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Introduction
One of the central objects of study in algebraic geometry are varieties and

morphisms between them, and the study of varieties corresponds to the study of
sheaves on them, to a large extent. Of particular interest is the study of quasi-
coherent and coherent sheaves, respectively. Naturally, this leads to the study of
their corresponding Abelian categories Coh(X) and Qcoh(X) and the functors
between them. For instance, the functors as pushforward f∗ or pullback f ∗ induced
by a morphism f are not exact, which leads to complications. Historically, the
notion of derived functors was introduced to correct non-exact functors. Later, the
technique was developed by Grothendieck, which led to the new concept: to study
derived categories and derived functors between them.

One type of functors between derived categories are of particular interest. The
so called Fourier-Mukai transforms. Let X and Y be smooth projective varietis.
We have the fiber product X × Y together with two projections q : X × Y → X
and p : X × Y → Y . Then any object P ∈ Db(X × Y ) defines an exact functor

ΦP : Db(X) −→ Db(Y ), E ↦−→ p∗(q∗E ⊗ P),

where p∗, q
∗ and ⊗ are derived functors. We call such functors Fourier-Mukai

transforms. In fact, the famous result of Orlov is, that any equivalence between
derived categories of smooth projective varieties is geometric in nature, i.e., of
Fourier-Mukai type, see Theorem 5.14 in [1], hovewer, not so much is known in
singular care as it is pointed out in [2] pg. 2.

It turned out that the study of derived categories is closely related to string
theory. Indeed, the study of derived categories of coherent sheaves on smooth
projective varieties attracted a lot of interest mainly driven by homological mirror
symmetry conjecture, see [2], Introduction. Furthermore, the key notion of a
stability condition, an invariant of the derived category D with its natural topology
was motivated by work of Douglas on Π- stability for Dirichlet branes. For more
details, see [3] part 1.4. and Introduction.

As we can see, the motivation to study and investigate the structure of the
derived category of coherent sheaves is clear.

The aim of this thesis is to give a better description of the bounded derived
category of coherent sheaves Db(Coh(E)) on a singular Weierstrass curve E of
arithmetic genus one. We follow the work of Burban and Kreussler [4].

In the smooth case, such a structure was described by Atiyah’s work in [5].
In the singular case, however, some crucial properties fail, e.g., Serre duality, in
general, is no longer true and the homological dimension of Coh(X) is infinite
among others. These differences are described in [4] Table 1.
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We focus on the key result of Chapter 4 in [4]. They prove, that the Fourier-
Mukai transform given by Thomas-Siedel twist functors [6] preserves semi-stability
of sheaves. The direct consequence of their result yields the better description of the
category in the sense of Corollary 4.3 in [4]. It says, that the Abelian subcategory of
semi-stable coherent sheaves of given phase is equivalent to the category of torsion
coherent sheaves on E. We prove this corollary in all its details in Chapter 4. One
can refer to these subcategories as ’slices’, the meaning is obvious from [4] Chapter
4, Figure 1.

For this, in Chapter 1 we recall basic definitions and constructions necessary
for understanding the Chapter 2 and Chapter 4. Our main objects of interest are
sheaves, schemes as well as their derived (bounded) categories.

In chapter 2, we focus on torsion sheaves. We will investigate the behaviour of
torsion coherent sheaves on a smooth and singular curve. We will see that they do
not share all properties. Torsion sheaves play a crucial role in Chapter 4.

In Chapter 3, we will see that torsion sheaves supported at the singularity of
the nodal singular curve given by the equation y2 − x2(x + 1) decompose into
indecomposable finitely generated string and band modules. Representation theory
and the completion will be used as the main tool. We will classify torsion coherent
sheaves supported at the singularity, thanks to the work of Crawley-Boevey [7].

Finally, Chapter 4 is devoted to understanding the structure of the bounded
derived category of coherent sheaves on a singular Weierstrass curve E. We prove
that the category is k- linear and define the notions of phase and stability. As a
main result, we provide the proof of Corollary 4.3 in [4].
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1 Preliminaries
In this section we provide the necessary definitions of sheaves and schemes as

well as some elementary examples. We recall the basic definitions and constructions
of the triangulated and derived categories. Finally, we define the notion of a curve
and the particular example of a curve, namely, a Weierstrass curve.

1.1 Sheaves
Definition 1 (Presheaf). Let X be a topological space. A presheaf F of abelian
groups on X consists of the following data:

1. for any open subset U ⊆ X, F(U) is an abelian group,

2. for any pair of subsets V ⊆ U we have a morphism of abelian groups
ρUV : F(U)→ F(V ),

such that

1. F(∅) = 0,

2. ρUU : F(U)→ F(U) is the identity morphism, and

3. for three open subsets W ⊆ V ⊆ U we have the relation ρV W ◦ ρUV = ρUW .

Remark 2. • Elements s ∈ F(U) are called sections of F over U.

• Elements s ∈ F(X) are called global sections.

• The morphisms ρUV are called restriction maps. We will denote the image of
a section s by the restriction map as s|V and call it the restriction of s from
U to V.

• For F(U) we will alternatively use notations Γ(U,F) or H0(U,F).

Definition 3 (Sheaf). A presheaf F on topological space X is a sheaf if it satisfies
the following two conditions for any open U and any open cover {Vi} of U :

1. if s, t ∈ F(U) such that s|Vi
= t|Vi

for every i then s = t;

2. for any collection of sections {si} where si ∈ F(Vi) such that si|Vi∩Vj
=

sj|Vi∩Vj
, there exists a section s ∈ F(U) such that s|Vi

= si.

Remark 4. Condition 1. in the above definition is called locality and condition 2.
glueing.
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Definition 5 (Stalk). If F is presheaf on a topological space X, and if P is a point
of X, we define stalk FP of F to be the direct limit of abelian groups F(U) for all
open sets containing P . That is FP := lim−→F(U).

Remark 6. For any point x ∈ U ⊆ X, the image of a section s ∈ F(U) under the
canonical map F(U)→ Fx is denoted as sx. We call sx germ of the section s at x.

Definition 7 (Morphism of presheaves). Let X be a topological space, F and G
presheaves on X. A morphism of presheaves ϕ : F → G is a collection of morphisms
of abelian groups ϕ(U) : F(U) → G(U) for every open subsets V ⊆ U ⊆ X such
that the diagram

F(U) G(U)

F(V ) G(V )

ϕ(U)

ρF
UV ρG

UV

ϕ(V )

commutes.

Definition 8 (Morphism of sheaves). Let X be a topological space. Let F and G
be sheaves on X. A morphism of sheaves F and G is defined as a morphism of the
corresponding presheaves.

Proposition 9. Given a presheaf F , there is a sheaf F+ and a morphism θ : F →
F+, with the property that for any sheaf G and any morphism ϕ : F → G, there is
a unique morphism ψ : F+ → G such that ϕ = ψ ◦ θ. Furthemore the pair (F+, θ)
is unique up to unique isomorphism.

Proof. See [8] II Proposition 1.2.

Remark 10. We will refer to this process as the sheafification of a presheaf.

Definition 11. Let f : X → Y be a continuous map of topological spaces. Let F
be a sheaf on X and G be a sheaf on Y . Then we define the direct image of F along
f as f∗F(U) := F(f−1(U)) for every open subset U ⊂ X. Moreover, we define the
inverse image of G along f as the sheafification of the presheaf f−1,preG defined as

f−1,preG(U) := lim−→
f(U)⊂V

G(V )

.
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Definition 12 (Skyscraper sheaf). Let X be a topological space and let x ∈ X be a
point. Denote ix : {x} → X the inclusion map. Consider an abelian group A as a
sheaf on one point topological space {x}. Then we define skyscraper sheaf on X
as ix,∗A. Similarly, we call a sheaf of abelian groups F a skyscraper sheaf if there
exists a point x ∈ X and an abelian group A such that F ∼= ix,∗A as sheaves of
abelian groups.

Lemma 13. Let X be a topological space, x ∈ X a point. Then for any point
x′ ∈ X the stalk of the skyscraper sheaf ix,∗A is

ix,∗Ax′ =

⎧⎨⎩A ifx′ ∈ {x}
0 ifx′ /∈ {x}

Proof. Omitted.

Proposition 14 (Glueing of morphism of sheaves). Let X be a topological space
with an open covering {Ui}i∈I . Let F and G be sheaves on X. Each family of
morphisms of sheaves φi : FUi

→ GUi
such that φi|Uij

= φj|Uji
gives rise to a unique

morphism of sheaves φ : F → G such that φ|Ui
= φi.

Proof. [9], Lemma 6.33.1

1.2 Schemes
Definition 15. Let A be a ring. We equip the spectrum SpecA with a topology
by defining closed subsets to be V (I) := {p ∈ SpecA | I ⊂ p} for each ideal I ⊂ A.
We call it Zariski topology. Let f ∈ A. By D(f) we denote the complement of the
closed subset V (f), that is, D(f) = {p ∈ SpecA | f /∈ p}. These subsets are clearly
open and we call them distinguished open sets or principal open sets.

Lemma 16. Let A be a ring and {ai}i∈I a family of ideals in A. Let a and b be
ideals in A. Then the following is true:

1. V (a ∩ b) = V (a) ∪ V (b) = V (ab);

2. V (∑︁i ai) = ⋂︁
i V (ai);

3. V (A) = ∅, V (0) = SpecA.

Proof. Omitted.

Proposition 17. Let A be a ring. If p is a prime ideal of A, the closure {p} is
equal to V (p),
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Proof. [9], Lemma 10.26.1.

Lemma 18. Let A be a ring. The open sets D(f) form a basis for the Zariski
topology on SpecA when f runs through the elements of A.

Proof. Indeed, for any open subset U in SpecA we have the following equalities:

U = U c = V (a)c = V (∑︁i(fi))c = (⋂︁i V (fi))c = ⋃︁
i D(fi).

Here U c denote the complement of U and {fi} is a set of generators of a.

Now we define the sheaf of rings OSpecA on the topological space X = SpecA
as follows, for each open subset U ⊂ X we define the set of functions

OX(U) := {s : U → ⨿Ap | s satisfies (1) and (2)},

where

1. for each p ∈ U, s(p) ∈ Ap, and

2. for each point p ∈ U there is a neighbourhood V of p in U and there are
elements f, a ∈ A such that for every q ∈ V, f /∈ q and s(q) = a

f
in Aq.

The ring structure and the unit element is clear. Moreover, it is easy to see
that this is a sheaf of rings.

Proposition 19. Let A be a ring.

1. For any p ∈ SpecA, the stalk of the structure sheaf OSpecA is isomorphic to
the local ring Ap.

2. For any element f ∈ A, the ring OSpecA(D(f)) is isomorphic to the localized
ring Af .

3. In particular, Γ(SpecA,OSpecA) ∼= A.

Proof. [8] II, Proposition 2.2.

Definition 20 (Ringed Space). A ringed space is a pair (X,OX) consisting of a
topological space X and a sheaf of rings OX on X. A morphism of ringed spaces
from (X,OX) to (Y,OY ) is a pair (f, f#) of a continuous map f : X → Y and a
map f# : OY → f∗OX of sheaves of rings on Y.

Definition 21 (Locally ringed space). A locally ringed space is a ringed space
(X,OX) such that stalk OX,x is a local ring for every point x ∈ X. A morphism
of locally ringed spaces is a morphism of ringed spaces such that f#

x : OY,f(x) →
(f∗OX)f(x) → OX,x is local for every point x.
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Remark 22. If (A,mA) and (B,mB) are local rings, a homomorphism ϕ : A→ B
is called a local homomoprhism if ϕ−1(mB) = mA.

Example 23. (SpecA,OSpecA) is a locally ringed space for every ring A.

Proof. [8] II, Proposition 2.3.

Definition 24 (Scheme). An affine scheme is a locally ringed space (X,OX) which
is isomorphic to the locally ringed space (SpecA,OSpecA) for some ring A. A scheme
is a locally ringed space (X,OX) such that there exists an open cover {Ui} such
that every (Ui,OUi

) is an affine scheme. A morphism of schemes is a morphism of
them as locally ringed spaces.

Remark 25. The sheaf of rings OX is called the structure sheaf.

Remark 26. By abuse of notation we will sometimes write simply X for the
scheme (X,OX).

Now we define an important example of projective schemes. This class of
schemes are constructed from graded rings. Let S be a graded ring. Denote by S+

the ideal ⨁︁d>0 Sd. We define the set X = Proj(S) as the set of all homogenuous
prime ideals p such that S+ ⊈ p. For a homogenuous ideal of S we define the closed
subset V (a) := {p ∈ ProjS | a ⊂ p}, thus we can define the Zariski topology on
Proj(S). For more detailed explanation and construction of the structure sheaf,
see [8] pg. 76− 77.

Definition 27. Let A be a ring and let n > 0. We define n - projective space to be
the scheme Pn

A = ProjA[x0, ..., xn] where A[x0, ..., xn] is the polynomial ring with
standard graded structure.

Definition 28. Let (X,OX) be a scheme. An ideal sheaf on (X,OX) is a subsheaf
I ⊂ OX such that I(U) is an ideal for every open subset U ⊂ X.

Definition 29 (closed subscheme). Let (X,OX) be a scheme. A closed subscheme
of (X,OX) is a subscheme of the form (Supp(OX/I),OX/I) for some sheaf of
ideals I.

1.2.1 Properties of schemes
Definition 30. A scheme is irreducible if its topological space is irreducible.

Definition 31. A scheme X is reduced if for every open set U , the ring OX(U)
has no nilpotent elements.
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Definition 32. A scheme X is integral if for every open set U ⊂ X, the ring
OX(U) is an integral domain.

Proposition 33. A scheme is integral if and only if it is irreducible and reduced.

Proof. [8], Proposition 3.1.

Definition 34. A scheme X is locally Noetherian if it can be covered by open affine
subsets SpecAi, where each Ai is a Noetherian ring. A scheme X is Noetherian if
it is locally Noetherian and quasi-compact.

Proposition 35. A scheme X is locally Noetherian if and only if for every open
affine subset U = SpecA, A is a Noetherian ring.

Proof. [8], Proposition 3.2.

