : p in function K(p) is negative ."
44 K = 0.0 d0
45 end if
46 end function K
47

48 ! Paardekooper et al. (2011)
49 function Paardekooper (Sigma , alpha , T, beta , nu , kappa , GM_p , r_p , GM_s , adiabatic_gamma ,

mu , Gamma_L , Gamma_C )
50 double precision :: Paardekooper
51 double precision , intent (in) :: Sigma , alpha , T, beta , nu , kappa , GM_p , r_p , GM_s ,

adiabatic_gamma , mu
52 double precision :: Gamma_L , Gamma_C_baro , Gamma_C_ent
53 double precision :: c_s , Omega_p , h, Q, adiabatic_gamma_eff , q_small , chi
54 double precision :: C_b_over_h , x_s , k_small , p_v , p_chi , ksi , Gamma_0
55 double precision :: Gamma_C_lin_ent , Gamma_hs_ent , Gamma_C_lin_baro
56 double precision :: Gamma_hs_baro , pomocna , Gamma_C , Gamma_ , L, tau , rho
57

58 c_s = sqrt(k_B*T/( mu*m_u))
59 Omega_p = sqrt(GM_s/r_p **3)
60 h = c_s /( r_p* Omega_p )
61 chi= 16.0 d0* adiabatic_gamma *( adiabatic_gamma -1.0 d0)* sigma_SB *T **4/(3.0 d0* kappa * Sigma **2*

Omega_p **2)
62 Q = 2.0 d0*chi* Omega_p /(3.0 d0*h*c_s **2)
63 adiabatic_gamma_eff = 2.0 d0*Q* adiabatic_gamma /(Q* adiabatic_gamma + 1.0 d0 /2.0 d0*sqrt (2.0

d0*sqrt (( adiabatic_gamma **2*Q **2+1.0 d0)**2 - 16.0 d0*Q **2*( adiabatic_gamma -1 d0)) + 2.0 d0*
adiabatic_gamma **2*Q**2 -2.0 d0))

64 q_small = GM_p/GM_s
65 C_b_over_h = 1.1 d0* adiabatic_gamma_eff **( -1.0 d0 /4.0 d0) *(0.4 d0/ b_over_h ) **(1.0 d0 /4.0 d0)
66 x_s = C_b_over_h *sqrt( q_small /h)
67 k_small = r_p **2* Omega_p /(2 d0*PI*nu)
68 p_v = 2d0 /3 d0*sqrt( k_small *x_s **3)
69 p_chi = sqrt(r_p **2* Omega_p *x_s **3/(2 d0*PI*chi))
70 ksi = beta -( adiabatic_gamma -1.0 d0)* alpha
71

72 Gamma_0 = ( q_small /h)**2 * Sigma * r_p **4 * Omega_p **2
73 Gamma_C_lin_ent = (2.2d0 -1.4 d0/ adiabatic_gamma_eff )*ksi/ adiabatic_gamma_eff * Gamma_0 ! Eq

. (7)
74 Gamma_hs_ent = 7.9 d0*ksi/ adiabatic_gamma_eff **2* Gamma_0 ! Eq. (5)
75 Gamma_C_lin_baro = 0.7 d0 *(3.0 d0 /2.0d0 - alpha )/ adiabatic_gamma_eff * Gamma_0 ! Eq. (6)
76 Gamma_hs_baro = 1.1 d0 *(3.0 d0 /2.0d0 - alpha )/ adiabatic_gamma_eff * Gamma_0 ! Eq. (4)
77 Gamma_C_ent = Gamma_hs_ent *F(p_v)*F( p_chi )*sqrt(G(p_v)*G( p_chi )) + Gamma_c_lin_ent *sqrt

((1.0 d0 -K(p_v)) *(1.0 d0 -K( p_chi )))
78 Gamma_C_baro = Gamma_hs_baro *F(p_v)*G(p_v) + (1.0d0 -K(p_v))* Gamma_C_lin_baro
79 Gamma_C = Gamma_C_baro + Gamma_C_ent
80 Gamma_L = ( -2.5 d0 - 1.7 d0*beta + 0.1 d0* alpha )/ adiabatic_gamma_eff * Gamma_0
81 Gamma_ = Gamma_L + Gamma_C
82 Paardekooper = Gamma_
83 end function Paardekooper
84

85 end module MPaardekooper
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3.2 Validation
Implemented models, especially the modules MPaardekooper and MMigrationalMaps, had to be validated.
This was done by comparing various quantities calculated by the module MPaardekooper to those calculated
by Paardekooper et al. (2011) and comparing their figures with ours. Moreover, MMigrationalMaps was
validated against the migration maps of Bitsch et al. (2013).

3.2.1 Validation of Paardekooper function
Validation of function F (p) The function F (p), Eq. (2.25), was tested because it is non-trivial and con-
tains a calculation of the Bessel functions. It was compared to manually sampled points from Paardekooper
et al. (2011), Fig. (3.1). Our calculation is in excellent agreement (≪ 1 %) with the Paardekooper’s.

Figure 3.1: F (p) function. The orange points are from Paardekooper et al. (2011) Fig. 2, the blue points are
calculated by F(p) function of our program.

Paardekooper’s fig. 3 In that figure, Paardekooper’s Eq. (32) seems to be plotted according to its caption.
However, if formulas for Γc,hs,baro and Γc,lin,baro are inserted into Paardekooper’s Eq. (32) and compared
with Paardekooper’s Fig. 3 we can see that the factor (1.5 − α)/γ would have to be equal approximately
2, but this is impossible for α = 0.5, β = 1.0 as claimed by Paardekooper; to get that curve γ < 1 would
be required. For this reason, it’s difficult to determine, which parameters or which equation Paardekooper
really plotted in his figure. In Fig. 3.2, one can see our curve, calculated with Paardekooper’s parameters,
compared with the Paardekooper’s. The position of the maximum of our curve is order of 10s % to the
right in comparison with the Paardekooper’s maximum. We conclude that Paardekooper probably made an
error in his parameters, plotted something different than Eq. (32) or simply did not declare all necessary
parameters.

Paardekooper’s fig. 5 This validation validates mainly G(p) and K(p) functions, Eqs. (2.35) and (2.34),
and the expressions for torques, Eqs. (2.33), (2.36), (2.26) and (2.28). It is based on a calculation of the
corotation torque dependence on pν , based on the assumption that χp = νp, with the same parameters as
did Paardekooper and comparison with the dashed curve in his Fig. 5. As can be seen in Fig. (3.3) the both
curves are equal within ≪ 1 %, thus this validation can be considered as successful.

Paardekooper’s fig. 6 This is another test for K(p), G(p) functions and the torque expressions. A little
bit different regime was chosen, now νp and χp are independent and the torque dependency on νp is calculated
for different constant values of χp. This is then compared to Paardekooper’s fig. 6, see our Fig. 3.4. There
is a small error but it is only of the order of percents.

Paardekooper’s fig. 8 In this test, the expression for γeff , Eq. (2.32) together with Eq. (2.31), was
tested. Now χ is varied and γeff dependence is calculated. It was done for h = 0.025, 0.05 and 0.1 as did
Paardekooper, and then compared with his fig. 8, see our Fig. 3.5. Paardekooper’s result are in accordance
with our results within the order of percents JH:........lepsi obrazek.
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Figure 3.2: Comparison of fig. 3 from Paardekooper et al. (2011) (orange) with our calculation of the
corotation torque ΓC,baro/Γ0 (blue), Eq. (2.33). In this test, we assumed γ = 1.4 and γeff was not used at
all. Other parameters were α = 0.5, β = 1.0, h = 0.05, Mp/Ms = 1.26 · 10−5 and b/h = 0.4.

