
MASTER THESIS

Tomáš Domes

Streaming Algorithms for Estimating
Quantiles with Novel Error Guarantees

Computer Science Institute of Charles University

Supervisor of the master thesis: Mgr. Pavel Veselý, Ph.D.
Study programme: Discrete Models and Algorithms

Prague 2024

I declare that I carried out this master thesis on my own, and only with the
cited sources, literature and other professional sources. I understand that my
work relates to the rights and obligations under the Act No. 121/2000 Sb., the
Copyright Act, as amended, in particular the fact that the Charles University has
the right to conclude a license agreement on the use of this work as a school work
pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

First of all, I would like to thank my supervisor Pavel Veselý for all his time and
energy spent on the thesis, including countless meetings and extensive proofreading,
and to my friend Jakub Tětek for coming up with the original idea behind the
thesis.

In the past year, I neglected a large part of my duties as an organizer of M&M
and our church’s summer camp and as a member of SOM. I would like to thank
my fellow organizers for not being grumpy with me for it.

I would like to thank Martin Mareš for creating and maintaining this nice
LATEX template.

And finally, I would like to thank my family for supporting me for those long
7 years of my studies even though my visits home were rare and short.

Title: Streaming Algorithms for Estimating Quantiles with Novel Error Guarantees

Author: Tomáš Domes

Institute: Computer Science Institute of Charles University

Supervisor: Mgr. Pavel Veselý, Ph.D., Computer Science Institute of Charles University

Abstract: This work deals with streaming algorithms for estimation of ranks and
quantiles that perform a single pass through the input data stream using a small space.
After reading a stream of N elements of a totally ordered universe, a streaming algorithm
for rank (or quantile) estimation answers rank (or quantile) queries with additive error
if the error is at most ±εN and with relative error if for item y with rank R(y), the
error is at most ±ε R(y). The first problem is optimally solved by the KLL algorithm in
space O(ε−1), and the best-known algorithm for the relative error is ReqSketch, which
takes space O(ε−1 log1.5 N).

Our algorithm called Jagged Sketch consists of two significant improvements to the
ReqSketch algorithm. The first of the improvements reduces the error for high ranks by
a factor of

√︁
log(N), the second one improves the error by a factor up to log(N) for

important ranks chosen by the user and for ranks close to them, all while maintaining
the same space complexity. We support our theoretical analysis by experiments that
demonstrate that Jagged Sketch can indeed reduce the error for selected ranks while
maintaining the same space and similar error for other ranks compared to ReqSketch.

For ε ∈ O(log−1.5 N) Jagged Sketch achieves additive error in the same space as
KLL while simultaneously retaining near-relative error guarantee. In practice, the error
for large ranks is about four times larger, while for the lowest ranks, it is up to about a
hundred times smaller.

Keywords: ranks estimation, quantile estimation, streaming algorithms, relative error

Contents

Introduction 6
Problem definition . 6
Notation . 8
Prior work . 9
Our contribution . 10
Structure of the thesis . 13

1 Context and Intuition 14
1.1 KLL . 14
1.2 ReqSketch . 17
1.3 Error improvement for high ranks 19
1.4 Jaggedness . 20
1.5 Weighted jaggedness . 22
1.6 The whole Jagged Sketch . 23

2 Analysis 24
2.1 Our main result . 24
2.2 Description of the sketch . 25
2.3 Analysis in the static setting . 29

2.3.1 Analysis of a single Compactor 30
2.3.2 The critical level . 31
2.3.3 Bounding the variance . 34
2.3.4 The error bound . 38
2.3.5 The space bound . 39
2.3.6 The time complexity . 40

2.4 Extension to the dynamic setting 41
2.4.1 Changes to the sketch . 41
2.4.2 Changes in the analysis 42
2.4.3 Bounding Cmin and Kmin 44

3 Experiments 47
3.1 Experimental setup . 47
3.2 Implementation . 49
3.3 The results . 52

3.3.1 Versatility . 52
3.3.2 Comparison to other sketches 54
3.3.3 Removing the improvement for high ranks 58

Conclusion 60
Further research . 60

List of Notation 61

Bibliography 63

5

Introduction
Modern computers generate more data than we can store, however, we would still
like to analyze them. That is where streaming algorithms come into play. The
input of a streaming algorithm is a long stream of data; the algorithm processes
the data sequentially (without storing them) and produces a small (sublinear)
summary of the data, so-called sketch, which is designed to represent some aspect
of the data accurately. The desired accuracy is specified in advance and the size
of the sketch depends upon it.

In this thesis, we focus on streaming algorithms for representing the distribution
of comparable data. That is, to approximate the median, percentiles, and more
generally quantiles or ranks.

In this chapter, we formally define the problem and its variants and specify
our area of interest, then we summarize the related work, explain our contribution,
and finally we outline the structure of our thesis.

Problem definition
In this section, we formally define the problem of estimating ranks and quantiles in
a streaming setting and its variants. For simplicity, we assume that all the items
on the input are different. However, all the definitions can be extended to support
equal items and all the algorithms are correct even without this assumption.

Ranks and quantiles estimation
Informally, the rank of an item present in a sequence is simply its position in the
sequence after it is sorted. The rank of an item that is not present in the sequence
is defined as the rank of the closest smaller item present in the sequence if such an
item exists and 0 otherwise. Quantiles are the inverse of ranks, usually expressed
as a number from [0, 1]. The item of rank r in a sequence of length n corresponds
to a quantile r/n. The formal definition follows:

Definition 1 (Ranks and Quantiles). Let S be a sequence x1, . . . , xn drawn from
universe U with a total order.

For any item y ∈ U we define the rank of y in the sequence S as R(y, S) def=
|{i ∈ {1, . . . , n} | xi ≤ y}|. If the sequence is clear from context, we write just
R(y) instead of R(y, S).

For any real number α ∈ (0, 1], the α-quantile of the sequence S is the only
item z ∈ S such that R(z, S) = ⌈αn⌉ and the 0-quantile of S is the minimum item
from S.

A streaming algorithm for estimating ranks and quantiles reads sequentially
an input stream S of length N and builds a small summary called sketch. The
algorithm itself and the sketch are commonly used interchangeably in the literature
and we follow this convention. During (and after) processing of the stream, the
sketch can answer rank and quantile queries for the already processed part of the
stream.

6

A rank query consists of an item y comparable with the items of the input
stream. The answer for a rank query is an estimate on R(y) = R(y, S), and is
denoted by R̂(y). We say that the sketch answers the query with error Err(y) =⃓⃓⃓
R(y) − R̂(y)

⃓⃓⃓
.

A quantile query consists of a real number α ∈ [0, 1]. The answer for a quantile
query is an item yα̂ ∈ U which is an estimate on the actual α-quantile yα of S.
We say that the sketch answers the query with error Err(α) = |R(yα) − R(yα̂)|.

The most important parameter of the sketch is its size, which can depend
on the stream length, accuracy of the sketch, size of the universe, and other
parameters that we discuss below.

Variants of the problem
Additive and relative error guarantees

Let ε ∈ (0, 1). The error for a rank or quantile query is additive if Err ≤ εN . The
error is relative if for a rank query y we have Err(y) ≤ ε R(y) or if in case of a
quantile query α we have Err(α) ≤ εαN .

A streaming algorithm has additive (relative) error guarantee of ε if it can
answer all queries with additive (relative) error for a given ε.

Observe that a guarantee for rank queries implies the same type of guarantee
for quantile queries with the same ε and vice versa. For this reason, we are mostly
interested in the rank queries for the rest of the thesis.

Also note that the relative guarantee is strictly stronger than the additive and
if we are interested in low-ranked items (which is often the case), the additive
guarantee is insufficient, as for large N , the error εN can be larger than the rank
R(y) we are asking for, rendering the additive guarantee useless.

In practice, we most often need the highest accuracy for high ranks. This need
can be easily fulfilled by using a relative error sketch with a negation of the original
comparison function (so that the highest-ranked items become lowest-ranked and
vice versa).

Randomization

If the algorithm is randomized (uses internal randomness independent of the
input), the guarantee must hold with some probability given in advance. The
probability bound then also affects the size of the sketch. Randomized algorithms
can have asymptotically smaller error than deterministic ones (such an example is
ReqSketch which we discuss later).

In the case of randomized algorithms, we need to distinguish if the probability
bound holds for any rank query, or for all rank queries simultaneously. The latter
can be usually derived from the former with a small space increase by using a
standard ”epsilon net” argument together with the union bound.

Comparison model

In the definitions above, we only require the items to be comparable (so-called
comparison-based algorithms). Thus, we only access the items through comparisons.
However, some algorithms assume that the input stream consists of integers or

7

floating-point numbers. These non-comparison-based algorithms can use the items
in other ways, e.g. to build a binary tree over the universe U .

Foreknowledge of the stream length

Some algorithms do need to know the stream length N in advance. Sometimes,
at least a polynomial upper bound is needed. In this work, we refer to these
situations as the static setting (with foreknowledge of N) and the dynamic setting
(without the foreknowledge of N).

Mergeability

An important property of a streaming algorithm is mergeability. Operation
merge takes two sketches representing streams s1 and s2 and outputs one sketch
representing the concatenation of s1 and s2. We say that a sketch is fully mergeable,
if the error of the sketch built by any sequence of merge operations on items from a
set S is the same as the error in the streaming model on a stream S (note that the
streaming model can be seen as a repeated merge with a one-item sketch). There
also exist some weaker versions of mergeability imposing additional conditions.

It is easy to see the practical advantages of mergeability, as it trivially enables
seamless parallelization of the algorithm or applications in distributed settings.

Our setting

In this thesis, we focus exclusively on randomized algorithms for estimating ranks
in the comparison model with the relative error guarantee. We design a sketch
both for the static and dynamic setting (with and without the foreknowledge of
N). Due to time constraints, our algorithm does not support the merge operation
yet, but we believe it to be possible and we plan to make the sketch fully mergeable
later.

Notation
Let us state here a few notes on the notation. For the exhaustive list of notation,
please see the List of Notation.

• By item, we always mean an arbitrary item from a universe U with a total
order.

• An input stream S consists of items from U . Let |S| = N and St be the
input stream at time t, thus the first t items of S.

• For any sequence s let R(y, s) be the rank of item y in s and let R(y) =
R(y, S) be the rank of y in the input stream.

• R̂(y) is the answer returned by the sketch for a rank query y.

• The error of a rank query y is Err(y) =
⃓⃓⃓
R(y) − R̂(y)

⃓⃓⃓
.

• By log x we always mean log2 x and by ln x the natural logarithm loge x.

• We denote max(1, log x) by log(x) and max(1, x) by x.

8

Prior work
In this section, we summarize the most relevant previous results. However, there
are many different variants of the problem and many different properties of the
sketches so our coverage of the area is limited, as this work is not primarily a
survey. Particularly, we do not mention the results supporting deletion of elements
(in addition to inserting), the possibility of weighted items, or the works focusing
on the so-called relative-value error.

All the space bounds in this section are asymptotic and they are measured
in memory words. For simplicity, we also assume the failure probability δ in the
probabilistic sketches to be a constant and we omit it in the space bounds. All
the bounds for randomized sketches hold for the single quantile approximation
(the probability of failure is thus for one arbitrary query).

One of the most widely used sketches is t-digest [Dun21], which is fully
mergeable and usually efficient in practice, but it gives no theoretical guarantees.
Cormode et al. proved that for inputs drawn from certain distributions, its error
can be almost arbitrarily large [Cor+21].

Additive error

Probably the most practically used of the theoretically robust sketches is the
probabilistic comparison-based KLL sketch by Karnin et al. [KLL16]. It is simple,
fully mergeable, and achieves the optimal space bound ε−1.

The deterministic comparison-based sketches can not fit into this space due
to the lower bound of ε−1 log(εN) by Cormode and Veselý [CV20]. There is an
optimal deterministic comparison-based GK sketch by Greenwald and Khanna
[GK01] achieving the space ε−1 log(εN), but the sketch is not fully mergeable.
An older algorithm by Manku et al. [MRL99] achieves full mergeability in space
ε−1 log2(εN).

From the non-comparison-based sketches, let us mention the deterministic
q-digest by Shrivastava et al. [Shr+04] which uses space ε−1 log(|U|). The sketch
is fully mergeable, but the universe U must be known in advance. Gupta et al.
recently announced that they can achieve the optimal space ε−1 deterministically
[GSW24]. They build upon q-digest, but they did not prove that their sketch is
fully mergeable.

Relative error

There are much fewer results regarding the relative error guarantee. For deter-
ministic comparison-based sketches, we have a lower bound of ε−1 log2(εN) by
Cormode and Veselý [CV20]. The state-of-the-art sketch in this setting is the
work of Zhang and Wang [ZW07] achieving space ε−1 log3(εN). The sketch is
however not fully mergeable.

There is a modified version of the aforementioned q-digest by Cormode et
al. achieving relative error in space ε−1 log(εN) log(U) [Cor+06]. As the original
q-digest [Shr+04], it is deterministic, non-comparison-based, fully mergeable, and
requires the prior knowledge of the universe U .

In the randomized comparison-based setting, the state-of-the-art algorithm
is ReqSketch by Cormode et al. [Cor+23] upon which we build in this thesis.

9

ReqSketch is fully mergeable and it requires ε−1 log1.5(εN) space, which is just a
factor of

√︂
log(εN) from the lower bound the authors prove in the same paper.

This lower bound of ε−1 log(εN) applies even to non-comparison-based ran-
domized algorithms, however, as far as we know, there is no such algorithm with
a relative error guarantee.

Our contribution
The purpose of this section is to present our main theorem (Theorem 1) and
explain its meaning. The theorem is an analogy of Theorem 1 in [Cor+23] with a
few differences. On one hand, our theorem is stated only for the static setting
(with the foreknowledge of N) and without mergeability. On the other hand, for
some settings of parameters, it yields better error than ReqSketch.

We believe that the limitations can be removed and the sketch can be made
fully mergeable, but we leave it to future work. Before this is done, we offer a
provisional analysis in the dynamic setting, without mergeability and with an
additional factor of log1/4(εN) logJ R(y) in the error (where J ≥ 0 is a parameter
of the sketch). We state this result in Section 2.1 and we sketch its proof in
Section 2.4.

Before stating the main result, let us explain the meaning of the parameters R
and J of the sketch. The parameter R denotes the set of important ranks. These
are the ranks for which the user needs the smallest error. We expect the most
common case in practice to be R = {1}, as the motivation for considering relative
error is the interest in small ranks. The parameter J expresses the priority of the
important ranks relative to others – the larger the priority, the larger J . If all
ranks are equally important to us, we set J = 0 and the set R is ignored.

Theorem 1 (The main theorem). Given any N ∈ N, set R s.t. |R| ∈ O(1) and
R ⊂ {1, . . . , N}, and real parameters 0 < δ ≤ 0.5, 0 < ε ≤ 1 and 0 ≤ J ≤ 1.4,
there is a comparison-based randomized algorithm that processes an input stream
of length at most N and at any time answers any rank query y with probability
1 − δ with error

Err(y) ≤ ε R(y) ·

⌜⃓⃓⎷ log N
R(y)

log(εN) ·
minr∈R

(︃⃓⃓⃓
log R(y)

r

⃓⃓⃓J
, log(εN)

)︃
logmin(1,J)(εN)

in space

SPACE ∈ OJ

⎛⎝ε−1 · log1.5(εN) ·
√︄

log 1
δ

⎞⎠
in case of J ̸= 1 and in space

SPACE ∈ OJ

⎛⎝ε−1 · log1.5(εN) ·
√︄

log 1
δ

· log log(εN)
⎞⎠

in case of J = 1.

Before explaining the meaning of the theorem, let us stress that the hidden
constant in the O notation depends on the parameter J . Specifically, the constant

10

grows with J close to 1 and for J = 1 it yields an additional log log(εN) factor in
the space bound. Also note that the condition J ≤ 1.4 is there only to simplify
the analysis as the theorem holds for any value of J ≥ 0.

To understand the theorem better, let us consider the three factors of the error
bound:

Err(y) ≤ ε R(y) ·

⌜⃓⃓⎷ log N
R(y)

log(εN) ·
minr∈R

(︃⃓⃓⃓
log R(y)

r

⃓⃓⃓J
, log(εN)

)︃
logmin(1,J)(εN)

The first factor ε R(y) alone is by definition the relative error. ReqSketch
[Cor+23], which we build upon, achieves error ε R(y) with the same space bound
(except for the case J = 1 when our space bound is by log log N factor worse).
The second and third factors improving the error originate from our two major
modifications of ReqSketch.