Definition 36. A morphism f : X → Y of schemes is locally of finite type if there
exists a covering of Y by open affine subsets Vi = SpecBi, such that for each i,
f−1(Vi) can be covered by open affine subsets Uij = SpecAij, where each Aij is a
finitely generated Bi- algebra. The morphism f is of finite type if in addition each
f−1(Vi) can be covered by finite numbers of the Uij.

1.3 Sheaves of OX - modules
Definition 37. Let (X,OX) be a ringed space.

1. Sheaf of OX - modules (or simply an OX - module) is a sheaf F on X
such that for every open subset U ⊆ X, F(U) is an OX(U)- module and for
each inclusion of open sets V ⊆ U , the restriction homomorphism F(U)→
F(V ) is compatible with the module structures via the ring homomorphism
OX(U)→ OX(V ).

2. A morphism F → G of sheaves of OX− modules is a morphism of sheaves,
such that for each open set U ⊆ X, the map F(U)→ G(U) is a homomorphism
of OX(U)- modules.

3. An OX- module F is free if it is isomorphic to a direct sum of copies of the
structure sheaf OX It is called locally free if X can be covered by open sets U
such that F|U is a free OX |U - module. The rank of F on such open set is the
number of copies of the structure sheaf needed. Note that, if X is connected,
the rank of a locally free sheaf is the same everywhere. A locally free sheaf of
rank 1 is called an invertible sheaf.
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Definition 38. We define the tensor product F ⊗OX
G of two OX- modules as the

sheafification of the presheaf U → F(U) ⊗OX(U) G(U) for each open U ⊆ X. We
will write just F ⊗ G for brevity.

Definition 39. Let (f, f#) : (X.OX)→ (Y.OY ) be a morphism of ringed spaces.

1. We define the direct image functor

f∗ : Mod(X,OX)→Mod(Y,OY )

as the composition of the pushforward f∗ and the restriction of scalars via the
map f# : OY → f∗OX .

2. We define the inverse image functor

f ∗ : Mod(Y,OY )→Mod(X,OX)

as the composition of the inverse image f−1 and the extension of scalars via
the map f−1OY → OX . Namely, to be tensor product f−1(−)⊗f−1OY

OX .

Remark 40. 1. For an OX- module F and an OY - module G, f∗F is an f∗OX-
module and f ∗G a sheaf of f ∗OY - modules in natural way.

2. The map f−1OY → OX comes from the adjunction f−1 ⊣ f∗.

Definition 41. Let A be a ring and M an A- module. We define sheaf of OX-
modules associated to module M as follows. We define the group

˜︂M(U) := {s : U → ⨿Mp | s satisfies (1) and (2)},

where

1. for each p ∈ U, s(p) ∈Mp and

2. for each point p ∈ U there is a neighbourhood V of p in U and there are
elements m ∈ M and a ∈ A such that for every q ∈ V, a /∈ q and s(q) = m

a

in Mq.

Remark 42. The above set of function really forms a group by pointwise addition
and restriction maps are defined ρUV s := s|V . That is, ˜︂M is indeed a sheaf, moreover
sheaf of OX- modules.

Proposition 43. Let A be a ring. M an A- module and ˜︂M associated sheaf of
OX- modules to M on X = SpecA. Then:
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1. for each p ∈ X, the stalk (˜︂M)p is isomorphic to the localized module Mp;

2. for each a ∈ A, the Aa- module ˜︂M(D(a)) is isomorphic to the localized module
Ma;

3. in particular, Γ(X, ˜︂M) = M.

Proof. [8] II, Proposition 5.1.

Proposition 44. Let A be a ring and let X = SpecA be the corresponding affine
scheme. Also let ϕ : A→ B be a ring homomorphism and f : SpecB → SpecA the
corresponding morphism of affine schemes. Then:

1. the map M → ˜︂M gives an exact, fully faithful functor from the category of
A- modules to the category of OX- modules;

2. if M and N are two A- modules, then ˜︂(M ⊗A N) ∼= ˜︂M ⊗OX
˜︂N ;

3. if {Mi} is any family of A- modules, then ˜︂(⨁︁Mi) ∼=
⨁︁˜︃Mi;

4. for any B- module N the direct image f∗(˜︂N) ∼= ˜︃NA;

5. for any A- module M the inverse image f ∗(˜︂M) ∼= ˜︂M ⊗A B.

Proof. [8] II, Proposition 5.2.

1.3.1 Quasi-coherent and coherent sheaves
Definition 45. Let (X,OX) be a scheme.

1. A sheaf of OX- modules F is quasi-coherent if X can be covered by open
affines subsets Ui = SpecAi such that F|Ui

∼= ˜︂Mi for some Ai- module Mi for
each i.

2. We say F is coherent if furthermore each Mi is finitely generated Ai- module
and each Ai is a Noetherian ring.

Proposition 46. Let X be a scheme. Then an OX- module F is quasi-coherent if
and only if for every open affine subset U = SpecA of X, there is an A- module M
such that F|U ∼= ˜︂M. Moreover, if X is Noetherian then F is coherent if and only
if the same is true with M finitely generated A- module.

Proof. [8] II, Proposition 5.4.
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Corollary 47. Let A be a ring and X = SpecA affine scheme. The tilde functor˜︃(−) gives an equivalence of categories between the category of A- modules and
the category of quasi-coherent OX- modules. The same holds between categories
of coherent OX- modules and finitely generated A- modules provided that A is
Noetherian.

Proof. [8] II, Corollary 5.5.

Proposition 48. Let X be a scheme. The kernel, cokernel and image of any
morphism of quasi-coherent sheaves are quasi-coherent. Any extension of quasi-
coherent sheaf is quasi-coherent. The same holds for coherent sheaves if X is a
Noetherian scheme.

Proof. [8] II, Proposition 5.7.

It is also convenient to have an easy way to check quasi-coherence. In fact,
a quasi-coherent sheaf F is equivalent to the data of one module for each affine
open subset, such that the module over a principal open subset D(a) is given by
localizing the module over SpecA. We form this to the following lemma.

Lemma 49. Let X be a scheme and let F be an OX- module. Then F is a
quasi-coherent sheaf if and only if the map F(SpecA)f → F(D(f)) induced by the
universal property of the localization and restriction map is an isomorphism for
every open affine SpecA and f ∈ A.

Proof. One implication is given in [8], Lemma 5.3. Conversely, define M :=
F(SpecA). Then sheaf axioms and Proposition 43 give the proof.

Lemma 50. Let X be a Noetherian scheme and F a coherent OX- module. Then
every ascending chain of quasi-coherent subsheaves of F

F1 ⊂ F2 ⊂ ... ⊂ F

stabilizes.

Proof. [9], Lemma 30.10.1.

Lemma 51. The support of a coherent sheaf F on a Noetherian scheme X is
closed.

Proof. If M is a finitely generated module then SuppM = V (Ann(M)) (see [10]
pg. 25-26), which is a closed subset in SpecA. Now, if the scheme X is Noetherian
then we can choose a finite cover, and the restriction of the coherent sheaf F
on every such open affine corresponds to finitely generated modules Mi. Then
Supp(F|Ui

) = V (Ann(Mi). We observe that Supp(F) = ⋃︁
Supp(F|Ui

) and this
finishes the proof.
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Proposition 52. Let f : X → Y be a morphism of schemes.

1. If G is a quasi-coherent sheaf of OY - modules, then f ∗G is a quasi-coherent
sheaf of OX- modules.

2. If X and Y are Noetherian, and G is coherent, then f ∗G is coherent.

3. If X Noetherian or f quasi-compact and separated then if F is a quasi-coherent
sheaf of OX- modules, f∗F is a quasi-coherent sheaf of OY - modules.

Proof. [8] II, Proposition 5.8.

1.3.2 Sheaf Hom
Let (X,OX) be a ringed space. If F and G are two OX- modules, the presheaf

HomOX
(F ,G) : U → HomOX|U (F|U ,G|U)

is a sheaf, which we call the sheaf Hom. Moreover, it is also an OX- module.
This short subsection is devoted to show that this sheaf is coherent under some
assumptions.

Definition 53. Let (X,OX) be a ringed space. Let F be a OX- module. We say
F has a presentation if X can be covered by open subsets U such that we have an
exact sequence ⨁︂

i∈I

OU →
⨁︂
j∈J

OU → FU → 0.

When the sets I and J are finite, we say F is of finite presentation.

Proposition 54. Every coherent sheaf F on a noetherian scheme is of finite
presentation.

Proof. Let X be a noetherian scheme. By definition of coherence, we can cover
X with open affine sets Ui such that F|Ui

∼= ˜︂Mi where Mi is finitely generated A-
module over a noetherian ring. Thus, we can find an exact sequence of the form
A⊕n2 → A⊕n1 →Mi → 0. The tilde functor ˜︃(−) is exact and preserves direct sums,
hence this sequence correspond to the exact sequence O⊕n1

Ui
→ O⊕n2

Ui
→ FUi

→
0.

Lemma 55. Let (X,OX) be a ringed space. Let F ,G be OX- modules.

1. If F2 → F1 → F is an exact sequence of OX- modules, then

0→ Hom(F ,G)→ Hom(F1,G)→ Hom(F2,G)

is exact.
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Proof. [9], Lemma 17.22.2.

Lemma 56. Let (X,OX) be a ringed space. Let ϕ : F → G be a morphism of
coherent OX- modules. Then, Ker(ϕ) and Coker(ϕ) are coherent.

Proof. [9], Lemma 17.12.4.

Proposition 57. Let (X,O)X be a ringed space. Let F and G be OX- modules
such that F is of finite presentation and G is coherent. Then Hom(F ,G) is a
coherent sheaf.

Proof. F is of finite presentation. Thus we have⨁︂
i∈I

OU →
⨁︂
j∈J

OU → FU → 0

with I, J finite. By the Lemma above, we get an exact sequence

0→ Hom(F ,G)→ Hom(O⊕n1
X ,G)→ Hom(O⊕n2

X ,G).

Moreover, this is isomorphic to the sequence

0→ Hom(F ,G)→ G⊕n1 → G⊕n2 .

That is, the sheaf Hom is isomorphic to the kernel of the map between coherent
sheaves. Thus, it is coherent.

In particular, the sheaf Hom of the coherent sheaves is coherent.

1.4 Towards derived categories
In Chapter 4 we investigate the bounded derived category of coherent sheaves.

Hence, we now introduce basic notions of the triangulated category as well as we
recall the brief idea of the construction of the derived categories. We define the
notion of right derived functors. In the end, we define the sheaf cohomology.

1.4.1 Additive categories
Definition 58. A category A is an additive category if for any two objects A,B ∈ A
the set Hom(A,B) is endowed with abelian group structure such that the following
three conditions are satisfied:

1. The composition map ◦ is bilinear.

18



2. There exists a zero object 0 ∈ A that is, the object for which Hom(0, 0) is
the trivial abelian group.

3. For any two objects A1, A2 ∈ A there exist an object B ∈ A with morphisms
ji : Ai → B and pi : B → Ai which make B the direct sum and the direct
product of A1 and A2.

We assume the usual compatibilities pi ◦ ji = 1 , p2 ◦ j1 = p1 ◦ j2 = 0 and
j1 ◦ p1 + j2 ◦ p2 = 1 which hold automatically up to automorphism of B.

Definition 59. Let C and D be additive categories. A functor F : C → D is called
additive if F : HomC(X,Y ) → HomD(FX,FY ) is a homomorphism of abelian
groups for all X,Y ∈ C.

Definition 60. Let k be a field. A k- linear category A is an additive category such
that the groups Hom(A,B) are k- vector spaces and such that all compositions are
k- bilinear. Moreover, additive functors between two k- linear additive categories
over a common base field k is defined as k- linear functor. That is, the map
F : Hom(A,B)→ Hom(F (A), F (B)) is k- linear for every A,B ∈ A.

Definition 61. An additive category C is called abelian if:

1. any morphism admits a kernel and a cokernel;

2. the natural map Coimf → Imf is an isomorphism for every f ∈ Hom(A,B).

Recall that the image Imf is a kernel for a cokernel B → Cokerf and the coimage
Coimf is a cokernel for a kernel Kerf → A.

Let us provide some examples of abelian categories.

Example 62. Let X be any scheme. Let R be a commutative ring.

1. The category of modules Mod(R) is abelian.

2. The category of OX- modules Mod(X,OX) is abelian ([9], Lemma 17.3.1.).

3. The category of quasi-coherent sheaves Qcoh(X) is abelian ([11] pg. 381-382).

4. The category of coherent sheaves Coh(X) is abelian ([9], Lemma 17.12.4.).
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1.4.2 Triangulated categories
Definition 63 (triangle). Let D be an additive category. Let [1] : D → D be a
additive auto-equivalence functor such that E ↦→ E[1]. The functor [1] is called the
shift functor.

1. A triangle is a sextuple (X,Y, Z, f, g, h) where X,Y, Z ∈ D where X,Y, Z ∈ D
and f : X → Y , g : Y → Z and h : Z → X[1] are morphism in D.

2. A morhpism of triangles (X,Y, Z, f, g, h) → (X ′, Y ′, Z ′, f ′, g′, h′) is given
by morphisms a : X → X ′, b : Y → Y ′ and c : Z → Z ′ of D such that
b ◦ f = f ′ ◦ a, c ◦ g = g′ ◦ b and a[1] ◦ h = h′ ◦ c.

Definition 64. A triangulated category is a triple (D, {[n]}n∈Z, T ) where

1. D is an additive category,

2. {[n]}n∈Z is a collection of additve auto-equivalences such that [n]◦[m] = [n+m]
for n,m ∈ Z. We denote [0] = id, and [n] is the n-fold composition of [1] and
[−n] is equal to n-the fold composition of [−1] for n > 0, and

3. set of triangles T called the distinguished triangles.

subjected to the following axioms

TR1 Any triangle of the form (X,X, 0, 1, 0, 0) is a distinguished triangle. Any
triangle isomorphic to a distinguished triangle is distinguished. Every mor-
phism f : X → Y can be complete into a distinguished triangle of the form
(X,Y, Z, f, g, h).

