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Abstract: The objective of this thesis is to study the capabilities of Large
Language Models (LLMs) in Procedural Content Generation for games (PCG).
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Introduction
The creation of games is an intellectual and creative process that requires

endeavours from people with diverse skills. Fortunately, resources can be conserved
by employing techniques that allow developers to automate certain aspects of
game development, such as Procedural Content Generation (PCG) [1]. PCG is
the process of using di昀昀erent algorithms to generate game content according to
predetermined rules. It can be applied to various types of games and game content.
However, we will be exploring its usage applied speci昀椀cally to video games.

PCG has been used in game development for decades. One of the most
iconic and genre-forming examples is the game Rogue (1980) [2]. Rogue inspired
an entire genre of games known as roguelikes. Along with permadeath (after
dying, players need to start the game from scratch), non-modality (every action
should be available at any point of the game), and a few other characteristics,
procedurally generating dungeons have been one of the pillars of the roguelikes
genre [3]. It remains very popular today but has undergone many changes over
time and is still one of the primary genres frequently referenced as an example in
discussions about PCG.

PCG has many di昀昀erent uses in game development. It can be used to create
expansive environments, items, enemies, textures, music, narratives, etc. No
Man’s Sky (2016) [4] is a good example of generating an endless, distinct world
with diverse terrains and ecosystems. In games like Diablo 2 (2000) [5], PCG is
used to create countless unique randomised armours, weapons, and enemies, which
provides diverse gameplay and replayability. Dwarf Fortress (2006), discussed
in chapter 1.3.2, uses PCG to create complex stories with randomly generated
characters and environments, which enhances replayability and player engagement.
There are a lot of other examples at di昀昀erent scales. Even the initially randomised
launch angle of the ball in Pong (1972) [6] can be considered a form of procedural
generation. Early examples like Pong show us how simple PCG elements can add
variety and replayability to a game.

While there are many di昀昀erent approaches to PCG, in this diploma thesis,
we will introduce generating game content with large-scale generative language
models, namely, GPT, which is discussed in Chapter 1.2.2. Even though LLMs
include various architectures and families of models, for this thesis, we will refer to
large generative language models of GPT type as Large Language Models (LLMs).
Since LLMs have emerged and developed relatively recently, using them for PCG
is also a fresh and actively studied 昀椀eld.
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Nowadays, the scope of LLMs is extended by the emergence of multimodal
systems that can also be applied to audio and visual content. However, natural
language application still stays the most popular one. There are a few undisputable
advantages o昀昀ered by LLMs that might make them useful for PCG and are worth
studying in the scope of this diploma thesis. LLMs are trained on huge amounts of
data, which makes them a good source of rich and diverse narratives, dialogues, and
storylines. Also, modern LLM APIs are user-friendly and a昀昀ordable, using them
doesn’t require speci昀椀c skills or extensive resources. Therefore, it is accessible for
indie developers and small studios. There is a lot of freely accessible information
on techniques and approaches to LLMs which can be applied to PCG as well.
Thus, this thesis will primarily focus on text generation applications and using
multimodal LLMs will stay out of the scope for this work.

The result of the diploma thesis is a game of the Japanese Role-Playing
Game (JRPG) genre made in Unity and an application that interacts with a
language model to generate a Game World that is used as an input for this game.
The data, scope and format of this Game World are restricted by the existing
game systems and content.

This diploma thesis is structured as follows. Chapter 1 covers the theoretical
background regarding the JRPG genre relevant to this thesis, PCG usage cases
and techniques, and the theoretical foundation of LLMs. In Chapter 2, we will
overview the game created for this thesis, called GPT JRPG. We will discuss the
structure of the game, how it applies the idea of generating content with LLMs,
and how it will use the generated content. Chapter 3 begins with a discussion
of prompt engineering and its fundamental techniques. After that, we will take
a closer look at how the interaction with GPT is performed for this thesis and
discuss ways various issues were addressed. In Chapter 4, we will discuss and
evaluate the results of the thesis. In Chapter 5, we will speculate on potential
alternative approaches for this thesis and suggest how this topic can be explored
in future.
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1 Background

1.1 JRPG

In this section, we will discuss a Japanese Role-Playing Game (JRPG) genre
chosen for the game created for the thesis experiment. The de昀椀nition behind the
term is considered to be broad and subjective. On the one hand, this term might
refer to any game of the RPG genre produced in Japan. On the other hand, it
can be considered an RPG sub-genre with speci昀椀c features. For example:

• Manga-style art.

• Recognisable UI appearance.

• Linear narrative, focused on the main story.

• Prede昀椀ned characters.

• Party and turn-based combat systems.

• Level progression system.

These features are not very strict and have been transformed over the years
of JRPG development [7]. For this thesis, we will use the second de昀椀nition of
the JRPG genre and consider these features as a foundation for the game we
create. One of the most iconic worldwide successful JRPG examples is Dragon
Quest(1986), shown in the 昀椀gure 1.1.

Figure 1.1 Combat scene from Dragon Warrior, English localisation of the classic
JRPG Dragon Quest.
Source: Custom screenshot from the game made by Spike Chunsoft
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It has typical features like a turn-based battle system and, in this case, a
昀椀rst-person view. It also has a multi-level world shown in 昀椀gure 1.2, a well-known
JRPG feature. There is usually a World Map that contains objects representing
smaller-scale locations (Local maps). On these Local Maps, players can face
enemies who might engage in combat that is happening in a distinct location
(Combat Area). Most of the interactions within the game are in textual format,
which is typical, especially for classic (late 20th-century JRPGs). In later games
of this series, many other typical JRPG features were introduced, like playing
as multiple characters and being able to form a party with existing in-game
characters.

World Map Local Map Combat Area

Figure 1.2 Typical world structure for a classic JRPG game.

When creating a JRPG, there are several main components indie and solo
developers should be focused on:

• Story. Classical JRPGs are usually story-driven. The plot should be clear
and concise. For simplicity, there should be a main idea around which the
plot revolves, like love, sacri昀椀ce, betrayal or good forces 昀椀ghting against evil,
etc.

• Characters. Protagonists and antagonists, with their supportive characters,
should be woven into the storyline. Each character might have di昀昀erent
personality traits, which are usually quite clearly re昀氀ected in dialogues with
them. Their personality is usually de昀椀ned by their backstory and their
position in the 昀椀ction world.

• Combat System. While classical JRPGs usually feature the turn-based
combat system, it can be real-time or even be represented by something like
a cardboard minigame [8] or as an auto battler [9].

• RPG System. Due to the genre foundation, there should be some progres-
sion system. This can be represented by crafting, levelling, collecting items,
or group managing systems.

There is a lot more to it, like being consistent with the visual art and sounds,
implementing systems that are dependent on the player’s choice, etc.

Today, JRPG might be considered an outdated term. However, some indie
games are being developed today that capture the essence of the JRPG genre, like
the award-winning Sea of Stars (2023) [10]. It was speci昀椀cally chosen to make a
game with some qualifying features of JRPGs of the 80s and 90s era because it is
relatively easy to produce using modern game engines. Also, it usually uses quite
a large amount of textual content compared to other genres, which is a perfect
case to explore the usage of LLMs for procedural game content generation.
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1.2 Large Language Models

Large Language Models (LLMs) represent a class of powerful arti昀椀cial
intelligence models that work with natural language and are built using machine
learning techniques. They are de昀椀ned by their large scale (Modern LLMs are
normally trained on trillions of tokens and have a large number of parameters, 200
billions in the case of GPT-4o [11]), speci昀椀c architecture (toady LLMs are mainly
built on a transformer architecture), and diverse capabilities (LLMs usually can
handle a wide variety of tasks and serve a diverse set of applications).

LLMs have been spotlighted over the last few years and have a vast amount
of known use cases. This rapid development of LLMs started in 2017 with the
Google Brain team’s breakthrough paper “Attention is all you need” [12]. In
this paper, the Transformer architecture was 昀椀rst discussed with the attention
mechanism that powers this architecture. It boosted the development of the
Natural Language Processing 昀椀eld, creating subsequent models that exploit the
main idea of the Transformer architecture. Nowadays, the most well-known and
capable LLMs use some form of the Transformer architecture as a foundation, we
will discuss some of them in the following sections.

The 昀椀eld of applications for LLMs is quite broad. However, their primary
application revolves around understanding and generating natural language. It
can be used to write technical documentation, assist people in learning, academic
and creative writing, legal consulting, and cancer prediction. It is already used
in di昀昀erent 昀椀elds to generate data, like educational content, marketing and
copywriting, and, of course, to generate responses in chatbots. [13] [14] [15]

We should mention that following a strict structure is considered to be a
challenging task for language models. However, the most modern models have
features that can help mitigate this issue (like JSON mode for OpenAI API GPT
models [16]). Overall, LLMs are a promising choice to be tested for procedural
content generation. In this thesis, we would like to explore how LLMs can be
applied as PCG for video games, namely generating characters, storylines, quests,
and so on, as well as their possibilities and limitations in this regard. Successful
use of LLMs in PCG can provide us with an instrument that can help developers
save time and resources while diversifying in-game content for players.

Even though in the thesis, we use mainly generative LLMs and their openly
available APIs without training a model from scratch or changing their internal
architecture, we will mention some other language model architectures to provide
a super昀椀cial background on the 昀椀eld of language models.

1.2.1 Theory behind LLMs

Language models are neural networks that are trained on natural language
data. Their primary goal is to handle natural language understanding or generation
tasks that are acquired during the training.

A neural network is a computational model that was inspired by the way
how a human brain works. A neural network is composed of multiple neurons
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organised in layers. The structure of neural network is shown in 昀椀gure 1.3. In
order for a neural network to learn how to perform a speci昀椀c task, the data should
be provided showcasing how from a speci昀椀c input we can come to a speci昀椀c result.
Then, the data is used to train a neural network. The training involves calculating
a loss function (a measure of error during the task solving), and the mechanism
that updates weights and biases in neurons (usually, a backpropagation algorithm
is used). During the training process, the backpropagation algorithm tweaks the
neural network’s weights in the right direction. Normally, it takes several passes
through the data to pick up the pattern the data might have and to be able to
solve the task during the inference.

Figure 1.3 High-level illustration of a neural network architecture.
Source: Lelli [17]

Nowadays, neural networks are one of the most common artifacts produced
by machine learning algorithms. The large number of layers in the network enable
them to learn more complex patterns. Since the natural language abilities are
quite complex and consist of many di昀昀erent patterns at the same time, deep neural
networks are a 昀椀tting way to learn those patterns. Language models represent
example usage of these deep neural networks and their training procedure is quite
similar to the discussed above.

Let us now dig a bit deeper into the di昀昀erent architectures of language
models. As discussed before, Transformer was a pivotal architecture in the natural
language processing 昀椀eld that allowed better modelling of natural language. The
Transformer architecture consists of the encoder, which encodes textual input,
and the decoder, which decodes encoded information and textual input to the
output sequence.

The encoder layer consists of the feed-forward sub-layer as well as the
Multi-Head Self-Attention mechanism, which analyzes the input from multiple
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perspectives through its attention heads.