Let us first look at the second factor, which represents our error improvement
for high ranks (we explain the intuition behind the improvement in Section 1.3).
The maximum value of the second factor is achieved for R(y) = 1 and for all
sensible choices of ε, let us say ε > N−1/2, the maximum of this factor is no larger
than

√
2 (and in practice, it is close to 1). The expression is decreasing as a

function of R(y) and for R(y) ≈ N it becomes log−1/2(εN). In Figure 1 we show
the impact of the second factor – we compare the full version of Jagged Sketch
to a version without the improvement for high ranks. The x-axis is logarithmic
and the y-axis shows the relative error (the error for a given rank divided by the
rank)1.

The third factor represents the jaggedness of the sketch which we explain
in Sections 1.4 and 1.5. It is arguably more complicated, as it depends on the
parameters R and J . Before we explain its meaning, let us argue that it cannot
be too large. If J ≥ 1, the denominator becomes log(εN), and the numerator
is clearly at most log(εN), hence the whole expression is at most 1. If J < 1,
we notice that R(y)/r is at most N and so the whole expression equals at most
log(N)/ log(εN). Again for ε > N−1/2 this is at most 2 and in practice, it is close
to 1.

As we concluded that the third factor does not worsen the error substantially,
let us explain the dependence on the parameters R and J . If R(y) is close enough
to some interesting rank r, i.e., their ratio is at most 2c for a constant c, the
numerator becomes cJ , thus the error is improved by a factor of Θ(logmin(1,J)(εN)).

For J = 0 the expression becomes 1 and disappears. For J ∈ (0, 1) the whole
expression equals ⎛⎜⎝minr∈R

⃓⃓⃓
log R(y)

r

⃓⃓⃓
log(εN)

⎞⎟⎠
J

.

This looks like the larger J , the better. However, as J gets closer to 1, the hidden
constant in the O notation of the space bound grows and it becomes log log(εN)
for J = 1. The experiments suggest that the most practical choice is J ≈ 0.5, but
it naturally depends on the priority we give to the important ranks. For J ≥ 1

1Note that the experiments were made for a dynamic version of Jagged Sketch for which we
do not have the tight analysis yet. For details, see Chapter 3.

11

100 101 102 103 104 105 106 107 108 109

Rank0.0
00

0.0
02

0.0
04

0.0
06

0.0
08

0.0
10

0.0
12

0.0
14

Re
la

tiv
e

Er
ro

r

improvement: YES
improvement: NO

Figure 1 Comparison of Jagged Sketch with and without the improvement for high
ranks for random input; R = {1}, J = 0.5 and N = 109

the denominator is fixed to log(εN), hence at least in theory it does not make
sense to choose J much larger than 1.

To wrap it up, the third factor can decrease the error by a factor of up
to log(εN) for ranks that are close to important ranks while not increasing it
significantly for any other ranks. In Figure 2, we show Jagged Sketch with R = {1}
and J = 0.4 compared to ReqSketch. Indeed, there is a significant improvement
for the low (important) ranks, whereas the worsening of error for higher ranks is
negligible.

The contribution of our work is hence twofold. First, we give better error than
the state-of-the-art sketch both in theory and in practice and second, we allow
users of the sketch to influence the error for various ranks by expressing their
priorities via the parameters R and J .

An unexpected side effect of our result is that for ε < log−1.5(N) we get
additive error in space Θ(ε−1√log δ−1), which is only by a factor

√
log δ−1 from

the optimum, while maintaining a near-relative error. This is achieved by setting
the parameters of the sketch J > 1, R = {N} and ε′ = ε log1.5(N). The error
becomes

ε R(y) ·
√︄

log N

R(y) · min
(︄

logJ

(︄
N

R(y)

)︄
, log(εN)

)︄
≤ ε R(y) · logJ+0.5

(︄
N

R(y)

)︄
.

The error is always at most εN (additive error) and it is at most by log1.5(N)
factor larger than the relative error.

12

100 101 102 103 104 105 106 107 108 109

Rank0.0
00

0.0
02

0.0
04

0.0
06

0.0
08

0.0
10

Re
la

tiv
e

Er
ro

r

ReqSketch
Jagged Sketch
J: 0.4
R: {1}

Figure 2 Comparison of ReqSketch and Jagged Sketch on random input with R = {1},
J = 0.4 and N = 109

Structure of the thesis
In this chapter, we have already defined the problem, summarized the related
work, and presented our results. In Chapter 1, we informally explain the sketches
which we build upon and the intuition behind Jagged Sketch. Chapter 2 contains
a formal description of Jagged Sketch along with the proof of the main theorem
(Theorem 1). We also discuss there the possibility of removing the assumption
of the foreknowledge of N and sketch the not-yet-tight analysis in this setting.
Finally, in Chapter 3 we introduce our proof-of-concept implementation of Jagged
Sketch, explain our experimental setup, and present the results of the experiments
for different settings of parameters R and J and compare them to ReqSketch
[Cor+23] and KLL [KLL16].

13

1 Context and Intuition
In this chapter, we give an informal description of the streaming algorithm. We
start in Section 1.1 by briefly explaining a basic version of the KLL sketch by
Karnin et al. [KLL16] achieving additive error. In Section 1.2 we continue by
showing the relative error sketch by Cormode et al. [Cor+23] (let us call it
ReqSketch), which builds upon KLL. Then in Sections 1.3 to 1.5 we informally
introduce our modifications of ReqSketch one by one, including the intuition
behind them, and in Section 1.6 we describe the whole Jagged Sketch in one place.

All the error bounds stated in this chapter hold with some probability 1 − δ.
For now, we treat δ as a constant and omit it in the space bounds. We assume for
simplicity that log N ∈ O(log(εN)) (this is almost always true in practice) and
we also omit rounding issues and some other technical details.

For the whole chapter, we assume the length N of the stream to be known in
advance. We discuss lifting this assumption in Chapter 2 in Sections 2.1 and 2.4.

1.1 KLL
The KLL sketch by Karnin, Lang, and Liberty [KLL16] is the optimal randomized
sketch for additive error in the comparison model which takes only O(ε−1) space.
Note that such a small space is possible only because the additive error depends
on N .

Description of the sketch

The KLL sketch consists of a sequence of buffers with given capacities (which
are even). We call the buffers compactors and we imagine them as arranged
into levels – the first compactor is at level 0 and the last at level H − 1. In the
update operation, we simply add the new item to the compactor at level 0. If the
compactor reaches its capacity, we perform a compaction, which operates on a
single compactor as follows (see Figure 1.1):

We sort all the contained items and with probability 1/2 we discard all odd-
indexed items, otherwise we discard all even-indexed items. Then, we move all
the non-discarded items to the compactor one level higher (thus the compactor
becomes empty after performing the compaction). The compaction at level 0
can of course trigger a compaction of the compactor at level 1 (if its capacity is
reached), et cetera. Every time we perform a compaction on the highest level,
we must increase the number of levels and create a new compactor on the new
highest level.

The rank query

Intuitively, every item y in the level-1 compactor represents 2 original items: itself
and its discarded neighbour from the level-0 compactor. Note that as we sort the
items before discarding, the represented neighbour is similar to the item y (at
least among the items currently present in the compactor), so item y is intuitively

14

A full compactor

Item
weight

2ℓ+1

2ℓ

Figure 1.1 The compaction operation

a good choice for representing it1. By the same logic, an item at level 2 represents
4 original items, and generally an item at level l represents 2l original items.

This intuition gives us the algorithm for answering a rank query. For a given
item y, we just take the weighted sum of its rank in all the compactors, where
the weight for level l is 2l. For the formal definition, recall that rank of item x
in sequence s is denoted by R(x, s), R(x) is the rank of x in the input stream,
and R̂(x) its estimate by the sketch. Then, for a sketch consisting of compactors
B0 . . . Bh, we have:

R̂(y) =
h∑︂

l=0
2l R(y, Bl).

The space bound

It remains to set the compactor capacities. For a given parameter ε we set
the capacity of the highest compactor to C

def= ε−1. The capacities are then
exponentially decreasing as we go down the levels, with some constant factor
0.5 < F < 1. Thus the second-highest compactor has capacity FC, the one before
it has capacity F 2C, and so on.

We need to note a few things now. First, for the compaction, we need the
capacity C to be at least 2 and for a long input stream (or large ε), the low levels
would be smaller. So we need a rule that any capacity is always at least 2. Second,
we must tweak the capacities a bit so that they are even, which however does not
change the asymptotic size. Last, if we compact the highest compactor and create
a new one, the capacity of the already present compactors must decrease. This is
however not a problem, as in the moment, the compactors are all empty.

Formally, let Cl be the capacity of the compactor at level l. For a given
parameter ε and some constant 0.5 < F < 1 we have:

Cl = max
(︂
2, F H−l−1ε−1

)︂
As the capacities are decreasing exponentially, the sum of the sizes of all the

compactors of capacity larger than 2 is asymptotically bounded by the capacity
of the highest compactor. It is not hard to see that all the compactors of capacity
2 can be replaced by a simple sampler – the sequence of x compactors of capacity
2 simply chooses one out of every 2x items uniformly at random. This sampling

1Also note that we need the assumption that capacity is even and thus for every promoted
item there is exactly one deleted neighbour.

15

can be performed in O(1) space2, so after this modification, the overall size of the
sketch is just O(ε−1). The whole situation is shown in Figure 1.2.

Item
weight

2H−1

2H−2

2H−3

2ℓ

2ℓ−1

20

CH = ε−1

CH−1 = ε−1F

CH−2 = ε−1F 2

Cℓ−1 = 2

C0 = 2

Cℓ = ε−1FH−ℓ−1

SAMPLER

CH = ε−1

CH−1 = ε−1F

CH−2 = ε−1F 2

Cℓ = ε−1FH−ℓ−1

O(logN)

Figure 1.2 The KLL sketch

The error bound

It can be proven that this sketch can answer all rank queries within ±εN error
with constant probability (the additive error). The intuition behind the proof is
that if the rank of an item y among the compacted items on level l is even, the
compaction introduces no error for y, as for every removed item smaller than y
with weight 2l, there is exactly one item smaller than y that we ”promoted” and
whose weight doubles from 2l to 2l+1. If the rank of y among the compacted items
is odd, the compaction introduced error 2l or −2l with equal probability (by the
same reasoning). This means that the error for y can be bounded as

Err =
H−1∑︂
l=0

compactions
on level l∑︂

i=1
2lXi,l

where Xi,l are ±1 zero-mean independent random variables. Hence, the error is a
zero-mean random variable and we are interested in its variance. The number of
compactions performed on level l is at most (2/F)H−l−1 (it is trivially true for
the highest level and extends to the lower levels by induction), so the variance is

H−1∑︂
l=0

(︃ 2
F

)︃H−l−1
22l =

(︃ 2
F

)︃H−1 H−1∑︂
l=0

(2F)l.

2For details see Reservoir Sampling by Vitter [Vit85].

16

As we have F > 1/2, the variance is dominated by the next-to-last level. Since
we have H ≤ log N

size of the last level , the variance is

O
(︂
22H

)︂
⊆ O

(︂
22 log(εN)

)︂
= O

(︂
ε2N2

)︂
.

This is important for us as we use the property that the variance is dominated by
the last level in the analysis of ReqSketch and Jagged Sketch. The proof can be
finished by the use of Hoeffding’s inequality with a little more refined argument.

For the error analysis, implementation of the merge operation, the error
improvements, and other information, we refer to the original paper [KLL16].

1.2 ReqSketch
ReqSketch by Cormode et al. [Cor+23] is the state-of-the-art randomized sketch
achieving relative error in the comparison model in space O(ε−1 log1.5 N), which
is a factor of

√
log N from the known lower bound.

In the analysis in the streaming setting, authors of the ReqSketch assume that
the stream length N is known in advance. They get rid of the assumption in later
chapters by introducing mergeability. We explain here only the simpler version
with the foreknowledge of N .

Differences from KLL

The sketch works analogously to KLL with two differences. The first difference
is that all the compactors have the same capacity. Particularly, for any level l
we have Cl = C = 2ε−1√log N . This implies that unlike for KLL, there are no
compactors of constant capacity and no need for a sampler.

The second (major) difference is the definition of compaction operation. After
the compactor is sorted, we add a new step of the algorithm – choosing the number
X of items to participate in the compaction. After the choice is made, we perform
the compaction on the largest X items in the compactor (we discard odd/even
ranked items and promote the rest). Thus in every compaction, there are C − X
protected items staying in the compactor. Particularly, we always choose X ≤ C/2,
so the smaller half of items in the compactor is always protected. The process of
compaction is shown in Figure 1.3.

Protected part of the compactor

The reason for the protected left half of each compactor is that items with small
ranks cannot move too high in the sketch. Particularly, the smallest C/2 items
stay on level 0, the (representatives of the) next C items stay on level 1, and so
on3. For an item y with a small rank, only a small number of compactors on the
low levels ever perform a compaction containing items smaller than y and only
their compactions can contribute to the error for y. As in the KLL sketch, the
error is a zero-mean variable and its variance is dominated by the highest level

3It is also true that by the definition of relative error, the sketch must answer the queries for
the smallest 1/ε items exactly with no error, so these items must be protected. An analogous
argument holds for the next 2/ε items and level 1 and so on.

17

Before: Buffer is full; K = 4, S = 5, L = 0 . . . 001011

The compaction:

s4 s3 s2 s1 s0

Always protected

Protected Compacted

After: L = 0 . . . 001100

Figure 1.3 Compaction in ReqSketch

which performs compaction affecting the error, so we get much a smaller error for
low-ranked items (which is the point of having a relative error).

Compaction schedule

Now, let us explain the choice of number X. For this choice, we use a parameter
K = ε−1/

√
log N and so called compaction schedule. The compaction schedule is

determined by a binary representation of the number P of compactions already
performed on the given compactor. Let T be the number of trailing ones of P

before the compaction. We define X
def= (T + 1)K.

Note that while P is smaller than N/2, T is smaller than log(N/2) = log(N)−1
and so X is at most K log N = ε−1√log N = C/2. It follows that the smallest
C/2 items in the buffer are indeed always protected.

To see the motivation behind the compaction schedule, let us divide the right
half (the one with larger items) of the compactor into S sections of size K and let
us number the sections from right to left starting from zero. If the schedule has
T trailing ones, we compact sections T to 0. Again we would like to bound the
error for item y of a small rank. We show how to assign K items smaller than
y to each compaction that affects the error of y in such a way that any item is
assigned at most once. If this is true, it follows that for small y there cannot be
too many compactions.

Let us consider a compaction affecting the error of y where the last compacted
section is j. After the compaction, all the items in section j + 1 are smaller than
y (as the rank of y among non-protected items was not zero) and immediately
after the compaction, we set the bit of the compaction schedule corresponding
to section j + 1 to one. This set bit indicates that section j + 1 will eventually
pay for this compaction. The next compaction which involves section j must also
involve section j + 1 and all the items in section j + 1 are still smaller than y at
the time of the compaction. We conclude that the compaction removes at least
K items smaller than y from the compactor – all the items from section j + 1.
If such compaction never happens, some K items smaller than y stay in section
j + 1 forever. Either way, for every compaction affecting the error of y we have
some K items smaller than y to pay for it.

18

Space and error bounds

Regarding the size of the sketch, note that we have O(log N) levels, as the
weight of items doubles with every step up, so the whole sketch takes space
O(C log N) = O(ε−1 log1.5 N).

It can be proven that the sketch answers a query for R(y) with error ±ε R(y)
with constant probability. The error analysis and other information including
mergeability can be found in the paper [Cor+23].

1.3 Error improvement for high ranks
In this section, we introduce our first new result – an error improvement for high
ranks, which is based on a practical adjustment of ReqSketch by Cormode et al.
[Cor+21].

Explanation of the modification by Cormode et al.