TR2 The triangle (X,Y, Z, f, g, h) is distinguished if and only if

(Y, Z,X[1], g, h,−f [1])

is a distinguished triangle.

TR3 Given a solid diagram

X Y Z X[1]

X ′ Y ′ Z ′ X ′[1]

a

f

b

g

c

h

a

f ′ g′
h′

whose rows are distinguished triangles and leftmost square commutes, there
exists a morphism c : Z → Z ′ such that (a, b, c) is a morhpism of triangles.
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TR4 Given objects X,Y, Z of D and morphisms f : X → Y , g : Y → Z
and distinguished triangles (X,Y,Q1, f, p1, d1), (X,Z,Q2, g ◦ f, p2, d2), and
(Y, Z,Q3, g, p3, d3), there exist morphisms a : Q1 → Q2 and b : Q2 → Q3 such
that

a (Q1, Q2, Q3, a, b, p1[1] ◦ d3) is a distingiushed triangle,
b The triple (idX , g, a) is a morphism of triangles (X,Y,Q1, f, p1, d1)→

(X,Z,Q2, g ◦ f, p2, d2), and
c The triple (f, idZ , b) is a morphism of triangles (X,Z,Q2, g◦f, p2, d2)→

(Y, Z,Q3, g, p3, d3).

Definition 65. An additive functor F : D → D′ between triangulated categories is
called exact if the following conditions are satisfied:

i) There exists a functor isomorphism

F ◦ [1]→ [1] ◦ F.

ii) F preserves distinguished triangles, in other words, any distinguished triangle

A→ B → C → A[1]

in D is mapped to a distinguished triangle

F (A)→ F (B)→ F (C)→ F (A)[1]

in D′, where F ((A)[1]) is identified with F (A)[1] via the functor isomorphism
in i).

Definition 66. Let D and D′ be two triangulated categories. We say the categories
are equivalent if there exists an exact equivalence F : D → D′.

1.4.3 Derived categories
Here we just recall the brief idea behind the construction of the derived categories.

The aim behind the construction is the following: quasi-isomorphic objects should
become isomorphic in the derived category. The construction proceeds in several
steps which can be reflected by the following sequence of functors

A → C(A)→ K(A)→ D(A).

Here A is an Abelian category, C(A) is the category of cochain complexes, K(A) its
homotopy category and finally D(A) the derived category. Recall the definition of
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the homotopy category. The homotopy category K(A) is the category of complexes
of A with morphisms given up to homotopy.

Now, the objects of the derived category are pretty straightforward. We define
Ob(D(A)) := Ob(K(A)) = Ob(C(A)). Finally, the morphisms are obtained by
formally inverting the class of the quasi-isomorphisms, but we will not provide
the technical details. Note that the derived category is not Abelian in general.
However, it is always triangulated.

Finally, we provide one useful lemma, which we will use in Chapter 4. It says
that a complex of vector spaces over a field k is isomorphic to its cohomology
complex in the derived category of vector spaces over a field k.

Lemma 67. Let A := V ec(k) be an Abelian category of k - vector spaces. Then
any complex A• ∈ D(A) is isomorphic to its cohomology complex ⨁︁H i(A•)[−i].

Proof. Let us have a chain complex of vector spaces V • = (...→ V i di

−→ V i+1 di+1
−−→

V i+2 → ...). We form a complex H•(V •) = (... → H i(V •) 0−→ H i+1(V •) 0−→
H i+2(V •) → ...) with obvious zero differentials. Now, as we are in the category
of vector spaces the short exact sequence 0 → Bi(V •) → Zi(V •) → H i(V •) → 0
splits for every i, that is we have a section si : H i(V •)→ Zi(V •). The composition
with the inclusion Zi(V •)→ V i gives a well-defined chain map H•(V •)→ V •. It
is easy to see that this map is a quasi-isomorphism, hence it is an isomorphism in
D(A). Then the isomorphism H•(V •) ∼=

⨁︁
H i(V •)[−i] holds by definition of direct

sum of complexes.

1.4.4 Derived functors
We recall the construction of right derived functors provided that an Abelian

category A has enough injectives.

Proposition 68. Let A be an Abelian category. Suppose A contains enough
injectives, i.e any object in A can be embedded into injective one. Then the natural
functor

ι : K+(I)→ D+(A)
is an equivalence. Here K+(I) is the bounded below homotopy category of the full
additive subcategory I ⊂ A of all injectives.

Proof. [1] Proposition 2.40.

Definition 69. Let A be an Abelian category with enough injectives. Let F : A → B
be a left exact functor between two Abelian categories. The right derived functor of
F is the functor

RF := QB ◦K(F ) ◦ ι−1 : D+(A)→ D+(B).
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Here K(F ) : K+(A) → K+(B) is well-defined functor that maps (... → Ai−1 →
Ai → A1 → ...) to (... → F (Ai−1) → F (Ai) → F (A1) → ...) and QB : K+(B) →
D+(B) is the natural functor.

Proposition 70. The right derived functor RF : D+(A) → D+(B) is an exact
functor of triangulated categories.

Proof. [1], Proposition 2.47.

Definition 71. Let RF : D+(A) → D+(B) be the right derived functor of a left
exact functor F : A → B. Then for any complex A• ∈ D+(A) we define:

RiF (A•) := H i(RF (A•)) ∈ B.

We call the induced additive functors

RiF : A −→ B

the higher derived functors of F.

Proposition 72. Let A and B be abelian categories such that A has enough
injectives. Let F : A → B be a left exact functor and RiF its higher derived
functors. Then any short exact sequence

0→ A→ B → C → 0

in A gives a rise to a long exact sequence

0 −→ F (A) −→ F (B) −→ F (C) −→ R1F (A) −→ ...

... −→ RiF (B) −→ RiF (C) −→ Ri+1F (A) −→ ...

Proof. [1], Corollary 2.50.

Before we define the sheaf cohomology, we need the following proposition and
corollary.

Proposition 73. Let (X,OX) be a ringed space. Then the category Mod(X,OX)
has enough injectives.

Proof. [8] chapter III, Proposition 2.2.

Corollary 74. If X is a topological space, then the category Sh(X) of sheaves of
abelian groups on X has enough injectives.

Proof. [8] chapter III, Corollary 2.3.
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Now we are ready to define the sheaf cohomology. Let X be a topological space.
Let Γ(X,−) : Sh(X)→ Ab be the left exact global section functor, where Sh(X)
is the category of sheaves of abelian groups. We define the cohomology functors
H i(X,−) to be the right derived functors of Γ(X,−). For any sheaf F the groups
H i(X,F) are the cohomology groups of F . Note that regardless of the structures of
X and F , e.g., X scheme and F quasi-coherent sheaf, we always take cohomology
in this sense, regarding F simply as a sheaf of abelian groups on the underlying
topological space X.

Similarly, let (X,OX) be a ringed space and let F be an OX- module. We define
the functors Exti(F ,−) as the right derived functors of Hom(F ,−) and Exti as
the right derived functors of Hom(F ,−). Here, if F , and G are OX- modules, then
by Hom(F ,G) we denote the group of OX- modules.

1.5 Curves
Note that when we talk about a scheme with some implicit structure, for

example a scheme over a field k, we think of the scheme via the structure morphism
X → Speck.

Definition 75 (Variety). Let k be a field. A variety is an integral scheme X over
k such that the structure morphism X → Speck is separated1 and of finite type.

Definition 76 (Curve). Let k be a field. A curve is variety of dimension 1 over k.

Remark 77. A curve is Noetherian scheme.

Definition 78 (Regular Scheme). Let X be a locally Noetherian scheme. It is
called regular at a point x ∈ X if the stalk OX,x is regular. The scheme X is called
regular if it is regular at every point x ∈ X. It is called non-regular or singular if
the stalk OX,x is non-regular for some point x ∈ X.

Remark 79. We will refer to a regular point or a regular scheme as a smooth point
or a smooth scheme, respectively. Strictly speaking, these notions are different, but
they coincide whenever we talk about curves over an algebraically closed field. [11]
12.2.10.

Definition 80 (Dedekind Scheme). We call a Noetherian integral scheme X a
Dedekind scheme if OX(U) is a Dedekind ring for every open affine U ⊆ X. In
other words, a Dedekind scheme is Noetherian integral regular scheme of dimension
≤ 1.

1for the definition, see [8] on page 96.
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Example 81. Every regular curve over a field k is a Dedekind scheme.

In the following lemma we use the notion of an effective Cartier divisor, see the
Appendix A.3.

Lemma 82. Let X be a curve over a field k and x ∈ X closed point. We think of
x as a reduced closed subscheme of X with sheaf of ideals I. Then following are
equivalent:

1. OX,x is regular,

2. OX,x is normal,

3. OX,x is discrete valuation ring,

4. I is an invertible Ox - module,

5. x is an effective Cartier divisor on X.

Proof. [9], Lemma 33.43.8.

Definition 83 (Projective morphism). Let f : X → Y be a morphism of schemes.
We call f projective morphism if it factors into a closed immersion ι : X → Pn

Y for
some integer n, followed by the projection Pn

Y → Y.

Remark 84. Thus, when we talk about a projective curve over an algebraically
closed field k we think of it with the embedding in the ambient space Pn

k .

Now we introduce two important theorems which play a crucial role in upcoming
definitions. With aid of these theorems we define the Euler characteristic of a
coherent sheaf, subsequently we define the arithmetic genus, an important invariant
of a curve. We will see the significant meaning of these theorems in Chapter 4.

Theorem 85 (A Vanishing Theorem of Grothendieck). Let X be a Noetherian
topological space of dimension n. Then for all i > n and all sheaves of Abelian
groups F on X the sheaf cohomology H i(X,F) vanishes.

Proof. [8] chapter III, Theorem 2.7.

Theorem 86. Let X be a projective scheme over a noetherian ring A. Let F be a
coherent sheaf on X. Then:

1. for each i ≥ 0, H i(X,F) is a finitely generated A-module.

Proof. [11], Theorem 18.1.4.
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Definition 87 (Euler characteristic). Let X be a projective scheme over a field k
and let F be a coherent sheaf on X. We define the Euler characteristic of F as

χ(F) = ∑︁
dimk(−1)iH i(X,F).

Remark 88. Due to the above theorem, all of the cohomologies are finitely generated
k- vector spaces.

Lemma 89. Let X be a projective scheme over a field k. The Euler characteristic
is additive on short exact sequences. That is, for any short exact sequence 0 →
F → E → G → 0 of coherent sheaves on X, we have χ(E) = χ(F) + χ(G).

Proof. Let us have a short exact sequence of coherent sheaves 0→ F → E → G → 0.
We have the long exact sequence of cohomologies

0→ Γ(X,F)→ Γ(X, E)→ Γ(X,G)

→ H1(X,F)→ H1(X, E)→ H1(X,G)→ ...

All of these are given the k vector space structure. Then the rank-nullity
theorem for vector spaces completes the proof.

Definition 90 (Arithmetic genus). Let k be a field. Let X be a projective scheme
of dimension r over the field k. We define the arithmetic genus pa of X by

pa(X) = (−1)r(χ(X,OX)− 1).

In our thesis we work with a projective scheme (with a projective curve to be
precise) over an algebraically closed field k. For such scheme we can nicely describe
the space of global sections of the structure sheaf. In fact, we get Γ(X,OX) =
H0(X,OX) = k. This is an important and non-trivial fact. It can be found in [11]
pg. 295. And for such schemes the arithmetic genus

pa =
r−1∑︂
i=0

(−1)idimkH
r−i(X,OX).

Indeed, it is a direct consequence of the definition and the Grothendieck Van-
ishing Theorem. In particular, the arithmetic genus of a projective curve X is
pa(X) = dimkH

1(X,OX). In other words, the arithmetic genus and the genus of
the projective curve coincide.

Now we define numerical invariants of a coherent sheaf on a curve X. Their
importance and meaning will be obvious in Chapter 4.

Definition 91 (Rank). We define the rank of a coherent sheaf F on a curve X
as rk(F) := dimOX,η

Fx ⊗OX,x
OX,η. Here by η we denote the generic point of the

curve X.

26



Remark 92. Note that definition of the rank of a coherent sheaf does not depend
on the choice of the point x ∈ X.

Definition 93 (Degree). Let X be a scheme over a field k. The degree of a coherent
sheaf F on the scheme X is defined as deg(F) = χ(F)− χ(OX)rk(F ).

Remark 94. If X is a projective curve over an algebraically closed field k of
arithmetic genus one, then the definition of the Euler characteristic and the degree
coincide as χ(OX) = 0 (see the discussion above for the structure sheaf OX).

Finally, we define a special type of a projective curve, namely a Weierstrass
curve.

Definition 95. Let k be an algebraically closed field of characteristic ̸= 2, 3. A
Weierstrass curve X is a projective curve such that it is isomorphic to a cubic curve
in P2

k given by an equation

y2z = 4x3 − g2xz
2 − g3z

3,

where [x : y : z] are homogeneous coordinates in P2
k and g2, g3 constants in k.

Remark 96. Every such curve has at most one singular point. If g2 = g3 = 0 then
the singular point is a cusp. Otherwise, it is a node. Moreover, Weierstrass curves
are curves of arithmetic genus one.

For the rest of this section we provide some useful propositions.

Theorem 97. Let X be a projective scheme over Noetherian ring A. Then any
coherent sheaf F can be written as quotient of a sheaf E, where E is a finite direct
sum of invertible sheaves.

Proof. [8] chapter II, Corollary 5.18.

Proposition 98. Let G be a sheaf of OX- modules. Then we have:

1. Exti(OX ,G) ∼= H i(X,G), for all i ≥ 0.

Proof. [8] chapter III, Proposition 6.3.

Proposition 99. Let L be a loally free sheaf of finite rank, and let L∨ =
Hom(L,OX) be its dual. Then for any F ,G ∈ Mod(X,OX) and any i ≥ 0
we have

Exti(F ⊗ L,G) ∼= Exti(F ,G ⊗ L∨).