The decoder layer consists of the feed-forward sub-layer, masked multi-head
attention that helps to attend to the input autoregressively (one token at a time),
and the multi-head attention that attends to the output from the encoder block
(contextual information from the whole input sequence). The detailed vanilla
Transformer architecture can be seen in 昀椀gure 1.4.

Figure 1.4 Vanilla Transformer architecture.
Source: Lin et al. [18]

The Transformer architecture gave an idea for the subsequent popular
language model architectures. Many of these models are built upon each other’s
ideas. Let us discuss the most notable architecture of a Transformer type: BERT
and GPT.

BERT stands for Bidirectional Encoder Representations from Transformers
[19]. BERT is a transformer-based encoder-only architecture that is used for
various natural language tasks like text classi昀椀cation, named entity recognition,
representation learning, etc.

GPT stands for the Generative Pretrained Transformer [20]. GPT also
follows the transformer architecture but uses only the decoder. This model is also
widely used for a wide variety of the natural language tasks, but all of them have
a more text-generative nature.
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Transformer-based models are powerful enough to learn complex linguistic
patterns from the extensive amounts of textual data. However, we don’t need to
train the model for the same linguistic abilities over and over again since these
trained models were already trained and are available for further training. This
initial training on a large amount of data to learn language patterns is called
pre-training, and the further training to tweak a model for a speci昀椀c task, domain
or language is called 昀椀ne-tuning.

The main di昀昀erence between BERT and GPT is in their architectures, that
require a di昀昀erent way of training. BERT needs speci昀椀c preparation of the data
(Masked Language Modelling and Next Sentence Prediction setups [21]). On the
other hand, GPT can use raw data (also called unlabeled) and is trained using an
auto-regressive fashion. This explains why GPTs have become widely used for
large-scale language modelling. Vast amounts of textual data are available online,
requiring no annotation and limited preparation. This training setup in machine
learning is called unsupervised learning.

This gave rise to Large Language Models. Some researchers believed in the
idea of increasing language model capabilities by increasing the size of training
data [22]. Figure 1.5 shows how the number of parameters of transformer-based
models, mainly GPT architecture, grew over the past years. GPT has provided
the ability to use a lot of textual data and train large models with substantial
language knowledge. This gave LLMs many strong capabilities, which enabled
many powerful applications. Figure 1.5 shows how the number of parameters of
transformer-based models, mainly GPT architecture, grew over the past years.

Figure 1.5 Growth of a number of parameters for LLMs over the past years. The
Red dashed line indicates a mean trend for shown models.
Source: Simon [23]

10



1.2.2 Generative Pretrained Transformer

In this section, we will discuss the GPT architecture more in-depth since it
is the one that will be used for the thesis experiment

Figure 1.6 GPT architecture.
Source: Radford and Narasimhan [20]

The 昀椀gure 1.6 shows the architecture of GPT, which represents the decoder
block from the vanilla transformer architecture. The GPT algorithm consists of
many di昀昀erent components. Before being input, the text is tokenised, which is a
process of segregation into smaller segments(tokens) based on rules that consider
spaces, punctuation, symbols and words.

The 昀椀rst step is Text Embedding, which is the process when each token is
mapped to an embedding vector that captures the semantic meaning of it. This
can be achieved by using an embedding matrix when each row corresponds to a
token. There is also a Position Embedding, which generates a vector consisting
of information about the absolute (in the case of GPT) positions of tokens. It
ensures that each token in the input has a 昀椀xed and distinct representation that
corresponds to its speci昀椀c position. This is also referred to as the Embedding
Layer.
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Then, the input representation goes to the decoder block. First, it reaches
Masked Multi-Headed Self-Attention. Self Attention is the process of assigning an
attention score to each token in the sequence, which is a numerical representation
of how the token is important to every other token in an input sequence. Figure
1.7 depicts how the Self-Attention mechanism works. Self-Multi-Headed is an
ability to perform Self-Attention computations in parallel. Masking prevents the
model from accessing the information from the subsequent tokens, taking only
previous ones into consideration during Self-attention. Masked Multi-Headed
Self-Attention helps the model predict tokens in an e昀昀ective and safer manner
[18].

Matmul

Scale

Softmax

Mask(opt.)

Matmul

H

Scaled Dot-Product AttentionScaled Dot-Product AttentionScaled Dot-Product Attention

LinearLinearLinear LinearLinearLinear LinearLinearLinear

ConcatConcat

Linear

Scaled Dot-Product Attention Multi-Head Attention

Q K V S
V

S
K

S
Q

A B

Figure 1.7 Self-Attention mechanism in Transformer. Q here is the query matrix
(from the output of the previous decoder layer), K is the key matrix, and V is the
value matrix (both come from the output of the encoder). SQ, SK ,andSV represent the
corresponding source sequence for Q, K, and V.
Source: Zhao et al. [24]

After that, obtained representations pass through the layer where the features
are normalised. Then, representations pass through the Feed-Forward neural
network layer, and the output is normalised again. This concludes one decoder
layer.

Representations pass through 12 decoder layers undergoing the same trans-
formations as discussed above. The resulting output representation will then get
translated into a speci昀椀c token from the available GPT vocabulary. The algorithm
predicts the most probable next token for the given preceding sequence of tokens.
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Similarly to the process described in the previous section, during the training,
the loss function is computed. For most of LLMs including GPT this loss function is
represented by the cross-entropy function, which quanti昀椀es the di昀昀erence between
the true probability distribution and the predicted probability distribution. Let
us look at a Shannon 1.8 entropy formula in more detail:

Figure 1.8 Shannon cross-entropy formula

Here, H is an entropy, pi is the probability of the i element, and C is the
number of elements. The task of the model during the learning process is to
minimise the cross-entropy by adjusting the model’s weights and biases. We can
interpret the training objective of GPT as follows: it uses training data as a
reference in order to predict the most probable continuation of the given text,
imitating the reference data and decreasing the di昀昀erence between training data
and generated outputs.

The strength and limitation of GPT is that it was designed to handle text
generation tasks in an auto-completion fashion. Many di昀昀erent tasks can be
framed as text-generation tasks, but not all tasks are, by their nature, text-
generation tasks. For example, a classi昀椀cation task where the primary task is to
understand the content of classes and be able to predict a suitable class when
rephrased as a text generation task might perform poorer than their encoder-only
counterpart, like BERT, which is more suitable for classi昀椀cation tasks due to its
training objective. The primary task of GPT is to generate coherent text and less
about understanding and creating a proper representation of a text. As a result,
it a昀昀ects the e昀케ciency and quality of such tasks.

1.2.3 OpenAI GPT

GPT is the architecture introduced by the Open AI company research team
[25]. OpenAI was one of the pioneer companies in training very large language
models that are accessible through an API. There are a lot of di昀昀erent LLMs
similar to Open AI GPT introduced by other companies such as Mistral AI [26],
Gemini by Google AI team [27], Cohere [28], Llama by Meta AI [29], etc.

Open AI GPT was chosen for the experiment because it is frequently updated,
accessible and well-researched. It also has a convenient and customizable API
with an option to choose an output format. For the thesis, we will mostly use the
most accessible GPT-3.5 turbo model and the new at the time of writing GPT-4o
[11]. The queries to GPT will be made through the Open AI Chat Completion
API [16].

OpenAI Chat Completion GPT API has many di昀昀erent input parameters
that a昀昀ect the interaction process as well as the output. We will discuss some of
them which are important for the thesis experiment:
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• temperature. This parameter is responsible for query response diversity.
The higher the temperature, the more likely the model is to choose a less
probable next token. Setting the temperature high makes GPT produce
unusual and creative results with a higher probability. However, it also
may lead to a broken structure or hallucinations (nonsensical or nonexistent
output) [30].

• response_format. This is a relatively new OpenAI API feature that
allows users to choose an output format. Currently, only 2 options are
available: text and JSON. Choosing JSON format guarantees output to be
in a JSON format [16].

• model. Parameter that sets the exact GPT model that will be used during
the model work. For this thesis, we will use the models gpt-3.5-turbo-0125
and the newest at the time of writing gpt-4o. They di昀昀er in speed, relevance
and size of the training dataset, price, etc. These models might also di昀昀er
in architecture, but they are closed source, and we cannot make a reliable
conclusion about that [16].

1.3 PCG

PCG is a broad concept we discussed more thoroughly in the Introduction.
PCG for video games has a very extensive range of applications, supported by
various well-researched techniques, both newly created and adapted from other
昀椀elds. For instance, the original Wave Function Collapse algorithm [31] used for
tilemap generation, or L-systems, initially implemented to describe the behaviour
of plant cells to model the growth process, were adapted to be used in game
development for dynamic level generation in virtual reality [32] or for scenario
generation [33].

However, in this section, we will focus on exploring various approaches for
generating quests, characters, and stories—elements that are usually represented
by natural language. We will analyse these approaches considering that we require
the generated textual content for our game to have a strict structure. We will also
showcase some great examples of games that signi昀椀cantly rely on PCG techniques
to generate entire Game Worlds and narratives. Additionally, we will explore
some approaches that use LLMs for PCG.

1.3.1 Narrative World Generation

The concept of world-building with PCG is not new. It involves creating an
entire Game World or its signi昀椀cant parts, such as locations, scenarios, or other
fundamental game systems that resemble the Game World at some scale. An
example of such an approach could be generating a Game World in Minecraft
(2011) that includes terrains, biomes and enemies, which resembles a player-driven
world [34]. However, there are approaches more relevant to this thesis that attempt
to build feature-complete story-driven Game Worlds.
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One of the approaches worth discussing is the Narrative World generation
algorithm introduced by Balint, J. Timothy and Bidarra, Rafael [35]. This
algorithm represented in 昀椀gure 1.9 takes as input a cohesive and structured story
and a knowledge base containing data about objects described in this story. The
story is an ordered sequence of actions between objects in given interrelated
locations that are assumed to be fully supported by the given knowledge base.
The knowledge base not only contains all the objects, locations, and possible
relations between them mentioned in the story but also provides objects that are
essential for the action in the given location, like a bed for a character sleeping at
their house.

In addition, the knowledge base contains data about Motifs, which are the
set of objects and relations between them that are typical in the given location
but not directly interacted with in the story. Motifs are probabilistic in nature
and contain weights for certain objects or relations to occur. Additionally, these
weights are a昀昀ected by the objects that are necessary for the story. This results
in a diverse set of generated narrative worlds for the given story. For example, a
bedroom motif can contain beds, lamps, chairs, nightstands, or rugs. The bed,
in this case, will have the highest probability of occurring, while the chair most
likely won’t be in every bedroom.

Figure 1.9 Narrative world generation pipeline.
Source: Balint and Bidarra [35]

The resulting narrative world for each slice of time contains the state of the
locations, characters, and objects that belong to them for the respective points
in the story timeline. However, these locations should already have content that
may appear in future parts of the story, like a table on top of which the candle
can be placed.

This paper gives great insight into what is important for building a world
that is dependent on the story.

