
MASTER THESIS

Ondřej Roztočil

Type providers for TypeScript

Department of Distributed and Dependable Systems

Supervisor of the master thesis: Mgr. Tomáš Petříček, Ph.D.
Study programme: Computer Science

Prague 2024

I declare that I carried out this master thesis on my own, and only with the
cited sources, literature and other professional sources. I understand that my
work relates to the rights and obligations under the Act No. 121/2000 Sb., the
Copyright Act, as amended, in particular the fact that the Charles University has
the right to conclude a license agreement on the use of this work as a school work
pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

I would like to thank Kateřina Průšová for going through this academic ordeal
with me, even making it fun at times. I would also like to thank my advisor
Tomáš Petříček for the help and insight he provided me and for showing me that
it does not have to be an ordeal after all.

Title: Type providers for TypeScript

Author: Ondřej Roztočil

Department: Department of Distributed and Dependable Systems

Supervisor: Mgr. Tomáš Petříček, Ph.D., Department of Distributed and Depend-
able Systems

Abstract: Type systems of programming languages generally do not understand
external data. In statically typed programming languages, developers handle data
by writing typed interfaces and data access code by hand or using external code
generation tools. Type providers, originally developed for F#, are an alternative,
more integrated approach to code generation that improves compile-time safety
and developer experience by inferring types from data samples.
This thesis explores the implementation of type providers in TypeScript. We
propose a design for the feature and implement a functional prototype as an
extension of the current TypeScript compiler. We demonstrate the feature’s
usefulness by implementing type provider packages for CSV, XML and JSON.

Keywords: type providers, TypeScript, data access, code generation

Název práce: Type providers pro TypeScript

Autor: Ondřej Roztočil

Katedra: Katedra distribuovaných a spolehlivých systémů

Vedoucí bakalářské práce: Mgr. Tomáš Petříček, Ph.D., Katedra distribuovaných
a spolehlivých systémů

Abstrakt: Typové systémy programovacích jazyků obecně nerozumí externím
datům. Ve staticky typovaných programovacích jazycích vývojáři pro práci s daty
vytvářejí typy a přístupový kód buď ručně nebo s použitím externích nástrojů pro
generování kódu. Mechanismus type providers, původně vyvinutý pro jazyk F#,
představuje alternativní přístup ke generování kódu, který zlepšuje jak bezpečnost
v době kompilace, tak efektivitu vývojářů, za pomoci odvozování typů ze vzorků
dat.
Tato práce zkoumá implementaci type providers v jazyce TypeScript. V rámci
práce jsme navrhli řešení a implementovali funkční prototyp ve formě rozšíření
současného překladače TypeScriptu. Užitečnost této funkce demonstrujeme im-
plementací type provider balíčků pro CSV, XML a JSON.

Klíčová slova: type providers, TypeScript, přístup k datům, generování kódu

Contents

1 Introduction 7
1.1 Introducing type providers . 8
1.2 Type providers for TypeScript . 9
1.3 Thesis goals . 9
1.4 Thesis structure . 10

2 Problem analysis 11
2.1 Case study: Reading data in JavaScript and TypeScript 11
2.2 Type safety . 13
2.3 New syntax . 13
2.4 Design-time features . 16
2.5 Execution characteristics . 17
2.6 Error handling . 18
2.7 Performance . 18
2.8 Emitted JavaScript code . 19
2.9 Extensibility . 20

3 Solution documentation 22
3.1 Compiler integration . 22

3.1.1 Inserting the type provider mechanism 23
3.1.2 Adding provided imports 24
3.1.3 Type provider invocation 24
3.1.4 Transformers and emitting JavaScript 25
3.1.5 Open issues . 26

3.2 Provider implementation . 29
3.2.1 Core library . 29
3.2.2 Code generation . 31
3.2.3 CSV provider . 32
3.2.4 XML provider . 35
3.2.5 JSON-Zod provider . 38

4 User documentation 41
4.1 Using the modified compiler and language service 41

4.1.1 Getting the compiler . 41
4.1.2 Setting up Visual Studio Code 43

4.2 Using type provider packages . 44
4.2.1 Installing type providers 44
4.2.2 Provided import syntax 45
4.2.3 Features of the implemented type providers 46

4.3 Implementing a new type provider package 49
4.3.1 Basic tutorial . 50
4.3.2 Further customization . 56

5 Conclusion 59
5.1 Future work . 59

5

Bibliography 61

A Attachments 65
A.1 Overview of attached files . 65
A.2 Example applications . 65

6

1. Introduction
Processing data from external data sources is the bread and butter of a large
class of real-world applications. Reading and writing data files or structured
messages in various formats, querying databases, or interacting with APIs of other
services are common activities that all in some form involve mapping between the
(implicit or explicit) schema of the external data source and the type system of
the programming language.

The importance of this task is indicated by the popularity of libraries and tools
such as JSON or XML parsers and validators, object-relational mapping frame-
works, database query builders, schema-based code generators, or clients libraries
for established HTTP APIs — in many mainstream programming languages.

In most cases, the type systems of programming languages do not “understand”
external data. By that, we mean that even if information about the structure of
the data, names of entities or fields, types of the associated values, and so on, are
available during compilation or while the developer writes the code (henceforth
called the design-time), in the form of a data sample or an explicit schema, this
information is not automatically used during type checking or when providing
feedback in a code editor.

In the context of statically typed programming languages, developers can
integrate the external data into the language’s type system by supplying type
declarations that describe the structure, names, and permissible values — in terms
of the language’s constructs, such as classes, interfaces, methods, and so on. Such
declarations typically need to be accompanied by a (handwritten or generated)
set of infrastructural functions that perform the necessary IO operations, parsing,
and validation to access the data source and transform the data into the declared
representation. In return, the developers get the well-documented benefits of
strong static typing [1], in particular, better detection of common errors (mistyped
names, wrong value types), better IDE support (auto completions), improved
maintainability, and potentially increased performance.

This, however, introduces the problem of providing a correct representation
(model) of the data and keeping it accurate when the data schema changes.
Broadly speaking, there are two categories of approaches to creating and updating
such models: handwritten libraries and code generation based on some external
schema. Both lead to different scalability and maintainability challenges. Writing
the necessary code by hand can be costly and creates opportunities for human
error. Code generation has been criticized [2] [3] for creating a fragile dependency,
complicating the build process, interacting badly with source control, or generating
potentially bloated code.

With dynamically typed languages like JavaScript, developers are more free
to avoid modeling the external data in exchange for losing the benefits of static
typing. However, any serious application that wants to maintain at least run-time
correctness will necessarily need to perform a comprehensive validation of the
external data it reads. In practice, writing such validation code or a schema for a
validation library is similar to data modeling for statically typed languages and
reintroduces similar trade-offs regarding handwriting and generating code.

7

1.1 Introducing type providers
An interesting variant of the code generation paradigm is the concept of type
providers. A type provider, generally speaking, is a compile-time component for
a programming language that, given a data sample or a data schema, infers an
appropriate representation of said data in the type system of the language and
provides this inferred type information to the language’s compiler to be used for
type checking or supporting code editor features. Depending on implementation,
a type provider can also generate run-time code that can be used for safe and
efficient data access.

It has been argued that type providers improve upon some of the issues of
traditional handwritten and code generation-based methods of handling external
data. They can increase the safety and robustness of the programs, improve
the developer experience, and facilitate explorative programming while being
code-focused and not requiring the developer to interact with external tools
[4]. Schema-based type providers can be seen as a direct replacement of similar
external code generation tools. Meanwhile, type providers based on inference from
actual data samples present a different approach to the data modeling problem,
moving the focus to the engineering of representative samples, which can, in some
situations, be more readily available than schemas.

Type providers have been first explored and most practically realized in the F#
programming language [4, 5, 6]. The F# type providers are implemented as special
libraries that users can add to their projects and invoke in code using standard
F# syntax for generic types. When checking such types during compile-time or
design-time (in a compatible IDE), the F# compiler executes code contained in
the type provider assembly and retrieves the inferred type definitions and code.

A distinguishing feature of the F# type providers is that the type provider
does not need to examine the entire data source at once and does not need to
generate actual F# (.NET) types. Instead, the type provider can return partial
typing information lazily as needed (based on the user’s activity). The provided
types also can be erased during compilation, meaning that the specific types
are replaced by a smaller set of run-time compatible types (e.g., strings or basic
collections), thus reducing the need for code generation and size of the assembly.
Thanks to these features, the F# type providers should be able to scale to work
with much larger information spaces (e.g., very large databases or public APIs)
than what can be supported with traditional eager code generation [4].

Apart from the F# implementation of type providers as dynamically loaded
compiler plugins, there have been other implementations based on different compile-
time capabilities of the host languages. In the dependently typed language Idris [7],
type providers have been realized using the ability of specially annotated compile-
time evaluated functions to return types without the need for code generation.
The powerful macro system of Scala 2 enabled a type provider-like mechanism
to be implemented without additional modification to the language’s capabilities
[8]. However, Scala 3 has removed support for the so-called whitebox macros
(i.e., macros that can resolve to any type), making the previous approach to
implementing type providers unfeasible.[9]

8

1.2 Type providers for TypeScript
This thesis investigates the possibility of implementing type providers into the
TypeScript programming language. TypeScript is a widely used [10] extension
of the dynamically-typed language JavaScript, focused on adding gradual static
typing and best-effort compile-time safety while being able to be transpiled into
plain JavaScript [11].

In recent years, TypeScript has been used extensively in many areas of devel-
opment, particularly for web, mobile, and desktop GUI applications and backend
services. These applications commonly involve manipulating external data or
accessing HTTP APIs and databases, all presenting a potential use case for type
providers.

Apart from these practical motivations, we argue that type providers are a
particularly good fit for TypeScript. Among other reasons:

• Type providers follow TypeScript’s design goals and constraints, which focus
on adding best-effort static type-checking to JavaScript.

• Due to TypeScript’s unsoundness and JavaScript’s weak run-time typing,
there is an increased need for robust handling of external data.

• Similar to F#, TypeScript has strong type inference capabilities and requires
a limited number of type annotations, which makes it well-suited for provided
types.

• There is a longstanding interest in this feature in the TypeScript community
[12], and even greater demand for introducing a general compiler plugin
mechanism ([13, 14]). A lot of the use cases for the latter could be covered
in a more controlled way by a type provider mechanism.

Admittedly, TypeScript’s stated design principles also include not providing
run-time functionality and not emitting different code based on the results of the
type system [15]. We argue, however, that these intentional limits apply to the
language itself and the behavior of the core compiler. Introducing an extensible
plugin mechanism that allows end users to opt-in to a code generation functionality
(as they often already do in a less convenient and less type-safe way [16]) is not in
conflict with these principles.

1.3 Thesis goals
As we have argued throughout this introduction, type providers are a helpful
mechanism, an interesting alternative to traditional methods of dealing with
external data in statically typed languages, and a natural fit for TypeScript.
However, the current TypeScript compiler is not implemented with a type provider
feature in mind and does not support plugin extensibility powerful enough to
enable implementing it from outside. Therefore, modification of the compiler is
required.

Based on this, the high-level goals of this thesis are as such:

9

1. To investigate the problem of introducing a type provider-style feature into
TypeScript and its current compiler.

2. Propose a design for the feature and its implementation.

3. Implement a functional prototype.

4. Implement type provider packages for CSV, XML, and JSON to demonstrate
the solution’s viability.

1.4 Thesis structure
The remainder of the thesis is structured into the following chapters.

Chapter 2 contains a preliminary analysis of the problem of adding type
providers to TypeScript in the broader context of the JavaScript/TypeScript
ecosystem, related work, and general programming language design concerns. We
gather a list of requirements for the implementation and present initial design
decisions and constraints.

Chapter 3 documents the implemented solution. Section 3.1 provides an
overview of the TypeScript compiler and language service and describes the
modifications we made to support the type provider mechanism.

Section 3.2 deals with the implementation of type provider packages. We
discuss shared concerns for typical providers and present the showcase type
providers for CSV, XML, and JSON.

Chapter 4 contains documentation for using the implemented solution. We
give instructions for setting up a development environment with the modified
compiler and for using the existing type provider packages. The Section also
contains a step-by-step tutorial for creating a new type provider package for a
simple data format.

Chapter 5 evaluates the outcomes of the thesis and discusses possible future
work.

10

2. Problem analysis
In this chapter, we present a general analysis of the problem of adding type
providers to TypeScript. We consider the project in the wider context of the
JavaScript (JS) and TypeScript (TS) ecosystems, related work, and general
programming language design concerns. We gather a list of requirements for the
implementation and present initial design decisions and constraints.

2.1 Case study: Reading data in JavaScript and
TypeScript

Before we proceed with the analysis, we want to begin with a motivating exam-
ple that illustrates common issues of handling external data in JavaScript and
TypeScript. We will use a simple, practical scenario involving parsing data from
a CSV file.

To begin, let us assume that the programmer expects to parse CSV files like
the following:

1 Item,Cost,Paid
2 "JNLW2",200,true
3 "X4QTM",150,false
4 "9RFVH",800,false
5 "D6K3P",3600,true

Using a popular NPM package papaparse, we can load the data and parse it
into individual values as such:

Code Listing 2.1 Loading untyped CSV data
1 import * as fs from "node:fs";
2 import * as Csv from "papaparse";
3

4 const fileContent = fs.readFileSync("../data.csv", "utf8");
5 const rawData = Csv.parse(fileContent, { header: true }).data;

This gives us the data as an array of rows represented as records with a string
field for each column. (Note that to determine that this is the case, we either
had to examine the result during run time or read the documentation because the
library types the return type as unknown[].)

Now, suppose we want to process the values from the Cost column as numbers
(e.g., sum them up), and we want our processing code to be statically type-checked.

To do that, we need to do two things:

1. Declare a TypeScript interface that specifies the name and type of fields in
your fully parsed data.

2. Write code that transforms the input records with string fields into records
that satisfy the declared interface.

11

Code Listing 2.2 Mapping CSV data to typed representation
1 interface Row { item: string; cost: number; paid: boolean; }
2

3 const parseData = (data: Record<string, string>[]) =>
4 data.map(row => ({
5 item: row["Item"],
6 cost: Number(row["Cost"]),
7 paid: row["Paid"] === "true"
8 }));
9

10 const sumCosts = (rows: Row[]) =>
11 rows.reduce((sum, row) => sum + row.cost, 0);
12

13 const data = parseData(rawData as Record<string, string>[]);
14 const result = sumCosts(data);

This code introduces some potential issues:

1. We needed to write the interface and the mapping code by hand and would
need to maintain it in the future. This is trivial for such a simple case, but
the amount of work would naturally grow with the complexity of the data.