Figure 3.3: Comparison of fig. 5 from Paardekooper et al. (2011) (orange) with our calculation of ΓC/Γ0
(blue), where ΓC = ΓC,baro + ΓC,ent, Eqs. (2.33), (2.36). In this test, we assumed νp = χp and α = 0.5,
β = 1.0, h = 0.05, γeff ≈ γ = 1.4, Mp/Ms = 1.26 · 10−5 and b/h = 0.4.

Validation of γeff in the limit Eq. (2.32) together with Eq. (2.31) is a monotonous function with the
limits γeff → γ for Q → +0 and γeff → 1 for Q → +∞. On a computer, because of limited precision of
the respective data types, the calculation is not sufficiently precise for Q < 10−7, when γeff instead of being
equal to γ, goes to 2. Thus, we had to test if Q can really be lower than 10−7. We performed one simulation,
printing the values of Q and γeff . If Q was of the order 10−7 this did not led to an important error in γeff ; it
was only slightly above γ. If Q is of the order 10−8, γeff was indeed computed erroneously as 2. We decided
to introduce an if condition for a possible error.
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Figure 3.4: Comparison of fig. 6 from Paardekooper et al. (2011) with our calculation of ΓC/Γ0. The
parameter νp was varied and test was done for two different values of χp (10−7 au2 yr−1 and 10−5 au2 yr−1).

Figure 3.5: Comparision of fig. 8 from Paardekooper et al. (2011) with our calculation of γeff dependency
on χ/(csH). The parameters were h = 0.025, 0.05 and 0.1 (three different curves), and γ = 5/3.
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3.2.2 Validation of migration maps
Our migration maps were compared with those calculated with Bertram Bitsch’s program (Bitsch et al.
(2013)). The test was done for the disk profiles from Bitsch et al. (2015), for the high-metallicity case. In
Fig. 3.5, the comparison of both sets of maps for several times of disk evolution can be seen. Parameters
were: the metallicity µR = 0.01, the α-viscosity α = 5.4 · 10−3 and the opacity prescription was from Bell &
Lin (1994).

When the precise prescription for F (p) was used (Eq. (2.25)), there was a small error between both sets of
maps. The error was of the order of percents for more massive planets than ≈ 0.5ME and under the percent
for masses less than that. This error disappeared (≪ 1 %) when approximate formula for F (p), which was
used by Bitsch, was used by us as well,

F (p) ≈ 1
1 + (p/1.3)2 . (3.17)

Figure 3.5: Normalized migration maps, Γ/Γ0, for the disk profile from Bitsch et al. (2015), calculated by
our program (left) and Bitsch’s program (right). The corresponding times of the disk state are (from top to
bottom) tdisk = 0.0, 1.1 and 10.0 Myr
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4. Parameter survey
In this chapter, we focus on a reconstruction of early Solar system’s architecture. The question of early
evolution of planetary systems has been extensively studied before and several approaches to explain different
aspects were employed. For example, Izidoro et al. (2017) studied super-Earths formation from migrating
protoplanets, Raymond & Izidoro (2017) a transport of water to the terrestrial zone by planetesimals, or
Woo et al. (2024) the Solar system formation from a thin ring of planetesimals. For a detailed discussion of
the topic see the recent review by Raymond (2024).

In particular, Brož et al. (2021) studied a system of Mercury- to Mars-size protoplanets pushed together
by convergent migration. They described the migration torque by a fixed prescription. This led to a successful
formation of Solar-system analogues. The model described in Chap. 3 is an extension of that work, since it
can be applied to planetary systems embedded in an evolving disk.

In this work, we will start from some initial set of protoplanets and we will attempt to determine the
range of disk parameters which lead to a formation of a system similar to the Solar system in terms of planets’
masses, numbers and also their orbital characteristics. Such a system could be later on tested statistically
with various initial conditions for protoplanets in order to search for the best Solar system analogues.

4.1 Initial conditions and other parameters
The most important parameters of the model, which could be varied, are: the set of initial protoplanets
(its distribution and extent), the initial conditions and other parameters of the disk. For the moment, we
will use a fixed set of Mercury- to Mars-size protoplanets; possible dependence on it is not studied here.
Nevertheless, we will examine the role of other parameters.

The hydrodynamical model introduced by Suzuki et al. (2016) and described in Chap. 1 has several free
parameters like αrϕ, αϕz and CW, or even the initial density profile, which determines the total amount of
gas in the disk. These parameters determine the overall evolution of the disk (the surface density profile,
temperature profile) and its lifetime and thus determine the migration rates. This has a major impact on
planetary systems’ formation.

We essumed a star of one Solar mass and a set of 28 protoplanets of Mercury to Mars’ mass (in total
2 ME – approximately current mass of the inner Solar system). The mass with increasing number j of a
protoplanet (i.e., the greater distance from the star) is

m(j + 1) = 1.026 m(j) . (4.1)

We distributed them from 0.4 to 1.8 au, where neighbouring protoplanets are separated by a fixed multiple
of the mutual Hill sphere’s radius,

a(j + 1) − a(j)
[a(j + 1) + a(j)]/2 = 9.75

(︃
m(j + 1) + m(j)

3Ms

)︃1/3
, (4.2)

where Ms is the mass of the central star (in our case, one Solar mass).
Eccentricities were set to be equal 0.01 and inclinations 0.5◦. The longitude of the ascending node, the

argument of perihelion and the mean anomaly were for each planet chosen randomly.
The planets were inserted in the disk at 0.3 Myr in order to avoid problems with non-equilibrium initial

state of the disk (0.3 Myr is enough time for the ‘hydro’ to relax).
For the disk, we set a fixed initial profile according to Eq. (3.5), with the surface density Σ0 = 1700 g cm−2

at 1 au, the power-law exponent of −1.5 and the exponential cutoff at 30 au. This is inspired by the Minimal
Mass Solar Nebula (Hayashi (1981)).

The spatial discretzation had to be tested in order to find a suitable number of radial cells for which
migration maps converge. We found that Nrad = 1024 is sufficient. Other parameters of the ‘hydro’ and
technical details of the discretization are summed up in Tab. 4.1.

Two types of models, weak-wind and strong-wind were tested, where each of them assumed different
radiative energy and wind prescriptions (Eqs. (1.31), (1.32) and (1.29), (1.30), respectively). These models
and concrete values of parameters αrϕ, αϕz and CW were examined and varied in order to find the best
combination.
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Table 4.1: Parameters of the MRI-inactive, weak-wind model with a Σ-dependent torque (Suzuki et al.
(2016)). Σ0 is the initial surface density of gas at 1 au, αΣ and Rcut describe the dependence of the initial
surface density on the distance from the star (Eq. (3.5)), αrϕ, the turbulent viscosity, αϕz, the wind-related
alpha, CW, the intensity of the disk wind. The radiative equation describes what type of equation was
considered. The opacity describes which opacity prescription was used. The discretization was determined
by Nrad, the number of cells, rmin and rmax, the distance of the inner and outer boundary, DT, the default
(long) time step, dtmin, the minimum time step, CFL, the Courant number,.