1.3.2 Dwarf Fortress

An iconic example of utilizing PCG to generate a Game World is Dwarf
Fortress (2006). PCG is used to generate most of the elements in the game,
including the story, characters, terrain, events, etc. The story that is being
generated can be interpreted as a description of the simulation of thousands of
sophisticated AI agents or how it was described by the author of the game, Tarn
Adams, in the interview Q&A: Dissecting the development of Dwarf Fortress with
creator Tarn Adams [36] “There’s a giant zero-player strategy game going on with
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somewhat loose turn rules and bad AI (but thousands of agents), and history is
just a record of that.”.

In the later iterations of the game, the author introduces myth generation,
which explains how each key piece of the world (races, zones, primordial entities)
appears in this world. The algorithm behind this is similar to one that is responsible
for world history but introduces a few more inputs and showcases how the existing
procedural generation system for world generation can be expanded for the existing
domain [37]. An example of it is shown in 昀椀gure 1.10. It illustrates how di昀昀erent
entities relate to each other by highlighting the colour. Dwarf Fortress introduces
many di昀昀erent input values that a昀昀ect the world. The world generation is seed-
based, so each generation can be replicated. This allows players to share interesting
worlds or replay them to obtain di昀昀erent outcomes.

Figure 1.10 Dwarf Fortress myth generator.
Source: Dwarf Fortress’ creator on how he’s 42 % towards simulating existence [38]

1.3.3 Moon Hunters

Another great example of how the narrative generation can be integrated into
the game to enhance player experience and engagement is the Myth Generation
system in the rogue-like game Moon Hunters. In this talk [37], Tanya X. introduces
the algorithm of creating a myth about the played character based on the traits
that were acquired during a playthrough. These traits are based on the player’s
deeds, the conditions of those deeds and relations with in-game characters.
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Figure 1.11 Moon Hunter constellation panel.
Source: Short and Adams [37]

However, generating a chunk of the story or a description based on a complex
system should result in something more than just a plain text. For that, the game
introduced a constellation panel containing all the myths (which describe the
player’s deeds) the player produced during their previous walkthroughs. Every
myth a昀昀ects the world’s generation, and this can be tracked on the constellation
map. This makes players learn more about this system and a昀昀ects their perception
of the game during each playthrough. It also adds an additional completionist
target to 昀椀nd each star and constellation that is responsible for di昀昀erent player
deeds and interactions.

1.3.4 Personality design

The character creation process is a nontrivial task and usually consists
of several important steps, such as visual design, assigning personality traits,
developing a backstory, etc. We will focus on personality design and generating a
backstory that helps integrate the character into the game narrative.

In the book by Tanya X. Short and Tarn Adams [39], the authors explore
the topic of character design. In their chapter about Personality Generation,
they brought up an important distinction between two types of how generated
character traits can be represented in the game. One is the “Character Judge-
ment” (Behaviour First) method, in which players draw conclusions about their
personality based on the character’s words or actions. Second is the “Tell Then
Show” (Reasoning First) approach, in which players are informed about signi昀椀cant
personality traits. That information might be usually provided for players to then
align their decisions made in interactions with these characters. Schemes for these
character representation patterns are shown in 昀椀gure 1.12.
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Figure 1.12 Two approaches on how character personality can be represented in a
game.
Source: Short [40]

The Reasoning First approach is used in games with procedurally generated
characters, like Dwarf Fortress 1.3.2 or Crusaders Kings 2. This thesis will use
the Behaviour First approach, which is more classic for hand-created characters.
The language model interprets traits assigned to characters to generate a dialogue
tree that is then assessed by players.

1.3.5 Practical PCG Through Large Language Models

We explored some PCG techniques that can help developers craft a Game
World. We also discussed a few techniques and examples of how the generated
narrative can be inserted into the game. Here, I would like to give an example of
how LLMs can be used to generate game parts that are not directly associated
with natural language.

In their paper, Muhammad U Nasir and Julian Togelius [41] showed an inter-
esting approach to generate levels for their top-down rogue-lite game Metavoidal
using the pre-trained language model GPT-3. In their algorithm 1.13, they repre-
sented the data as a sequence of tokens described in the prompt and an instruction
that there should be a certain percentage of walkable tiles. Here is how the
string representing a 3x3 tile fragment can look in a prompt. Here A represents a
walkable tile, # is a wall, J is a door, \n represents a new line, and % is an end
of a sequence 1.1.

”AAA\n#J#\nAAA\n%” (1.1)

The levels have some constraints regarding the positions of the walkable and
unwalkable tiles and doors. The prompt itself does not contain any instruction on
that matter, and this constraint was only overcome by continuous training with
valid data.
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Figure 1.13 A 昀氀owchart of how both stages work. The yellow circle indicates the stage
number. Red color indicates automated process and green indicates human-in-the-loop
process.
Source: Nasir and Togelius [41]

Two di昀昀erent metrics were used to evaluate the result. First, that the level
should be playable-novel. To ful昀椀l this, the level should be playable, which is
true if all constraints are passed. It should be novel, for which the levels in a
data set are compared to each other and should have a calculated di昀昀erence of
less than the chosen threshold. In this experiment, it’s 10% of the string length.
The second metric is accuracy. Which is how accurately the level followed the
instructions provided in a prompt. This work gives us some notion of how the
game data can be interpreted to insert it into a prompt for a language model.
However, for our thesis, we will consider a di昀昀erent approach.
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2 GPT JRPG
During the initial experiments with GPT, several features of the game

suitable for the thesis experiment were considered:

• The game genre should 昀椀t the idea of generating distinct Game Worlds.
That means that the game should be abstract enough. What exists in the
game should be able to represent a wide variety of fantasy narratives. That
possibly could be achieved by creating an enormous number of di昀昀erent
game mechanics and assets, which is not achievable considering the scope of
the thesis. The preferred way is to make a simple game that abstracts most
of the objects, mechanics, or locations that might exist in the textual part
of the game generated by GPT.

• One of the main strengths of the Open AI chat completion API is generating
dialogues. Therefore, it would be bene昀椀cial to have dialogues as a meaningful
part of the game.

• One of the initial ideas for content generation with LLMs was to make it
choose from the list of created assets based on the already generated part
of the game and the description of the hand-created game features. The
game should have a signi昀椀cant amount of assets. However, they should be
stylistically compatible because the instructions for the model would allow
it to use them in any combination it 昀椀nds meaningful.

• The game should have a su昀케cient number of mechanics and depth to show
that the conclusions drawn from this thesis’s results can be scaled and
compared to commercial games.

After several iterations, the JRPG game genre was chosen, and its advantages
were described in Chapter 1.1. The nominal name “GPT JRPG” was chosen to
highlight the game’s purpose and genre.

The core gameplay consists of moving along the levels and between them,
interacting with enemies, completing quests, and managing units to try forming a
powerful and balanced group. The main objective of the game is to defeat the
world antagonist. The di昀케culty of the game and the necessity of adapting the
playstyle comes from the fact that after the 昀椀ght, units are not healed. That
requires players to choose battles that are completing the quests which can provide
an item that might help to recruit new units or heal the group.

2.1 Designing the Game

In this section, we will go through design decisions made for GPT JRPG
and discuss important game mechanics and entities. As the game engine, we have
chosen Unity [42] because it is free for the scale of the game we made and has a
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lot of freely accessible information and also because it uses C# as a main scripting
language, which aligns with the prior experience of the author.

Initially, the game was designed around the data received when communi-
cating with GPT, and the 昀椀rst objects that were created are World Enemy,
Protagonist, and Units. The next step in designing the JRPG was to create a
turn-based Battle System to have a playable Vertical Slice (functional game piece
showcasing the intended player experience) of the game.

After that, GPT JRPG was iteratively improved by alternately updating the
algorithm of interaction with GPT API and adding new features to the game that
can represent newly produced data. Here, we will talk about the most important
entities that are using data generated by GPT:

• Level. The game has three levels, each characterised by its components.
The level contains world enemies, the protagonist, a level door, and quests.
Each level has a 昀椀xed size and identical landscape shape.

• Protagonist. This is a playable character that has descriptive characteris-
tics which can be found in a knowledge base. The player has a friendly unit
group under control and can have usable items.

• World Enemies. They are the level objects the protagonist can interact
with. The interaction starts with a dialogue. Depending on the dialogue
outcome, the interaction can result in recruiting, ignoring or battling with
the unit group assigned to the corresponding enemy.

• Level door. The door to the next level opens when the main quest of this
level is completed, it doesn’t exist on the last level.

• Quest system. There are main quests that must be completed to 昀椀nish
the game and side quests that are optional. Side quests give an item as a
reward. There are three types of tasks in quests: “kill”, “unite”, and “kill or
unite”. To ful昀椀l the kill task, an indicated enemy should be defeated in the
battle. “Unite” can be done by recruiting the enemy through dialogue. “Kill
or unite” just indicates that the quest can be completed by both actions.
Quest fails if the enemy for the task “unite” is killed or for the task “kill” is
recruited. The side quests of the current level also fails when moving to the
next one. The quest list can be found through a pause menu.

• Unit. It is a generated character with an assigned class, power level, hp,
armour and damage. Each unit has a special ability corresponding to its
class.

• Unit Group. The group consists of several units that can be engaged in the
battle. The protagonist group can be found and controlled through a pause
menu. The game is lost when zero units remain in the protagonist group.
Each enemy unit group is represented by the world enemy. Protagonist
units can be swapped during the recruiting process.

• Dialogue. Each world enemy engages in the dialogue upon interaction with
the protagonist with one of three outcomes. The 昀椀rst is the enemy, forcing
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the protagonist to 昀椀ght. The second is ignoring, meaning the protagonist
can retreat in peace or engage in battle. The third is that the enemy is
ready to unite, which allows the protagonist to recruit its units, but the
protagonist can still engage in battle or ignore.

• Items. There are two types of items: amulet of healing and amulet of
alliance. Both are stackable and can be acquired through side quests.
Amulet of healing can be used to fully heal the protagonist group. Amulet
of alliance can be used to force world enemies to unite with the protagonist
if the current outcome doesn’t allow it.

2.2 Battle system

The battle system is one of the core gameplay mechanics in which the
protagonist group engages in a 昀椀ght against the world enemy group. Combat is
turn-based and structured into rounds. The round ends when every protagonist
unit performs its action. Even though GPT is not used for battle system directly,
it is still built using GPT generated units and their characteristics. There are
three types of action:

• Attack. It deals damage to a chosen enemy unit.

• Armour up. It doubles the armour value for this unit for one turn.

• Class ability. the ability is special for each class. It can be a powerful
spell, a mighty attack or a passive skill, we will discuss them in more detail
in the next section.

Every action taken during the combat is documented and written in the battle
journal, which can be viewed in the UI. Combat ends when all units from one of
the sides are dead. The graphical representation of the battle scene can be seen
in the 昀椀gure 2.1.

