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Abstract

Epilepsy is a serious chronic neurological disorder affecting 0,5 - 1 % of the population in

developed countries. The defining feature of epilepsy are epileptic seizures. In human

patients, the behavioral manifestations of seizures can be extremely diverse. The milder ones

include staring, confusion, or speech difficulties. The more serious manifestations include

clonic or tonic convulsions of limbs or the whole body and loss of consciousness. In clinical

practice, the seizure manifestations have high diagnostic value since they can be informative

of the extent of the brain areas affected by the seizure. Therefore, they are also studied in

rodent models of epilepsy. The content of this bachelor thesis is a literature review on the

behavioral manifestations of epileptic seizures in rodents and their link to the other modalities

used for studying the seizures, such as electrophysiology. Also, similarities between rodent

and human seizure manifestations are discussed.
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Abstrakt

Epilepsie je vážné chronické neurologické onemocnění postihující 0,5 - 1% populace ve

vyspělých zemích. Charakteristickým znakem epilepsie jsou epileptické záchvaty. U lidských

pacientů mohou být behaviorální projevy záchvatů velmi různorodé. K těm mírnějším patří

zahledění, zmatenost nebo potíže s řečí. Závažnější projevy zahrnují klonické a tonické křeče

končetin či celého těla a ztrátu vědomí. V klinické praxi mají projevy záchvatů vysokou

diagnostickou hodnotu, neboť mohou poskytnout informaci o rozsahu mozkových oblastí

postižených záchvatem. Z tohoto důvodu jsou také studovány na hlodavčích modelech

epilepsie. Obsahem této práce je literární rešerše o behaviorálních projevech epileptických

záchvatů u hlodavců a jejich propojení s ostatními modalitami používanými pro studium

záchvatů, jako například elektrofyziologie. Dále jsou diskutovány i podobnosti mezi projevy

záchvatů u hlodavců a u lidí.

Klíčová slova: epilepsie, hlodavčí model, behaviorální projev, záchvat, Racinova stupnice
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1. Introduction
Epilepsy is a brain disorder identifiable by a tendency to generate epileptic seizures.

These are defined as unpredictable interruptions in the normal functioning of the brain in which

excessive and synchronized neural activity occurs. Epileptic disorder also means that the patient

is more likely to have a recurrence of another seizure during life. In addition, epilepsy is

associated with the presence of neurobiological, cognitive and psychological comorbidities,

which can lead to social exclusion (Fisher et al. 2005).

The official classification of seizure types in epilepsy is provided by the ILAE

(International League Against Epilepsy) (Fisher et al. 2017). The ILAE (International League

Against Epilepsy) was founded in 1909, published the first classification in 1960, and since then,

the organization has made a few upgrades in the terminology and classification of epilepsies and

seizures. The most recent one has been dated to 2017. This classification is being used to

evaluate whether a person suffering from seizures has epilepsy or whether the seizures are of a

different kind. In a more concrete way, the classification helps determine what type of epileptic

seizures the individual has, and from that, other more specific information can be obtained (such

as triggers for seizures and the likely course of the condition for the patient) (Scheffer et al.

2017).

Based on anatomy, there are three types of seizure onset. Focal onset, generalized onset,

and unknown onset (Fisher et al. 2017). Focal seizures originate only in one hemisphere of the

brain, as opposed to generalized seizures, which affect both hemispheres at the same time (Berg

et al. 2010). In generalized seizures, awareness is usually impaired. One of the reasons why there

can be an unknown onset is that it is recommended to have at least 80% certainty of knowing the

correct type of onset, which is not always the case. Nevertheless, the correct type of seizure

onset can be classified later on, when there is more information available (Fisher et al. 2017).

Among other diagnostic tools, knowing the semiology (behavioral manifestations during

seizures) can be very helpful for the classification of seizure types and choosing further

approaches to cure this condition either by proper medication or surgical procedures.

Animal models, particularly rodents, play a crucial role in epilepsy research by providing

a controlled environment to study the mechanisms underlying seizure activity and the effects of

potential treatments. The semiology of seizures in animal models mirrors the diverse seizure

types observed in human patients of epilepsy. They serve as tools for understanding the

complexity of this disorder. Therefore, these models bring value for the development and testing

of new therapeutic strategies before they are applied in clinical settings.
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In comparison with animals, human behavioral manifestations during seizures are

essential for the identification of the concrete regions of the brain involved in seizure activity.