2. The mapping code in the parseData function needs to access fields in the
parsed rows using string constants. This can introduce bugs, particularly
because access to a non-existing property is not a run-time error in JavaScript
and simply returns an ‘undefined‘ value instead.

3. The mapping code performs no validation. If the actual data differs from
expectations or schema later changes, many bugs are possible. For example,
it is not uncommon to use text to indicate missing values or special statuses
in otherwise numeric columns. This would not throw a run-time type error
but pollute the data with NaN values, most likely leading to run-time safe
but logically invalid results in downstream code. The optimistic parsing of
the Paid value can lead to unexpected consequences if input data includes
other representations of boolean values, and so on.

It is certainly possible to write validation code that performs all necessary
run-time checks so that the program either gives the expected result or throws an
exception, regardless of the shape of the actual input data. However, the point we
are trying to illustrate is that when crossing the inherently problematic boundary
between code and external data, the correctness of the program hinges on the
completeness and correctness of the run time code that handles this conversion.

The issue is even more prominent in TypeScript. Compared to languages
such as Java or C#, TypeScript has more sources of unsoundness [17] while
also targeting run time environment with more permissive type checks, including
implicit type coercions. At the same time, when writing downstream code that
uses the type annotated data loaded from an external source, programmers would
reasonably expect the TypeScript’s apparent compile-time guarantees to hold
and not check the actual values as defensively as they would in a purely dynamic
language.

12

2.2 Type safety
To help deal with the issues illustrated so far, we propose introducing the mecha-
nism of type providers into TypeScript.

Such a mechanism would allow the creation of special libraries for various
formats or data sources that a user could opt into using in their TypeScript
projects. Then, the user could invoke the type provider by adding certain, yet
undetermined, constructs into their code.

When the (appropriately modified) TypeScript compiler encounters this con-
struct during compilation, it loads the type provider code and executes it, passing
it relevant user-specified static options (e.g., path to a data sample). This invokes
the type inference process implemented by the respective type provider package
(e.g., CSV provider). The resulting set of inferred (provided) types is further used
by the compiler to type-check the user’s source files using regular typing rules.

We can re-state the goal of implementing such a mechanism as the first
requirement for our solution:

R1 The TypeScript compiler will be able to invoke a type provider in
the compile-time.

R2 Type providers will be able to generate static types based on the
user’s configuration that the compiler can use for standard type
checking.

As we have argued, static typing is not enough to achieve actual type safety
when dealing with external data in TypeScript and JavaScript. Therefore, the
provided types must also be accompanied by run-time parsing and validation
code that verifies that run-time types of successfully loaded values match the
compile-time types, thus keeping the static guarantees the user might rely upon.

R3 Type providers will be able to generate data access code to ensure
that run-time types match the provided static types.

2.3 New syntax
A basic design question for the type provider solution is how exactly the user
invokes the provider mechanism or acquires the provided types to use in their code.
There are many factors to consider when adding a new syntax to a programming
language or reusing existing syntax for a new feature, including:

• Ambiguity — Does it not introduce ambiguity into the grammar?

• Readability — Is it easy to understand for a user? Is it clearly differentiated
from other features?

• Expressiveness — Can the syntax express the information needed for the
feature? How well?

• Consistency — How consistent is it with the existing language conventions?

13

• Backwards compatibility — Is it safe to add without breaking existing code?

• Design space — How much design space does it take from future features?

• Ease of implementation — How difficult is it to support in the context of
existing compiler implementation?

Based on these considerations, we propose to extend the existing TypeScript
syntax [18] for (static) module imports based on the ECMAScript module syntax
[19]. The standard import syntax is shown in code listing 2.3.

Code Listing 2.3 Standard TypeScript import syntax
1 // Import from a package
2 import { z } from "zod";
3

4 // Multiple named imports from relative path
5 // SomeType is a TypeScript interface, class or type
6 // The type keyword is optional by default
7 import { myFunc, type SomeType } from "./my-lib";
8

9 // Aliased import
10 import { z as validator } from "zod";
11

12 // Namespace import
13 // Identifier "fs" will contain all exported object from the

"node:fs" module
14 import * as fs from "node:fs";
15

16 // Import with import attribute block
17 import jsonData from "./data.json" with { type: "json" };

We propose to introduce a new modifier keyword provided and use the existing
import attribute block (after the with keyword) so that specifying imports of
provided types and values would be done as shown in the code listing 2.4.

Code Listing 2.4 Proposed TypeScript syntax for imports of provided code
1 // Named import of provided type based on file sample
2 import provided { Row } from "csv-provider" with { sample:

"../sample.csv" };
3

4 // Namespace import of all provided code
5 import provided * as BookData from "xml-provider" with { sample;

"../books.xml" };

We argue that such syntax applies well to the question raised above.

• It is familiar to TypeScript users and aligns with trends in the development
of JavaScript. It allows treating the provided code as a normal (if virtual)
module.

14

• The import attribute block (after the with keyword) provides flexibility for
passing arguments to the type provider.

• The provided keyword clearly states intent and differentiates the usage from
a regular import. It ensures non-ambiguity of the grammar and preserves
both backward compatibility with existing code and design space for future
development (particularly for keys added to the import attribute block).

• Supporting the syntax should be easy using functionality already present in
the compiler.

R4 Including provided types into the user’s code base will be done by
using a new provided import statement syntax.

To illustrate the proposed type provider solution with the new syntax, let us
return to the example of reading CSV data from Section 2.1. Reading the file and
performing the same computation as before could be done like this:

Code Listing 2.5 Reading CSV data with a type provider
1 import provided { Row, loadFileSync } from "@ts-providers/csv"

with { sample: "../sample.csv" }
2

3 const data = loadFileSync("../data.csv");
4

5 const sumCosts = (rows: Row[]) =>
6 rows.reduce((sum, row) => sum + row.cost, 0);
7

8 const sum = sumCosts(data);

Using the type provider is at least a partial improvement on all of the previously
discussed issues:

• Both the Row interface and the code that allows reading the CSV data have
been generated in the background, based on the shape of data inferred
from the sample.csv file specified in the provided import statement, thus
reducing the amount of code that needs to be written.

• The generated code validates the data it reads so that the run-time types
match the static typing of the interface or the read operation throws an
error. E.g., unless a column is inferred as nullable, successfully loaded data
will never contain a null or undefined value in the respective field.

• There is no unsafe access to fields using handwritten string constants and
guessing types, thus reducing the potential for human error.

• If the sample changes in a way that would invalidate the user’s code using
the data, static type checking against the newly generated interface causes
a compilation error, notifying the user about the change.

15

2.4 Design-time features
Apart from the increased safety guarantees, a key benefit of static typing is that
it enables useful design-time features for code editors, such as auto-completion,
live in-code diagnostics (

squiggles), and automated refactorings.
We consider adding new automated refactorings and code fixes for type

providers out-of-scope in the prototype implementation. However, existing editor
actions that also apply to type provider-related code should either work properly
or not result in errors.

R5 Provided types will be compatible with the standard auto-comple-
tion and error diagnostic features of the TypeScript language
service.

When working with provided types, it might be often useful for the user to be
able to inspect the generated code. This is a feature that, to our knowledge, has not
been implemented by any of the previous code generation-based implementations
of type providers. Among other reasons, it would enable users to simply copy the
provided code and tweak it for their purposes or simply make it a permanent part
of their code base.

While it might be less confusing for users to implement this as a new IDE
action, this would likely be a much more complex task than modifying the behavior
of the existing

Go to definition feature for provided types.

R6 Go To Definition feature that enables inspecting the provided code
will be supported.

To support these design-time features, TypeScript implements not only the
standard command line compiler but also a language service [20]. The language
service shares most of the functionality, such as parsing and type checking, with the
compiler. However, it is a long-lived program optimized for on-demand answering
of type queries instead of efficient batch processing.

TypeScript is distributed with two programs: the command line compiler
invoked using the tsc command and the tsserver. The latter encapsulates both
the compiler and the language service and answers queries from other programs,
such as code editors, via a JSON API.

Our type provider solution should be compatible with tsserver and, in
particular, with the official Visual Studio Code TS extension, which uses tsserver
internally. We selected Visual Studio Code as it is the most popular IDE for
TypeScript development [21]. Other editors might work but will not be tested.

R7 The language service features for provided types will be supported
in recent stable versions of Visual Studio Code.

16

2.5 Execution characteristics
We should consider how the interaction between the compiler and a type provider
is going to work. Technical specifics of provider invocation in the prototype will
be discussed in Section 3.1. Here, we want to specify the goal of our solution.

As described in Section 1.1, the F# implementation of type providers supported
on-demand (lazy) provider invocation that returns partial results to satisfy only
an immediate type system query. This allowed the implementation of providers
that can be used to access very large data with very large schemas (described by
the authors as “internet-scale” [5]).

To limit the scope of the prototype implementation and based on a preliminary
analysis of the current architecture of the TypeScript compiler, we decided not
to pursue this direction. The invocation mechanism between the compiler and a
provider will be eagerly executed when the compiler deals with module imports of
a currently processed file. The provider will be expected to generate the entire
code, even if that would lead to excessively large results.

R8 Type providers will be invoked eagerly by the compiler and gener-
ate the entire provided code for the data source at once.

Another question is in what form will the type providers return types and/or
code to the compiler? We could create some form of intermediate representation
specialized for the provider solution. This could enable some optimizations or
standard preprocessing that would be otherwise more difficult to perform.

However, since we decided to invoke providers eagerly and have them generate
the entire code for each invocation, it seems practical to let the providers generate
some actual representation used by the compiler.

The most feasible solution seems to be to generate abstract syntax tree (AST)
nodes which are normally constructed while parsing a TypeScript source file.
Types for the TypeScript AST are part of the public compiler API which also
contains factory methods for correct creation of different kinds of nodes. There are
also third-party libraries that streamline the creation of the TypeScript AST that
can be used by the type provider implementors. For example, the ts-morph library
[22] exposes a builder API for creating TypeScript code and allows programmatic
parsing of the AST from code in string literals.

Furthermore, the AST representation is used throughout the compiler, meaning
that if synthesized properly, most of the compiler’s subsystems should be able to
handle the provided code without significant modifications.

R9 When type provider inference succeeds, a valid code will be re-
turned in the form of abstract syntax tree representation used by
the TypeScript compiler.

It can be expected that some type providers would need to perform operations
that can be performed in JavaScript only asynchronously. Reading from files can
be done in the Node.js environment synchronously (thanks to the custom native
implementation of the readFileSync function), but making HTTP requests, for
instance. does not have any synchronous method.

For this reason, the provider invocation mechanism should support both
synchronous and asynchronous providers that return a Promise instead of an

17

immediate value. The compiler needs to be able to wait for the completion of
the promise because the rest of the compiler pipeline cannot continue in the
background. Considering that the current TypeScript compiler is designed entirely
as a synchronous application, there might be significant issues with implementing
such support properly without a major rewrite. However, workaround solutions
should be investigated for the prototype implementation.

R10 Both synchronous and asynchronous type providers will be sup-
ported.

2.6 Error handling
It is expected that the compiler and the language service should never crash with
an uncaught exception just because it cannot deal with the user’s source code.
The intended method of error handling in the compiler is by emitting diagnostic
messages.

Type providers implemented as third-party compiler plugins create an unpre-
dictable source of run-time exceptions. The provider invocation mechanism needs
to be implemented defensively to prevent a faulty provider package from crashing
the compiler.

R11 No compiler crashes will occur due to type provider invocation. In
case the type provider crashes, the compiler will return a generic
diagnostic instead.

However, this does not mean that type provider must always succeed. The
provider must be able to return diagnostic messages in case of issues such as
invalid configuration and unavailable or malformed samples. As the diagnostic
message interfaces are already a part of the public compiler API, the providers can
create the necessary structures directly and pass them to the compiler, similarly
to generating code.

R12 Type provider will be able to return error diagnostics instead of
or in addition to the provided code.

2.7 Performance
The performance overhead of the general type provider mechanism must not
degrade developer experience. Specific type provider packages should be imple-
mented (and be able to be implemented) in such a way that provides a reasonable
upper bound on the execution time of each type inference operation. When no
type provider is used in the code base, there should be no performance regression
in the compiler or other parts of the tooling when compared to their versions
without type provider support. However, actual performance optimization is not
a priority for our prototype implementation.

R13 Adding support for type providers will not degrade compiler
performance on code that does not use type providers.

18

R14 The type provider mechanism itself should not introduce significant
performance regression. Ensuring reasonable final performance
and responsivity will be the responsibility of individual provider
packages.

2.8 Emitted JavaScript code
In order to execute TypeScript code, it has to be transpiled into JavaScript
first.1 This process is handled in the compiler by the transformer pipeline, which,
in a series of steps, removes all TypeScript-only constructs from the code and
optionally replaces JavaScript features unsupported by the target version of the
ECMAScript standard.

Because we are introducing a new kind of import statement with a new
TypeScript-only syntax, we need to add a new transformer step that removes the
provided syntax and leaves only a regular TypeScript import statement. The
rest of the transpilation should be able to proceed without any modification as
the imported values and types are used in the rest of the code as if they were
imported from an actual external module.

The user code will typically depend not only on provided static types but
also on generated run-time code. Therefore, the provided code also needs to be
transpiled into JavaScript and emitted along with the user code. The module
specifiers in the import statements for the provided code will need to be rewritten
so that they point to the correct emitted source files.

R15 TypeScript code using type providers will be transpiled into valid
JavaScript code. Any provider-specific syntax will be removed in
the process.

R16 Provided source code will be emitted and imported in the tran-
spiled user code so that provided functions and values can be
properly used during run-time.

Unlike in F#, which targets the .NET runtime, there is no need to implement
type erasing as a special feature for type providers [4], as TypeScript types are all
erased during compilation by default. However, there is a question if the compiler
should try to analyze the static imports and exports in the user code in order to
determine which run-time components of the provided code are actually used and
not emit unused code. Because the compiler does not perform this operation (also
called tree-shaking) on the regular code, we will not try to implement it for the
provided code.

In practice, the responsibility for removing unnecessary code can be delegated
to external bundlers such as Webpack [23] or Rollup [24]. Bundling in the context
of JavaScript means taking the contents of multiple files and merging them into a
single file, modifying names, and cross-references in order to preserve imports and

1There are multiple runtimes that, from the user’s perspective, support executing TypeScript
code directly (e.g. Deno or Bun.js). However, these runtimes are not supported for the
prototype implementation of type providers, because they internally use their own versions of
the TypeScript compiler which we are not able to modify.