Our parameters of the hydrodynamical model
parameter value
Σ0 17000 kgm−2

αΣ −1.5
Rcut 30 au
αrϕ varied
αϕz varied
CW varied
radiative equation varied according to regime

(strong vs. weak wind)
opacity Zhu et al. (2012)
Nrad 1024
rmin 0.05 au
rmax 100 au
grid spacing square-root
DT 1000 yr
dtmin 1 yr
CFL 1
solving method BTCS

4.2 MRI inactive weak wind high viscosity model (αrϕ = 8 · 10−5,
αϕz = 10−5(Σ/Σ0)−0.66, CW = 10−5)

We started with the MRI inactive weak wind model from Suzuki et al. (2016) with the same parameters,
namely: αrϕ = 8 · 10−5, αϕz = 1 · 10−5(Σ/Σ0)−0.66 and CW = 1 · 10−5.

The evolution of disk profiles is plotted in Fig. 4.1 and the corresponding migration maps in Fig. 4.2.
An inverted profile of the gas surface density (increasing Σ with r) occurs in this model and leads to a
negative α-slope (α in the terrestrial zone is between −0.5 and 1 at 0.3 Myr and between −1 and −0.5 after
3 Myr). The inversion mainly affects the barotropic corotation torque, which is very dependent on α and
independent of β. Hence, the corotation torque is stronger (positive), and ‘overpowers’ the negative Lindblad
torque and leads to a formation of a convergent zone. Between 0.3 and 1 Myr, the gas density maximum
(i.e., the inversion) occurs around 1 au and later shifts with time to greater radii (after 3 Myr, it is at more
than 2 au).

The temperature profile is monotonous and β is between 0.3 and 0.8. After 3 Myr, it is almost a power
law and β is a constant around 0.5. The Lindblad torque and entropic corotation torque are more sensitive
to β than to α and they both decrease with increasing β.

The nontrivial shape of the convergent zone (e.g., two separated zones at 0.3 Myr) is mainly caused by
opacity transitions. At 0.3 Myr, two transitions can be seen, one around 0.42 au due to graphite grains
corrosion and another around 0.11 au due to other grains evaporation. At 1 Myr, the graphite corrosion
region is shifted more inwards, to around 0.25 au, and the grains evaporation region is shifted so inwards
that it is out of the simulation range. At later times, opacity transitions are no longer apparent.

According to the evolution of the system, the maximal migration rate was of the order of 0.1 au Myr−1.
This is not sufficient because migration ceased with time. According to the migration maps, in the terrestrial
zone after 10 Myr, the migration rates in the absolute value are lower than 10−3 au Myr−1. At that time,
the gas surface density is less than 20 kg m−2. The inner part of the disk is almost dispersed and, according
to the migration rates of planets (Fig. 4.3), no significant migration is apparent after 3 Myr.

The system ended up with a high number of low-mass planets (14 planets with the maximal mass of
0.24 ME) and no high-mass planets like Venus or Earth were present. The rate of collisions was too low and
the system was difficult to destabilize (possibly due to mutual resonances). Overall, the migration was not
efficient enough to concentrate the protoplanets.

One of the possible solutions could be to prolong the lifetime of the disk to make the migration more

30



Figure 4.1: The gas surface density (top, left) and temperature (bottom, left) profiles of the MRI inactive
weak wind high viscosity disk at several different times: 0.0, 0.3, 1.0, 3.0, 10.0 Myr. The right panel contains
α (top, right) and β (bottom, right) slope coefficients (Eq. (2.5) and (2.6)); for clarity each time has different
position of the zero (0.3, 1.0, 3.0, 10.0 Myr - 0, 2, 4, 6).
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Figure 4.2: Migration maps for the MRI inactive weak wind high viscosity model for various times – 0.3
(top, left), 1.0 (top, right), 3.0 (bottom, left) and 10.0 Myr (bottom, right). The colour scale corresponds
to the migration rate in units au Myr−1, i.e., the change of the semi-major axis per unit of time. Red is
migration outwards whereas blue is migration inwards. The x-axis corresponds to the radial distance from
the star and the y-axis to the planet mass. Together, these plots describe the migration at various stages of
the disk evolution.
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significant (see Sec. 4.4). However, the role of non-zero eccentricity (due to the hot-trail effect; Chrenko
et al. (2017)) is even more pressing question, which was examined in detail (see Sec. 4.3).

Detailed description of Fig. 4.3 We list all major events with corresponding time marks. Protoplanets
are numbered by their original number and when they collide, a new protoplanet has the number of the more
massive one.

• at 0.56 Myr, the first collision, between the protoplanets number 11 and 12;
• at 0.77 Myr, a collision between 17 and 18;
• at 0.77 Myr, an interesting three-planet interaction between 10, 12 and 13, followed by a collision;
• at 1.00 Myr, a collision between 15 and 16, without any significant eccentricity changes of other planets;
• at 1.47 Myr, a strong resonance between planets 25 and 26, followed by an eccentricity increase of other

planets;
• at 1.60 Myr, protoplanets 25 and 26 repeatedly exchange their positions;
• between around 1.5 to 2.1 Myr, chaotic motion of all outer planets (16 to 28);
• between approx. 1.57 and 2.14 Myr, an inward drift of protoplanet 24 from 1.26 to 0.81 au;
• also other protoplanets (28 to 16) drift;
• at 1.90 Myr, a collision of protoplanets 25 and 26;
• from 2.00 to 2.04 Myr, protoplanets 20 and 22 have similar semimajor axes (i.e., a possible coorbital),

followed by a collision due to an interaction of the coorbital with another planet;
• at 2.05 Myr, protoplanet 14 is pushed closer to 12, followed by a collision;
• at 2.06 Myr, an three-planet interaction between 18, 21 and 22, followed by a collision;
• all the inner protoplanets 1, 4, 6, 8, 9 and 12 exhibit higher eccentricities, but not a chaotic motion;
• at 2.17 Myr, protoplanets 1 and 4 exchange positions, followed by a collision with a possible involvement

of protoplanet 6, jump inwards from 0.490 to 0.478 au (in one output step);
• eccentricities and inclinations rise for all planets, e ∼ 0.06, i ∼ 1.5◦;
• after 2.4 Myr, eccentricities are damped to less than 0.01;
• between 2.19 and 3.88 Myr, protoplanets are not in chaotic motion;
• outer planets, inward migration, moderate migration rate −0.069 Myr−1, inner planets, small migration

rate −0.0028 Myr−1;
• at 3.88 Myr, an interaction between protoplanets 18 and 22, orbits were exchanged, the eccentricity of

protoplanet 22 rises, interaction with other protoplanets, their eccentricities also rise;
• at 4.04 Myr, protoplanets 16 and 24 exchange orbits, 24 close to 19, followed by a collision;
• at 4.18 Myr, protoplanets 8 and 9 have eccentricities high enough to undergo close encounters, start

interacting and exchanging orbits, their semimajor axis separation within 0.005 au, eccentricities up
to 0.10, inclinations up to 3◦, i.e., the highest values during the whole simulation, damping is weak in
rarefied disk;

• between 5 and 6 Myr, small migration rates up to −0.0050 Myr−1;
• between 10 and 11 Myr, very small migration rates up to −0.0005 Myr−1, would be significant only on

the time scale of 100 Myr, but dissipation is fast;
• a dispersal of the disk, then no significant migration;
• an evolution without any disk, no collisions between 5 and 100 Myr, at 100 Myr, still 14 planets, with

eccentricities too low to interact, likely a result of eccentricity damping to zero before dispersal of the
disk.
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Figure 4.3: Evolution of the system in the MRI inactive weak wind high viscosity model. Orbital evolution
of proto-planets is plotted, with colored solid lines representing the semimajor axis dependence on the time.
The range between the pericentre and apocentre is represented by vertical bars of different colors, used for
an easy recognition of individual planets. The color of the line (black to yellow) is related to the planets’
mass. The radius of circles on the right-hand side is proportional to the final masses. This system has 14
planets of masses between 0.05 and 0.24 ME. A more detailed description of the simulation is bellow.
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4.3 MRI inactive weak wind high viscosity model with damping
to 0.02

For a less stable and more interacting system than in Sec. 4.2, more eccentric orbits of protoplanets could
be helpful. We thus calculated again the previous simulation, with an eccentricity damping to 0.02 instead
of to zero.

