
1 / 2

Posudek diplomové práce
Matematicko-fyzikální fakulta Univerzity Karlovy

Autor práce Ondřej Roztočil

Název práce Type providers for TypeScript

Rok odevzdání 2024

Studijní program Informatika Studijní obor Softwarové systémy

Autor posudku Tomáš Petříček Role Vedoucí

Pracoviště Department of Distributed and Dependable Systems

Text posudku:

The thesis presents a design and implementation of the "type providers" feature for the

TypeScript programming language. The mechanism, best known from F#, makes it possible

to extend the TypeScript compiler with a compile-time/design-time extension that generates

statically typed interface for accessing external data based on external schema or sample of

the data.

The thesis makes two important contributions. First, it presents the design of the type provider

mechanism in the context of the TypeScript ecosystem - the author considers TypeScript

design principles (e.g., type erasure), syntactic preferences (compatibility with ES6),

implementation requirements (e.g., based on AST generation) and describes a design for type

providers that is inspired by the design known from F#, but suitable for implementation in

TypeScript. This part results in a series of requirements collected throughout the analytical

part of the thesis.

Second, the thesis is accompanied by a realistic implementation that extends the latest version

of the open-source TypeScript compiler (and server used by IDEs) with support for the

mechanism. The implementation is well-integrated with the (very complex and large)

TypeScript codebase and could realistically serve as the basis for an open-source contribution

to the language and compiler.

The text of the thesis is focused on documenting the design decisions, the implementation

structure and on documenting the developed system. Given the applied nature of the work,

this is a reasonable structure. The text itself is well-written, clear and serves its pragmatic

purpose.

The accompanying implementation consists of a modified TypeScript compiler/server and a

number of example type providers. Modifying the compiler required understanding the

(poorly documented) architecture of the TypeScript compiler and finding an appropriate

extension point - this is a major undertaking and the result shows that the author has been able

to solve this task well (finding an appropriate way that makes it possible to support type

providers with a relatively small change to the compiler). The sample type providers are based

on existing work in F# and serve as good cases studies to showcase the capabilities of the

system.

2 / 2

One thing that I would have appreciated seeing in the text is a more explicit discussion of

things that remain problematic or were omitted from the final design - the thesis focuses on

the final design, but notes some difficulties (asynchronous providers, lazy code generation)

and it would be useful to collect those as aspects that may be conceptually incompatible with

the TypeScript ecosystem or compiler implementation.

Overall, the thesis reports a very nice engineering-oriented applied project that adapts a more

academic programming language feature to a widely-used context and shows the feasibility of

implementing the feature in a real-world open-source project. As such, I have no hesitation in

recommending it for a defense.

I have two questions that I would like to see discussed in the defense:

First, based on the experience with designing type providers for TypeScript, are there some

aspects of the mechanism that should have been done differently when the mechanism was

first described? In other words, was there something about previous type providers that was

perhaps too F#-specific and not useful for TypeScript (or something that you thought about

adding to the TypeScript version)?

Second, the use cases (CSV, JSON-Zod, XML) are mainly inspired by existing standard F#

type providers, but are there some TypeScript-specific areas that you encountered where a

type provider would be useful (perhaps outside of the core data access domain)?

Práci doporučuji k obhajobě.

Práci nenavrhuji na zvláštní ocenění.

Pokud práci navrhujete na zvláštní ocenění (cena děkana apod.), prosím uveďte zde stručné

zdůvodnění (vzniklé publikace, významnost tématu, inovativnost práce apod.).

Datum 31. 8. 2024 Podpis