19

exports and avoid conflicts. The compiler also has built-in bundling capabilities.
However, as this functionality can be used only for legacy module systems and
not with the current ESM and CommonJS systems, it will not be supported by
the type provider solution.

2.9 Extensibility
An important feature of type providers is the fact that although they are compile-
time components, they are not built into the compiler, and creating new providers
does not require modification of the compiler. To achieve this extensibility in
TypeScript, we need to follow the F# model of type providers as externally loaded
compiler plug-ins because TypeScript does not have compile-time metaprogram-
ming capabilities such as Idris [7] or Scala [8].

Currently, there is support for the TypeScript language service. However,
these plugins can only affect a limited number of code editor features, cannot
participate in type checking, and have no effect on the command line compiler
itself [25].

R17 Creating new type providers will be possible without requiring
additional modifications of the compiler or the language service.

The standard way to configure a JavaScript or TypeScript project, including
installing and versioning dependencies and managing the build output, is via the
package.json configuration file. This file is used by package managers such as
NPM and module loaders of runtimes such as Node.js. Type provider packages
should behave in this regard like regular packages distributed from a public or
private package repository. That is, users should be able to add a type provider
(or its specific version) to their project by specifying it as a dependency in the
package.json file or by executing an appropriate package manager command
such as npm install <provider-package-name>.

There are currently multiple competing package managers in the JS/TS
ecosystem, including NPM and multiple NPM-compatible solutions such as Yarn
and pnpm. For the purpose of the prototype implementation, we will only aim to
support NPM, as it is the most popular package manager and the native solution
for Node.js (our target runtime). However, other NPM-compatible managers
should work in practice as well.

R18 Type providers will be distributed and installed as regular NPM
packages. Execution of type providers will be supported when
running the compiler on Node.js.

It can be expected that typical type provider implementations will share a
non-trivial amount of code. Concerns such as loading samples, basic error handling,
caching of inference results, or creating AST for common TypeScript construct
could be reused between providers for different formats.

For this reason, we should implement a support library containing utility code
and a reasonable factory/builder API for creating additional type providers.

R19 A library will be implemented to facilitate the development of
type provider packages with a common sample-based workflow.

20

Apart from implementing the general type provider mechanism, several type
provider packages will be developed to showcase that the overall solution works
and to evaluate the requirements we specified in this chapter.

We selected CSV, XML, and JSON as the initial formats to work with for their
widespread use and different data layouts. Because JSON is a “native” format
in JavaScript (almost 1:1 mappable to a JS object), the JSON provider should
focus on generating useful run-time validation code instead of trivial parsing.
The run-time data-access code generated by the implemented providers will be
compatible with the Node.js runtime.

R20 Showcase type provider packages for CSV, XML, and JSON will
be implemented.

21

3. Solution documentation
This chapter presents the prototype implementation of the type provider mecha-
nism that was realized during the thesis.

First, we provide some background for the TypeScript compiler and describe
how we integrated the type provider feature. After that, we deal with the
implementation of type provider packages supported by our compiler.

The code artifacts for the thesis can be found in the attached ZIP file. See
Attachment A.1 for an overview of the submitted files.

3.1 Compiler integration
The TypeScript compiler is an open-source project maintained by Microsoft [26].
It is itself written in TypeScript and is typically used in two modes. First, as a
batch command-line Node.js application (invoked by the tsc command). Second,
as a long-running service with a JSON API (the tsserver program) used by a
code editor to provide IDE features to the user.

In the abstract, the architecture of the core TypeScript compiler can be
described as a traditional linear pipeline illustrated in Figure 3.1:

• The program gathers the files to be compiled by starting from a set of root
files and transitively following their static imports.

• The scanner splits the input source text into tokens.

• The parser takes the tokens and builds up the abstract syntax tree while
reporting syntax errors.

• The binder takes the AST and creates tables of Symbols that bind together
different locations related to the same declaration.

• The checker takes the Symbol tables and performs static type checking on
the AST.

• The transformers rewrite the AST to remove or replace syntax unsupported
by the target version of JavaScript.

• The emitter writes the AST into a source text.

Figure 3.1 An abstracted view of the compiler pipeline

22

The actual implementation of the current compiler is organized quite differently
and follows a “pull-based” rather than “push-based” model [27, 28]. This means,
for example, that the emitter drives the checker, which drives the binder. All
operations are performed as on-demand, potentially partial tree walks over the
mostly stateless AST. This design is motivated by the goal of supporting the
language service and advanced IDE features rather than the high throughput of
the batch command line compiler.

3.1.1 Inserting the type provider mechanism
The key question for implementing type provider support is how do type providers
fit into the existing compiler architecture described in the previous section. Can
we somehow insert the mechanism into the current pipeline without a significant
rewrite of the compiler? And if so, in what part of the pipeline?

The most promising approach seems to be to treat type providers as a virtual
source of parsed AST and feed that AST into the later phases of the compiler.
This is based on the following reasoning:

1. Ultimately, our goal is to both type check code that uses provided types
and emit the actual provided code so that it can be used during run-time.

2. The checker uses the AST heavily – both directly and indirectly via the
Symbol tables produced by the binder, which are, in turn, built from the
AST. If we wanted to provide the internal Type representations instead of
AST, we would likely need to introduce a significant amount of alternative
code paths in the checker that do not depend on existing AST.1.

3. The emitter and the transformer pipeline work exclusively with AST. There-
fore, we would still have to synthesize the AST at some point.

4. Implementing type providers as generators of AST also means (as discussed in
Section 2.5) that type providers can work with the already public parts of the
compiler API and do not require exposing additional internal functionality.

Because the checker and the emitter are designed around SourceFile nodes
as the basic input unit of work, it makes sense to design type providers with the
SourceFile as the output unit of work. This is also supported by our proposed
provided import syntax (presented in Section 2.3).

Currently, SourceFile nodes get introduced in the pipeline either as a result
of parsing a root file or when processing imports of the current file. Therefore,
we can generally treat provided imports as regular imports until the point where
the regular workflow tries to retrieve the SourceFile node of an imported file.
Normally, a source file is loaded from the disk and parsed into AST, or a previously
parsed SourceFile node is retrieved from a cache. We can use the information
that the import is provided (which we know unambiguously from the use of the
provided modifier) and instead return a virtual SourceFile created by the type
provider.

1For context, the checker is by far the most complex component of the compiler with over 50
thousand lines of code currently [29]

23

3.1.2 Adding provided imports
As discussed in Section 2.3, we introduced a new syntax to TypeScript for specifying
provided imports. The provided import declaration looks like this:

1 import provided * as Xml from "xml-provider" with { sample: "..."
};

Adding support for this new construct has been straightforward. We modified
the parseImportDeclaration function in the parser to add a look-ahead check
for the presence of the provided modifier keyword. If the keyword is found, the
isProvided flag is set on the ImportDeclaration node. We decided to add the
flag instead of defining a new kind of node because, in most contexts, the provided
import should be handled the same way as a regular import declaration.

We also modified the ImportAttributes interface and type checking for the
respective AST node to allow for non-string values in the import attributes object
literal (the with { ... } block). This allows for passing string, numeric, and
boolean option values.

The isProvided flag on the ImportDeclaration node is used later when
collecting a list of imported modules for the source file containing the import
declaration. We treat the import mostly the same as an import from the actual
type provider package. However, when the compiler tries to retrieve the declaration
file for the provider package, instead of loading the physical file from disk and
creating AST from that with the parseSourceFile function, we defer to the type
provider mechanism by calling the createProvidedSourceFile function.

When handling the provided SourceFile and the virtual module it represents,
we uniquely identify it with a special import hash. We compute this hash based
on the name of the provider package, the content of the import attributes of
the provided import statement, and the directory path containing the importing
source file. We use these values to ensure that multiple provided imports with
different configurations (or with different relative path bases) get treated as
different modules while provided imports with the same configuration get reused.

3.1.3 Type provider invocation
When a provided source file is requested through the createProvidedSourceFile
function, the following actions take place in our invoker module:

1. Name of the provider package and path to its entry point file are resolved.

2. The type provider module is dynamically loaded using the require function
of the Node.js module loader. (The modules are loaded only once and then
cached.)

3. The invoker checks if the module’s exports contain at least one of the
functions provideSourceFileSync or provideSourceFileAsync (in this
order of priority).

4. The provider function is called in a try/catch block. The invoker passes in
import options read from the ImportAttributes block of the ImportDec-
laration block and information about the compilation context.

24

Code Listing 3.1 The type provider interfaces
1 export interface SyncTypeProvider<TOptions extends object> {
2 provideSourceFileSync(options: TOptions, context:

ProviderContext): TypeProviderResult
3 }
4

5 export interface AsyncTypeProvider<TOptions extends object> {
6 provideSourceFileAsync(options: TOptions, context:

ProviderContext): Promise<TypeProviderResult>
7 }
8

9 export interface ProviderContext {
10 importingFilePath: string;
11 importHash: string;
12 runtimeTarget?: "browser" | "bun" | "deno" | "node";
13 }
14

15 export interface TypeProviderResult {
16 sourceFile?: SourceFile;
17 generalDiagnostics?: DiagnosticMessage[];
18 optionDiagnostics?: Map<string, DiagnosticMessage[]>;
19 requiresAsync?: boolean;
20 }

5. The provider can return a SourceFile AST node with the provided code and
a list of diagnostics to be passed to the user to indicate issues encountered
by the provider (e.g., unavailable sample).

6. The provided source file (if any) is returned to the compiler.

We omitted error checking, which is performed between each step. If the
provider module cannot be loaded, does not satisfy the expected interface, or
throws an error during execution, the invoker creates an error diagnostic displayed
on the provided import declaration. The same is done when the provider call
succeeds but returns diagnostics produced by the type provider.

The TypeScript interfaces specifying the API between the compiler and the
type providers are shown in listing 3.1.

3.1.4 Transformers and emitting JavaScript
Unlike other compilers, the TypeScript compiler does not produce machine code or
byte code but a JavaScript source text. Because TypeScript is mainly designed as
a syntactic superset of modern JavaScript, this process is done in a series of AST
rewrites performed by modules called transformers, followed by simple printing of
the final AST.

A new transformer was added to the existing pipeline to handle the provided
import statements. This transformer gets executed second in the pipeline, after

25

the basic transformer responsible for erasing TypeScript-only features. We chose
this order because the TypeScript transformer also handles erasing unused and
type-only imports. This way, we don’t have to differentiate the two or remove
potentially empty imports.

The type provider transformer does three things:

1. Removes the provided modifier keyword.

2. Removes the import attribute block containing provided import options
(ImportAttribute node in the AST).

3. Rewrites the module specifier of the import (the reference in double-quotes)
so that instead of the name of the type provider package (e.g., "@ts-pro-
viders
/csv"), it contains a relative path to the correct emitted file containing the
imported provided code.

The path written into the import specifier in the third step is resolved based
on the relative path of the transformed TypeScript source file in the compilation’s
rootDir. This is done because we emit the provided source files into a subdirectory
named "_provided" under the compilation’s outDir.

Each emitted provided source file uses its import hash (see 3.1.2) as the file
name. We also add one of the extensions .mjs or .cjs depending on the target
module system (ESM or CommonJS, respectively).

3.1.5 Open issues
This section briefly discusses two issues that need to be resolved in a production-
ready, non-prototype implementation of type provider support.

Source file management

Our solution integrates the type provider mechanism into the compiler pipeline
by resolving module imports based on provided import statements using virtual
SourceFile nodes instead of parsing physical source files stored on the disk.
However, in several subsystems of the compiler, it is assumed that each source file
is uniquely identified by a string representation of its path in the host file system,
for example, for caching).

We want to properly support multiple simultaneous provided imports or a
combination of provided and non-provided imports from the same type provider
package. Therefore, we need to do one of the following:

1. Modify or substitute all relevant subsystems to not rely on file system paths
file identifiers in case of provided source files.

2. Give unique names to the provided source files to be as compatible with the
existing code as possible.

We spent a significant amount of time trying to implement the first variant.
However, it has proven to be too large of a change for the limited scope of our

26

thesis. Consequently, we implemented a unique naming pattern for the provided
files. We modified the existing code only so that it does not try accessing the
non-existing files in the file system.

The naming pattern used in the current prototype is as follows:
1 Provided|{file path of the provider package entrypoint}|{import

hash}

This solution works rather well during batch compilation with the command-
line compiler. Each provided import is resolved only once. When the user’s
code contains multiple provided imports with the same options and context, the
provided SourceFile gets reused.

However, when running in the language server mode, there are remaining
issues with source file management that forced us to disable the language service
capabilities for incremental parsing. This leads to more full regenerations of the
provided SourceFile and, therefore, more invocations of the type provider than
needed. With inference caching implemented in the type provider, the developer
experience is not hindered, at least for the size of the codebases that we tested.
However, this is still an apparent inefficiency that should be avoided and probably
limits the solution’s scalability to large code bases and data samples.

Asynchronous provider invocation

Certain operations, particularly network operations (HTTP requests, database
queries, etc.), do not have synchronous (blocking) implementations in JavaScript
runtimes such as Node.js. The core TypeScript compiler is designed and imple-
mented as an entirely single-threaded, synchronous application. This means it is
impossible to support asynchronous type providers (that return a Promise instead
of an immediate result) without some workaround.

Due to its fundamentally single-threaded runtime model, JavaScript supports
asynchronous execution only via sequentially processed event loop [30]. This
means that a caller cannot simply wait for the result of an asynchronous operation,
as that would block the processing of the event loop. This is true regardless if the
asynchronous operation is done via traditional callbacks, with the ES6 Promise
API, or with async/await.

The only functional solution with an acceptable performance overhead that
we found is using the deasync package (or some variant of the same approach).
The deasync package is loaded as a native Node.js plugin. It exposes the ability
to interact with the native event loop processing in Node.js to the interpreted
JavaScript code. Using that, it is possible to block the caller from continuing
without stopping the entire event loop.

However, deasync and similar Node.js plugins have been described as unsafe
and unsupported [31]. Depending on such a method (that can be broken in future
Node.js versions) in a production release is not feasible for a project such as the
TypeScript compiler.

We experimented with invoking the asynchronous type provider in a Node.js
worker thread [32] and waiting for the result using Atmomics.wait [33]. However,
due to the need to serialize and deserialize arguments and results (and possibly
inherent inefficiency in the worker thread mechanism), this solution has been

27

shown to have too much performance overhead to be viable. However, further
investigation should be done in this regard.