Learning this information is crucial for creating plans for treatment, such as choosing the correct

medication or surgical procedures.

By presenting the manifestations observed in rodent models and human patients, this

thesis aims to highlight the similarities and differences between them, providing insights that

improve the development of effective treatments for epilepsy. This information is key to

translating animal research into successful clinical applications for humans suffering with

epilepsy.

2. Animal models
Both in vivo and in vitro animal models are significantly valuable in comprehending the

mechanisms underlying epilepsy (Stables et al. 2003). Therefore, animal models are crucial for

the development of antiseizure drugs (ASDs) (Smith, Wilcox, and White 2007). ASDs are in

many articles also referred to as antiepileptic drugs, but the term antiseizure medication/drug is

the most fitting due to the fact that it is treating the symptoms of epilepsy, which are seizures

(French and Perucca 2020). The aim of using ASDs is for the patient to experience inhibition, or

ideally, the elimination of seizure occurrence (Stables et al. 2003). Around 20-30% of humans

suffering from epilepsy are pharmacoresistant and therefore not seizure free (Picot et al. 2008).

Testing ASDs on animal models serves to prevent potential harm to humans and maximize the

effectiveness of these drugs (Klitgaard et al. 1998), (Krall et al. 1978). In order to identify a

novel therapy effective for human patients with refractory epilepsy, it is necessary to select an

animal model that exhibits similar traits (Stables et al. 2003). With that being said, it is important

to introduce a few of the most important animal models, which are useful in the discovery and

study of ASDs (Grabenstatter and Dudek 2019). The kindling, pilocarpine, and kainic acid are

well-characterized models. They mimic the pathophysiological processes seen in human

epilepsy, particularly temporal lobe epilepsy (Kulikov et al. 2021), (Mello et al. 1993), (Duveau

et al. 2016). Other models which provide different insights into epilepsy will also be mentioned

in this chapter.

Furthermore, models offer the opportunity to evaluate not only the symptomatic ASDs,

but also to facilitate the testing of novel drugs aimed at altering the progression of epilepsy itself.

This represents a much needed shift in approach (Bertoglio et al. 2017).
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2.1 The kindling animal model

The kindling effect is when repeated stimulation is applied to a certain brain region,

which causes a gradual increase in susceptibility to seizures until eventually bilateral clonic

motor seizure is induced by each stimulation (Goddard, McIntyre, and Leech 1969), (Girgis

1981).

One of the most commonly used methods of stimulation is electric impulses. The

electrical kindling can be induced by implanting stimulation electrodes in parts of the brain such

as the amygdala, hippocampus, or piriform cortex (McIntyre, Kelly, and Armstrong 1993),

(Pinel, Mucha, and Phillips 1975). The stimulation frequency is the determining factor for the

seizure threshold of the animals. Another crucial factor in the electric kindling process is the

interval between stimulation trials (Goddard, McIntyre, and Leech 1969).

Chemical kindling involves the repeated administration of substances that trigger

seizures. That can be achieved by injecting, for example, pentylenetetrazole (PTZ)

intraperitoneally until the animal starts showing clonic seizures (Babaie et al. 2017).

Other methods of kindling, such as audiogenic and optical kindling, also exist, although

they are not as frequent. Audiogenic kindling consists of the animal undergoing sound

stimulation, whereas the optical one involves the repetitive use of light pulses to stimulate a

specific brain region, such as the hippocampus (Vinogradova, Vinogradov, and Kuznetsova

2006), (Tescarollo et al. 2023).

Electrical kindling targets specific brain regions, which makes it a reliable model.

However it can lead to undesirable tissue damage (Morales et al. 2014). Chemical kindling is

less invasive, since it does not involve the implantation of electrodes. But it can be challenging

to achieve the correct dosage (Ngoupaye et al. 2022). Animals subjected to audiogenic kindling

exhibit higher seizure susceptibility due to the use of genetically predisposed rat strains (Vergnes

et al. 1987). Optogenetic kindling targets defined populations of neurons with a lower likelihood

of causing tissue damage compared to traditional electrical stimulation techniques (Shimoda et

al. 2022).