The evolution of the system is shown in Fig. 4.4. The system is destabilized very early (at 0.4 Myr) in
comparison with the previous simulation (first local instability at 0.5 Myr global even after 1 Myr). The
main difference, however, is a late instability, which occurred at around 30 Myr. We (and You) have to be
aware that from only one run, we cannot be sure if it is systematic for all cases with relaxed damping or
only a random event. Prior to the instability, the most massive planet is of 0.29 ME, which is of the same
order as 0.24 ME in the previous simulation. Also the number and masses without the late instability do
not differ substantially between the two simulations. The difference in final state is mainly caused by the
late instability. Evidently, the resulting eccentricities of planets are higher because they are no longer after
dispersal damped.

Another difference is that a global early instability now occurs almost at the beginning of the simula-
tion and not after 2 Myr. This happens probably because the protoplanets perturb each other and higher
eccentricities also help to break resonant chains (Pierens & Raymond (2016)).

Figure 4.4: MRI inactive weak wind high viscosity model with damping to 0.02. This system has 8 planets
of masses between 0.10 and 0.54 ME. Description of the figure is the same as in Fig. 4.3.
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4.4 MRI inactive weak wind low viscosity model (8 ·10−6, 10−6f(Σ),
10−6)

To prolong the lifetime of the disk and increase the time span of planetary migration, the parameters for the
viscosity and wind were scaled down by one order of magnitude: αrϕ = 8 · 10−6, αϕz = 1 · 10−6(Σ/Σ0)−0.66

and CW = 1 · 10−6. Otherwise, the initial conditions were the same as in the previous model.
As a result, the dispersal time of the disk is one order of magnitude longer, nevertheless, the gas surface

density profile remains similar to that in the previous model (only with scaled time).
Unfortunately, the planets migrated inwards too rapidly (see Fig. 4.6). For example, the first planet

ended at approximately 0.05 au. At this radius, our simulation is no longer relevant, because the time step
of Symba is comparable to the orbital period

Convergence zones exist only for planets with masses less than 0.25 ME (see 4.5, because the migration
rate is modified by the lower value of viscosity. The horseshoe drag is more saturated, according to Eq. (2.25),
thus the migration is also by one order of magnitude scaled down in masses. Because of a long lifetime of
the disk, migration affects planets for much longer time and even after 30 Myr, planets were still slowly
migrating.

At around 2 Myr, two planets stopped migrating approximately at 0.15 au, because of their higher ec-
centricity, around 0.04. A large convergent zone occurs at around 0.15 au for this eccentricity, because of
reversal of the Lindblad torque (which then pushes planets outwards, see Eq. (2.38)).

This low-viscosity model did not result in a final state similar to the Solar system. This was mostly due
to high migration rate and the absence of a convergent zone for high-mass planets, which would prevent a
migration too close to the star. To rescue this kind of model, protoplanets would have to be more massive
or more numerous (much more than 2 ME alltogether). Then some matter could be lost because some
protoplanets would fall into the Sun and some protoplanets could remain in the terrestrial zone. However,
we shall investigate scenarios without such an extreme loss of matter. Consequently, the next model shall

be a compromise in viscosity.

Figure 4.5: Migration maps for the MRI inactive weak wind low viscosity model (αrϕ = 8 · 10−6, αϕz =
1 · 10−6(Σ/Σ0)−0.66 and CW = 1 · 10−6). Migration maps are for times (from left to right): 1.0 , 3.0 and
10.0 Myr.
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Figure 4.6: MRI inactive weak wind low viscosity model. This system ended with 8 planets. Six outer
are located between 0.4 and 0.6 au, having masses between 0.09 and 0.19 ME. Two inner planets migrated
towards the inner edge of the disk (boundary condition). They have the masses 0.90 and 0.47 ME. Description
of the figure is the same as in Fig. 4.3.
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4.5 MRI inactive weak wind intermediate viscosity model (2.4 ·
10−5, 3 · 10−6f(Σ), 3 · 10−6)

The viscosity was lowered by a half order of magnitude compared to the high-viscosity model (Sec. 4.2),
consequently, αrϕ = 2.4 · 10−5, αϕz = 3 · 10−6(Σ/Σ0)−0.66 and CW = 3 · 10−6.

The surface density profile was again very similar to the low- and high-viscosity models, but with the
respective time scale in between. The convergence zone (Fig. 4.8 is larger than in the low-viscosity model
and smaller than in the high-viscosity model and it does exist for planets of less than 0.5 ME (or 0.75 ME in
later stages).

The result is more similar to the terrestrial zone than all the previous models (see Fig. 4.7). Low-
mass planets (around 0.1 ME) are located on the edges and more massive (around 0.4 ME) in the middle.
After 20 Myr, however, the system was stabilized and ended with a relatively high number of planets (9) of
insufficient mass compared to the Solar system. Also the eccentricities and inclinations were very low (less
than 0.01 and 0.00001◦, respectively), which was expected because of the damping to zero. We decided to
compute this simulation again, but with a different eccentricity damping.

Figure 4.7: MRI inactive weak wind intermediate viscosity model. This system has 9 planets with masses:
0.15, 0.11, 0.24, 0.26, 0.37, 0.42, 0.18, 0.19, 0.10 ME.

38



Figure 4.8: Migration maps for the MRI inactive weak wind intermediate viscosity model – for the two
different values of the eccentricity: 0.00 (top) and 0.02 (bottom). The maps are for the times (from the left
to the right): 1.0, 3.0 and 10.0 Myr.
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4.6 MRI inactive weak wind intermediate viscosity model with
damping to 0.02

The next model is the same as in the previous section (weak wind with intermediate viscosity, αrϕ = 2.4·10−5,
αϕz = 3 · 10−6(Σ/Σ0)−0.66 and CW = 3 · 10−6), but now with damping only to 0.02, in order to see, how an
increased eccentricity influences the overall migration and formation of planets.

The resulting system is composed of 5 planets with the most massive (0.83 ME) on the inner edge and
the least massive on the outer edge (0.1 ME) (see Fig. 4.9). A destabilization of the original system and
collisions among protoplanets were more rapid, at around 5 Myr, only 6 protoplanets remained (compared
to 16 planets at in the simulation with damping to zero). The distribution of masses is completely different
than in the previous simulation and the most massive planets are located on the inner edge. This is because
of early formation of massive planets, when the disk is still dense and absence of a convergent zone (Fig. 4.8),
so they rapidly migrate inwards.

In order to study the behaviour of these intermediate viscosity models, a statistics of more runs would
be required. Before we proceed to the statistics, however, we shall primarily investigate strong wind model.

Figure 4.9: MRI inactive weak wind intermediate viscosity model with damping to 0.02. This system has 5
planets of the masses: 0.83, 0.47, 0.43, 0.19, 0.10 ME.
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4.7 MRI inactive strong wind low viscosity model (8·10−6, 10−6f(Σ),
10−6)

Our strong-wind model is driven by Eqs. (1.29) and (1.30) for the radiation losses and the disk wind.
We started originally with the same parameters as in Suzuki et al. (2016), i.e., αrϕ = 8 · 10−6, αϕz =
1 · 10−6(Σ/Σ0)−0.66 and CW = 1 · 10−6. However, this led to a disk with too short dispersal time and
insignificant migration (similarly as in the weak wind high viscosity model in Sec. 4.2). Hence, we decided to
investigate the low viscosity case with parameters αrϕ = 8·10−6, αϕz = 1·10−6(Σ/Σ0)−0.66 and CW = 1·10−6.