Figure 2.1 Battle scene in GPT JRPG.
Source: Custom screenshot from GPT JRPG
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2.3 Unit classes and power levels

There are 10 classes in the game, each having a special ability that can be
used during the combat. On top of that, there are also 7 power levels that have
di昀昀erent amounts of health points, damage and armour. Each class also has a
di昀昀erent stat distribution. The exact distribution of stats can be found in the
Attachment A.1. Here are descriptions of each class:

• Fighter. Attacks back when being attacked by the enemy unit. Passive
ability. Has balanced characteristics but is slightly focused on damage.

• Sorcerer. Stuns enemy unit for 1 turn. Cooldown: 1 turn. Prioritises
damage.

• Paladin. Heals all ally units for 15% of their max health. Cooldown: 4
turns. Prioritises health.

• Protector. Taunts all enemy units for 1 turn. Cooldown: 2 turn. Excels in
health, moderate armour, and damage is extremely low.

• Bastion. Activates armour up for all ally units for 2 turns. Cooldown: 3
turns. Prioritises Armour.

• Healer. Heals ally unit for 20% of their max health. Cooldown: 1 turn.
Has balanced characteristics.

• Trickster. Makes an enemy unit attack another enemy unit the next turn.
Cooldown: 4 turns. Has balanced characteristics, slightly focused on health
and damage.

• Berserker. Attacks all enemy units, also hurting oneself. Cooldown: 3
turns. Doesn’t have any armour. Health and damage are balanced.

• Marksman. Attacks enemy units, ignoring their armour. Cooldown: 1
turn. Doesn’t have any armour. Damage is highly prioritised.

• Shaman. All ally units have 50% to avoid damage for 1 round. Cooldown:
4 turns. Has low armour. Health and damage are balanced.
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2.4 UI

UI is an important part of the game. It allows the player to receive informa-
tion about the current Game World and perform certain actions. Here is how the
UI is constructed in the game.

• Pause Menu:

– Quest List. Here, players can 昀椀nd all the information about the
quests. Each quest has a colour indentation, whether it is completed
(green), failed (red) or currently available (white). By clicking on the
quest more detailed information can be found.

– Group Info. The current protagonist group data is displayed in the
group info menu. The units’ positions here correspond to those in
battle and can be swapped. Information about the items and units
that can be healed with the amulet of healing can also be found here.

• Knowledge Base:

– World. The story of the world and description of each level.
– Hero. The description and backstory of the protagonist.
– Classes. Description and cooldown of each unit class ability.
– Bestiary. List of all units existing in the world.

• Other elements:

– Game message. The message is shown when the game starts, lost or
completed.

– Dialogue interface. Open upon interacting with the world enemy.
During the dialogue, the player answers to the world enemy phrases
by choosing from the available answers. At some point, the dialogue
ends, and buttons with the possible actions appear depending on the
dialogue outcome.

– Recruit menu. Opens after the dialogue with the recruiting outcome.
Any protagonist group unit can be swapped with the enemy one by
dragging them with a mouse. Depicted in the 昀椀gure 2.2.
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Figure 2.2 Recruit Menu in GPT JRPG.
Source: Custom screenshot from GPT JRPG

2.5 Assets

While there are many various assets that are used in the game, here we will
only discuss the ones that will be chosen from GPT.

• Unit assets. There are 354 unit assets named according to their appearance.
These assets are used for both world enemies and units.

• Terrain tilemaps. The tiles used to form the world’s terrain can have
4 di昀昀erent types of obstacle terrain and 14 types of walkable terrain. So,
there are a total of 56 tilemaps that can form a distinct terrain for the level.
An example of a tilemap with lava rock as a walkable tile and lava as an
obstacle tile can be seen in 昀椀gure 2.3.
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Figure 2.3 Terrain Tilemap from GPT JRPG.
Source: Asset used in GPT JRPG
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2.6 World representation

World Folder Narrative.json

MainCharacter.json

Levels.json

UnitData.json

QuestData.json

Dialogues

Dialogue1.json

Dialogue2.json

Dialogue3.json

Dialogue4.json

...

Figure 2.4 Folder structure for a Game World.

In order to provide the generated data to the game as input, it should be
in a readable format. While even plain text can be parsed, structured formats
such as XML or JSON would be a lot more convenient and error-proof as the
game input. Since the only structured output available from OpenAI GPT API is
JSON, it was chosen as the preferred response format. How the parameters are
assigned to a model is described in this section 1.2.3.

The Game World is generated before the game starts (whether from a main
menu or a script that launches an API query to LLM, which will be discussed in
the following chapter). This Game World is stored in a folder with the structure
shown in Figure 2.4. When the game is launched, all existing world folders are
parsed, and buttons for each world are created. When the world is selected, and a
player presses the button Start Game, each JSON 昀椀le in the corresponding folder
is parsed, and a C# data structure containing all the generated data is created.
This Game World data structure can then be accessed from any game object and
is destroyed when players return to a main menu, shown in 昀椀gure 2.5.
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Figure 2.5 Main menu in GPT JRPG.
Source: Custom screenshot from GPT JRPG
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3 Interaction with LLMs
In this chapter, we will provide details on the interaction process with the

OpenAI GPT API and discuss a few tested approaches. We will start with an
overview of the existing theory behind prompting. After that, we will go into
speci昀椀cs about how the interaction with the model is performed for the thesis
experiment and then provide our observations regarding the prompt engineering.

3.1 Prompt Engineering

LLMs are a speci昀椀c case of language models, which suggests that the main
way to interact with them is through natural language. Language models that
operate on texts try to understand the input text and provide the most probable
continuation of the given text. Giving the right input context helps prime the
model in the right direction, giving it a direction to a more desirable output.

This speci昀椀c input to the model got the name prompt following a long-lasting
tradition in Computer Science and natural language processing 昀椀elds. It became
widespread after the popularisation of autoregressive LLMs like GPT. The prompt
is a query to the LLM that acts as an instruction to give more context to the
model for a desirable outcome.

Discussing prompting is not possible without understanding the concept of
in-context learning. In this section 1.2.1, we mentioned ways a large language
model can be trained using two main techniques: pre-training and 昀椀ne-tuning.
Pre-training is a process of training LLM on a large amount of data so that it can
learn its main linguistic abilities and understanding of the world. Fine-tuning, on
the other hand, can be used to adjust a model to a speci昀椀c task or knowledge
area and makes a model more suitable to solve very narrow and specialised tasks.

However, 昀椀ne-tuning might not be necessary for LLMs trained on large
datasets of relatively unbiased data because these models have strong in-context
learning capabilities [43]. In-context learning is the ability of an LLM to perform
speci昀椀c tasks based only on the information provided in a prompt without modify-
ing the model parameters through 昀椀ne-tuning. This means that when trained on
a large amount of data, the LLM can use the prompt as context, improving the
knowledge gained during pre-training to handle unfamiliar tasks by using related
abilities developed during training.

It is worth noting that the way the prompt is phrased largely a昀昀ects the
model’s ability to give answers. Even minor changes to the prompt can give
drastically di昀昀erent answers. The main reason for that is the data a model is
trained on and how it was pre-trained. The data acts as a database, and if one
prompt linguistically is more aligned with the database than another one, it
has a higher chance of returning the desired answer. The result given by LLM
is also highly a昀昀ected by the clarity of instructions. However, it would be fair
to mention that the inner mechanism of LLMs is considered uninterpretable by
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humans because these models are very large and complex. So, many existing
techniques aimed at improving prompt quality are empirical.

Due to the fact that the quality of the prompt highly a昀昀ects the quality
of the LLM response led to a new practice called Prompt Engineering. Prompt
engineering is a set of techniques to design a prompt that aims to optimise the AI
responses. Prompt engineering is a relatively new term, but it has already got a
lot of attention in the research community, and a lot of work has already been
done studying and developing e昀昀ective techniques [44].

There are many techniques which focus on having a speci昀椀c structure or
order, avoiding speci昀椀c word choices or including speci昀椀c phrases or formatting, as
well as providing in prompt-speci昀椀c settings like bribing, setting roles or providing
audience. There are a lot of di昀昀erent opinions on which techniques are better
or how to interpret them. Sometimes, prompt engineering overviews might have
con昀氀icting opinions regarding approaches. One of the overviews of these techniques
can be found in 昀椀gure 3.1.

However, some prominent prompt engineering techniques representing a
speci昀椀c prompt engineering concept or paradigm are worth discussing. We also
found some of them useful for experimentation. The techniques that we want
to discuss are zero-shot learning, few-shot learning, prompt chaining, chain of
thought, and retrieval-augmented generation. This list is not exhaustive, but
we will provide more details on several prominent concepts to illustrate prompt
engineering techniques.

While prompt engineering also refers to interaction with, for example, image
or video-generating models, we will focus on those most relevant to language
models.
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Figure 3.1 Overview of 26 randomly ordered prompt principles.
Source: Bsharat et al. [45]
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3.1.1 Prompt Engineering Techniques

In this subsection, we will observe a few of the most signi昀椀cant techniques
and approaches to prompting.

• Zero-shot learning. This technique uses the prompt instructions and
the internal capabilities of large language models to perform a speci昀椀c
task. This means that we don’t need to supply any examples but just
provide meaningful instructions describing the task in detail to the language
model. This technique relies heavily on information provided by a user
and knowledge gained during pre-training about di昀昀erent real-world tasks.
One of the main advantages of using this technique is that it does not load
the model with the additional context, which makes the Transformer-based
LLMs work faster in comparison to using techniques that require providing
an extended context [46].

• Few-shot learning. In contrast to zero-shot learning, this technique
requires a few examples to be provided to the large language model in
addition to the main instruction to serve as an example for the desired
behaviour or outcome for a speci昀椀c task. Examples like anchors allow LLMs
to understand the task and the desired output better. Sometimes, just one
example is enough, and this is called one-shot learning. One of the most
typical examples of one-shot learning is guiding for output formatting, for
example, making an LLM to output data in a speci昀椀c format like JSON or
CSV [47].

• Prompt chaining. This technique is commonly used for complex tasks.
Prompt chaining allows to chain a sequence of prompts, one after another,
to split a complex task into smaller and more manageable subtasks. This
technique simpli昀椀es the prompt since LLMs struggle with very detailed
prompts and chains one after another so that in each subsequent prompt, the
information obtained at the previous prompting step is used. A disadvantage
of this approach is that it requires providing context about all the previous
results and instructions for every prompt. As a result, it will be more
expensive and take longer than providing only one prompt.

• Chain of thought (CoT). COT is a technique that uses a step-by-step
explanation of performing a speci昀椀c task in a prompt as an extended instruc-
tion [48]. This technique is commonly used for tasks that require reasoning
capabilities. Not just providing the correct answer as an illustration to the
model of how to proceed with the task but providing explanations in the
prompt on how the task should be tackled step by step gives better results.