People with focal epilepsy most frequently suffer from temporal lobe epilepsy (TLE),

where a large portion of them are also drug resistant (Panina et al. 2023). Animal models of

kindling play a crucial role in understanding the pathophysiological mechanisms of TLE,

facilitating the discovery of new therapeutic strategies, which can also be helpful in regards to

refractory TLE (Huang et al. 2018), (He et al. 2021). One such mechanism is the similarity

between animal models of kindling and human TLE in the synaptic reorganization of the mossy
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fiber axons in the dentate gyrus (Cavazos, Golarai, and Sutula 1991), (Sutula et al. 1989),

(Kulikov et al. 2021).

2.2 The pilocarpine animal model
Pilocarpine is a cholinergic agonist that is used to induce status epilepticus (SE), after

which chronic spontaneous recurrent seizures (SRS) eventually start to occur (Turski et al.

1984), (Mello et al. 1993). The most recent classification of SE by ILAE specifies it as a seizure

lasting minimally 5 minutes or as more seizures in a row without the person returning to a

normal state between them (Trinka et al. 2015). In animal models, the SE can persist for more

than 30 minutes and can be stopped or decreased in severity using a drug, such as diazepam

(Figure 1) (El‐Hassar et al. 2007), (Inostroza et al. 2012).

Figure 1. Intraperitoneal injection of pilocarpine in adult rat results in SE, which is then

stopped by applying diazepam (which decreases the chance of the rat dying). A latent period of

no abnormal behavior follows. The first spontaneous seizure marks the chronic stage, where SRS

occur. Adopted from Ferhat 2012.

The SRS start to appear after a latent (seizure-free) period (Modebadze et al. 2016). This

chemoconvulsant can be administered systemically (for example, intraperitoneally) or locally-

intracerebrally (for example, intrahippocampal injections) (Mello et al. 1993),

(De A. Furtado et al. 2002).

The pilocarpine model shows similarities to human TLE, such as cell loss in the dentate

gyrus and in CA1 and CA3 areas of the hippocampus and synaptic alterations called mossy fiber

sprouting, being the main cause of SRS. The sprouting appears in supragranular and
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intragranular layers of the dentate gyrus. These similarities are making it a suitable model for the

study of TLE in humans (Mello et al. 1993). One of the more recent adaptations of this model

includes the Reduced Intensity Status Epilepticus (RISE) model of temporal lobe. Very positive

attributes of this model are a significant decrease in mortality to 1% and reduced levels of

neuronal damage in the hippocampus (Modebadze et al. 2016).

2.3 The kainic acid animal model
Kainic acid (KA) is structurally related to glutamate and therefore has an excitatory

effect on neurons (Shinozaki and Konishi 1970). In this animal model, SE, which precedes the

appearance of SRS, is also being brought on by this chemoconvulsant (Bertoglio et al. 2017).

The common target of injection of KA is usually intracerebral, such as the amygdala or

hippocampus (Ben-Ari, Tremblay, and Ottersen 1980), (Raedt et al. 2009). But it can also be

applied intraperitoneally or intranasally (Hellier and Dudek 2005), (Zhang et al. 2008). The

chosen type of administration brings different advantages and disadvantages (Figure 2).

Figure 2. The benefits and limitations of each type of administration of KA. The intracerebral

route is quite invasive but provides reliable and precise outcomes. The intraperitoneal route is

less difficult to perform but the results may be more inconsistent. The intranasal route has low

mortality but is not focally precise. Adopted from Rusina, Bernard, and Williamson 2021.

KA also has different effects (mortality, sensitivity to KA,...) depending on the animal's

age, gender, and other aspects (Mikati et al. 2003), (Zhang et al. 2008). This animal model also
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serves as a model of TLE, because it replicates the behavioral aspects in humans and the

neurodegeneration in the hippocampus (Berger et al. 1990). Moreover, the KA model of TLE (in

many cases, Mesial temporal lobe epilepsy=MTLE) is relevant for evaluating therapeutic

interventions in epilepsy thanks to the study of its pathophysiology (Duveau et al. 2016). This

model can be useful for examining how different treatments might influence the mechanisms of

the development of this disease. By examining the different stages of epileptogenesis (SE, the

acute phase immediately following SE, the latent phase, which is then followed by chronic

epilepsy), researchers can observe how interventions affect the progression of the disease and

potentially prevent its onset (Bertoglio et al. 2017).