The evolution of disk profiles is plotted in Fig. 4.10 and migration maps in Fig. 4.11. The inverted
density profile is even more pronounced and steeper than in the weak wind model, because more matter is
carried away by the wind and inner parts of the disk disperse more rapidly. At 30 Myr, the densities reach
around 10 kg m−2 under 2 au, the migration rate is between −10−3 and −10−2 au Myr−1 for planets of Earth
or Venus’ mass and for less massive it is negligible (less than 10−3 in absolute value). At 100 Myr, the disk
in the terrestrial zone has the density under 1 kg m−2 and the migration rate is completely negligible. Only
beyond 5 au, the densities are between 1 and 10 kg m−2 and a slow migration could probably persist. As was
excepted, it is a long-living disk with a dispersal time around 100 Myr. However, already after 10 Myr no
significant migration of planets was apparent in the simulation. The convergent zone reaches higher masses
than in the weak-wind simulation with the same parameters (0.5 ME compared to 0.25 ME).

The resulting system (see Fig. 4.12) is composed of 8 planets with masses from 0.10 to 0.39 ME). An
intersting feature is a gap between the 4th and 5th planet (more than 0.2 au compared to 0.05 to 0.1 au
between most of the planets). This is caused by a high-mass planet, which appeared around 2.5 Myr,
migrated inwards and pushed all the inner bodies inwards, whereas the outer planets continued migrating
outwards. This is because of the convergent zone, which does not reach to more than 0.5ME and becomes
narrow for higher masses. Although the system is not an Solar system analogue, the migration rates seem
to be appropriate. In the next section, we will investigate a model with higher values of the parameters and
thus a disk with shorter lifetime (intermediate viscosity).

Figure 4.10: Same as Fig. 4.1.
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Figure 4.11: Migration maps for the strong wind model with low viscosity (αrϕ = 8 · 10−6, αϕz = 1 ·
10−6(Σ/Σ0)−0.66 and CW = 1 · 10−6). Same as Fig. 4.1
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Figure 4.12: MRI inactive strong wind low viscosity model. This system has 8 planets of masses: 0.26, 0.25,
0.39, 0.39, 0.26, 0.18, 0.19, 0.10 ME.
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4.8 MRI inactive strong wind intermediate viscosity model (2.4 ·
10−5, 3 · 10−6f(Σ), 3 · 10−6)

Finally, let’s investigate the intermediate viscosity case, with the parameters αrϕ = 2.4 · 10−5, αϕz =
3 · 10−6(Σ/Σ0)−0.66 and CW = 3 · 10−6. The surface density profiles of the disk are the same and only the
lifetime of the disk is 3 times shorter (around 30 Myr). However, after 5 Myr no significant migration of
planets was apparent in our simulation (see Fig. 4.13). The migration maps for zero eccentricity contain a
convergent zone even for higher masses (around 1.25 ME), see Fig. 5.1.

The resulting system is composed of 8 planets, where 7 of them are low-mass (from 0.09 to 0.25 ME)
and one high-mass (0.73 ME). This simulation seems to be successful in creating a high-mass planet around
1 au. Moreover, planets also ended in the correct range of semimajor axis and the migration was sufficient
to destabilize the system and drive its evolution. Hence, this model could also be a good candidate for a
statistics.

Figure 4.13: MRI inactive strong wind model intermediate viscosity model. This system has 8 planets of
masses: 0.21, 0.13, 0.25, 0.18, 0.73, 0.24, 0.09, 0.20 ME.
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4.9 Summary and other models
Our analysis is based on the models described in Suzuki et al. (2016). Some of these models lead to an
inverted profile, where the surface density increases with the distance from the star in some region. This is
an interesting feature, which leads to higher positive corotation torque, and thus to a formation of convergent
zone, preventing the migration of protoplanets too close to the star. Moreover, according to Brož et al. (2021),
the convergent migration leads to an efficient formation of Solar system analogues. Hence, we examined the
Suzuki’s MRI inactive weak-wind and strong-wind models, which both lead to a significant inversion of the
profile. We computed them for an initial density corresponding to the minimum mass solar nebula (Hayashi
(1981)) and for 3 sets of parameters: 1. low (αrϕ = 8 · 10−6, αϕz = 1 · 10−6(Σ/Σ0)−0.66, CW = 1 · 10−6),
2. high (αrϕ = 8 · 10−5, αϕz = 1 · 10−5(Σ/Σ0)−0.66, CW = 1 · 10−5) and 3. intermediate (αrϕ = 2.4 · 10−5,
αϕz = 3 · 10−6(Σ/Σ0)−0.66, CW = 3 · 10−6) viscosity and wind. A summary of results is plotted in Fig. 4.14.
Firstly, we discuss, how the selection of these parameters influenced the results of simulations.

1. Low viscosity and wind – This led to long-lived disks (up to 100 Myr). Since the viscosity determines
saturation of the horseshoe drag (Eq. (2.25)), low viscosity leads to a convergent zone only for low-mass
planets (less than 0.25 to 0.5 ME). In the absence of a convergent zone, high-mass planets can migrate
close to the star (well under 1 au) and deplete all the material around. This is mainly the case of weak
wind simulation, because close to the star there is enough gas. For the case of strong wind simulation,
a rapid dispersal of the disk close to the star can prevent migration under 0.1 au and sustain planets in
the terrestrial zone. A possible solution of too rapid migration could be an enlargement of the initial
range of protoplanets (extend the range to 3 or more au).

2. High viscosity and wind – This led to short-lived disks (around 10 Myr), often with negligible migration
of protoplanets after 3 Myr. The convergent zone is substantially larger and exists even for masses
greater than 1 ME. However, because of too rapid dispersal of the disk, migration is too moderate and
does not play a substantial role.

3. Intermediate viscosity and wind – This is a compromise model, which prevents too rapid migration
and a loss of planets to the star, dispersal is sufficiently slow to allow for migration to influence enough
the formation of the system.
The weak wind alternative shows some features of the terrestrial zone like low-mass planets on the
edges and more massive planets in the middle. However, the collision rate is too low and 9 planets still
remain after dispersal of the disk. The planets are less massive than Venus or Earth. An attempt to
increase collision rate by relaxing eccentricity damping was done, however, because of steep decrease
of the corotation torque with eccentricity, the convergent zone was smaller and could not prevent
migration of massive planets inwards. Thus, it led to a completely different result with accumulation
of massive planets on the inner edge.
On the other hand the strong wind led to origin of one high-mass planet in the middle (around 1 au)
and other 8 low-mass planets around it. The high-mass planet was formed due to a global instability
(at around 10 Myr) of the system accompanied by a significant increase of the eccentricities.
We also tried a strong wind simulation with eccentricity damping to 0.02 (although it is not described
in this chapter). Contrary to the weak wind simulation with damping to 0.02, it did not lead to a loss
of massive planets. This is because of rapid dispersal of the disk close to the star. Hence, the model
leads to a ’convergent-like zone’, which is not caused by a positive torque, but by an absence of gas
and slowed migration in regions close to the star.
Other interesting feature distinguishing the strong- and weak-wind models, which can be seen in
Figs. 4.5 and 4.11, is that the convergent zone in the weak wind model less rapidly moves to the right
than in the strong wind model. This implies a longer period of migration of low-mass protoplanets
and could possibly lead to a more favorable result of the weak wind simulations in case of larger initial
range of protoplanets, i.e., the case of protoplanets migrating to the terrestrial zone from the regions of
current asteroid belt. Rapid propagation of the convergent zone can complicate migration of low-mass
bodies from such distances to the terrestrial zone (before dispersal of the disk).