As we mentioned earlier, the original analysis of ReqSketch in the streaming
setting was done with the foreknowledge of a polynomial upper bound on N ,
which enabled the authors to analyze the sketch in a static case (fixed number
of levels and their capacities). In the dynamic case, the sketch is built for some
initial constant stream length, and all the parameters are recomputed whenever
the logarithm of the stream length doubles (this makes sense as the parameters
of compactors depend on the logarithm of N). In a paper where they compare
ReqSketch to t-digest, Cormode et al. [Cor+21] suggest to do this update of
parameters for each compactor separately whenever the logarithm of the number
of compactions on the given compactor doubles. They do not explain the idea
further, but we expect this modification can be analyzed similarly as the original
version. Before we move on, let us explain the behaviour of a compactor in this
model.

As in KLL, we start with just one compactor, and any time the highest
compactor does its first compaction, we create a new compactor at the top. The
new compactor is always created with the same constant capacity C = ε−1 and
constant number of sections – this means section size K is a constant fraction of
C (let us say K = C/6). With this setting, we quickly get to the situation where
(by the compaction schedule) we compact C/2 items. In this case, we multiply C
by

√
2, divide K by

√
2, and reset the compaction schedule to zero. This means

that the compaction schedule is no longer equivalent to the number P of already
performed compactions. Let us denote the schedule L.

Note that after every reset, the number of sections S (which equals C
2K

) doubles.
Also note that a reset happens when the number of compactions performed from
the last reset is ≈ 2S. This means that the overall number of compactions
on the given compactor is 2S/2 < P < 2S+1, thus we have S ≈ log P . The
number of resets performed is E ≈ log(S) ≈ log log P , the compactor size is
C = ε−1√2E ≈ ε−1√log P , and the section size is K ≈ C/S ≈ ε−1/

√
log P . Recall

that in the static version we had C ≈ ε−1√log N and K ≈ C/S ≈ ε−1/
√

log N .
Note that we did not break the analysis of the compaction schedule. The

only compactions without assigned sections (represented by a bit in the schedule)

19

are the compactions immediately before the schedule reset. We can assign these
compactions to some K-tuples of positions in the left half of the compactor at the
time of the compaction and as the compactor size increases by factor

√
2 between

any two resets, there are always free unassigned positions in the left half.

Our modification

In the version of ReqSketch explained above, the compactors on high levels have
smaller sizes. It is natural to ask whether the asymptotic size of the whole sketch
decreased. Unfortunately, it is not the case. All the compactors in the bottom
(larger) half of the sketch have an input stream of length at least

√
N and so each

of them performs Ω(
√

N/K)) ⊆ Ω(ε
√

N/
√

log N) compactions. This means that
each of them has a size

Ω
(︃

ε−1
√︂

log P
)︃

⊆ Ω

⎛⎜⎝ε−1

⌜⃓⃓⎷log ε
√

N√
log N

⎞⎟⎠ = Ω
(︃

ε−1
√︂

log N
)︃

.

So the size of the bottom half of the sketch is still Θ(ε−1 log1.5 N).
Let us move back to the static version and exploit the smaller compactors in

another way – we exchange the size improvement (which was not significant) for
an error improvement. We set the size of all the compactors to C = ε−1√log N
(as it was originally), but preserve the ratio between K and C (the number of
sections S) which equals approximately log P . This implies that we have

K ≈ ε−1
√

log N

log P
.

The analysis of the compaction schedule stays the same as in the modified version
above, but the section size K is up to log N times larger for the highest levels
compared to ReqSketch.

Recall that the variance of the error is dominated by the highest level which
contributes to the error. For this reason, the increase of K translates to an error
improvement for high-ranked items. Particularly, the error becomes

Θ(1) · ε R(y)

⌜⃓⃓⎷ log N
R(y)

log N

instead of ε R(y), which is improvement by a factor of
√

log N for ranks in Ω(N),
as the numerator becomes a constant.

1.4 Jaggedness
Here, we introduce our main novel idea which makes the sketch more versatile.

Once again we are going to utilize the fact that for a given rank the variance
of the error is dominated by the highest reached level. If we know in advance
which ranks we are interested in, we can set the capacities of the compactors so
that they are larger on the levels that are critical for bounding the error for items
of interested ranks. So we go back to the concept from KLL where the highest

20

compactor has the largest capacity and the capacities of other compactors are
decreasing exponentially. However, we introduce a few changes.

First, we let the user choose a constant number of important ranks determining
the large levels4. So it can be the last level as in KLL, it can be the first, it can
be some level in-between, and there can even be more of them. This is where the
name of the sketch comes from – the sketch has one or more jags represented by
the large levels (see Figure 1.4).

Level

h ≈ H/2

0

1

2

3

Jags

H

Figure 1.4 Jagged Sketch with important ranks 1 and
√

N .

Second, the level sizes do not decrease exponentially, but just polynomially.
Particularly, if the largest compactors have capacity C, the capacity of the
compactor with distance d from the closest largest compactor is C/dJ for some
constant J > 1 (in KLL it would be C · F d for a constant 0.5 < F < 1). We stress
that in this section J > 1, we discuss J ≤ 1 in Section 1.5.

In this setting, the error for the items with the given important rank is the
same as in ReqSketch, but the size of the sketch is O(C) instead of O(C log N),
as ∑︁i=1 C/iJ ∈ O(C) for J > 1.

For example, if we set 1 as the only important rank (which is the most natural
setting, as the motivation for relative error is high accuracy for small items), and
C = ε−1 log1.5 N (to achieve the same space as ReqSketch) we get error

Err(y) ≤ ε R(y) ·
log0.5

(︂
N

R(y)

)︂
logJ R(y)

log1.5(N)
,

4The rank R(y) corresponds roughly to level log R(y).

21

compared to ε R(y) of the original ReqSketch.
As the error grows with J , we want to choose J close to 1. On the other hand,

J affects the hidden constant that grows as J gets closer to 1. Thus, the actual
value used in practice should be determined by experiments.

Note that for ranks in Θ(N c) for 0 < c < 1, this error guarantee is actually
worse than before, as logJ R(y) becomes larger than log N . This could be simply
compensated (without asymptotic space increase) by running two sketches (with
and without jags) of the same size side by side and later ask the sketch which
gives a better guarantee for the given rank. However, there is even a simpler
solution – for every compactor we let the capacity to be the maximum of the two
possible sketches. This sketch gives us always the better error bound with the
same asymptotic size. Thus, the final compactor capacity becomes approximately
C/ min(dJ , log N) where C is the capacity of the largest compactors and d is the
distance to the closest important level. For space ε−1 log1.5 N and with the only
important rank 1 the error becomes

Err(y) ≤ ε R(y) ·
log0.5

(︂
N

R(y)

)︂
min

(︂
logJ R(y), log N

)︂
log1.5(N)

.

Note that for small ranks the error is nearly log N times better than for
ReqSketch, for large ranks it is

√
log N times better, and for the ranks in between

it is the same.
To compare Jagged Sketch to KLL, let us set the only important rank to N .

The error becomes

Err(y) ≤ ε R(y) ·
log0.5

(︂
N

R(y)

)︂
min

(︂
logJ N

R(y) , log N
)︂

log1.5(N)

≤ ε R(y) ·
log0.5+J

(︂
N

R(y)

)︂
log1.5(N)

which is ε R(y)/ log1.5 N for ranks in Ω(N). That means that if ε ≤ log−1.5 N we
can use log1.5 N times larger ε to achieve the same space as KLL with the same
error for high ranks. Then for ranks N c for some constant 0 < c < 1, the error
becomes O(εN c logJ+0.5 N) and for ranks logc N it becomes O(ε logc+J+0.5 N).
KLL has error εN for all ranks, thus Jagged Sketch has (asymptotically) the same
error for ranks in Ω(N) and a much better error for the smaller ranks (under the
assumption ε ≤ log−1.5 N).

1.5 Weighted jaggedness
In the previous section, we introduce the jaggedness with parameter J > 1.
Observe that by setting J = 0, we get ReqSketch with no jags, as the capacities
are all the same. The natural question is: What happens for J between 0 and 1?
Intuitively, constant J tells us the size (or significance) of the jags – the capacity
of the largest compactors relative to others. From another point of view, it tells
us the size of the sketch. Let C be the size of the important (largest) level. With
J = 0, the sketch size is ≈ C log N , with 0 < J < 1, it is ≈ C log1−J N , for J = 1
it is ≈ C log log N (harmonic series) and for J > 1 it is ≈ C.

22

For the appropriate setting of parameter C and again with the only important
rank 1 the general error for any J ≥ 0 becomes

Err(y) ≤ ε R(y) ·
log0.5

(︂
N

R(y)

)︂
min

(︂
logJ R(y), log N

)︂
log0.5+min(1,J)(N)

where the size of the sketch O(ε−1 log1.5 N) is preserved when J ̸= 1 and for J = 1
it is O(ε−1 · log1.5 N · log log N).

It is hard to say which setting of the parameter J is the best. All the settings
with J ̸= 1 are (asymptotically) never worse than the original ReqSketch and
the intuition above generally holds – the larger J , the better the guarantee for
important ranks. The error decreases as the parameter J goes to 1, but the hidden
constant depending on J increases with J close to 1 and it becomes log log N
for J = 1 as we can see in the change of the space bound. The actual value of
J should be determined by the priority we give to the important ranks relative
to other ranks and by experiments. Our data suggest that the universally most
practical choice of J is J ≈ 0.5 (see Chapter 3).

1.6 The whole Jagged Sketch
Let us now put all the pieces together and describe the whole sketch. Recall
that for simplicity, we ignore rounding issues and other technical details. For the
complete formal description, see Chapter 2.

The sketch consists of a sequence of compactors arranged into levels from 0
to H − 1 ≈ log(εN). It is initialized by the error bound ε, jaggedness J , and
a constant number of important ranks. The set of important levels is the set of
logarithms of important ranks.

Each compactor has its own compaction schedule L (initially zero), the number
of already performed compactions P , the scaling factor F ≈ min(H, dJ) where d
is the distance to the closest important level, the capacity C ≈

√
H/(εF), and

the section size K ≈ C/ log P .
Method compact works on a single compactor. We start by incrementing P ,

sorting the compactor, and calculating the number of protected items. If T is
the number of trailing ones of L, the number of protected items is C − (T + 1)K.
Then we delete the non-protected items on even or odd indexes with equal
probability and send the non-deleted half of them to the output of the compaction
operation. Finally, if the size of the protected part was only C/2, we set L = 0
and K = C/ log P (schedule reset), otherwise we just increment L. Note that the
capacity does not change, as it does not depend on P .

The update operation simply adds a new item to the first compactor and if the
first compactor is full (the number of items is greater or equal to its capacity), it
performs a compaction. The output of the compaction is added to the compactor
one level higher, which also performs a compaction if it is full, and so on.

The rank query for y returns a weighted sum of ranks of y in all the levels
where the weight for level ℓ is 2ℓ.

23

2 Analysis
As we explained in the previous chapter, Jagged Sketch is an improvement of
ReqSketch by Cormode et al. [Cor+23], therefore the analysis is inspired by the
analysis of ReqSketch. However, as the sketch became more complex, so did the
proofs.

In Section 2.1 we state the result in a static setting and discuss the guarantees
in the dynamic setting, in Section 2.2 we describe our algorithm, in Section 2.3 we
do the full analysis in the static setting and in Section 2.4 we sketch the changes
to be made in the analysis for the dynamization of the sketch.

2.1 Our main result
The following is a generalization of Theorem 1 in [Cor+23] in the static setting and
without the mergeability. We stress that the hidden constant in the O notation
depends on J and also that the condition J ≤ 1.4 is there only to simplify the
proofs, the analysis holds for an arbitrarily large J with different constants.

Theorem 1 (The main theorem). Given any N ∈ N, set R s.t. |R| ∈ O(1) and
R ⊂ {1, . . . , N}, and real parameters 0 < δ ≤ 0.5, 0 < ε ≤ 1 and 0 ≤ J ≤ 1.4,
there is a comparison-based randomized algorithm that processes an input stream
of length at most N and at any time answers any rank query y with probability
1 − δ with error

Err(y) ≤ ε R(y) ·

⌜⃓⃓⎷ log N
R(y)

log(εN) ·
minr∈R

(︃⃓⃓⃓
log R(y)

r

⃓⃓⃓J
, log(εN)

)︃
logmin(1,J)(εN)

in space

SPACE ∈ OJ

⎛⎝ε−1 · log1.5(εN) ·
√︄

log 1
δ

⎞⎠
in case of J ̸= 1 and in space

SPACE ∈ OJ

⎛⎝ε−1 · log1.5(εN) ·
√︄

log 1
δ

· log log(εN)
⎞⎠

in case of J = 1.

As in the original paper, we observe that at the cost of a small space increase,
we can make the error bound to hold with probability 1 − δ for all the queries
simultaneously. We restate it without proof, which is analogous and can be found
in Appendix B of [Cor+23].

Corollary 1 (All quantile approximation). The error bound from Theorem 1
holds for all rank queries simultaneously with probability 1 − δ when the size of
the sketch is

O

⎛⎝ε−1 · log1.5(εN) ·

⌜⃓⃓⎷log
(︄

log(εN)
εδ

)︄⎞⎠
24

in the case J ̸= 1 and

O

⎛⎝ε−1 · log1.5(εN) ·

⌜⃓⃓⎷log
(︄

log(εN)
εδ

)︄
log log(εN)

⎞⎠
in case of J = 1.

Our sketch has not proven to be mergeable yet, but we believe it can be
made so. We did not do it for time reasons and we plan to resolve this problem
later. The mergeability will also help us remove the assumption of the foreknowl-
edge of N . For now, we have a provisional modification of the analysis which
removes the assumption on N at the cost of worsening the error by the factor of
log1/4(εN) logJ R(y). We do not state this claim as a theorem, as we do not give
a full proof. However, in Section 2.4 we roughly explain the changes to be made
in the analysis.

To state the guarantees for the dynamic version, we must change the repre-
sentation of the set of important ranks. It is given in the form of input for the
quantile function: |Q| ∈ O(1), Q ⊂ [0, 1]. The ranks R can be any time computed
from the current value of N as R =

{︂
⌈Nq⌉ | q ∈ Q

}︂
.

Without the foreknowledge of N , with an additional assumption ε ≥ N−1/2

and with the same space bounds we have

|Err(y)| ≤ ε R(y)

√︂
log N

R(y)

log0.25+min(1,J)(εN)
max

⎛⎝min
q∈Q

⃓⃓⃓⃓
⃓log R(y)

⌈qN⌉

⃓⃓⃓⃓
⃓
J

, logJ R(y)
⎞⎠ .

In the special case where Q ̸= ∅ and Q ⊆ {0, 1}, without the foreknowledge of
N , with the same space bounds and with the assumption ε ≥ N−1/2 we have a
better result:

|Err(y)| ≤ ε R(y)

√︂
log N

R(y)

log0.25+min(1,J)(εN)
min
q∈Q

⃓⃓⃓⃓
⃓log R(y)

⌈qN⌉

⃓⃓⃓⃓
⃓
J

And finally in the special case where Q = {1} and J ≥ 0.5 we have the same
error as in Theorem 1 with the same space bounds, without the foreknowledge of
N and without any additional assumption.

2.2 Description of the sketch
In this section, we give a full description of Jagged Sketch. For better understanding
of the sketch we also recommend reading the simple version of our proof-of-concept
implementation jaggedSketchSimple.py1. The only major difference from the
description is that the implementation follows the dynamic version of Jagged
Sketch which is explained in Section 2.4.1. For the reader’s convenience we reprint
there the schema of a compaction operation and the schema of Jagged Sketch
from Chapter 1 – see Figures 2.1 and 2.2.

The description of the sketch requires a lot of notation. For later reference,
we include a List of Notation at the end of the thesis.

1https://github.com/domestomas/JaggedSketch/blob/main/jaggedSketchSimple.py

25

https://github.com/domestomas/JaggedSketch/blob/main/jaggedSketchSimple.py

The sketch

The sketch consists of a sequence of H compactors indexed from 0 to H − 1. We
imagine the compactors as arranged in levels – the compactor at level 0 is at
the bottom, the compactor at level H − 1 at the top. A compactor at level h
has some internal state, a capacity Ch, an input stream Ih, an output stream Oh,
and contains a set Bh of items (the buffer). We omit the index h if it is clear
from context. Any set of items received from the input stream is simply added
to B. Whenever the size of B exceeds the capacity C, the compactor performs a
compaction operation, which removes some items from B, part of them is deleted
and part of them is sent to the output stream. The input of the compactor on
level 0 is the input of the sketch and the input of any compactor on level l > 0
is the output of the compactor on level l − 1. We note that the items are sent
in ”batches” – if a compaction operation outputs a set of items, all the items
are atomically added to the next-level compactor before any other compaction
happens.

