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Conventions
Following is the list of conventions used in this thesis. It follows the convention

template, as well as conventions themselves from [13], and unambiguously sets
the convention-dependent signs in general relativity:

1. g sign:
+g = −(ω0)2 + (ω1)2 + (ω2)2 + (ω3)2,

2. Riemann sign:

+R(u,v) = ∇u∇v − ∇v∇u − ∇[u,v],

+Rµ
ναβ = ∂αΓµ

νβ − ∂βΓµ
να + Γµ

σαΓσ
νβ − Γµ

σβΓσ
να,

3. Quotient of Einstein and Ricci signs:

+Rµν = Rα
µαν ,

4. Einstein sign:
Einstein = +8πT − Λg,

Gµν := Rµν − 1
2gµνR = +8πTµν − Λgµν , (1)

5. ”Positive energy density” sign:

T0̂0̂ ≡ T (e0̂, e0̂) > 0.

Rough guide to notation

Symbol Meaning
TxM/T∗

xM, TxM, T ∗
x M The tangent/cotangent space of a differentiable manifold

M at the point x ∈ M, resp. the corresponding Sect.
FM The space of all C∞ functions on the manifold M.
A,B,C The uppercase Latin indices take on values 1, 2/1, 3/2, 3.
a, b, c The lowercase Latin indices take on values 1, 2, 3.
α, β, γ The Greek letter indices take on values 0, 1, 2, 3.
α,β,γ The standard abstract indices.
∇νn

µ, nµ
;ν The components of the covariant differential of nµ .

Aµν...
[κλ]... The antisymmetrization of the indices κ, λ.

Aµν...
(κλ)... The symmetrization of the indices κ, λ.

∗= The quality only holds for a vacuum region.
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1 Preliminaries
General Relativity (GR) still, after 109 years, remains the most successful

gravitational theory ever known to mankind. One of its central ideas is that
space-time is not a mere backdrop for celestial events, but a dynamic, curved
entity influenced by mass and energy. This curvature of space-time introduces a
bunch of non-trivial and fascinating phenomena. Intriguingly, even the simplest
space-time configurations can exhibit surprising and complex geometric properties.
In this thesis, we examine the geometric properties of a specific class of space-times,
whose main representative is the renowned Kerr metric, that serves as the most
important example of rotating black holes and their unique characteristics.

In the first chapter, we aim to establish the essential concepts and techniques
that are going to be explored in depth in the following sections. Our main goal
is to offer a comprehensive and pseudo-rigorous exposition of all foundational
elements in one place, ensuring the thesis is largely self-sufficient. This approach
not only solidifies the core understanding necessary for subsequent discussions,
but also introduces a degree of generality to the problem (more below), enriching
the analysis, and providing a broader context for the more-specialized topics
addressed later. We begin with a thorough examination of the Frobenius’ theorem,
establishing the necessary conditions for the existence of space-time decompositions
that are going to be analyzed later. This discussion closely follows the framework
provided in [11] with additional insights from [4], despite the differing notation
and depth of analysis found in the latter.

In the second section, we establish a significant covariant decomposition of a
covariant differential of a hypersurface-orthogonal vector field. This decomposition,
treated in Subsection 1.2, is going to be articulated in terms of various tensor fields
that describe general congruences. Our approach here draws heavily from [1], but
we extend the analysis to include an unspecified causal character of the normal
field for the purpose of generality, unlike the time-like specification found in [1].
This more general treatment aligns with the brief discussion in the unpublished
research [19] and the bachelor thesis [10].

By synthesizing the insights from the first two sections, we are going to be
positioned to tackle the broader problem of space-time decomposition in GR. It is
assumed that the reader is already familiar with the basics of differential geometry,
which serve as the only prerequisites to this foundational chapter. Throughout
the text, the usual summation rule is used. The geometrized units are always
used as well, unless explicitly noted otherwise.

1.1 Submanifolds and Frobenius’ theorem
Definition 1 (Locally injective mapping, immersion, embedding). Let M, Ñ be
two smooth differentiable manifolds of dimensions dim M = m, and dim Ñ = n,
where n ≤ m is commonly assumed. We say that a mapping1 φ : Ñ → M is
locally injective at the point x ∈ Ñ , if the push-forward φ∗

⃓⃓⃓
x̃

is injective.

1Note that since the assumption n ≤ m, φ is by definition not a diffeomorphism. We enforce
the property of push-forward’s injectivity (as it is always well defined) to ensure that directions
of vector bases do not degenerate.
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From this point on, we shall refer to a locally injective map at every point x̃ ∈ Ñ
as immersion and an injective map in the standard sense as embedding of
manifold N = φÑ into M.

Definition 2 (Submanifold). Given the notions established by the preceding defini-
tion, submanifold shall therefore be defined as the image of immersion/embedding,
φ : Ñ → M ( ⇐⇒ N = φÑ ).

Lemma 1 (Adapted coordinates). Let Ñ , N , M and φ be defined as above. It
is then possible to prove that there exists a subset V ⊂ N around a point x ∈ N ,
where φ is injective. Therefore, there exists a coordinate system [y1, ..., yn],
covering the neighbourhood U ⊂ M of the point φx, that can be extended to a
coordinate system [x1, ..., xm], such for every w ∈ U the following holds[11]:

(i) xj(φw) = yi(w) for i ∈ {1,...,n},

(ii) xp(φw) ≡ const. for p ∈ {n+1,...,m}.

(iii) Local injectivity and surjectivity of φ is the sufficient condition for φ being
a diffeomorphism on a neighbourhood of w.

Moreover, in the ideal non-degenerate case, the immersion/embedding of N
into M as a hypersurface in M is through the coordinates yi, i ∈ {1, ..., n} and
xp, p ∈ {n+1, ...,m} fully described by the relations xj, j ∈ {1, ...,m} = xj(xp, yi).
The interpretation is that the choice of xp = const. ”chooses” the particular
submanifold, whereas yi are the intrinsic coordinates of the submanifold.

Now, we wish to define vectors and 1-forms from the (co)tangent bundle of N
for further tensorial treatment of the problem. It is possible to start by identifying
the tangent vectors of N with the image of φ∗ because the push-forward of vectors
φ∗TxÑ ≡ TφxN ⊂ TφxM is always a well defined map, thanks to the Definitions
1 and 2. On the other hand, with 1-forms, the analogous mapping from Ñ to N
is not immediately clear. The previous thoughts are summarized and solved by
the following definition:

Definition 3 (Tangent vectors and normal forms of a submanifold). Let N
be a submanifold of M. Employing the notation introduced earlier, denote the
corresponding mapping by φ : Ñ → M. Lets us define

(i) Tangent vectors to N (objects from TxN ) as the image of φ∗TxÑ .

(ii) Normal 1-forms as objects from N∗
xN ⊂ T∗

xM defined via the relation

ω ∈ N∗
xN ⇐⇒ ω(φ∗a1, ..., φ∗an) = 0 ∀ak ∈ TxN .

Note that the previous definition gives the duality between the spaces TxN
and N∗

xN in the following sense

ω ∈ N∗
xN ⇐⇒ ∀a ∈ TxN : ω · a = 0,

a ∈ TxN ⇐⇒ ∀ω ∈ N∗
xN : ω · a = 0.
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Definition 4 (Distribution ∆ of subspaces of tangent vectors of dimension n).
A collection of n-dimensional subspaces ∆x ⊂ TxM of a differentiable manifold
M of dimension m is called a distribution at x, if it is generated by smooth (in
the sense of FM) vector fields aj ∈ T M for j ∈ {1, ..., n}. Therefore, the bulk
distribution ∆ is ∀x ∈ M generated by aj(x), and we say that a ∈ T M is an
element of ∆ ⇐⇒ ∀x : a(x) ∈ ∆x.

Definition 5 (Codistribution ∆∗ of subspaces of 1-forms of codimension n). A
collection of (m-n)-dimensional subspaces ∆∗

x ⊂ T∗
xM of a differentiable manifold

M of dimension m is called a codistribution at x if it is generated by smooth (in
the sense of FM) 1-form fields αp ∈ T ∗M for p ∈ {n+ 1, ...,m}. Therefore, the
bulk codistribution ∆∗ is ∀x ∈ M generated by αp(x), and we say that α ∈ T ∗M
is an element of ∆∗ ⇐⇒ ∀x : α(x) ∈ ∆∗

x.

Definition 6 (Complementary distributions). (Co)distributions ∆,∆∗ are called
complementary distributions, if the following holds:

(i) dimension of ∆ is n and codimension of ∆∗ is n,

(ii) ∀a ∈ ∆x ∀α ∈ ∆∗
x : α · a = 0.

The definition of complementary distributions allows us to classify two com-
plementary (co)distributions just by classifying the (co)distribution because,
analogously as before, the complementary (co)distribution is given unambiguously
by

a ∈ ∆ ⇐⇒ ∀α ∈ ∆∗ : α · a = 0,

α ∈ ∆∗ ⇐⇒ ∀a ∈ ∆ : α · a = 0,

that allows us to employ a shorthand notation: α ∈ ∆∗ ⇐⇒ α|∆ = 0. Let
us define one more notion regarding distributions. From this point on, we are
assuming that the distributions of interest, denoted by ∆,∆∗, are complementary
in the sense defined by the previous definition.

Definition 7 (Involutive distribution). Let ∆ be a distribution of dimension n.
We say the distribution ∆ is involutive, if it is generated by smooth vector fields
ai, where i ∈ {1, ..., n}, and the Lie bracket [aj, ak] can be written as a ”linear”
combination: ∑︁n

l=1 f
l
jkal for arbitrary f l

jk ∈ FM , ∀j, k ∈ {1, ..., n}.

And the induced complementary notion by the complementarity:

Definition 8 (Differential codistribution). Let ∆∗ be a codistribution of codimen-
sion n. We say the codistribution is differential, if it is generated by smooth
1-form fields αp, where p ∈ {n + 1, ...,m}, and the exterior derivative dαp can
be written as a ”linear” combination ∑︁dim∆∗+n

q=n+1 Θp
q ∧ αq, for an arbitrary 1-form

Θp
q , ∀p ∈ {n+ 1, ..., dim∆∗ + n}2.

2The wedge product is obviously convention-dependent. The convention is here taken from
[11], so for K forms of degrees p1, ..., pK , where

∑︁K
i=1 pi is abbreviated to p, the wedge product

reads

(α1 ∧ α2 ∧ ... ∧ αK)a1...ap := p!
p1! p2! ... pK !α

1
[a1...ap1

α2
ap1+1...ap2

...αK
ap−pK

...ap].
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Theorem 2. Let M be a differentiable manifold of dimension m, ∆ distribution
of dimension n and ∆∗ the complementary codistribution. Then ∆ is involutory if
and only if ∆∗ is differential[11].

Proof. ∆∗ being differential means that ∀p ∈ {n+ 1, ...m} : dαp
⃓⃓⃓
∆

=0; therefore:
one has ∀i, j ∈ {1, ..., n}, ∀p ∈ {n + 1, ...,m} : 0 = ai · dαp · aj, where ai, aj

denote the generators of the complementary distribution. By using the known
Cartan’s formula (for the formulation and proof, see [11]), one gets the following:
0 = ai ·d(aj ·αp)−aj ·d(ai ·αp)− [ai, aj ] ·αp, but the first two terms are identically
zero because of the presumption that the (co)distributions are complementary.
Therefore, we get the equivalence with ∀i, j ∈ {1, ..., n} : [ai, aj] being an element
of ∆, which is equivalent to the definition of involutive distribution.

With the aid of this theorem, we finally arrive at the question of integrability,
which is our main matter of interest. Another two definitions are necessary to
formulate the main theorem of this section

Definition 9 (Integral submanifold). A manifold N is an integral submanifold
of the corresponding complementary co(distributions) ∆,∆∗ on N , if:

∀x ∈ N :

⎧⎨⎩a ∈ ∆x ⇐⇒ a ∈ TxN ,

α ∈ ∆∗
x ⇐⇒ α ∈ N∗

xN .

If a differentiable manifold N is an integral submanifold, the distinction between
∆x and TxN , respectively ∆∗

x and N∗
xN , is no longer needed, and it is possible to

identificate them: ∆x ≡ TxN , respectively ∆∗
x ≡ N∗

xN .

And the ”inverse” definition:

Definition 10 (Integrable distribution). The complementary (co)distributions
∆,∆∗ on differentiable manifold M are called integrable on U, if every point
x ∈ U ⊂ M is crossed by an integral submanifold.

Claim 3. Let ∆,∆∗ be (co)distributions on a differentiable manifold M
dim M = m of (co)dimensions n, let [xk] denote a coordinate chart defined on a
neighbourhood of point x ∈ M denoted by U ⊂ M. Then[11]

∆,∆∗ are integrable ⇐⇒ ∃[xk]mk=1 :

⎧⎨⎩∂i, i ∈ {1, ..., n}
dxp, p ∈ {n+ 1, ...,m}.

And finally, we arrive at the Frobenius’ theorem, which we shall not prove
in this form, for the proof is quite extensive and can be found in the non-public
lecture notes of [11], apart from differential geometry textbooks:

Theorem 4 (Frobenius). Let ∆,∆∗ be mutually complementary (co)distributions
on a differentiable manifold. Then:

∆,∆∗ are integrable ⇐⇒ ∆ is involutive ⇐⇒ ∆∗ is differential.

Proof. The rightmost equivalence has already been shown in this text, so just
two implications remain. The implication ” =⇒ ” can be quite easily shown from
definition, but the ”⇐=” implication is much more complicated and one has to
recourse to induction.
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Remark. In the ideal case, every point of the manifold M is then passed by exactly
one integral submanifold. Then we say that the manifold is foliated by integral
submanifolds.

1.2 Integral congruences of vector fields
Now, we shall apply the general knowledge gained from the previous subchapter

to the problem of hypersurface-orthogonality in GR, and acquire the sufficient
condition when in general a (m− 1)-dimensional foliation of unspecified causal
character submanifolds exists. Let M denote the (space-time) manifold, of
dimension m ≤ 4, equipped with a non-degenerate3 tensor field g ∈ T 0

(2)M with
Lorentzian signature, that defines the isometry between TM and T∗M. Therefore,
the normal vectors of a submanifold can be defined through the isometry, and the
problem can be formulated in the ”dual” form:

Definition 11 (Hypersurface-orthogonal vector field). Given the above established
notions, let n denote a smooth vector field defined in TM, that for every x ∈ M,
defines a (m-1)-dimensional hyperspace in the corresponding TxM, that has n as
its normal vector field. A vector field, for which such (m-1)-dimensional foliation
exists, is from now on being referred to as hypersurface-orthogonal vector
field.

Before we dive deeply into the sufficient condition mentioned above, it is neces-
sary to establish in the preceding paragraphs mentioned covariant decomposition
of the covariant differential of a hypersurface-orthogonal vector field. For the
purpose of which, we shall investigate the kinematics of space-time congruences
with general space-time character. Although, excluding the degenerated light-like
case, that clearly has to be treated separately.

So, let us begin with the ”4→ 3” case. Let a general one-parameter congruence
of integral curves in U ⊂ M be parameterized, after the choice of a coordinate
chart on U [xµ]4µ=0

4 by two real parameters l, τ ∈ R as xµ = xµ(l; τ), where the
map (l, τ) ↦→ xµ(l; τ) is assumed to be a diffeomorphism, by virtue of Lemma 1,
so that every point of U is passed through by exactly one integral curve. It is
assumed that the parameter l continously numbers the members of the congruence,
and τ is the standard parameter of the curves for a given l. Let us introduce the
components of the tangent vector field of the congruence, given the nature of
parameters (l, τ), by:

uµ := dxµ

dτ with the assumption uµu
µ := ε ̸= 0 ∀x ∈ U. (1.1)

Analogously, we introduce the components of the relative position vector of the
curves:

δxµ := dxµ

dl with the assumption uµδx
µ = 0 ∀x ∈ U. (1.2)

Now, from the assumption that the mapping (l, τ ) ↦→ xµ(l; τ) is a diffeomorphism,
it follows, that total derivatives of the mapping by the two parameters commute.

3Non-degeneracy in the sense that ∃g−1 ∈ T (2)
0 M : gµσ(g−1)σν = δν

µ.
4Here assumed to be covering the whole region U ⊂ M for brevity
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Therefore, one can immediately deduce that the components of the Lie derivative
of one vector field with respect to the other one vanishes, as shown below

(Luδx)µ ≡ [u, δx]µ := (δxµ),νu
ν − (uµ),νδx

ν = d(δxµ)
dτ − duµ

dl
=⇒ (Luδx)µ ≡ (Lδx)µ ≡ 0.

Moreoever, if the corresponding affine connection on fiber-bundles of M is of the
Levi-Civita type5, then:

∇δxu := uµ
;ν(δx)ν ≡ duµ

dl + Γµ
κλ(δx)κuλ = d(δx)µ

dτ + Γµ
κλu

κ(δx)λ =: ∇u(δx)µ.

This is the reason why the decomposition of the covariant differential of the vector
field uµ is so crucial, as it specifies the evolution of transversal properties of the
congruence.

Now, we lay out the ground work for the decomposition:

Definition 12 (Projector to the orthogonal space of a hypersurface-orthogonal
vector field). Let n be a hypersurface-orthogonal vector field in the sense of
Definition 11. We then define the projector to the subspace orthogonal to
the vector field n as

hµ
ν := δµ

ν − ε nµnν ,

which is indeed a projector. The orthogonality is trivial. The idempotency of the
projector can also be explicitly checked: directly from the definition we can show
that

hµ
σh

σ
ν = (δµ

σ − εnµnσ)(δσ
ν − εnσnν) ≡ hµ

ν .

One naturally deduces that the tensor hµ
ν at any point x ∈ M indeed projects on

the three dimensional subspace spanned by the vectors orthogonal to the local n.
Using g, which defines the isometry between T M and T ∗M, one can further

deduce that
hµν ≡ gµν − εnµnν ,

where gµν denotes the components of the metric g of M in the coordinate basis of the
above chosen coordinates [xµ]4µ=0 as given in abstract notation by gµν := g(∂µ ∂ν),
or, equivalently, the tensor g itself. ε here stands for the analogous norm of nµ as
in (1.1). It is evident that hµν plays the role of the metric tensor components of
the orthogonal subspace.

Let us also define the corresponding acceleration (referred to as acceleration
regardless of its causal character) of the vector field n in contravariant form as
given in components by aµ := nµ;νn

ν , and project it by hµ
ν in its both indices

(exploiting the fact that nµ is normalized, henceforth (nµn
µ);ν = 0 at any given

point, see (1.19))

nκ;λh
κ
µh

λ
ν = (δκ

µ − ε nκ
µ)(δλ

ν − ε nλ
ν) = nµ;ν − ε aµnν .

5i.e. the corresponding covariant derivative annihilates the associated metric g, and it is
torsion-free (Tor[∇] = 0 in pre-fix notation.)
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We hereby invoke the decomposition of the covariant differential nµ;ν on the
right-hand side of the equation as being of the following form:

nµ;ν := ωµν + σµν + 1
d

Θhµν + εaµnν , (1.3)

where d in general denotes the dimension of the orthogonal subspace as the image
of the mapping represented by the tensor hµ

ν . It now follows that the process can
be repeated once more, by the choice of another normal vector field, producing
2-dimensional submanifolds, et cetera, see Section 1.4.

Definition 13 (Vorticity, expansion and shear tensors). By invoking this decom-
position, we have therefore defined the following tensors:

(i) the vorticity tensor: ωµν := n[κ;λ]h
κ
µh

λ
ν = n[µ;ν] − ε a[µnν],

(ii) the expansion tensor: Θµν := n(κ;λ)h
κ
µh

λ
ν = n(µ;ν) − ε a(µnν) ≡ 1

2Lnhµν,

(iii) the expansion scalar as the metric trace of Θµν: Θ := hµνΘµν ≡ nµ
;µ,

(iv) the shear tensor as expansion tensor’s traceless part: σµν := Θµν − 1
d
Θhµν.

Remark. Note that the decomposition (1.3) is covariant. The individual terms are
of tensorial character, hence describe the transversal properties of a congruence
regardless of the choice of a coordinate chart. Every single tensor, that was
defined, is orthogonal to the defining normal vector field nµ ∀x ∈ U because of
the definition via the projector hµ

ν , and the normalisation of the normal (1.19).
This induces the following identities:

ε aµnνn
µ = nµωµν = nµσµν = nµhµν ≡ 0 ( ⇐⇒ nµA........