As we have seen, the behaviour of individual models is really sensitive to the viscosity and wind parame-
ters. Thus, only a relatively narrow range of parameters (within one order of magnitude) leads to sufficiently
high migration to converge the protoplanets and low enough to not lose them. It is worth to note, however,
that we did not examine other possibilities like greater or lower initial surface density, varying alphas and
wind parameters independently or possible influence of additional forces like the thermal torque (Sec. 2.6).

An essential role of the eccentricity was demonstrated as it can help to destabilize the system. Moreover,
it modifies migration maps in such a way that for high eccentricities (≥ 0.03) the convergent zone completely
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disappears due to reduction of the corotation torque. Let’s note that for even higher eccentricities (≥ 0.05),
another convergent zone appears due to inversion of the Lindblad torque occurs. It is not dependent on the
mass so much and does not move much with time (see Fig. 5.1). Instead it moves to greater distances with
increasing eccentricity.

The strong wind model with intermediate viscosity and wind led to the most promising results. Hence,
we decided to compute a statistics of multiple runs for it.

Figure 4.14: A summary of all individual simulations presented in Chap. 4. The final states (after 100 Myr)
of simulations are plotted in the rows and the y-axis labels describe the individual simulations. Planets are
represented by circles; its center represents the semimajor axis and its diameter the mass. Thin horizontal
lines represent the range of pericentre to apocentre, due to the eccentricity. For reference, the Solar system
is also plotted.
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5. Simulations’ statistics – variations
of initial conditions
An N-body problem represents a chaotic system; its evolution is sometimes extremely sensitive to the initial
conditions. This implies that one simulation is not fully representative and not sufficient to describe all the
possibilities of evolutionary pathways.

In our context, it is necessary to replace fixed initial conditions for protoplanets by a set of varied initial
conditions and compute a statistics of the results, to determine how sensitive they actually are.

The simulation chosen for computing statistics was the MRI inactive strong wind intermediate viscosity
simulation (Chap. 4, Sec. 4.8), because these systematically led to reasonable match of the Solar system
architecture, when only one run was computed.

Solar system analogues. We search for Solar system analogues, and hence for this purpose, we define
an analogue as a system which ended with less than 7 planets and at least one planet more massive than
0.7 ME and the innermost and outermost planet less massive than 0.35 ME .

5.1 Statistics of strong wind simulation with damping to zero
We performed a set of 25 runs, each with 28 protoplanets, but with slightly varied initial positions of the
protoplanets, velocities or masses. This was done in several different ways: by inversion of positions of some
protoplanets (a shift by 180◦ forward in its orbit), modification in some of the coordinates or velocities (small
enough to not change their semimajor axis, eccentricity or inclination significantly), negligible perturbation
in the masses of protoplanets. All changes were less than 1 % and no global changes of the distribution of
the protoplanets were done (e.g., extending the range of semimajor axes of protoplanets or spacing between
them, or their count) in order not to change the behaviour of the system in a systematic way. Moreover, the
initial and boundary conditions of the ‘hydro’ were not modified. The same parameters as in the previous
run of the MRI inactive strong wind intermediate viscosity model, however, the eccentricity and inclination
damping to zero were used (see Sec. 4.8). Let’s recall that respective parameters were αrϕ = 2.4 · 10−5,
αϕz = 3 ·10−6 and CW = 3 ·10−6. The migration maps are shown in Fig. 5.1, where for the low eccentricities
(≤ 0.04) dominates a convergence zone due the Corotation torque and for high (≥ 0.04) a convergence zone
due to inversal of the Lindblad torque.

The final states after 100 Myr are shown in Fig. 5.2. They are quite diverse in terms of number of
planets (3 to 13) as well as their eccentricities. According to the number vs. the mean eccentricity of planets
dependence (Fig. 5.3), the final states can be separated into two groups. This separation also can be seen
in the semimajor axis vs. the mass dependence (Fig. 5.4).

The systems of the first group end with too many low-mass planets (9 to 13 planets less than 0.25 ME,
the most massive ≈ 0.6 ME), and too low eccentricities (between 0.001 and 0.01). This group represents the
systems, where only early instabilities occured, and planetary migration is still substantial (before dispersal
of the disk at ≈ 10 Myr). In some runs, only local instabilities were present (run 14, Fig. 5.5), whereas in
others large scale instabilities and significant transport of material occurred (run 8, Fig. 5.6). For example
the 23-th protoplanet travels between 2.6 Myr and 4 Myr from 1.27 to 0.53 au. In this run, also an interesting
co-orbital planet exists between 2 and 2.6 Myr around 1.15 au.

The systems of the second group end up with a low number of high-mass planets (3 to 6 planets of mass
from 0.75 to 1.25 ME) and low-mass outer planets having relatively high eccentricity (some of them more
than 0.1). This group represents the systems, where late instabilities occur (after 10 Myr), which are often
global, involving the whole system. Some of the systems are still interacting and unstable after 100 Myr.
For example, in run 23 in Fig. 5.7, there is large-scale instability occurring between ≈ 35 and 70 Myr, with
a significant transport and mixing of material. These late global instabilities seem to be an important
mechanism leading to high-mass planets comparable to the Earth or Venus. The mechanism causing these
instabilities is mainly a ‘repulsion’, facilitated by close-to-zero inclinations, pushing two protoplanets away
from each other and leading to a close encounter with another protoplanet, destabilizing whole compact
system.

Only the runs of the second group are somewhat comparable to the Solar system in the number of planets
and lead to growth of planets up to the mass comparable to Venus or the Earth. They are commonly located
somewhere in the middle while outer planets end up with the mass comparable to Mars. However, the
innermost planet is often too massive to be comparable to Mercury and also high-mass planets has often too
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Figure 5.1: Migration maps for the MRI inactive strong wind intermediate viscosity simulation. The colour
scale corresponds to the migration rate in units auMyr−1, for various times (from left to right): 0.3, 1, 3 Myr.
Together, the plots describe the migration in various stages of the disk evolution.
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Figure 5.2: Statistics of strong wind simulation with damping to zero – the final states after 100 Myr. The
runs are plotted in the rows and y-axis represents the number of the run. Planets are represented by circles;
its center represents the semimajor axis and the diameter the mass. Thin horizontal lines represent the range
of pericentre to apocentre, due to the eccentricity. For reference, 0 is the Solar system. The evolution of the
marked systems (no global instability, early global instability, late instability) is plotted in Figs. 5.5,5.6 and
5.7

Figure 5.3: Systems from Fig. 5.2 – final number of planets vs. average eccentricity (arithmetic mean).
Each point represents one run. A separation of the final states into two groups (one high number – low
eccentricity, another low number – high eccentricity) can be clearly seen.

large separation compared to 0.28 au of Venus and the Earth. Overall, this simulation did not provided any
good analogues of the Solar system (according to our definition).
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Figure 5.4: Final planets’ masses and semimajor axes of all the systems from Fig. 5.2. The points represents
planets. The horizontal bars represents the pericenter to apocenter range and the vertical bars represents
the range between the highest point above and the lowest under the ecliptic plane; both with respect of
the dimensions of the horizontal axis). The planets of the runs ending with high number or low number of
planets are red or green respectively.