• Retrieval Augmented Generation (RAG). RAG is a design system
that is used to extend the knowledge base of the model without using
techniques that aim at changing the model parameters like 昀椀ne-tuning [49].
Many generation tasks require some speci昀椀c knowledge base that models
could attribute to while responding to users, for example customer support
chatbots or information retrieval systems. The knowledge that LLM gained
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during the pre-training might not be enough to perform a speci昀椀c task. RAG
helps to use an external knowledge base that wasn’t incorporated during the
pre-training or even 昀椀ne-tuning procedure. RAG technique suggests adding
relevant documents directly to the prompt surrounded by some helpful
instructions on how to use these documents, thus providing references for
the model to look through.
This allows models to serve more 昀椀ne-grained information, which is more
helpful for users or serves the most recent and up-to-date information. Since
the number of documents in the knowledge base can be large, RAG can also
de昀椀ne the way how the most useful references should be selected and stored.
Most common RAG applications use vector databases that do similarity
searches to select candidates. While RAG is able to solve quite speci昀椀c
tasks, this system is very demanding and requires a fast database, e昀케cient
retrieval mechanism and query-building algorithm.
For the diploma thesis, we don’t need to implement such a complex design
system. However, we will still use the prompt engineering technique, which
references the knowledge base and includes speci昀椀c instructions on how the
data from this knowledge base is used.

Several of the prompt engineering techniques can be combined to achieve
even better performance for LLMs.

3.2 Query structure

During the 昀椀rst iterations, the whole world was generated in one query to
OpenAI API. As the world emerged, the query was split into several consecutive
ones. This helped reduce the total request processing time and to receive more
reliable and correct answers.

World Narrative

Main Character

Levels

Units

Dialogues

Quests

Figure 3.2 API requests structure.

Figure 3.2 demonstrates the structure of API requests. Each request (except
the initial World Narrative) depends on the previously generated for this world
context, and the arrows here indicate the order and direction of data transfer for
the requests. Many decisions on how to instruct the model are dictated by the
desire to show di昀昀erent approaches inside one generation.
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Now, we will discuss the prompts in more detail. Each prompt has a similar
structure. Firstly, there is almost the same contextual instruction #Setting for
all request blocks that contains the following text:

1 "#Setting: \n You are a creative assistant for creating
textual game content. You need to follow instructions
while being creative and artistic. \n"

Listing 3.1 Setting instruction content

A few di昀昀erent versions of this were tested, but writing at least something
about the context of the task helps aligning the model response. This is happening
due to the sequential processing, GPT processes the prompt from start to 昀椀nish
and what is written earlier a昀昀ect how the rest of the prompt is interpreted.

Then, there is an #Instructions block that contains a description of what
is expected to be generated and an interpretation of referenced for the task data.
The instructions given here are generally thorough enough, and some information
might be repeated several times.

The optional block #Constraints contains consecutive numbered short
instructions containing information on what should not appear in the response or
sometimes repetitions of what was already given in the previous block.

Lastly, there is a #Structure that is usually mentioned earlier in the
prompt. From practice, the structure can be provided in any part of the prompt,
and the position does not a昀昀ect the result noticeably. This block contains the
desired structure of the response for each query.

It is also worth explaining that the Chat Completion API speci昀椀cally was
used in the experiment. While it is an interface that is implied to be primarily
used for chat applications, it still can be used for completion tasks. The main
di昀昀erence between the used approach and Completion APIs is that request Chat
Completion can have several messages with assigned roles. For the experiment,
all the instructions described above are marked with a role system, which is
usually used for that and a simple message from the user role that implies that
the model should start generating the response. OpenAI themselves highlight
that Completion API soon will be deprecated, and Chat Completion can be used
instead [50]. The Backbone of each API request can be seen in listing 3.2. We
will use temperature equals to 1.0 as a default value for every query.
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1 response = openai.chat.completions.create(
2 model="gpt-3.5-turbo -0125",
3 temperature=1.0,
4 max_tokens=4096,
5 response_format={"type": "json_object"},
6 messages=[
7 {
8 "role": "system",
9 "content": "#Setting: \n "

10 "#Instructions: \n "
11 "#Constraints: \n"
12 "#Structure: \n"
13 },
14 {
15 "role": "user",
16 "content": "Start generating."
17 }
18 ]
19 )

Listing 3.2 API request structure

Now we will discuss details about every query. Details about mentioned
entities can be found in section 2.1.

• World Narrative. The 昀椀rst thing generated is the narrative data, which
includes the story type, name of the world, story, antagonist unit group
and messages shown when the game starts, the game is lost, and the game
is won. Story type here de昀椀nes if the protagonist is evil, good or neutral,
which immediately align GPT to make certain choices based on that factor.
A villain group is generated in the context of the story.
If there are any other generated worlds, it restricts GPT from generating
ones with the same name. This technique is useful here and in a number
of other particular cases, however, it should not be the only way we make
models generate various results, because the expected behaviour is that even
if there are no prior models created, GPT should output somewhat unique
results.

• Main Character. This query generates the playable character’s personality,
name, class, race, occupation, and backstory. It also generates a protagonist
unit group, which units are instructed to depend mostly on the protagonist’s
description and backstory. The protagonist is placed in the generated context
of the world and its story.

• Levels. It generates a speci昀椀ed number of levels for the experiment, which
is chosen to be 3. Levels are placed in the world’s setting. Characteristics
generated for each level are name, level description, and terrain chosen from
the list of available. Prompt constraints are choosing the same walkable
terrain for two di昀昀erent levels.
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• Unit Groups. Here, all world enemy unit groups are generated. They
are generated based on the world story and, most importantly, on the level
and its environment. Each group has a name and up to 3 units. For each
unit, the model is instructed to choose three unit attributes from the given
database of units(discussed in section 3.3), a characteristic name based on
these attributes, an artistic name and a class based on LLM knowledge
about fantasy creatures, and a power level based on the instruction given in
a prompt.

• Quests. This query is given all the previous information to consider: who
is given the quest, the world setting these quests exist in, and the levels
and units that are potential targets of the quest. Apart from that, there
are speci昀椀c instructions for possible targets, rewards, and tasks. GPT is
instructed to have a quest to progress to the next level and the 昀椀nal quest
to 昀椀nish the game, which is only to defeat an antagonist.

• Dialogues. The dialogues from the Unit Groups query results are generated
for each world enemy and antagonist. Dialogue is generated in a separate
query for each enemy. The generation of the dialogue starts with taking
the 昀椀rst unit in the group and generating personality trait ratings based
on the LLM’s knowledge of this 昀椀ctional character and referring to the fact
that this unit represents the whole enemy group. After that, based on these
traits, the dialogue tree with the given parameters is generated. One of the
instructions given to a model is to always generate at least one possible
outcome of the dialogue for each outcome type.

3.3 Problem-Solving Examples

During the process of creating and iteratively developing the prompts, a
signi昀椀cant number of techniques were tested, and di昀昀erent observations were made.
Here, some of these observations will be provided along with the problems that
were attempted to be resolved:

• Mutating the input parameters. One of the most common problems
encountered while using OpenAI GPT API in the context of this thesis
experiment was the task of choosing the content for the game from the given
list of available assets. Despite instructions that it should take the exact
string, it was often slightly changing it or coming up with completely new
options.
As the 昀椀rst response to this problem, the veri昀椀cation algorithm was imple-
mented. It checks the input during the generation process in an attempt
to 昀椀nd a close enough option or completely redo the query even if one
unsolvable case is found. At that time, at least one generated unit asset
name was broken in more than half of the generated worlds. While the
veri昀椀cation algorithm solved the issue occasionally, the correctly generated
world was sometimes received only after 昀椀ve attempts.
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Another approach was to change the names in a list of options given to
LLM by adding a numerical identi昀椀cation(id) to each string. As an ex-
ample, instead of string ”deep_elf_mage” representing a unit, we used
”90_deep_elf_mage”. Adding an id to a string makes it a more easily
recognisable pattern for an LLM. The model learns that the correct option
has an id and it will more likely rely on the given data rather than its
general knowledge. However, this approach is not well studied and adding
symbols to the string might reduce the impact of these string words on a
model decision process.
As a result, the most e昀昀ective solution we found was to refactor the structure
of the unit database. In this version, each unit is characterised by three
attributes and stored in JSON format here is a fragment of this unit
database:

1 ..."undead": {
2 "bog_body": [""],
3 "death_cob": [""],
4 "ghost": ["dragon", "eater", "flayed", "missing",

"stalker", "void", "warrior"],...

Listing 3.3 Unit database fragment.

In this example sample of the database of units, the 昀椀rst attribute is the
“undead”, which is the outer JSON object. The second attributes are JSON
arrays “bog_body”, “death_cob”, and “ghost”. The third attribute is a
JSON string, like “dragon”, “eater”, or “昀氀ayed”. If there is only one unit for
the second attribute, this unit does not have a third attribute. Full text of
the database of units can be found in the Attachment A.2.
Using this structure and a modi昀椀ed query has shown the most consistent
results. Providing a database in such a format makes LLM choose unit
attributes sequentially, like traversing a tree. This hierarchy helps to narrow
down choices based on parent categories. Numerical evaluation of this aspect
of the result can be seen in section 4.3.2.

• Mentioning features not existing in the game. This issue means
that quests, descriptions or dialogues may contain mentions of objects or
mechanics that are not implemented in the game. While this does not
directly a昀昀ect the functionality of the game, it has a negative impact on the
player’s perception. Usually, such problems e昀昀ect might be reduced by 昀椀ne
tuning, which is not a focus of this thesis. Techniques that were used are
contextual prompting, which means that we put the GPT in the context
of the game, instructing it to follow a speci昀椀c role and consider certain
restrictions and iterative prompting, which is a process of changing
certain aspects of the prompt, like structure or word choice, in an attempt
to improve the response quality.
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4 Results
In this chapter, we will draw conclusions about the experiment and evaluate

the data from multiple perspectives. First, we will discuss the result from the
author’s perspective, identifying what worked as expected and what could be
done better. After that, we will observe the Data Set used for the evaluation and
consider several selected metrics to assess the quality of the algorithm. As the
last step, we will assess the game from the player’s point of view.

4.1 Subjective Evaluation

The goal of this thesis was to develop an algorithm that generates Game
World using OpenAI GPT API. This Game World is then used for the game
created for this thesis. The game should be possible to complete and have other
characteristics described in the chapter 2. The amount of content in the game
that was generated should be su昀케cient and frequently interacted with.

From the author’s perspective, the desired result was reached. The algorithm
of interaction with OpenAI GPT is written in Python and C# and can be launched
directly from the game as described in section 2.6.

The game GPT JRPG serves its intended purpose of utilising the content
generated by LLM and being largely in昀氀uenced by the choices it makes. The game
usually has a clear goal derived from the Game World story, and with certain
temperature 1.2.3 values, di昀昀erent Game Worlds are usually distinct in story,
characters and other generated or partially generated game entities.

However, the algorithm and the game have several 昀氀aws. Firstly, GPT
somitemies produces results that are not expected by the game and, therefore, not
parsable by the mechanism of asset selection (explained in section 2.5). Prompt
Engineering is a process of gradual response quality improvement, although it is
di昀케cult to evaluate its in昀氀uence. While some parts of the algorithm are working
as intended and the connection between the prompting approach can be identi昀椀ed,
some things, like using generated personality traits, seemingly did not show much
bene昀椀t in use.