...µ... ≡ 0 ∀A ∈ T k
l Σt). (1.4)

The interpretation of the result may proceed through the analogy with mechan-
ics of continuum in 3 dimensions. For example the antisymmetric vorticity tensor
is known from the theory of continuum as the angular velocity vector ω⃗ = 1

2∇⃗ × v⃗.
Because in that case it is given by only 3 independent components, and thus is
fully specified by a corresponding pseudovector via the Hodge star operator.

One can subsequently interpret the other tensorial quantities as [1]:

(i) Θ describes the isotropic expansion of a 3-dimensional element of the flow
described by the congruence, and is the only tensor that changes volume of
the flow element, i.e., for the case Θ < 0 one gets the congruence converging,
and vice versa.

(ii) ωµν describes how (in the time-like normal case) world-lines of the congruence
entwine through each other like individual fibres of a rope.

(iii) σµν describes the shear deformation (for example imagine stepping on a ball,
thus turning it into an ellipsoid).
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It is evident that the three deformations, that the newly-defined tensors describe,
correspond to what one might call ”Euler angles of deformation”.

The previous considerations guide us to a bunch of much more practical
formulations of the hypersurface-orthogonality notion, than the Frobenius theorem.
The following holds:

Theorem 5. When working on a topologically trivial region of a differentiable
manifold of dimension 4, the following statements are equivalent:

(i) An arbitrary smooth vector field n is hypersurface-orthogonal in the sense
of Definition 11.

(ii) There exist smooth functions of a chosen coordinate chart Φ(xµ), f(xµ)
(f is just a proportional factor), such that the corresponding components of
the 1-form dual to nµ, obtained via the metric tensor of the metric g, are
given by:

nµ = εf ∂Φ
∂xµ .

(iii) Given the previously obtained 1-form nµ, the following identity holds:

n[µ;νnκ] = 0.

(iv) The corresponding vorticity tensor, defined by nµ, constructed in the sense
of Definition 13 and the preceding decomposition (1.3), is identically zero.

Proof. (i) ⇐⇒ (ii) : Holds due to the original Frobenius’ theorem. The codimen-
sion is equal to 1 here, so the exterior derivative of nµ, which is a 2-form, can in a
topologically trivial region always be written in the form mentioned in Definition
8. Due to the sum being actually trivial, it is sufficient to choose Θµ ≡ f,µ

f
, and

the equality holds, because Φ(xµ) ∈ FM =⇒ Φ,νµ = Φ,µν . Therefore the original
Frobenius’ theorem gives us the equivalence.

(ii) =⇒ (iii) : Given the first equivalence, it is sufficient to submit the explicit
form of the normal from (ii) into the relation, and one can easily check that it
indeed vanishes, because of the assumed smoothness and implied commutativity
of partial derivatives of Φ, like in the case of (ii):

n[µ;νnκ] = n[µ,νnκ] = 1
6(nµ,νnκ + nκ,µnν + nν,κnµ − {µ ↔ ν}) = 0.

(iii) =⇒ (iv) : Considering (1.1), the norm of nµ was already denoted by
ε, and recall that it is assumed not to be equal to zero.6On the other hand,
multiplying the equation from the previous point by nκ yields the vorticity tensor:

0 =1
3[(nµ;ν − nν;µ)nκn

κ + (nκ;µ − nµ;κ)nνn
κ + (nν;κ − nκ;ν)nµn

κ] =

=ε(nµ;ν − nν;µ) + aνnµ − aνnµ = −2ωµν .

6As mentioned before, we consider the ε normalisation factor to not be equal to zero: that
would represent the null congruence case that needs to be treated separately. Rather, we shall
be interested primarily in the case ε = −1, or ε = 1, see below.
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(iv) =⇒ [(i) ⇐⇒ (ii)] : One can get this implication from the well-known
theorem d = ∇∧.7 Here, without the torsion term though, because we wish
to prove our theorem only for applications in GR and coordinate bases. When
one writes out what vanishing vorticity tensor means in components, one can
immediately convert the covariant derivative to the exterior derivative, yielding:

n[µ;ν] − εa[µnν] ≡ 0 =⇒ dµnν = ε(aνnµ − aµnν) !=
(8)

Θµ ∧ nν .

Thus, the corresponding 1-form Θµ, from Definition 8, is here equal to −εaµ and
again, because of the Frobenius’ theorem, that concludes the proof.

The original Frobenius’ theorem was posing the question of integrability of
submanifolds tangent to distributions, generated by smooth vector fields, as well
as the following complementary question. Is it possible to foliate a differentiable
manifold by complementary-dimensional integral submanifolds, which are at
every point orthogonal, to the complementary distribution’s generating vector
fields? The Frobenius’ theorem gave us an equivalence relation between these
two statements. Moreover, the corollary Theorem 5 tells us that both these
properties are guaranteed by the condition ωµν , defined as a tensor field (i.e.
everywhere corresponding to the normal nµ), being identically equal to zero for
the whole region of interest. Furthermore, according to the previous theorem,
defining the normal covector by nµ := ϵfΦ,µ in the sense of point (ii) guarantees
zero-ness of the vorticity tensor and thus implies the rest of the aforementioned
properties. In summary, for non-degenerate cases, the choice of the normal,
as the previously-mentioned form, guarantees surface-orthogonality as well as
integrability.

1.3 General 3+1 decomposition of space-time

1.3.1 Introduction and extrinsic curvature
The most important result of the last subchapter, addressed in the last para-

graph, shall be addressed once more, although with the normal’s causal character
still undetermined.

Let ∇ denote the covariant derivative corresponding to the Levi-Civita con-
nection (in components denoted by a semicolon). Let the congruence from the last
subchapter be defined globally, and the respective foliation by smooth hypersur-
faces be denoted by (Σt)t∈R, where t is an unspecified real parameter transitioning
in the case of time-like normal (and therefore space-like integral submanifolds) to
time8. In our case, a globally well-defined function (in the context of Frobenius’
theorem and consequent theorems denoted by Φ), which monotonously increases
along any time-like world line. In Definition 12, it has been established already
that the metric of Σt has the following form:

hµν = gµν − ε nµnν . (1.5)
7For the proof, see again [11].
8Not necessarily the time of any physical observer, although in the case of the FLRW-type

space-times it even represents proper time of the cosmic fluid everywhere, as noted in [1].
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Because we assume the hypersurfaces, that are everywhere orthogonal to the
field nµ, to be smooth, the latter is always normalize-able. That allows us to
rethink the idea of the before-chosen ε := gµνn

µnν to be only taking on values ±1
(depending on the causal character of the normal) and to normalize the normal
with an arbitrary function N instead (i.e. ε ↦→ sign(ε)N).

A subtle observation: in the special case of ωµν ≡ 0, which we are interested
in, there is little sense in the symmetrization in the definition of the expansion
tensor Θµν , because together with the previously defined ”acceleration” aµ, it
fully specifies the decomposition of the covariant differential of the normal (1.3),
see Definition 13. In a circumstance like this, the expansion tensor is referred
to as the extrinsic curvature tensor (see also Section 3.1)[1]. Thus, from
Definition 13, we have Kµν := nµ;ν − ε aµnν . It is also commonly referred to as the
second fundamental form. Together with the metric tensor, the first fundamental
form, it fully specifies (i) the standard intrinsic curvature of the (sub)manifold,
which is obtainable by exploiting (for example) the Ricci identities, (ii) the
exterior curvature, that specifies the properties of the corresponding immersion
(see Definition 1). Meaning that the symmetric (by definition, in the case ωµν ≡ 0)
tensor field K ∈ T 0

(2)Σt describes how the submanifolds Σt of M are curved as
submanifolds immersed/embedded in M9. One can get an intuition behind why
this statement is true by computing the projection of decomposition (1.3) on
Σt. The Lie derivative equality is especially intuitive, and easy to prove, the
components really correspond 1:1

nµ;νh
µ
κh

ν
λ

(1.3)= ε aµnνh
µ
κh

ν
λ +Kµνh

µ
κh

ν
λ

(1.4)= Kµνh
µ
κh

ν
λ

(12)= Kκλ
(13)= 1

2Lnhµν .

Kµν quantifies the projection of the covariant differential of the normal on T ∗Σt.
Let us summarize the results with the main definition of this section:

Definition 14 (Extrinsic curvature). Extrinsic curvature of a submanifold N ,
immersed or embedded in M, is a symmetric tensor field K ∈ T 0

(2)N defined via
the corresponding projector in the sense of Definition 12 as:

Kµν := nκ;λh
κ
µh

λ
ν ≡ nµ;ν − εaµnν .

Hence, is by definition symmetric Kµν
(13)= Kνµ, and specifies the projection of the

covariant differential of the defining hypersurface-orthogonal field on T ∗N .

Remark. In Definition 13, it has already been established, that in general the
expansion tensor’s metric trace, called the expansion scalar, is given by the
four-covariant divergence of the normal field. Therefore, in the case ωµν ≡ 0, it
holds:

K := gµνKµν
(1.4)= hµνKµν

(13)
≡ nµ

;µ. (1.6)

Its geometrical interpretation was already established after the aforementioned
definition as sign(K) ≶ 0 =⇒ contraction

=⇒ expansion of the normal field (therefore, the covariant-
divergence makes sense here).

9The most notorious example of this is the cylinder, where parallel lines on the underlying
manifold do not expand, yet, one would not call an embedded cylinder in E3 flat.
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Remark. Mixed components of the extrinsic curvature tensor represent what
is sometimes being called the shape operator [1], [19], from which the usual
geometrical curvature-describing scalars can be constructed. Let d denote the
dimension of the differentiable manifold of interest. Then, in the non-degenerate
case, the eigenvalues of the shape operator are what is called the principal
curvatures κi, i ∈ {1, ..., d}. Afterwards, the mean curvature H can be obtained as
K
d

which, because, the trace in general is equivalent to the sum of eigenvalues, is
the same as 1

d

∑︁d
i=1 κi. The well known Gauss-Kronecker curvature κ corresponds

to the determinant of the shape operator. Using Lemma 1, one can find adapted
coordinates of the submanifold(s), so that the whole system of submanifolds has
the same adapted coordinates. This diagonalizes the shape operator, yielding
κ = ∏︁d

i=1 κi.

1.3.2 Decomposition of the field equations
Next effort shall go into finding the relations between (tensorial) objects,

defined on M, and their respective analogues, defined on Σt. The general10 3+1
decomposition of the Einstein field equations. One has to begin somewhere, and
the logical first step, to define the tensorial quantities, is finding the components of
the induced covariant derivative corresponding to the connection of the Levi-Civita
type compatible with the metric h of Σt. The following Lemma holds:

Lemma 6 (Covariant differential on Σt). The operation defined as:11.

(3)∇κT
µ...
ν... ≡ T µ...

ν...|κ := Tα...
β...;λh

µ
αh

β
νh

λ
κ...,

where the semicolon part denotes the components of the standard covariant differ-
ential compatible with g, represent the components of the covariant differential
corresponding to the connection of the Levi-Civita type compatible with the metric
h. In other words fulfilling the following properties for arbitrary r ∈ R, f ∈ F Σt,
and A,B ∈ T k

l Σt:

(i) (3)∇ : T k
l Σt → T k

l+1Σt,

(ii) (Aµ...
ν... + rBµ...

ν... )|κ = Aµ...
ν...|κ + rBµ...

ν...|κ,

(iii) (Aµ...
ν...B

κ...
λ...)|ρ = Aµ...

ν...|ρB
κ...
λ... + Aµ...

ν...B
κ...
λ...|ρ,

(iv) A...κ...
...κ...|ρ = δµ

νA
...µ...
...ν...|ρ,

(v) f|κ = dκf ,

(vi) hµν|ρ = 0,

(vii) f|µν − f|νµ ≡ −(3)T ρ
µνf|ρ = 0,

where (3)T ρ
µν stands for the components of the induced torsion tensor (3)T .

10General meaning still performed with a general ε, therefore with general causal character of
the normal and of the hypersurfaces, meaning that ”t”, in Σt, is still general, and does not yet
necessarily correspond to any physical quantity, such as the suggestive time.

11The covariant derivative on Σts itself shall be, if needed, denoted by (2)∇.
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Proof. The projection modifies nothing we already had with the standard ∇,
concerning the items (i) − (v), so let us prove (vi) first. Exploiting the Levi-Civita
property of ∇, we have:

hµν|ρ := hκλ;σh
κ
µh

λ
νh

σ
ρ

(1.5)= (nκ;σnλ + nκnλ;σ)hκ
µh

λ
νh

σ
ρ

(1.4)= 0.

Hence, only the torsion-free property remains:

f|µν :=(f;κh
κ
ρ);λh

ρ
µh

λ
ν

(1.5)= f;κλh
κ
µh

λ
ν + f;κ(nκ

;λnρ + nκnρ;λ)hρ
µh

λ
ν =

=(f,κ);λh
κ
µh

λ
ν + f,κn

κnρ;λh
ρ
µh

λ
ν

(14)= (f,κλ − Γσ
κλf,σ)hκ

µh
λ
ν + f,κn

κKµν =
=(f,λκ − Γσ

λκf,σ)hκ
µh

λ
ν + f,κn

κKνµ ≡ f|νµ =⇒ (3)T ≡ 0,
where just the symmetry property of K and Levi-Civita property of ∇ have been
employed in the last row; therefore the proof is concluded.

The following road plan is simple, yet quite tedious. To obtain the components
of the 3-dimensional analogues of tensorial quantities, it is needed to, through
the exact same procedure as in 4 dimensions, define the corresponding Riemann
tensor, via the covariant differential commutator, in standard theory known as the
Ricci identities. Although, for this purpose, it is first needed to obtain the relation
identities between ∇, (3)∇, on Σt, for 1-forms. Let us then calculate the relation
for arbitrary covector vµ ∈ T ∗Σt, and vector vµ ∈ T Σt, respectively. We use (1.5)
repetitively keeping in mind, that the covariant differential of vαn

α is trivially
zero, due to the orthogonality identities. therefore, one is, in the parts of an
expression, which are being summed over, allowed to ”per partes” the semicolon
to the second quantity

vµ|ν :=vκ;λh
κ
µh

λ
ν = vµ;λh

λ
ν − εvκ;λn

κnµh
λ
ν

(12)= vµ;λh
λ
ν + εvκn

κ
;λnµh

λ
ν

(14)
≡

(14)
≡ vµ;λh

λ
ν + εKκ

ν vκnµ
(12)= vµ;ν + ε(nµK

κ
ν vκ − nν∇nvµ),

(1.7)

vµ|ν :=vκ;λhµ
κh

ν
λ = vµ;λhν

λ − εvκ;λnκn
µhν

λ

(12)= vµ;λhν
λ + εvκn;λ

κ n
µhν

λ

(14)
≡

(14)
≡ vµ;λhν

λ + εKν
κv

κnµ (12)= vµ;ν + ε(nµKν
κv

κ − nν∇nv
µ).

(1.8)

Here, ∇n denotes the covariant derivative in the direction of n. As planned, we
continue by calculating the second induced covariant differential of an arbitrary
1-form, vµ ∈ T ∗Σt, by once more differentiating (1.7):

vν|κλ = vρ;σγh
ρ
νh

σ
κh

γ
λ − εvρ;σ[(nα;γn

ρ + nαn
ρ
;γ)hα

νh
σ
κh

γ
λ + (nβ;γn

σ + nβn
σ
;γ)hρ

νh
β
κh

γ
λ]

(1.4)= vρ;σγh
ρ
νh

σ
κh

γ
λ − εvρ;σ(nα;γn

ρhα
νh

σ
κh

γ
λ + nβ;γn

σhρ
νh

β
κh

γ
λ) (14)=

(14)= vρ;σγh
ρ
νh

σ
κh

γ
λ − εvρ;σn

ρhσ
κKνλ − εvρ;σh

ρ
νn

σKκλ ≡

≡ vρ;σγh
ρ
νh

σ
κh

γ
λ + εvρn

ρ
;σh

σ
κKνλ − εvρ;σh

ρ
νn

σKκλ
(14)=

(14)= vρ;σγh
ρ
νh

σ
κh

γ
λ + ε(vρK

ρ
κKνλ − vρ;σh

ρ
νn

σKκλ).

So, the commutator yields, using the standard Ricci identities in the covariant form:

vρ;σγ − vρ;γσ = Rµ
ργσvµ,
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where R ∈ T 1
3 M denotes the standard (”4D”) Riemann curvature tensor:

=⇒ vν|κλ − vν|λκ = vρ;σγh
ρ
ν(hσ

κh
γ
λ − hσ

λh
γ
κ) + εvρ(Kρ

κKνλ −Kρ
λKνκ) ≡

≡ (vρ;σγ − vρ;γσ)hσ
κh

γ
λh

ρ
ν + εvρ(Kρ

κKνλ −Kρ
λKνκ) =

= [Rµ
ργσh

ρ
νh

γ
κh

σ
λ + ε(Kµ

κKνλ −Kµ
λKνκ)]vµ.

The ”operator equality” holds on Σt, so using the analogous (”3D”) Ricci identities,
that we use to define the Riemann tensor of Σt denoted by (3)R ∈ T 1

3 Σt:
(3)Rµ

νκλvµ := vν|κλ − vν|λκ, (1.9)

one arrives, by projecting in the remaining index to Σt, to the Gauss equation:

Rα
βγδh

µ
αh

β
νh

γ
κh

δ
λ = (3)Rµ

νκλ − ε(Kµ
κKνλ −Kµ

λKνκ). (1.10)

The Gauss equation is a well known result from differential geometry, which
relates the (1.9) Riemann tensor of Σt to the projection of Riemann tensor of
M onto Σt. By projecting the ordinary Ricci identity with the normal, one
may obtain the other two non-trivial projections of the Riemann tensor of M,
namely Rα

βγδnαh
β
νh

γ
κh

δ
λ and Rα

βγδnαh
β
νn

γhδ
λ. This part is somewhat convention-

dependent, although due to the known Riemann tensor (anti)symmetries, the rest
of the projections are indeed always trivial for any convention choice. Obtaining
the remaining two equations becomes easy, if one first evaluates the at first glance
random expression Kβγ;δ −Kβδ;γ:

Kβγ;δ −Kβδ;γ :=(nβ;γ − εaβnγ);δ − (nβ;δ − εaβnδ);γ

=nβ;γδ − nβ;δγ − εaβ;γnγ + εaβ;γnδ − ε(nγ;δ − nδ;γ)aβ.

This can be further treated upon using the symmetry relation, that K satifies

Kγδ = Kδγ =⇒ nγ;δ − nδ;γ ≡ ε(aγnδ − aδnγ).

By substituting the identity into the previous relation and rearranging the terms,
we immediately obtain a different form of the commutator on the right side of the
Ricci identities for the normal.

nβ;γδ − nβ;δγ = Kβγ;δ −Kβδ;γ + ε(aβ;δ − εaβaδ)nγ − ε(aβ;γ − εaβaγ)nδ.

From this, by substituting into the previously mentioned Ricci identities, one
obtains

Rα
βγδnα = Kβγ;δ −Kβδ;γ + ε(aβ;δ − εaβaδ)nγ − ε(aβ;γ − εaβaγ)nδ.

By projecting in the rest of the indices on Σt and using (1.4), the projection
Rα

βγδnαh
β
νh

γ
κh

δ
λ is complete

Rα
βγδnαh

β
νh

γ
κh

δ
λ = (Kβγ;δ −Kβδ;γ)hβ

νh
γ
κh

δ
λ.

This equation in its most canonical form is called the Codazzi equation. It is
derived directly by applying Lemma 6:

Rα
βγδnαh

β
νh

γ
κh

δ
λ = Kνκ|λ −Kνλ|κ. (1.11)

19



While the other aforementioned possible projection Rα
βγδnαh

β
νn

γhδ
λ can be ob-

tained by, instead of projecting on Σt in the rest of the indices, projecting γ with
the corresponding vector nγ instead, again, using Lemma 6 and (1.4):

Rα
βγδnαh

β
νn

γhδ
λ = [Kβγ;δ −Kβδ;γ + ε(aβ;δ − εaβaδ)nγ−

− ε(aβ;γ − εaβaγ)nδ]hβ
νn

γhδ
λ =

= ε2aν|λ − ε3aνaλ + (Kβγ;δ −Kβδ;γ)hβ
νn

γhδ
λ =

= aν|λ − εaνaλ −Kβγh
β
νn

γ
;δh

δ
λ −Kβδ;γh

β
νh

δ
λn

γ (14)=
(14)= aν|λ − εaνaλ −KνγK

γ
λ −Kβδ;γh

β
νh

δ
λn

γ.