Proof. [8] chapter III, Proposition 6.7.
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Proposition 100. If 0 → F ′ → F → F ′′ → 0 is a short exact sequence of OX-
modules, then for any OX- module G we have a long exact sequence

0→ Hom(F ′′,G)→ Hom(F ,G)→ Hom(F ′,G)

→ Ext1(F ′′,G)→ Ext1(F ,G)→ Ext1(F ′,G)→ . . . ,

and similarly for Ext sheaves.

Proof. [8] chapter III, Proposition 6.4.

Lemma 101. Let X = SpecA be an affine locally noetherian scheme. Let M and
N be A- modules such that M is finitely generated A- module. Then

ExtiX(˜︂M, ˜︂N) ∼= ExtiA(M,N).

Proof. The module M is finitely generated over the noetherian scheme X. Thus
we can find a free resolution

...→ A⊕n2 → A⊕n1 →M → 0.

Applying the exact tilde functor ˜︃(−) we get the resolution

...→ O⊕n2
X → O⊕n1

X → ˜︂M → 0.

This resolution consist of locally free sheaves and hence computes the right derived
functor Ext(−, ˜︂N). Note that Hom(A⊕nk , N) ∼= N⊕nk and Hom(O⊕nk

X , ˜︂N) ∼=
Γ(X, ˜︂N)⊕nk ∼= N⊕nk . Thus we have two isomorphic complexes, in particular, quasi-
isomorphic. And this finish the proof.

Proposition 102. Let X be noetherian scheme, let F be a coherent sheaf on X.
Let G be an OX- module and let x ∈ X be a point. Then we have

Exti(F ,G)x
∼= ExtiOX,x

(Fx,Gx)

for any i ≥ 0, where the right-hand side is Ext over the local ring OX,x.

Proof. [8], Proposition 6.8.
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2 Torsion Sheaves
In this chapter, we introduce the notion of torsion and torsion free sheaves. We

prove some elementary properties as well as some more important and difficult
properties of such sheaves. Our main interest is to explore the behaviour of such
sheaves on smooth and singular curves. At the end of this section, we will see the
common properties they share as well as their differences.

Definition 103. We call a quasi-coherent sheaf F on an integral scheme X torsion,
if its stalk at the generic point is zero.

Definition 104. If X is a scheme, we call an OX- module F torsion free if it is
torsion free as an OX,x- module for every point x ∈ X.

Lemma 105. Let X be an integral scheme with the generic point η. Let F be a
quasi-coherent OX- module. Let U ⊂ X be a non-empty open subset and s ∈ F(U)
a section of F over U. The following are equivalent

1. for some x ∈ U the image of s in Fx is torsion,

2. for all x ∈ U the image of s in Fx is torsion,

3. the image of s is zero in Fη.

Proof. 3) =⇒ 1) is trivial.
1) =⇒ 2). Firstly, we show this for the affine case U = SpecA. So let us have a
section s ∈ F(X) and some point x such that sx is torsion. F is quasi-coherent so
the section corresponds to an element m ∈M for module M such that ˜︂M ∼= F . As
sx is torsion in Fx, then mp is torsion in Mp under the canonical map M → Mp,
where p is a prime ideal corresponding to the point x ∈ X. This means we have
a non-zero element a/s ∈ Ap such that a/s · m/1 = 0. From the definition of
localization we have an element t ∈ S−1 := A\p such that tam = 0. Now, to show
that m is torsion in any other localization it is enough to take the section ta ∈ A.
Indeed, we have that ta/1 ∈ S ′−1A for any localization set S ′. Then ta/1 ·m/1 = 0
as 1 ∈ S ′. Thus, m/1 is torsion as Aq - element for localization at any primes. It is
left to show that ta ̸= 0 in Aq for any q but this follows from the assumption that
X is an integral scheme, in particular, A is an integral domain.
To show the general case, choose some open subset U ⊂ X. We can cover U by
principal opens {D(f)}. In particular x ∈ D(f) for some f ∈ A and for some A.
By above, as s is torsion at the point x it is torsion at every point in D(f). As X
is integral, any intersection D(f) ∩D(g) is non-empty (just take the generic point
corresponding to the zero ideal). This finishes the proof.
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2) =⇒ 3) We show the affine case U = SpecA. The general case follows from the
fact that the generic point is contained in any open subset. Quasi-coherence implies
that F is given by some module over this open affine subset. Then Proposition 163
part 2 gives the proof.

Remark 106. The section from the above lemma is called a torsion section.

Lemma 107. Let X be an integral scheme and F a quasi-coherent OX- module.
The following are equivalent

1. F is torsion-free,

2. for each open affine U ⊆ X, F(U) is a torsion free OX(U)- module.

Proof. This is the direct consequence of Proposition 162. and quasi-coherence of
the sheaf F .

Proposition 108. Let X be an integral scheme and F be a quasi-coherent sheaf.
The following are equivalent

1. F is a torsion quasi-coherent sheaf,

2. Fx is a OX,x- torsion module for every point x of the scheme X,

3. for each open affine U ⊆ X F(U) is a torsion OX(U)- module.

Proof. We will show the implication 1) =⇒ 3). The converse holds by the same
arguments. Assume that U = SpecA. Quasi-coherence gives F ∼= ˜︂M for some A-
moduleM.We show that F(X) is a torsionOX(X) - module. This is equivalent with
the fact that F(X)⊗OX(X) Quot(OX(X)) = M ⊗A Quot(A) = 0 (see Proposition
163). Again, from the Proposition 157 we know that Fη

∼= M(0) ∼= M ⊗A Quot(A)
and Fη = 0 by the assumption.

1) ⇐⇒ 2)
The implication from right to left follows directly from Fη

∼= Fη ⊗OX,η
OX,η = 0 as

the stalk at the generic point is torsion (again, 163).
Conversely, from the local global property of modules we know that a module
is zero if and only if the localization at every prime ideal is zero. That is,
M ⊗A Quot(A) ∼= M(0) ∼= Fη = 0 if and only if S−1(M ⊗A Quot(A)) = 0 for
every multiplicative set which comes from the complement of some prime ideal.
Basic commutative algebra gives S−1(M ⊗AQuot(A)) = S−1M ⊗S−1AQuot(A) = 0.
In particular, the latter is equal to Fx ⊗OX,x

Quot(OX,x) = Mp ⊗Ap Quot(A) for
any prime ideal. This finishes the proof.
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Proposition 109. Let X be a curve over an algebraically closed field. Every
coherent torsion sheaf F on X is supported at finitely many points.

Proof. We show that the support of a coherent torsion sheaf F is a proper closed
subset. The fact that the support is closed is due to 51. The sheaf F is torsion,
hence, Fη = 0 and the support does not contain all points of X. Since the curve X
is of dimension one this finishes the proof.

Proposition 110. Let X be an integral, Noetherian scheme. For a coherent sheaf
F on X there exists a canonical short exact sequence of quasi-coherent OX- modules

0→ tF → F → F/tF → 0,

such that tF is a maximal torsion subsheaf of F and F/tF is torsion free.

Proof. Denote S = {S ⊆ F |S is torsion}. That is the set of all torsion subsheaves.
Obviously the zero subsheaf is torsion, hence S ̸= ∅. If F does not contain a maximal
torsion subsheaf then there exists S1 such that 0 ⊆ S1. If S1 is not a maximal then
we can find a torsion subsheaf S2 such that S1 ⊂ S2. By repeating this argument
we can find an ascending chain of quasi-coherent torsion sheaves

0 ⊂ S1 ⊂ S2 ⊂ S3 · · · .

Due to Lemma 50, this ascending chain of quasi-coherent sheaves has to stabilize.
Hence, there exists a maximal torsion subsheaf of F .
Now we show that F/tF is torsion free. We prove that being quasi-coherent torsion
free sheaf is equivalent with the fact that every torsion subsheaf is zero. Indeed, if
G is quasi-coherent torsion free and contains some non-zero torsion subsheaf T ⊆ G
then as taking a stalk is an exact functor we get Tx ⊆ Gx. Take x ∈ SuppT , the
stalk Tx is torsion by definition, hence G is not torsion free, again, by definition.
Conversely, for the sake of contradiction, assume G is not torsion free. That is, there
exists a point x ∈ X = SpecA such that Gx is not a torsion free OX,x- module. Let
us define the subsheaf T ⊆ G as T (U) := {s ∈ G(U) | sx torsion for every x ∈ U}.
This sheaf is non-zero due to 105 and the assumption. It has clearly the structure
of OX- modules and it is quasi-coherent (see Remark 111). Moreover, it is torsion
by the construction, hence the contradiction.
So, to show F/tF is torsion free is enough to show that it does not contain a
non-zero torsion subsheaf. Let us denote G = F/tF . Assume G is not torsion free.
By the above, there exist non-zero torsion subsheaf T ⊆ G. The fact that the just
constructed sheaf is of the form E/tF contradicts the fact that tF is a maximal
torsion subsheaf. Hence, this finishes the proof.
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Remark 111. The constructed sheaf T is indeed quasi-coherent. This can be checked
on the principal opens 49. Let U = SpecA be an affine subset of X and f ∈ A. From
quasi-coherence of F we have an isomorphism ψ : F(SpecA)f → F(D(f)). We
show that the restriction ψ|T (SpecA)f

: T (SpecA)f → T (D(f)) is an isomorphism.
Note it is given by s/fk → s|D(f). Take a section t ∈ T (D(f)) and consider
it as a section in F(D(f)). Then, via isomorphism ψ, this corresponds to some
element r/al for r ∈ F(SpecA). But r|D(f) = t, so it is torsion on some subset
of SpecA and thus torsion on the whole space SpecA. That is, r ∈ T (SpecA) and
this show surjectivity. To show injectivity take s/fk such that s|D(f) = 0. Again, F
quasi-coherent gives some power of f such that it annihilates the section s which
finish the proof. In particular, the torsion sheaf T is quasi-coherent.

Remark 112. Every non-generic point of a curve is closed.

Proof. Proposition 17.

Theorem 113. Let F be a coherent torsion sheaf on a regular curve X. Then it
decomposes into direct sums of skyscraper sheaves.

Proof. Firstly, we prove the theorem in the affine case. Let us assume X = SpecA
is affine. Then F = ˜︂M for some finitely generated A - module M . As F is torsion,
SuppF is finite. Let us assume that SuppF = {p}. Mp is a finitely generated Ap -
module over a Dedekind domain. Thus, ˜︃Mp ∈ Coh(SpecOX,p). We have a morphism
of schemes ι : SpecOX,p → SpecA induced by the natural map OX(X) → OX,p.
Pushforward of ˜︃Mp along this map is isomorphic to A

˜︃Mp. The structure theorem for
finitely generated torsion module over a Dedekind domain 161 gives decomposition
Mp = ⨁︁

Ap/pA
ni
p . From commutative algebra we know that quotients commute

with taking localization. In particular, we localize at the maximal ideal p. Hence,
we get an isomorphism of A - modules ⨁︁Ap/pA

ni
p
∼=
⨁︁
A/pni . The latest is

finitely generated as an A - module so Mp is. Thus, by the above arguments the
pushforward of the coherent sheaf ˜︂Mp along the map ι is coherent, in other words,
ι∗˜︃Mp ∈ Coh(SpecA). It is easy to see (remind Fη = 0 and the uniqueness of the
direct limit yields F({η}) = 0) that

ι∗Mp
˜ (U) =

⎧⎨⎩0 if p /∈ U
Mp if p ∈ U

and (ι∗Mp
˜ )x =

⎧⎨⎩0 if x ̸= p

Mp if x = p
.

That is, we have constructed a coherent skyscraper sheaf on SpecA. Then extending
the just constructed coherent sheaf by zeros we get a coherent skyscraper sheaf on
the curve X = ⋃︁n

i=1 SpecAi. Now we define the morphism of coherent OX- modules

φp : F → ι∗˜︃Mp as follows, φp(U) =

⎧⎨⎩0 if p /∈ U
F(U)→ Fp if p ∈ U

.
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It is easy to check that this map induces isomorphism on stalks thus φp is an
isomorphism.
The case when the support consists of n points we construct the skyscraper sheaves

for each point and define

⎛⎜⎜⎝
φp1

...
φpn

⎞⎟⎟⎠ : F → ⨁︁n
i=1Fpi

. Using the fact that stalk

commutes with taking direct sums, this finishes the proof.

Proposition 114. Let F be a coherent sheaf on a regular curve X. Then the
canonical short exact sequence

0→ tF → F → F/tF → 0

splits, where tF is a torsion module and F/tF is torsion free.

Proof. Without lose of generality, we can assume Supp(tF) = {p} where p is a
closed point of X. If Supp(tF) = {x1, . . . , xn} then from the decomposition of
torsion sheaves on regular curve 113 and homological algebra we get

Ext1(F/tF , tF) ∼= Ext1(F/tF ,
⨁︂
x∈Z

Fx) ∼=
⨁︂
x∈Z

Ext1(F/tF ,Fx),

where Z denote the support of tF .
We want to find a morphism s : F/tF → F , such that the composition with

the morphism F → F/tF is identity. Now cover the curve X with open affines
such that p ∈ U1 and p ̸= Ui for i ̸= 1. This is possible since p is closed point.
Indeed, let us have finite affine cover {Ui} and WLOG assume p ∈ U1. Then X\{p}
is open and cover it by open affines {Vk} then take a new cover U1

⋃︁{Vk}. Taking
open affine sections with coherent sheaves is exact functor, hence the sequence

0→ tF(Ui)→ F(Ui)→ F/tF(Ui)→ 0

is exact. If i ̸= 1 then tF(Ui) = 0 and we have well-defined isomorphisms
si F(Ui) ∼= F/tF(Ui) for such index i. if i = 1 then F/tF(U1) is torsion free
107, and over the Dedekind domain OX(U1) this is equivalent with projectivity.
Thus, the above sequence splits and we get a well-defined split monomorphism
s1 : F/tF(U1) → F(U1). The collection of morphisms (si) is compatible on
intersections (note that we chose a cover such that tF has support just on U1,
thus on intersections it is zero) and by ˜︃(−) functor it corresponds to morphisms of
sheaves (F/tF)Ui

→ FUi
. Hence, by glueing 14 we get the proof.