2.4 Other animal models
As opposed to the pilocarpine and KA models, the tetanus toxin model exhibits an

absence of SE (Ferecskó et al. 2015). As it was already mentioned, pilocarpine and KA can be

administered systemically, but tetanus toxin requires a precise intracerebral injection, which

might not always be as practical (Mello et al. 1993), (Hellier and Dudek 2005), (Ferecskó et al.

2015), (Nilsen, Walker, and Cock 2005). Even though the primary site of onset is focal (toxin is

injected, for example, in the hippocampus), secondary generalization can occur (Ferecskó et al.

2015). The tetanus toxin model is useful for examining the mechanisms of seizures as well as

new treatment strategies (Nilsen, Walker, and Cock 2005).

Another model worth mentioning is the Genetic Absence Epilepsy Rats from Strasbourg

(GAERS). As the name already indicates, GAERS is a model of absence epilepsy (Islam and

Abdullah 2014). Absence seizures are a type of generalized seizures, mostly affecting children

(Scheffer et al. 2017), (Wirrell et al. 1997). They are characterized by episodes of impaired

consciousness (Fisher et al. 2017). The electroencephalogram (EEG) of GAERS displays spike

and wave discharges (SWDs) (Figure 3), (Islam and Abdullah 2014).

Figure 3. ,,Spontaneous cortical spike-and-wave discharge recorded in a GAERS. Calibration 1

s, 400 µV''. Adopted from Marescaux, Vergnes, and Depaulis 1992.
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This makes it a relevant model for investigating the mechanisms underlying absence

seizures (Pinault, Vergnes, and Marescaux 2001). GAERS is a good subject for research on

comorbidities related to absence epilepsy (Roebuck et al. 2020).

In utero electroporation (IUE) is a technique used to manipulate gene expression in the

developing brain. It involves the delivery of plasmids into the embryo's ventricles via

microcapillary pipettes, followed by the application of electrical pulses (Figure 4) (Ribierre et al.

2018), (Meyer-Dilhet and Courchet 2020). The plasmids encode fluorescent proteins that are

introduced into the neural progenitor cells, which allows for the visualization of the morphology

and migration of those cells (Hand and Polleux 2011). Depending on the positioning of the

electrical field during electroporation, targeted transfer is enabled as the negatively charged

DNA moves towards the positive electrode (Dal Maschio et al. 2012).

Figure 4. The procedure: 1) Embryos are carefully taken out of the abdominal cavity. 2) DNA

plasmid is being injected into the lateral ventricle of the embryo, which is then electroporated (it

is important that the anode is placed on the injected side). 3) The embryos are placed back into

the abdomen, which is subsequently sewn together. The outcome: Electroporated mice are born.

The migration of neurons with axonal and synaptic development can be then studied in brain

slices. Adopted from Meyer-Dilhet and Courchet 2020.
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During electroporation, the hippocampus or cortex are often the targeted regions (Pacary

et al. 2012). Targeting the cortical region and electroporating genes that interfere with the

mechanistic target of rapamycin (mTOR) pathway results in a malformation that mimics the

pathology of FCDII (Ribierre et al. 2018). Focal cortical dysplasia type II (FCDII) is a lesion

where dyslamination of the cortex appears and neurons take on a dysmorphic character, which

mostly results in epilepsy (Blümcke et al. 2011). IUE based models are helpful for studying the

neuropathological characteristics associated with this disorder (Ribierre et al. 2018).

Animal models of traumatic brain injury (TBI) are used to study post-traumatic epilepsy

because they mimic the mechanisms of epilepsy development in humans after TBI. Despite the

high mortality, they are quite important because epilepsy is likely to occur after some brain

damage and injury (Kharatishvili et al. 2006).

2.5 In vitro models
In vitro models can be used for the research of epilepsy mechanisms and for studying the

effects of ASDs. For example, rodent hippocampal slices can be used to test the efficacy of some

ASDs. In a specific study, seizure-like events (SLEs) were triggered either by lowering the

magnesium level in the liquid in which the slices were submerged or by blocking potassium

channels in neurons (Albus, Wahab, and Heinemann 2008).

In another study, the entorhinal cortex slices of kainate-treated rats showed varying

sensitivities to different ASDs. The ASD that has proved to be the most effective, was

Ezogabine, which targets the potassium channels of neurons (West et al. 2018).