By explicitly evaluating the last term, one can get a different expression:

Kβδ;γh
β
νh

δ
λn

γ (12)
≡ Kνλ;γn

γ − εKνδ;γn
γnλn

δ − εKβλ;γn
γnνn

β+

+ ε2Kβδ;γn
γnνnλn

βnδ (12)
≡

(12)
≡ Kνλ;γn

γ + εKνδnλa
δ + εKβδnνa

β (14)=
(14)= Kνλ;γn

γ +Kνδ(nδ
;λ −Kδ

λ) +Kβδ(nβ
;ν −Kβ

ν ) =
= Kνλ;γn

γ +Kνδn
δ
;λ +Kβδn

β
ν − 2KνγK

γ
λ ≡

≡ LnKνλ − 2KνγK
γ
λ .

(1.12)

Therefore, we obtain two different but equivalent expressions of the Ricci equation

Rα
βγδnαh

β
νn

γhδ
λ = aν|λ − εaνaλ −KνγK

γ
λ −Kβδ;γh

β
νh

δ
λn

γ, (1.13)

Rα
βγδnαh

β
νn

γhδ
λ = aν|λ − εaνaλ +KνγK

γ
λ − LnKνλ. (1.14)

With the knowledge of the relations for all non-trivial projections of the
Riemann tensor, let us proceed to examine the Ricci tensor and curvature scalar,
enabling us to decompose the field equations (1). The number of all non-trivial
projections of the Ricci tensor is the same as in the Riemann tensor case, also
the procedure is analogous. The Ricci tensor on M reads, expressed via relevant
quantities:

Rβδ := gαγRαβγδ

(12)= hαγRαβγδ + εRαβγδn
αnγ.

Firstly, we tackle the projection to Σt using Gauss equation and Ricci equation

Rβδh
β
νh

δ
λ ≡ hµκRαβγδh

α
µh

β
νh

γ
κh

δ
λ + εRαβγδn

αhβ
νn

γhδ
λ

(1.10)=
(1.10)= (3)Rνλ − εKKνλ + εKκ

λKνκ + εRαβγδn
αhβ

νn
γhδ

λ

(1.13)=
(1.13)= (3)Rνλ − εKKνλ + εKκ

λKνκ + εaν|λ − ε2aνaλ − εKκ
λKνκ−

− εKβδ;γh
β
νh

δ
λn

γ ≡
≡ (3)Rνλ − aνaλ + ε(aν|λ −KKνλ −Kβδ;γh

β
νh

δ
λn

γ).

(1.15)

Secondly, the ”mixed” projection utilizes the Codazzi equation, along with the
(anti)symmetries of the Riemann tensor, and incorporates the pre-established
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expression for Ricci on M

Rβδn
βhδ

λ = hµκRαβγδh
α
µn

βhγ
κh

δ
λ ≡ −hνκRαβγδn

αhβ
νh

γ
κh

δ
λ

(1.11)=
(1.11)= −hνκ(Kνκ|λ −Kνλ|κ) ≡ Kκ

λ|κ −K|λ.
(1.16)

The last projection can be obtained directly by contraction of the Ricci equation

Rαγn
αnγ = aλ

|λ − εaλaλ −Kλ
κK

κ
λ − hβδKβδ;γn

γ.

so, by contracting (1.7), with the metric h, which is annihilated by (3)∇, and
further simplifying the covariant-3-divergence to the following

vν
|ν ≡ hµνvµ|ν

(1.7)= hµν(vµ;λh
λ
ν + εKκ

ν vκnµ) (1.4)= vµ;λh
µλ (12)= vλ

;λ − εvµ;λn
µnλ. (1.17)

Then explicitly evaluating the last expression to a useful identity

hβδKβδ;γn
γ (12)= (gβδKβδ);γn

γ − εKβδ;γn
βnγnδ (14)=

(14)= K;γn
γ − ε(nβ;δ − εaβnδ);γn

βnγnδ ≡ K,γn
γ.

(1.18)

We repetitively used the following well known identity, arising from the normal-
isazion of the normal

(nµn
µ);ν = 0 =⇒ nµ;νn

µ ≡ 0. (1.19)

Meaning the last non-trivial projection of the Ricci tensor takes the final form:

Rαγn
αnγ = aλ

;λ −Kλ
κK

κ
λ −K,γn

γ. (1.20)

The curvature scalar of M can be expressed in two equivalent ways, that yield
different decompositions:

R := gβδRβδ
(12)= hβδRβδ + εRβδn

βnδ ≡
≡ hνλRβδh

β
νh

δ
λ + εRβδn

βnδ ≡ hµκhνλRα
βγδh

µ
αh

β
νh

γ
κh

δ
λ + 2εRβδn

βnδ.

The first expression on the second row can be further handled by using the two
already obtained projections of the Ricci tensor:

R
(1.15)= hνλ[ (3)Rνλ − aνaλ + ε(aν|λ −KKνλ −Kβδh

β
νh

δ
λn

γ)] + εRβδn
βnδ (1.20)=

(1.17)

(1.20)=
(1.17)

(3)R + ε(aλ
;λ −K2 −Kβδ;γh

βδnγ) + ε(aλ
;λ −Kκ

λK
λ
κ −K,γn

γ) (1.18)=

(1.18)= (3)R + ε(2aλ
;λ −K2 − 2K,γn

γ −Kκ
λK

λ
κ ).

(1.21)

Whereas, the second expression on the second row yields directly, after using the
Gauss equation, the following decomposition:

R
(1.10)= hµκhνλ( (3)Rµνκλ − εKµκKνλ + εKµλKνκ) + 2εRβδn

βnδ =
= (3)R + ε(2Rβδn

βnδ +Kκ
λK

λ
κ −K2).

(1.22)
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The Einstein tensor of M, defined by (1), is given by just a ”linear” combination
of already decomposed terms; therefore not many manipulations are neccessary.
Analogously, like in the case of the Ricci tensor, three distinguished non-trivial
projections exist

Gβδh
β
νh

δ
λ := Rβδh

β
νh

δ
λ − 1

2Rhνλ
(1.15)=
(1.21)

(1.15)=
(1.21)

(3)Gνλ − aνaλ + ε[aν|λ −KKνλ −Kβδ;γh
β
νh

δ
λn

γ+

+ hνλ(K,γn
γ + 1

2K
κ
λK

λ
κ + K2

2 − aλ
;λ)].

(1.23)

The ”mixed” projection remains unchanged. Thanks to the orthogonality relations
(1.4):

Gβδn
βhδ

λ

(1.16)
≡ Kκ

λ|κ −K|λ. (1.24)
Whereas, the twice to-normal-projected Einstein tensor is obtained immediately
by plugging (1.22):

Gβδn
βnδ (1.4)= Rβδn

βnδ − ε3

2 R
(1.22)= 1

2(K2 −Kκ
λK

λ
κ − ε (3)R). (1.25)

Finally, submitting the last two results into the respectively-projected field
equations (1) yields two equations, whose terms on the left side all ∈ Σt. This
explains the noun constraint: those are the equations that must be obeyed for
every parameter value. Therefore, for example, for space-like Σt, ∀t ∈ R, i.e. at
any given moment, meaning

∀ Σt :

⎧⎨⎩Kκ
λ|κ −K|λ = 8πTβδn

βhδ
λ ... momentum constraint,

K2 −Kκ
λK

λ
κ − ε (3)R = 16πTβδn

βnδ + 2Λ ... Hamiltonian constraint.
(1.26)

The remaining equation (1.23) can be substituted into the field equations (1) in two
ways. One can substitute directly (1.23) into the field equations or alternatively,
submit it into the second known form of the equations. This one can get by
tracing (1) and substituting the result back into the equation, as follows:

Rµν − 1
2Rgµν + Λgµν = 8πTµν

T race−−−→ R = 4Λ − 8πT

=⇒ Rµν = 8π(Tµν − 1
2Tgµν) + Λgµν .

(1.27)

Using the first option mentioned, one obtains the following identity
(3)Gνλ − aνaλ + ε[aν|λ −KKνλ −Kβδ;γh

β
νh

δ
λn

γ

+ hνλ(K,γn
γ + 1

2K
κ
λK

λ
κ + K2

2 − aλ
;λ)] =

= 8πTβδh
β
νh

δ
λ − Λhνλ.

Whereas, the second mentioned option yields, after utilizing (1.15), the known
evolution equation for K in the direction of nγ:

(3)Rνλ − aνaλ + ε(aν|λ −KKνλ −Kβδ;γh
β
νh

δ
λn

γ) (12)= 8π(Tβδh
β
νh

δ
λ − 1

2Thνλ)+

+Λhνλ ≡ 8πTβδh
β
νh

δ
λ + (Λ − 4πT )hνλ.

(1.28)
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Subtracting the two options leads immediately to:

−1
2

(3)Rhνλ + εhνλ(aν|λ −KKνλ −Kβδ;γh
β
νh

δ
λn

γ) = −2(Λ − 2πT )hνλ.

After tracing and some elementary algebra, this becomes:

(3)R + ε(2aκ
;κ −K2 −Kκ

λK
λ
κ − 2K,γn

γ) = 4(Λ − 2πT ) ≡ R. (1.29)

On the other hand, substituting the second form of the field equations (1.27) into
(1.20), to ensure the desired property (3)Rνλ = (3)R, yields the following equation

aλ
;λ −Kκ

λK
λ
κ −K,λn

λ ≡ aλ
|λ − εaλaλ −Kκ

λK
λ
κ −K,λn

λ =

= 8π(Tκλ − 1
2Tgκλ)nκnλ + Λgκλn

κnλ (12)=
(12)= 8πTκλn

κnλ + ε(Λ − 4πT ).

(1.30)

1.3.3 Adapted coordinates and the vacuum cases
In the previous section we have been, guided by Theorem 5, employing the

3+1 decomposition of M successfully, although, yet without employing any
specific coordinates whatsoever. Let us then choose the parameter t as the
zeroth coordinate of codimension 1 and use the Frobenius theorem to construct
hypersurfaces of the constant time coordinate. Remember that, as we already
know, the whole point is valid if and only if the vorticity tensor ωµν of the normal
vanishes. Simply apply the equivalence from Theorem 5 and define the normal as

nα := εN
∂t

∂xα
⇐⇒ nα := 1

N

∂xα

∂t
, (1.31)

where N is an arbitrary normalization factor (it’s actually not so arbitrary, see
Chapter 2). A perceptive reader will surely notice, that in the case of the normal
being time-like, the tangent vector to the direction of a chosen time coordinate,
tα := ∂xα

∂t
, is going to have the ”inverse” structure, so let us compute:

εtαn
α = ε2N

∂xα

∂t

∂t

∂xα
≡ N.

Which tells us, that N in the case, when ε = −1 ⇐⇒ Σt space-like, respresents
the proportionality factor between the ordinary four-velocity uα.

Now, thanks to the above definition of the normal, by directly evaluating the
expression 2n[µ;ν], one can get hands on the explicit expression of the acceleration
of the nµ field in terms of the normalization factor N :

2n[µ;ν] ≡ 2n[µ,ν]
(1.31)= 2N[,νnµ]

N
=⇒ aµ

(1.19)= 2n[µ;ν]n
ν (1.31)= −ε

N,νh
ν
µ

N

(6)= −ε
N|µ

N
.

(1.32)

So the induced covariant derivative, defined by the Lemma 6 of aµ, then becomes

aµ|ν
(1.32)= ε

N|µN|ν

N2 − ε
N|µν

N

(1.32)=⇒ εaµaν − aµ|ν = ε
N|µν

N
. (1.33)
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Figure 1.1 An illustration of the
foliation for a time-like normal with
the previously defined quantities.
Here xp = const., equivalent to t =
const. chooses the hypersurface, as
mentioned before.

Figure 1.2 A vertical cut through the Fig-
ure 1.1, demonstrating the physical meaning
of the shape operator (mixed components of
K), as being responsible for the difference
between the orientation of the normal for
two infinitesimally close points within the
hypersurface Σt (see Definition 14).

Thus, again, using Lemma 6, the expression for aµ|ν is symmetric, thanks to the
vanishing induced torsion tensor. This fact will be used in the next section. Next,
let the projection of tα onto Σt be denoted by Nα. Therefore let Nα be defined as
follows (this vector is commonly called the shift, see Figure 1.1 for the intuition)

Nα := tβhα
β

(12)= (δα
β − εnαnβ)tβ. (1.34)

Thanks to the known mathematical identity of adding zero and the previous
definition, one is able to decompose tα into the normal, respectively tangent part,
with respect to Σt

tα ≡ δα
β t

β ≡ (δα
β ± εnαnβ)tβ (1.34)= Nnα +Nα. (1.35)

From this decomposition, one can deduce that tα is not, even in the time-like
case discussed frequently in this text, generally proportional to the normal nα,
as demonstrated in Figure 1.1. In Chapter 2, we are going to see that the
proportionality holds for time-like nα only if the underlying (circular) space-time
is static.

From Lemma 1, one knows that if the immersion/embedding of the submani-
folds Σt has reasonable properties, there exists a coordinate system adapted to
the immersion/embedding in the sense of Lemma 1. If the coresponding mapping
φ, in the sense of Definition 1, is assumed to be an embedding, so it has no cusps,
edges or self-intersections (so the normal is always normalize-able), those are the
sufficient reasonable properties. Thus, denote by [yi]3i=1, the intrinsic coordinates
of the submanifolds Σt, and [xµ]3µ=0 the corresponding extended coordinate system,
such that x0 = const. correspond to t = const. and xj ≡ δj

i y
i. Moreover, thanks to

the Frobenius’ theorem and Theorem 5, via the Definition of the normal, the sub-
manifolds are integral, and the corresponding distributions are integrable. Thus,
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the aforementioned adapted coordinates are defined globally. As it was formulated
in the subsequent paragraph of Lemma 1, the embedding is fully described by the
relations xµ = xµ(t, yi), which by differentiation yields in components

dxµ = ∂xµ

∂t
dt+ ∂xµ

∂yi
dyi (1.35)= Nnµdt+Nµdt+ ∂xµ

∂yi
dyi.

Notice that Nµ is, by definition, tangent to Σt, so one can abbreviate its de-
composition in the coordinate basis yi of Σt, like N i := Nµ ∂yi

∂xµ , and get the
decomposition of the metric line element, ds2 := gµνdx

µdxν , by simply multiplying
out the definition

ds2 = gµν

[︄
Nnµdt+ (N idt+ dyi)∂x

µ

∂yi

]︄ [︄
Nnνdt+ (N jdt+ dyj)∂x

ν

∂yj

]︄
.

One can futher manipulate the previous expression for the line element, via
the components of the covariant version of g. For example, the term nν

∂xν

∂yj

is identically equal to zero, because the partial derivatives represent just the
coordinate components of a vector tangent to Σt. Moreover, the last term
involves the expression gµν

∂xµ

∂yi
∂xν

∂yj , in which one recognizes the tensor of type (0,2)
transformation formula; therefore, the last term yields, after utilizing (1.5), just

gµν
∂xµ

∂yi

∂xν

∂yj

(1.5)= hµν
∂xµ

∂yi

∂xν

∂yj
≡ hij.

Here the orthogonality of nµ and Σt was used again, as in the case of nν
∂xν

∂yj . The
line element decomposition therefore becomes the known ADM formula[5], there
eq. 4.48

ds2 = εN2dt2 + hij(N idt+ dyi)(N jdt+ dyj) ≡
≡ (εN2 +NkN

k)dt2 + 2Nidy
idt+ hijdy

idyj.
(1.36)

The components of the defined-above quantities in the adapted coordinates
can also be determined. If one begins by identifying

directly from the definitions =⇒

⎧⎪⎪⎨⎪⎪⎩
nα = εNδ0

α,

tα = δα
0 ,

Nα ≡ N i.

(1.37)

The dual forms of nα and tα can also be obtained. From (1.35), one can
immediately obtain the dual components of nα

nα (1.35)= 1
N

(tα −Nα) (1.37)= 1
N

(δα
0 −Nα).

Considering the covariant form of (1.35), the dual components of tα, are as follows

tα
(1.35)= Nnα +Nα = −N2δ0

α +Nα.

Knowing the components of the dual forms of nα and tα, one can reconstruct
the components of the contravariant metric, via the relation nµ = gµνnν

(1.37)=
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−Ngµ0 =⇒ gµ0 = 1
N2 (εδµ

0 − Nµ), by substituting the dual form of nα into the
expression gij = hij + εninj, one can find, that

ds2 = ε

N2
∂2

∂t2
− 2εN

i

N2
∂

∂yi

∂

∂t
+
(︄
hij + ε

N iN j

N2

)︄
∂

∂yi

∂

∂yj
. (1.38)

Summarizing the above results, the following holds:

hµj = gµj, h
µ
j = δµ

j , h
0
µ = 0, hi

0 = N i, h0µ = 0. (1.39)

The contravariant form of the metric also implies that N2 = ε
gtt . From there, by

the Laplace row (column) expansion of the respective matrices, one gets a very
important relation between the determinants of the previously-defined metrics g
and h, abbreviating det(g) := g and det(h) := h [5], [19]

εg = h

εgtt
= N2h. (1.40)

That is the last relation we shall mention without referencing to any (more
concrete) adapted coordinates.

When working in a vacuum region of spacetime, (M, g), one has from (1)
that Rµν

∗≡ 012. This in turn implies that R ∗≡ 0, as well. Submitting the result
into the main results of the last chapter, i.e., equations (1.15), (1.26), (1.28) and
(1.29), assuming Λ = 0, yields, respectively

(3)Rνλ
∗= aνaλ + ε(KKνλ +Kβδ;γh

β
νh

δ
λn

γ − aν|λ) (1.13)=
(1.13)= ε(KKνλ −Rανγλn

αnγ −KνγK
γ
λ),

(1.41)

Kκ
λ|κ

∗= K|λ, (1.42)
(3)R

∗= ε(K2 −Kκ
λK

λ
κ ), (1.43)

(3)R
∗= ε(2K,γn

γ +K2 +Kκ
λK

λ
κ − 2aκ

;κ). (1.44)

On the other hand, from (1.30) one gets

aκ
;κ

∗= Kκ
λK

λ
κ +K,γn

γ. (1.45)

Which is clearly not independent of the preceding two results above. This is the
last result which we shall, without really employing specific coordinates for spatial
dimensions, discuss.

1.4 General 2+1+1 decomposition of space-time
It has already been mentioned in this text, that the expression (1.33) is

symmetric. Dor example, due to the above proven fact, that the induced covariant
derivative, given by Lemma 6, is of the Levi-Civita type. Therefore, due to
aµ ∈ T ∗Σt (see (1.4)) analogously as in Definition 13, the corresponding vorticity

12The asterisk above the equal sign denotes that the equality only holds in a vacuum region
of space-time.
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tensor of the acceleration aµ of the normal field nµ is going to be, independently
of any afterwards projection of a[µ|ν], identically equal to zero. Familiar?

The above mentioned argument gives one a reason to believe, that, defined
possibly by the intersections with another 3D foliation by different hypersurfaces
(Σs)s∈R, which in general necessarily need not to be orthogonal to the Σt foliation,
a foliation of Σt by 2-dimensional submanifolds exists, denoted symbolically by
Σts, analogously to the ”3+1” case. The aforementioned vorticity tensor (and the
rest of the tensors defined in Definition 13) corresponding to the acceleration aµ

would thus be defined as the projection of the expression a[µ|ν] via the projector
to Σts.