Figure 5.5: The run 14 of statistics – no global instability. This system has with 13 planets with masses
between 0.05 and 0.29 ME . The orbital evolution of the planets is plotted, with colored solid lines repre-
senting the semimajor axis dependence on the time. The range between the pericenter and apocenter of the
planets is represented by vertical bars of different colors, used for an easy recognition of individual planets.
The color of the line (black to yellow) is related to the planets’ mass. The radius of circles on the right-hand
side is proportional to the final mass.
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Figure 5.6: The run 8 of statistics – an early instability. Besides local instabilities, two global ones occur at
around 0.8 and 3 Myr. This system has 11 planets with masses between 0.09 and 0.40 ME.

Figure 5.7: The run 23 of statistics – late instability. Besides early local instabilities one late global instability
occurs at ≈ 35 Myr. This system has 4 planets with the masses 0.35, 0.29, 1.06, 0.32 ME, the semimajor
axes 0.52, 0.82, 1.09, 1.85 au, the eccentricities 0.063, 0.072, 0.088, 0.14 and the inclinations 3.7◦, 6.1◦, 1.2◦,
3.4◦.
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5.2 Eccentricity damped to 0.04 (hot-trail effect)
This simulates the case, when something physically ‘blocks’ the damping to zero considered by Tanaka &
Ward (2004) (see Sec. 2.1.2). This can be, for example, the heating force or the hot-trail effect (Chap. 2,
Sec. 2.6).

Firstly, we decided to study the case, when the inclinations are left as before to be damped to zero,
but the eccentricity is damped only to 0.04. The initial and boundary conditions for the ’hydro’ as well as
protoplanets are left same as in Sec. 5.1.

The final states after 100 Myr (Fig. 5.8) now cannot be separated clearly into two groups as before, the
pattern distinguishing runs with low number of planets of high eccentricity and high number of planets of
low eccentricity is still present, but it is less obvious. New feature apparent in this statistics, clearly visible
in Fig. 5.9, is the absence of low-mass planets (of mass comparable to the initial distribution) around the
middle (0.6 to 1.4 au).

Only the runs 9, 14, 20, 25 end up with a planet more massive than Venus. Similarly as in the simulation
without damping, these ‘successful’ runs contain late global instabilities and also did not lead to a low-mass
planet similar to Mercury on the inner edge of the terrestrial zone. In both simulations, in the region around
0.5 au there are planets of mass around 0.5ME. Nevertheless, both simulations lead to low-mass planets
combarable to Mars on the outer edge. In Fig. 5.10, run 20 is shown, which ended with the architecture
most similar to the Solar system.

Some runs ended with the largest planet of around Venus’ mass , but they are still interesting and viable
Solar system analogues; for example run 1, Fig. 5.11 and also runs 3, 4, 5, 10, 13. These compromise runs
did not end with so massive Mercury. Late instabilities in these runs still occur but they are generally less
violent and more local.

Figure 5.8: Final state of strong wind simulation with eccentricity damped to 0.04 at 100 Myr. Axes and
other marks in the figure are same as in Fig. 5.2.
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Figure 5.9: All final state planets’ masses and semimajor axes. An absence of low mass planets in the middle
(original protoplanets) is clearly visible.

Figure 5.10: The run 20 of statistics – local early instabilities and one global instability, which occurs between
≈ 30 and 45 Myr. This system has 4 planets with masses 0.42, 0.73, 0.69, 0.19 ME, the semimajor axes 0.49,
0.79, 1.14, 1.63 au, the eccentricities 0.11, 0.12, 0.067, 0.061, and the inclinations 4.6◦, 2.6◦, 1.8◦, 10.3◦.
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Figure 5.11: The run 1 of statistics – an early global instability and one late0 more local instability, which
occurs around 33 Myr. This system has 6 planets with masses 0.16, 0.37, 0.16, 0.63, 0.51 ME, the semimajor
axes 0.45, 0.56, 0.66, 0.83, 1.09, 1.34 au, the eccentricities 0.077, 0.043, 0.023, 0.034, 0.003, 0.015, and the
inclinations 0.7◦, 0.5◦, 2.6◦, 0.8◦, 1.2◦, 1.7◦.
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5.3 Eccentricity damped and also forced to 0.04
We performed again the simulation with damping to 0.04, but hereinafter we also forced the eccentricity to
that value. All initial and boundary conditions were left the same.

The final states (Fig. 5.12) now cannot be separated into 2 distinct groups. It seems that large-scale global
instabilities were less frequent than in the simulation with damping to zero (Sec. 5.1) and this eventually led
to generally less massive and less eccentric planets (only 2 planets in all runs together had the eccentricity
greater than 0.1). The resulting systems were also more compact (almost all planets were located between
0.4 and 1.6 au, whereas in the previous simulations, there were many planets beyond 1.6 au and some of them
reached even 2.5 au). In the middle, between 0.5 and 1.0 au, no low-mass planets or initial protoplanets were
left (see Fig. 5.13), similarly as in the previous simulation.

The run 5 final state is similar to the Solar system because it has two massive planets of around Venus’ size
close together and they are even less separated than Venus and the Earth. However, another an instability
with some collisions started after 90 Myr and we cannot be sure if the final system is stable or not. In order
to determine this, a simulation up to to 1 Gyr long would be necessary.

Another possible analogue of the Solar system could be run 3, which exhibited a large global instability
between 25 and 50 Myr and became stable after that. Another analogue could be run 23 which was globally
unstable until around 12 Myr and then only local instabilities occurred between 45 and 60 Myr.

Figure 5.12: Final state at 100 Myr of strong wind simulation with eccentricity damped and also forced to
0.04. Axes and other marks in the figure are same as in Fig. 5.2
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Figure 5.13: All final state planets’ masses and semimajor axes. Absence of low mass planets in the middle
(original protoplanets) is clearly visible.

Figure 5.14: The run 5 of statistics – early instabilities and some late instability starting just before 100 Myr.
This system has 5 planets with masses 0.26, 0.19, 0.70, 0.73, 0.14 ME, the semimajor axes 0.50, 0.60, 0.73,
0.88, 1.27 au, the eccentricities 0.022, 0.06, 0.025, 0.02, 0.009, and the inclinations 0.9◦, 1.2◦, 0.4◦, 0.5◦, 0.2◦.
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Figure 5.15: The run 3 of statistics – a late global instability between 25 and 50 Myr. This system has 4
planets with masses 0.45, 0.85, 0.57, 0.17 ME, the semimajor axes 0.49, 0.71, 1.03, 1.59 au, the eccentricities
0.06, 0.05, 0.016, 0.06, and the inclinations 0.5◦, 1.1◦, 0.8◦, 2.3◦.
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5.4 Eccentricity damped and also forced to 0.07
The convergent zone due to the corotation torque disappears for moderate eccentricities around 0.04. For
high eccentricities (even more than 0.04), a convergent zone due to inversion of the Lindblad torque occurs
(Eq. (2.38) and Fig. 5.1). Thus, an interesting idea is to damp and force even to higher eccentricities around
0.07 and see if such a convergent zone, which is more stable and independent of time and mass, will lead to
more successful results in terms of the Solar system analogues. All the initial conditions were left same as
before.