28

3.2 Provider implementation
In the previous section, we discussed infrastructural support for type providers
in the compiler. We also specified the interface that the compiler expects each
type provider to implement (see Section 3.1.3). In this section, we move to the
implementation concerns of the providers themselves.

We first discuss several common tasks that a typical provider needs to handle,
such as retrieving samples, code generation, and caching. We present the Core
library created to support the implementation of such providers.

In the rest of the section, we describe three provider packages that we imple-
mented to showcase and evaluate the solution’s viability. We discuss the inference
algorithm and code generation specifics of each provider. We chose CSV, XML,
and JSON as the showcase formats for their wide use and reasonably different
structure.

All of the example providers were implemented using the Core provider builder
and share the same infrastructure described in Section 3.2.1.

3.2.1 Core library
The Core library is distributed as a standalone package @ts-providers/core. It
contains a collection of utility types and functions that can be used to streamline
the implementation of type provider packages. Some of these can be used sep-
arately, including utilities for naming conversions, primitive value parsing, and
gathering diagnostics.

Provider builder

The main feature of the library is the provider builder. The builder’s API
consists of a generic interface BasicProviderFunctions and a factory function
createBasicBuilder that, given a small set of functions, constructs the complete
type provider implementation.

We used the provider builder to implement all three of our showcase type
providers. Code listing 3.2 illustrates the use of the builder to implement the
JSON-Zod provider. A step-by-step tutorial for using the builder to create a new
type provider is given in Section 4.3.

Code Listing 3.2 Using the provider builder
1 const providerFunctions:

BasicTypeProviderFunctions<BasicTypeProviderOptions,
JsonTypeDescriptor> = {

2 infer: (textInput: string): JsonTypeDescriptor => {
3 const parsed = JSON.parse(textInput);
4 return inferJsonTypeDescriptor(parsed);
5 },
6 generateCode: (rootType: JsonTypeDescriptor) => [
7 ...generateImports(),
8 generateSchema(rootType),
9 generateTypeExport(),

10],

29

11 }
12

13 export const JsonZodTypeProvider =
createBasicTypeProvider(providerFunctions);

The provider implementation created by the builder takes care of several shared
concerns.

Loading samples

The provider implementation supports inline samples, file-based samples, and
HTTP-based samples. Files are read using the fileReadSync function from
the node:fs namespace. HTTP samples are retrieved using the fetch API
supported since Node 18. Note that the builder generates both a synchronous and
asynchronous variant of the provider function. However, only the HTTP sample
is loaded asynchronously to avoid the overhead of the compiler actively waiting
for the result of an asynchronous operation.

Error handling

The provider implementation emits a set of standard diagnostic messages covering
situations such as missing sample configuration or errors during sample retrieval.
The individual provider can add its own diagnostics (see below).

Caching

The provider’s inference results are cached and reused in further provider invoca-
tions. The import hash (see Section 3.1.3) is used as the basis for the cache key.
This ensures proper invalidation for provided imports with inline samples (as those
are included in the hash). For file-based samples, the provider implementation
adds the last modification timestamp of the file so that the inference is re-run
when the sample file changes.

The builder interface

The createBasicProvider function expects an instance of the BasicTypeProvi-
derFunctions interface. This interface has two generic type parameters:

1. Model type for the options supported by the type provider. The built-in
BasicTypeProviderOptions interface can be used if no additional options
are needed. It contains standard options for specifying the sample as a
string, file path, or HTTP URL.

2. Type of the object produced by the infer function and consumed by the
generateCode.

In order to satisfy the interface, these functions need to be implemented:

• infer — This function receives the sample content as a string and returns
an instance of the generic InferenceResult type. When successful, this
result is cached in the provider-local cache.

30

• generateCode — This function receives the inference result that has been
either newly produced by the infer function or retrieved from the cache.
Based on the result, the function generates the provided code as an array of
statement AST nodes.

• parseCustomOptions — When a provider uses custom import options, this
function needs to be implemented to parse these options and set default
values for options not set in the provided import statement.

Each function is also given an instance of import options, the provider context
record (see Section 3.1.3), and an instance of DiagnosticCollector that can be
used to emit diagnostics that will be returned to the compiler once the provider
finishes or one of the functions indicates irrecoverable failure by returning an
undefined value instead of its result.

3.2.2 Code generation
Regardless if a type provider is implemented using the builder API or from scratch,
a key functionality it needs to handle is generating TypeScript code in the form of
abstract syntax tree nodes defined by the public compiler API [34]. The compiler
API exposes both the interfaces for various AST nodes and factory functions
for creating the nodes. Code listing 3.3 shows an example of using the factory
methods to construct AST for a simple TypeScript statement.

Code Listing 3.3 Constructing AST with compiler API
1 import { factory, NodeFlags } from "typescript";
2

3 // This creates the statement: const answer = 42;
4 const node = factory.createVariableStatement(
5 undefined,
6 factory.createVariableDeclarationList(
7 [factory.createVariableDeclaration(
8 factory.createIdentifier("answer"),
9 undefined,

10 undefined,
11 factory.createNumericLiteral("42")
12)],
13 NodeFlags.Const
14)
15);

The AST nodes are designed to be generally immutable, and most of their
fields are declared as readonly. The factory methods therefore need to be able to
set all of the node’s fields to account for all possible configurations. Due to this,
they are often needlessly verbose for common scenarios. From our experience, this
verbosity quickly adds up as the complexity of the code to be generated grows.

For this reason, we implemented a set of helper functions for the most common
operations, such as creating primitive type literals, variable or property assign-
ments, type nodes, and so on. These functions are exported by the Core library
in the factoryHelper object.

31

Developers of type providers can also utilize the ts-morph library [22], which
implements a convenient builder API for creating TypeScript AST. It also exposes
the compiler’s parsing capabilities and lets you create AST from a string. (This
feature is also possible with the official compiler API, albeit in a rather contrived
way.)

In some situations, constructing AST from a string can be a significantly more
user-friendly approach than using the factory methods. The developer can simply
write a template for the resulting code and fill it with dynamic values such as
identifiers and value literals. However, we performed a rudimentary performance
comparison between the factory method-based and string-based approaches in
which the latter were shown to be about 20 to 50 times slower, or single digits of
milliseconds vs tens of milliseconds in absolute numbers for our benchmark AST.
More rigorous evaluation should be done. However, the difference was significant
enough for us to opt for factory methods when implementing our showcase type
providers.

Generating interfaces

Generating interfaces or type alias declarations is a common requirement for type
providers. Depending on the complexity of the types, particularly the level of
nesting, it can become quite complex when using the compiler API. For this reason,
the Core library exports another abstraction in the form of TypeDescriptor and
DeclarationDescriptor classes. These types can be used to build a simplified
intermediate tree representation of types. The tree is then able to create its
matching TypeScript AST signature recursively.

3.2.3 CSV provider
The first implemented type provider is for the CSV data format. The provider is
distributed in the @ts-providers/csv package. Its use is documented in Section
4.2.3.

CSV (Comma-separated values) is a simple plain text format for tabular data
[35]. It is commonly used for transferring data between systems and databases
or in data science. When working with CSV data in a TypeScript program, it is
natural to parse it as a sequence or array of row records.

The CSV type provider tries to facilitate access to the CSV data that is both
type-safe and practical. It infers the most specific type for each column based on
the values seen in the sample. From this, the provider generates a TypeScript
interface describing an individual row record and a set of data access functions
that can be used to load and parse CSV files with compatible data. The data is
validated when read to ensure that the run-time types match the inferred static
types.

Figure 3.2 shows a provided CSV type supporting the autocomplete feature in
VS Code.

Inferring row type

When trying to infer types for CSV data, a few facts need to be considered:

32

Figure 3.2 Autocompletion of members from inferred CSV type

• The CSV format itself does not carry explicit typing information.

• All values are implicitly strings. There is no standardized syntactic difference
between e.g. string, numeric, or boolean values.

• The columns can be optionally labeled using the first row as a header.

• Rows can have missing values in any of the columns.

• There are competing conventions for representing special values. For example,
booleans are sometimes represented by a pair of special values such as
"true"/"false", "Y"/"N", "1"/"0", and so on.

We decided to implement a pragmatic inference algorithm similar to [6]. The
algorithm determines the most specific type for each column that can be used to
safely represent all values seen in the sample data for that column.

CSV kind TS type Allowed values
Bit boolean One of “1” or “0”
Bool boolean One of “true”, “false”, “y”, “n”, “yes”, “no”
Int number Returns true for Number.isSafeInteger
Float number Does not return NaN for Number constructor
BigInt bigint Does not throw for BigInt constructor
Date Date Valid ISO 8601 date string
String string Any string

Table 3.1 Mapping of CSV values to TypeScript types

Table 3.1 shows the supported CSV value kinds and their mapping to Type-
Script types. During inference, we consider each column to have one of the kinds
based on the values seen so far. We go through all of the sample rows, and we
check whether the column’s current kind is compatible with the value in the
current row. If not, the column kind can change according to the relation rules
shown in Figure 3.3.

Note that the String kind represents the top type of the hierarchy. That is,
any column can be inferred as a String, and once a column is inferred as such,
the result cannot change.

A column is considered nullable if some sample row contains a null value,
where by convention, we consider as null not only an empty string but also a set
of special strings (e.g. "null", "n/a").

It should be noted that the current parsing code for the CSV provider does
not account for situations such as separator characters inside quoted values. For

33

Figure 3.3 Relation between the value kinds for CSV type inference algorithm

production use, we would replace our demo implementation with a more robust
one or use an existing library.

Code generation

After successful inference, the CSV provider generates TypeScript AST for the
following components:

• A Row interface declaration. For each column from the sample, there is a
matching field with the type inferred for that column. Names of fields are
converted to camel case (unless disabled by import option). If the sample
did not have a header row, dummy names "column$n" are used instead.

• A parseRow function declaration. The function handles parsing string values
from CSV input according to the inferred column types and throws an error
for incompatible values.

• A header array declaration containing name mapping for known columns
from the sample. This allows reading data files with different order of
columns or with additional columns.

• A provider object declaration. The provider is an object that contains all
of the generated data access functions. It is created during run-time when
the provided module is loaded using a factory function. This significantly
decreases the amount of code that needs to be generated code as the factory
functions are contained as actual code in the provider package itself.

• An import statement that imports the external functions and types used in
the generated code.

Code listing 3.4 contains an example of code generated by the CSV provider
from a file-based sample.

34

Code Listing 3.4 Example of code generated by the CSV provider
1 import { createProvider, valueParser, type CsvProvider, type

CsvColumnMapping } from "@ts-providers/csv";
2 export interface Row {
3 item: string;
4 amount: number;
5 isBlue: boolean;
6 }
7 export const header = [
8 { name: "item", originalName: "Item" },
9 { name: "amount", originalName: "Amount" },

10 { name: "isBlue", originalName: "Is blue" }] as const;
11 export const provider: CsvProvider<Row> = createProvider(parseRow,

",", "utf8", header, "../data/01.csv", undefined, undefined);
12 function parseRow(row: string[], rowIndex: number, columns:

CsvColumnMapping[]): Row {
13 return {
14 item: valueParser.parseString(row[columns[0].position],

columns[0].position, rowIndex, columns),
15 amount: valueParser.parseCsvValue(valueParser.parseInt, row,

columns[1].position, rowIndex, columns),
16 isBlue: valueParser.parseCsvValue(valueParser.parseBool, row,

columns[2].position, rowIndex, columns)
17 };
18 }

3.2.4 XML provider
The second implemented type provider is for the XML data format [36]. The
provider is distributed in the @ts-providers/xml package. Its use is documented
in Section 4.2.3.

XML (eXtensible Markup Language) is a plain text data format that represents
data in a hierarchical structure of elements. It is widely used for serialization, data
transfer, and configuration files. An XML document is a rooted tree of tag-based
elements which can contain attributes and nested child elements.

The XML type provider aims to provide a more JavaScript-native interface
to access XML data. It does that by parsing the XML tree into a record with
properties representing the element’s attributes and child elements. From this,
the provider generates a set of TypeScript interfaces describing the elements in
the sample, and a set of data access functions that can be used to load and parse
compatible XML documents. The data is validated when read to ensure that the
run-time types match the inferred static types.

It should be noted that the XML provider infers the type from samples of
actual XML documents and does not rely on any schema for XML, such as XML
Schema [37].

35

Inferring XML document shape

The XML type provider tries to represent the tree of XML elements as a tree of
TypeScript objects. However, there are innate differences between the representa-
tions that need to be solved.

Firstly, an XML element has two separate groups of “properties”, attributes,
and nested child elements. One option would be to merge these together as fields
of the TypeScript type. However, this could lead to name conflicts (requiring name
mangling) and would mean that the user loses potentially valuable information,
whether some property comes from an attribute or a sub-element. For this
reason, we store the attributes into a special attributes field (with backup name
mangling). Child elements are stored as regular top-level fields.

Secondly, an XML element can have multiple child elements with the same
name. This means we cannot simply use the child element name as a key in the
parent record. We deal with this by checking whether, in some occurrence of the
parent element in the sample document, it contained multiple instances of said
child element. If not, we represent the child in the parent element’s TypeScript
type as a simple field with the child’s recursively inferred type. If yes, we represent
the child as an array field.

The solution with arrays creates an interesting problem for run-time validation.
If an element E contained only a single instance of child C in the sample data,
we infer it as a simple, single-value field in the parent. What should happen in
the run-time if we read a different document that has an element E with multiple
child instances of C?

One way to deal with this would be to violate the static type guarantees and
load the children into an array. A different solution would be to honor the static
typing and only read the first encountered instance of C and discard the rest.
Both of these solutions have downsides that we consider too significant. Therefore,
in such a situation, we load the first instance of C into the appropriate field c,
and we load the other instances of C into a special field with the mangled name
#c. This field is guaranteed not to collide with other fields because XML names
cannot contain the character #, but it can be accessed in JavaScript using the
brackets operator. Although this is not an optimal user experience, it does not
violate type safety, and the user can still check and access the full data.

Similarly to the CSV provider (see Section 3.2.3), we also infer the most
specific type for values of attributes and simple (leaf) elements. Table 3.2 shows
the supported CSV value kinds and their mapping to TypeScript types. The
relationships between the value kinds are illustrated by Figure 3.4. An attribute
or element is considered optional if it does not occur in all instances of an element
E in the sample. All attributes and children of the root element are optional
because there would be no way how to represent their optionality in the sample.

The XML provider uses a third-party library xmldoc [38] to handle the parsing
of the raw text input into a tree structure of string-typed nodes. However, the
inference process described here is performed fully by our code.