Given the (again assumed to be smooth) Σs foliation, denote by rµ a unit13

projection of the defining-normal of Σs onto Σt. Moreover, analogously to ε,
denote by δ := sign(hµνr

µrν) the constant, that says, whether the defining-normal
of Σs is time-like (δ = −1) or space-like (δ = +1). Let us, at this moment, stress
that, given that we only work in 4 dimensions now, we automatically have the
implication ε = −1 =⇒ δ = +1, because the foliations Σt and Σs are assumed
to be different. Next, note that rµ is introduced as the unit projection onto Σt,
so one, by definition, has nµr

µ ≡ 0. Now, analogously as in Definition 12, the
metric of the 2-dimensional subfoliation defined by the intersections of Σt and Σs,
denoted by Σts, reads [19]:

fµν := gµν − εnµnν − δrµrν
(12)= hµν − δrµrν . (1.46)

That is is completely analogous to Definition 12, as well as the corresponding
(analogous as well) definition of the projector onto Σts

fµ
ν := δµ

ν − εnµnν − δrµrν
(12)= hµ

ν − δrµrν . (1.47)

Again, from above, analogously to (1.4), orthogonality indentities have been
induced

rµn
µ = fµ

ν n
ν ≡ hµ

νn
ν ≡ 0 (and again rµA........

...µ... ≡ 0 ∀A ∈ T k
l Σts). (1.48)

In the case of rµ ∈ T Σt, the projector onto Σt obviously acts on it as an identity

hµ
νr

ν = rµ. (1.49)

This is the case even for the projector onto Σts itself, as one can explicitly confirm
with the aid of definition (1.47)

fµ
σ h

σ
ν

(1.47)= (hµ
σ − δrµrσ)hσ

ν ≡ hµ
ν − δrµrν

(1.49)= fµ
ν . (1.50)

Analogously to (1.19), one can prove the corollary of rµ being normalized to the
constant δ

(rµr
µ)|ν = 0 =⇒ rµ|νr

µ ≡ 0. (1.51)

Given the previously established notions and the clear analogy of the proposed
decomposition to the Section 1.3, one is guided what to do next. One needs to

13Note that rµ is always normalize-able again due to the assumed smoothness of the foliation
Σs.
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construct the ”acceleration” of the rµ field to be able to define the corresponding
exterior curvature tensor L of Σts. Let us then denote its components by bµ

and define it through the induced covariant derivative (3)∇ associated with h,
naturally, because rµ ∈ T ∗Σt. Moreover, this time, utilizing the ”per-partes” trick
and Definition 14, one can further rewrite the result into the following

bµ := rµ|νr
ν (6)= rκ;λh

κ
µr

λ (12)= rµ;λr
λ − εrκ;λn

κrλnµ ≡ rµ;λr
λ + εrκnκ;λr

λnµ
(14)=

(14)= rµ;λr
λ + ε(Kκλ + εaκnλ)rκrλnµ

(1.48)= rµ;λr
λ + εKκλr

κrλnµ.

(1.52)

Knowing this, one is able to construct the corresponding exterior curvature tensor
of Σts, denoted by L. Similarly to Definition 14, the corresponding metric trace
L can one further simplify using the previous result, while the ”per-partes” trick
is again repetitively enforced

Lµν := rκ|λf
κ
µf

λ
ν

(1.47)= rκ|λ(hκ
µ − δrκrµ)fλ

ν

(1.51)= rµ|λf
λ
ν

(1.47)= rµ|ν − δbµrν

= rα;βh
α
κh

β
λf

κ
µf

λ
ν

(1.50)= rα;βf
α
µ f

β
ν

(1.47)= rα;β(hα
µ − δrµr

α)fβ
ν

(1.51)= rα;βh
α
µf

β
ν

(12)=
(12)= rα;β(δα

µ − εnµn
α)fβ

ν

(14)= rµ;βf
β
ν + εrα(Kαβ + εaαnβ)fβ

ν nµ
(1.48)=

(1.48)= rµ;βf
β
ν + εKαβr

αfβ
ν nµ

(1.47)=
(1.47)= rµ;βh

β
ν − δbµrν + εKανr

αnµ.

(1.53)

With aid of the expression (1.52), one can actually show that

bµrµ
(1.52)= (rµ

;λr
λ + εKκλr

κrλnµ)rµ
(1.51)=
(1.48)

0.

As a verification of (1.48). The expression for L then reads

L := fµνLµν ≡ Lµ
µ

(1.53)= rµ
|µ − δbµrµ − δεKκνr

κrνnµrµ
(1.48)= rµ

|µ
(1.17)= rµ

;µ + εaµrµ.
(1.54)

1.4.1 Further general decomposition of the field equations
The procedure is analogous to Section 1.3. The first step to finding the general

2+1+1 decomposition of the Einstein field equations is finding the components of
the induced covariant derivative corresponding to the connection of the Levi-Civita
type compatible with the metric f of Σts. One could construct a lemma analogous
to the Lemma 6, although the points (i) − (v) are again trivial. That is due to the
fact that the projection by (1.47) changes nothing regarding the properties of the
derivative (excluding the tensor spaces). The only semi-non-trivial point is the
point (v). However, due to the theorem d = ∇∧, mentioned (although not proven)
in Theorem 5, together with the further down-proven torsion-less the proof of (v),
is trivial, because the wedge product consists of nothing but one term.

Let us then prove only the remaining non-trivial points (vi) and (vii) from
Lemma 6, provided the generalized form as follows, denoting the operation by
two vertical strokes.
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Lemma 7 (Covariant differential on Σts). The operation defined as 14.

(2)∇κT
µ...
ν... ≡ T µ...

ν...||κ := Tα...
β...|λf

µ
αf

β
ν f

λ
κ ... ,

where the vertical stroke part denotes the components of the induced covariant
differential compatible with h, represent the components of the covariant differential
corresponding to the connection of the Levi-Civita type compatible with the metric
f . Therefore, according to the above-agreed simplification, satisfying the following
for arbitrary k ∈ F Σts, and A,B ∈ T k

l Σts

(i) hµν||ρ = 0,

(ii) k||µν − k||νµ ≡ −(2)T ρ
µνk||ρ = 0,

where (2)T ρ
µν stands for the components of the induced torsion tensor (2)T .

Proof. Annihilation of the metric h follows immediately from the Levi-Civita
property of g

fµν||ρ := fκλ|σf
κ
µf

λ
ν f

σ
ρ

(12)= fαβ;γh
α
κh

β
λh

γ
σf

κ
µf

λ
ν f

σ
ρ

(1.50)=
(1.47)

(1.50)=
(1.47)

(gαβ;γ − ε(nαnβ);γ − δ(rαrβ);γ)fκ
µf

λ
ν f

σ
ρ

(1.48)
≡ 0.

Whereas, the torsion-free property is easily obtained by, among other properties,
the Levi-Civita property of h, this time of course with respect to (3)∇

k||µν := (k|κf
κ
ρ )|λf

ρ
µf

λ
ν = k|κλf

κ
µf

λ
ν + g|κ(hκ

ρ − δrρr
κ)|λf

ρ
µf

λ
ν

(1.47)=
(1.47)= k|κλf

κ
µf

λ
ν − δk|κ

[︂
rρr

κ(hρ
µh

λ
ν − δhρ

µrνr
λ − δhλ

νrµr
ρ + δ2rµrνr

ρrλ)
]︂

=

= k|κλf
κ
µf

λ
ν − δk|κ

(︂
rµr

κhλ
ν − δrµr

κrνr
λ − hλ

νr
κrµ + δrκrµrνr

λ
)︂

≡ k|κλf
κ
µf

λ
ν .

Furthermore, writing out the (3)∇, by definition, yields (using the connection
component expression of ∇)

k|κλf
κ
µf

λ
ν

(6)= k;αβh
α
κh

β
λf

κ
µf

λ
ν

(1.50)= (k,αβ − Γσ
αβf,σ)fα

µ f
β
ν ≡ k;βαf

α
µ f

β
ν =: k||νµ

=⇒ (2)T ≡ 0.

From the last line of the proof, one can immediately deduce that the definition’s
correctness is independent of the respective covariant differential, i.e.,

(2)∇κT
µ...
ν... ≡ T µ...

ν...||κ := Tα...
β...|λf

µ
αf

β
ν f

λ
κ ... ≡ Tα...

β...;λf
µ
αf

β
ν f

λ
κ ... . (1.55)

Again, to define the corresponding Riemann tensor, one has to have some
relation between the covariant differentials ∇ and (2)∇ for 1-forms in order to

14The covariant derivative on Σts itself shall be, if needed, denoted by (2)∇
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simplify the commutator from Ricci identities. Let us then, as before, calculate
the relation for arbitrary covector vµ ∈ T ∗Σts, respectively vector vµ ∈ T Σts

vµ||ν := vκ;λf
κ
µf

λ
ν

(1.47)= vκ;λ(δκ
µ − εnµn

κ − δrµr
κ)fλ

ν

(14)=
(1.53)

(14)=
(1.53)

vµ;λf
λ
ν + εnµv

κ(Kκλ + εaκnλ)fλ
ν + δrµv

κ(Lκλ + δbκrλ − εKαλr
αnκ)fλ

ν

(1.48)= vµ;λf
λ
ν + εKκ

λvκf
λ
ν nµ + δLκ

νvκrµ

(1.47)= vµ;ν + ε(Kκ
ν vκnµ − nν∇nvµ) + δ(Lκ

νvκrµ − rν∇rvµ),
(1.56)

vµ||ν := vκ;λfµ
κ f

ν
λ

(1.47)= vκ;λ(δµ
κ − εnµnκ − δrµrκ)f ν

λ

(14)=
(1.53)

(14)=
(1.53)

vµ;λf ν
λ + εnµvκ(Kκλ + εaκnλ)f ν

λ + δrµvκ(Lκλ + δbκrλ − εKαλrαn
κ)f ν

λ

(1.48)= vµ;λf ν
λ + εKλ

κv
κf ν

λn
µ + δLν

κv
κrµ

(1.47)= vµ;ν + ε(Kν
κv

κnµ − nν∇nv
µ) + δ(Lν

κv
κrµ − rν∇rv

µ).
(1.57)

As before, one continues by evaluating the second induced covariant differential
of an arbitrary 1-form, vµ ∈ T ∗Σts, by the same procedure as in Section 1.3.
However, a little remark on dimensionality is perhaps on point here.

The Σts submanifolds are 2-dimensional, which implies that the Riemann
tensor of Σts has but one independent component obviously proportional to the
Kulkarni-Nomizu product of the metric f with itself [11], [19]

(2)Rµνκλ =
(2)R

4 fµν ⃝∧ fκλ ≡

≡
(2)R

4 (fµκfλν + fνλfκµ − fνκfλµ − fµλfκν) (1.47)= (2)Rfκ[µfν]λ.

Hence, substituting to the (”2D”) Ricci identities yields

vν||κλ − vν||λκ =
(2)R

2 (vκfνλ − vλfνκ).

This fact may be proven immediately from the definition of the Levi-Civita tensor
of Σts, because the tensor product of the Levi-Civita tensor with its inverse has
to be proportional to the projector onto the tensor subspace of antisymmetric
tensors [11], i.e.,

sign(f)εµνε
κλ = [2]δκλ

µν ≡ 2δ[κ
µ δ

λ]
ν = δκ

µδ
λ
ν − δλ

µδ
κ
ν =⇒ εµνεκλ = fµκfνλ − fµλfνκ.

Therefore, by lowering the indices, one is immediately left with a tensor that shares
the same (anti)symmetries as the Riemann tensor. This means that, by setting it
proportional to the 2-dimensional Riemann tensor and finding the proportionality
factor via tracing, one arrives at the identity discussed above.

Further generalisation of the formula into 3 dimensions can be obtained,
via considering the well-known decomposition of the Riemann tensor of general
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dimension d into irreducible trace-free parts [11], where (d)C stands for the d-
dimensional Weyl tensor and (d)g for the corresponding metric tensor

(d)Rµνκλ = (d)Cµνκλ + 1
d− 2

(d)Rµν ⃝∧ (d)gκλ −
(d)R

2(d− 1)(d− 2)
(d)gµν ⃝∧ (d)gκλ.

By setting d = 3, one then arrives directly at the generalisation of the above
formula in 3 dimensions15

(3)Rµνκλ = (3)R[µ|[κhλ]|ν] −
(3)R

4 h[µ|[κhλ]|ν].

Summarizing the previous results, in 3 dimensions, the Riemann tensor is fully
determined by the Ricci tensor and the scalar curvature. In 2 dimensions, this
further simplifies to the Riemann tensor being fully determined by the scalar
curvature. Because the 2-dimensional analogues of the projections of the Rie-
mann tensor relate the projections of the 3-dimensional Riemann tensor and
2-dimensional Riemann tensor, using the previously obtained identities, those are
actually relations between 3-dimensional Ricci tensor together with 3-dimensional
scalar curvature and 2-dimensional scalar curvature.

To continue with the decomposition, by obtaining the (”2D”) analogue of (1.9),
one is able to write the aforementioned projections, in this text referred to as the
Gauss, Codazzi and Ricci equations, this time for the Riemann tensor (3)Rα

βγδ.
The procedure of obtaining and the form of which are completely analogous to
(1.10), (1.11), (1.13) and (1.14) [19]

(3)Rα
βγδf

µ
αf

β
ν f

γ
κf

δ
λ = (2)Rµ

νκλ − δ(Lµ
κLνλ − Lµ

λLνκ), (1.58)

(3)Rα
βγδrαf

β
ν f

γ
κf

δ
λ = Lνκ||λ − Lνλ||κ, (1.59)

(3)Rα
βγδrαf

β
ν r

γf δ
λ

(1.47)= (3)Rανγλr
αrγ = bν||λ − δbνbλ − LνγL

γ
λ − Lβδ|γf

β
ν f

δ
λr

γ.

(1.60)
Let us stress here the forms of the expressions when the above established
dimensionality-induced simplifications are introduced to the equation. Namely,
the (”2D”) Gauss equation in covariant form (over)simplifies to

(3)Gκ[µfν]λ − (3)Rλ[µfν]κ − δrκr
α (3)Rα[µfν]λ + δrλr

α (3)Rα[µfν]κ+

+ r[µfν]λ

[︄
rκ

(︄
rα (3)Rαβr

β + δ

2
(3)R

)︄
− δrα (3)Rακ

]︄
+

+ r[µfν]κ
[︂
δrα (3)Rαλ − rλr

α (3)Rαβr
β
]︂

=
(2)R

2 fκ[µfν]λ − δ

2(Lµ
κLνλ − Lµ

λLνκ).
(1.61)

The (”2D”) Codazzi equation simplifies to

Rαβr
αfβ

[κfλ]ν = 1
2
(︂
Lνκ|λ − Lνλ|κ

)︂
. (1.62)

15Of course, the vertical stroke does not denote any induced derivative here, it simply
emphasizes that the two antisymmetrizations are independent, due to the nature of the relation,
we believe that no confusion may arise.
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Finally, the (”2D”) Ricci equation simplifies to

δ (3)Gνλ + (3)Rαβr
αrβhνλ +

(3)R

2 rνrλ − 2rα (3)Rα(νrλ) =

= bν||λ − δbνbλ − LνγL
γ
λ − Lβδ|γf

β
ν f

δ
λr

γ.

(1.63)

Now, again, analogously to Section 1.3, one can write the corresponding decom-
positions of the Ricci tensor and curvature scalar, utilizing the same procedures.
Those of the Ricci tensor read, respectively [19]

(3)Rβδf
β
ν f

δ
λ = (3)Rνλ + δ

(︂
Lκ

λLνκ − LLνλ + (3)Rανγλr
αrγ

)︂
=

= (2)Rνλ − aνaλ + δ
(︂
bν||λ − LLνλ − Lβδ|γf

β
ν f

δ
λr

γ
)︂
,

(1.64)

Rβδr
βf δ

λ = Lκ
λ||κ − L||λ. (1.65)

Again, the simplification of the induced covariant divergence of an arbitrary vector,
vν ∈ T Σts, calculated using (1.17)

vν
||ν ≡ fµνvµ||ν

(1.56)= fµν(vµ;λf
λ
ν + εKκ

λvκf
λ
ν nµ + δLκ

νvκrµ) (1.47)=
(1.47)= vλ

;λ − εvµ;λn
µnλ − δvµ;λr

µrλ.
(1.66)

This implies, for the ”acceleration” of the rµ field

bλ
||λ = bλ

|λ + δbλbλ

and the equation analogous to (1.18)

Lβδ|γf
βδrγ = L,γr

γ, (1.67)

allows one to write the last projection as

(3)Rαγr
αrγ = bλ

|λ − Lλ
κL

κ
λ − L,γr

γ. (1.68)

The projection of the scalar curvature takes the (again analogous) form, like (1.21)
and (1.22)

(3)R = (2)R + δ(2bλ
|λ − L2 − 2L,γr

γ − Lκ
λL

λ
κ) =

(2)R + δ(2 (3)Rβδr
βrδ + Lκ

λL
λ
κ − L2).

(1.69)
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2 Space-times considered
In this chapter, we are going to investigate some solutions of the ten indepen-

dent field equations (1), expressed through the metric tensor in a four-member
coordinate chart, referred to as space-time. Our primary focus is on vacuum
solutions without the cosmological constant Λ. More specifically, stationary (or
static), asymptotically flat and axisymmetric space-times. This chapter offers a
concise overview of the fundamental concepts and key characteristics of these
specific solutions.

2.1 Basic notions
Let us start with defining the notions one needs to rigorously define the four

properties of interest mentioned in the preceding paragraph.

Definition 15 (Group action on space-time manifold, orbit). Let G be a group,
and let M denote the space-time manifold of interest. By action of G on M,
we understand a mapping Φ : G × M −→ M, therefore if a ∈ G and x ∈ M, the
pair (a, x) is mapped onto Φ(a, x) ≡ a(x), such that ∀x ∈ M : id(x) ≡ x, and
∀(a, b) ∈ G × G : a(b(x)) = ab(x), where id denotes the identity element of G.
The full set {a(x) ∀a ∈ G} ⊂ M is called an orbit. If G is a one-dimensional
Lie group, the orbit of a point x ∈ M is either the point itself, in the case when
x is an invariant point of the group action, or a one-dimensional curve in M
parameterized by some parameter t ∈ R. The tangent vector corresponding to
t is then called the generator of G associated with the parameterization by the
parameter t. The generator associated with the parameter t will be denoted by the
greek letter η[6].

In the case of G being a one-dimensional group of differomorphisms, it is
sometimes being referred to as flow on the manifold M and has a close relationship
to the Lie derivative in the direction of the generator η (actually, it is its differential
version, as stated in [11])

Definition 16 (Stationary space-time). A spacetime (M, g) is called stationary
if there exist a group G1 such that the group’s action on M fulfills the following
properties[6]:

(i) G1 is isomorphic to (R,+), where + denotes the standard addition operation,

(ii) ∀x ∈ M are the orbits timelike curves in M, i.e. their tangent vector’s
space-time norm defined via g is always negative,

(iii) g is invariant under the G1 group action, in differential form meaning that
for G1 generator η in the sense of Definition 15 one has Lηg = 0 1.

1This, of course, using the components of the Lie derivative and the Levi-Civita property of
g, trivially corresponds to η being a Killing vector, i.e. satisfying ∇(µην) = 0.
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Definition 17 (Asymptotically flat space-time). A vacuum spacetime (M, g) is
called asymptotically flat at null and spatial infinity if there exists a spacetime
(M̃, g̃) with g̃ being C∞ everywhere except possibly at a point i0 (spatial infinity),
and a conformal isometry ψ : M → ψ(M) ⊂ M̃ with the conformal factor Ω
satisfying:

(i) M̃ = J̄
+(i0) ∪ J̄−(i0) and M = M̃ − ∂M̃, where the boundary ∂M̃ consists

of i0, I + (future null infinity), and I − (past null infinity). Here, J̄+(i0)
and J̄−(i0) are the causal future and past of i0, respectively.

(ii) There exists an open neighborhood V of ∂M̃ such that (V, g) is strongly
causal, meaning that no causal curve intersects itself more than once.

(iii) Ω (the conformal factor) can be extended to a function on all of M̃ which
is C2 at i0 and C∞ elsewhere.

(iv) On I + and I −:

(a) Ω = 0 and ∇̃µΩ ̸= 0, where ∇̃ denotes the covariant differential
associated with g.

(b) Ω(i0) = 0, limi0 ∇̃µΩ = 0, and ∇̃µ∇̃νΩ = 2g̃µν(i0).