These techniques are useful for the study of mechanisms of the efficacy of ASDs, but

they are limited to a small area of the tissue or even one synapse. In contrast, in vivo, the neurons

are connected on a larger scale and can therefore respond differently. However, the effects of

ASDs in vivo cannot necessarily be determined from their activity in in vitro systems (Hovinga

2002).

3. Behavioral manifestations of seizures in rodent models of epilepsy
Through observing and analyzing the behavioral responses of rodents during seizures,

researchers can gain insights into the relationship between neural activity and behavior in the

context of epilepsy (Powell et al. 2003). The way seizures manifest in animals in laboratory

research often mirrors the diverse seizure types seen in humans, with behavioral expressions in
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rodents sharing numerous similarities with human clinical seizure manifestations. Different

seizure types in rodents exhibit distinct behavioral patterns, and assessing these manifestations

allows for characterizing and differentiating between seizure types (Velíšková and Velíšek 2017).

By using a scoring system, the severity of seizures can be determined, aiding in

understanding the progression and network involvement during seizures. Monitoring behavioral

manifestations helps evaluate the efficacy of treatments in controlling or reducing seizure

activity (Velíšková and Velíšek 2017).

3.1 Methods used to assess data
Data on the behavior of rodents during seizures can be acquired in various ways. One of

those involves a person observing the animal within a strict time window and writing the

behavior down on a scoring table. This table contains predetermined behavior that is expected to

be observed (such as rearing or jaw tremor), as well as blank spaces for any unexpected behavior

that may occur. Subsequently, the collected data from the scoring tables is then further evaluated

(Kelley 1998).

Another way of obtaining data about the behavior is by simultaneously using the EEG

activity and video recordings of the rodent during seizures. This helps assess the correlation

between behavior and brain activity (Van Erum, Van Dam, and De Deyn 2019). Therefore, the

significance of EEG cannot be omitted.

Certain behavioral manifestations may not necessarily indicate epileptic seizures. For

instance, while injections of KA serve as a tool for animal models of epilepsy, they are also

utilized in animal models of dystonia. Dystonia presents with abnormal postures and twisting

motions that lack synchronicity. EEG is helpful for distinguishing dystonia from epileptic

seizures, as it does not show any epileptiform activity during dystonic episodes (Pizoli et al.

2002).

Relying solely on the behavioral aspect of seizures without EEG recordings might result

in misinterpretation of the epileptic condition and not identifying the onset of seizures correctly

as well as the spread of seizure activity in the brain. Correlating EEG patterns with observable

behaviors likely reflects the underlying pathophysiology and can provide valuable insights into

seizure mechanisms (Phelan et al. 2015).
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3.2 Behavioral manifestations of seizures in the kindling model
Thanks to the data obtained from the electrical kindling of the amygdala, a scale was

created by Ronald J. Racine. This scale is divided into five categories based on the severity of

the semiology. These are the following stages introduced by Racine (1972): ,,(1) Mouth and

facial movements. (2) Head nodding. (3) Forelimb clonus. (4) Rearing. (5) Rearing and falling.”

This scale is still in use with numerous alterations in various studies, as certain seizure behaviors

may differ from the original descriptions or may not be observed at all (Van Erum, Van Dam,

and De Deyn 2019). For example, in a study where rapid kindling, utilizing only a subthreshold

stimulation intensity of 50 Hz, was applied, the Racine scale was updated. In this study, the scale

was expanded by adding R0, representing a stage where there is no disruption of usual behavior.

Additionally, the forelimb clonus was further divided into phases R3, representing the unilateral

clonus of the limbs, and R4, representing the bilateral clonus with rearing. In R5, it was also

specified that tonic-clonic movements of all limbs occur (Morales et al. 2014). The tonic part is

usually considered to be the most severe part. It is characterized by flexing and extending the

limbs (Van Erum, Van Dam, and De Deyn 2019), (Sabnis et al. 2024).

In chemically (specifically PTZ) induced kindling in mice, a revised scale of behavior

and EEG correlation was created (Figure 5).
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Figure 5. On this scale, scores 0-2 signify focal seizures, while stages 3-6 signify generalized

seizures. The highest phase, 7, can be fatal for the animal. Adopted from Van Erum, Van Dam,

and De Deyn 2019.

Wild running can also be observed in rats that have been kindled by audio stimulation.