Code generation

After successful inference, the XML provider generates TypeScript AST for the
following components:

36

Figure 3.4 Relation between the value kinds for XML type inference algorithm

XML kind TS type Allowed values
Boolean boolean One of “true” or “false”
Int number Returns true for Number.isSafeInteger
Float number Does not return NaN for Number constructor
BigInt bigint Does not throw for BigInt constructor
Date Date Valid ISO 8601 date string
String string Any string

Table 3.2 Mapping of XML values to TypeScript types

• A set of interface declarations named after elements found in the sample.
For each attribute and child element of an element, there is a matching field
with the type inferred for that attribute or child. Names of types and fields
are converted to Pascal case and camel case, respectively (unless disabled
by import option). If an element only appears as a leaf in the sample, it is
inlined in its parent elements and does not get its own interface.

• A typeMap object declaration. This object stores a subset of information
from the inference process that can be used to validate the structure and
types of an XML document during run-time parsing.

• A provider object declaration. The provider is an object that contains all
of the generated data access functions. It is created during run-time when
the provided module is loaded using a factory function. This significantly
decreases the amount of code that needs to be generated code as the factory
functions are contained as actual code in the provider package itself.

• An import statement that imports the external functions and types used in
the generated code.

Code listing 3.5 shows an example of code generated by the XML provider
from an inline sample.

Code Listing 3.5 Example of code generated by the XML provider
1 import { createProvider, type XmlProvider } from

"@ts-providers/xml";

37

2 export interface Library {
3 book?: Book[];
4 }
5 export interface Book {
6 attributes: {
7 read?: boolean;
8 };
9 title: string;

10 pages?: number;
11 }
12 export const typeMap = {
13 library: {
14 children: { book: { isArray: true } }
15 },
16 book: {
17 attributes: { read: { valueKind: 1 } },
18 children: { title: { isRequired: true }, pages: {

valueKind: 2 } }
19 },
20 title: {},
21 pages: {
22 valueKind: 2
23 }
24 };
25 const inlineSample = "<library><book

read=’true’><title>Odyssey</title><pages>300</pages></book><book><title>Illiad</title></book></library>";
26 export const provider: XmlProvider<Library> =

createProvider(typeMap, false, false, "utf8", "", undefined,
inlineSample);

3.2.5 JSON-Zod provider
The third implemented type provider is for the JSON data format [39]. It is
distributed in the @ts-providers/json-zod package. Its use is documented in
Section 4.2.3.

The JSON (JavaScript Object Notation) format has a special position in the
JavaScript and TypeScript ecosystem. Since JSON’s implicit type system is a
subset of the JavaScript type system, parsing JSON into JavaScript objects is
straightforward and is covered by the standard JSON.parse function. Modern
implementations of JavaScript also support statically importing JSON documents
as object literals using the ESM import syntax. TypeScript is then able to infer
the static type of such document as shown in code listing 3.6.

Code Listing 3.6 Native static import of JSON
1 import MyData from "./my-data.json" with { type: "json" };
2

3 type MyDataType = typeof MyData;

38

This makes implementing a JSON type provider in the same style as we did
with CSV and XML obviously less useful. However, these features only cover static
imports of JSON files and do not cover dynamic loading or provide any run-time
validation. Because JSON is commonly used for transferring data between clients
and services, run-time validation is a very important issue. The standard solution
is to use one of the mature run-time validation libraries such as ajv [40] or Zod
[41].

The Zod library is notable for its ability to infer the static type of the validated
object from the schema object (see line 16 in code listing 3.7) using just the
built-in type inference capabilities of TypeScript. This avoids the redundancy of
writing both the target type and the validation schema. Code listing 3.7 shows
how one can use the Zod library [41] to define a schema for a JSON document
and validate an object with the schema.

Code Listing 3.7 Validating JSON data with a Zod schema
1 import { z } from "zod";
2 const librarySchema = z.object({
3 libraryName: z.string(),
4 location: z.object({ city: z.string(), country: z.string() }),
5 books: z.array(
6 z.object({
7 title: z.string(),
8 author: z.string(),
9 year: z.number(),

10 inStock: z.boolean()
11 })
12),
13 tags: z.array(z.string())
14 });
15

16 type Library = z.infer<typeof librarySchema>;
17

18 const value: Library = librarySchema.parse(...);

The Zod library is notable for its ability to infer the static type of the validated
object from the schema object (see line 16 in code listing 3.7) using just the
built-in type inference capabilities of TypeScript. This avoids the redundancy of
writing both the target type and the validation schema.

However, with type providers, we can do better than that and generate the
schema itself from a representative sample. In this way, type providers can utilize
the potential of existing libraries while increasing their productivity.

To demonstrate such an approach, we implemented the JSON-Zod type provider
(available in the @ts-providers/json-zod package). This provider reads a sample
of JSON data and generates a Zod schema that can be used to both statically type
and run-time validate JSON data. Code listing 3.8 shows usage of the JSON-Zod
provider.

Code Listing 3.8 Using the provided JSON schema

39

1 import provided { schema, SchemaType as Library } from
"@ts-providers/json-zod" with { sample: "./libraries.json" }

2

3 const value: Library = librarySchema.parse(...);

Inferring JSON document shape

Thanks to the inherent compatibility of type representations in JSON and Type-
Script, the inference solution in the JSON-Zod provider is notably simpler than
in the previous two cases. The provider uses the standard JSON.parse function
to read the specified sample. Then it recursively walks through the parsed object,
checks the run-time type of each element with the typeof operator, and builds
up an intermediate tree representation of types. For object fields, it separately
handles nested objects, arrays, and null literals. We also check strings as possible
(ISO 8601 formatted) Date values.

Later a second tree walk is performed on the type tree, which is used to
generate the TypeScript AST, which represents the Zod schema declaration. The
schema and the inferred type of the validated object are then provided to the
user. Unlike the other two providers we intentionally do not generate data access
functions in the JSON-Zod provider. Parsing and validation can be performed
using a combination of the standard JSON.parse function and the provided schema.
Retrieving the data itself can be done by the user’s preferred means for the runtime
environment they are targeting. As a consequence, unlike our other two providers,
the JSON-Zod provider is fully compatible with all modern JavaScript runtimes
and browsers.

40

4. User documentation
This chapter contains an overview of how to use individual parts of the solution.
First, we give instructions for setting up the development environment to use the
type provider-enabled TypeScript compiler on the command line and in Visual
Studio Code. Then we describe the use of the implemented type provider packages.
Lastly, we show how to implement a new type provider package in the form of a
step-by-step tutorial.

4.1 Using the modified compiler and language
service

To run the modified TypeScript compiler, first install the Node.js runtime following
the instructions at https://nodejs.org/en/download/. Our fork of TypeScript
5.5 has been tested on Node 20 LTS, however, any version since Node 18 should
suffice. The installation also comes with the NPM package manager CLI.

Any operating system platform supported by the Node runtime should be
compatible with the compiler. However, testing was performed only on Windows
10 x64.

4.1.1 Getting the compiler
In this section, we describe three methods of installing and using the modified
TypeScript compiler.

Local NPM installation (recommended)
To use the compiler in a specific TypeScript/JavaScript project, you can install it
as a normal NPM package:

1 npm install --save-dev @ts-providers/compiler

This adds the modified TypeScript distribution to the devDependencies
section of the project’s package.json file (or creates such file first if in an empty
directory).

You can now use the tsc-providers command in the context of the project.
This is a renamed variant of the standard tsc command from the mainline
TypeScript distribution and has the same set of options (see documentation [42]).
In the project directory, you can either:

• Invoke the compiler directly using npx tsc-providers,

• Use tsc-providers in commands defined in the scripts section of
package.json. For example, you can set up a ‘build‘ script for your project
and call it with npm run build as shown in listing 4.1.

To get more information about setting up JavaScript and TypeScript projects
in general, including the package.json and tsconfig.json files, please consult
the documentation [43, 44]. You can use the configuration in listing 4.2 as a start.

41

https://nodejs.org/en/download/

Code Listing 4.1 Example of a minimal package.json configuration
1 {
2 "name": "my-project",
3 "devDependencies": {
4 "@ts-providers/compiler": "^5.5.3-providers-v13",
5 },
6 "scripts": {
7 "build": "tsc-providers -p tsconfig.json"
8 }
9 }

Code Listing 4.2 Example of a minimal tsconfig.json configuration
1 {
2 "compilerOptions": {
3 "target": "ES2020",
4 "module": "NodeNext",
5 "moduleResolution": "NodeNext",
6 "declaration": true,
7 "outDir": "./dist" // Always set outDir with type providers
8 },
9 "include": ["src/**/*.ts"]

10 }

42

The only key setting in tsconfig.json is outDir which has to be set in
order for the type providers to emit run-time code. If you only care about
static type checking, you do not need it.

Note that you should use NPM to install the compiler package, even if you are
using a different compatible runtime such as Bun.js [45]. This is to ensure that
the install scripts of the compiler’s dependencies are executed. Bun’s package
manager, in particular, is known to disable these unless overridden with a special
configuration.

Global NPM installation
You can also make the command tsc-providers available globally by executing:

1 npm install -g @ts-providers/compiler

Because the compiler binary has been renamed to tsc-providers, it can be
installed alongside the standard TypeScript compiler, which is invoked using the
tsc command.

Build from source
To build the compiler locally from the source, simply enter the compiler directory
in the Attachment and execute:

1 npm install
2 hereby local

The build output can be found under the built/local subdirectory. Executing
node ./build/local/tsc.js runs the same program as the one distributed in
the NPM package.

To compile a single file, you can then invoke the compiler like this:
1 node ./build/local/tsc.js ../path/to/some/source/file.ts

To compile an entire TypeScript project, run:
1 node ./build/local/tsc.js -p ../path/to/some/project/tsconfig.json

4.1.2 Setting up Visual Studio Code
As mentioned previously, the only supported IDE currently is the Visual Studio
Code [46]. Other editors compatible with the TypeScript Language Server might
work but have not been tested.

Visual Studio Code has built-in support for TypeScript, which comes with its
own TypeScript installation. This means that when you are editing TypeScript
source files, the editor is by default using the language service from a different
installation than the one you might be using to build your project (typically
installed as a local development dependency, see Local NPM installation above).

In order for VS Code to use the locally or globally installed modified compiler,
you have to do two things.

First, create or modify the file .vscode/settings.json under the root of
your workspace and add the following options:

43

1 "typescript.tsdk": "./node_modules/@ts-providers/compiler/lib",
2 "typescript.enablePromptUseWorkspaceTsdk": true

Second, restart the editor and open any TypeScript file in the project. Accept
the pop-up prompt that should appear in the bottom-right corner asking you if you
want to switch the editor to use the workspace version of TypeScript. Alternatively
(or if the pop-up does not appear), open the command menu (by default bound to
the key F1) and find and press the command TypeScript: Select TypeScript
version..., then select the Use Workspace Version option. In both cases, the
version indicated should be labeled 5.5.3-providers-v....

If you have issues with the compiler not being available, please run
npm install first and restart VS Code.

Note on incompatible VS Code extensions
During later testing, we found that the Vue - Official extension is incompatible
with our modified language service and causes it to malfunction (even if the project
does not use Vue at all). We have not been able to determine the cause of this
conflict. We can’t also rule out that there are other extensions with similar issues.

If you can compile source files with provided import on the command line
but see errors with provided imports in VS Code (in particular with the message
“Module could not be loaded as type provider...”), please check whether you have
the Vue extension (or similar TypeScript related extension) installed, and please
check if uninstalling the extension resolves the issue.

4.2 Using type provider packages
Once the development environment is set up, you can start to use existing type
provider packages. There are some requirements for the configuration of TypeScript
projects that want to use type providers. We specify these in the following section.
Then we describe the provided import syntax and give an overview of provider
options supported by the three implemented type providers (CSV, XML, and
JSON-Zod).

To see the type providers in actual use, you can check the example projects in
the examples directory. There are two applications per each implemented type
provider, each of them showcasing a different data processing scenario which is
described in the project’s readme.md file.

4.2.1 Installing type providers
Type providers are distributed as regular NPM packages that can be added to a
project using the standard npm install command.

If your project uses run-time code from the type provider (e.g. a provided
loadFile function), you should add the type provider package as a regular depen-
dency and not as a development dependency. This means that you should run npm
install and not npm install -save-dev, and the package reference should ap-
pear in the dependencies section of package.json and not in devDependencies
(nor optionalDependencies and peerDependencies). This ensures that when

44

you distribute your own package containing the provided code, the imports con-
tained in the provided code can be resolved correctly.

Type provider packages implemented as part of this thesis have been published
under the @ts-providers namespace and can be installed as such:

1 npm install @ts-providers/csv
2 npm install @ts-providers/xml
3 npm install @ts-providers/json-zod

4.2.2 Provided import syntax
We have presented the provided import syntax throughout the thesis (see e.g.,
Section 2.3). To reiterate, provided imports extend the syntax of regular ES
module imports by adding the provided keyword and using the import attributes
block after the with keyword to pass configuration to the imported type provider
package.

For example, the statement in Code Listing 4.3 represents a provided import
declaration that imports the provider object generated behind the scenes by
the @ts-providers/csv type provider. The sample attribute specifies a relative
path to the file that is used for inference of the data shape used to generate the
provided types and loader functions.

Code Listing 4.3 Usage of import provided statement
1 import provided { loadFile } from "@ts-providers/csv" with {

sample: "../sample.csv" }

Standard ESM import renaming, as well as the use of TypeScript’s namespace
imports and the type keyword, are supported. Code listing 4.4 illustrates the
use of these features. See [19] for more details about ESM imports, and [47] for
treatment of imports in TypeScript.

Code Listing 4.4 Supported variants of import provided statement
1 // Aliased named import
2 import provided { loadFileSync as getCsv } from

"@ts-providers/csv" with { sample: "../sample.csv" }
3 const data = getCsv(...);
4

5 // Namespace import, CSV includes all provided values and types
6 import provided * as CSV from "@ts-providers/csv" with { sample:

"../sample.csv" }
7 const data = CSV.loadFileSync(...);
8

9 // Type-only import for the Row interface
10 import provided { provider, type Row } from "@ts-providers/csv"

with { sample: "../sample.csv" }
11 const data: Row[] = provider.loadFileSync(...);

Although it is currently not supported to directly re-export a provided import
(i.e. to write export provided ...), you can export a provided object in a

45

separate export statement. Such an exported object can be then imported using
a regular, non-provided import in other source files or packages, as shown in Code
Listing 4.5.