(v) The map of null directions nµ = g̃µν∇̃νΩ on I + and I − is a diffeomorphism.

(vi) For a smooth function ω on M ∪ I + ∪ I − with ω > 0 on M ∪ I + ∪ I −,
∇̃µ(ω−1nµ) is complete (can be extended to any value of the parameter) on
I + and I −.

From now on we shall reserve ourselves to the case of asymptotically flat space-
times.

It follows from the last definition that in order to reflect the Killing symmetries
to the adapted coordinates in the sense of (1.31), one has to at last choose the
causal orientation of the normal to ε = −1, because then the normal will be
proportional to the Killing vector ηµ arising from the stationarity of the space-time,
thus, t will be representing the proper time of the asymptotically inertial observer
at rest with respect to the source of curvature [19].

Definition 18 (Axisymmetric space-time). A space-time (M, g) is called ax-
isymmetric if there exists a group G2 such that the group’s action on M fulfills
the following properties[6]:

(i) G2 is isomorphic to SO(2) (special orthogonal group)

(ii) g is invariant under the G2 group action, again, in differential form meaning
that Lξg, where ξ denotes the generator of G2 with parameter φ, which is
taken to be periodic with φ ∈ [0, 2π), and 2π is identified with 0.

In Carter’s paper named ”The commutation property of a stationary, axisym-
metric system”[2], a theorem can be found, which states that under the condition
of asymptotical flatness of the space-time and the points (i)−(ii) from the previous
definition, the set of points invariant under the group G2 action (therefore the set
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where ξ vanishes) is a time-like 2-dimensional subspace of M. This set will be
from now on referred to as the axis of rotation W2. It follows that the tensor field

Hµν := (∇µξ
κ)(∇νξκ)

is at any point q ∈ W2 the projection tensor to the space orthogonal to W2. To
ensure Lorentzian geometry in the vicinity of W2, the length of a ξ orbit passing
through the point p in this vicinity should be at first relevant order equal to 2π
times the distance between q, which is equivalent to [21]

X := ξµξµ, with the property lim
x→q

(︃
X,µX

,µ

4X

)︃
= 1. (2.1)

This regularity condition known as elementary flatness is assured if there exists
an expansion of the ξ vector field’s components around the point q ∈ W2

ξµ(xν) = (xν − qν)∇νξ
µ|q + O(x− q)2

=⇒ X := ξµξµ = (xµ − aµ)(xν − qν)Hµν + O(x− a)3.

If the elementary flatness condition is violated, there are conical singularities
present on W2. Therefore, the elementary flatness condition corresponds to a
boundary condition on metric functions in the field equations.

To summarize, the stationarity and axisymmetry of a space-time is a sufficient
condition for the existence of two Killing vector fields. The stationarity together
with asymptotical flatness imply the existence of η in the above sense, therefore(at
least for ε = −1) a well-behaved and in the standard sense time-like (at least
asymptotically) vector field. As was briefly mentioned in Preliminaries, in 4-
dimensional spacetimes ε = −1 =⇒ δ = +1 in the sense of (1.47). Therefore, the
second Killing field ξ is of space-like causal character and generates closed orbits
around the axis of rotation, i.e. symmetry axis. In [2], it is further shown that
no generality is lost by assuming that besides (M, g) being invariant under the
group action of groups isomorphic to (R,+) and SO(2) separately, it is invariant
under the action of R × SO(2) as well. Therefore, in the language of the group
action generators, implying that [η, ξ] ≡ 0. This is equivalent to the existence of
a holonomic basis (see [11]), where t, φ coincide with the generators of group G1
and G2 action, respectively

∂t ≡ η, ∂φ ≡ ξ. (2.2)

This statement, when put into components, translates into partial derivatives of
the g metric components only, henceforth yielding the equivalent ∂gµν

∂t
= ∂gµν

∂φ
≡

0. In [7], it is stated that the general line element of a space-time possessing
above mentioned properties can be, again without loss of generality, written in
the following form, covering the complementary two directions with arbitrary
coordinates2 x1, x2

ds2 = e−2U
(︂
γMNdx

MdxN +W 2dφ2
)︂

− e2U (dt+ Adφ)2 , (2.3)

2Let us note that these coordinates are not necessarily uniquely given. In particular,
transforming the t and φ coordinates via adding an arbitrary function of ρ and z changes
nothing regarding the Killing-ness. Even more so, one can equivalently choose (r, θ), meaning
spherical-type coordinates.
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where the metric functions U , γMN , W , and A depend only on the coordinates
xM = (x1, x2) orthogonal to the orbits and t, φ denote the coordinates adapted
to the space-time symmetries in the sense above [21]. In [9], a different form is
assumed, although it can quickly be found to be equivalent. This line element’s
vacuum field equations (1) yield a system of nonlinear PDEs, although they are
known to be integrable[7].

The above mentioned basis together with x1, x2 is fully holonomic in the case
when the complementary two directions are locally orthogonal to both the Killing
vectors η, ξ. Let us further precise this statement:

Definition 19 (Orthogonal transitivity, circular space-time). The R × SO(2)
group action is called orthogonally transitive if, besides the given collection
of 2-dimensional surfaces labeled unambiguously by x1 = const. and x2 = const.
(distributions generated by the two Killing vector fields), there exists another
collection of 2-dimensional surfaces such that the two collections are always
orthogonal. A space-time region possessing the properties defined by Definition
16, Definition 17, Definition 18, in which the action of the R × SO(2) group is
orthogonally transitive is referred to as a region of a circular space-time.

Because one, from the Frobenius’ theorem, knows that the property will be
integrable if and only if the corresponding distribution generated by the two
remaining coordinates’ tangent vector fields is involutive, one is able to formulate
the following theorem:

Theorem 8 (Sufficient conditions for circularity of a space-time). Let a space-time
(M, g) be endowed with a lorentzian metric and the corresponding Levi-Civita
type connection, which expresses the components of the corresponding covariant
derivative ∇. Let ηµ and ξµ be two Killing vectors fields defined as above. The
2-dimensional surfaces everywhere orthogonal to ηµ and ξµ are integrable if

η[µξν∇κηλ] = η[µξν∇κξλ] ≡ 0 =⇒ ηαR[β
α η

γξδ] = ξαR[β
α η

γξδ] ≡ 0.

Proof. The proof is here divided into a few steps, for it is quite lengthy.

(i) Integrability and left side of the implication. For the integrability
statement, it is sufficient to only apply the Frobenius’ theorem. According
to the equivalence in the theorem, one has to check whether the exterior
derivative of the generating Killing vector fields (its corresponding Killing
1-forms via the isometry defined by g) can be written in the form from
Definition 8 That is of course because the distributions are complementary
in the sense of Definition 6. By employing the known theorem d = ∇∧,
used frequently in this text, the integrability conditions follow in this form

2∇[µην] = Θ1
[µην] + Θ2

[µξν],

2∇[µξν] = Θ3
[µην] + Θ4

[µξν],

which is of course equivalent to the left side of the implication, due to the
properties of antisymmetrization.
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(ii) A needed property of a general Killing vector field. Let kµ denote a
general Killing vector field. Let us once more use the Ricci identities, this
time combined with the Killing equation

Rσ
νκλkσ := kν;κλ − kν;λκ = kν;κλ + kλ;νκ.

Writing this equation in all its cyclic permutations yields

Rσ
νκλkσ = kν;κλ + kλ;νκ,

Rσ
λνκkσ = kλ;νκ + kκ;λν ,

Rσ
κλνkσ = kκ;λν + kν;κλ.

Therefore adding the first and the third equation and subtracting the second
one immediately gets

kν;κλ = −Rσ
λνκkσ =⇒ k κ

ν; κ = −Rσ
νkσ.

(iii) General formula for Killing vector field vorticity’s covariant dif-
ferential. Left side of the implication can also be understood as being the
inner product of one of the Killing vector fields and the other one’s vorticity
vector defined via Hodge star operator of the corresponding vorticity tensor
(see Definition 13) as mentioned in Preliminaries. Therefore, for example,
in the case of η, one has ω(η)

µ = 1
2εµνκλη

νηκ;λ, from which, by differentiating
and again applying the Hodge dual, one gets

⋆(dβω
(η)
µ ) = 1

4ε
µβγδεµνκλ∇β∧(ηνηκ;λ).

Combining the fact that the tensor product of Levi-Civita tensors is propor-
tional to the projector on the subspace of antisymmetric tensors3 and the
partial summation formula for the projector4, it follows that

(⋆dω(η))γδ = −(ηνηκ;λ);β
[3]δβγδ

νκλ

(ii)= ηγRδ
ση

σ − ηδRγ
ση

σ.

Applying the Hodge star operator once more and using that in 4 dimensions
⋆2 = (−1)p+1, where p denotes the degree of the form being ”Hodged”, one
finally arrives at (the form in the parentheses can be found in [8]):

ω
(η)
[µ;β] = 1

2εβµγδη
δRγ

ση
σ
(︂

⇐⇒ dω(η) = ⋆[η ∧ (Ric · η)]
)︂
.

(iv) The proof itself. One has [η, ξ] = 0, as has already been discussed above.
This, by definition, implies that Lηξ = Lξη ≡ 0. Therefore, by computing
the exterior derivative (for example) of the expression ξνω(η)

ν , first using
the well-known Cartan identity (for proof, see [11]), and then (again) the

3εa1...adεb1...bd
= d! sign(g) [d]δa1...ad

b1...bd
, for the proof, see [11] (note that ε = −1 is again needed

here).
4 [k]δ

a1...alr1...rk−l

b1...bkr1...rk−l
= (k−l)!l!

(d−k)!k!
[l]δa1...al

b1...bl
, for the proof, see again [11] (d denotes the dimension

of the vector space in question, denoted for example by V ).
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relationship between the exterior derivative and covariant differential, one
can demonstrate, that indeed ω(η) = 0 =⇒ ηαR[β

α η
γξδ] = 0:

dµξ
νω(η)

ν = −ξνdµω
(η)
ν = −2ξνω

(η)
[ν;µ]

(iii)= −εµνγδη
σRγ

σξ
νηδ.

And because the second case (i.e. ω(ξ) = 0 =⇒ ξαR[β
α η

γξδ] = 0) is
completely analogous, the proof is therefore concluded.

Remark. In fact, some authors [8], [1] refer to the implied condition from the last
theorem as Ricci-circularity, whereas here and for example in Wald’s book [22], no
special name is put forward since it is a corollary of circularity, as was proven above.
Also note that by using (1) with Λ = 0, one can formulate an equivalent criterion
via Tµν . It is also worth noting that the conditions of orthogonal transitivity are
thanks to the right side of the implication always satisfied in vacuum regions of
any asymptotically flat, stationary, and axisymmetric space-time.

2.2 Stationary axisymmetric space-times
This text is primarily interested in the vacuum solutions. We shall due to

Theorem 8 refer in this chapter with mediocre loss of generality to circular space-
times instead. It is self-explanatory that circular space-times are a subset of
asymptotically flat, stationary, and axisymmetric space-times. In this case, when
the two Killing vector fields satisfy the assumptions of Theorem 8, one can choose
the remaining two coordinates x1, x2, such that the line element without loss of
generality takes the ansatz [1], [10], [19], [22]:

ds2 = −N2dt2 + gφφ(dφ− ωdt)2 + gABdxAdxB. (2.4)

We are denoting the coordinate chart again by {xµ}3
µ=0, like in Preliminaries, thus

{xA}2
A=1 represent the rest of the coordinate chart chosen to cover the (integrable)

2-surfaces orthogonal to the two Killing vector fields η, ξ, whereas coordinates
t, φ are adapted to the Killing symmetries, in the sense that, for example in
components, one has:

ηµ := ∂xµ

∂t
, ξµ := ∂xµ

∂φ
. (2.5)

The metric functions thus read [1], [19]

gtt = gµνη
µην , gφφ = gµνξ

µξν , gtφ = gµνη
µξν . (2.6)

Above, in the line element (2.4), we have abbreviated

ω := − gtφ

gφφ

= −ηµξ
µ

ξµξµ
, N2 := −(gtt + gtφω) ≡ −(ηµ + ωξµ)(ηµ + ωξµ). (2.7)
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2.2.1 Notes on the Kerr metric
The vacuum Kerr metric is the most astrophysically significant representative

of the class of circular space-times. The metric includes two functions (M,a)
which, under coordinate transformations, behave like scalars, i.e. those are the
parameters of the metric and its interpretations are well known. The Kerr metric
is obviously a special case of (2.4), more generally of (2.3). The remaining two
non-Killing coordinates can most notably be chosen as either of spheroidal type
(r, θ) known as the Boyer-Lindquist coordinates, or cylindrical type (ρ, z) known
as the Kerr-Schild cylindrical coordinates. The line element in the Boyer-Lindquist
coordinates (t, r, θ, φ) reads

ds2 = −N2dt2 + gφφ(dφ− ωdt)2 + Σ
∆dr2 + Σdθ2, (2.8)

with the following common abbreviations that are frequently used

Σ := r2 + a2 cos2 θ,

∆ := r2 − 2Mr + a2,

gφφ = A
Σ sin2 θ,

A := Σ∆ + 2Mr(r2 + a2).
The Killing-constructed functions ω and N are in these coordinates specifically of
the form

ω := −ηµξ
µ

ξµξµ
= 2Mar

A
, N2 := −(ηµ + ωξµ)(ηµ + ωξµ) = Σ∆

A
.

The fact that the letter N is used again in (2.8), in conflict with the normal-
isation constant of the (for ε = −1) time-like normal from Preliminaries, is no
coincidence. Let us recall that in Preliminaries it played the role of the norm of the
time-like Killing vector η. One could further verify that the function is actually
the same in both cases by evaluating first the four-velocity of observers circularly
orbiting the surfaces given by r = const., θ = const. with time-independent
angular velocity defined as Ω = dφ

dt
specifically in the Boyer-Lindquist coordinates

uµ = ηµ + Ωξµ

|ηµ + Ωξµ|
= 1√︂

N2 − gφφ(Ω − ω)2
(δµ

0 + Ωδµ
3 ),

and second, the corresponding four-acceleration, because for the case Ω = ω,
which corresponds to the known ZAMO congruence, it comes out in the covariant
form as

aµ = N,µ

N
.

This exactly corresponds to (1.32), because above we have already chosen ε to
be −1, therefore the norm of the Killing vector η is proportional to the Lapse
function. The above mentioned fact is very well known so let us not derive it
completely and focus on the consequences instead. Because the ZAMO congruence
is at rest with respect to the rotating space-time geometry characterized by the
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dragging angular velocity ω, the covariant four-velocity of the congruence is given
only by the temporal part, thus, the four-velocity is orthogonal to any vector
that possesses only spatial components. That is because, by construction in
Preliminaries, any vector that has only spatial components is at the same time
tangent to the hypersurfaces given by t = const., i.e. the world-lines of the ZAMO
congruence are orthogonal to Σt. Nevertheless, various other properties of the
Kerr metric that were omitted here can be found for example in [1].

Let us, for completeness, at least state what form the line element takes in
the aforementioned Kerr-Schild cylindrical coordinates (T, ρ, z, ψ) [1]

ds2 = −dT 2+dρ2+ρ2dψ2+dz2+ 2Mr3

r4 + a2z2

(︄
dT + rρdρ+ aρ2dψ

r2 + a2 + zdz
r

)︄2

, (2.9)

where r is an oblate radius given as a solution to the fourth degree algebraic
equation (therefore the definition depends on the relationship between ρ, a and z)

r4 + r2(ρ2 + a2 + z2) − a2z2 = 0.

One can, from this form of the line element, transform back to the Boyer-Lindquist
coordinates with the aid of relations

dT = dt− 2Mr

∆ dr, dψ = dφ− 2Mar

∆(r2 + a2)dr, ρ =
√︂
r2 + a2 sin2 θ, z = r cos θ.

2.2.2 3+1 decomposition of circular space-times
Because of the Killing-ness of the coordinates in circular space-times, one is

able to say quite a lot about the 3+1 splitting of circular space-times invariantly,
using the Killing vector adapted coordinates. This problem is treated in [19] and
is only adopted here because of the proof that for a circular space-time, the slicing
with respect to the Killing time coordinate t leaves the resulting submanifold Σt

extremal, in the sense described in detail in Chapter 3.
Let us define the normal vector nµ to the hypersurfaces of the constant Killing

time t by a unit component of ηµ orthogonal to ξµ. The norm can be immediately
obtained from (1.31) and the afterward discussion, considering that from there it
follows that nµη

µ = −N [10], [19]

nµ := 1
N

(ηµ + ωξµ). (2.10)

The corresponding acceleration of the nµ field immediately follows and yields the
same expression as in the previous chapter or in Preliminaries. One also has the
orthogonality relations somewhat analogous to (1.4)

nµξ
µ = aµη

µ = aµξ
µ ≡ 0, (2.11)

and the projections of the Killing vectors onto Σt may be explicitly evaluated to

ηνhµ
ν

(12)= ην
[︃
δµ

ν + 1
N2 (ηµ + ωξµ)(ην + ωξν)

]︃
(2.11)= −ωξµ (2.12)

in the case of η and to

ξνhµ
ν

(12)= ξν
[︃
δµ

ν + 1
N2 (ηµ + ωξµ)(ην + ωξν)

]︃
(2.11)= ξµ (2.13)
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in the case of ξ. One can now, using the relations above, evaluate the the
components of the extrinsic curvature tensor of Σt to be [10], [19]

Kµν := n(α;β)h
α
µh

β
ν = 1

N

[︂
η(α;β) −N;(βnα) + ωξ(α;β) + ω;(βξα)

]︂
hα

µh
β
ν = 1

N
ξ(µω,ν).

(2.14)
Therefore, the trace of the extrinsic curvature tensor of Σt comes out in a general
asymptotically flat stationary and axisymmetric space-time as

K := Kµνh
µν − 1

N
ω,νξ

ν ≡ 0, (2.15)

which, according to the discussion following (2.2), is identically equal to zero,
because of the assumption that the space-time in question is axisymmetric, thus, g
(and thus the function ω) is assumed not to depend on the coordinate φ. Moreover,
for example for the Kerr metric, this means that the ZAMO congruence’s tangent
vector covariant differential decomposition has only the part given by the shear
tensor (see (1.3)).

The fact that the trace of K is indeed in general identically equal to zero
will be very important in the forecoming chapters, because from this result, one
concludes that Σt is an extremal submanifold of M. We now refer to [10], [19],
where one can find expressions for all the main terms, which played a role in the
general 3+1 decomposition discussed in the preceding chapters, only using the
two Killing vector fields η, ξ of a general stationary and axisymmetric space-time.
This shall be put to a further use in the upcoming research.

2.3 Static axisymmetric space-times

2.3.1 Weyl metrics
The family of Weyl metrics is an important example of static axisymmetric

space-times. Before introducing it, let us precise the staticity notion

Definition 20 (Static space-time). A space-time (M, g) is called static if the
following holds[6]:

(i) the space-time is stationary in the sense of Definition 16,

(ii) the time-like Killing vector η associated with stationarity generates a distri-
bution, whose complementary distribution in the sense of Definition 6 and
the isometry defined by g is involutive5.

Given an axisymmetric space-time that satisfies the conditions above, the
function A in the line element (2.3) can be put to zero [21]6 and the line element
takes the following form (x1 and x2 again denote the coordinates chosen to cover
the complementary two directions to η, ξ)

ds2 = −e2νdt2 + e−2ν
[︂
e2λ

(︂
(dx1)2 + (dx2)2

)︂
+ ρ2dφ2

]︂
, (2.16)

5Equivalently, because of the Frobenius’ theorem and the corollary Theorem 5, the space-time
is called static if the Killing vector field η associated with the stationarity property is orthogonal
to a family of hypersurfaces, here Σt.

6This can be better seen from the form (2.4) and the definition of the normal (2.10), because
if n and η are to be colinear, ω ≡ 0 has to hold.
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where ρ, ν and λ are now functions of only x1, x2. The resulting metric describes
a static axially symmetric space-time for any choices of the functions ν, λ [7]. Anal-
ogously as in the Kerr metric, one could cover the rest of the space-time manifold
with spherical-type coordinates, or cylindrical-type coordinates. The cylindrical-
type coordinates are commonly being called Weyl’s canonical coordinates ρ, z,
because with Λ = 0 the vacuum field equations (1) imply that [7]

ν,ρρ + 1
ρ
ν,ρ + ν,zz = 0,

λ,ρ = ρ
[︂
(ν,ρ)2 + (ν,z)2

]︂
,

λ,z = 2ρν,ρν,z.