Apart from the sequence of compactors, the sketch consists of some additional
information. An upper bound N on the stream length known in advance, the
error bound 0 < ε < 1, the height of the sketch H

def= ⌈log(εN) + 1⌉ (the number
of compactors), the jaggedness 0 ≤ J ≤ 1.4, the failure probability 0 < δ ≤ 1

2 and
the set R of important ranks such that |R| ∈ O(1) and R ⊂ {1, . . . , N}.

Level

h ≈ H/2

0

1

2

3

Jags

H

Figure 2.1 Jagged Sketch with important ranks 1 and
√

N .

26

Definition 2 (Important levels). For any important rank r ∈ R we define an
important level L(r) as

L(r) def= max
⎛⎝log εr

22
√︂

H ln(δ−1)
, 0
⎞⎠

The intuition behind the definition is that L(r) ≈ log(r/CL(r)) (see the def-
inition of C below). It corresponds to the critical level that we see later in
Section 2.3.2. Note that the important levels are determined at the beginning of
the algorithm and never change.

The compactor

The compactor consists of set B of items, height h (the index of the compactor in
the sketch), capacity C, section size K, scaling factor F , the number P of already
performed compactions and compaction schedule L.

Let d
def= minr∈R |L(r) − h| be the distance to the closest important level. The

initial setting of the parameters follows:

P = 0 (Number of compactions)
L = 0 (Compaction schedule)

F
def= min(H, dJ) (Scaling factor)

K
def= 23

√︂
H ln(δ−1)

εF log(P)
(Section size)

C
def= 25

√︂
H ln(δ−1)

εF
(Capacity)

S
def= C

2K
= 2 log(P) (Number of sections)

Recall that x denotes max(1, x) and log x denotes max(1, log x). Also note
that the parameters F and C stay fixed forever, whereas the rest of the parameters
are updated at some time during the algorithm (which is explained below).

The compaction

The compaction operation is triggered when the size of B reaches the capacity
and it is defined as follows: First, the number of compactions P is incremented
by 1 and the stored items are sorted. Then the number of protected items is
determined. Let T be the number of trailing ones of the binary representation of
number L. If K < 2, the number of protected items is defined as ⌈C/2⌉, if K ≥ 2,
it is defined2 as ⌈C − (T + 1)K⌉. If the number of non-protected items is odd,
the number of protected items is incremented by 1. With probability 1/2, the
odd-indexed non-protected items are sent to the output of the compactor, and in
the other case, the even-indexed non-protected items are sent to the output. All
the non-protected items are deleted from B. Finally, if C − (T + 1)K ≤ ⌈C/2⌉,

2Note that if we imagine the buffer B as divided into sections of size K, the compaction
essentially compacts the rightmost T + 1 sections.

27

Before: Buffer is full; K = 4, S = 5, L = 0 . . . 001011

The compaction:

s4 s3 s2 s1 s0

Always protected

Protected Compacted

After: L = 0 . . . 001100

Figure 2.2 Compaction in Jagged Sketch

the compaction schedule L is reset to 0, and K is updated based on the current
value of P . Otherwise, L is incremented by 1.

Note that we need C ≥ 4 for the compaction operation to work properly,
however, the current definition permits even C < 1. We resolve this problem by
assuming ε ≤ log− min(1,J) N (Assumption 1) and we get rid of the assumption in
Section 2.3.5.

The update operation

The update operation takes the next item from the input stream of the algorithm
and sends it to the input stream of the level-0 compactor. The whole stream is
processed by a sequence of N update operations.

The rank query

Recall that for any item y ∈ U , R(y) is its rank in the input stream. For the rank
query y the sketch returns value R̂(y), which is defined as follows:

R̂(y) def=
H−1∑︂
h=0

2h R(y, Bh)

Notation

If it is not clear from context, we denote the level of the compactor by lower
index and the time by upper index. Thus, P t

ℓ is the number of already performed
compactions of a compactor on level ℓ at time t. However, all the lemmas in
Section 2.3 hold at any fixed time t, thus we rarely use the upper index. We stress
that R(y) is fixed at the same time as all the other parameters. For example if we
say that R(y) = R(y, I0), it means that for any time t we have R(y, St) = R(y, I t

0).
For any item y, the items important with respect to y (or y-important items)

are all the items i such that R(i) ≤ R(y).

Simple observations

Observe that after the compaction is performed, the compactor cannot be overfilled,
as the number of protected items is always smaller than C and all the non-protected

28

items are deleted.
Also observe that the last compactor on level H − 1 is never overfilled, as every

item on level h has weight 2h (corresponds to 2h − 1 deleted items and itself). If
there would be more than C > ε−1 items in BH−1, the input stream of the sketch
would be longer than ε−1 · 2H−1 = N , which is a contradiction.

For the compaction operation, let us note that the number of sections of the
right half of the buffer indeed is S = C/(2K) as defined above. Immediately
after a reset at time t, we have S = 2 log(P t) and by the compaction schedule,
the number of compactions before the next reset is 2S−1 = (P t)2/2. Thus, the
logarithm of P approximately doubles between any two schedule resets. We use
this fact in the proof of Lemma 2.

Let us point out some properties of the compactor as a separate observation:

Observation 1 (Properties of the compactor). At any time t during the algorithm,
for any compactor we have

Kt = min
u≤t

Ku

P ≤ 2 |O|
K

≤ |I|
K

23
√︂

H ln(δ−1)/(εF log(P)) ≤ K ≤ 24
√︂

H ln(δ−1)/(εF log(P))

2 log(P) ≤ C

K
≤ 4 log(P)

1
3Fh+1 ≤ 1

2J
Fh+1 ≤ Fh ≤ 2JFh+1 ≤ 3Fh+2

1
5Fh+2 ≤ 1

3J
Fh+2 ≤ Fh ≤ 3JFh+2 ≤ 5Fh+2

1
3Ch+1 ≤ Ch ≤ 3Ch+1

Recall that I and O are the input and output stream of the compactor
respectively. All these (in)equalities follow directly from the definition. The first
equality says that K is non-increasing in time (because P is non-decreasing). The
second says that each compaction sends at least 1

2K items to the output (and
uses the fact that K is non-increasing). The third line is from the definition of
compaction (as we update K during each reset), the fourth follows from the third
and the rest just says that F can not differ too much on neighbouring levels (and
consequently neither does C).

2.3 Analysis in the static setting
We start by analysing the behaviour of a single compactor (Section 2.3.1). Then,
for any item y we define a so-called critical level and prove that no y-important
item gets above this level with large probability (Section 2.3.2). In Section 2.3.3
we use all the previous work to bound the variance of the Err(y) so that we can
bound the error by the tail bound for sub-Gaussian variables in Section 2.3.4.
Finally, in Section 2.3.5 we utilize the correspondence between error and space
to get rid of the additional assumption on ε below and obtain the final result
presented in Section 2.1.

29

We use the following assumption on ε only to simplify the analysis, and we
remove it in Section 2.3.5.

Assumption 1. We assume that

ε ≤ log− min(J,1)(εN).

Note that we really need some upper bound on ε, as with ε = 1 we could have
C < 4 which does not allow us to perform the compaction operation. However,
with the assumption we have C ≥ 25√H log δ−1 ≥ 4. Also note that the constants
in the statements of the lemmas are far from tight. We show in Chapter 3 that
the sketch performs well in practice.

2.3.1 Analysis of a single Compactor
Let y be any item y ∈ U . We say that a compaction is important (with respect to
y) if it affects R̂(y). There is an observation about important compactions that
follows directly from the definition of R̂(y):

Observation 2 (Important compactions). Compaction is important with respect
to item y if and only if the rank of y among the compacted (non-protected) items
is odd. This particularly means that any important compaction includes at least
one important item.

The only lemma of this section bounds the number of important compactions
for an item y:

Lemma 2 (Number of important compactions). At any time u, the number of
important compactions with respect to y on level h is at most 2 R(y, Iu

h)/Ku
h .

Proof. For the whole proof let us limit ourselves to a single compactor on level h
and a fixed item y. If Ku ≤ 2, then the lemma directly follows from the second
part of Observation 2. For the rest of the proof, we assume that Ku ≥ 2.

It suffices to assign at least Ku important items in Iu to each important
compaction in such a way that no item is assigned more than once.

At any previous time t during the run of the algorithm, let us divide the buffer
into sections of size Kt indexed from right to left starting from index zero (so that
the section 0 equals B[C − Kt : C − 1]). Let us index the bits of L from right to
left starting from index 1, so that section i corresponds to bit i (recall that section
0 participates in every compaction). Imagine the buffer as always sorted (as we
sort it before any compaction) and let special compaction be any compaction that
happens immediately before a schedule reset. Note that Kt ≥ Ku.

Non-special compactions Let us first choose an arbitrary non-special impor-
tant compaction c and denote by j the highest-indexed section that participated in
this compaction. After the compaction, all the items in section j +1 are important
(by Observation 2). Before the compaction, the bit j + 1 is set to zero and all
the bits {j, . . . , 1} are set to one. After the compaction, the bit j + 1 is set to
one, and all the bits {j, . . . , 1} are set to zero. We assign the section j + 1 (but
not yet the items in it) to the compaction c. We claim that before there is some

30

compaction d that includes section j + 1, section j + 1 contains important items
only. This is because the only reason for an item i to be moved out of section
j + 1 is that there comes a new item smaller than i and so i is shifted to the
right in the buffer. Also note that in the time between compactions c and d there
cannot be a compaction that includes section j, as the bit j + 1 is set to 1 so the
compaction would also include section j + 1.

If there is no such compaction d that includes section j +1 after the compaction
c, the bit j+1 stays set to the end of the algorithm and we assign the Kt items that
are present after the end of the algorithm in the section j + 1 to the compaction c.

If there is a compaction d that includes section j + 1 after the compaction c,
we assign to compaction c the Ku = Kt items that are present in section j + 1
immediately before compaction d. During compaction d, the items are removed
from the buffer and bit j + 1 is set to zero.

Note that we never assign the same section twice, as the assigned section is
represented by a set bit in the compaction schedule and the bit is set to zero only
after the items from the assigned section are assigned and immediately removed.
Also note that immediately before the schedule reset, there is only one set bit in
the schedule and it was set by the special compaction that happened immediately
before the reset so it does not correspond to any assigned section and can be
safely reset to zero.

Special compactions To any special compaction, we simply assign some Ku

items remaining in the left half of the buffer at time u. If there was ever an
y-important compaction, all the items in the left half of the buffer are important.
It remains to prove that the number of items in the left half is at least Ku times
the number of special compactions – in other words, that the number of special
compactions is at most Cu/(2Ku).

The number of special compactions is at most the number of resets as a special
compaction happens immediately before one. Immediately after a reset, let us
say at time v, the right half of the buffer has exactly Sv = Cv/(2Kv) = 2 log(P v)
sections, by the definition of C and K. By the definition of compaction schedule,
the number of compactions to be done before the next reset is 2Sv−1 ≥ (P v)2/2.
Hence, the number of resets before time u is at most 2 log log(P u), which is smaller
than Cu/(2Ku) = 2 log(P u). This concludes the proof.

2.3.2 The critical level
First, we prove that low-ranked items cannot move too high in the sketch. Specif-
ically, for any item y, we define a critical level H(y) and prove that with high
probability R(y, OH(y)) = 0.

Definition 3 (Critical level). For any item y ∈ U at any time we define H(y) as
the smallest h ≥ 0 such that

2 · R(y)
2h

≤ Ch

2 .

The next observation follows from the minimality of H(y):

31

Observation 3. For any item y ∈ U and any H(y) > 0 at any time we have

CH(y)−1 < 23−H(y) R(y).

By putting together the definition of the critical level and Observation 3 we
obtain tight bounds on H(y) (note that the max function is there for the case
of H(y) = 0 which is not covered by Observation 3). We use these bounds in
Section 2.3.4 for bounding the error of the sketch.

Observation 4 (Bounds on the critical level). For any item y ∈ U at any time
we have

max
(︄

log 23 R(y)
CH(y)

, 0
)︄

− 1 ≤ H(y) ≤ max
(︄

log 23 R(y)
CH(y)

, 0
)︄

+ 1.

Let us now state the main lemma of this section.

Lemma 3 (Ranks decrease exponentialy). For any item y ∈ U and any 0 ≤ h ≤
H(y) at any time, with probability at least 1 − δ we have

R(y, Ih) ≤ 2 · R(y)
2h

.

Lemma 3 together with the definition of critical level and the fact that smallest
1
2C items always stay in the buffer immediately gives us an important corollary:

Corollary 2 (Property of the critical level). For any item y ∈ U at any time,
with probability at least 1 − δ we have

R(y, OH(y)) = 0.

Before we prove the lemma, we need a fact about so-called sub-Gaussian
variables.

Definition 4 (Sub-Gaussian variables). Let X be a zero-mean random variable
with variance Var[X]. We say that X is sub-Gaussian, if for any s ∈ R we have

E[exp(sX)] ≤ exp
(︃

−1
2s2 Var[X]

)︃
Fact 1 (Properties of sub-Gaussian variables – Lemma 1.3 in [Rig15]). A weighted
sum of independent zero-men sub-Gaussian random variables is a zero-mean sub-
Gaussian random variable. For every zero-mean sub-Gaussian random variable X
and any a > 0 we have

P[X > a] ≤ exp
(︄

− a2

2 Var[X]

)︄
and P[X < a] ≤ exp

(︄
− a2

2 Var[X]

)︄
.

Proof of Lemma 3. We prove for all h ≤ H(y) that if for all ℓ < h we have

R(y, Iℓ) ≤ 2R(y)
2ℓ

, (2.1)

32

then with probability 1 − 2h−H(y)−1δ we have

R(y, Ih) ≤ 2R(y)
2h

. (2.2)

This is sufficient to prove the lemma as by the union bound, Equation (2.2) is
simultaneously true for all h with probability 1 − δ

∑︁H(y)
h=0 2h−H(y)−1 > 1 − δ. For

h ≤ 1, Equation (2.2) is trivially true with probability 1. For the rest of the proof,
let us assume 1 < h ≤ H(y).

Let us investigate the dependence of R(y, Iℓ) on R(y, Iℓ−1). Recall that
R(y, Iℓ) = R(y, Oℓ−1) so we are comparing the input and the output of the
compactor on level ℓ − 1. Some of the items from Iℓ−1 can stay in the buffer Bℓ−1,
the rest are subject to a compaction. Recall that an important compaction is
a compaction that affects Err(y) and by Observation 2 these are exactly those
compactions where the rank of y among the compacted items is odd. This means
that any not-important compaction always sends half of the important items to
the output, and any important compaction always sends one important item more
or less than half with equal probability. Let us denote the number of important
compactions on level ℓ by mℓ. Neglecting the items staying in the buffer, we can
bound the rank of y in the output stream as

R(y, Iℓ) = R(y, Oℓ−1) ≤ 1
2(R(y, Iℓ−1) + Binomial(mℓ−1)),

where Binomial(n) is a sum of n independent random variables taking values from
{−1, 1} with equal probability.

Let us use this bound recursively for all R(y, Iℓ) where 0 ≤ l ≤ h. Let
Y0

def= R(y) and for 0 < ℓ ≤ h let

Yℓ
def= 1

2(Yℓ−1 + Binomial(mℓ−1)).

It follows that R(y, Ih) ≤ Yh. Thus, it suffices to prove that with probability
1 − 2h−H(y)−1δ we have

Yh ≤ 2−h+1 R(y).
By unrolling the definition of Yh we obtain

Yh = 2−h R(y) +
h−1∑︂
ℓ=0

2−h+ℓ Binomial(mℓ).

Note that the first summand has a fixed value and the second summand is a
zero-mean sub-Gaussian variable by Fact 1. Let us denote the second summand
by Zh

def= ∑︁h−1
ℓ=0 2−h+ℓ Binomial(mℓ). It suffices to prove that

P[Zh > 2−h R(y)] ≤ 2h−H(y)−1δ.