Code Listing 4.5 Export of provided-imported object
1 // In ’src/a.ts’:
2 import provided { provider } from "@ts-providers/csv" with {

sample: "../sample.csv" }
3 export { provider };
4

5 // In ’src/b.ts’:
6 import { provider } from "./a";
7 const data = provider.loadFileSync(...);

4.2.3 Features of the implemented type providers
In this section, we document the supported options and the provided functionalities
of the individual type provider packages implemented for the thesis.

All three packages have the same basic interface for supplying the type inference
samples. Specifically, these provided import options can be used:

• inlineSample <string> - Specifies the sample data in-code as a constant
string literal directly into the import statement. Use "\n" to indicate line
breaks in the data. String template literals (e.g. abc) cannot be used in the
provider options block.

• sample <path> - Specifies a local file system path to the file containing
the sample data. Both absolute and relative paths are supported. The
slash (/) character should be preferred for directories as it is supported
on all platforms. Escaped backslash (\) is also supported on Windows.
Text encoding used for reading the file can be optionally specified using
the encoding provider option. Supported encodings are listed in [48]. The
default encoding is UTF-8.

• httpSample <URL> - Specifies a URL used to retrieve the sample data with
an HTTPS request. Only simple GET requests without custom parameters
or headers are currently supported. In particular, this means that the data
must be available without authorization.

At least one of these options needs to be set and valid. If multiple options
are set in the same import, the method of acquiring the sample is selected in
the following order of precedence from highest to lowest: inlineSample, sample,
httpSample. If no valid sample is specified, or the type provider encounters an
error while loading the sample, an error diagnostic is given to the user, and the
provider does not generate or export any code.

CSV provider
The CSV provider attempts to parse the sample data and infer the types of the

CSV columns. The inference algorithm is described in Section 3.2.3. The behavior
of the provider can be customized using the following options:

46

• separator <string> - Specifies what character (or sequence of characters)
is used as a separator when parsing the sample data. The comma (,) is
used by default.

• hasHeader (true|false) - Specifies whether the sample data starts with
a header row containing the names of the columns. By default, the provider
expects a header row. The behavior can be changed by setting this option
to "false".

• rowTypeName <string> - By default, the provider generates a TypeScript
interface named Row to describe the CSV columns. This option can be used
to generate an interface with a different name.

• preserveNames (true|false) - By default, the provider tries to convert
the column names to camel-case (standard style for TypeScript properties).
The behavior can be changed by setting this option to "false".

If the type provider parses the sample successfully, it generates a virtual
TypeScript module (source file) based on the result of the inference algorithm.
This module exports the following objects:

• parseText(text, separator?): Row[] – Parses and validates a string
input and, on success, produces an array of parsed rows. By default uses
the same separator as was used for parsing the sample. This can overridden
with the optional function argument.

• loadFileSync(path, separator?, encoding?): Row[] - Reads a file us-
ing the readFileSync function from the node:fs library, then parses the
content using parseText. Apart from the separator, the default encoding
can be also changed using the second optional argument.

• loadFile(path, separator?, encoding?): Promise<Row[]> –
Asynchronous variant of loadFileSync.

• loadHttp(url, separator?): Promise<Row[]> – Asynchronously loads
data using a simple HTTP GET request, then parses the content using
parseText. The popular axios library [49] is used to perform the HTTPS
request.

• loadSampleSync(): Row[] – Attempts to read and parse data from the
same source that was used for the sample. Throws an Error if httpSample
was used.

• loadSample(): Promise<Row[]> – Asynchronous variant of loadSample-
Sync. Can be used with httpSample.

All of the provided functions perform simple type validation during parsing
and throw an Error if the actual data does not conform with the inferred column
type. If successful, they return an array of type Row[] containing the entire
data parsed into individual rows with values converted according to the inferred
interface (e.g. numeric values converted to number). If the sample contained a
header (i.e. the columns have names), the run-time parser will look up columns

47

according to their names instead of just their position. This means that the actual
data can include additional columns or have columns in different order. As long
as all columns from the sample are in the parsed input and contain compatible
values, the data will be parsed successfully. Code Listing 4.6 shows an example of
using CSV provider to work with a simple CSV file.

Code Listing 4.6 Example of using CSV provider
1 import provided * as people from "@ts-providers/csv" with {

sample: "../data/people.csv" }
2

3 const printPersonInfo = (person: people.Row): void => {
4 console.log(‘Name: ${person.name}‘);
5 console.log(‘Age: ${person.age}‘);
6 console.log(‘City: ${person.city}‘);
7 console.log(‘Birth Date: ${person.birthDate !== null ?

person.birthDate : ’N/A’}‘);
8 };
9

10 let people_data = people.loadSampleSync();
11 printPersonInfo(people_data[0]);

XML provider
The XML type provider has a very similar user interface as the CSV provider.

However, due to the different character of the formats, the inference algorithm
(see Section 3.2.4) and the resulting provided type differ significantly. The XML
provider generates a set of interfaces describing all the non-leaf elements found in
the sample (i.e. elements that have at least one child element or an attribute), as
well as a set of functions that can be used to load and parse similar XML data.

Apart from the common sample options described earlier, the provider supports
the following import options:

• preserveNames (true|false) – By default, the provider tries to convert
the element names to Pascal case and the attribute names to camel-case
(standard style for TypeScript types and properties, respectively).

• checkRequired (true|false) – This option determines if the generated
parser code performs validation that all of the properties (representing
element attributes and children) that were inferred from the sample as
required were found and set while parsing the non-sample data. The behavior
is enabled by default.

As mentioned, the XML provider generates source code that exports the
element interfaces. It also exports a provider object with the same set of
functions as the CSV type providers (documented above).

Code Listing 4.7 shows an example of using XML provider to display package
references of C# .csproj project file.

48

Code Listing 4.7 Example of using XML provider to display dependencies of .csproj
project file

1 import provided { provider } from "@ts-providers/xml" with {
sample: "../data/csharp_project_file.csproj", checkRequired:
"false" };

2

3 function getPackageNames(path: string): string[] {
4 const project = provider.loadFileSync(path);
5 return !project.itemGroup ? [] : project.itemGroup
6 .filter(group => group.packageReference)
7 .flatMap(group => group.packageReference!.map(ref =>

ref.attributes.include));
8 }

JSON-Zod provider
The JSON-Zod type provider is comparably simpler than the other two packages.

It does not use any custom options apart from the common options for samples.
Furthermore, it generates source code that exports only two objects:

• schema – A prebuilt instance of schema from the Zod validation library [41].

• SchemaType – TypeScript type that describes the valid parsed JSON object.

This means that no provider object or load* functions are generated. Instead,
the user can utilize their preferred means of loading the data and then use the
built-in functionality of the Zod schema, such as the parse and parseAsync
methods, to parse and validate the JSON data. See the library documentation for
more detail [41].

Code listing 4.8 showcases using the type provider to parse and validate data
fetched using the popular HTTP client library Axios [49].

Code Listing 4.8 Using JSON-Zod type provider to process HTTP response
1 import provided { schema } from "@ts-providers/json-zod" with {

sample: "../sample.json" }
2 import { default as axios } from "axios";
3

4 const response = await axios.get("https://...");
5 const data = await schema.parseAsync(response.data);

4.3 Implementing a new type provider package
In this section, we describe the process of implementing a simple type provider
package in the form of a short step-by-step tutorial. To follow the tutorial, please
set up the required development environment as described in Section 4.1.

49

Code Listing 4.9 Example of key-value format
1 SOME_KEY=value1
2 ANOTHER_KEY=value2
3 ...

4.3.1 Basic tutorial
As an example, we will implement a provider that infers a TypeScript interface
and generates a run-time parser for a simple key-value format similar to the
commonly used .env files. In the format, each line contains a single key-value
pair where the key is separated from the value by a = character. Code listing 4.9
shows an example of the format.

Step 1: Create the project
First, create an empty directory and initialize a Node package by executing npm
init in an empty directory. During the setup, you can choose any name you want,
however, we will assume that the package is named ts-providers-tutorial--
package. You will later need to use the name when generating the import code
for the package. Other initial options are not important.

Add the type provider package dependencies:
1 npm install @ts-providers/compiler @ts-providers/core

Then, open the package.json file and add a ‘main‘ and ‘scripts‘ sections so
that the file looks like in the listing 4.10.

Now when we execute npm run build while in the project directory, we invoke
the provider-enabled TypeScript compiler. However, first, we need to set up the
TypeScript project configuration.

This is done by creating a tsconfig.json file in the project root directory.
For the purpose of the tutorial, use the settings shown in listing 4.2.

Now we can create a src/index.ts source file and verify that the build works
by executing npm run build. This should emit the dist/index.js file, which is
configured as the package entry point by the main section in package.json.

Step 2: Parse the data format
Before we delve into the specifics of implementing the type provider interface,
let’s first deal with processing our example data format.

Our goal is simple, we want to be able to take a sample string input, parse
it according to the rules of the format, and return some representation of the
sample’s content that will be used to generate the appropriate TypeScript source
code that will be provided by our package to the end user.

In this tutorial, we are parsing a list of KEY=VALUE pairs and want to provide
a TypeScript interface that describes the known keys found in the sample. For
simplicity, we will handle the values as string and not try to infer more specific
types for them. If we omit checking for invalid inputs, this reduces our task to
something as simple as the following function:

50

Code Listing 4.10 Example of a package.json configuration for provider package
1 {
2 "name": "ts-providers-tutorial-package",
3 "version": "0.0.1",
4 "main": "dist/index.js",
5 "type": "commonjs",
6 "files": ["dist"],
7 "dependencies": {
8 "@ts-providers/compiler": "^5.5.3-providers-v13",
9 "@ts-providers/core": "^0.0.66"

10 },
11 "scripts": {
12 "build": "tsc-providers -p ."
13 }
14 }

Code Listing 4.11 Example: parsing key-value pairs
1 function getKeysFromSample(input: string): Set<string> {
2 const lines = input.split("\n");
3 const pairs = lines.map(line => line.split("="));
4 const keys = pairs.map(pair => pair[0]);
5 return new Set(keys);
6 }

Step 3: Use the provider builder
Creating a valid type provider package involves creating and exporting an ob-
ject that satisfies a certain interface (as described in Section 3.1.3 and further
discussed in Section 4.3.2). However, the easiest way to implement a new type
provider is to use the factory function createBasicTypeProvider included in the
@ts-providers/core library.

To begin, add these imports to the src/index.ts file:
1 import { BasicTypeProviderFunctions, createBasicTypeProvider }

from "@ts-providers/core";

The BasicTypeProviderFunctions interface specifies the necessary function-
ality that needs to be implemented in the provider package and passed as an
argument to the createBasicTypeProvider function, which in turn returns the
complete type provider instance that we can export from the type provider pack-
age for the end users. This gives us the following blueprint for our provider
implementation:

Code Listing 4.12 Key-value type provider implementation
1 const providerFuncs:

BasicTypeProviderFunctions<BasicTypeProviderOptions,
Set<string>> = {

51

2 infer: function (textInput: string): Set<string> {
3 throw new Error("Function not implemented.");
4 },
5 generateCode: function (inferenceResult: Set<string>):

ts.Statement[] {
6 throw new Error("Function not implemented.");
7 }
8 }
9

10 const provider = createBasicTypeProvider(providerFuncs);
11 export default provider;

Notice that the BasicTypeProviderFunctions interface requires us to imple-
ment two functions:

1. infer – that takes the sample content as a string and returns the in-
ferred data. We already implemented this in the previous step as the
getKeysFromSample function.

2. generateCode – that takes the result of the infer function and generates
TypeScript code (a list of Statement AST nodes).

The BasicTypeProviderFunctions interface also takes two generic type pa-
rameters:

1. Model type for the options that the end user can pass to our type provider.
For now, we can use the built-in BasicTypeProviderOptions interface,
which contains standard options for specifying the sample. Section 4.3.2
describes how to provide a custom options implementation.

2. Type of the object produced by the infer function and consumed by the
generateCode. Because we already implemented the getKeysFromSample
function, we know we want to use Set<string> here.

Step 4: Implement code generation

What remains is to implement the generateCode function, which creates
statement AST nodes for the virtual TypeScript source file returned to the end
user by the type provider. The most straightforward (and the most performant)
way to generate TypeScript AST is to use the official compiler API that can be
accessed via the factory object.

It should be said that apart from some partial tutorials (see e.g. [34], [50]),
there is no comprehensive documentation of the TypeScript AST or the factory
API. In practice, the best resource for working with the compiler API is a tool
such as the TS AST Viewer [51]. This site allows the user to input a piece of
TypeScript source code and examine its AST and the factory calls required to
generate such code.

Let’s say we want to provide the user with code such as this:

52

Code Listing 4.13 Example of the provided code
1 export interface Settings {
2 someKey?: string;
3 anotherKey?: string;
4 // Etc...
5 }
6

7 export const parse = function (input: string): Settings {
8 // Here would be code that parses the input
9 // and collects the key-value pairs in the Settings record

10 }

Figure 4.1 Usage of TS AST Viewer tool

We can simply write the code ourselves, insert it into the AST Viewer, and
use the outputted factory method calls. We would need to modify the part that
generates code for the properties in the Settings interface so that it generates
properties based on the keys inferred from the sample.

However, the reader would see that with increasing code complexity, the
necessary factory calls are quite verbose and quickly become difficult to read and
maintain. To alleviate this problem, the @ts-providers/core library implements
some utility functions and types. For example, the DeclarationDescriptor and
TypeDescriptor classes make generating interface and type declarations easier.
With these, we can implement the interface generation like in code listing 4.14.

Code Listing 4.14 Using utility functions to generate an interface declaration
1 // Generates AST for interface declaration with string properties

for each key found in the sample.
2 function generateSettingsInterface(keys: Set<string>): Statement {
3 const propertyDescriptors = [...keys.values()]
4 .map(key => new DeclarationDescriptor(key, new

SimpleTypeDescriptor("string"), true));
5

53

6 const propertySignatures = propertyDescriptors.map(p =>
p.createSignature());

7

8 return factory.createInterfaceDeclaration(
9 [factory.createToken(SyntaxKind.ExportKeyword)],

10 "Settings",
11 /*typeParameters*/ undefined,
12 /*heritageClauses*/ undefined,
13 propertySignatures
14);
15 }

When generating AST for the parse function, we can reduce the number of
necessary AST factory calls with a simple design pattern that utilizes the fact
that functions are first-class objects in JavaScript. We will not generate the
entire function body AST. Instead, we will write and export the actual function
createParseFunction in our provider package that returns the parse function
during runtime (i.e. when the provided code is run by the end-user). This means
that we only need to generate AST for the following code:

Code Listing 4.15 Provided parse function export
1 import { createParseFunction } from

"ts-providers-tutorial-package";
2 export const parse = createParseFunction();

Employing a few utility functions from the factoryHelper object (from the
@ts-providers/core library), we can achieve the result in code listing 4.15 above
by using the functions shown in listing 4.16.