(2.17)

Keeping in mind the classical Newtonian limit of GR as in [1] gtt ∼ −1 − 2Φ,
where Φ denotes the standard Newtonian gravitational potential and the fact that
the function ν obeys the Laplace’s equation for an axially symmetric function
(2.17), one can regard the function ν as the analogue of a classical Newtonian
gravitational potential. This statement is further reinforced by the fact that
the choice ν ≡ λ ≡ 0 compatible with (2.17) yields the line element of the
Minkowski metric in cylindrical coordinates7. The line element in the Weyl
canonical coordinates takes the form [7], [21]

ds2 = −e2νdt2 + e−2ν
[︂
e2λ(dρ2 + dz2) + ρ2dφ2

]︂
. (2.18)

Whereas the other version of the line element that arises when one decides to
cover the complementary directions to the ones given by η, ξ by spherical-type
coordinates of course takes with aid of the transformation {ρ → r sin θ, z → r cos θ}
the form [7]

ds2 = −e2νdt2 + e−2ν
[︂
e2λ(dr2 + r2dθ2) + r2 sin θ2dφ2

]︂
. (2.19)

Therefore the Λ-less vacuum Laplace field equation (2.17) is in the spherical
coordinates of the following form

ν,rr + 2
r
ν,r + 1

r2ν,θθ + cot θ
r2 = 0. (2.20)

An important realisation so far is that the transformation between the cylindrical
and spherical version of the coordinate system leaves the Killing coordinates t, φ
intact, therefore both versions are, in this sense, in fact equally canonical and can
easily be switched around back and forth. Because of this, we shall from now
on refer to these two coordinate systems in short as cylindrical Weyl coordinates,
respectively spherical Weyl coordinates.

The analogy of the function ν and the Newtonian gravitational potential
prompts a very interesting solution-generating procedure based on taking ν to be
an exact Newtonian gravitational potential and using (2.17) to evaluate λ, because
one can then interpret the resulting solution’s properties within the analogy of
the chosen Newtonian gravitational potential.

7[7] mentions that the choice (ν = log(ρ), λ = log(ρ)) and even another one of the form(︃
ν = 1

2 log
(︂√︁

ρ2 + z2 + z
)︂

, λ = 1
2 log

(︃√︁
ρ2+z2+z

2
√︁

ρ2+z2

)︃)︃
provide a flat solution as well. For the

sake of simplicity, this fact has not been put into a serious consideration, since these two line
elements are related to a uniformly accelerated metric.
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2.3.2 Majumdar-Papapetrou solution and its disc
An important example of the solution-generating procedure is the Majumdar-

Papapetrou solution, which can be obtained by considering that the factor multi-
plying dt2 in (2.18) is actually the lapse function N , as one knows from Notes on
the Kerr metric (thus ν = lnN). It was even previously established that the Lapse
function follows the same trend as the Lorentz factor and should therefore, far
apart from a source of curvature, tend to unity. Inspired by the above thoughts,
one may choose the following potential

1
N

= 1 +
n∑︂

j=1

Mj

|r⃗ − r⃗j|
=⇒ ν(r) = − ln

⎛⎝1 +
n∑︂

j=1

Mj

|r⃗ − r⃗j|

⎞⎠, (2.21)

therefore a potential that in the first order corresponds to the exact classical
newtonian potential of point particles (in fact extremal black holes) of masses
Mj situated at positions r⃗j. In order for the solution to be stable and achieve
equilibrium, one has to introduce a non-zero stress energy tensor generating an
electromagnetic field such that the electromagnetic repulsion cancels out the
gravitational attraction completely, namely |Qi| = Mi ∀i ∈ {1, ..., n}8. Recall
that for a Reissner-Nordström black hole, the locations of the two horizons are in
Schwarzschild-type coordinates r± = M +

√
M2 −Q2, therefore the extremality

condition is that |Q| = M . This implies that the corresponding electromagnetic
field is given by the potential that has the temporal component Aµ = Nδ0

µ = eνδ0
µ

[17], thus, the solution is not vacuum.
By virtue of the space-time’s axisymmetry, it’s natural to consider a special

constellation of the extreme Reissner-Nordström black holes compatible with Weyl
cylindrical coordinates - ring of radius a (like in the Kerr case), lying in the z = 0
plane and centered at the origin. Consider a point in space with coordinates
(ρ, φ, z). A point on the ring can then be parameterized by the angle φ0 and the
coordinates of any point on the ring are (a, φ0, 0). The denominator of the sum
term in (2.21) then takes the form

|r⃗ − r⃗0| =
√︂

(ρ cosφ− a cosφ0)2 + (ρ sinφ− a sinφ0)2 + z2 =

=
√︂
ρ2 + a2 − 2aρ(cosφ cosφ0 + sinφ sinφ0) + z2 =

=
√︂
ρ2 + a2 + 2aρ cos (φ− φ0) + z2.

Assuming that M denotes the total mass of the ring, by limit transition one gets
the following form of the choice of the potential in (2.18)

ν(ρ, z) ≡ ln
(︃ 1
N

)︃
= − ln

⎛⎝1 + M

2π

∫︂ 2π

0

1√︂
ρ2 + a2 + 2aρ cos (φ− φ0) + z2

dφ0

⎞⎠ .
The integral term can be manipulated further if one recalls that the complete

elliptic integral of the first kind is defined as

K(k) :=
∫︂ π

2

0

1√
1 − k2 sin2 α

dα, (2.22)

8This would read |Q| = M
√

4πϵ0G in non-geometrized units.
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therefore, with abbreviations

ℓ± :=
√︂

(ρ± a)2 + z2, (2.23)

the potential function ν takes the following form

ν(ρ, z) = − ln
(︄

1 + 2MK(k)
πℓ+

)︄
, (2.24)

where the argument of the complete elliptic integral of the first kind (modulus) is
equal to

k2 := 1 −
(︄
ℓ−

ℓ+

)︄2
(2.23)= 4aρ

(ρ+ a)2 + z2 . (2.25)

Given that the complete elliptic integral of the first kind is a special function, one
cannot, in general, simplify this result further. The only analytic simplification
happens on the axis ρ = 0, where ν = − ln

(︂
1 + M√

z2+a2

)︂
. From this point, it is

straightforward to verify that the metric (2.18) with ν given by (2.24) and the
choice of the metric function λ ≡ 0 is in fact a solution of the Einstein-Maxwell
equations, c.f. [7], [12], [15], [17], [18].

2.3.3 Levi-Civita metric
Another simple exact Newtonian potential that can be considered to generate

a solution could be that of an infinite uniform line source, with mass per length
density denoted by σ, which is known to solve the Laplace equation. Therefore,
the ν metric function, in this case obviously independent of z, would read

ν(ρ) = 2σ log(ρ), (2.26)

by inserting the exact potential into the rest of the vacuum field equations (2.17),
which are in this case of the form

4σ2 = ρλ,ρ, 4σ2 + ρ2(λ,ρρ + λ,zz) = 0,

one finds a valid choice for the metric function λ also independent of z

λ(ρ) = 4σ2 log(ρ) + log(k), (2.27)

where k is a constant, which puts the line element in the form

ds2 = −ρ4σdt2 + k2ρ4σ(2σ−1)(dρ2 + dz2) + ρ2(1−2σ)dφ2. (2.28)

The corresponding space-time appears to be, in addition to axisymmetric, even
cylindrically symmetric (there exists an additional Killing vector arising from the
translational symmetry). Considering the spherical version of the metric as well
as for the rest of the space-times mentioned here does not make much sense in
this context. For further information about the space-time and its interpretations,
see [20].
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2.3.4 The Weyl solutions
Another solution-generating procedure possibility is: consider the line element

(2.19) in spherical coordinates and solve the axisymmetric Laplace equation
explicitly (2.20) via separation of variables to obtain the general form of the
solution for the ν metric function, assuming asymptotic flatness. This approach in
the angular part yields, after a substitution, provided that the separation constant
κ obeys κ = n(n+ 1), the Legendre differential equation of the following general
form for a function y(x)

(1 − x2)y′′
n(x) − 2xy′

n(x) + n(n+ 1)yn(x) = 0,

the solutions of which are the well-known Legendre polynomials in the argument
cos(θ), given for example by the Rodrigues formula in the argument x as

Pn(x) = 1
2nn!

dn

dxn

(︂
(x2 − 1)n

)︂
.

The radial part yields a standard ordinary Euler differential equation of the second
order. After enforcing the asymptotical flatness property to eliminate one of the
integration constants, the general solution becomes

ν(r, θ) = −
∞∑︂

n=0
anr

−(n+1)Pn(cos θ), (2.29)

where the coefficients an can be found to have, in classical Newtonian theory,
a correspondence with the sequence of multipole moments [7]. The general
expression for λ obeying the field equations is then, using the properties of the
Legendre polynomials to simplify the field equations in the process, the following
[7]

λ = −
∞∑︂

l=0

∞∑︂
m=0

alam
(l + 1)(m+ 1)

(l +m+ 2)
(Pl(cos θ)Pm(cos θ) − Pl+1(cos θ)Pm+1(cos θ))

rl+m+2 .

(2.30)
The simplest member of this family of solutions resembles a one-particle case of
the Majumdar-Papapetrou solution.

2.3.5 Curzon-Chazy solution
As has already been mentioned, the Curzon-Chazy solution is the simplest

member of the family of the Weyl solutions. With the choices of coefficients
a0 = M, ∀i ≥ 1 : ai ≡ 0 (a0 corresponds to monopole moment) the metric
functions read

ν = −M

r
, λ = −M2 sin2(θ)

2r2 , (2.31)

therefore, this solution formally arises when, in the solution-generating procedure,
one takes ν to be a spherically symetric Newtonian potential of a point-particle
located at r = 0, although, the resulting space-time is evidently not spherically
symmetric and constains a naked singularity [7]. The line element in the spherical
coordinates reads

ds2 = −e− 2M
r dt2 + e2( M2 sin2 θ

2r2 − M
r

)(dr2 + r2dθ2) + e
2M

r r2 sin2 θdφ2. (2.32)
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It is straight-forward to transform the solution to the cylindrical coordinates.
The naked singularity is still located at ρ = 0, z = 0 and the line element obviously
takes the form

ds2 = −e
− 2M√︁

ρ2+z2 dt2 + e
2( M2ρ2

2(ρ2+z2)2 − M√︁
ρ2+z2

) (︂
dρ2 + dz2

)︂
+ e

2M√︁
ρ2+z2

ρ2dφ2. (2.33)

For additional information about the Curzon-Chazy solution, reach out to [21], or
[7].
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3 Formulation of the problem
In this chapter, we will formally state the main problem addressed in this

thesis, which revolves around finding minimal 2-dimensional submanifolds within
a given (circular) space-time context. Consider a stationary, asymptotically flat
space-time where the 3+1 decomposition described in Preliminaries with respect
to the Killing time vector η exists. Additionally, as outlined in the chapter about
further decomposition, assume the existence of an alternative, different foliation
of space-time denoted by Σs. This foliation necessarily intersects with the Σt

foliation, resulting in a family of 2-dimensional surfaces Σts within Σt. It was
proven in the previous chapter using coordinates adapted to the first foliation that
the extrinsic curvature tensor of Σt yields trace equal to zero, i.e. the hypersurface
Σt yields zero mean curvature H. This implies that Σt is an extremal submanifold
of the space-time manifold M, as we shall see for the 2-dimensional case in this
chapter. That means, loosely speaking, that it locally cannot be perturbed without
increasing/decreasing its area (for minimal/maximal hypersurface), therefore the
signature-non-dependent unifying condition is that Σt is the stationary point
of an area functional. As a consequence of extremality of the hypersurface the
expressions involving K in the 3+1 decomposition simplify considerably. This,
provided that one is then able to find a closed-form prescription for the adapted
coordinates, could have some implications: for example further simplification of
the expression for the 2+1+1 decomposition of the Kretschmann scalar obtained
in [19] and partly verified by [10]. The argument about the implications of this
can be found in both the above-mentioned cited works.

3.1 Geometry of surfaces in 3D
Because the first decomposition is trivial in a circular space-time regarding

the issue of extremality, let us concentrate on the case where M is 3-dimensional.
It follows that if one was to construct some adapted coordinates {xa}3

a=1 such
that setting a specific coordinate x1 to a constant would yield an extremal 2-
dimensional surface, the 2+1+1 decomposition of Σt hypersurfaces would simplify
similarly as in the 3+1 case. The unit normal vector field would then be defined
as

r = 1√︂
|e2 × e3|

(e2 × e3) . (3.1)

Here e2, e3 denote the coordinate holonomic basis corresponding to the rest of
the adapted coordinates chart (x2, x3) and the cross denotes the ordinary vector
product known from R3, because Σt is a 3-dimensional Riemannian manifold. We
shall investigate the further meaning of the extrinsic curvature tensor of a surface
embedded in 3D to obtain the Weingarten formula. For clarity, abstract indices
are omitted in this section. Denote now by {yA}3

A=2 the intrinsic coordinates of
the 2-dimensional Σts surface in the sense of Lemma 1. The immersion/embedding
of Σts into Σt is thus fully described by the relations xa(yA). As above, denote
the basis vectors of the holonomic basis by

e2 := ∂

∂y2 , e3 := ∂

∂y3 .
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Furthermore, to derive the Weingarten formula, consider a parameterized curve
z(α) ∈ Σts parameterized in such a way that z(0) = x ∈ Σts by some parameter
α ∈ I ⊂ R. The coordinate expression of the curve is from this point being
shortened as yA(z(α)) ≡ yA(α). The components of the tangent vector t to the
curve z(α) at point x ∈ Σts read

tA = d
dα

[︂
yA(α)

]︂ ⃓⃓⃓⃓⃓
α=0

, (3.2)

whereas the components of the principal normal vector, respectively its normalized
version denoted by p read

d
dαt

A = d2

dα2

[︂
yA(α)

]︂ ⃓⃓⃓⃓⃓
α=0

, pA = 1
ζ

d
dαt

A. (3.3)

If one denotes by ϑ the angle between the two unit vectors r,p, the following
equation follows

p · r = cosϑ (3.3)=⇒ ζ cosϑ = d
dα

⃓⃓⃓⃓
⃓
α=0

t · r, (3.4)

from which, by explicitly expressing the components of the principal normal vector,
one gets

d
dα

⃓⃓⃓⃓
⃓
α=0

t = d2yA

dα2

⃓⃓⃓⃓
⃓
α=0

eA + eA,B
dyA

dα

⃓⃓⃓⃓
⃓
α=0

dyB

dα

⃓⃓⃓⃓
⃓
α=0

. (3.5)

Since eA · r = 0 by definition, one has:

ζ cosϑ (3.4)= (eA,B · r)dyA

dα

⃓⃓⃓⃓
⃓
α=0

dyB

dα

⃓⃓⃓⃓
⃓
α=0

,

where the expression in brackets is independent of the curve z(α) and a property
of Σts alone. It is actually equal to the components of the extrinsic curvature
tensor of Σts denoted analogously to Preliminaries by LAB [3]:

L = eA,B · r dyAdyB. (3.6)

Because by virtue of (3.1) we assume r to be normalized, one can thanks to the
normalization (see (1.51)) express the extrinsic curvature tensor equivalently as

L = −eA · r,BdyAdyB. (3.7)

The Weingarten formula can now be obtained by differentiating the normalization
relation

(r · r = 1),A = 0 =⇒ r,A = MB
A eB

(3.7)=⇒ r,A = −LB
AeB. (3.8)

That is, knowing the meaning of covariant differentiation (2)∇ associated with
the Levi-Civita type connection on tangent and cotangent bundles of Σts with
respect to which the metric f is covariantly constant, it is not difficult to derive
that in general (see Figure 1.2 for the correspondence)

(2)∇Ar = −LB
AeB. (3.9)
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Let us continue further, to preparations of the proof that extremal 2-surfaces
yield zero mean curvature H. First, we consider xa to be describing an equilibrium
shape. Second, we consider a strictly normal variation scaled by a sufficiently
smooth (including its derivatives) function ψ(yA):

x → x + δx = x + ψr,

now, assuming that the operation of variation commutes with partial differentiation,
one can express the variation of a tangent holonomic basis vector directly from
the definitions [3], [24]

δeA := δ

(︄
∂

∂yA

)︄
= δ

(︄
∂xa

∂yA

∂

∂xa

)︄
= ∂

∂yA
δ(xa) ∂

∂xa
= ∂(ψ ra)

∂yA

∂

∂xa

(3.8)=

(3.8)= ψ,Ar − ψLB
AeB.

(3.10)

Knowing this, the induced metric variation follows directly from the corresponding
definition in the form of δfAB(x) := fAB(x + δx) − fAB(x)

=⇒ δfAB = ∂x + δx

∂yA
· ∂x + δx

∂yB
+ − ∂x

∂yA
· ∂x

∂yB
=

= ∂δx

∂yA
· ∂x

∂yB
+ ∂x

∂yA
· ∂δx
∂yB

+ ∂δx

∂yA
· ∂δx
∂yB

=

= δeA · eB + eA · δeB + δeA · δeB
(3.10)=
(3.1)

(3.10)=
(3.1)

−2ψLAB + ψ,Aψ,B + ψ2LC
ALCB,

(3.11)

we see that the variation of the induced metric terminates after the second order.
Note that the metric trace of the expression in the sense fABδfAB up to the first
order in ψ yields −4ψH, since 2H = LA

A. The variation of the metric determinant
f follows from the identity [24]

f = det f := 1
2ε

ACεBDfABfCD,

which yields, in a similar fashion as above

δf = ffABδfAB − 2ψ2εACεBDLABLCD =
= f(−4ψH + fABψ,Aψ,B + ψ2(4H2 + 2κ)) +O(ψ3),

(3.12)

where κ = L
f

denotes the determinant of the shape operator, known as the Gauss-
Kronecker curvature. We are now ready to formulate the theorem, although
we shall not be interested in questions such as whether the below mentioned
coordinate chart exists, because these questions have already been addressed in
Preliminaries. The character of the extremum of the area functional shall not be
investigated further either, it is well treated in [3]. We prove this version of the
theorem for simplicity and because this version is of much more importance to the
issue, the more general theorem can be found in differential geometry textbooks.
Theorem 9. Let Σts denote a set of 2-dimensional surfaces, which are of the
property that each one is covered by a single coordinate chart ({yA}3

A=2, Uts) on a
neighbourhood Uts of a given surface Σts. Let Ats denote the area functional of a
given surface from the set Σts. The necessary condition for extremality of the area
functional is H = 0.
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Proof. The area functional of Σts reads

Ats =
∫︂

yA[Σts]

√︂
f dy2dy3.

Extremality of a functional means that the variation up to the first order vanishes,
therefore one only needs to evaluate the variation of

√
f up to the first order

δ
√︂
f = ∂

√
f

∂f
δf +O(δf)2 = −2ψH

√︂
f +O(ψ2).

Thus, up to the first order one has, using the fundamental lemma of calculus of
variations

δAts = −2
∫︂

yA[Σts]

√︂
fHψ dy2dy3 = 0 ∀ψ ⇐= H ≡ 0.

3.2 In general circular space-times
As has already been mentioned, the first decomposition of a general stationary

asymptotically flat space-time with respect to the normalized time-like Killing
vector is trivial in the sense that it yields zero trace of the extrinsic curvature
tensor K of the hypersurface of constant Killing time coordinate Σt in the form
(2.15) and consequently Σt is always an extremal submanifold of the space-time
manifold M. Authors of the paper [9] realised this and investigated the 2-surfaces
of constant mean curvature H as if it had been only in a 3-dimensional space-time.
This is correct because the associated connection of the Levi-Civita type is unique
for a given metric (for the proof, see [11]).