Secondly, some systems in the GPT JRPG are underdeveloped. The main
issue here is the lack of graphical assets made in one art style taken from freely
available sources and diversity in in-game content, namely items, quests, endings,
etc.
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4.2 Data set

Here, we will discuss the Data Set used for the following evaluation. For
generating a data set, we will use two di昀昀erent models, namely GPT-3.5 turbo
and GPT-4o, and temperature (see section 1.2.3) values 0.6 and 1.2. These
temperature values were chosen based on the conclusions made in the paper by
Agarwal et al. [30] and experimenting with setting di昀昀erent temperatures for
the created algorithm. Making a temperature less than 0.6 usually leads to very
monotonous and similar results, and going above 1.2 leads to an enormous amount
of hallucinations and errors.

Generating Dialogues is the most expensive and time-consuming part of the
request. It also does not produce game crash-sensitive content, so that it won’t
be generated for this data set. We will discuss the dialogues separately.

Model Temperature Worlds Units Units per World
GPT-3.5
turbo

0.6 15 489 32.6
1.2 15 437 29.1

GPT-4o 0.6 5 210 42
1.2 5 195 39

Table 4.1 Data set used for the evaluation.

Table 4.1 shows the amount of data used for di昀昀erent OpenaAI API param-
eters used in the evaluation. We generated 15 Game Worlds for both temperature
parameters for the model GPT-3.5 turbo. While the expected number of Units,
according to the instruction given in the prompt, should be between 39 and 42,
we can see that for both temperature parameters, it revolves around 30. The
number of Generated Worlds that we will use is not enough for a reliable statistical
evaluation but generating a data set of substantial size is both time-consuming
and costs a signi昀椀cant amount of money on the API.

After looking into the data, we can observe that the number of generated
units per Game World for this model lies in the range from 20 to about 40. There
might be an issue with the limited number of output tokens, but in this case, there
would not be such a signi昀椀cant spread in the number of units between worlds. So,
we are assuming that it is happening due to the internal mechanism of the model
or unclear instructions that are sometimes misunderstood.

On the other hand, we can see that the number of units per Game World
for the GPT-4o is within the expected range. It is a bit lower for temperature 1.2
due to the hallucinations, which corrupted some data. We will discuss it more in
the next section. We only generated 5 Game Worlds for each temperature here
due to the price (it costs 10 times more per token than GPT-3.5 turbo and, as we
stated, generates more data, and as a result, it costs around 14 times more per
Game World) and that it still has enough amount of Units in order to be able to
draw some general conclusions.
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4.3 Succes rate

Here, we will evaluate the performance of the algorithm by observing the
generated Game Worlds using the following metrics:

1. Validity. The Game World is considered Valid if it is parsable by the GPT
JRPG internal algorithms and the game can be 昀椀nished, which means the
player is able to see the 昀椀nal game message. It will be veri昀椀ed by checking
that each Game World can be launched in the game and that the main
quests are completable (more about how the quest system works can be
found in the section 2.1). Due to the low number of Game Worlds in the
evaluation, we cannot draw very reliable conclusions, but we will still discuss
speci昀椀c cases when the Game World is corrupted and possible causes of
that.

2. Correctness. The Correctness is the percentage of generated asset names
by GPT that corresponds to the assets in a list it was supposed to choose
from. This metric evaluates the Correctness of the assigned unit attributes (
discussed in section 3.3), unit class, and power level 2.3. It should be noted
that these issues are processed in the game and expected not to cause game
crashes.

4.3.1 Validity

Let us 昀椀rst discuss the Validity metric. Preemptively, I would like to note
that no pattern was found in terms of Validity between di昀昀erent API parameters.
Thus, we will discuss them alternately without focusing on comparisons.

Model Temperature Worlds Valid Invalidity Causes
GPT-3.5
turbo

0.6 15 13 main quest
1.2 15 14 undergenerated world

GPT-4o 0.6 5 5
1.2 5 3 hallucinations

Table 4.2 Validity evaluation for the generated Data Set and causes of Invalidity for
di昀昀erent API parameters.

In the table 4.2, we can see that for the model GPT-3.5 turbo with temper-
ature set to 0.6, 13 out of 15 Game Worlds are valid. In both cases, Invalidity
was caused by the fact that the main quest objective on the 昀椀rst level was the
unit from the di昀昀erent level which cannot be accessed without completing this
quest. I would note here that it appeared to be a common issue for the side quests,
especially for the GPT-3.5 turbo model. Around 8 out of 15 Game Worlds for
both temperature values contain such quests. It doesn’t make the Game World
invalid, but it is still a signi昀椀cant gameplay 昀氀aw. It also indicates that the chosen
approach in generating quests might be defective.
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For the same model with a temperature set to 1.2, there is only one invalid
world. It cannot be processed by the game because JSON 昀椀les contain empty 昀椀elds
for the second and the third levels, therefore, the game cannot be 昀椀nished. While
we cannot make de昀椀nitive conclusions about it due to the small data set, we expect
to receive more structural issues from the requests with higher temperatures.

Now, let us discuss the performance of the model GPT-4o. We will start with
observing results received with a temperature set to 1.2. Interestingly, responses
received with such parameters are more hallucinated than with the older, less
capable model. Here, we can see the sample of the response part when the response
started to receive hallucinations:

1 ...{
2 "groupName": " Dormant_pushed as lifted

Postererts of gigantic Seculence",
3 "units \u0430\u0432\u0442\u043e({' Explor

certain values ideal_prelolajia of water
Blat extra_MASK myst Other tension detail
lake visual Produce approachable attit
reversible igual nuances envelop Morr.
boldanlage arrangement": "units\"\ngoe
tissues_fact prescribed apl CAce refined She
'int_dim size unseen decorative Mith ",

4 "health...: []
5 }

Listing 4.1 Corrupted Units Data 昀椀le sample.

While only 2 worlds are invalid, the content generated for others will hardly
be used in real games. As the example for one of the valid worlds, it generated
such a game over message:

1 {..."gameOverMessage": "Recoil in despair, defeated unto
raising the fists of your folly! Balance shall
reassert. Olymorr and his Guardians invoke as veils
shred illusions not pleasant. Darkness, returning to
silent embrace, for now abides elsewhere."...}

Listing 4.2 Hallucinations in game over message.

Finally, the model GPT-4o with temperature set to 0.6 had almost no issues, and
even if we look at quests, only in 1 Game World side quest were they incompletable.
Based on the Validity metric and our observations, these parameters are preferred
compared to others.

4.3.2 Correctness

Now, let us observe the Correctness of the Game Worlds from the Data Set.
We will compare this metric for di昀昀erent API parameters and analyse problematic
segments.
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Model Temperature Units Correct Correctness
GPT-3.5
turbo

0.6 489 469 95.9%
1.2 437 380 87.0%

GPT-4o 0.6 210 208 99.0%
1.2 195 170 87.2%

Table 4.3 Correctness for di昀昀erent API parameters.

The table 4.3 shows us a few noteworthy points, namely, we might make
the conclusion that there is a direct correlation between the temperature and the
calculated Correctness. We receive a lot more consistent results using a lower
temperature, especially for the GPT-4o, which shows 99.0% Correctness with
only 2 problematic Units. However, we might also observe that for a temperature
equal to 0.6, we don’t have any advantages in using the GPT-4o over the GPT-3.5
turbo with 87.2% and 87.0% percentage of correct Units, respectively.

At the beginning of the section, we mentioned what can cause the Incorrect-
ness of the Unit. We will only take Units that are Incorrect and analyse what is
the most frequent reason for that for di昀昀erent API parameters.

API
Param. Total Power Class Attr. 1 Attr. 2 Attr. 3

GPT-3.5
turbo,
temp=0.6

20 0(0%) 0(0%) 0(0%) 6(30.0%) 14(70.0%)

GPT-3.5
turbo,
temp=1.2

66 3(5.3%) 2(3.5%) 1(1.8%) 27(47.4%) 26(45.6%)

GPT-4o,
temp=0.6 2 0(0%) 0(0%) 0(0%) 1(50.0%) 1(50.0%)

GPT-4o,
temp=1.2 25 4(16%) 8(32%) 2(8%) 9(36.0%) 12(48.0%)

Table 4.4 Details on what caused the Incorrectness of Units for di昀昀erent API param-
eters.

In the table 4.4, we can see that Units generated for the temperature 0.6 do
not have issues with the chosen for them power level and class (see section 2.3),
as well as the 昀椀rst attribute (see section 3.3). Listed entities are chosen by GPT
from the list and using lower temperature causes it to not invent not existing
in the given input options. It is di昀昀erent for the second and the third attribute
because GPT instructed to narrow down the choice to the certain JSON object in
the unit database (Attachment A.2), and it is sometimes choosing these attributes
from the neighbour objects, which is not intended and such a Unit combination of
attributes is not recognized by the GPT JRPG.
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For the higher (1.2) temperature, the situation with the second and the third
attributes is only getting worse, and on top of that, the model starts to distort
existing or come up with completely new power levels, classes, and, less often,
昀椀rst attributes. As a few examples, GPT-3.5 turbo changes existing ”mighty”
to ”might” while GPT-4o is creating entirely new like ”deadly”. GPT 4o is also
sometimes producing nonsense results, as shown below:

1 {..."units": [
2 {
3 "firstAttribute": "hawassrngeestyle",
4 "secondAttribute": "imp",
5 "thirdAttribute": "shadow",
6 "characteristicName": "Dark Imp",
7 "artisticName": "Grimalker, the Sneak",
8 "powerLevel": "mighty",
9 "unitClass": "trickster"

10 },...}

Listing 4.3 Pointwise hallucinations in the Unit JSON object.

From the context, it is clear that the 昀椀rst attribute should have been ”hell”,
but in the case of this particular query (same as for the listing 4.2), it produced
these unexpected pointwise hallucinations. It is also worth noting that the wrong
昀椀rst attribute makes checking the following one impossible, and they are not
counted in the table 4.4.

One of the ways to improve the Correctness of the Game World might be to
increase the number of prompts in the chain (we discussed the technique named
chain prompting in section 3.1.1). We can potentially use separate queries for
each unit and, inside these queries, have a conversation with OpenAI GPT API
to alternately ask it to choose attributes. During these conversations, we should
provide isolated parts of the unit database so it has no chance to choose something
that does not belong to the previously chosen attributes. However, it would result
in at least 30 to 40 queries in which we would need to include the information about
all the previously generated units and also implement an additional conversation
with the OpenAI GPT API. This would result in a dramatic increase in generation
price.

In conclusion, after observing the Correctness metric for di昀昀erent API
parameters, we can see that the model GPT-4o with the temperature set to 0.6 is
the better choice for our application.

4.4 Game Quality

In this section, we will observe the game from the player’s perspective.
Namely, how the content-choosing mechanism is diverse for di昀昀erent API parame-
ters, assess the dialogue quality and make a few general observations about the
game.
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First, we will again look at the result of the data set evaluation. We can
see that for both metrics, the best performance has shown the API queries with
lower (0.6) temperature and used the GPT-4o model. The second best (at least
for the Correctness metric) was the result shown by GPT-3.5 turbo with the same
temperature.