As we have seen earlier, the canonical short exact sequence 0 → tF → F →
F/tF → 0 always splits when a curve is regular. We now provide an example
which shows that this is not always true if the curve is singular.
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Example 115. Consider X = Spec(k[x, y]/(y2 − x2(x+ 1)) for an algebraically
closed field k of char(k) ̸= 2. M := (x, y) ≤ R where R = k[x, y]/(y2 − x2(x+ 1)).
The module M is a torsion free. We have a short exact sequence

0→ K → R⊕R (x,y)−−→M → 0

with non-zero kernel K. Localizing the short exact sequence at the maximal ideal
M = (x, y) gives rise to a short exact sequence of the form

0→ KM → RM ⊕RM
(x,y)−−→MM → 0.

Lemma 156 and Proposition 155 implies that the module MM is not a free module
and due to 159 we get the non-vanishing Ext1(RM )(MM , (R/M)M). Moreover, from
the proof of 159 we get an isomorphism

Ext1RM
(MM , (R/M)M) ∼= HomRM

(KM , (R/M)M).

To sum up, we have the following isomorphisms 0 ̸= Ext1RM
(MM , (R/M)M) ∼=

HomRM
(KM , (R/M)M ) ∼= HomR(K,R/M)M , where the latter isomorphism comes

from the elementary properties of localization. Non-zero localization of the hom
module gives us 0 ̸= f ∈ HomR(K,R/M), such that the following diagram

0 K R⊕R M 0

0 R/M E M 0

f ϕ

g

1

f ′ g′

(ϵ)

is commutative.
Moreover, the non-vanishing extension group for MM implies the non-splitting

short exact sequence

0→ (R/M)M → EM →MM → 0, (ϵM)

for the RM - module EM . From the general fact that Ext1RM
(MM , (R/M)M) =

Ext1R(M, (R/M))M and the fact that the ϵM does not split we get that ϵ does split
neither. Moreover tE = R/M and M = E/tE. By applying the tilde functor and
101 we get the result.
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3 Torsion sheaves and
representation theory

Our aim is to classify torsion coherent sheaves supported at the node (x, y)
of the nodal singular curve E = Spec(k[x, y]/y2 − x2(x + 1)), where k is a field
of char(k) ̸= 2. We have an induced functor between the category of modules
over a local ring and the category of modules over the completion of the ring. It
turns out to be an equivalence on a level of so-called finitely generated I- torsion
subcategories for some particular ideals I. This allows us to view the stalk of a
coherent torsion sheaf as finitely generated module over the infinite dimensional
string algebra k[x, y]/(xy), subsequently, we decompose it into indecomposable
string and band modules thanks to the results of Crawley-Boevey’s [7].

3.1 Completion
We start out this chapter with recalling the definition of a completion of a ring

and its basic properties. The completion was introduced to catch the more local
behaviour in comparing with the localization. We provide a crucial example of the
completion of the ring A = k[x, y]/(y2 − x2(x + 1)) which will be a necessary in
our classification.

Definition 116. Let A be a ring, I ≤ A an ideal and M an A- module. Then we
define the completion of A with respect to I to be the inverse limit

ˆ︁R := lim←−A/I
n.

An element of ˆ︁A is given by a sequence of elements fn ∈ A/In such that fn ≡
fn+1 mod I

n for all n. Similarly, we define the completion of M with respect to I
to be the inverse limit

ˆ︂M := lim←−M/InM.

An element of ˆ︂M is given by a sequence of elements mn ∈ M/InM such that
mn ≡ mn+1 mod I

nM for all n. We will view ˆ︂M as ˆ︁A- module. Note that we
always have canonical maps

M → ˆ︂M and M ⊗A
ˆ︁A→ ˆ︂M.

Moreover, for every map ϕ : M → N there is an induced map ˆ︁ϕ : ˆ︂M → ˆ︂N that
is natural, namely we have a commutative diagram
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M N

ˆ︂M ˆ︂N

ϕ

ˆ︁ϕ .

In general, the completion is not an exact functor, but the following lemmas
say under what condition a short exact sequence is preserved.

Lemma 117. Let A be a ring and I ≤ A its ideal.

1. If 0→ K →M → N → 0 is a short exact sequence of A- modules and N is
a flat A- module, then 0→ ˆ︂K → ˆ︂M → ˆ︂N → 0 is a short exact sequence.

Proof. [9], Lemma 10.96.1.

Lemma 118. Let A be a Noetherian ring and I its ideal. By ˆ︃(−) we denote
the completion with respect to this ideal. If 0 → K → N → M → 0 is a short
exact sequence of finite A- modules, then 0→ ˆ︂K → ˆ︂N → ˆ︂M → 0 is a short exact
sequence.

Proof. [9], Lemma 10.97.1.

Definition 119. Let A be a ring, I ≤ A an ideal of A and M an A- module. We
say M is I- adically complete if the map

M → ˆ︂M := lim←−M/InM

is an isomoprhism. We say A is I- adically complete if it is I- adically complete as
A- module.

Example 120. Let R = S[x1, ..., xn] be a polynomial ring over a ring S and
m = (x1, ..., xn). Then the completion of the ring R with respect to the ideal m is
the ring of formal power series ˆ︁R = S[[x1, ...xn]].

Proof. See an example in [12], pg. 181.

Rings we will work with are always local rings. Hence, if (A,m) is a local ring
with the maximal ideal m then by the completion of the local ring we always mean
the completion with respect to the maximal ideal m and usually write just as ˆ︁A.

Now we recall some useful properties of the completion of a local ring.

Theorem 121. Denote (A,m) a local Noetherian integral domain. Then we have:

1. ⋂︁n≥0 m
n = (0).

2. For a finite A -module M and its submodule N , ⋂︁n≥0(N + mnM) = N.
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3. The completion ˆ︁A is faithfully flat over A, hence A ⊆ ˆ︁A and I ˆ︁A⋂︁A = I for
every ideal I ⊆ A.

4. The completion ˆ︁A is again Noetherian local with maximal ideal ˆ︁m = m ˆ︁A,
moreover ˆ︁A/mn ˆ︁A = A/mn for very n ≥ 0.

5. If A is a complete local ring, then for any ideal I ̸= A, A/I is again a
complete local ring.

Proof. [10] pg. 62-63 and [13] Proposition 10.16.

Theorem 122. Let A be a Noetherian ring I an ideal of A and M a finite A -
module. Writing ˆ︁A, ˆ︂M for the I- adic completions of M and A we have

M ⊗A
ˆ︁A ∼= ˆ︂M.

Proof. [10], Theorem 8.7.

Theorem 123. Let A be a Noetherian ring, I an ideal and ˆ︁A the I- adic completion
of A. Then ˆ︁A is flat over A.

Proof. [10], Theorem 8.8.

Theorem 124. Let A be a Noetherian ring with a maximal ideal m. Then ˆ︃Am
∼= ˆ︁A.

Here for ˆ︁A we think the completion with respect to the maximal ideal m.

Proof. By definition, ˆ︁A = lim←−A/m
n and ˆ︁Am = lim←−Am/(mAm)n. Since localization is

an exact functor it commutes with taking quotient, that is (A/mn)m = Am/(mAm)n.
But (A/mn) is local, so everything outside of the maximal ideal is already invertible.
Thus, (A/mn)m = (A/mn).

We provide two particular example of a completion.

Example 125. Let k be a field. Let k[x, y] be a ring of polynomials in two variables
and m = (x, y) an ideal of the ring k[x, y]. We compute the completion of the ring
B := k[x, y]/(xy) with respect to the maximal ideal m. We have the following short
exact sequence of finitely generated k[x, y]- modules

0→ (xy)→ k[x, y]→ k[x, y]/(xy)→ 0.

Thus by Lemma 118 we get a short exact sequence of k[[x, y]]- modules

0→ ˆ︃(xy)→ k[[x, y]]→ ˆ︁B → 0.

Now, by Theorem 122 and Theorem 123 we get that ˆ︃(xy) = (xy)k[[x, y]] is an ideal
in k[[x, y]]. Thus we get ˆ︁B = k[[x, y]]/(xy).
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Example 126. Let k be a field. Let us have a look at the completion of the ring
A = k[x, y]/(y2−x2(x+ 1)) at the maximal ideal m = (x, y). We have a short exact
sequence

0→ (y2 − x2(x+ 1))→ k[x, y]→ k[x, y]/(y2 − x2(x+ 1))→ 0.

Again, by Lemma 118 the completion of this short exact sequence is again exact,
hence we get

0→ ˆ︂(y2 − x2(x+ 1))→ k[[x, y]]→ ˆ︁A→ 0

The completion ˆ︂(y2 − x2(x+ 1)) = (y2 − x2(x + 1)) is an ideal in k[[x, y]] by the
same arguments as above. Thus ˆ︁A = k[[x, y]]/(y2− x2(x+ 1)). If char(k) ̸= 2 then
due to the fact that there exists u ∈ k[[x]] ([12] pg 185-186) such that u2 = 1 + x
and 1 + x is a unit in k[[x]] (the inverse is given by a geometric series), we have
an isomorphism of rings ˆ︁A ∼= k[[u′, v′]]/(u′v′).

3.2 String and Band modules
In this section, we recall the basic definitions from the Crawley-Boewey’s paper

[7]. We firstly define a string algebra and we will proceed to introduce the notion
of the so-called word. In the end of this section, we define string and band modules.
With aid of these objects, we classify the coherent torsion sheaves on E.

Definition 127 (string algebra). By a string algebra we mean an algebra of the
form Λ = kQ/(ρ) where k is a field, Q is a quiver, not necessarily finite, kQ is a
path algebra and ρ is a set of zero relations in kQ, that is, paths of length at least
2. As usual (ρ) denotes an ideal generated by ρ. Moreover, we suppose that

1. Any vertex of Q is the head of at most two arrows and the tail of at most
two arrows, and

2. Given any arrow y ∈ Q, there is at most one path xy of length 2 such that
xy /∈ ρ and at most one path zy of length 2 with zy /∈ ρ.

Example 128. k[x, y]/(xy) is a string algebra which arises from a quiver with one
vertex and loops x and y with ρ = {xy, yx}.

We will classify the finitely generated modules over the string algebra with aid
of the so-called string and band modules. To do so, we firstly introduce a notion of
words and letters.

Let Q be a quiver. When we talk about a letter l we mean an arrow x ∈ Q
or its formal inverse x−1 with obvious head and tail. Now, let I be a one of the
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following sets: {0, 1, 2, ...n} for some n ≥ 0, N = {0, 1, 2...}, −N = {0,−1,−2, ...}
or Z. Then we define an I- word C as follows. If I ̸= {0}, then C consists of a
sequence of letters Ci for all i ∈ I such that i− 1 ∈ I. That is,

C =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
C1C2 . . . Cn if I = {0, 1, 2, . . . n}
C1C2 . . . if I = N
. . . C−2C−1C0 if I = −N
. . . C−1C0|C1C2 if I = Z

(a bar shows the position of C0 and C1 in the latter case) satisfying:

1. if Ci and Ci+1 are consecutive letters, then the tail of Ci is equal to the head
of Ci+1;

2. if Ci and Ci+1 are consecutive letters, then C−1
i ̸= Ci+1; and

3. no zero relations x1 . . . xm ∈ ρ, nor its inverse x−1
m . . . x−1

1 occurs as a sequence
of consecutive letters in C.

Moreover, if I = {0} there are trivial I- words 1v,ϵ for each vertex v ∈ Q and
ϵ = ±1. By a word, we mean an I- word for some I. We define the inverse letter
C−1 of a word C by inverting the letters of C and reversing their order. If C is a Z-
word and n ∈ Z then we define the shift C[n] by moving the bar to the following
position . . . Cn|Cn+1 . . . . We say that a word C is periodic if it is Z- word and
C = C[n] for some n > 0. The minimal such n is called the period. We extend the
shift to any I- word C by defining C[n] := C for n ∈ Z and I ̸= Z. We define an
equivalence relation on the set of all words by D ∼ C if and only if D = C[n] or
D = C−1[n] for some n ∈ Z.

Definition 129 (Modules given by words). Let Λ be a string algebra. Given any
I- word C, we define a Λ- module M(C) with basis bi, for i ∈ I, as a vector space,
and the action of Λ is given by

evbi =

⎧⎨⎩bi if (vi(C) = v)
0 otherwise

for a trivial path ev ∈ Λ, and vertex v ∈ Q and

xbi =

⎧⎪⎪⎨⎪⎪⎩
bi−1 if i− 1 ∈ I and Ci = x

bi+1 if i+ 1 ∈ I and Ci+1 = x−1

0 otherwise

for any arrow x ∈ Q.
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Remark 130. We have a natural isomorphism M(C) ∼= M(C−1) for any word
C, and for a Z- word C and n ∈ Z we have tC,n : M(C) ∼= M(C[n]) given by
bi ↦→ bi−n. Moreover, if C is a periodic word of period n, then M(C) becomes a
Λ− k[T, T−1]- bimodule with T acting as tC,n and we define

M(C, V ) := M(C)⊗k[T,T −1] V

for a k[T, T−1]- module V . Note that M(C, V ) is finite dimensional if and only if
V is a finite dimensional k - vector space.

Now we are ready to define the string and band modules.

Definition 131 (String and band modules). Let Λ = kQ/(ρ) be a string algebra.
We say that a module M is a string module if it is equal to M = M(C) for some
non-periodic word C, and a module M is called a band module if it is of form
M(C, V ) for some periodic word C and some indecomposable k[T, T−1]- module V.

3.3 Classification
To view the coherent torsion sheaves as modules over the string algebra

k[x, y]/(xy) we need one particular functor. The canonical map between a lo-
cal ring and its completion induce the restriction functor between the categories of
modules over the rings. We will show that in fact this is an equivalence between
the subcategory of finitely generated m - torsion modules and the subcategory
of finitely generated ˆ︁m - torsion modules. Finally, we use the results of Crawley-
Boevey’s and classify the sheaves.

Definition 132. Let A be a ring. Let M be an A- module.

1. Let I ⊂ A be an ideal of A. We say M is a I- power torsion module if for
every m ∈M there exists an n > 0 such that Inm = 0.