The procedure for a vacuum case (thus, by virtue of Theorem 8 a circular
space-time) is as follows: one starts from the general line element of a circular
space-time (2.4), from which, obviously, the line element of the t = const. slice
can be obtained via setting t = const.. The line element of Σt in a general circular
space-time then reads

(3)ds2 = gABdxAdxB + gφφdφ2. (3.13)

Now, the choice of the coordinate chart has to be made. Because of the above
mentioned fact that the rest of the coordinate chart {xA}2

A=1 can be chosen to
be either of spherical-type or cylindrical-type, combined with the fact that the
transformation between these two coordinate systems leaves the Killing coordinates
t, φ untouched, the two cases can be treated at once. The radial-type coordinates
read r in spherical-type and ρ in cylindrical-type, therefore we introduce an
arbitrary function x1 = x1(x2) that defines the particular surface Σts in question.
By substituting, the metric (3.13) of the hypersurface t = const. then transitions
into a metric of the 2-dimensional surface Σts defined by the relation x1 = x1(x2)
which reads, upon denoting x1′ := dx1

dx2

(2)ds2 =
[︂
g11(x1′)2 + g22

]︂
(dx2)2 + gφφdφ2, (3.14)
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from which the contravariant components in the coordinates adapted to the Σt

slicing of the outward pointing unit normal r of the 2-surface Σts can be deduced
and then easily verified to be [9]

ri = 1√︂
g11(x1′)2 + g22

(︄√︄
g22

g11
δi

1 −
√︄
g11

g22
x1′
δi

2

)︄
. (3.15)

Now, by using (1.6), the trace of the extrinsic curvature tensor of the 2-surface
Σts can be written as

L = −ri
;i, (3.16)

where the semicolon denotes the components of the covariant differential associated
with the metric corresponding to the line element (3.13). [9] further notes that
the explicit form of the equation (3.16) reads

H = L

2 = 1
4√

g11g22gφφ(g11(x1′)2 + g22)3/2 (2g11g22gφφx
1′′ + (x1′)3g11(g11gφφ),θ+

+ (x1′)2(g11,x1g22gφφ − 2g11g22,x1gφφ − g11g22gφφ,x1)+
+ x1′(2g11,x2g22gφφ − g11g22,x2gφφ + g11g22gφφ,x2) − g22(g22g33),x1),

(3.17)

where, after setting this identically equal to zero, inserting the metric components,
and evaluating the partial derivatives, the function x1 has to be replaced with
x1(x2). This procedure yields a second order non-linear ordinary differential equa-
tion for the function x1(x2), which defines the surface in question. Furthertmore,
to find a regular axisymmetric surface with zero mean curvature given by the
function x1(x2) a boundary problem with the Neumann boundary conditions has
to be solved, i.e. the solution of the resulting differential equation (3.17) with a
particular choice of coordinates has to satisfy in spherical-type for the function
r(θ), respectively in cylindrical-type coordinates for the function ρ(z) the following
(for a given choice of z0):

r′(0) = r′(π) = 0, resp. ρ′(z0) = ρ′(−z0) = 0. (3.18)

3.3 xAct implementation
In this thesis, namely for the purpose of Chapter 4, the xAct package was

extensively utilized to facilitate the implementation of various calculations. xAct
is a suite of free packages for tensor computer algebra in Mathematica, designed
to perform symbolic (xTensor module) and component (xCoba module) tensor
computations and much more with a high degree of automatization and efficiency.
The primary reason for employing xAct is the inherent complexity and lengthiness
of the calculations involved in the analysis. Manual computation of these tensor
operations is not only time-consuming but also prone to errors. By leveraging
xAct, these calculations can be performed quite swiftly and error-freely, provided
that the code is appropriately tested. For example, in [10] the xTensor module
was used to confirm the results of [19] with success. The xCoba module provides
tools for manipulating coordinate bases, which are essential for the calculations
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that this thesis relies on. It allows for the automatic handling of coordinate
transformations and the simplification of expressions.

Therefore, to ensure the reliability of the obtained results, the implemented
code was subjected to a series of tests. These tests verified the correctness of the
code in various circumstances: the main example being the comparison of the
expression obtained by directly substituting into (3.17) with the ”from the ground
up built” expression. We include a few snippets from the full code here:

Snippet 1: The Weyl metric in WSC

DefChart[wsc,M3,{1,2,3},{r[],\[Theta][],\[Phi][]},ChartColor->Green];

weylWSC=CTensor[{
{Exp[-2*\[Nu]]*Exp[2*\[Lambda]],0,0},
{0,r[]^2*Exp[-2*\[Nu]]*Exp[2*\[Lambda]],0},
{0,0,r[]^2*Sin[\[Theta][]]^2*Exp[-2*\[Nu]]}},
{-wsc,-wsc}]
/.{\[Nu]->\[Nu][r[],\[Theta][]],\[Lambda]->\[Lambda][r[],\[Theta][]]};

weylWSC[-\[Mu],-\[Nu]]

SetCMetric[weylWSC,wsc,SignatureOfMetric->{3,0,0}]

CD3=LC[weylWSC];

The first input defines the chart of Weyl spherical coordinates on the 3-dimensional
manifold named M3 defined by the command (the first argument is the name, the
second argument is the dimension and the third argument represents the abstract
indices)

DefManifold[M3,3,{\[Alpha],\[Beta],\[Gamma],\[Delta]}];

under the name wsc. The second input sets up the components of the fully
covariant Weyl metric in the wsc chart, substituting λ for a function of the desired
coordinates (formally scalar functions on the M3 manifold, thus the brackets). The
third input displays the metric components in a tabular format to visually check
the form. The subsequent two commands establish the metric as a coordinate
metric in the specified coordinates with the defined signature and set CD3 as the
Levi-Civita covariant derivative compatible with the weylWSC metric in virtue of
Lemma 7.

Snippet 2: Obtaining the differential equation L = 0 in WSC

metricCoefficientsWSC={
g11[r[],\[Theta][]]->weylWSC[[1,1,1]],
g22[r[],\[Theta][]]->weylWSC[[1,2,2]],
g33[r[],\[Theta][]]->weylWSC[[1,3,3]]};

nWSC:=CTensor[{Sqrt[g22[r[],\[Theta][]]/(g11[r[],\[Theta][]]
(g11[r[],\[Theta][]] (D[rs[\[Theta][]],\[Theta][]])^2
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+g22[r[],\[Theta][]]))],-Sqrt[g11[r[],\[Theta][]]/(g22[r[],\[Theta][]]
(g11[r[],\[Theta][]](D[rs[\[Theta][]],\[Theta][]])^2
+g22[r[],\[Theta][]]))]D[rs[\[Theta][]],\[Theta][]],0},{wsc}]
normalWSC[\[Alpha]]=nWSC[\[Alpha]]/.metricCoefficientsWSC//FullSimplify

eqnWSC=Simplify[-CD3[-\[Alpha]]@normalWSC[\[Alpha]]==0,
r[]\[Element]PositiveReals]/.r[]->rs[\[Theta][]]

The first input defines a replacement rule for the metric components that is used
to convert the equation (3.17) adopted from [9] and the prescription for the normal
(3.15) into the particular expressions in WSC. This is in the case of the equation
(3.17) used to compare it with the obtained result and in the case of the equation
(3.15) for the definition of the normal, which is done by the second and third
input. The equation L = 0 is then saved under the name eqnWSC and is calculated
by virtue of (3.16). The output of this snippet is equivalent to (4.9).

The following snippet is an example of the aforementioned tests. This one
simply compares the result of the calculation via the second snippet and the
explicit formula (3.17) from [9], which is saved under the name eqnKHWSC:

Snippet 3: A test

eqnKHWSC=1/2(2g11[r[],\[Theta][]] g22[r[],\[Theta][]]
g33[r[],\[Theta][]] D[rs[\[Theta][]],\[Theta][],\[Theta][]]
+(D[rs[\[Theta][]],\[Theta][]])^3 g11[r[],\[Theta][]]
D[g11[r[],\[Theta][]] g33[r[],\[Theta][]],\[Theta][]]
+(D[rs[\[Theta][]],\[Theta][]])^2(D[g11[r[],\[Theta][]],r[]]
g22[r[],\[Theta][]] g33[r[],\[Theta][]]-2g11[r[],\[Theta][]]
D[g22[r[],\[Theta][]],r[]]g33[r[],\[Theta][]] -g11[r[],\[Theta][]]
g22[r[],\[Theta][]] D[g33[r[],\[Theta][]],r[]])+
D[rs[\[Theta]],\[Theta]](2D[g11[r[],\[Theta][]],\[Theta][]]
g22[r[],\[Theta][]] g33[r[],\[Theta][]] -g11[r[],\[Theta][]]
D[g22[r[],\[Theta][]],\[Theta][]]g33[r[],\[Theta][]]
+g11[r[],\[Theta][]]g22[r[],\[Theta][]] D[g33[r[],\[Theta][]],
\[Theta][]])-g22[r[],\[Theta][]]D[g22[r[],\[Theta][]]
g33[r[],\[Theta][]],r[]])/(Sqrt[g11[r[],\[Theta][]]
g22[r[],\[Theta][]]]g33[r[],\[Theta][]](g11[r[],\[Theta][]]
(D[rs[\[Theta][]],\[Theta][]])^2 +g22[r[],\[Theta][]])^(3/2))==0
/.metricCoefficientsWSCfunction/.r[]->rs[\[Theta][]]//Simplify

eqnKHWSC-eqnWSC//Simplify

This snippet results in an equation, rather than the expected True. That is
because more assumptions would have to be added, in order for Mathematica to
for example cross non-zero terms with the zero on the right side. Nevertheless, it is
straightforward to verify by hand that the resulting expression is in fact identically
equal to zero. In the case of the analogous snippet in WCC this problem was not
encountered and the result of the snippet is the expected True.

Overall, the use of xAct has proven to be an invaluable asset in handling the
extensive calculations required in this thesis and it will be put to further use in
the future. The full code, including the plots, can be found in the attachment.
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4 Results
In the present chapter, everything from the preceding chapters comes together

for the investigation of the minimal 2-dimensional submanifolds of Σt, and con-
struction of the adapted coordinate systems for various space-times. Firstly, we
tackle the Kerr space-time, since it was already partly dealt with in [9], and we
use the results presented in this paper for the validation of the xAct code (see
xAct implementation). The defining second order non-linear ordinary differential
equation L = 0, obtained via the procedure explained in the Third chapter, is
obtained for the Kerr geometry. Then the resulting boundary problem is solved
via the shooting method. A plot obtained via this procedure exactly agrees with
the corresponding plot presented in [9], validating the implementation and proving
that the difference between the r = const. and constant mean curvature surfaces
is in the per-cent range in the case of the Kerr space-time endowed with the
Boyer-Lindquist coordinates.

4.1 Kerr space-time case
The problem from the preceding chapter is firstly studied in the Kerr space-

time, since it can provide a validation of the code, as was already mentioned before.
The motivation is therefore not to obtain some groundbreaking results in the form
of a closed-form solution (which most likely does not exist), but rather to validate
the code, before trying to perhaps obtain an analytical solution for a different
space-time in the future. From Notes on the Kerr metric, one immediately deduces
that the line element, of the Σt slice of the Kerr space-time in the Boyer-Lindquist
coordinates, reads

(3)ds2 = Σ
∆dr2 + Σdθ2 + gφφdφ2 =⇒ (2)ds2 = Σ(1 + r′(θ)2

∆ )dθ2 + gφφdφ2. (4.1)

From which one can, by comparing the coefficients with (3.14) and using the
general definition of the normal (3.15), obtain the components of the outward-
pointing unit normal, to the 2-surface Σts, to be

ri = 1√︂
Σ(∆ + r′(θ)2)

(∆δi
1 − r′(θ)δi

2).

Now, the explicit form of the differential equation for r(θ) can be easily obtained
as (for at least some brevity, the argument of r is ommited here)

2r′2(a2 cos(2θ)(M − r)∆ + r(−2a4 + 5a2(r + 2M
5 )(M − r) + r3(5M − 3r)))+

+2r′ cot(θ)(A − ∆a2 sin2(θ))(r′2 − ∆) + 2r′′∆(2a4 cos2(θ) + 4a2Mr sin2(θ)+
+a2(cos(2θ) + 3)r2 + 2r4) − ∆2(2a2M sin2(θ) + a2(cos(2θ) + 3)r + 4r3) = 0.

(4.2)
Few different forms of this equation were obtained. Although, in this case, no
further simplification was found, and this form was empirically found to be the
most numerically stable. It is self-explanatory that the Neumann boundary value
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problem, formulated in the Formulation of the problem, has to be solved. For
example, the shooting method has to be applied here, in agreement with [9],
since not even the built-in Mathematica differential equation solvers give any
results. The obtained result was tested via duplicating a plot found in [9] with a
relative success. The plot’s slight differences may be explicable simply by a worse
numerical setting on either side.

(a) Replica of Figure 2. from [9] (b) Original Figure 2. from [9]

Figure 4.1 Side-by-side comparison of the Kerr geometry plots.

Another test, one naturally performs, is based on setting a = 0. For such a
choice, transforms (2.8) to the known Schwarzschild metric in the Schwarzschild
coordinates[1], where one suspects that the surfaces in question are of spherical
shape, since the r coordinate is defined as the area radius [1]. This should clearly
be the case for every choice of a provided that the initial condition is set on
the horizon. To verify this, we plot the same as in the Schwarzschild case for
a = 1, M = 1 and the initial condition now being r(0) = 1, since the coordinate
singularities (horizons) are in the Kerr metric on the Boyer-Lindquist coordinates
located at r± = M ±

√
M2 − a2 [1].

Figure 4.2 3D plot of the solution of (4.2) with a = 0, M = 1 (left) and a = 1, M = 1
(right) with the boundary condition r′(0) = r′(π

2 ) = 0 and the initial condition r(0) = 2
(left) and r(0) = 1 (right) obtained via the shooting method.

If one allows the a parameter to take on different values, the numerical solution
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becomes unstable in the asymptotic θ → π region. This issue was resolved by
solving the differential equation (4.2) only on the interval θ ∈ (0, π

2 ), and mirroring
the solution about the x − y plane, since the space-time has to be symmetric
about this plane[9]. The following are the 3D plots of the obtained numerical
solution with the same boundary condition, M value, and unifying initial condition
r(0) = 2 obtained via the mirroring technique explained above. This, of course,
leaves the r(θ) function in the plots not exactly smoothly differentiable in the
x− y plane, which is an issue, that could be resolved by a different choice of the
numerical method used to solve (4.2). In [9], the authors chose a custom shooting
method, written in C, and for reference they cite the book [23], which was used
as a guidance for the numerical methods presented here as well.

(a) a = 0.2 (b) a = 0.4

(a) a = 0.6 (b) a = 0.8

(a) a = 1 (Extremal Kerr
black hole)

(b) a = 1.5 (Over-extremal
Kerr black hole)

Perhaps, it is better to directly compare the surfaces plotted for the respective
a values in the case of Kerr geometry with the surfaces obtained via setting
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r = const.. This was 3D plotted again for the same data below for two distinct a
values. The weird artifact on top of the surface is due to the finite uncertainty of
the shooting method.

(a) a = 0.5 (b) a = 1

Although, for the Kerr case the analytical solution of the equation (4.2) was
confirmed to most probably not exist in a closed form. The results presented
here, within the range of the shooting method’s uncertainty, closely follow what is
already widely known about the Kerr metric. It is self-explanatory that due to
the numerical nature of the solution, that was obtained, the construction of the
adapted coordinate system, in the sense of Lemma 1, is impossible.

We therefore continue with the investigation of Σt minimal submanifolds with
different underlying space-times, which either have a greater chance of the equation
L = 0 being analytically solvable, or exhibit some interesting properties, like in
the case of the Kerr geometry.

4.2 Weyl metrics case
The problem presented in the preceding chapter is in this thesis mainly studied

within the framework of the Weyl family of metrics, because thanks to the wide
range of functions ν, λ, that solve the field equations, it is possible that the problem
can be solved analytically for some special choices of the functions ν, λ. As has
been mentioned in the section about the Weyl family of metrics, apart from others,
the choice ν = λ ≡ 0, compatible with the constraints given by the vacuum
field equations (2.17), actually results in the Minkowski metric line element in
the corresponding coordinates that were chosen to cover the two complementary
directions to the two Killing vectors η, ξ. Because, one naturally has the suspicion
that the equation (3.17) will be of the most well-behaved form for the Minkowski
metric, we treat this case of a Weyl metric first.

4.2.1 Minkowski case
The general line element of the Σt hypersurface within the Weyl metrics in

Weyl cylindrical coordinates (2.18) with the above mentioned choice ν = λ ≡ 0
takes the known form

(3)ds2 = dρ2 + dz2 + ρ2dφ2. (4.3)
By explicitly inserting the metric components g11 = g22 ≡ 1 and gφφ = ρ2 into
the general prescription of the outward pointing unit normal of the 2-surface Σts,
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given by (3.15), we get the contravariant components of the latter

ri = 1√︂
ρ′(z)2 + 1

(δi
1 − ρ′(z)δi

2),

and the explicit form of the equation (3.17) then reads

1 + ρ′(z)2 = ρ(z)ρ′′(z). (4.4)

This equation, even though it is of second order and non-linear, is autonomous
and luckily straightforward to solve. The general solution can be easily obtained
via guessing, because the left-hand side resembles the known hyperbolic functions
identity. One can easily verify that the general solution reads

ρ(z) = C1 cosh (z + C2

C1
). (4.5)

Though, after imposing the initial condition ρ′(0) = 0 (which eliminates C2),
the resulting line element corresponding to the metric of Σts

(2)ds2 = cosh2 ( z
C

)
[︂
dz2 + C2dφ2

]︂
, (4.6)

is the line element of a surface widely known as the catenoid, and the curve defined
by (4.5) with the above-chosen initial condition, given by

ρ(z) = C cosh
(︃
z

C

)︃
, (4.7)

is known as the catenary. The catenoid can be generated via rotating the catenary
about its directrix. Catenoid was first formally described by Leonhard Euler in
1744. The parametric equations for the catenoid in cartesian coordinates are:

x = C cosh
(︃
v

C

)︃
cosu,

y = C cosh
(︃
v

C

)︃
sin u,

z = v,

where u ∈ [−π, π), and v ∈ R, with C being a non-zero real constant. Historically,
the catenoid was the first non-trivial minimal surface discovered apart from the
plane. It satisfies the minimal surface partial differential equation in 3 dimensions,
derived by Euler, of the form

(1 + z2
,x)z,yy − 2z,xz,yz,xy + (1 + z2

,y)z,xx = 0.

Since the main motivation for the identification of the minimal submanifolds
of Σt is to construct an adapted coordinate system in the sense of Lemma 1 to
simplify expressions involved in the 2+1+1 decomposition of space-time, let us
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Figure 4.7 3D plots of the catenoid for 4 distinct C values with the black line
representing the particular catenary.

do so for the case of the Minkowski space-time. The transformation from the
generalised cartesian coordinates into the new catenoid coordinates reads

t = t,

R =
√
x2 + y2

cosh
(︃

z√︁
x2+y2

)︃ ,
φ = arctan

(︃
y

x

)︃
,

z = z,

where the R coordinate has been defined such that the choice of (t = const., R =
const.) results in a catenoid for every choice of the constant C except zero.
Therefore, in the case of the space-time decompositions being performed first
with respect to constant Killing time coordinate and the second with respect
to constant R coordinate, rendering the Σts submanifold of M minimal. The
newly-defined catenoid coordinate system is well-behaved except the origin, which
is an expected property of a general radial coordinate. The inverse transformation
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reads

t = t,

x = R cosh
(︃
z

R

)︃
cos(φ),

y = R cosh
(︃
z

R

)︃
sin(φ),

z = z.

Figure 4.8 3D plots of the R = const. surfaces for three distinct R values highlighted
in the image for the φ coordinate value 7π

4 in the cartesian coordinates, respectively the
corresponding image in the catenary coordinates.

From this, coordinate transformations between different coordinate systems are
easily-obtainable via standard techniques.

If one were to construct the analogous differential equation to (4.4), covering
the meridional planes with x1 = r, x2 = θ, i.e., the above-discussed spherical Weyl
coordinates, the equation analogous to (4.4) comes out as

2r(θ)3 + 3r(θ)r′(θ)2 = cot θ r′(θ)3 + r(θ)2(cot θ r′(θ) + r′′(θ)). (4.8)

This equation (4.8) can be further manipulated. Multiplying by 1
r(θ)2r′(θ) , and the

substitution Ξ(θ) := r′(θ)
r(θ) together yield the Abel differential equation of the first

kind of the particular form

Ξ′(θ) = − cot θ Ξ3 + 2Ξ2 − cot θ Ξ + 2 := f3(θ)Ξ3 + f2(θ)Ξ2 + f1(θ)Ξ + f0(θ).