This time, the running phase is one of the early manifestations, which can then progress into a

clonic phase, which consists of the same features that were established by Racine. The

audiogenic kindling process involves a combination of focal and generalized seizure

characteristics in rats. The focal aspect is characterized by the direction of running, which

corresponds to the unilateral neuronal depolarization cascade in the cortex (Vinogradova,

Vinogradov, and Kuznetsova 2006).

Kindling can also be used to create a model for neocortical epilepsy through

optogenetics. The rodents in this model exhibit similar semiology to the previously mentioned
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ones. The most severe score, labeled as number 6, includes wild running and vocal sounds (Cela

et al. 2019).

3.3 Behavioral manifestations of seizures in the pilocarpine model
The pilocarpine animal model is distinguished by inducing SE, during which behavioral

arrest, facial automatisms, and head bobbing occur (Phelan et al. 2015). When it comes to a site

of administration, when animals are injected locally, their seizures can get generalized less often,

as they are more localized for example in the hippocampus and other limbic areas, (Clifford et

al. 1987). The Racine scale (which can be modified) is often used to score the behavioral

manifestations of the pilocarpine model. A score of 3, bilateral forelimb clonus, can be used as a

threshold to indicate that an animal is experiencing SRS (Modebadze et al. 2016). The scale can

also be enriched with grooming, scratching, and wet dog shakes for score 1 and trembling for

score 2 (Meurs et al. 2006). The tonic phase of the seizure is often connected to the death of the

animal (Phelan et al. 2015).

3.4 Behavioral manifestations in the kainic acid model

As it was already mentioned, animals injected with KA initially experience SE, during

which they exhibit behavioral arrest and clonic seizures (Raedt et al. 2009), (Bertoglio et al.

2017). However, the behavioral aspects of SE can become severe, including behaviors like wild

running and jumping, and SE must be stopped by ASDs (which should prevent the rodent from

dying) (Raedt et al. 2009).

The semiology of spontaneous seizures after the latent period can be assessed using a

modified version of the Racine scale (Raedt et al. 2009). Once again, the seizures are categorized

into groups based on their severity. Severity stages 1 and 2 contain immobility, automatisms

(such as chewing), head nodding, or facial clonus. Stage 3 involves the unilateral clonus of a

forelimb; stage 4 involves a clonus that occurs symmetrically on both of the forelimbs and

rearing; and stage 5 involves tonic-clonic seizures and falling. The numbers of the stages can

slightly differ, depending on a concrete study (Raedt et al. 2009), (Mouri et al. 2008). Rats

injected locally with KA can also experience barrel rolling (the body twists around its length,

where the back turns toward the side of the injection = ipsilaterally) (Vécsei and Flint Beal

1991). Straub tail (erect tail) can also occur during seizures (Mouri et al. 2008).
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Gender and age differences can be observed, with older female mice experiencing a more

severe course of seizures, characterized by severe clonic seizures and an increased frequency of

rearing and falling (Zhang et al. 2008).

3.5 Behavioral manifestations in other animal models

In the tetanus toxin animal model, seizures typically begin to manifest after a latent

period of approximately one to two weeks. The behavioral characteristics of the seizures include

staring and automatic mouth or sniffing movements. These seizures develop into unilateral or

bilateral forepaw clonus, rearing, falling, and tonic-clonic episodes. Eventually, the rodents can

often finish by having wet dog shakes (Jiruska et al. 2013).

In rodent models exhibiting absence epilepsy, seizures are characterized by behavioral

arrest, which consists of a sudden stop of activity and a reduction in consciousness (Taylor et al.

2019). Stargazer mutant mice resemble absence epilepsy with additional dyskinetic motor

characteristics. These characteristics include circling to the sides, hyperactivity, and head

swinging horizontally and vertically (Khan et al. 2004).

In animal models of cortical malformations, for example, the telencephalic internal

structural heterotopia mutant (tish) rat, the behavior during seizures was described as twitching

of the face and limbs and one-sided turning of the rat's body, with occasional cases of falling

followed by convulsions (Chen et al. 2000).

One study demonstrated that in rodents with FCD II pathology, the focal origin of

seizures is the electroporated cortical region, but they manifest contralaterally as tonic limb

contractions.(Ribierre et al. 2018). Other semiology can also be behavioral arrest, tonus of the

body, and contralateral clonus, but the manifestations can be quite variable (Hu et al. 2018). The

spontaneous tonic-clonic seizures of these rodents can lead to sudden unexpected death in

epilepsy (SUDEP). Research on SUDEP highlights the importance of uncovering the

physiological pathways behind this condition, which may later help to develop preventive

strategies for human patients (Ribierre et al. 2018).