Code Listing 4.16 Generating parse function export
1 function generateDependencyImport(): Statement {
2 return factoryHelper.createNamedImport(
3 "ts-providers-tutorial-package", ["createParseFunction"]);
4 }
5

6 function generateParseFunction(): Statement {
7 return factoryHelper.createVariableAssignment(
8 "parse",
9 factory.createCallExpression(

10 factory.createIdentifier("createParseFunction"),
11 /*typeArguments*/ undefined,
12 /*argumentsArray*/ undefined,
13),
14 VariableKeyword.Const,
15 /*exported*/ true
16);
17 }

Finally, for this to work, we also need to implement the actual createParse-
Function function:

54

Code Listing 4.17 Implementing createParseFunction
1 export function createParseFunction() {
2 return (input: string) => {
3 const keyValuePairs = input.split("\n")
4 .filter(line => line)
5 .map(line => line.split("=")) as [string, string?][];
6

7 return keyValuePairs.reduce((obj, [key, value]) => {
8 obj[key] = value;
9 return obj;

10 }, {} as Record<string, string | undefined>);
11 };
12 }

Step 5: Test the provider
With parsing and code generation implemented, we can fulfill the BasicType-
ProviderFunctions interface and get a fully working type provider:

Code Listing 4.18 Implementing BasicTypeProviderFunctions interface
1 const providerFuncs:

BasicTypeProviderFunctions<BasicTypeProviderOptions,
Set<string>> = {

2 infer: getKeysFromSample,
3 generateCode: function (keys: Set<string>): Statement[] {
4 return [
5 generateDependencyImport(),
6 generateSettingsInterface(keys),
7 generateParseFunction()
8]
9 }

10 }
11

12 const provider = createBasicTypeProvider(providerFuncs);
13 export default provider;

To test the provider package in your application, do the following:

• You can publish the type provider package on NPM using the npm publish
command and add the published package to your application using standard
npm install <package name>.

• Alternatively, install the type provider package as a local reference using
npm install ../path/to/provider-package. See NPM documentation
[52] for more detail. Note that with these local package references, there
might be issues with loading types from transitive dependencies, leading to
somewhat unreliable language service in the IDE.

Then you can start to use the provided import as shown in Section 4.2.

55

4.3.2 Further customization
The previous section described a simple scenario when implementing a type
provider package. There are various aspects in which you might want to customize
your provider, some of which we will discuss in the rest of this chapter.

Custom options and accessing provider context

As we have seen, the BasicTypeProviderFunctions interface used by the create-
BasicTypeProvider factory function has a generic type parameter for the type
that describes options supported by the type provider. These are the options that
the end user can pass in the with block of the provided import like this:

1 import provided { ... } from "@ts-providers/xml" with { sample:
"...", preserveNames: true }

To specify custom options of a provider (created by createBasicTypeProvider
factory function), you must declare an interface that extends the BasicType-
ProviderOptions interface and then use this extended interface as the first type
parameter of BasicTypeProviderFunctions interface. When you do this, you
will need to implement an additional function parseCustomOptions as part of
the BasicTypeProviderFunctions interface. There you:

• handle parsing of the optional string-typed options passed from the end
user,

• specify their default values.

Code Listing 4.19 illustrates this process.

Code Listing 4.19 Customizing type provider options
1 interface MyOptions extends BasicTypeProviderOptions {
2 preserveNames: boolean;
3 }
4

5 const providerFuncs: Basic\-Type\-Provider\-Functions<MyOptions,
T> = {

6 parseCustomOptions: (unparsedOptions) => {
7 return {
8 preserveNames: unparsedOptions.preserveNames === "true" ?

true : false
9 }

10 }, ...
11 }

You can access the parsed options (as well as the standard ones such as sample)
via the second argument that is passed to your infer and generateCode functions
(see Code Listing 4.20).

Code Listing 4.20 Accessing type provide options

56

1 const providerFuncs: Basic\-Type\-Provider\-Functions<MyOptions,
T> = {

2 infer: (input, options: MyOptions) => {
3 if (options.preserveNames) ...
4 }, ...
5 }

Furthermore, you can access a ProviderContext instance passed in the third
argument. This object contains information from the compiler, namely:

• the importingFilePath property that contains the path to the source file
with the provided import, which is being currently resolved,

• the runtimeTarget property that may contain an identifier of the in-
tended runtime environment that the end user can optionally set in their
tsconfig.json, e.g. "node" or "browser". You can use this information
to customize your code generation (as demonstrated in Code Listing 4.21).
For instance, you can use different APIs for reading files or altogether skip
generating certain functions.

Code Listing 4.21 Accessing runtimeTarget property
1 const providerFuncs: Basic\-Type\-Provider\-Functions<MyOptions,

T> = {
2 generateCode: (inferenceResult, options, context) => {
3 switch (context.runtimeTarget) ...
4 }, ...
5 }

Emitting custom diagnostics

The standard type provider created by createBasicTypeProvider has a set of
diagnostics that get returned to the compiler in case of various common issues and
are displayed either in the standard output (during command-line compilation) or
as “squiggles” in the IDE. These cover problems such as the provider not being
able to read the specified sample file.

You can emit custom diagnostics using the DiagnosticCollector instance
given as the last argument to your provider functions. This object exposed
functions addGeneralDiagnostic and addOptionDiagnostic. The former is for
messages reported as issues with the entire provided import, while the latter lets
you report issues with a particular provided import option. Both take a message
in the format specified by the DiagnosticMessage interface from the TypeScript
compiler API.

To indicate that the provider pipeline should not continue and return a failed
result (with all the diagnostics added so far), you can return undefined instead
of the regular result from any of the basic provider functions as demonstrated in
Code Listing 4.22.

57

Code Listing 4.22 Returning undefined to indicate that type provider should not
generate any code due to error

1 const providerFuncs: Basic\-Type\-Provider\-Functions<MyOptions,
T> = {

2 parseCustomOptions: (unparsedOptions, context, diagnostics) => {
3 if (unparsedOptions.someOpt && unparsedOption.anotherOpt) {
4 diagnostics.addOptionDiagnostic("anotherOpt",

Messages.ConflictingOptions);
5 return undefined;
6 }
7 }, ...
8 }

Custom providers without createBasicTypeProvider

Implementing provider packages with the createBasicTypeProvider factory
function should cover the most common scenarios. However, if more flexibility
is required, you can implement the provider from scratch. As described in Sec-
tion 3.1.3, the only requirement is to implement at least one of the interfaces
SyncTypeProvider<TOptions> or AsyncTypeProvider<TOptions>. See the im-
plementation in providers/core/src/provider-utils/provider-builder.ts
for reference.

58

5. Conclusion
The goal of this thesis was to analyze and implement support for type providers
in TypeScript.

We have analyzed various design, usability, and implementation-related aspects
of the problem in Chapter 2. All of the requirements prescribed for the solution
were met. We successfully modified the TypeScript compiler to support compile-
time invocation of type provider packages based on a new provided import
syntax as described in Section 3.1. The invoked package is able to provide the
compiler with types based on inference from data samples or other compile-time
computation.

The compiler is then able to use the provided types during standard type
checking and to enable code editor features such as auto completions and reporting
type errors with compiler diagnostics. The provider can also generate validating
data access code that enforces that run-time types do not violate the static type
guarantees, thus improving the safety of TypeScript programs without the need
to write additional code by hand or involve external code generation tools.

The viability of the solution has been demonstrated by implementing type
provider packages for JSON, XML, and CSV (Section 3.2). Despite the prototype
character of the implementation, the showcase packages can already be used in
practical scenarios. Additional type providers can be implemented without further
modifications to the compiler.

5.1 Future work
There are many directions for further development of the prototype solution we
presented in this thesis. We outline some of them here.

Better management of provided code

The prototype implementation does not support incremental parsing, which is
one of the important optimizations in the language service. Even though the
main overhead of loading samples and running the type inference is mitigated by
caching the inference results, the provided AST is still regenerated too often.

However, the incremental parsing is disabled for the provided code as its current
implementation is closely tied to the textual base of the processed source files
loaded from disk. Implementing a dedicated cache for provided source files might
be a better solution than rewriting the incremental parser subsystem. Virtualizing
the file system for provided source files akin to [53] might also be an option. This
might allow for a more robust handling of provided source files to be implemented
in the module loader so that the solution does not depend on generating unique
file names.

Lazy evaluation

Implementing support for providing types lazily, as was done in F# would open
possibilities to use type providers as tools for working with complex information
spaces.

59

Such a feature would most likely require significant changes to the implemented
solution. A possible method would be to augment the generated AST nodes (and
possibly the Type records created from them) with type provider-specific metadata,
which would indicate that this node can possibly be further “extended”. Then,
during certain operations, such as when the language service asks the checker for a
list of members in order to populate the auto-completion box, the compiler would
query the type provider again and request providing the members of said type.

Metaprogramming

Adding metaprogramming capabilities to type providers seems possible without
requiring extensive changes to our solution. The provider could be given easier
access to the importing source file or the entire set of source files processed by the
compiler. Then, the provider could generate code based on the analysis of other
source code rather than data samples.

Typed import options

An immediate improvement in usability of type providers would be to implement
proper type checking of import options that are specified in the import attributes
block. Currently, the options are only checked manually in the respective type
provider implementation, which can return diagnostics targeted at the specific
import options. A better solution would be to extend the provider invocation
API through which the compiler could request the options interface from the
type provider. Then, it could type check the import attribute block as an object
instance of such interface. Implemented properly, this could “for free” add support
for auto completions and standard compiler emitted diagnostics.

Multiple samples

Currently, there is no clean way to specify multiple samples for the provider to use
(other than e.g. to concatenate a list of paths into a single string). This makes it
less viable to depend on sample engineering in real-world projects.

60

Bibliography
1. Chiusano, Paul. The advantages of static typing, simply stated [https:

//pchiusano.github.io/2016-09-15/static-vs-dynamic.html]. [N.d.].
[cit. 2024-07-16].

2. Pawar, Vaibhav. What are the advantages and disadvantages of the database
first approach in .net core (EF core)? [https://medium.com/@vaibhavpwr/
what- are- the- advantages- and- disadvantages- of- the- database-
first-approach-in-net-core-ef-co-a0dc1a01b5ad]. 2023. [cit. 2024-07-
16].

3. Code generation and version control [https://www.jooq.org/doc/latest/
manual/code-generation/codegen-version-control/]. [N.d.]. [cit. 2024-
07-16].

4. Syme, Don; Battocchi, Keith; Takeda, Kenji; Malayeri, Donna; Fisher,
Jomo; Hu, Jack; Liu, Tao; McNamara, Brian; Quirk, Daniel; Taveg-
gia, Matteo; Chae, Wonseok; Matsveyeu, Uladzimir; Petricek, Tomas;
and. F#3.0 - Strongly-Typed Language Support for Internet-Scale Informa-
tion Sources. Microsoft Research, 2012-09. Tech. rep., MSR-TR-2012-101.
Available also from: https://www.microsoft.com/en- us/research/
publication/f3-0-strongly-typed-language-support-for-internet-
scale-information-sources/.

5. Syme, Donald; Battocchi, Keith; Takeda, Kenji; Malayeri, Donna;
Petricek, Tomas. Themes in information-rich functional programming for
internet-scale data sources. In: Proceedings of the 2013 Workshop on Data
Driven Functional Programming. Rome, Italy: Association for Computing
Machinery, 2013, pp. 1–4. DDFP ’13. isbn 9781450318716. Available from
doi: 10.1145/2429376.2429378.

6. Petricek, Tomas; Guerra, Gustavo; Syme, Don. Types from data: making
structured data first-class citizens in F#. In: Krintz, Chandra; Berger,
Emery D. (eds.). Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2016, Santa
Barbara, CA, USA, June 13-17, 2016. ACM, 2016, pp. 477–490. Available
from doi: 10.1145/2908080.2908115.

7. Christiansen, David. Dependent type providers. In: 2013, pp. 25–34. Avail-
able from doi: 10.1145/2502488.2502495.

8. Scala docs – macros, type providers [https://docs.scala-lang.org/
overviews/macros/typeproviders.html]. [N.d.]. [cit. 2024-07-16].

9. Scala docs – macros, blackbox vs whitebox [https://docs.scala-lang.org/
overviews/macros/blackbox-whitebox.html]. [N.d.]. [cit. 2024-07-16].

10. JetBrains – Developer Ecosystem survey 2023 [https://www.jetbrains.
com/lp/devecosystem-2023/languages/]. [N.d.]. [cit. 2024-07-16].

11. Typescript Transpiler Explained [https://daily.dev/blog/typescript-
transpiler-explained]. [N.d.]. [cit. 2024-07-16].

61

https://pchiusano.github.io/2016-09-15/static-vs-dynamic.html
https://pchiusano.github.io/2016-09-15/static-vs-dynamic.html
https://medium.com/@vaibhavpwr/what-are-the-advantages-and-disadvantages-of-the-database-first-approach-in-net-core-ef-co-a0dc1a01b5ad
https://medium.com/@vaibhavpwr/what-are-the-advantages-and-disadvantages-of-the-database-first-approach-in-net-core-ef-co-a0dc1a01b5ad
https://medium.com/@vaibhavpwr/what-are-the-advantages-and-disadvantages-of-the-database-first-approach-in-net-core-ef-co-a0dc1a01b5ad
https://www.jooq.org/doc/latest/manual/code-generation/codegen-version-control/
https://www.jooq.org/doc/latest/manual/code-generation/codegen-version-control/
https://www.microsoft.com/en-us/research/publication/f3-0-strongly-typed-language-support-for-internet-scale-information-sources/
https://www.microsoft.com/en-us/research/publication/f3-0-strongly-typed-language-support-for-internet-scale-information-sources/
https://www.microsoft.com/en-us/research/publication/f3-0-strongly-typed-language-support-for-internet-scale-information-sources/
https://doi.org/10.1145/2429376.2429378
https://doi.org/10.1145/2908080.2908115
https://doi.org/10.1145/2502488.2502495
https://docs.scala-lang.org/overviews/macros/typeproviders.html
https://docs.scala-lang.org/overviews/macros/typeproviders.html
https://docs.scala-lang.org/overviews/macros/blackbox-whitebox.html
https://docs.scala-lang.org/overviews/macros/blackbox-whitebox.html
https://www.jetbrains.com/lp/devecosystem-2023/languages/
https://www.jetbrains.com/lp/devecosystem-2023/languages/
https://daily.dev/blog/typescript-transpiler-explained
https://daily.dev/blog/typescript-transpiler-explained

12. GitHub – TypeScript, issue #3136 – Feature Request: F# style Type Provider
support? [https://github.com/microsoft/TypeScript/issues/3136].
[N.d.]. [cit. 2024-07-16].