In [16], one can find the substitution

Ξ(ζ) = E(ζ)F (ζ) − f2(ζ)
3f3(ζ)

, ζ =
∫︂
f3(θ)E(θ)dθ,

where
E(θ) = exp

{︄∫︂
(f1(θ) − f 2

2 (θ)
3f3(θ)

)
}︄
,
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which takes the general form of the equation into the so-called normal form

F ′(ζ) = F (ζ)3 + Φ(ζ),

where the function F (ζ) is defined parametrically via

F (ζ) := 1
f3(ζ)E(ζ)3 (f0(ζ) − f1(ζ)f2(ζ)

3f3(ζ)
+ 2f2(ζ)3

27f3(ζ)2 + 1
3

d
dζ
f2(ζ)
f3(ζ)

).

Exact parametric or closed form solutions were treated in [14]. However, in this
case, the ζ-defining integral likely does not exist in closed form, apart from an
expression involving a non-trivial multiple of the hypergeometric function 2F1
of goniometric arguments, Therefore, even if the solution existed, it would be
really unsightful and impractical for the construction of an adapted coordinate
system. This claim can be further supported by the fact that when one tries to
trivially transform the above-obtained general solution (4.5) into the spherical
Weyl coordinates, the expression is not invertible using elementary methods. We
therefore leave this matter to a numerical study.

4.2.2 General space-time described by the Weyl metric
Given the previously established and verified method, it is straightforward to

analogously, as in the previous cases, calculate the components of the normal for
a completely general Weyl metric. It comes out in cylindrical coordinates as

ri = 1√︂
ρ′(z)2 + 1

(δi
1e

2(ν−λ) − δi
2ρ

′(z)eν−λ).

Thus, the form of the differential equation in this case, for a space-time described
by the general Weyl family metric with the line element (2.18) in Weyl cylindrical
coordinates, is

ρ′′ + ρ′
[︄
(1 + ρ′2)(λ,z − 2ν,z) − ρ′(1

ρ
+ λ,ρ − 2ν,ρ)

]︄
+ 2ν,ρ − λ,ρ − 1

ρ
= 0. (4.9)

Whereas, in spherical coordinates the equation takes the form

r′′ − 3r
′2

r
− 2r − (λ,r − 2ν,r)(r′2 + r2) + r′(1 + r′2

r2 )(cot(θ) + λ,θ − 2ν,θ) = 0.

(4.10)

There is, of course (again), little hope that a closed form solution of these equations
exists. Although, from this form it follows that indeed, for some particular choices
of the metric functions, the closed form solution may be explicitly found.

Having at hand equation (4.9), for line elements written using the cylindrical
coordinates and (4.10) for line elements written in the spherical coordinates, one
can start inserting the explicit formulas for the metric functions, obtained in the
second chapter, for individual solutions of the field equations.
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4.2.3 Majumdar-Papapetrou case
Since the original case of the Majumdar-Papapetrou solution, given by the

choice of the metric function ν and (2.21), is due to the character of the problem
investigated in this thesis of not much physical interest, because it in the first
order resembles the Curzon-Chazy solution. Let us directly move on to the disc
configuration. Insert the choice of the metric function in the form (2.24) into
(4.9). Even though the λ metric function is chosen as an identical zero, and one
would hope that the equation (4.9) in this case simplifies, the reality is just the
opposite, for the final form of the equation reads

2M(1 + ρ′2){K(k)[2ρ(a+ ρ)(z2 + (a− ρ)2) − (a2 − ρ2 + z2)×
× (z2 + (a+ ρ)2)(k − 1) − ρ′(z2 + (a+ ρ)2)(k − 1)(ρ′(a2 − ρ2 + z2) − 2zρ)−
− 2ρ′ρ(z2 + (a− ρ)2)(z + ρ′(a+ ρ))] + E(k)[ρ′(z2 + (a+ ρ)2×
× (ρ′(a2 − ρ2 + z2) − 2zρ)) − (a2 − ρ2 + z2)(z2 + (a+ ρ)2)]}/[a4+

+ 2a2(z2 − ρ2) + (z2 + ρ2)2)(π
√︂

(a+ ρ)2 + z2 + 2MK(k)] + ρ′′ρ = 1 + ρ′2.

(4.11)

Where E(k) :=
∫︁ π

2
0

√
1 − k2 sin2 αdα stands for the complete elliptic integral of the

second kind. The equation was simplified into this form to see that it resembles
the equation obtained for the Minkowski space-time, if it was not for the huge
fraction. Recall that k2 = 4aρ

z2+(ρ+a)2 .
Given the nature of the disc solution, one expects the minimal submanifold to

locally exhibit an ”inflammation” around the disc’s edge, given that the initial
condition for (4.11) is set sufficiently close to the edge of the disc. In the Majumdar-
Papapetrou disc solution, contrary to the Kerr one, the a parameter represents
only the disc radius. Therefore, no generality is lost by setting a = 1 apart from
the usual M = 1 for every discussion of this solution.

Figure 4.9 Plot of the comparison of ρ(z) functions, for the Majumdar-Papapetrou
disc, with the initial condition for ρ(0) equal to respectively 1.1 (Blue), 1.2 (Purple),
1.4 (Green), 1.6 (Red) and 1.8 (Orange), with a = 1 everywhere.
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From this plot, it is apparent that the ρ(z) solution, obtained again by the
shooting method for initial condition value roughly ρ(0) < 8

5a and M = 1, exhibits
two local minima, as was expected. This can be seen in the case of the 3D plot as
well. We first include a side view of the plot to appreciate the detail. The disc in
all the plots has, again, radius a = 1 and is represented finitely thin to be visible.

Figure 4.10 3D side-viewed plot of the minimal surface in the Majumdar-Papapetrou
geometry with the lowest-found non-divergent initial condition ρ(0) = 1.08.

Finally, we include four 3D plots for four initial conditions close to the disc’s
edge, so one can see the ”inflammation”, correspondingly to Figure 4.9.

(a) ρ(0) = 1.08 (b) ρ(0) = 1.2

(a) ρ(0) = 1.4 (b) ρ(0) = 1.8
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4.2.4 Levi-Civita case
Inserting the metric functions in this case renders the general equation (4.9)

into the form not much different from the one obtained in the case of the Minkowski
space-time

(1 − 2σ)2(1 − ρ′(z)2) = ρ(z)ρ′′(z), (4.12)

to which it is converted generally for any choice of σ, satisfying that σ2 = σ
(specially therefore for σ = 0), as can be easily seen from the left hand side of
the equation. This equation has been dealt with in Subsection 4.2.1. In fact,
explicit coordinate transformations have been found to transform into the adapted
coordinates for Σts slicing, that leave the resulting submanifold minimal.

In [7], the Kretschmann scalar for general σ is given as1

K := RµνκλR
µνκλ = 64σ2(1 − 2σ)2(1 − 2σ + 4σ2)

ρ4(1−2σ+4σ2) .

Indicating that the space-time is flat for σ ∈ {0, 1
2}, and in the limit σ → ∞.

Therefore, the parameter choice σ = 1 has a curvature singularity at ρ = 0, but the
form of (4.12) is apparently the same as in the case of the Minkowski space-time
(4.4). In [7], it is further, by rescaling coordinates and introducing the parameter
C, showed that for σ = 0, the metric can be taken to the form

ds2 = −dt2 + dρ2 + C2ρ2dφ2 + dz2.

That describes a space-time with a cosmic string along the axis for which the
deficit angle of the φ coordinate domain is given as 2π(1−C). Another analytically
solvable choice of the σ parameter is σ = 1

2 . In which case the space-time is flat,
as has already been established, although the equation (4.12) has the general
solution ρ(z) = Az + B, which has not been observed in the case of Minkowski
space-time, and only satisfies the boundary condition as an infinitely-tall cylinder,
rendering the solution semi-trivial.

Nevertheless, our main aim with the Levi-Civita metric is to compare the
obtained analytical solution, given by either the Minkowski solution or the before-
mentioned σ choice, with a numerical solution, obtained again via the shooting
method for a general σ value. Firstly, we ensure the validity of the numerical
solution by comparing the 3D plot and the ρ(z) function’s behaviour between
the obtained numerical solution for σ = 0 and σ = 1 and the corresponding
analytical catenary (see the Minkowski case). This is illustrated by Figure 4.13
with success. The following plots always display on the left the 3D plot of
the obtained numerical solution with the initial condition ρ(0) = 1 in orange,
respectively the analytical solution of the Minkowski-form equation with the same
initial condition in transparent grey for comparison. The analytical solution’s
dependence of ρ on z is on the right displayed as black dashed line. The numerical
solution’s with the full red line.

1Which was used to test the attached xAct code successfully.
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Figure 4.13 The Levi-Civita case σ = 0 and σ = 1 render the same result.

Figure 4.14 The Levi-Civita case σ = 0.1.

Figure 4.15 The Levi-Civita case σ = 0.3.

Figure 4.16 The Levi-Civita case σ = 0.49.
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As mentioned in [21] and [7], the solution’s behaviour, in terms of the parameter
σ, is symmetric about the value 1

2 , which is a trend that was observed in this
thesis as well. Recall, that for this choice of the parameter σ the underlying
space-time is flat, although the boundary value problem we are interested in has
only solution in the form of an infinitely-high cylinder. Figure 4.16 illustrates
the closest non-diverging solution that has been found, to stretch the shooting
method. This point actually corresponds to the solution ρ(z) switching the left
and right branches in the right plot that illustrates the dependence of ρ on z.

Space-times with σ > 1 typically correspond to exotic matter sources. Nev-
ertheless, we plot the solution for the highest non-diverging value of σ, that has
been found (negative values of σ were considered as well, but no lower-valued
σ non-diverging solution has been found). The plot shows that, for σ > 1, the
roles of the Minkowski solution and this particular solution interchange in the
sense that in the interval σ ∈ [0, 1] \ {1

2} the Levi-Civita space-times’s solution’s
minimal submanifold Σts has always been enclosed by the analytical catenoid, for
σ > 1 it is no longer the case. Furthermore, it expands rapidly, suggesting that
the catenoid is in this sense somehow unique.

Figure 4.17 The Levi-Civita case σ = 1.03.

4.2.5 Curzon-Chazy case
Inserting the metric functions in the cylindrical representation case renders

the general equation (4.9) into

ρ′′ (ρ2 + z2)2

ρ′2 + 1 + ρ′
[︂
ρ2 − 2(ρ2 + z2) 3

2
]︂

2M2z+

+ ρ
[︃
M2(z2 − ρ2) + (z2 + ρ2)(2M

√︂
ρ2 + z2 − 3z2)

]︃
− ρ6 + z6

ρ
= 0.

(4.13)

Whereas, the spherical equation is of the form

r′′ + 2(M − r) − M2

r
sin2

(︄
1 + r′2

r

)︄
+

+ r′
[︄
cot(θ)

(︄
1 − M2

r2 sin2(θ)
)︄(︄

1 + r′2

r2

)︄
+ r′

r
(3 − 2M)

]︄
.

(4.14)

Given the complexity of these two differential equations, again, nothing more
than a numerical discussion is possible. No significantly different results for this
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metric, than in the case of other spherical solutions, have been found with much
less regular outcomes. Therefore, we do not include the discussion of the equation
(4.14) here.

The obtained numerical solution of (4.13) exhibits much more interesting
behaviour. Probably suggesting that the cylindrical coordinates are better tailored
for the complex directional naked singularity (about which one can obtain further
information in [21], or [7]). Apart from the analytical solution of the Minkowski
case and for some parameters the Levi-Civita case, its behaviour in the vicinity
of the center is the most regular, allowing one to set an initial condition as close
to the axis as ρ(0) = 0.1. Although ,the solution does not look pleasant in this
particular case. We instead plot the 3D plot of the solution, respectively the ρ(z)
function for ρ(0) = 0.4, and ρ(0) = 1. The ρ(z) plot, portrayed by a red line, is
plotted in one graph, with the corresponding catenary, for comparison.

Figure 4.18 The Curzon-Chazy case in cylindrical coordinates for ρ(0) = 0.4.

Figure 4.19 The Curzon-Chazy case in cylindrical coordinates for ρ(0) = 1.
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4.3 Analytical approach
As has already been suggested, equations (4.9) and (4.10) give one some wiggle

room for the choice of the metric functions. Therefore, some special choices made
in the Weyl metric, for either of the two equations, may render an analytic solution.
If not, the analytical approach may at the very least provide some information
about the solution’s existence in special cases. For this reason, we choose to
investigate the system of equations, that represents the sufficient condition for
the Weyl metric, to be a solution of the field equations, coupled with the L = 0
equation respectively, for both equations (4.9), and (4.10).

Let us handle the cylindrical equation first, and try a naive method. Because
this equation explicitly includes the partial derivatives of the λ function, we first
introduce the restriction on those derivatives generated by the field equations into
the equation L = 0, which transforms the system into

ν,ρρ − 1
ρ
ν,ρ + ν,zz = 0,

ρ′′ + ρ′
[︄
2ν,z(1 + ρ′2)(ρν,ρ − 1) − ρ′

(︄
1
ρ

+ ν,ρ(ρν,ρ − 2) + ρ(ν,z)2
)︄]︄

+

+ νρ(2 − ρν,ρ) − ρ(ν,z)2 − 1
ρ

= 0.

(4.15)

From here, several straight-forward simplifying choices are possible. Let us first
try the ansatz that annihilates the (ρν,ρ − 1) term. It is evident that it resembles
the known flat solution ν = log(ρ) =⇒ λ = log(ρ) mentioned in [7]. Therefore,
let us make the ansatz less trivial in the sense that we include a general function
of the coordinate z

ν(ρ, z) = log(ρ) + f(z),
which takes the L = 0 equation into the form

ρ′′ = ρf ′(z)2(1 + ρ′2),

and the Laplace equation into the form f ′′(z) = 0 ⇐⇒ f(z) = Az + B. From
this, the final form of the system (4.15) reads simply

ρ′′ = ρA2(1 + ρ′2).

As has been mentioned, one already knows, that the choice A = 0 is a solution of
the field equations. Furthermore, the afterwards equation is solvable easily, but
the solution is trivial. Other choice of the constant A does not apper to provide
an analytical solution[16].

Another option is to annihilate the second problematic bracket (ρν,ρ −2). This
is very similar, because the ansatz then takes the form

ν(ρ, z) = log
(︂
ρ2
)︂

+ f(z).

This ansatz obviously fulfills the Laplace equation, provided that the f(z) function
is of the same form as before, and the L = 0 equation takes the form

ρ′′ + f ′(z)(1 + ρ′2)(2ρ′ − ρf ′(z)) − 1 + ρ′2

ρ
= 0.
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This equation is, again, not elementary to solve analytically for any other value
of the constant A apart from zero, which just transforms the equation into the
Minkowski form (4.3). Therefore the minimal submanifold is, again, of catenoidal
shape. The corresponding λ function is then given as

λ(ρ) = log
(︂
ρ4
)︂
.

Another possibility is to consider the system (4.15) only partially coupled,
because setting 2ν,ρ − λ,ρ = 1

ρ
, and substituting from the field equations only for

λ,ρ into this simplifying constraint, yields

ν,ρ(2 − ρν,ρ) − ρ(ν,z)2 − 1
ρ

= 0.

This constraint was chosen, because it renders the equation L = 0 in the form

ρ′′ + 2ρ′ν,z

[︂
(1 + ρ′2)(ρν,ρ − 1)

]︂
= 0.

Provided that there exists such a choice of constants in the Laplace equation’s
general solution, so that the simplifying constraint holds. Because then one has
the last equation for the determination of the λ function, and the problem is
well-posed. Two ways of separating variables in the Laplace equation are possible,
apparently. One from the ansatz, ν(ρ, z) = f(ρ) + g(z), gets the general solution
in the form

ν(ρ, z) = C1 log(ρ) + C2(z2 − ρ2

2 ) + C3z + C4.

Whereas, from the multiplicative ansatz, ν(ρ, z) = f(ρ)g(z), one gets

ν(ρ, z) = J0(kρ)(C1ekz + C2e
−kz) + Y0(kρ)(C3e

kz + C4e
−kz).

Where J0 and Y0 denote the Bessel functions of the first and second kind, respec-
tively. Unfortunately, the simplifying condition does not allow any different form
of the solution, because it comes out as

2C1

ρ
= 1
ρ

+ 2C2ρ+ ρ

(︄
(C3 + 2C2z)2 + (C1

ρ
− C2ρ)2

)︄
,

in the case of the additive ansatz. In the case of the multiplicative ansatz, the
resulting simplifying condition can in fact not be obeyed for any choice of the
constants.

In the case of the spherical equation (4.10), one has at hand the general
prescription for both metric functions (2.29) and (2.30). From this, maybe
after recurrent cutting of the sum some wonder recurrent relation between the
coefficients may sum approach follow. However, non-trivially. Another option may
be transforming to the catenary or some other better-suited coordinates (since
for example in the cylindrical case, the minimal submanifolds follow this trend;
therefore, one would expect the R(z) function to not be too wild), but the relation
for the implicit derivatives does not appear to simplify anything. We therefore
leave further analytical investigation for the upcoming research.
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Conclusion
In this thesis, we first formulated Frobenius’ theorem, which was crucial for

our later analysis, and proved corollary Theorem 5, which generalizes a theorem
from [1] and assures the existence of the decompositions. Using this theorem, we
performed a general 2+1+1 decomposition of the field equations, omitting the
null normal case. It was observed that the decomposition simplifies, if the trace,
of the extrinsic curvature tensor of the resulting 2-dimensional submanifolds Σts,
vanishes. Consequently, we explored several solutions of the field equations in
various coordinate systems to find an analytically solvable Neumann boundary
value problem for a second-order non-linear ordinary differential equation.

After introducing basic concepts, and proving the sufficient conditions for the
circularity of a space-time, we examined individual space-times, focusing on Weyl
metrics. We derived the line element forms for the Weyl space-times via analogy
of the metric function ν with a Newtonian potential.

We then formulated the main problem addressed in Chapter 3. We proved
that zero mean curvature of a surface embedded in 3 dimensions is a sufficient
condition for the stationarity of its area functional. After stating the problem and
explaining our methods, we began solving it for the specified space-times.

Thanks to the Kerr metric, we validated the attached xAct code with high
certainty. The solution matched the expected behavior for the Kerr space-time.
We compared our solution plots with those in [9], and found reasonable agreement.
For the Minkowski space-time limit, we obtained an analytical solution for ρ(z)
of the defining equation K=0, then constructed the adapted coordinates, and
plotted isosurfaces of the new radial coordinate to validate our construction. For
the Majumdar-Papapetrou disc, we observed the expected behavior of the ρ(z)
solution in the vicinity of the disc through plots of the ρ(z) function or the
rotational body. Regarding the Levi-Civita metric, we obtained ρ(z) solutions
for σ parameter values roughly between -0.1 and 1.1, but no solutions for other
values. At σ = 0, σ = 1, the expected simplification to the Minkowski equation
was observed. At σ = 1

2 , the solution is an infinitely-long cylinder, with no other
solutions possible under the given Neumann boundary value problem.

We then adopted a more analytical approach, simplifying the equation L=0
to be solvable with the ansatz, ν = log(ρ2), leading to the other metric function,
λ = log(ρ4), and yet another space-time whose minimal Σts submanifolds are
catenoids. Now, the future research can expand on the findings of this thesis in
several directions. One key area mentioned already is the simplification of 2+1+1
decomposition of the main quadratic invariant characteristic of vacuum curvature.
The Kretschmann scalar K and other similar invariant; the Chern-Pontryagin
scalar C. In these hypothetical, analytically solvable space-times, simplifying the
derived 2+1+1 decomposition of the Kretschmann scalar done in [19] and [10],
would be possible, provided that one finds the adapted coordinates. This would
be then useful since not even in simple space-times is it effective to calculate the
invariants in components. Many of the components may individually diverge for
example on a horizon and yet, one knows that the result is regular.
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