The animal models of TBI can have a very similar semiology of spontaneous seizures to

the one described in the Racine scale (Kharatishvili et al. 2006). But that is not always the case.

The behavioral manifestations of seizures can also begin with jumping, followed by clonic and

tonic clonus, and in some cases, running; whisker and tail spasms can also be present

(Komoltsev et al. 2020).
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4. Behavioral manifestations of seizures in human epilepsy
Evaluating the behavioral manifestations during seizures in epilepsy patients helps

classifying them into seizure types (focal, generalized and unknown onset). The observed seizure

semiology combined with possible additional neurological medical disorders, EEG,

neuroimaging, and other diagnostic tests can help achieve a more accurate classification

(Boßelmann 2021). This helps direct the choice of appropriate ASDs and helps identify suitable

candidates for epilepsy surgery, which may be undergone by drug refractory patients

(Boßelmann 2021), (Sutula et al. 1989).

A seizure can either be observable (motor signs), or as a subjective sensation, called an

aura. Subjective seizure symptoms can only be described by the patient themselves. The

symptoms exhibited during a seizure offer insights into the seizure onset site and the site where

the observable symptoms arise from, which are components of the epileptogenic zone. This

lateralizing and localizing is valuable when assessing epilepsy patients for potential surgical

treatment (Boßelmann 2021).

4.1 Temporal lobe epilepsy

The first type of human TLE, mesial temporal lobe epilepsy (MTLE), usually involves

hippocampus and amygdala (entorhinal and perirhinal cortex can also be affected) (Bernasconi

2003). MTLE is often characterized by hippocampal sclerosis (Figure 6), which consists of

reorganization of mossy fibers and their synapses, neuronal loss and hypertrophy of glial cells

(Cavazos, Golarai, and Sutula 1991), (Zhu et al. 2023).
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Figure 6. The hippocampal sclerosis on the left side of the brain (red circle) depicted on MRI.

The hippocampus is visibly smaller. Adopted from Uhomachinky, CC BY-SA 4.0

<https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons

In the second case, the site of onset can also be in the temporal neocortex (NTLE) (Zhu

et al. 2023).

At the onset of a seizure, there may be an occurrence of an aura, which can consist of an

epigastric and chest feeling, warmth spreading upward the arms, unpleasant emotions (fear,

anger, guilt), dreamy state, déjà vu, and sensory illusions or hallucinations (Gloor et al. 1982),

(Maillard et al. 2004). The reason why there is an emotional component in an aura is because the

limbic structures such as the amygdala, which are responsible for emotions, are commonly

involved (Biraben 2001). An aura is then often followed by a loss of responsiveness and

consciousness. During the seizure, patients can also experience a variety of automatisms, such as

involuntary movements involving the mouth, which can be eating-related; arm movements; and

vocal automatisms. Eye or head version and tonus of the arms can also be present (Biraben

2001), (Maillard et al. 2004). Secondary generalization with tonic-clonic seizures is more

frequent in males (Janszky 2004). Postictally, language impairment and the inability to recall the

event can occur (Maillard et al. 2004).

The semiology can differ based on the side of the brain affected and whether neocortical

or medial sides of the lobe are affected. For example, patients experience fear and exhibit verbal
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or vocal automatisms only when the medial temporal lobe is affected. Moreover, seizures in

MTLE tend to have a longer duration compared to those in NTLE (Maillard et al. 2004).

When it comes to the laterality, in a study involving 60 patients researchers examined

where symptoms occurred within the brain in relation to their focal onset. For those suffering

with MTLE, the dystonic posturing was mainly contralateral to the site of onset, whereas motor

automatisms were mostly ipsilateral to the site of onset of the seizures. In patients with NTLE,

the dystonic posturing was ipsilateral and the motor automatisms were contralateral. These

differences in laterality may be helpful for distinguishing between those two types of TLE

(Dupont et al. 1999).