The results after 100 Myr are shown in Figs. 5.16 and 5.17. High-mass planets comparable to Venus and
Earth occur in the middle of the terrestrial zone and also low-mass planets comparable to Mercury and Mars
occur on the edges without any problems. The eccentricities of more massive planets seem to be generally
lower than those of less massive planets. Similarly as in all preceding simulations, except that with damping
to zero, no low-mass planets (less than 0.2ME) or original protoplanets are left in the middle range (between
0.75 and 1.4 au). The most massive planets (more than Venus, 0.82ME) occur between 0.6 and 1.2 au, while
the remaining low-mass planets in the range 0.3 to 0.75 au and then also in the range 1.4 to 2.5 au.

The runs 2, 8, 18 (Fig. 5.20), 24 (Fig. 5.19) and 25 (Fig. 5.18) were the most analogous to the Solar
system. The run 18 ended with substantially higher eccentricities and inclinations, between 0.04 to 0.28 and
1.0◦ to 19.8◦, than runs 2, 24, 25, where eccentricities did not exceed 0.09 and inclinations are of the order
of percents or even tenth of a percent. Similarly, run 8 ended with higher eccentricities and inclinations. In
run 18, late instabilities occur between 20 and 40 Myr and then between 60 and 85 Myr, whereas in run 24,
the system instabilities occur until 20 Myr and in run 25 until 25 Myr and system than seems stable. The
systems in runs 18 and 25 can still be interacting and unstable because of large eccentricities of the outer
two planets, crossing each others’ orbits.

Figure 5.16: Final state at 100 Myr of strong wind simulation with eccentricity damped and also forced to
0.07. Axes and other marks in the figure are same as in Fig. 5.2.
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Figure 5.17: All final state planets’ masses and semimajor axes. The eccentricities are generally higher than
in the previous simulation with damping and forcing to 0.04 and similarly no low-mass planets (less than
0.25ME) occur in the middle (around 1 au).

Figure 5.18: The run 25 of statistics – The latest instability occured around 25 Myr was local and led to for-
mation of almost Earth’s mass planet. System ended with 5 planets of masses 0.11, 0.75, 0.89, 0.19, 0.09 ME,
semimajor axes 0.44, 0.74, 1.14, 1.57, 1.78 au. eccentricities 0.07, 0.05, 0.06, 0.05, 0.07 and inclinations 1.4◦,
0.25◦, 0.2◦, 0.4◦, 0.7◦.
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Figure 5.19: The run 24 of statistics – The latest instability occurred between 15 and 20 Myr, when low-mass
planet collided with the more distant high-mass planet of almost Venus’ size. System ended with 6 planets of
masses 0.05, 0.28, 0.72, 0.71,0.16, 0.09 ME, semimajor axes 0.34, 0.61, 0.86, 1.24, 1.55, 2.25 au. eccentricities
0.066, 0.040, 0.024, 0.055, 0.087, 0.089 and inclinations 3.6◦, 1.2◦, 0.7◦, 0.3◦, 1.2◦, 2.3◦.

Figure 5.20: The run 18 of statistics – Instabilities and collisions occurred even at around 80 Myr. System
ended with 5 planets of masses 0.05, 0.42, 1.12, 0.33, 0.10 ME, semimajor axes 0.34, 0.62, 1.02, 1.59, 2.31 au.
eccentricities 0.28, 0.14, 0.04, 0.05 0.15 and inclinations 19.8◦, 3.3◦, 1.0◦, 1.4◦, 2.2◦.
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Conclusions
In this work, we created a global model of early planetary systems and their formation from Mercury- to Mars-
sized protoplanets. It combines a 1-dimensional hydrodynamical model of the protoplanetary disk (Suzuki
et al. (2016)) with an N-body simulation (Duncan et al. (1998)) and uses semi-analytical prescriptions for
migration (Paardekooper et al. (2011)). Our aim was to create systems analogous to the Solar system.

We computed models for a set of values of disk parameters and two different wind regimes (strong and
weak); the wind was considered the primary mechanism of mass loss, transporting also angular momentum,
together with accretion. Suitable values of parameters were αrϕ = 2.4 · 10−5, the mid-plane turbulent and
magnetic viscous parameter (Suzuki et al. (2016)), CW = 3 · 10−6, the wind mass loss parameter, and
αϕz = 3 · 10−6(Σ/Σ0)−0.66, the viscosity in the region of disk atmosphere. If these parameters are varied
proportionally by more than half order of magnitude, our model shows either to too rapid dispersal of the
disk and negligible migration, or to too slow dispersal causing strong migration and loss of protoplanets by
migrating towards the central star.

For that set of parameters we also calculated a statics of multiple runs and studied a dependence on
eccentricity damping. Our best result (7 solar system analogues among 25 runs) was obtained when eccen-
tricity forcing and damping was relatively high (up to the value 0.07). In this case, the corotation torque
is reduced and the Lindblad torque creates a relatively stable convergent zone, which does not evolve much
with time. These conditions seem to be similar to the model of Brož et al. (2021), however, they considered
a stationary disk and limited damping of eccentricities (to around 0.02).

Nevertheless, even our two simulations with eccentricity damping to 0.04 both led to 2 analogues in 25.
In our model these moderate eccentricities cause shrinking of the convergent zone, however, rapid dispersal of
the inner regions of the disk prevents further migration inwards and this creates ’convergent-like zone’, which
shifts to higher semimajor axes with time. In these simulations, an interesting mechanism was observed,
where a high-mass planet is created in the outer part of the terrestrial zone, migrates inwards and collides
with protoplanets whose orbits it crosses. This can led to formation of two high-mass planets close to each
other (even closer than Venus and the Earth). The frequent problem in our simulation was too massive
Mercury but we started from protoplanets of Mercury too Mars mass and in order to reconstruct Mercury
more protoplanets of lower mass could be convenient.

The planetary migrations seems to create mass distribution with more massive planets in the center but
in our simulations it was not enough to create as massive planets as the Earth and not enough to reduce
by collisions the count of the planets to be comparable to the solar system. Another important mechanism
are late global instabilities, occurring after dispersal of the disk (at around 10 Myr). These help to reduce
the count of planets, to create massive planets comparable to the Earth or Venus, and also often leaves a
low mass planet comparable to Mars on the outer edge of the terrestrial zone. A possible weak point is that
it often does not allow two massive planets to be close to each other (0.2-0.3 au) and that often involves
interactions of low-mass planets on the inner edge, which eventually leads to formation of a planet more
massive than Mercury.

If we compare our distributions of planets in terms of the semimajor axis vs mass, they are similar to
distributions by Woo et al. (2024), who studied a completely different scenario — a formation of planets
from a narrow ring of planetesimals, influenced by a giant-planet instability. they considered gas drag
and simplified migration formulas from Tanaka et al. (2002). In our model, late instabilities occur often
spontaneously, without the necessity of giant planet influence. In both models, no low-mass planets (less
than 0.2 ME) occur in the middle of the terrestrial zone (around 1 au); they have a tendency to be on the
edges.

Evolution of planetary systems seems to be really sensitive to mechanisms driving damping and/or
excitation of the eccentricity. Excitation of the eccentricity is often induced by the thermal force (Masset
(2017)). At the same time, it changes the migration rate and could possibly extend convergent zones, which
were often small (or even nonexistent) for planets with moderate eccentricities (0.02 to 0.04). Consequently,
this one of the most promising mechanism how to create Solar system analogues.

Additional mechanism may be also at play, for example, pebble accretion (Lambrechts & Johansen
(2012)), pebble torque (Beńıtez-Llambay & Pessah (2018)), unstable disk fluctuations (Chambers (2024)),
excitation of inclinations (Eklund & Masset (2017), Chrenko et al. (2018)), or migration from different radii
(Brož et al. (2021); Clement et al. (2021)). All of them are worth to study in the future.
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