However, if look at some other parameters, like Game World Name or
diversity in chosen units, we will see the expected less diverse and artistic response
for the lower temperature. In the case of GPT-3.5 turbo, it sometimes produced
entire levels with identical Unit groups for the temperature set to 0.6. On the other
hand, while we cannot state that for the same model with a higher temperature,
we received very rich results, this behaviour was not met for any other API
parameters. Considering these observations, we cannot make a strong conclusion
on which temperature to use for the model GPT-3.5 turbo and it would require
conducting user research.

In the case of the model GPT-4o, it is more obvious since both models made
diverse choices and produced diverse enough, from our perspective, results. Due
to the enormous hallucinations when the temperature is set to 1.2, we can state
that the optimal choice here is the temperature set to 0.6.

4.4.1 Dialogues

Here, we will assess the dialogues from a few di昀昀erent perspectives.

First of all, based on the observations made in the previous sections, we
decided to use a temperature set to 1.0. This is mainly because we wanted to
attempt to avoid hallucinations when using the model GPT-4o and we are lowering
it also for GPT-3.5 turbo for simplicity. We won’t observe dialogues generated
with the lower temperature, since we want to make an accent on assessing the
creativity of these dialogues.

We will take one of the Game Worlds, generated with the model GPT4o,
and temperature equals 0.6, from the data set. We will generate dialogues using
previously discussed parameters for the same world.

We will compare the dialogues with the following unit from this world and
draw a few conclusions:

1 {..."unit": {"firstAttribute": "beast",
2 "secondAttribute": "troll",
3 "thirdAttribute": "forest",
4 "characteristicName": "Forest Troll",
5 "artisticName": "Grumok",
6 "powerLevel": "strong"},...}

Listing 4.4 Unit JSON object
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And in listings 4.5 and 4.6, we can see the initial part of the dialogue with
Forest Troll Grumok.

1 {..."dialogueTree": {
2 "enemyPhrase": "You dare enter our domain, puny

creature. What brings you here?",
3 "playerCharacterAnswers": [
4 {
5 "playerOption": "I seek to challenge the might of

the forest trolls!",
6 "enemyAnswer": "Hah! A foolish decision. Prepare

to face the consequences of your arrogance.",
7 "playerCharacterAnswers": [
8 {
9 "playerOption": "I am ready to face whatever

challenges you throw at me!",
10 "enemyAnswer": "Brave words, but courage

alone won't save you from the wrath of the
forest. Prepare for a battle you won't

forget.",,...}

Listing 4.5 Fragment of the dialogue generated with the model GPT-3.5 turbo and
temperature 1̄.0.

1 {..."dialogueTree": {
2 "enemyPhrase": "You stumble into Grumok 's domain,

puny creature! Speak quick, or be eaten slow!",
3 "playerCharacterAnswers": [
4 {
5 "playerOption": "I seek the dark artifacts within

this forest. Lend me your strength, and I
shall share my power with you.",

6 "enemyAnswer": "Grumok not care for puny
artifacts. Grumok care for strength. Show you
strong, then maybe talk.",

7 "playerCharacterAnswers": [
8 {
9 "playerOption": "Very well, I'll prove my

strength. Let's wrestle, beast!",
10 "enemyAnswer": "Grumok like wrestle! But if

you lose, Grumok feast on you!",...}

Listing 4.6 Fragment of the dialogue generated with the model GPT-4o and
temperature 1̄.0.

The 昀椀rst observation we can make here is that GPT-4o o昀昀er a dialogue that
is trying to capture the fantasy nature of the Troll, which lies in not being a
native human language speaker. It often uses short, simple phrases referring to
themselves in the third person and displaying signs of aggression.

At the same time, GPT-3.5 turbo gives us a decent but pretty generic
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dialogue. Troll still mentions the environment it lives in, but if we look at any
other dialogue produced by this model, we will see very similar phrases and
formulations no matter which nature is the Unit we speak to.

Here is the fragment of the Dialogue prompt with speci昀椀c instructions about
the speaking style:

1 "Be radical about changing enemy speaking style. Base it
mainly on the most extremely low or high metric, don't

hesitate to be very rude or very friendly, very
thorough or very simple, etc."

2 "Derive specific speaking artifacts, inherent sounds,
literature accents, idioms or slang based on your
knowledge about creatures in a fantasy world."

Listing 4.7 Fragment of the prompt for Dialogues.

In our view, GPT-4o ful昀椀ls these instructions in this particular case. At the
same time, GPT-3.5 turbo rarely implements any linguistic features.

In conclusion, the most prominent combinations of API parameters from our
observations is to use the GPT4o model with lower (0.6) values for all requests
(the structure of API queries is discussed in the section 3.2), but dialogues for
which the temperature was set to 1.0. There might be a better and more complex
combination of API parameters that will result in better responses to our queries.
However, it is not in the scope of our thesis due to the high API usage cost and
low practical use.
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5 Future Work
The implemented approach might be considered adequate for given conditions

but is far from being universal. Instead of trying to make it more versatile at the
moment, we can say that to develop this project and further study the potential of
using LLMs for PCG, it is worth focusing on iteratively improving the interaction
algorithm with the model and increasing the scale and quality of the game. The
desirable outcome might be a 昀椀nished computer game that would be appreciated
by the audience.

• Game improvement. One way to improve the experiment is to increase
the game’s scope. Currently, the game has a very restricted number of
mechanics and features. As a result, the LLM is not quite as varied.
Developing the idea that the LLM can choose various options from those
o昀昀ered, the following features could also be added to the game architecture.
One of them is to introduce universal building blocks that represent di昀昀erent
game mechanics and are combined together to form an adventure.
Such event blocks might be represented as a dialogue with an NPC, 昀椀nding
an item, solving a puzzle, engaging in battle, taking a quest, inspecting
the area, etc. Some of these blocks might not be combined due to their
nature, so there de昀椀nitely should be a 昀椀ller block, like a universally available
puzzle. Event blocks can occur continuously or be in a waiting mode until
an expected action occurs, which can be visualised as a quest waiting to be
completed.
The game should provide a system that supports such an idea. It should
verify that the desired goal of the block can be completed and that all
entities mentioned in this block are currently available in the game. The
system resembles the one described in a reference in the section 1.3.1 paper
can be potential. It would store the information about all the possible events
and items and will interact with LLM to process event blocks, detect and
resolve event dependency cycles and bind everything to an event timeline.
There might be di昀昀erent issues to resolve with such an architecture. However,
this idea will not be expanded further and is left to be tested in future
experiments.

• Prompt Engineering. One of the approaches on how the quality of the
received from LLM data can be improved is by using 昀椀ne-tuning. Namely,
a data augmentation technique called bootstrapping. This approach takes
data produced by the LLM and uses it to 昀椀ne-tune itself further. Not all
the data produced by the model might be suitable for 昀椀ne-tuning. In the
paper by Ulmer et al. [51], the automated 昀椀lter was used to determine which
data should be used. The schema of how this process was implemented in
their experiment is shown in 昀椀gure 5.1. For an experiment similar to one
conducted for the thesis, we may use human supervision to choose the most
appropriate data which might be modi昀椀ed. This approach would still need
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enough human-created data for initial 昀椀ne-tuning to avoid arti昀椀cial bias in
the model.

Figure 5.1 Bootstraping schema.
Source: Ulmer et al. [51]

Using 昀椀ne-tuning might bene昀椀t the precision of the model and consistency
of responses but negatively a昀昀ect the variability of answers.

• User research. What has not been done as part of the thesis but is
de昀椀nitely worth doing for further work is conducting a survey that might
have included the following as the core survey.

– First part of the survey. Evaluating metrics of di昀昀erent parts of the
content overall and separately: dialogues, names, quests, and descrip-
tions. This includes the text’s quality from the survey respondent’s
personal perspective, clarity of what is being disputed in dialogues or
explained in quests, how cohere the text is and if it adheres to the
same style, if the content resembles what was generated before or feels
authentic, etc.
This survey should conduct A/B testing using both generated and
human-created content. The results for both cases will be compared,
and the weak points of the generated content will be better identi昀椀ed.

– Second part of the survey. One of the possible improvements of
the experiment that is also connected to user research is adding input
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to the prompt that is being used in API requests. Namely, inputting
several parameters, such as the world setting theme and personality
traits of the protagonist or antagonist. Along with di昀昀erent numerical
parameters, such as number of levels, enemies, dialogue tree depth,
etc. While numerical parameters can be restricted by minimum and
maximum available values, 昀椀elds that allow textual input should be
supplemented with instructions on which input is expected. It can also
be supervised by a separate API query that can verify that input is
appropriate and, if not, give a corresponding warning that it should be
rewritten. This can potentially provide a unique experience for players
who will be able to go through their own vaguely described fantasy
story.
After that, respondents can evaluate how accurately the result resembles
their expectations about the input. If they can claim that the Game
World generated with their instructions is better or worse overall than
that given to them in the 昀椀rst part of the survey.
Based on the second part of the survey, we can evaluate whether
allowing the player to impact the generation process improves the
overall experience and identify vulnerabilities in adding player input
to the prompt algorithm.

• Multimodal LLMs. Another prominent for the PCG system is the
Multimodal Large Language Models (MLLMs). MLLMs are capable of not
only generating text but also working with other modalities, such as audio,
video or images. This might allow us to further extend the Game World
scope and make the used approach more versatile.
From our experience, the current state of these systems might not be of
the desired standard. We tried to use ChatGPT with integrated image
generation DALL·E model [52] to generate assets for the GPT JRPG and,
despite all the e昀昀ort, were not able to receive consistent results. Mainly
because it struggles with PNG transparency and doesn’t support generating
pixel art. However, MLLMs have a great potential for PCG and are de昀椀nitely
worth studying in future.
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Conclusion
Large Language Models are one of the most signi昀椀cant and valuable de-

velopments of recent decades. They have already proven their value in many
di昀昀erent 昀椀elds, and in this thesis, we aimed to develop our approach to use them
for Procedural Content Generation for games. To do that, we explored various
existing approaches for interacting with LLMs and relevant to our thesis techniques
from PCG.

As a result, we implemented an application that interacts with the OpenAI
API and receives structured content as an output. We also created a game in the
Japanese Role-Playing Game genre that uses this content to attempt to provide
players with replayability and a diverse narrative. While the game currently meets
the quality expectations and can successfully represent the generated content,
there is de昀椀nitely room for improvement both in terms of implementing a more
reliable and 昀氀exible internal architecture and upgrading the visual aesthetics.

It is a non-trivial task to assess the quality of the interaction with LLMs.
However, we tried to conduct a comprehensible analysis of the received results
and made a few observations. In this thesis, we focused on implementing the
algorithm for generating content for a particular game, and there are quite some
directions for additional research, both in advancing a created application and
developing a more universal approach. We hope that the conclusions made in this
work might be useful in the following studies and for developers who would like
to try a similar approach to generate content.