2. Let f ∈ A. We say M is an f- power torsion module if for every m ∈ M
there exists an n > 0 such that fnm = 0.

Lemma 133. Let I be a finitely generated ideal of a ring A. The I- power torsion
modules form a Serre subcategory of the Abelian category Mod(A).

Proof. [9], Lemma 15.88.5.

Notation Let us denote this subcategory of modules by I - torsion.

Lemma 134. Let (A,m) be a Noetherian local integral domain of dimension one.
Then for any non-zero ideal I ⊂ A such that I ⊂ m we have mn ⊂ I for some
n >> 0.

40



Proof. The ring A/I has Krull dimension zero and its nilradical is equal to m, and
as the ring A is Noetherian, m is finitely generated so mn = 0 for some n >> 0 in
A/I. This means that mn ⊂ I.

As a direct consequence of the above lemma, we get that Fm is mAm- power
torsion Am- module, where F is a torsion coherent sheaf on E and A = k[x, y]/(y2−
x2(x+ 1).

Let (Am,mAm) be a localization of a Noetherian local ring (A,m). We have the
canonical map ϕ : Am → ˆ︃Am. This map induces functor of restriction of scalars
ϕ∗ : Mod(ˆ︃Am) → Mod(Am). We show, that this functor is an equivalence of
subcategories of finitely generated mAm- torsion modules and subcategory of ˆ︁mAm-
torsion modules. Indeed, the quasi-inverse is given as follows:

ϕ∗ : Mod(ˆ︃Am) −→Mod(Am)
M ↦−→MAˆ︂N ←− N

for any finitely generated M ∈ˆ︁mAm- torsion and any finitely generated N ∈ mAm-
torsion

Let us prove this in more details. For clarity, let us do everything in the case of
the local rings (A,m) and ( ˆ︁A, ˆ︁m). Let M be an ˆ︁m - power torsion ˆ︁A - module. For
every x ∈M there is some n such that ( ˆ︁m)n × x = 0. Theorem 121 part 4 gives us
( ˆ︁m)n = mn ˆ︁A. Thus mn ˆ︁A× x = 0, in particular, mnA× x = 0. Conversely, note that
a finitely generated m- torsion A - module M is m - adically complete, in other
words, we have ˆ︂M = M. Thus if we have a finitely generated m- power torsion
module N then we can consider it as ˆ︁A- module. By definition we have mkn = 0
for every n ∈ N and some k > 0 and the fact that it is ˆ︁m- torsion module, holds
by Theorem 121 part 4.

Before we proceed further, we have to state the main results of the Crawley-
Boevey’s paper. For the given string algebra k[x, y]/(xy) we will classify the finitely
generated modules. Note that Crawley-Boevey relaxes the condition of finiteness
and classifies also the so-called finitely controlled modules. The notion of finitely
controlled module is a generalization of finitely generated modules when one talk
about a quiver with infinitely many vertices. We provide the theorem in this general
form, though we focus just on the finitely generated modules.

Theorem 135. String modules and finite-dimensional band modules are inde-
composable. Moreover, there only exist isomorphisms between such modules when
the corresponding words are equivalent: there are no isomorphisms between string
modules and modules of the form M(C, V ); string modules M(C) and M(D) are
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isomorphic if and only if C ∼ D; and M(C, V ) ∼= M(D,W ) if and only if D = C[m]
and W ∼= V or D = C−1[m] and W ∼= resιV for some m.

Here ι is the automorphism map of k[T, T−1] exchanging T and T−1 and resι

denotes the restriction map via ι.

Proof. [7], Theorem 1.1, section 12.

Theorem 136. Every finitely controlled Λ- module is isomorphic to a direct sum
of copies of string modules and finite-dimensional band modules.

Proof. [7], Theorem 1.2, section 12.

Theorem 137 (Krull-Remak-Schmidt property). If a finitely controlled module is
written as a direct sum of indecomposables in two different ways, then there exists
bijection between the summands in such a way that corresponding summands are
isomorphic.

Proof. [7], Theorem 1.4, section 12.

Now we are ready to classify torsion coherent sheaf over the singular curve
E = Spec(A = k[x, y]/(y2 − x2(x+ 1)) at the singular point mA = (x, y) ⊂ k[x, y].
Let F be a coherent torsion module over E supported at the singular point. Let
B = k[x′, y′]/(x′y′) be the ring and ˆ︁B = k[[x′, y′]]/(x′y′) the completion of B with
respect to the ideal mB = (x′, y′) ⊂ k[x′, y′], see Example 125. As we have seen
earlier the module Fm is also mAm- power torsion OX,m- module. For clarity, we
will denote the local ring (AmA

,mAAmA
) just as the local ring (A,mA). Now we

have the following sequence of equivalences, that is, mA- torsion ∼= ˆ︁mˆ︁A - torsion
∼= ˆ︁mˆ︁B - torsion ∼= mB - torsion. The first equivalence comes from the equivalence
of the categories of the finitely generated mA- torsion and ˆ︁mˆ︁A - torsion modules
and the fact that ˆ︃Am = ˆ︁A, 124. The second equivalence holds due to the fact
that ˆ︁A ∼= ˆ︁B, see Examples 125 and 126. Finally, the last equivalence is again
the equivalence of the subcategories of finitely generated mB and mˆ︁B - torsion
modules. Thus, Fm

∼=
⨁︁

λ∈Φ Nλ,∞. Note that finitely generated torsion modules
are of finite dimension over the field k. Thus, they are exactly the finite direct
sums of finite dimensional string and band modules with support at m. For more
details of this decomposition, see [7] pg. 24.
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4 The bounded derived category
of coherent sheaves

The aim of this section is to give a better description of the bounded derived
category of coherent sheaves on a Weierstrass curve. We describe the category
with aid of Abelian subcategories of semi-stable sheaves of a given phase. To do
so, we define numerical invariants rank and degree of coherent sheaves and then
extend the definitions for any bounded complex. The central role here is played by
the Abelian subcategory of torsion semi-stable sheaves. In fact, we see that any
subcategory of semi-stable coherent sheaves and their shifts of a given phase is
equivalent to the subcategory of torsion sheaves. To prove such equivalence, we
use a sequence of exact equivalences defined by Thomas and Siedel.

Notation Throughout this chapter, E denotes a Weierstrass singular curve
with the singular point s ∈ E over an algebraically closed field k. We denote
Db(E) := Db(Coh(E)) the bounded derived category of coherent sheaves on E.

4.1 Twist functors
Siedel and Thomas defined so-called twist functors

TE : Db(E) −→ Db(E),

depending on an object E ∈ Db(E), see Definition 2.5. and Proposition 2.4 in [6].
They proved that if the object E is spherical, then these functors are equivalences
([6], Definition 2.14 and the text below). The spherical objects in the context of
the derived category of coherent sheaves on a Weierstrass curve are given in [2]
Definition 2.3 and Corollary 2.6. Thus, we define the following:

Definition 138 (Spherical sheaf). A coherent sheaf F on E is called spherical if

1. F has a finite resolution by locally free sheaves and,

2. F is a simple sheaf.

Remark 139. We call a coherent sheaf F simple if End(F) ∼= k.

Example 140. 1. the structure sheaf k(x) is spherical for a regular point x ∈ E.

2. The structure sheaf OE is spherical, moreover any simple locally free sheaf is
spherical.
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Remark 141. Note, that the structure sheaf k(s) for the singular point s ∈ E is
not spherical because it does not have any finite locally free resolution (Example 3.2
in [4]).

Moreover, any of these functors gives a rise to the distinguished triangle of the
form

RHom(E,F )⊗ E → F → TE(F ) +−→

for any F ∈ Db(E). We will work with two particular functors and their composition
namely, Tk(p), TO and the composition F := Tk(p)TOTk(p) for some regular point
p ∈ E. Now we give an explicit description of some particular twists acting on some
particular sheaves.

Example 142. For the structure sheaf k(x) of a regular point x, the twist functor
Tk(x)(−) corresponds to tensoring with the sheaf associated to the Cartier divisor
of the point x. To be more precise Tk(x)(−) ∼= −⊗O(x). (See [6], pg. 28, (3.11)).

Lemma 143. Let x, y be closed points in E and suppose x is regular. Then we
have the following isomorphisms:

TO(k(y)) ∼= Iy[1], TO(O(x)) ∼= k(x) and TO(O) ∼= O.

Here Iy is the ideal sheaf corresponding to the closed subscheme y. Recall that if
it is regular, then it is an effective Cartier divisor 82. Moreover, if s ∈ E is the
singular point and n : P1 → E a normalisation then

TO( ˜︁O) ∼= k(s),

for ˜︁O := n∗O.

Proof. [2], Lemma 2.13.

4.2 k - linearity of the category
We are going to show that the bounded derived category of coherent sheaves on

a Weierstrass curve Db(E) is k - linear. Indeed. let F ,G be coherent sheaves on E.
We show Exti(F ,G) is a finite dimensional k- vector space. We proceed by induction
on i. The case i = 0 holds due to the fact that the sheaf Hom(F ,G)is coherent,
see 1.3.2 and Theorem 86 for index j = 0. Now assume F is a finite direct sum of
invertible sheaves. Then Exti(F ,G) ∼=

⨁︁
Exti(L,G) ∼=

⨁︁
Exti(OX ,L∗ ⊗ G) where

the last isomorphism holds due to 99, and the latter is isomorphic to H i(X,L∗⊗G)
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98. Then Theorem 86 yields the result. Now consider the general case, where F is
a coherent sheaf. Theorem 97 gives us an exact sequence

0→ K → E → F → 0

such that K is a coherent and E is a finite direct sum of invertible sheaves. Propo-
sition 100 induces a long exact sequence

0 −→ Hom(F ,G) −→ Hom(E ,G) −→ Hom(K,G) −→ Ext1(F ,G) −→ . . .

. . . −→ Exti(K,G) −→ Exti+1(F ,G) −→ Exti+1(E ,G) −→ . . . .

By inductive hypothesis Exti(K,G) is finite dimensional, and Exti+1(E ,G) is
finite dimensional by the arguments above. Thus, Exti(F ,G) is finite dimensional.
One can show that Exti(F•, E•) is also finite dimensional k - vector space, where
F• and E• ∈ Db(E). However, it would be needed a more sophisticated technique,
namely, spectral sequences. This is described in [1] Remark 3.7 (ii). In particular,
we get that Hom(F•, E•) is a finite dimensional k - vector space for any F•, E• in
Db(E). Thus, from now on, we consider the category Db(E) as k - linear and finite
dimensional.

In the sequel, we will use the following action of finite dimensional vector
spaces on coherent sheaves. Let us have a scheme X over a field k so we have a
structure morphism X → Speck. Take some coherent sheaf E ∈ Coh(X). Note
that the category of coherent sheaves over Speck is equivalent to the category
of finite dimensional K - vector spaces. We define an action of V ecf(k) on E as
E ⊗ V := E⊕n for V ∈ Coh(Speck) considered as a vector space of finite dimension
n. This makes sense via pullback of the structure morphism. In other words, we
have f ∗(V ) = f−1(V )⊗f−1(OY ) OX . In particular, when Y = Speck, the structure
sheaf OY = k as OY - module. Note that, f−1(V ) = V and f−1(OY ) = k. Thus
we get f ∗(V ) ⊗OX

E = f−1(V ) ⊗f−1(OY ) OX ⊗OX
E = V ⊗k E and the latter is

isomorphic to E⊕n.

4.3 Rank and Deg
We have already defined the numerical invariants for coherent sheaves, namely

the degree and rank. It helps us to analyse the structure of the derived category of
bounded coherent sheaves on a Weierstrass curve. We extend the definitions to
every complex F ∈ Db(E). Moreover, with aid of these invariants we define phase
and slope of a coherent sheaf.

Definition 144 (Phase of Sheaf). The phase ϕ of a coherent sheaf F is defined
as a unique number from the interval (0, 1] such that the following equality holds:
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m(F)exp(πiϕ(F)) = irk(F)−deg(F), where m(F) is a positive real number called
the mass, rk(F) and deg(F) are the rank of the sheaf and the degree respectively.

Note that, due to characterization of torsion sheaves by its rank, all non-zero
torsion coherent sheaves have phase equal to one. The phase of the structure sheaf
is ϕ(O) = 1/2, as we assume the arithmetic genus of the curve equal to one.

Definition 145 (slope of sheaf). Let F be a coherent sheaf. We define slope as
µ(F) := deg(F)/rk(F).

These two definitions are equivalent, but the phase is better adapted when one
talks about shifts. We now define the notion of semi-stability. We say a coherent
sheaf F is semi-stable if for any non-trivial short exact sequence of coherent sheaves

0→ E → F → G → 0

the inequality ϕ(E) ≤ ϕ(F), or equivalently ϕ(F) ≤ ϕ(G), holds where E ,G ̸= 0.
We talk about stable sheaves if the inequality is strict. Definition using the
slope µ instead is equivalent. Note that in general for any such short exact
sequence exactly one of the following possibilities can occur: the phase is strictly
increasing/decreasing or it is equal at each term in the sequence. Recall that every
semi-stable coherent sheaf of positive rank is torsion free by definition. Similarly,
every non-zero coherent torsion sheaf is semi-stable.

We follow Bridgeland’s extension of the definition to any shift object from the
category Db(E). Namely, we define

ϕ(F [n]) := ϕ(F) + n,

where F ̸= 0 is a coherent sheaf on E and n ∈ Z.
Let us set up some notation. By P(ϕ) we denote the Abelian subcategory of

shifted semi-stable coherent sheaves with phase ϕ ∈ R. In particular, if ϕ /∈ (0, 1]
then we define P(φ+n) = P(φ)[n] such that ϕ = φ+n and φ ∈ (0, 1], n ∈ Z. Then
we call any non-zero object F in Db(E) semi-stable if it is an object from P(ϕ) for
some ϕ ∈ R. By Ps(ϕ) we denote the full sub-category of stable shifted sheaves
with phase ϕ. Note that Ps(1) consists of sheaves k(x) where x ∈ E is a closed
point. Indeed, any skyscraper sheaf of closed point is torsion of phase 1. Note
that here we consider k(x) as skyscraper sheaf via the map ι : Spec(Ox)→ SpecA
followed by obvious extension by zeros on E. Moreover, take any subsheaf F ⊂ k(x).
Inclusion is preserved at stalks and this means that supp(F) = {x}. Note that
k(x) = Ox/mx is simple as a module so Fx is either zero or k(x). Thus k(x) is
stable as the condition in definition is empty.
Before we show the converse, let us prove the following important and useful lemma.
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Lemma 146. Let X be a projective scheme over a field k. Let F and E be coherent
stable sheaves of the same phase. Then Hom(F , E) is either zero or it is equal to
the field k.