To invoke the second part of Fact 1, we must bound the variance of Zh.
By Lemma 2 we have mℓ ≤ 2 R(y, Iℓ)/Kℓ and by (2.1) we have R(y, Iℓ) ≤
2−ℓ+1 R(y) for each ℓ < h. That gives us mℓ ≤ 2−ℓ+2 R(y)/Kℓ. Using the fact that
Var[Binomial(n)] = n, we can bound the variance of Zh:

Var[Zh] ≤
h−1∑︂
ℓ=0

2−2h+2ℓmℓ ≤
h−1∑︂
ℓ=0

2−2h+2ℓ 4 R(y)
2ℓKℓ

=
h−1∑︂
ℓ=0

2ℓ+2 R(y)
22hKℓ

≤ 2−h+2 R(y)
minℓ<h Kℓ

33

Now we can finally use the tail bound for sub-Gaussian variables (Fact 1). For
simplicity let us write Kmin instead of minℓ<h Kℓ.

P[Zh > 2−h R(y)] < exp
(︄

−2−2h R2(y)
2 Var[Zh]

)︄

≤ exp
(︄

−2−2h R2(y)Kmin

2−h+3 R(y)

)︄
= exp

(︂
−2−h−3 R(y)Kmin

)︂
= exp

(︂
−2−h−6+H(y)23−H(y) R(y)Kmin

)︂
We invoke Observation 3 to substitute CH(y)−1 for 23−H(y) R(y):

P[Zh > 2−h R(y)] < exp
(︂
−2−h−5+H(y)CH(y)−1Kmin

)︂
(2.3)

Let us bound the expression CH(y)−1Kmin. By definition, we have

CH(y)−1Kℓ ≥ 28H ln(δ−1)
ε2FH(y)Fℓ log(Pℓ)

for arbitrary level ℓ.
We use Assumption 1 which says that ε ≤ log− min(J,1)(εN) ≤ H− min(J,1) to-

gether with the fact that from definition we have Fi ≤ min(H, dJ) ≤ min(H, HJ) ≤
Hmin(1,J):

CH(y)−1Kℓ ≥ 28H ln(δ−1)
ε2FH(y)Fℓ log(Pℓ)

≥ 28H ln(δ−1)
H2 min(J,1)H−2 min(J,1) log Pℓ

≥ 28H ln(δ−1)
log Pℓ

And we notice that

log Pℓ ≤ log N

2ℓKℓ

≤ log(εNFℓ log Pℓ) ≤ log(εN) + log log(εN) + log log Pℓ,

hence log P ≤ 2 log(εN) ≤ 2H. This implies that

CH(y)−1Kmin ≥ 27 ln(δ−1).

Now we can get back to (2.3) to finish the proof:

P[Zh > 2−h R(y)] < exp(−2−h−6+H(y)27 ln(δ−1))
≤ exp(−2−h+H(y)+1 ln(δ−1))
= δ2H(y)−h+1 ≤ δ2−H(y)+h−1

In the last inequality, we used the fact that δ < 1/2. This concludes the proof.

2.3.3 Bounding the variance
We plan to bound the variance of the error of the whole sketch so we can apply
the tail bound for sub-Gaussian variables in Section 2.3.4. However, before we
start bounding the variance, we need to prove one more lemma. Intuitively, it just
says that K decreases only polynomially as we go up the levels. This seems true
at first sight, but the proof of the lemma is quite technical.

34

Lemma 4. For any two levels 0 ≤ h ≤ k < H at any time we have

Kk ≤ 50(k − h + 4)1+JKh.

Proof. Let there be some expression x such that

Kk ≤ xKh.

Our goal is to determine the value of x. By the definition of K it is enough to
prove

Fh log(Ph) ≤ xFk log(Pk).
It suffices to find the values of y and z such that x = yz and

Fh ≤ yFk; log(Ph) ≤ z log(Pk).

Let us start with the variable y. Let d be the distance of level k from the closest
important level. It follows that the distance of h from the closest important level
is at most d + k − h (the triangle inequality). Now we obtain simple bounds on
Fk and Fh which follow directly from the definition of F :

Fk ≥ min(H, dJ)
Fh ≤ min(H, (d + k − h)J) ≤ min(H, (d + k − h + 1)J)

It is enough to set y such that

y ≥
min(H, (d + k − h + 1)J)

min(H, dJ)
.

We set the value of y to
y = (k − h + 4)J ,

which satisfies the inequality.
Now let us proceed to variable z. It needs to satisfy log(Ph) ≤ z log(Pk). Let w

be the highest level such that |Iw| ̸= 0. We first find some z0 such that if k ≤ w−2
we have log(Ph) ≤ z0 log(Pk) and some z1 such that log(Pw−2) ≤ z1 log(Pw). Then
we can set z = z0z1.

Let us start with z0. As in the previous cases, we use suitable bounds on
log(Pi) and for them, we need a few auxiliary statements:

Cℓ <
6
7 |Iℓ| ∀0 ≤ ℓ < w − 1 (2.4)

|Iℓ| >
1
14 |Iℓ−1| ∀0 < ℓ < w (2.5)

For the first statement note that if Cℓ ≥ 6
7 |Iℓ|, we would have |Iℓ+1| = |Oℓ| ≤ 1

3Cℓ

and as by the basic properties of a compactor (Observation 1) Cℓ+1 ≥ 1
3Cℓ, level

ℓ + 1 would be the last level, which contradicts ℓ ≤ w − 2. The second statement
follows from the first one as |Iℓ| ≥ 1

2(|Iℓ−1| − Cℓ−1).
We also need an observation about binary counters – when starting from zero,

after i increments the number of times we flipped a bit from 1 to 0 is at most i.
This is because each such bit has to be first set to 1 and we do one such setting
with each increment.

35

Now let us bound log(Ph):

log(Ph) ≤ log |Ih|
Kh

≤ log 24(k−h) |Ik|
Kh

≤ log |Ik|
Kh

+ 4(k − h)

In the second inequality we used (2.5). For bounding log(Pk) let Kmax
k be the

maximum value of Kk achieved so far:

log(Pk) ≥ log |Ik| − Ck

2Kmax
k

≥ log |Ik|
14Kmax

k

≥ log |Ik|
14Kk log Pk

≥ log |Ik|
14xKh log Pk

≥ log |Ik|
Kh

− log(14x log(Pk))

In the first inequality, we used the observation about binary counters (that an
average number of items participating in a compaction is at most 2K), in the
second we used (2.4), in the third we used the definition of K and in the last
inequality we used the meaning of the variable x. From the two bounds, we
conclude that

log(Ph) ≤ 4(k − h) + log(14x log(Pk)) + log(Pk).

Hence, it suffices to find a value of z0 such that

4(k − h) + log(14yz0 log(Pk)) + log(Pk) ≤ z0 log(Pk),

and we claim that the right choice is z0 = 5(k − h + 4). After substituting for z0
and y = (k − h + 4)J we get

4(k − h) + log(70(k − h + 4)J+1 log(Pk)) + log(Pk) ≤ 5(k − h + 4) log(Pk)

and after rearrangement we obtain

4(k − h)+ log(70)+(J + 1) log(k − h + 4)+ log log(Pk)+ log(Pk) ≤
(4(k − h)+ 7 + (k − h + 13) + 1 + 1) log(Pk),

which is true as log(Pk) ≥ 1 and (J + 1) log(k − h + 4) ≤ (k − h + 13) (as J ≤ 1.4
from definition).

It remains to find a value of z1 such that log Pw−2 ≤ z1 log Pw. As log(Pw) = 1
by definition, we simply need to bound the value log(Pw−2) from above. We have

Pw−2 ≤ 2 |Iw−1|
Kw−2

≤ 2(Cw−1 + 2Cw)
Kw−2

≤ 2(2JCw−2 + 2 · 3JCw−2)
Kw−2

≤ 24Cw−2

Kw−2
≤ 96 log(Pw−2).

The second inequality follows from the fact that w is the highest level with
nonempty input stream, the rest are the basic properties of a compactor (Obser-
vation 1). Hence, we have log(Pw−2) < 10, so it suffices to set z1 = 10 and we
have z = z0z1 = 50(k − h + 4) and x = yz = 50(k − h + 4)J+1 which concludes
the proof.

36

Before we bound the variance of the error, let us define Errh(y) as a sum of
the ±1 errors induced by y-important compactions on level h.

Definition 5 (Errh(y)). For any item y ∈ U and any level 0 ≤ h < H at any
time let

Errh(y) def= R(y, Ih) − 2 R(y, Oh) − R(y, Bh).

This gives us a more suitable definition of Err(y):

Observation 5 (Alternative definition of Err(y)). For any item y ∈ U , we have

Err(y) =
H−1∑︂
h=0

2h Errh(y).

Now we finally state the lemma about the variance of error.

Lemma 5 (Variance of the error). For any item y at any time, Err(y) is a
zero-mean sub-Gaussian random variable and with probability 1 − δ, we have

Var[Err(y)] ≤ 220 R2(y)
KH(y)CH(y)

.

Proof. For the whole proof, let us fix an arbitrary item y and for level h let us
denote the number of y-important compactions by mh.

For the first part of the lemma, note that Errh(y) is a sum of mh independent
random variables each taking on a value −1 or 1 with equal probability. Hence, by
Fact 1, Errh(y) is a zero-mean sub-Gaussian random variable with Var[Errh(y)] =
mh. Thus, Err(y) itself is a weighted sum of independent zero-mean sub-Gaussian
variables and so it is also a zero-mean sub-Gaussian variable.

For bounding the variance of Err(y) we use Corollary 2, which implies that with
probability 1−δ for any h > H(y) we have Errh(y) = 0. Then we use the fact that
Var[Errh(y)] = mh together with Lemma 2 which says that mh ≤ 2 R(y, Ih)/Kh,
then Lemma 3 to get that R(y, Ih) ≤ 2−h+1 R(y), the freshly proven Lemma 4 to
bound KH(y) by 50(H(y) − h + 4)J+1Kh and finally Observation 3 together with
the fact that Ci < 3Ci+1 to bound CH(y) < 24−H(y) R(y).

With probability 1 − δ we have

Var[Err(y)] =
H(y)∑︂
h=0

22h Var[Errh(y)] ≤
H(y)∑︂
h=0

22h 2 R(y, Ih)
Kh

≤
H(y)∑︂
h=0

2h+1 2 R(y)
Kh

≤
H(y)∑︂
h=0

2h+2 R(y)50(H(y) − h + 4)J+1

KH(y)

= 4 · 50 · R(y)
KH(y)

H(y)∑︂
h=0

2h(H(y) − h + 4)J+1

≤ 4 · 50 · R(y)
KH(y)

· 161 · 25 · 2−5 · 2H(y)+1

≤ 220 · R2(y)
KH(y)CH(y)

Note that we used the fact that ∑︁n
i=0 2i(n − i + 4)3 ≤ 161 · 2n+1.

37

2.3.4 The error bound
Now we are ready to bound the error of the sketch. Note that the statement of the
lemma differs from the Theorem 1 by a factor of log− min(1,J)(εN). This difference
is resolved in Section 2.3.5.

Lemma 6. For any y ∈ U at any time, if R(y) = 0 we have Err(y) = 0 and if
R(y) > 0 we have

Err(y) ≤ 215ε R(y) min
r∈R

⎛⎝⃓⃓⃓⃓⃓log R(y)
r

⃓⃓⃓⃓
⃓
J

, log(εN)
⎞⎠
⌜⃓⃓⎷ log N

R(y)

log(εN)

with probability 1 − δ.

Proof. Let us fix any item y. If R(y) = 0 the sketch answers 0 by definition. For
the rest of the proof let us assume R(y) > 0.

Lemma 5 tells us that Err(y) is a zero-mean sub-Gaussian random variable
and it bounds its variance, thus we use the tail bound for sub-Gaussian variables
(Fact 1) with setting a =

√︂
2 ln(2δ−1) Var[Err(y)]:

P [|Err(y)| ≥ a] = P
[︃
|Err(y)| ≥

√︂
2 ln(2δ−1) Var[Err(y)]

]︃
< 2 exp

(︄
−2 ln(2δ−1) Var[Err(y)]

2 Var[Err(y)]

)︄
= 2 exp

(︂
− ln

(︂
2δ−1

)︂)︂
= δ

Now we continue bounding the error, conditioning on the event that |Err(y)| ≤
a. We start by plugging in the estimate on Var[Err(y)] from Lemma 5 and by
unrolling the definition of K, C and H.

|Err(y)| <
√︂

2 ln(2δ−1) Var[Err(y)] ≤

⌜⃓⃓⎷2 ln(2δ−1)220 R2(y)
KH(y)CH(y)

= 210 R(y)

⌜⃓⃓⎷2 ln(2δ−1)
ε2F 2

H(y) log(PH(y))
H ln(δ−1)

≤ 210 R(y)

⌜⃓⃓⎷2(ln(δ−1) + 1)
ε2F 2

H(y) log(PH(y))
(log(εN) + 1) ln(δ−1)

≤ 210ε R(y)FH(y)

⌜⃓⃓⎷2log(PH(y))
log(εN)

Now it suffices to prove that

FH(y) ≤ min
r∈R

⎛⎝(︄⃓⃓⃓⃓⃓2 log R(y)
r

⃓⃓⃓⃓
⃓+ 2

)︄J

, H

⎞⎠ ≤ 24 min
r∈R

⎛⎝⃓⃓⃓⃓⃓log R(y)
r

⃓⃓⃓⃓
⃓
J

, log(εN)
⎞⎠

and that log(PH(y)) ≤ 2 log N
R(y) . The result then follows by a simple substitution.

For both we need Observation 4 which says that

H(y) = max
(︄

log 23 R(y)
CH(y)

, 0
)︄

± 1

38

Let us start by proving that log(PH(y)) ≤ 2 log N
R(y) . We invoke Observation 4

and use the basic properties of a compactor (Observation 1).

log(PH(y)) ≤ log

⃓⃓⃓
IH(y)

⃓⃓⃓
KH(y)

≤ log N

2H(y)KH(y)
≤ log N

22 R(y)
CH(y)

KH(y)
≤ log N log(PH(y))

R(y)

We conclude that log(PH(y)) ≤ 2 log N
R(y) .

Now it only remains to prove that FH(y) ≤ min
(︃(︂⃓⃓⃓

2 log R(y)
r

⃓⃓⃓
+ 2

)︂J
, H

)︃
for

any r ∈ R. If |H(y) − L(r)| ≤ 2, we have FH(y) ≤ 2J ≤
(︂⃓⃓⃓

2 log R(y)
r

⃓⃓⃓
+ 2

)︂J
.

Otherwise, we have FH(y) ≤ |H(y) − L(r)|J and by the definition of L(r) and by
Observation 4 we get

FH(y) ≤
⃓⃓⃓⃓
⃓max

(︄
log ε R(y)FH(y)

22
√

H log δ−1 , 0
)︄

− max
(︄

log εr

22
√

H log δ−1 , 0
)︄

± 2
⃓⃓⃓⃓
⃓
J

≤
(︄⃓⃓⃓⃓
⃓log ε R(y)FH(y)

22
√

H log δ−1 − log εr

22
√

H log δ−1

⃓⃓⃓⃓
⃓+ 2

)︄J

=
(︄⃓⃓⃓⃓
⃓log R(y)FH(y)

r

⃓⃓⃓⃓
⃓+ 2

)︄J

.

Again we have FH(y) ≤
(︂⃓⃓⃓

2 log R(y)
r

⃓⃓⃓
+ 2

)︂J
. From the definition of F , we have

FH(y) ≤ H, which concludes the proof.

2.3.5 The space bound
Asymptotic space estimate

Let us first calculate the amount of space the sketch occupies. First let us note that
there are only constantly many of important ranks, so the space is asymptotically
bounded by the size of the sketch with just one important rank and let C be the
capacity of the compactor on its only important level. By the definition of F , the
size of the sketch can be bounded by

SPACE ≤ Θ(1)
H∑︂

h=1

C

min(hJ , H)
∈ O

(︄
C

H∑︂
h=1

min(hJ , H)−1
)︄

.

The behaviour of the sum depends on the value of J . For J = 1, this is harmonic
series and we have

SPACE ∈ O (C log H) = O (C log log(εN))

= O
(︃

ε−1
√︂

log(εN) log δ−1 log log(εN)
)︃
,

for J > 1 the sum equals a constant and we have

SPACE ∈ O(C) = O(ε−1
√︂

log(εN) log δ−1)

and for 0 ≤ J < 1 the sum is Θ(H1−J) which gives us

SPACE ∈ O(C log1−J(εN)) = O(ε−1
√︂

log(εN) log δ−1 log1−J(εN)).