We see great potential in using LLMs for PCG because they could signi昀椀-
cantly improve the variability of the generated content in games and reduce the
cost of development, which is particularly useful for small and indie developers
because of LLMs’ accessibility. On top of that, the unpredictable nature of LLMs
may result in them being used to invent new game mechanics or entire genres. We
hope that LLMs will continue to evolve in future and can become an even more
accessible and useful tool that can be used to enhance the game development
process.
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A Attachments
A.1 Unit classes and power levels.

1 {
2 "unitClass": {
3 "fighter": {
4 "healthCoefficient": 0.9,
5 "damageCoefficient": 1.2,
6 "armourCoefficient": 0.9
7 },
8 "sorcerer": {
9 "healthCoefficient": 0.6,

10 "damageCoefficient": 1.4,
11 "armourCoefficient": 1.0
12 },
13 "paladin": {
14 "healthCoefficient": 1.6,
15 "damageCoefficient": 0.7,
16 "armourCoefficient": 0.7
17 },
18 "protector": {
19 "healthCoefficient": 2.1,
20 "damageCoefficient": 0.1,
21 "armourCoefficient": 1.2
22 },
23 "bastion": {
24 "healthCoefficient": 0.7,
25 "damageCoefficient": 0.7,
26 "armourCoefficient": 1.6
27 },
28 "healer": {
29 "healthCoefficient": 1.0,
30 "damageCoefficient": 1.0,
31 "armourCoefficient": 1.0
32 },
33 "trickster": {
34 "healthCoefficient": 1.2,
35 "damageCoefficient": 1.2,
36 "armourCoefficient": 0.6
37 },
38 "berserker": {
39 "healthCoefficient": 1.5,
40 "damageCoefficient": 1.5,
41 "armourCoefficient": 0
42 },
43 "marksman": {
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44 "healthCoefficient": 1.0,
45 "damageCoefficient": 2.0,
46 "armourCoefficient": 0
47 },
48 "shaman": {
49 "healthCoefficient": 1.3,
50 "damageCoefficient": 1.3,
51 "armourCoefficient": 0.4
52 }
53 },
54 "powerLevelAttributes": {
55 "feeble": {
56 "health": 100,
57 "damage": 15,
58 "armour": 4
59 },
60 "weak": {
61 "health": 110,
62 "damage": 18,
63 "armour": 5
64 },
65 "moderate": {
66 "health": 120,
67 "damage": 21,
68 "armour": 6
69 },
70 "strong": {
71 "health": 135,
72 "damage": 24,
73 "armour": 7
74 },
75 "mighty": {
76 "health": 150,
77 "damage": 27,
78 "armour": 8
79 },
80 "formidable": {
81 "health": 175,
82 "damage": 30,
83 "armour": 10
84 },
85 "legendary": {
86 "health": 200,
87 "damage": 35,
88 "armour": 12
89 }
90 }
91 }
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A.2 Units database.

1 {
2 "abomination": {
3 "evil_eye": [""],
4 "giant_orange_brain": [""],
5 "jelly": [""],
6 "lab_rat": [""],
7 "ooze": ["acid", "azure", "blood", "death", "plague",

"plant", "spectral", "tentacle", "void"],
8 "orb_guardian": [""],
9 "pulsating_lump": [""]

10 },
11 "beast": {
12 "mutant": [""],
13 "crystalid": [""],
14 "entropy_weaver": [""],
15 "formicid": [""],
16 "venom": [""],
17 "hydra": [""],
18 "hydra_lord": [""],
19 "hydrataur": [""],
20 "juggernaut": [""],
21 "lindwurm": [""],
22 "moth": [""],
23 "troll": ["forest", "rock"],
24 "wyvern": [""]
25 },
26 "birdlike": {
27 "griffon": [""],
28 "harpy": [""],
29 "hippogriff": [""],
30 "kenku_winged": [""],
31 "manticore": [""],
32 "quasit": [""],
33 "raven": [""],
34 "tengu": ["fighter", "conjurer", "reaver", "warrior"]
35 },
36 "hell": {
37 "balrug": [""],
38 "demon": ["shadow", "slave"],
39 "devil": ["hairy", "red", "rotting"],
40 "hell_knight": ["defender", "lord"],
41 "hell_sentinel": [""],
42 "imp": ["torturer", "shadow"],
43 "lava_worm": [""],
44 "pit_fiend": [""],
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45 "salamander": ["fighter", "firebrand", "mystic", "
stormcaller"]

46 },
47 "draconid": {
48 "dragon": ["eastern", "golden", "green", "ice", "iron

", "quicksilver", "shadow", "storm", "swamp"],
49 "drake": ["death", "fire", "forest", "mottled", "

steam", "swamp"]
50 },
51 "primordial": {
52 "elemental": ["air", "frost", "earth", "fire", "iron"

, "water"],
53 "gargoyle": ["metal", "molten", "stone"],
54 "giant": ["fire", "frost", "stone"],
55 "golem": ["clay", "frost", "electric", "fire", "

guardian", "iron", "stone", "toenail", "wood"],
56 "lord": ["fire", "frost", "stone"],
57 "phoenix": [""],
58 "servitor_spellforged": [""]
59 },
60 "holy": {
61 "angel": ["warmonger", "shieldwielder", "macewielder"

, "peacemaker"],
62 "apys": [""],
63 "centaur_ascended": [""],
64 "cherub": [""],
65 "daeva": ["shieldwielder", "warmonger"],
66 "dragon_ascended": [""],
67 "human_ascended": [""],
68 "ophan": [""],
69 "shedu": [""],
70 "titan": ["annihilator", "brawler"]
71 },
72 "horde": {
73 "centaur": ["archer", "fighter", "sergeant_archer", "

sergeant_fighter"],
74 "cyclops": ["chief", "fighter"],
75 "deep_troll": ["berserker", "earth_mage", "fighter",

"shaman"],
76 "ettin": ["king", "warrior"],
77 "hill_giant": ["annihilator", "fighter"],
78 "iron_troll": ["fighter", "monk_ghost"],
79 "minotaur": [""],
80 "ogre": ["archimage", "fighter", "mage", "warrior"],
81 "spriggan": ["berserker", "defender", "enchanter", "

rider"],
82 "two_headed_ogre": ["berserk", "fighter"],
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83 "yaktaur": ["arbalester", "chief", "fighter", "
marksman"]

84 },
85 "humanoid": {
86 "big_kobold": ["fighter", "sergeant"],
87 "deep_dwarf": ["artificer", "berserker", "

death_knight", "peasant"],
88 "deep_elf": ["annihilator", "blademaster", "conjurer"

, "death_mage", "defender", "demonologist", "
fighter",

89 "high_priest", "knight", "mage", "master_archer", "
priest", "sergeant", "soldier", "sorcerer", "
summoner"],

90 "dwarf": ["chief", "warrior"],
91 "elf": ["militia", "peasant"],
92 "gnoll": ["defender", "fighter", "sergeant", "shaman"

],
93 "gnome_mage": [""],
94 "goblin": ["defender", "fighter"],
95 "halfling": ["boy", "peasant"],
96 "hobgoblin": ["defender", "fighter"],
97 "human": ["archimage", "enchantress", "militia", "

monk_ghost", "peasant", "slave", "tradesman"],
98 "ironbrand_convoker": [""],
99 "ironheart_preserver": [""],

100 "killer_klown": ["blue", "green", "purple", "red", "
yellow"],

101 "kobold": ["aggressor", "demonologist", "peasant"],
102 "orc": ["apprentice", "berserk", "druid", "guard", "

high_priest", "knight", "necromancer",
103 "peasant", "priest", "sorcerer", "summoner", "

torturer", "warlord", "warrior", "wizard"]
104 },
105 "relict": {
106 "anubis_guard": [""],
107 "apocalypse_crab": [""],
108 "boggart": [""],
109 "dryad": [""],
110 "faun": [""],
111 "satyr": [""],
112 "shapeshifter": ["artifficier", "radiant"],
113 "simulacrum": ["ant", "bat", "bee", "centaur", "

dragon", "drake", "fish", "giant",
114 "hydra", "hydra_lord", "kraken", "lizard", "naga",

"quadruped", "snake", "spider"],
115 "sphinx": [""],
116 "stone_ghost": [""],
117 "ushabti": [""],
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118 "water_nymph": [""]
119 },
120 "serpentide": {
121 "merfolk": ["aquamancer", "avatar", "defender", "

fighter",
122 "impaler", "javelineer", "peasant", "plain", "

warrior", "witch"],
123 "mermaid": [""],
124 "naga": ["fighter", "guardian", "mage", "peasant", "

ritualist", "sharpshooter", "warrior", "
warrior_queen"],

125 "serpent": ["cobra", "guardian"],
126 "siren": ["singer", "witch"]
127 },
128 "phantom": {
129 "grand_avatar": [""],
130 "lurking_horror": [""],
131 "spectral": ["ant", "bat", "bee", "centaur", "dragon"

, "drake", "fish", "ghost",
132 "giant", "hydra", "kraken", "lion", "lizard", "naga

", "snake", "spider", "thing", "worm"],
133 "worldbinder": [""]
134 },
135 "undead": {
136 "bog_body": [""],
137 "death_cob": [""],
138 "ghost": ["dragon", "eater", "flayed", "missing", "

stalker", "void", "warrior"],
139 "hulk_rotting": [""],
140 "jiangshi": [""],
141 "lich": ["ancient", "king", "lord", "mage", "

necromancer", "summoner"],
142 "macabre_mass": [""],
143 "manes": [""],
144 "mummy": ["dragon", "fighter", "guardian", "lord", "

priest"],
145 "necrophage": [""],
146 "phantom": ["stalker", "warrior"],
147 "revenant": [""],
148 "rock_troll_monk_ghost": [""],
149 "skeleton": ["bat", "cat", "centaur", "child", "

dragon", "fish",
150 "humanoid", "hydra", "hydra_lord", "lion", "naga",

"snake", "ugly_thing", "warrior"],
151 "skull": ["cursed", "flying"],
152 "soul": ["drowned", "lost"],
153 "spectre_witch": [""],
154 "unborn": [""],
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155 "vampire": ["knight", "mage", "ressurected", "witch"]
,

156 "wight": ["king", "stalker"],
157 "wraith": ["freezing", "king", "shadow", "stalker"],
158 "zombie": ["crab", "drake", "ghoul", "hound", "lizard

",
159 "octopode", "ogre", "rat", "small", "toad", "treant

", "turtle"]
160 }
161 }
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A.3 Electronic attachments.
The following items are attached to this thesis:

1. GPT_JRPG_BUILD.zip archive that contains the game 昀椀les as well as the
folder with the Python scripts containing queries to OpenAI API and
prompts. This folder can be found by following this path in the extracted
archive: ...\GPT_JRPG_BUILD\GPT JRPG_Data\StreamingAssets\API.

2. README.md 昀椀le that serves as user documentation. It provides information
about setting up the GPT JRPG game and OpenAI API application and
also contains the game manual.

3. PROGDOC.md 昀椀le containing an overview of the Unity project structure and
main Unity C# scripts descriptions.

4. images.zip archive that contains images for README.md Markdown 昀椀le.
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