Proof. Take some non-zero morphism w : F → E . This factorizes through the
composition F → Im(w)→ E . If Im(w) is a proper subsheaf of E then it yields
a non-trivial short exact sequences such that one gets µ(F) < µ(Im(w)) < µ(E)
as both sheaves are stable. Thus Im(w) = E . Now, we claim that the kernel
Ker(w) is zero. If not, then we have the non-trivial short exact sequence 0 →
Ker(w)→ F → Im(w)→ 0. But F is stable and hence µ(Ker(w)) < µ(F). But
µ(F) = µ(E) = µ(Im(w)) contradicts the assumption.

We will also need the notion of support and the following lemma.

Definition 147 (support of a complex). Let X be a scheme. The support of a
complex F ∈ Db(X) is the union of the support of all its cohomology sheaves. That
is,

supp(F) := ⋃︁
supp(H i(F)).

Lemma 148. Let F ∈ Db(X) be a complex. Suppose supp(F) = Z1 ⊔ Z2, where
Zi ⊂ X are disjoint closed subsets. Then F ∼= F1 ⊕F2 with supp(Fi) ⊂ Zi.

Proof. [1], Lemma 3.9.

Now we have all instances to finish our proof. Let 0 ̸= F ∈ Ps(1). Lemma
146 shows that any stable sheaf is in fact simple. And simple torsion sheaves
are precisely skyscraper sheaves of the form k(x) for some closed point x ∈ E.
Indeed, as we have seen in the first chapter, a torsion sheaf on a curve has finite
support. We will show that F is supported exactly at one point. If not, then by
the Lemma above it would decompose into a direct sum, that is, we would have a
non-invertbile morphism F = F1⊕F2 → F1 → F1⊕F2 ∼= F , which contradicts F
being simple. From commutative algebra we know that if a module M is finite over
a local Noetherian ring (A,m) such that supp(M) = {m}, then we have well-defined
projection and inclusion M ↠ A/m ↪−→ M. Thus, we have well-defined non-zero
composition F → k(x)→ F , and the fact that F is simple implies the morphism
is invertible, hence F ∼= k(x).

To define the notion of rank and degree for a complex F ∈ Db(E) we need
to find the right derived functor RHom(OE,−) : Db(E) → Db(V ecf(k)). Here
Db(V ecf(k)) denotes the bounded derived category of finite dimensional vector
spaces over k. Before we proceed further we need the following proposition.
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Proposition 149. Let X be a Noetherian scheme. Then the natural functor

Db(X)→ Db(Qcoh(X))

defines an equivalence between the category of Db(X) and the full triangulated subcate-
gory of bounded quasi-coherent sheaves with coherent cohomology Db

Coh(X)(Qcoh(X)).

Proof. [1], Proposition 3.5.

Thus, the construction is the following. The category Coh(E) does not contain
enough injectives thus we have to pass to a bigger category, namely Qcoh(E), see [9]
Proposition 28.23.4. The functor Hom(OE,−) : Qcoh(E)→ V ec(k) is left exact,
which yields well-defined RHom(OE,−) : D+(Qcoh(E))→ D+(V ec(k)). Moreover,
it restricts to RHom(OE,−) : Db(Qcoh(E)) → Db(V ec(k)) due to Theorem of
Grothendieck 85 and Corollary 2.68 (ii) in [1]. For F• ∈ Db(E) the complex
RHom(OE,F•) ∼=

⨁︁
i≥0 Ext

i(O,F•)[−i] see Lemma 67, and in section 4.2 we have
proved that these extensions are finite dimensional k- vector spaces. Finally, the
composition of this functor with Proposition 149 yields the desired functor.

Now we are able to define the rank and degree for a complex F ∈ Db(E). Let
OE,η = K be the function field of the Weierstrass curve E with the generic point
η. The base change η : Spec(K) → E is flat from the definition and by Lemma
177 its pullback is an exact functor. Thus, we consider its derived functor simply
as pulling back its representatives in Db(E). Then we define rk(F ) := χ(η∗(F ))
where χ is the alternating sum of the dimensions of the cohomology spaces of the
complex η∗(F ). To define the degree, we use the right derived functor from the
above and define deg(F ) := χ(RHom(OE, F )). It is easy to see that the rank and
degree are additive on distinguished triangles. Finally, we provide the action of
twist functors TO and Tk(p) on the degree and rank, see[4] pg. 1243. Thus, we have
rk(TO(F )) = rk(F )− deg(F ) and deg(TO(F )) = deg(F ). And the effect of Tk(p) is
rk(Tk(p)(F )) = rk(F ) and deg(Tk(p)(F )) = deg(F ) + rk(F ).

4.4 The categories P(ϕ)
Before we prove the main result, let us recall some facts about the group

SL(2,Z). By SL(2,Z) we denote the non-abelian group of invertible matrices with
determinant equal to 1 and integer entries. The standard generators of the group

are g1 =
(︄

1 0
−1 1

)︄
and g2 =

(︄
1 1
0 1

)︄
. In our case it will be convenient to express

the group with different generators, namely we have two particular elements:

S =
(︄

0 −1
1 0

)︄
, T =

(︄
1 1
0 1

)︄
.
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Note that the matrix S is of order 4 and T is of infinite order, i.e. T n =
(︄

1 n
0 1

)︄
.

Theorem 150. The matrices S and T generate SL(2,Z).

Proof. [14], Theorem 1.1.

By ˜︂SL(2,Z) we denote the group given by the following presentation

⟨A,B, T | ABA = BAB, (AB)6 = T 2, [A, T ] = [B, T ] = 1⟩.

The projection to SL(2,Z) sends generators A,B, T to(︄
1 1
0 1

)︄
,

(︄
1 0
−1 1

)︄
and

(︄
1 0
0 1

)︄
respectively.

This group is in fact a central extension of SL(2,Z) by Z and the normal subgroup
is generated by T. That is, we have a short exact sequence

0→ Z→ ˜︂SL(2,Z)→ SL(2,Z)→ 0.

Then the action of ˜︂SL(2,Z) onDb(E) is obtained by sending A,B, T to TO, Tk(p0)
and translation functor [1], see [2] Remark 2.19. Note that under this action,
the matrix S correspond to the quasi-inverse F−1 of Fourier-Mukai transform
F = Tk(p0)TOTk(p0).

We will also need the following important theorems.

Theorem 151. Let F be a semi-stable coherent sheaf on E. If the degree of the
sheaf F is negative, then F(F) is a semi-stable coherent sheaf. If the semi-stable
sheaf F is of a positive degree, the functor F sends it to a semi-stable sheaf shifted
by [1]. Moreover, ϕ(F(F)) = ϕ(F) + 1/2 for any shifted coherent sheaf F .

Proof. [4], Theorem 4.1.

Note that, the proof of Theorem 4.1 in [4] does not coincide with the statement,
thus here we provide the theorem which is actually proven.

Theorem 152. The Abelian category of coherent torsion semi-stable sheaves P(1)
is equivalent to the Abelian category P(1/2) of coherent semi-stable torsion free
sheaves of degree zero

Proof. [2], Theorem 2.21.

Theorem 153. It holds F ◦ F ∼= ι∗[1]. Consequently F4 ∼= [2].

Proof. [2], Theorem 2.18.
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Let us describe the functors F, Tk(p) and TO. As one can see in the proof of
Theorem 151, the functor F sends a semi-stable sheaf of the non-negative degree
to a semi-stable sheaf. If the degree is positive, then the Fourier-Mukai transform
sends a semi-stable sheaf to a semi-stable shift in the degree minus 1.

Recall that the functor Tk(p) is given by − ⊗ O(p) and the action on degree
and rank is given by (d, r) ↦→ (d+ r, r). Tensoring by locally free sheaf preserves
sheaves and to prove the semi-stability we proceed as follows. Let F be a semi-
stable non-zero coherent sheaf. Let F(p) → G be a non-zero epimorphism such
that µ(F(p)) > µ(G). This corresponds to the epimorphism F → G(−p) and
semi-stability of F gives us µ(F) ≤ µ(G(−p)). An easy calculation shows that the
quasi-inverse T−1

k(p) of Tk(p) is given by −⊗O(−p). It preserves sheaves and sends
(d, r) to (d− r, r), and using the latter we come to the contradiction by showing
µ(F) + 1 ≤ µ(G) < µ(F) + 1.

Now we have a closer look at the functor TO = T−1
k(p)FT

−1
k(p). The functor is given

by composition of F and T−1
k(p). To see that the latter functor preserves semi-stability,

one can proceed similarly as in the previous proof. Thus, TO preserves semi-stability.
Moreover, TO sends a semi-stable sheaf to a semi-stable sheaf exactly when the
degree is less than or equal to the rank. Otherwise, it sends the semi-stable sheaf
to the shift in the degree -1. Indeed, just F can produce a shift, and this happens
for shifts of positive degree.

We denote

Q := {ϕ ∈ R | P(ϕ) contains a non− zero object}.

Now we are ready to prove the following corollary.

Corollary 154. The category P(ϕ) of semi-stable objects of phase ϕ ∈ Q is
equivalent to the category of torsion sheaves P(1). Any such equivalence restricts
to an equivalence between Ps(ϕ) and Ps(1). Under such an equivalence, stable
vector bundles correspond to structure sheaves of smooth points. Moreover, if
ϕ ∈ (0, 1) ∩Q, Ps(ϕ) contains a unique torsion free sheaf, which is not locally free.
It corresponds to the structure sheaf k(s) ∈ Ps(1) of the singular point.

Proof. The equivalence of P(1) and P(1/2) is Theorem 152.
We are going to find a composition of functors TO and F−1 which gives us the
equivalence of categories P(1) and P(ϕ) for any ϕ. Firstly, let ϕ ∈ (0, 1)∩Q\{1/2}.
This phase corresponds to some degree and rank. Denote them by d and r for
brevity. WLOG GCD(r, d) = 1, if GCD(r, d) = m then we proceed with r′ := r/m
and d′ := d/m (note that these rank and degree define the same phase). The
well-known Bezout Theorem gives us the existence of a, b ∈ Z such that ar+bd = 1.

The following matrix
(︄
d −a
r b

)︄
is the matrix which sends the phase 1 given by
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(d′, 0) to the desired phase given by (d, r). This matrix belongs to SL(2,Z). Due
to Theorem 150, we can express this matrix as a composition of generators S, T,
in particular, we get Tm1STm2S . . . Tmk−1STmk . By lifting this composition to
˜︂SL(2,Z) and using the action on Db(E) we get a composition of functors TO, T−1

O
and F−1. By Theorem 153 F−1 = [−1]Fι∗, which shows that the quasi-inverse
can produce a shift in degree +1 together with T−1

O = Tk(p)F−1Tk(p). Note that
all of these functors commute with shift functors. This means that any shift
produced within the sequence can be controlled by shift functors [+1] and [−1].
Note, that this holds for every sheaf from P(1) because the question if the above
functors produce shifts depends solely on the given phase. Hence, we get the desired
composition

Tm1
O F−1Tm2

O F−1 . . . T
mk−1
O F−1Tmk

O : P(1) −→ P(ϕ)[n],

controlled by the shift [−n] for some n ∈ Z. The functors F−1 and TO preserves
semi-stability (note that ι∗ as well) thus the above functor sends semi-stable
coherent torsion sheaf to semi-stable coherent sheaf of given phase ϕ.
Now, assume ϕ ∈ Q\(0, 1) then P(ϕ) = P(φ+m) = P(φ)[m] such that φ ∈ (0, 1).
So we find the functor P(1)→ P(φ) and then compose it with the shift functor
[m].

Now we show that any such equivalence restricts to stable objects. Notice that
the equivalence is in fact a k - linear equivalence between Abelian categories, thus
it preserves simple objects in the sense of the following definition. An object X
is called simple if it is not isomorphic to 0 and any subobject of X is either X
or 0. And stable objects of P(ϕ) are precisely simple objects in the sense of this
definition, see Lemma 146. Thus, the equivalence restricts to stable objects.

To show that stable vector bundles correspond to structure sheaves of smooth
points, it is enough to show that TO send vector bundles to vector bundles (unless
it is torsion sheaf of the form k(x) for x regular e.g, see Lemma 143). Indeed, a
pullback of locally free sheaves1 is again locally free and tensoring locally free sheaf
with −⊗O(p) or −⊗O(−p) is locally free as well. Moreover, direct calculation with
the aid of Lemma 143 shows that the functors TO, Tk(p),F and their quasi-inverses
applied to k(x) produce a locally free sheaf. Thus, it is left to show that TO
preserves locally free sheaves.

So let F be a semi-stable locally free sheaf. Assume TO(F ) is a sheaf, the
case when TO(F ) is a shift is discussed later. Note that we always have the
distinguished triangle of the form RHom(O, F )⊗O → F → TO(F ) +−→ . Note that
RHom(O, F ) ∼= Ext0(O, F )⊕ Ext1(O, F )[−1]. Using Serre duality A.4 and the
fact that Hom(F , E) vanishes for semi-stable sheaves such that ϕ(F) > ϕ(E), one

1Vector bundles corresponds to locally free sheaf, see [15] pg. 287 or [11] Chapter 13.1.
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of the above Ext vanishes depending on the phase F. Thus, we get the following
triangles

O⊕n1 → F → TO(F ) +−→

or
O⊕n1 [−1]→ F → TO(F ) +−→ .

We apply TR2 axiom for the latter and get

F → TO(F )→ O⊕n1 +−→ .