13. GitHub – TypeScript, issue #16607 – Allow "Compiler Plugins" [https:
//github.com/microsoft/TypeScript/issues/16607]. [N.d.]. [cit. 2024-
07-16].

14. GitHub – TypeScript, issue #14419 – Plugin Support for Custom Transform-
ers [https://github.com/microsoft/TypeScript/issues/14419]. [N.d.].
[cit. 2024-07-16].

15. GitHub – TypeScript Design Goals [https://github.com/Microsoft/
TypeScript/wiki/TypeScript-Design-Goals]. [N.d.]. [cit. 2024-07-16].

16. GitHub – ts-creator [https://github.com/HearTao/ts-creator]. [N.d.].
[cit. 2024-07-16].

17. Effective TypeScript – The Seven Sources of Unsoundness in TypeScript
[https://effectivetypescript.com/2021/05/06/unsoundness/]. 2021.
[cit. 2024-07-16].

18. TypeScript Handbook – Modules [https://www.typescriptlang.org/docs/
handbook/2/modules.html]. [N.d.]. [cit. 2024-07-16].

19. mdn web docs – import [https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Reference/Statements/import]. [N.d.]. [cit. 2024-07-16].

20. GitHub – TypeScript Using the Language Service API [https://github.
com/microsoft/TypeScript/wiki/Using-the-Language-Service-API].
[N.d.]. [cit. 2024-07-16].

21. JetBrains Blog – JavaScript and TypeScript Trends 2024: Insights From the
Developer Ecosystem Survey [https://blog.jetbrains.com/webstorm/
2024/02/js-and-ts-trends-2024/]. [N.d.]. [cit. 2024-07-16].

22. GitHub – ts-morph [https://github.com/dsherret/ts-morph]. [N.d.]. [cit.
2024-07-16].

23. webpack [https://webpack.js.org/]. [N.d.]. [cit. 2024-07-16].
24. rollup.js [https://rollupjs.org/]. [N.d.]. [cit. 2024-07-16].
25. GitHub – Writing a Language Service Plugin [https : / / github . com /

microsoft/TypeScript/wiki/Writing-a-Language-Service-Plugin].
[N.d.]. [cit. 2024-07-18].

26. GitHub – TypeScript [https://github.com/microsoft/TypeScript]. [N.d.].
[cit. 2024-07-18].

27. TypeScript Deep Dive – TypeScript Compiler Internals [https://basarat.
gitbook.io/typescript/overview]. [N.d.]. [cit. 2024-07-18].

28. Anders Hejlsberg on Modern Compiler Construction [https : / / learn .
microsoft.com/en- us/shows/seth- juarez/anders- hejlsberg- on-
modern-compiler-construction]. [N.d.]. [cit. 2024-07-18].

29. GitHub – TypeScript –checker.ts [https://github.com/microsoft/TypeScript/
blob/main/src/compiler/checker.ts]. [N.d.]. [cit. 2024-07-18].

62

https://github.com/microsoft/TypeScript/issues/3136
https://github.com/microsoft/TypeScript/issues/16607
https://github.com/microsoft/TypeScript/issues/16607
https://github.com/microsoft/TypeScript/issues/14419
https://github.com/Microsoft/TypeScript/wiki/TypeScript-Design-Goals
https://github.com/Microsoft/TypeScript/wiki/TypeScript-Design-Goals
https://github.com/HearTao/ts-creator
https://effectivetypescript.com/2021/05/06/unsoundness/
https://www.typescriptlang.org/docs/handbook/2/modules.html
https://www.typescriptlang.org/docs/handbook/2/modules.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/import
https://github.com/microsoft/TypeScript/wiki/Using-the-Language-Service-API
https://github.com/microsoft/TypeScript/wiki/Using-the-Language-Service-API
https://blog.jetbrains.com/webstorm/2024/02/js-and-ts-trends-2024/
https://blog.jetbrains.com/webstorm/2024/02/js-and-ts-trends-2024/
https://github.com/dsherret/ts-morph
https://webpack.js.org/
https://rollupjs.org/
https://github.com/microsoft/TypeScript/wiki/Writing-a-Language-Service-Plugin
https://github.com/microsoft/TypeScript/wiki/Writing-a-Language-Service-Plugin
https://github.com/microsoft/TypeScript
https://basarat.gitbook.io/typescript/overview
https://basarat.gitbook.io/typescript/overview
https://learn.microsoft.com/en-us/shows/seth-juarez/anders-hejlsberg-on-modern-compiler-construction
https://learn.microsoft.com/en-us/shows/seth-juarez/anders-hejlsberg-on-modern-compiler-construction
https://learn.microsoft.com/en-us/shows/seth-juarez/anders-hejlsberg-on-modern-compiler-construction
https://github.com/microsoft/TypeScript/blob/main/src/compiler/checker.ts
https://github.com/microsoft/TypeScript/blob/main/src/compiler/checker.ts

30. mdn web docs – The event loop [https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Event_loop]. [N.d.]. [cit. 2024-07-18].

31. Creager, Joe. 5 Reasons to Avoid Deasync for Node.js [https://joecreager.
com/5-reasons-to-avoid-deasync-for-node-js/]. [N.d.]. [cit. 2024-07-
18].

32. Node.js v22.4.1 documentation – Worker threads [https://nodejs.org/
api/worker_threads.html]. [N.d.]. [cit. 2024-07-18].

33. mdn web docs – Atomics.wait [https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Atomics/wait].
[N.d.]. [cit. 2024-07-18].

34. GitHub – TypeScript-Website – Using the Compiler API [https://github.
com/microsoft/TypeScript/wiki/Using-the-Compiler-API]. [N.d.]. [cit.
2024-07-18].

35. CSV, Comma Separated Values (RFC 4180) [https://www.loc.gov/
preservation/digital/formats/fdd/fdd000323.shtml]. [N.d.]. [cit. 2024-
07-18].

36. Extensible Markup Language (XML) 1.0 (Fifth Edition) [https://www.w3.
org/TR/xml/]. [N.d.]. [cit. 2024-07-17].

37. XML Schema Tutorial [https://www.w3schools.com/xml/schema_intro.
asp]. [N.d.]. [cit. 2024-07-17].

38. xmldoc library [https://www.npmjs.com/package/xmldoc]. [N.d.]. [cit.
2024-07-17].

39. JSON format [https://www.json.org/json-en.html]. [N.d.]. [cit. 2024-07-
17].

40. Ajv JSON schema validator [https://ajv.js.org/]. [N.d.]. [cit. 2024-07-17].
41. Zod schema validation [https://zod.dev/]. [N.d.]. [cit. 2024-07-16].
42. TypeScript Handbook – tsc CLI Options [https://www.typescriptlang.

org/docs/handbook/compiler-options.html]. [N.d.]. [cit. 2024-07-16].
43. npm Docs – package.json [https://docs.npmjs.com/cli/v10/configuring-

npm/package-json]. [N.d.]. [cit. 2024-07-16].
44. TypeScript – Compiler Options [https : / / www . typescriptlang . org /

tsconfig/]. [N.d.]. [cit. 2024-07-16].
45. Bun.js [https://bun.sh/]. [N.d.]. [cit. 2024-07-16].
46. Visual Studio Code [https://code.visualstudio.com/]. [N.d.]. [cit. 2024-

07-16].
47. TypeScript – Modules – Theory [https://www.typescriptlang.org/docs/

handbook/modules/theory.html]. [N.d.]. [cit. 2024-07-18].
48. Node.js v22.4.1 documentation – Buffer [https://nodejs.org/api/buffer.

html]. [N.d.]. [cit. 2024-07-16].
49. Axios [https://axios-http.com/]. [N.d.]. [cit. 2024-07-16].

63

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Event_loop
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Event_loop
https://joecreager.com/5-reasons-to-avoid-deasync-for-node-js/
https://joecreager.com/5-reasons-to-avoid-deasync-for-node-js/
https://nodejs.org/api/worker_threads.html
https://nodejs.org/api/worker_threads.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Atomics/wait
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Atomics/wait
https://github.com/microsoft/TypeScript/wiki/Using-the-Compiler-API
https://github.com/microsoft/TypeScript/wiki/Using-the-Compiler-API
https://www.loc.gov/preservation/digital/formats/fdd/fdd000323.shtml
https://www.loc.gov/preservation/digital/formats/fdd/fdd000323.shtml
https://www.w3.org/TR/xml/
https://www.w3.org/TR/xml/
https://www.w3schools.com/xml/schema_intro.asp
https://www.w3schools.com/xml/schema_intro.asp
https://www.npmjs.com/package/xmldoc
https://www.json.org/json-en.html
https://ajv.js.org/
https://zod.dev/
https://www.typescriptlang.org/docs/handbook/compiler-options.html
https://www.typescriptlang.org/docs/handbook/compiler-options.html
https://docs.npmjs.com/cli/v10/configuring-npm/package-json
https://docs.npmjs.com/cli/v10/configuring-npm/package-json
https://www.typescriptlang.org/tsconfig/
https://www.typescriptlang.org/tsconfig/
https://bun.sh/
https://code.visualstudio.com/
https://www.typescriptlang.org/docs/handbook/modules/theory.html
https://www.typescriptlang.org/docs/handbook/modules/theory.html
https://nodejs.org/api/buffer.html
https://nodejs.org/api/buffer.html
https://axios-http.com/

50. Gentle Introduction To Typescript Compiler API [https://january.sh/
posts/gentle-introduction-to-typescript-compiler-api]. [N.d.]. [cit.
2024-07-18].

51. TypeScript AST Viewer [https://ts-ast-viewer.com/]. [N.d.]. [cit. 2024-
07-16].

52. npm-install Docs [https://docs.npmjs.com/cli/v8/commands/npm-
install]. [N.d.]. [cit. 2024-07-16].

53. GitHub – TypeScript-Website – VFS [https://github.com/microsoft/
TypeScript-Website/tree/v2/packages/typescript-vfs]. [N.d.]. [cit.
2024-07-18].

64

https://january.sh/posts/gentle-introduction-to-typescript-compiler-api
https://january.sh/posts/gentle-introduction-to-typescript-compiler-api
https://ts-ast-viewer.com/
https://docs.npmjs.com/cli/v8/commands/npm-install
https://docs.npmjs.com/cli/v8/commands/npm-install
https://github.com/microsoft/TypeScript-Website/tree/v2/packages/typescript-vfs
https://github.com/microsoft/TypeScript-Website/tree/v2/packages/typescript-vfs

A. Attachments
A.1 Overview of attached files

.
compiler-diff.html - Visualization of git diff output showing
our modifications to the TS compiler codebase

readme.md - Overview of attached files
compiler - Contains source code of the modified TS compiler
examples - - Contains source code of demo applications that
showcase use of type providers. See Section A.2 for
descriptions of individual demos

providers - Contains source code of the implemented type
provider packages

core - Support library for type provider implementation
(@ts-providers/core)

csv - The CSV type provider package (@ts-providers/csv)
json-zod - The Json-Zod type provider package
(@ts-providers/json)

xml - The XML type provider package (@ts-providers/xml)

A.2 Example applications
Please, follow the instructions in Chapter 4 to set up your environment. Run
npm install in each example directory and select your TypeScript version in VS
Code.

CSV people
This example shows the usage of the CSV provider on a CSV file with varying data
types of columns. The example demonstrates that the type inference algorithm
for CSV can correctly infer the most specific type applicable for each column,
taking nullability into account.

It also demonstrates that once the column types of the CSV file are inferred, an
attempt to read a differently typed CSV file via the given CSV provider instance
will raise a validation error.

CSV cityvizor
This example demonstrates the usage of the CSV provider on real-world data for-
mat used by an open-source accounting application, Cityvizor https://cityvizor.
cz/landing/.

The example reads the accounting data of a municipality and computes its
overall balance.

JSON weather
This example uses the JSON-zod provider to infer a schema of HTTP responses of

65

https://cityvizor.cz/landing/
https://cityvizor.cz/landing/

API endpoints. That provides out-of-box validation of received HTTP responses
without manually implementing data models or validation code on a user’s part.

The example provides a simple console application that, given the name of a
city and the number of days, will return an average temperature in the given city
for a given number of days from now.

Usage:
1 npm install
2 npm run build
3 cd dist
4 node index.js -d <numDays> <cityName>

JSON postman
Postman is a popular tool among web developers as it enables them to easily
test web APIs. Postman allows to create collections of HTTP requests that can
then be exported in JSON format to be stored, shared, and reused. This example
uses JSON type provider to process the postman collection of HTTP Cats API
https://http.cat/.

XML .csproj
One of the use cases of XML format is C# .csproj project files. These files define
the project’s dependencies on other projects and packages.

This example uses XML provider to print all package references of all ‘.csproj‘
files located under a given directory.

Usage:
1 npm install
2 nmp run build
3 cd dist
4 node index.js <directoryPath>

XML HTML A very common usage of XML format is HTML. This example
demonstrates that XML type provider can be used to implement an HTML scraper
to extract data from HTML easily.

66

https://http.cat/

	Introduction
	Introducing type providers
	Type providers for TypeScript
	Thesis goals
	Thesis structure

	Problem analysis
	Case study: Reading data in JavaScript and TypeScript
	Type safety
	New syntax
	Design-time features
	Execution characteristics
	Error handling
	Performance
	Emitted JavaScript code
	Extensibility

	Solution documentation
	Compiler integration
	Inserting the type provider mechanism
	Adding provided imports
	Type provider invocation
	Transformers and emitting JavaScript
	Open issues

	Provider implementation
	Core library
	Code generation
	CSV provider
	XML provider
	JSON-Zod provider

	User documentation
	Using the modified compiler and language service
	Getting the compiler
	Setting up Visual Studio Code

	Using type provider packages
	Installing type providers
	Provided import syntax
	Features of the implemented type providers

	Implementing a new type provider package
	Basic tutorial
	Further customization

	Conclusion
	Future work

	Bibliography
	Attachments
	Overview of attached files
	Example applications