39

Elimination of the assumption on ε

Now we exploit the fact that both space and error depend on ε to get rid of
Assumption 1 and at the same time obtain a version of Jagged Sketch that is
better compared to ReqSketch and where also the space does not depend on J
(except for J = 1).

We eliminate the assumption that ε ≤ log− min(1,J)(εN). The user gives us
ε ≤ 1 and we simply set

ε′ = ε

215 logmin(1,J)(εN)
and build the sketch with parameter ε′. From the space estimates above and
Lemma 6 we obtain Theorem 1 by a simple substitution:

Theorem 1 (The main theorem). Given any N ∈ N, set R s.t. |R| ∈ O(1) and
R ⊂ {1, . . . , N}, and real parameters 0 < δ ≤ 0.5, 0 < ε ≤ 1 and 0 ≤ J ≤ 1.4,
there is a comparison-based randomized algorithm that processes an input stream
of length at most N and at any time answers any rank query y with probability
1 − δ with error

Err(y) ≤ ε R(y) ·

⌜⃓⃓⎷ log N
R(y)

log(εN) ·
minr∈R

(︃⃓⃓⃓
log R(y)

r

⃓⃓⃓J
, log(εN)

)︃
logmin(1,J)(εN)

in space

SPACE ∈ OJ

⎛⎝ε−1 · log1.5(εN) ·
√︄

log 1
δ

⎞⎠
in case of J ̸= 1 and in space

SPACE ∈ OJ

⎛⎝ε−1 · log1.5(εN) ·
√︄

log 1
δ

· log log(εN)
⎞⎠

in case of J = 1.

2.3.6 The time complexity
Amortized time of update

First, let us estimate the time spent on level 0 after processing a stream of length
N . If we represent the compactor by an appropriate data structure, let us say a
balanced binary search tree, removing or adding an item to the compactor both
cost time O(log C0). Hence, the time spent on level 0 is O(N log C0), as each item
is once added and once removed.

Now observe that time spent on level ℓ is at most 1
2ℓ O(N log(C0ℓ

J)), as
|Iℓ| ≤ |I0| /2ℓ and Cℓ ≤ C0ℓ

J . We conclude that the overall time of processing
stream of length N is

H−1∑︂
h=0

1
2ℓ

O(N log(C0ℓ
J)) ∈ O(N log C0).

Hence the amortized time of the update operation is

O(log C0) = O
(︂
log(ε−1) + log log(εN) + log log(δ−1)

)︂
.

40

The rank query

If the compactors are represented by binary search trees (as we assumed above),
the rank query can be performed by a single query for each of the search trees.
Hence, the time complexity of a rank query is

H−1∑︂
h=0

log(Ch) ∈ O
(︂
log(εN)

(︂
log(ε−1) + log log(εN) + log log(δ−1)

)︂)︂
.

However, if we plan to perform more rank queries, we can sort all the items saved
in the sketch together with their weights and calculate prefix sums of the weights.
This precalculation costs us O (SPACE · log(SPACE)) and then we can answer a
single rank query by a simple binary search over the items in time O (log(SPACE))
where SPACE is the space bound for the whole sketch from Theorem 1.

The quantile query

For the quantile query, we can use the same auxiliary prefix sums as for the rank
query. With these, we can answer any quantile query in time O(log(SPACE)) by
binary search over the prefix sums of the weights.

2.4 Extension to the dynamic setting
In this section, we explain how to make the sketch dynamic and we describe
the changes to be made in the analysis to support the dynamic case. We invite
the reader to open this section side by side with Sections 2.2 and 2.3 as we only
highlight the differences. This section contains only an informal description without
the proper quantification of constants and with some simplifying assumptions,
however, we try to cover all important changes, thus the proper proofs could be
derived from our explanation if necessary. We consider this section to be only
provisional as we later plan to make the sketch mergeable, which solves also the
dynamic case (as insertion can be interpreted as a merge with a sketch of size
one).

For better understanding, we also recommend reading the code of the simple
version of our proof-of-concept implementation jaggedSketchSimple.py3, which
mostly follows the theoretical description in the dynamic setting and is intended
as a substitute to pseudocode.

2.4.1 Changes to the sketch
Description of the changes

The differences from the static version are following: The number N is initially 0
and is incremented with each update of the sketch. The number of compactors
H is initially 1. The important ranks must be given in the form of input for the
quantile function: |Q| ∈ O(1), Q ⊂ [0, 1]. The ranks R can be any time computed
from the current value of N as R =

{︂
⌈Nq⌉ | q ∈ Q

}︂
. For simplicity, we write L(q)

instead of L(⌈Nq⌉).
3https://github.com/domestomas/JaggedSketch/blob/main/jaggedSketchSimple.py

41

https://github.com/domestomas/JaggedSketch/blob/main/jaggedSketchSimple.py

Any time the last compactor performs a compaction, a new compactor must
be created on the top of the sketch to receive its output. Let us call this situation
a recalculation. During recalculation, we first go through the levels bottom-up and
for each level, we perform a full compaction – we compact the whole right part of
the buffer which triggers a schedule reset. Then the height H of the sketch and
the important ranks R are updated and for all the compactors, the scaling factor
F , section size K, and capacity C are recalculated based on H and R. Between
the recalculations, the sketch behaves as the static version.

Initial observations and notation

First let us assume that between two subsequent recalculations a and b, N changed
only by a constant factor.

Conditioning on the assumption, we see from the definition of L that during
the recalculation b, for each q ∈ Q the important level L(q) changed only by a
constant (also note that Lt(q) is a non-decreasing function of time). This implies
that for each compactor its scaling factor F changed only by a constant factor
during b, thus C also changed only by a constant factor.

Moreover, we can realize that before a recalculation, all the compactors are at
least half-full. This means that after the recalculation b, all the compactors are at
least constant a fraction full.

This altogether implies that between b and the next recalculation c, N changes
only by a constant factor, as N equals the weighted sum of the elements of the
sketch and the weighted sum changed only by a constant fraction. Thus, all these
properties are always true which can be formally proven by induction.

On a particular level h, let us denote Kmin,t
h = mins≤t Ks

h the minimum
achieved value of Kh up to time t and analogously Cmin,t

h = mins≤t Cs
h. Note

that it is no longer true that Kmin,t
h = Kt

h. It also does not generally hold that
Ph ≤ 2 |Oh| /Kh, but we have Ph ≤ 2 |Oh| /Kmin

h . Let us summarize this all to a
separate observation:

Observation 6. On any level h at any time t we have

P ≤ 2 |O|
Kmin

Lt−1(q) ≤ Lt(q) ≤ Lt+1(q) + O(1) ∀q ∈ Q

F t ∈ Θ(F t+1)
Ct ∈ Θ(Ct+1)

|B| ∈ Ω(C) If |Oh| > 0

2.4.2 Changes in the analysis
Let us now go through the whole analysis and highlight the differences.

Analysis of a single compactor

We weaken the statement of Lemma 2 – we claim that at any time u the number
of important compactions with respect to y on level h is O(R(y, Iu

h)/Kmin
h). Thus

42

we need to assign to each y-important compaction some Kmin y-important items
such that each item is assigned at most a constant number of times.

As each recalculation triggers a schedule reset for all the compactors, the
analysis of the non-special compactions remains valid. Hence, we just need to
resolve the special compactions (note that the original analysis does not work as it
is no longer true that all the items in the left half at time u must be y-important
and moreover, we also increased the number of schedule resets).

Let us denote the number of sections in one half of the buffer by S
def= C/(2K).

We have S ∈ Θ(log P). The original number of schedule resets was at most
2 log log P and we added at most H − h new resets which is Θ(log P). Thus at
any time, the number of sections of the left half of the buffer is up to constant
factor the number of already performed special compactions. Thus during any
special compaction, we can find some Kmin items in the left half of the buffer
which were assigned at most constantly many times and directly assign them to
the special compaction.

The critical level

We need to modify the definition of the critical level (Definition 3) – we replace
Ch by Cmin

h in the definition. Thus we define H(y) as the smallest h such as
2 R(y)/2h ≤ Cmin

h /2. The reason for this change is that important items can get
to level H(y) at some time when the capacity is Cmin.

The adjusted versions of Observations 3 and 4 are naturally obtained just by
substituting Ci by Cmin

i .
Lemma 3 stays the same, however, we use Lemma 2 in the proof which now

holds for a different constant and with Kmin. The different constants force us
to change the constants in the definition of K and C. Using Kmin instead of K
changes nothing in the proof.

Corollary 2 stays the same, but only because we changed the definition of
H(y).

Bounding the variance

Instead of Lemma 4 we newly bound Kmin
k ≤ c(k − h + b)1+JKmin

h for some
constants b and c. The exchange of Ki for Kmin

i is due to the upper bound on
log P (see Observation 6) and due to the fact that we need this version anyway.

The constants are different because in (2.4) and (2.5) we implicitly assumed
that at least half of the buffer is always full. Now this is true at the time of a
recalculation, otherwise, we only know that a constant fraction of the buffer is full.
In this setting, we get worse constants in (2.4) and (2.5) and thus in the whole
lemma. A second change in constants is during the setting of value for z1. There
is again the same issue and in addition, we use the fact that in the last two levels,
the values of Kmin and K are asymptotically the same.

As an analogy to Lemma 5 we have that Var[Err(y)] ≤ c R2(y)/(Kmin
H(y)C

min
H(y))

again for some constant c. The proof is completely analogous.

43

The error bound

By the same argument as in the proof of Lemma 6 we successfully prove that with
probability 1 − δ at any time t we have

|Err(y)| ≤ Θ(1) · ε R(y) max
u≤t,v≤t

⌜⃓⃓⎷F u
H(y)t√
Hu

·
F v

H(y)t log(P v
H(y)t)√

Hv

We postpone bounding the expression under the square root to Section 2.4.3.

The space bound

The space bound naturally does not change. We stress we can perform the ε
substitution even though we do not know the value of N in advance. We just
multiply the definitions of C and K by the expression Hmin(1,J). This brings
nothing new as they already depended on H. Also note that by the same trick,
we can move the Θ(1) constant from the error estimate to the space bound, as we
did in the static version.

2.4.3 Bounding Cmin and Kmin

It remains to bound the value of the expression

max
u≤t,v≤t

F u
H(y)t√
Hu

·
F v

H(y)t log(P v
H(y)t)√

Hv
.

Let us for simplicity denote H(y)t by h. We have

max
u≤t,v≤t

F u
h√
Hu

· F v
h log(P v

h)√
Hv

≤ max
x≤t

(F x
h)2 · max

y≤t

log(P y
h)√

Hy

Bounding F

Let us first bound the value of F x
h for any x ≤ t. We have

F x
h = min

(︂
H, |L(q)x − h|J

)︂
≤ |L(q)x − h|J

for some q ∈ Q. The key observation is that we have

F x
h ≤ max

(︂
F t

h, hJ
)︂

.

This is trivially true if |L(q)x − h| ≤ h. In the other case, we have L(q)x > 2h
and L(q)x is by definition the closest important level at time x. Hence there are
no important levels smaller than L(q)x at time x and as important levels move
only up, we conclude that the closest important level at time t ≥ x can not be
closer to h than |L(q)x − h|.

We have already proven in the proof of Lemma 6 that F t
h ≤ minr∈R

⃓⃓⃓
log R(y)

r

⃓⃓⃓J
and by Observation 4 we have h ≤ log R(y). Thus we have

max
x≤t

(F x
h) ≤ max

⎛⎝min
q∈Q

⃓⃓⃓⃓
⃓log Rt(y)

⌈qN t⌉

⃓⃓⃓⃓
⃓
J

, logJ Rt(y)
⎞⎠ . (2.6)

44

Bounding Kmin

Now we bound the expression log(P w
h)√

Hw for any time w ≤ t. We first bound log P

the same way as in Lemma 6. Let z ≤ w be such a time that Kmin,w
h = Kz

h. We
have (up to constant factors)

log P w
h ≤ log |Iw

h |
Kmin,w

h

≤ log Nw

2hKmin,w
h

≤ log NwCmin,t
h

Rt(y)Kmin,w
h

≤ log NwCz
h

Rt(y)Kz
h

≤ log Nw log P z
h

Rt(y)
≤ log Nw log P w

h

Rt(y)
.

Thus we conclude that log P w
h ≤ Θ(1) · log Nw

Rt(y) . Now we just need to bound the
expression

log Nw

Rt(y)√︂
log(εNw)

.

This is non-decreasing as a function of N as long as 2 log(εN) ≥ log(N/ Rt(y)).
This is true if we assume ε ≥ N−1/2 which is a very weak assumption as it is
almost always true in practice. Thus we conclude (conditioning on the assumption
on ε) that

max
w≤t

log(P w
h)√

Hw
≤ Θ(1) ·

log Nt

Rt(y)√︂
log(εN t)

. (2.7)

The error

Putting together (2.6) and (2.7), we can finish the proof of the lemma to get

|Err(y)| ≤ Θ(1) · ε R(y) max
⎛⎝min

q∈Q

⃓⃓⃓⃓
⃓log R(y)

⌈qN⌉

⃓⃓⃓⃓
⃓
J

, logJ R(y)
⎞⎠
⌜⃓⃓⃓
⎷ log N

R(y)√︂
log(εN)

.

Hence, after the substitution for ε′ = Θ(1)ε · log− min(1,J)(N) and conditioning on
ε ≥ N−1/2, the final error is

|Err(y)| ≤ ε R(y)

√︂
log N

R(y)

log0.25+min(1,J)(εN)
max

⎛⎝min
q∈Q

⃓⃓⃓⃓
⃓log R(y)

⌈qN⌉

⃓⃓⃓⃓
⃓
J

, logJ R(y)
⎞⎠ .

Special cases

We can get better error bounds for some special cases.
First, observe that if the closest important level to level h at time t is level 0,

then for all times s ≤ t the closest important level to level h was the level 0. The
same holds for important level H − 1: if at time t the closest important level to h
is H t − 1 then for all times s ≤ t the closest important level to level h was the
level Hs − 1. This is true because the function Ls(q) is non-decreasing in s, thus
important levels can move only up.

This observation implies that if the closest important level at time t is 0 or
H t − 1, we have

max
s≤t

F s = F t.

45

This particularly means that if Q ⊆ {0, 1} and Q ̸= ∅ (which is a natural setting),
we have

|Err(y)| ≤ ε R(y)

√︂
log N

R(y)

log0.25+min(1,J)(εN)
min
q∈Q

⃓⃓⃓⃓
⃓log R(y)

⌈qN⌉

⃓⃓⃓⃓
⃓
J

,

which differs from the static version only by a factor of log0.25(εN).
Moreover, note that if the closest important level at time t is H t − 1 and at

the same time J ≥ 0.5, we have

Cmin,t = Ct.

This means that if Q = {1} and J ≥ 0.5, we have the same error bound as in the
static case.

46

3 Experiments
In this chapter, we present our proof-of-concept implementation of Jagged Sketch.
The implementation serves two purposes. First, it complements the formal
description of the algorithm from Section 2.2. We intentionally chose Python as a
readable programming language, we included lots of comments inside the code,
and we provide a simple version jaggedSketchSimple.py which mostly follows
the theoretical description. We recommend reading the code as a good check of
understanding the algorithm fully.

The main purpose of the implementation is to show that the error/space
tradeoff of the sketch is reasonable in practice (as the constants in the proofs are
unrealistically large). We measure the space in the number of contained items,
which is accurate enough, as apart from them we store only a few variables for
each compactor and for the whole sketch. We intentionally ignored the matter of
time efficiency, as it is highly dependent on the used programming language and
optimizations that are not the focus of this work. The purpose of the tests is not
to be exhaustive (they are quite far from that), but only to show that the sketch
can be useful in practice.

We start in Section 3.1 by explaining our testing framework in detail, in
Section 3.2 we introduce the implementation, and in Section 3.3 we discuss the
results of the experiments and compare them to ReqSketch and KLL.

3.1 Experimental setup
In this section, we explain how the experiments were performed and how do we
visualise and compare the results.

Conditions

All the tests are performed in the dynamic setting – the algorithm does not know
the stream length in advance. The reason for this decision is that we expect this to
be often the case in practice and also because we wanted to do a fair comparison
with ReqSketch which has this property. On the other hand, we do not test the
mergeability at all, as we have no theoretical analysis and it is not obvious how
exactly the merge algorithm from ReqSketch should be used on Jagged Sketch.