Every such distinguished triangle gives a rise to a short exact sequence, in
particular we have

0→ F → TO(F )→ O⊕n1 → 0
or

0→ O⊕n1 → F → TO(F )→ 0.
In the first case, to show TO(F ) is locally free we can proceed locally. Indeed,

being locally free sheaf is a stalk local property for coherent sheaf over Noetherian
scheme. The sequence 0→ OX,x → TO(F )x → O⊕n

X,x → 0 of OX,x- modules splits
at every point x ∈ X. Hence, TO(F ) is locally free.

In the second case we have to realise that if a coherent sheaf F on a singular
Weierstrass curve E is torsion free then depthOX,x

Fx = dimOX,x = 1. Thus, it is
Cohen-Macaulay, see definition 182. Since E is Gorenstein, Theorem 168 yields
ExtiOX,x

(Fx,OX,x) = 0 for i > 0, thus, we get the vanishing stalks Exti(F ,OX)x

for each point x ∈ X and each index i > 0 by Proposition 102. We conclude
Exti(F ,O) = 0 for i > 0. The sheaf TO(F ) is torsion free, hence, by previous
arguments and Proposition 100 we have a short exact sequence

0→ Hom(TO(F ),O)→ Hom(F,O)→ Hom(O⊕n1 ,O)→ 0.

Note that the dual of locally free sheaf is locally free and the kernel of surjective
morphism of locally free sheaves is also locally free. In particular, Hom(TO(F ),O)
is locally free. Thus, the proof boils down to show that the sheaf TO(F ) is reflexive.
We can proceed locally thanks to Lemma 175. This holds for every regular point by
Lemma 171 and Lemma 82. It is left to prove that the stalk at the singular point
s is reflexive. But this is true by Theorem 168 (TO(F ) is CM sheaf on Gorenstein
curve E). Hence, the sheaf TO(F ) is reflexive and this finishes the proof.

Finally, it might happen that TO(F ) is not a sheaf, in that case, it is shifted
exactly by the translation functor [1] and this might happen only in the case when
the Ext1(O,F) vanishes. Thus, we use TR2 and we get the distinguished triangle
of the form

TO(F )[−1]→]O⊕n → F
+−→
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which yields the following short exact sequence

0→ TO(F )[−1]→ O⊕n → F → 0.

Again, the kernel of a surjective map of locally free sheaf is locally free.
To show the last part of the corollary, we proceed by contradiction. Denote

the equivalence from the category of torsion stable sheaves to stable sheaves of
given phase ϕ by G. The sheaf G(k(s)) is torsion free because every semi-stable
sheaf of positive rank is torsion free. So let us assume G(k(s)) is locally free. We
have already proved that stable vector bundles correspond to structure sheaves of
smooth points. Hence, the contradiction.
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A Appendix
A.1 Commutative Algebra
Proposition 155 (Characterization of DVR). Let R be domain which is not a
field. Then the following is equivalent:

1. The ring R is Noetherian, local and the maximal ideal is principal.

2. There is an irreducible element t ∈ R such that every nonzero z ∈ R may be
written uniquely in the form z = utn, u a unit in R, n a non-negative integer.

A ring satisfying the above condition is called a discrete valuation ring, written
DVR.

Proof. [16], Chapter 2, Proposition 4.

Lemma 156. Let (R,m) be a Noetherian, integral, local ring. If the maximal ideal
m is not principal, then m is not free as R module.

Proof. Assume m is a free R module and not principal. That is, m ∼= ⊕xiR for
some basis {x1, x2, ...} of cardinality ≥ 2 (if it would be principal then it is free of
rank 1 as R - module). Pick indices i = 1, 2, then x1x2 ∈ x1R

⋂︁
x2R = {0}. But R

is an integral domain.

Theorem 157 (Nakayama Lemma 1). Let A be a commutative ring. Let M be a
finite A-module and I ≤ A an ideal of the ring A. If M = IM then there exists
a ∈ A such that aM = 0 and a ≡ 1 mod I. If in addition I ⊆ rad(A) then M = 0.

Proof. [10], Theorem 2.2.

Theorem 158 (Nakayama Lemma 2). Let (A,m, k) be a local ring and M a finite
A- module. Set M = M/mM . Now M is a finite dimensional k- vector space, and
we write n for its dimension. Then

1. If we take a basis {u1, ..., un} for M over k, and choose an inverse image
ui ∈M of each ui, then {u1, ...un} is a minimal basis of M ;

2. conversely, every minimal basis of M is obtained in this way, and so has n
elements.

Proof. [10], Theorem 2.3.
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Proposition 159. Let (R,m, k) be a local Noetherian ring and M a finitely
generated module. Then the following are equivalent:

1. Ext1R(M,k) = 0

2. The module M is a free module

Proof. The implication (2) =⇒ (1) is basic homological algebra, namely the free
module M is projective, hence extension vanishes for every R - module in the
second variable, in particular, it vanishes for the R - module k.
Conversely, for the sake of contradiction, assume that the finitely generated module
M is not a free. We choose n minimal such that we have a surjection Rn →M. As
M is not a free module, then we have a short exact sequence with the kernel K ̸= 0

0→ K → Rn →M → 0.
The right derived functor RHomR(−, k) induces a long exact sequence. Rn is a
projective module, which implies vanishing ExtiR(Rn, k) = 0 in all degrees n > 0.
That is, ∂ : Hom(K, k)→ Ext1(M,k) is surjective. Moreover, tensoring the map
Rn →M with −⊗R k gives an isomorphism

(R/m)n ∼= Rn ⊗R k ∼= M ⊗R k ∼= M/mM

due to Theorem 158. Now apply Homk(−, k) which yields Homk(Rn ⊗R k, k) ∼=
Homk(M ⊗R k, k). And by hom,⊗ adjunction we get

HomR(Rn, k) ∼= HomR(M,k).

This implies ∂ is injective. Hence, we get the following important isomorphism,
namely HomR(K, k) ∼= Ext1R(M,k). Now, if M is not free then K ̸= 0 and by
Theorem 157, K/mK ̸= 0. But HomR(K, k) ∼= Homk(K⊗Rk, k) so HomR(K, k) ̸=
0. We conclude, Ext1R(M,k) ̸= 0 and this contradicts the assumption.

A.1.1 Torsion and Torsion free modules
Definition 160 (Dedekind domain, Wedhorn). A Dedekind ring is a Noetherian
integral domain A such that for each maximal ideal m the localization Am is PID.
Equivalently, it is Noetherian regular domain of dimension ≤ 1.

Theorem 161 (Jordan Decomposition). Let R be a Dedekind domain.

1. A finitely generated torsion module is indecomposable if and only if it is cyclic
and its annihilator is pm for some prime ideal p and natural number m ≥ 1.
(Thus M ∼= R/pm).
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2. Every finitely generated torsion R- module M is a direct sum of indecomo-
posable modules. That is, we have

M ∼=
s⨁︂

i=1
Rxi

where for each i there is a prime ideal pi and a natural number mi ≥ 1 such
that the map R→ Rxi induces an isomorphism R/pmi ∼= Rxi. In other words
we have

M ∼=
s⨁︂

i=1
R/pmi

3. Such a decomposition is a unique in the following sense: If we have two
decompositions

M ∼=
s⨁︂

i=1
R/pmi ∼=

k⨁︂
j=1

R/qnj

,

then s = t and up to permutation we have pi = qi and mi = nj.

Proof. [17], Theorem 10.3.9.

Proposition 162. Let R be a integral domain. Let M be a module. Then the
following are equivalent:

1. M is a torsion free module.

2. Mp is a torsion free Rp- module for each prime ideal p.

3. Mm is a torsion free Rm- module for each maximal ideal m.

Proof. 1) =⇒ 2) follows from the definition of localization. In fact, S−1M is
a torsion free for each multiplicative subset S ⊂ R which does not contain zero.
Implication 2) =⇒ 3) is obvious. For implication 3) =⇒ 1) it is enough to
noticed that the canonical map

M →
∏︂
m

Mm

is injective ([9], Lemma 10.23.1). Thus, if localization at every maximal ideal is
torsion free then M is torsion free too.
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Proposition 163. Let R be an integral domain with the fraction field K. Then the
following holds:

1. If M is a torsion R - module then M ⊗R K = 0 and if M is not torsion then
M ⊗R K ̸= 0

2. Mtors = ker(M →M ⊗R K) where m→ m⊗ 1

3. M ⊗R K ∼= M(0)

Proof. 3 is Proposition 3.5 in [13]. 2 follows by definition of localization. Finally, 1.
is a consequence of 2.

A.1.2 Cohen-Macaulay rings and Gorenstein rings
Let (R,m, k) be a local ring.

Definition 164 (CM module). Let M be a finitely generated R- module. We say
M is maximal Cohen-Macaulay (CM) if M = 0 or depthM = dimR.

Definition 165 (CM ring). The ring R is Cohen-Macaulay (CM) if it is CM as
R- module, i.e., depthR = dimR.

Definition 166 (Gorenstein ring). The ring R is called Gorenstein if Exti(k,R) ∼=
k for i = dimR and zero otherwise.

Proposition 167. A local Gorenstein ring is Cohen-Macaulay.

Proof. [10], Theorem 18.1.

Theorem 168 (CM modules over Gorenstein local ring). Let R be a local Gorenstein
ring. Let M be a finitely generated Cohen-Macaulay R- module. Then:

1. M is reflexive, and

2. ExtiR(M,R) = 0 for all i > 0.

Proof. [18], Theorem 4.8.
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A.2 Reflexivity and Flatness
Definition 169 (reflexive module). Let R be a domain. We say an R- module M
is reflexive if the natural map

j : M → Hom(Hom(M,R), R)

which sends m ∈ M to the map sending ϕ ∈ Hom(M,R) to ϕ(m) ∈ R is an
isomorphism.

Remark 170. We denote the dual of a module M by ∨, in other words M∨ =
Hom(M,R).

Lemma 171. Let R be a discrete valuation ring and let M be a finite R - module.
Then the map j : M →M∨∨ is surjective.

Proof. [9], Lemma 15.23.3.

Remark 172. We call a module M torsion less if the natural map j is injective.

Similarly, we define the notion of reflexive sheaves.

Definition 173. Let X be an integral locally noetherian scheme. Let F be a
coherent OX - module. We say F is reflexive if the natural map

j : F → Hom(Hom(F ,OX),OX)

is an isomorphism.

Lemma 174. Let X be an integral locally Noetherian scheme. Let F be a coherent
OX - module.

1. If F is reflexive then it is torsion free.

2. The natural map j : F → F∨∨ is injective if and only if F is torsion free.

Here we denote the dual of the sheaf of OX - modules F by F∨.

Proof. [9], Lemma 31.12.4.

Lemma 175. Let X be a integral locally Noetherian scheme. Let F be a coherent
OX - module. Then the following are equivalent

1. F is reflexive,

2. Fx is reflexive for every point x ∈ X,

60



3. Fx is reflexive for every closed point x ∈ X.

Proof. [9], Lemma 31.12.5.

Definition 176. Let f : X → Y be a morphism of schemes. Let F be a OX-
module.

1. We say that F is flat over Y at point x ∈ X if Fx is flat as OY,f(x)- module
via the map OY,f(x) → OX,x

2. We say that F is flat over Y if it is flat over Y at every point x ∈ X

3. The morphism f is called flat at the point x ∈ X if OX is flat over Y at the
point x.

4. The morphism f is called flat if it is flat at every point of X.

Lemma 177. Let f : X → Y be a flat morphism of ringed spaces. Then the
pullback functor f ∗ : Mod(Y,OY )→Mod(X,OX) is an exact functor.

Proof. [9], Lemma 17.20.2.

A.3 Effective Cartier Divisors
Definition 178. Let X be a scheme. An effective Cartier divisor on X is a closed
subscheme D such that the corresponding ideal sheaf I is invertible.

Definition 179. Let X be a scheme. Let D ⊂ X be an effective Cartier divisor
with ideal sheaf ID.

1. The invertible sheaf OX(D) associated to D is defined by

OX(D) := Hom(ID,OX) = I−1
D

2. We write OX(−D) = ID.

3. Given a second effective Cartier divisor D′ ⊂ X we define

OX(D −D′) = OX(D)⊗OX(−D′).

Lemma 180. Let X be a scheme. Let D,D′ be effective Cartier divisors on X.
Then there is a unique isomoprhism

OX(D)⊗OX(D′)→ OX(D +D′)

which maps 1⊗ 1 to 1.

Proof. Omitted.
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A.4 Serre Duality
Definition 181. A scheme X is called Cohen-Macaulay if all of its local rings are
Cohen-Macaulay.

Definition 182. Let X be a Noetherian scheme. We say a coherent sheaf F is
maximal Cohen-Macaualay if depthOX,x

Fx = dimOX,x for every x ∈ X.

Definition 183. Let X be a scheme. We say that X is Gorenstein if X is locally
Noetherian and OX,x is Gorenstein ring for every point x ∈ X.

Theorem 184 (Duality for a Projective Scheme). Let X be a projective scheme
over an algebraically closed field k. Let ω◦

X be a dualizing sheaf on X, and let O(1)
be a very ample sheaf on X. Then:

1. for all i ≥ 0 and F coherent on X, there are natural functorial maps

θi : Exti(F , ω◦
X)→ Hn−i(X,F)∨,

such that the following conditions are equivalent:

a) X is Cohen-Macaulay and equidimensional (i.e., all irreducible components have
the same dimesion);

b) for any locally free sheaf F on X, we have H i(X,F(−q)) = 0 for i < n and
q >> 0;

c) the maps θi are isomorphisms for all i ≥ 0 and all coherent F on X.

Proof. [8], III, Theorem 7.6.

We are in the setting of a projective Weierstrass curve E and such a curve
is Gorenstein with the dualizing sheaf ω◦

E
∼= OE, see [2] pg. 5. Thus, any

such curve is necessary Cohen-Macaulay and by the above Theorem part a) we
have the isomorphisms θi. In particular, we have Ext1(O,F) ∼= H1(X,F) and
H1−0(X,F)∨ ∼= Ext0(F ,O) ∼= Hom(F ,O) for F coherent sheaf on E.
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