As our algorithm is comparison-based, its output does not depend on the
actual sizes of items, only on their permutation. Therefore, we used a permutation
on integers {1, . . . , N} as the input stream. This simplifies the testing phase, as
the rank of an item equals its value. The construction of adversarial streams is
a nontrivial problem, thus we decided to simply test the sketches on a random
permutation, which we expect to resemble real-world data accurately enough for
our purposes.

The tests

For fixed parameters ε, J , Q and δ of the sketch and stream length N , for each
item y in the input stream our objective is to determine an error bound b(y) such
that |Err(y)| ≤ b(y) with probability 1 − δ. Thus, we ran the sketch m times

47

on the same input stream (for a sufficiently large m), measure |Err(y)| for each
instance, and take the 1 − δ quantile of the m measurements. Note that all the m
sketches have exactly the same size as the size is independent of the random bits
used in the algorithm. We set N = 109, m = 103 and δ = 0.01 for all the tests.

It would be really impractical to do all of this for all items of the input stream.
First, most of the answers would be the same (as the sketch can produce only
SPACE different values) and second we would need to store a large amount of
data. Hence, we choose a sufficient set of sample points, for which we determine
the error bound. It is tempting to simply choose the items present in the sketch
as the sample points. However, the sample points must be the same for all the
m measurements and the items present in the m sketches are different (as they
depend on the random bits of the algorithm). Hence, we sort all the items from all
the sketches and take every m-th of them as a sample point. By this, we ensure
that the number of sample points equals the number of items in the sketch (which
is the number of possible different answers the sketch can give) and moreover,
the distribution of the sample points is similar to the distribution of the possible
answers of the sketch.

Thus, with given ε, J , Q, N = 109, δ = 0.01 and m = 103 we fix a random
permutation on {1, . . . , N} as an input stream, run the sketch m times on the
input stream with parameters J , Q and δ, determine the SPACE sample points
and for each sample point s we get the bound b(s) as the 99-th percentile of the
m values of |Err(s)|.

Visualisation

For visual comparison, we plot the results of the experiments. We are mostly
interested in the relative error, thus for each sample point s we put s = R(s) on
the x-axis and b(s)/s on the y-axis. For additive error (which we use only for
comparison to KLL) we simply put b(x)/N on the y-axis.

If we plot the data as they are, the graphs are quite unreadable as there are
too many data points. We solve this problem by taking the maximum of each 50
consecutive points and plotting only these maxima.

All the graphs we present are logarithmic in the x-axis. This is because the
motivation for using relative error is an interest in small ranks, which would not
be visible on a linear scale.

Comparison of distinct tests

The asymptotic size of the sketch depends on ε, δ and N . However, the size
in practice also depends on the other parameters and the performance of the
sketch naturally depends on the size. Hence, to compare two different sketches,
we need them to be of the same size. Thus, we choose one fixed value V for all
the experiments, and before each experiment we binary search for an epsilon such
that the sum of capacities of all the compactors is approximately V . Note that
we cannot require the sum of capacities to be exactly V , as not all values of the
sum are possible.

We must note here that we used a different random stream for each of the
tests. To make sure this does not affect the results, we tried the same experiment

48

repeatedly with different random streams and we verified that the results are
similar enough.

ReqSketch and KLL

For comparison with ReqSketch, we used the original proof-of-concept implemen-
tation1 by Cormode et al. [Cor+23]. The implementation has an even integer
parameter k instead of ε, hence the ability to set a particular size of the sketch is
even more restricted than for Jagged Sketch. Hence, we run ReqSketch with the
parameter k = 50 set as recommended by the authors, and then we set the value
V as the sum of the capacities of all the compactors. Thus, we have V = 15180
for all the experiments.

We also did a small change in the implementation. The authors made the
implementation lazy (we explain the laziness in Section 3.2), but they later
restricted the laziness to decrease update time [Cor+21]. As we did not care about
the time at all, we restored the full laziness in ReqSketch to make the comparison
more fair.

For comparison with KLL, we used the original proof-of-concept implementa-
tion2 by Karnin et al. [KLL16]. We stress that the comparison is only illustrative
as the authors explicitly state they implemented just the most simple version with
no optimizations.

3.2 Implementation
In the file jaggedSketchSimple.py3 we attach a straightforward implementation
of the dynamic version of Jagged Sketch, which is very close to the description
in Sections 2.2 and 2.4.1 and is most suitable for reading. However, for the
experiments, we used an improved version jaggedSketchImproved.py4. In this
section, we discuss its differences from the original description in Sections 2.2
and 2.4.1. We tested all the improvements first by adding them to the simple
implementation separately and checking the change of the error. The Figure 3.1
shows the difference between our two implementations for Q = {0} and J = 0.5
(this is the setting we suggest as a default for practice).

Important levels

The important level L(r) is intentionally defined such that if R(y) = r, we have
H(y) = L(r) ± 1, and the critical level H(y) is in turn defined such that it is the
first level h where R(y, Oh) = 0 with high probability. In the dynamic case, this
holds only with some unknown additive constant. Thus, instead of relying on the
asymptotics, with each recalculation we can set the important levels explicitly by
their meaning as follows:

For each important rank r ∈ R we simply ask the sketch for an item y of rank
approximately r and then we binary search for the highest level ℓ such that the

1https://github.com/edoliberty/streaming-quantiles/blob/master/relativeErrorSketch.py 7d4e6ea
2https://github.com/edoliberty/streaming-quantiles/blob/master/kll.py 73f927e
3https://github.com/domestomas/JaggedSketch/blob/main/jaggedSketchSimple.py
4https://github.com/domestomas/JaggedSketch/blob/main/jaggedSketchImproved.py

49

https://github.com/edoliberty/streaming-quantiles/blob/master/relativeErrorSketch.py
https://github.com/edoliberty/streaming-quantiles/blob/master/kll.py
https://github.com/domestomas/JaggedSketch/blob/main/jaggedSketchSimple.py
https://github.com/domestomas/JaggedSketch/blob/main/jaggedSketchImproved.py

100 101 102 103 104 105 106 107 108 109

Rank0.0
00

0.0
02

0.0
04

0.0
06

0.0
08

0.0
10

0.0
12

Re
la

tiv
e

Er
ro

r

Q: {0.0}
J: 0.5
capacity: 15182
variant: jaggedSketchSimple.py
Q: {0.0}
J: 0.5
capacity: 15183
variant: jaggedSketchImproved.py

Figure 3.1 Comparison of jaggedSketchSimple.py and jaggedSketchImproved.py
for Q = {0} and J = 0.5

minimal item present in the level is smaller than y. We have R(y, Oℓ) = 0 as no
item from Oℓ can be smaller than the minimum item from compactor ℓ + 1.

Note that we cannot do this in the static version, as we need to set the
important levels before reading the stream.

The power of P

The parameters C and K are originally defined such that immediately after a
schedule reset we have K = C/(4 log P). This is important, as the number of
sections of the right half of the buffer is S = C/(2K) = 2 log P . The number of
compactions to the next reset is then 2S−1 = 22 log P −1 = P 2/2. We determined by
trial and error on the simple implementation that Jagged Sketch performs better
if we have P 1.5 instead of P 2. Thus, we set K = C/(3 log P). The analysis from
Chapter 2 stays valid as long as the power is larger than 1.

The laziness

Ivkin et al. [Ivk+22] proposed several improvements to the KLL sketch that are
applicable also to ReqSketch and Jagged Sketch. Cormode et al. [Cor+23] used
some of them in their implementation and we follow their example. For a detailed
explanation of the improvements, see [Ivk+22].

The first of the applied improvements is laziness. In the lazy version of the
sketch, we let the compactors to be overfilled as long as the size of the whole
sketch does not exceed the sum of the capacities of all the compactors. This

50

means that the compaction is not triggered by the first compactor being overfilled
but by the whole sketch being overfilled.

We can distinguish partial and full laziness. With full laziness, we stop
performing the compactions as soon as the whole sketch is not overfilled, meaning
that more compactors can stay overfilled over time. With partial laziness, if we
compact the first compactor, we perform all other compactions as in the original
version of the algorithm, thus only the first compactor can stay overfilled over
time.

We mentioned above that the authors of ReqSketch switched full laziness for
partial laziness to improve amortized update time. We used full laziness for both
ReqSketch and Jagged Sketch as we do not care about time complexity for now.
We verified that the simple implementation performs better with full laziness.

The randomness reduction

Another improvement by Ivkin et al. [Ivk+22], also used in the implementation
of ReqSketch, is reducing randomness via anticorrelation. For each compactor, we
remember the random bit used for choosing odd/even indexed items in the last
compaction. If the number of compactions P on the given compactor is odd, we
generate a new random bit and use it. If P is even, we just use the negation of the
bit we used the last time. This strategy yields a decrease of the error by a constant
factor in the analysis (and it is also intuitively a good idea). Again we verified its
practical utility by adding this modification to the simple implementation.

The random shift

A similar improvement, again by Ivkin et al. [Ivk+22] consists of shifting the
compacted part of the buffer to the left by 1 item independently with probability 1

2
during each compaction. If this shift happens, the largest item stays in the buffer
(and the number of compacted items stays the same). Before this improvement, for
an item y which is smaller than the maximum and larger than the minimum of the
compacted items, the compaction could be always important (if we are unlucky).
Now, the compaction is important with probability 1

2 as the shift changes the
parity of the rank of y among the compacted items.

We note that we can use anticorrelation also for this improvement – in odd
compactions we set the new random bit for the parity of the deleted items and
in even compactions we set the new random bit for the random shift, thus the
bits are still independent as one of them is always chosen at random. By our
measurements, the utility of this improvement is very small, but we added it
nonetheless as it requires only a small change.

Removing the improvement for high ranks

We explained in Section 1.3 that our error improvement for high ranks is based on
the fact that compared to the implementation of ReqSketch we increase the size of
the high compactors which does not change the asymptotic size of the sketch but
it decreases asymptotically the error for high ranks. However, the improvement
definitely increases the size of the sketch somehow. Hence, for a fixed size of the
sketch, the error improvement for high ranks costs us an increase of the error for

51

lower ranks, which can be undesired. Thus, we added the possibility to switch the
improvement off. In this case, C becomes

√︂
δ−1 log(P)Hmin(1,J)/(εF) instead of√

δ−1HHmin(1,J)/(εF) and the number of sections stays the same (thus K equals
C/(3 log P) in both cases).

Our experiments suggest that removing the improvement decreases the error
for lower ranks only by a small amount and thus we do not recommend this feature
for real-world applications (see Section 3.3.3).

The fixed-space version

The last improvement that we considered is the fixed-space version of the sketch.
We came up with the idea ourselves, but we do not expect it to be novel. The
main point of the modification is setting a space bound instead of ε. Any time we
add a new compactor or increase a capacity of existing one, the ε is increased in
such a way that the sum of capacities of all the compactors does not exceed the
space bound. This can be more practical for the users of the algorithm if they
have a memory limit to fit in (e.q. the memory of their machine) and it can also
increase the performance of the sketch as we are using the whole space from the
beginning.

This modification introduces two problems. The first problem is that the
capacity of all the compactors can change whenever the capacity of any compactor
increases. However, we can observe that in this situation all the capacities decrease.
If we only scale the parameters C and K by the new ε and do not take into
account the changes in P (so that the number of sections does not change), it is
not hard to show that the analysis of the compaction schedule stays valid.

The second problem is that for large enough N we can get ε larger than 1.
This can be elegantly solved by setting both space bound and ε0. While ε is
smaller than ε0, the sketch fills the given space and when we would violate the
bound given by ε0, we fix ε = ε0 and the sketch starts growing beyond the space
bound.

We tested this improvement with the simple version and it yields better
error. However, if we applied it together with the other changes explained above,
the change was no longer significant. Hence, we decided not to use it in our
implementation, as it makes the code more complicated and it does not give
us smaller error. We would definitely recommend using this modification for
real-world applications of the sketch.

3.3 The results
Finally, let us present the results of the experiments. First, we show the different
settings of parameters Q and J , then we compare Jagged Sketch to ReqSketch
and KLL, and finally, we show the effect of removing the improvement for high
ranks.

3.3.1 Versatility
The advantage of Jagged Sketch is that it enables the users to express their
priorities by the setting of parameters Q and J . Let us recall that Q says which

52

ranks are important and J gives their importance relative to other ranks – the
larger J the more important the ranks given by Q.

Different settings of J for Q = {0}

We expect the most common setting of Q to be Q = {0} in practice, thus we first
fix Q = {0} and test the behaviour of Jagged Sketch for different settings of J .
In Figures 3.2 to 3.4 we show the error for J ∈ [0, 0.5], J ∈ [0.5, 1] and J ≥ 1
respectively.

We can see in Figure 3.2 that the sketch works as expected. For items of a
small rank, there is zero error, as they fit to the first compactor. With J = 0 the
(relative) error is worst at the beginning and gets better for higher ranks, which is
the result of the improvement for high ranks (we discuss turning the improvement
off in Section 3.3.3). With larger J the error gets better for low ranks and worse
for high ranks.

100 101 102 103 104 105 106 107 108 109

Rank0.0
00

0.0
02

0.0
04

0.0
06

0.0
08

0.0
10

Re
la

tiv
e

Er
ro

r

Q: {0.0}
J: 0.0
capacity: 15183
improvement: YES
Q: {0.0}
J: 0.1
capacity: 15184
improvement: YES
Q: {0.0}
J: 0.2
capacity: 15171
improvement: YES
Q: {0.0}
J: 0.3
capacity: 15170
improvement: YES
Q: {0.0}
J: 0.4
capacity: 15178
improvement: YES
Q: {0.0}
J: 0.5
capacity: 15183
improvement: YES

Figure 3.2 Jagged Sketch with Q = {0} and J ∈ [0, 0.5]

In Figure 3.3 we can see the same effect, but in this range of J the improvement
for small ranks gets less significant and the worsening for high ranks is bigger.
From this, we conclude that the most universal setting of J is around J ∈ [0.3, 0.5],
although the optimal setting of course always depends on our priorities.

In Figure 3.4 the situation is less clear. It is still true that with growing J we
get better error for small ranks. For a bit larger ranks the error gets worse with
larger J . However, for even larger ranks, the error gets worse for J up to 1.4 and
for larger J it gets better again. To explain this phenomenon, let us recall that
F = min(H, dJ). The larger J , the sooner we reach the situation where H < dJ

as we go up the levels. From this point upwards the sketch behaves similarly as

53

100 101 102 103 104 105 106 107 108 109

Rank0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

Re
la

tiv
e

Er
ro

r

Q: {0.0}
J: 0.5
capacity: 15183
improvement: YES
Q: {0.0}
J: 0.6
capacity: 15179
improvement: YES
Q: {0.0}
J: 0.7
capacity: 15175
improvement: YES
Q: {0.0}
J: 0.8
capacity: 15191
improvement: YES
Q: {0.0}
J: 0.9
capacity: 15858
improvement: YES
Q: {0.0}
J: 1.0
capacity: 14743
improvement: YES

Figure 3.3 Jagged Sketch with Q = {0} and J ∈ [0.5, 1]

with J = 0. Recall that this was exactly the intuition behind the definition, as we
explained in Section 1.4. This can be clearly seen in the graph, as with increasing
J the boundary between the ”jagged” and ”unjagged” behaviour moves to the
left. With large enough J , the sketch looks like with J = 0 with the exception of
level 0 which is H times larger. This corresponds to the fact that there is only
a small difference between J = 5 and J = 20 in the graph and we observed no
changes for J > 20.

Different settings of Q for J = 0.5

Let us now fix J = 0.5 (as it seems to be a reasonable choice from the data shown
above). The different settings of parameter Q are shown in Figure 3.5. We can see
that the sketch works in principle as expected, but the points with the smallest
error are shifted a bit to the right (see the arrows). We are not sure about the
reason5 for this phenomenon, but we expect this could be compensated by adding
appropriate additive constant to the definition of important level.

3.3.2 Comparison to other sketches
With Q = {0}, we can beat ReqSketch for all the ranks for multiple different
values of J , as shown in Figure 3.6. This corresponds to the fact that for 0 < J < 1
and Q = {0} Jagged Sketch has asymptotically the same error for the ranks in the
middle and better error both for the low and high ranks. One would expect some

5The reason is not the alternative way of determination of important levels from Section 3.2.
With the original algorithm, this effect is the same or stronger.

54

100 101 102 103 104 105 106 107 108 109

Rank0.0
00

0.0
05

0.0
10

0.0
15

0.0
20

0.0
25

Re
la

tiv
e

Er
ro

r

Q: {0.0}
J: 1.0
capacity: 14743
improvement: YES
Q: {0.0}
J: 1.2
capacity: 15187
improvement: YES
Q: {0.0}
J: 1.4
capacity: 15190
improvement: YES
Q: {0.0}
J: 1.8
capacity: 15186
improvement: YES
Q: {0.0}
J: 2.8
capacity: 15177
improvement: YES
Q: {0.0}
J: 5.0
capacity: 15179
improvement: YES
Q: {0.0}
J: 20.0
capacity: 15181
improvement: YES

Figure 3.4 Jagged Sketch with Q = {0} and J ≥ 1

100 101 102 103 104 105 106 107 108 109

Rank

0.
00

00
0.

00
25

0.
00

50
0.

00
75

0.
01

00
0.

01
25

0.
01

50
0.

01
75

R
e
la

ti
v
e
 E

rr
o
r

Q: {0.0}
J: 0.5
capacity: 15183
improvement: YES

Q: {0.00001}
J: 0.5
capacity: 14511
improvement: YES

Q: {0.0001}
J: 0.5
capacity: 14850
improvement: YES

Q: {0.001}
J: 0.5
capacity: 15260
improvement: YES

Q: {0.01}
J: 0.5
capacity: 16761
improvement: YES

Q: {1.0}
J: 0.5
capacity: 15188
improvement: YES

Figure 3.5 Jagged Sketch with Q = {q} for q ∈ {0, 0.00001, 0.0001, 0.001, 0.01, 1} and
J = 0.5

55

worsening constant factor for the ranks in the middle, however, it is apparently
less significant than the effect of changing the power of P from 2 to 1.5 explained
in Section 3.2, which is the only important implementation improvement not
present in the ReqSketch implementation.

100 101 102 103 104 105 106 107 108 109

Rank0.0
00

0.0
02

0.0
04

0.0
06

0.0
08

0.0
10

Re
la

tiv
e

Er
ro

r

ReqSketch
capacity: 15180
Q: {0.0}
J: 0.2
capacity: 15171
improvement: YES
Q: {0.0}
J: 0.4
capacity: 15178
improvement: YES
Q: {0.0}
J: 0.5
capacity: 15183
improvement: YES

Figure 3.6 Jagged Sketch with Q = {0} compared to ReqSketch

To compare Jagged Sketch with KLL, we plot the additive error (for sample
point s we have b(s)/N instead of b(s)/s on the y axis). The result is shown in
Figure 3.7. We have chosen Q = {1} and J = 20 for Jagged Sketch, as the relative
error of KLL is naturally best for the highest ranks.6

As we explained above, this comparison is only illustrative as there exist better
versions of KLL with smaller error. For this simple KLL implementation, the
additive error of Jagged Sketch is about four times larger for most ranks (note
that the x-axis is logarithmic), but for the low ranks the error is naturally much
smaller. This corresponds to the fact that in this setting we have asymptotically
the same error for large ranks and a much smaller error for low ranks compared
to KLL.

6Note that the curve for KLL looks a bit weird as our method of choosing sample points is
not suitable for KLL – the low-ranked items are often not present in the KLL sketch and so
there are no sample points in the left part of the logarithmic graph. We add some ad hoc sample
points which is the reason for the strange shape of the curve. We did not try to invent any
better method to get a nicer curve as the specific value of the error of KLL is of no importance
to us.

56

100 101 102 103 104 105 106 107 108 109

Rank0.0
00

0
0.0

00
2

0.0
00

4
0.0

00
6

0.0
00

8
0.0

01
0

0.0
01

2

Ad
di

tiv
e

Er
ro

r

KLL
capacity: 15178
Q: {1.0}
J: 20.0
capacity: 15186
improvement: YES

Figure 3.7 Jagged Sketch with Q = {1} and J = 20 compared to KLL

100 101 102 103 104 105 106 107 108 109

Rank0.0
00

0.0
02

0.0
04

0.0
06

0.0
08

0.0
10

0.0
12

0.0
14

Re
la

tiv
e

Er
ro

r

Q: {0.0}
J: 0.5
capacity: 15183
improvement: YES
Q: {0.0}
J: 0.5
capacity: 15200
improvement: NO

Figure 3.8 Comparison of Jagged Sketch with and without the improvement for high
ranks; Q = {0} and J = 0.5

57

3.3.3 Removing the improvement for high ranks
Finally, let us discuss removing the improvement for high ranks. Our motivation
for the removal was getting better error for lower ranks. However, Figure 3.8
(with Q = {0} and J = 0.5) shows that the difference in the error for low ranks is
negligible compared to the difference for high ranks (again note that the x-axis is
logarithmic so the difference is even larger than it looks like on the first sight).
This is good news – it means that the improvement for high ranks works fine.

A skeptic could object that the improvement for high ranks can be in practice
simulated by adding 1 to Q. In Figure 3.9 we can see that it is not the case –
Jagged Sketch with Q = {0} and the improvement (at least for J = 0.5) yields
better error than Jagged Sketch with Q = {0, 1} and without the improvement.

100 101 102 103 104 105 106 107 108 109

Rank0.0
00

0.0
02

0.0
04

0.0
06

0.0
08

0.0
10

0.0
12

Re
la

tiv
e

Er
ro

r

Q: {0.0}
J: 0.5
capacity: 15183
improvement: YES
Q: {0.0, 1.0}
J: 0.5
capacity: 15163
improvement: NO

Figure 3.9 Comparison of Jagged Sketch with the improvement and Q = {0} and
Jagged Sketch without the improvement and Q = {0, 1}; J = 0.5 in both cases

Removing the improvement could be useful with setting J = 0 if we need to
minimize the maximum relative error over all ranks (which is the standard relative
error guarantee). However, it turns out it suffices to use the normal version of
Jagged Sketch with J = 0.4 – see Figure 3.10. Hence we conclude that the ability
to turn off the improvement is not necessary.

58

100 101 102 103 104 105 106 107 108 109

Rank0.0
00

0.0
02

0.0
04

0.0
06

0.0
08

0.0
10

Re
la

tiv
e

Er
ro

r

ReqSketch
capacity: 15180
Q: {0.0}
J: 0.4
capacity: 15178
improvement: YES
Q: {0.0}
J: 0.0
capacity: 15159
improvement: NO

Figure 3.10 Comparison of ReqSketch and Jagged Sketch with and without the
improvement for J = 0

59

Conclusion
We have developed an improved version of the ReqSketch algorithm which is more
versatile and yields a better error both in theory and in practice. Unlike the
original ReqSketch, our algorithm assumes the foreknowledge of N and is not
mergeable.

Further research
The main unresolved task is naturally making Jagged Sketch fully mergeable,
which would also remove the assumption of the foreknowledge of N . The original
proof of mergeability of ReqSketch is already very complicated and it would
become even more so with the added modifications. We came up with a new
version of the compaction operation which we hope would simplify the analysis
and we plan to use it to make Jagged Sketch fully mergeable.

Another possible direction of research is adding other enhancements developed
for KLL, most importantly the ability to handle weighted input stream by Ivkin
et al. [Ivk+22] and interpolation techniques by Schiefer et al. [Sch+23].

There is also still the
√

log N gap between ReqSketch and the lower bound
on relative error by Cormode et al. [Cor+23]. However, the lower bound holds
even for offline non-comparison-based algorithms, thus it is easily possible that
the lower bound is not tight for streaming comparison-based algorithms and
ReqSketch already achieves optimal space for relative error.

Finally, if there is a gap between optimal comparison-based and non-comparison-
based sketches for relative error, it would be interesting to develop a non-
comparison-based version of Jagged Sketch, possibly by using some of the tech-
niques from q-digest [Shr+04], from the relative error version of q-digest by
Cormode et al. [Cor+06] or from the new paper by Gupta et al. [GSW24]
(preprint).

60

List of Notation
Notation Meaning

item arbitrary item u from a fixed universe U with a total order
input stream S a sequence of items from a fixed universe U with a total order

N the length of the input stream; N = |S|
R(y, s) the rank of item y in a sequence s

R(y) the rank of item y in the input stream, equivalent to R(y, S)
R̂(y) the estimate on R(y) returned by the sketch on rank query y

Err(y) the error of the rank query y; Err(y) =
⃓⃓⃓
R(y) − R̂(y)

⃓⃓⃓
log(x) the binary logarithm of x; log2(x)
ln(x) the natural logarithm of x; loge(x)

x max(x, 1)
log(x) max(log x, 1)

dynamic version the version of Jagged Sketch without the foreknowledge of
the stream length N

static version the version of Jagged Sketch with the foreknowledge of the
stream length N

time t state of the sketch after performing t update operations
X t the state of any variable X at time t; for example N t = t

R
the set of important ranks given by users; we have |R| ∈ O(1)
and R ⊂ {1, . . . , N}

Q
the set of important ranks given by users for the dynamic
version, at any time t we have Rt = {⌈N tq⌉ | q ∈ Q}

δ the probability of exceeding the error bound

ε
the parameter that controls the size and accuracy of the
sketch

jaggedness J
the parameter J ≥ 0 expresses the priority of important
ranks in R relative to other ranks; J = 0 means all ranks
have the same priority (rendering R irrelevant)

H the height of the sketch; the number of compactors

level the index of a given compactor in the sketch; the first com-
pactor is at level 0

L(r) important level for given important rank r ∈ R

H(y) critical level; the first level h such that R(y) ≤ 2h−2Ch

SPACE the space occupied by the whole sketch

61

Notation Meaning

protected items the items that stay in the buffer and do not partici-
pate in the compaction

y-important item item i is important w.r.t. item y if R(i) ≤ R(y)

y-important compaction compaction is important w.r.t. item y if the rank of
y among the compacted items is odd

mℓ
the number of important compactions on level ℓ with
respect to some item y

special compaction a compaction that happens immediately before the
schedule reset

recalculations
a situation in the dynamic version of Jagged Sketch
when the sketch grows and all the parameters are
recalculated

full compaction
a compaction in the dynamic version of Jagged
Sketch used before recalculation; the whole right
half of the buffer is compacted

Ch the capacity of the compactor at level h

Ih the input stream of the compactor at level h

Oh the output stream of the compactor at level h

Bh the buffer of the compactor at level h

Fh
scaling factor of the compactor at level h, depending
on the closest important level

Ph
the number of compactions already performed on
the compactor at level h

Lh the compaction schedule of the compactor on level h

Sh
the number of sections of the right part of the buffer
of the compactor on level h

62

Bibliography
[GSW24] Gupta, Meghal; Singhal, Mihir; Wu, Hongxun. Optimal quantile

estimation: beyond the comparison model (preprint). 2024. Available
from arXiv: 2404.03847.

[Cor+23] Cormode, Graham; Karnin, Zohar; Liberty, Edo; Thaler, Justin;
Veselý, Pavel. Relative Error Streaming Quantiles. Journal of the
ACM. 2023. Available from arXiv: 2004.01668.

[Sch+23] Schiefer, Nicholas; Chen, Justin Y.; Indyk, Piotr; Narayanan,
Shyam; Silwal, Sandeep; Wagner, Tal. Learned Interpolation for
Better Streaming Quantile Approximation with Worst-Case Guarantees.
SIAM Conference on Applied and Computational Discrete Algorithms
(ACDA23). 2023. Available from arXiv: 2304.07652.

[Ivk+22] Ivkin, Nikita; Liberty, Edo; Lang, Kevin; Karnin, Zohar; Bra-
verman, Vladimir. Streaming Quantiles Algorithms with Small Space
and Update Time. Sensors. 2022. Available from arXiv: 1907.00236.

[Cor+21] Cormode, Graham; Mishra, Abhinav; Ross, Joseph; Veselý, Pavel.
Theory meets Practice at the Median: a worst case comparison of relative
error quantile algorithms. KDD ’21: Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining. 2021.
Available from arXiv: 2102.09299.

[Dun21] Dunning, Ted. The t-digest: Efficient estimates of distributions. Soft-
ware Impacts. 2021. Available from doi: 10.1016/j.simpa.2020.
100049.

[CV20] Cormode, Graham; Veselý, Pavel. Tight Lower Bound for Com-
parison-Based Quantile Summaries. Proceedings of the 39th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Sys-
tems. 2020. Available from arXiv: 1905.03838.

[KLL16] Karnin, Zohar; Lang, Kevin; Liberty, Edo. Optimal quantile approx-
imation in streams. 2016 IEEE 57th annual symposium on foundations
of computer science (FOCS). 2016. Available from arXiv: 1603.05346.

[Rig15] Rigollet, Philippe. High dimensional statistics: Lecture notes. 2015.
Available also from: https://ocw.mit.edu/courses/18-s997-high-
dimensional-statistics-spring-2015/pages/lecture-notes/.

[ZW07] Zhang, Qi; Wang, Wei. An efficient algorithm for approximate biased
quantile computation in data streams. Proceedings of the Sixteenth
ACM Conference on Information and Knowledge Management. 2007.
Available from doi: 10.1145/1321440.1321601.

[Cor+06] Cormode, Graham; Korn, Flip; Muthukrishnan, S.; Srivastava,
Divesh. Space- and time-efficient deterministic algorithms for biased
quantiles over data streams. Proceedings of the Twenty-Fifth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems. 2006. Available from doi: 10.1145/1142351.1142389.

63

https://arxiv.org/abs/2404.03847
https://arxiv.org/abs/2004.01668
https://arxiv.org/abs/2304.07652
https://arxiv.org/abs/1907.00236
https://arxiv.org/abs/2102.09299
https://doi.org/10.1016/j.simpa.2020.100049
https://doi.org/10.1016/j.simpa.2020.100049
https://arxiv.org/abs/1905.03838
https://arxiv.org/abs/1603.05346
https://ocw.mit.edu/courses/18-s997-high-dimensional-statistics-spring-2015/pages/lecture-notes/
https://ocw.mit.edu/courses/18-s997-high-dimensional-statistics-spring-2015/pages/lecture-notes/
https://doi.org/10.1145/1321440.1321601
https://doi.org/10.1145/1142351.1142389

[Shr+04] Shrivastava, Nisheeth; Buragohain, Chiranjeeb; Agrawal, Di-
vyakant; Suri, Subhash. Medians and beyond: new aggregation tech-
niques for sensor networks. Proceedings of the 2nd International Con-
ference on Embedded Networked Sensor Systems. 2004. Available from
doi: 10.1145/1031495.1031524.

[GK01] Greenwald, Michael; Khanna, Sanjeev. Space-efficient online com-
putation of quantile summaries. SIGMOD Rec. 2001. Available from
doi: 10.1145/376284.375670.

[MRL99] Manku, Gurmeet Singh; Rajagopalan, Sridhar; Lindsay, Bruce G.
Random sampling techniques for space efficient online computation of
order statistics of large datasets. SIGMOD Rec. 1999. Available from
doi: 10.1145/304181.304204.

[Vit85] Vitter, Jeffrey S. Random sampling with a reservoir. ACM Trans.
Math. Softw. 1985. Available from doi: 10.1145/3147.3165.

64

https://doi.org/10.1145/1031495.1031524
https://doi.org/10.1145/376284.375670
https://doi.org/10.1145/304181.304204
https://doi.org/10.1145/3147.3165

	Introduction
	Problem definition
	Notation
	Prior work
	Our contribution
	Structure of the thesis

	Context and Intuition
	KLL
	ReqSketch
	Error improvement for high ranks
	Jaggedness
	Weighted jaggedness
	The whole Jagged Sketch

	Analysis
	Our main result
	Description of the sketch
	Analysis in the static setting
	Analysis of a single Compactor
	The critical level
	Bounding the variance
	The error bound
	The space bound
	The time complexity

	Extension to the dynamic setting
	Changes to the sketch
	Changes in the analysis
	Bounding Cmin and Kmin

	Experiments
	Experimental setup
	Implementation
	The results
	Versatility
	Comparison to other sketches
	Removing the improvement for high ranks

	Conclusion
	Further research

	List of Notation
	Bibliography