4.2 Absence epilepsy
Although absence seizures are typically considered a type of generalized seizure with

spike-and-wave patterns on EEG, they do not affect all parts of the brain equally. These seizures

can be bilateral but may not engage every brain network (Scheffer et al. 2017). There are also

instances where they can manifest with a focal onset. The epileptogenic zone includes the

cortical networks, primarily in the frontal areas of the brain, which have extensive connections

with the thalamus (Aguilar-Fabré et al. 2022).

Besides a loss of consciousness, one of the most significant characteristics of absence

seizure is eyelid myoclonia (Thomas, Valton, and Genton 2006), (Fisher et al. 2017). The seizure

manifestations can also include automatisms and head and eye versions. More rarely, the motor

seizure activity, such as myoclonic jerks and tonic-clonic phases, can also appear during seizures

(Thomas, Valton, and Genton 2006).

Childhood absence epilepsy is more frequent in females than males (Asadi-Pooya,

Emami, and Nikseresht 2012). The SWD rhythmicity in human patients is of approximately

3Hz, whereas in rodent models of absence epilepsy, it is around 8Hz (Thomas, Valton, and

Genton 2006), (Medvedeva et al. 2020).

4.3 Focal cortical dysplasia type II
FCD II is a lesion with cortical dyslamination, which has two subdivisions, in which the

first one, type a, is characterized by neurons with disrupted morphology, such as enlarged soma

and nucleus of the cell, and neurofilament protein buildup in the cytoplasm. In addition to the

dysmorphic cells, type b is also characterized by balloon cells, which have enlarged soma as
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well and more than one nuclei (Blümcke et al. 2011). The boundary between white and gray

matter can be observed as blurred in FCD II (Figure 7) (Sheikh et al. 2023).

Figure 7. The FCD II type a is depicted in A and B, where the white arrows point on the zones

where the white and gray matter lineage becomes blurred. In panels C and D, FCD II type b is

depicted with T2 hypersensitivity - structural abnormalities, again, shown by white arrows.

Adopted from Desikan and Barkovich 2016.

The behavioral manifestations during seizures vary depending on the location of the

lesion within the cortex (Chassoux et al. 2012). Most frequently, the lesion occurs in the frontal

lobe (Widdess-Walsh et al. 2005), (Schuch et al. 2023).

The common characteristics among patients of FCD II are that the seizures often arise

during sleep (Jin et al. 2018), (Sheikh et al. 2023). The seizures can manifest as secondarily

generalized tonic-clonic convulsions, but in some patients it can happen only a few times a year

(Sheikh et al. 2023), (Mao et al. 2019). At the beginning of a seizure, there may be an

appearance of an aura (Jin et al. 2018). Some patients may also experience numb feeling in arms

and legs, uncomfortable feeling in the stomach, loss of consciousness, vocal manifestations,

lateralized clonic movements of one hand, tonic extension of one arm creating a „figure of four“
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appearance and post-seizure exhaustion (Mao et al. 2019), (Sheikh et al. 2023). The way seizures

manifest in a patient can change over the years (Mao et al. 2019).

4.4 Post-traumatic epilepsy
The most frequent causes of TBI are by car accidents and injuries by falling (Gupta et al.

2014). If patients develop epilepsy from head trauma, the onset of seizures can occur anywhere

from days to over a year after the injury (Vespa et al. 1999), (Gupta et al. 2014). The highest risk

of developing epilepsy after a TBI is during the first year (Yeh et al. 2013).

Epilepsies resulting from brain trauma most usually affect the temporal lobe or the

frontal lobe. But there also can be an occurrence of more than one epileptogenic zone, where the

other zones create microseizures, which do not manifest behaviorally and cannot be identified by

scalp electrodes (Gupta et al. 2014).

The behavioral manifestations during seizures in post-traumatic epilepsy (PTE) patients

can be presented by rapid movement of the eyes, flickering of the eyelids, facial automatisms,

and rhythmic muscle spasms. A focal seizure may evolve into a secondary generalized

tonic-clonic seizure (Vespa et al. 1999). Some patients may also experience SE, which can last

for several minutes and may be fatal, especially when it is combined with brain injury (Arndt et

al. 2013), (Vespa et al. 1999). In a study of TBI in children, the seizure semiology most

frequently consisted of clonus of the arms and legs, eye and head version, automatic motor

movements, and tonic-clonic convulsions (Park, DeLozier, and Chugani 2021).

4.5 Semiology similarities in humans and animal models of epilepsy
As it is visible in the chapter about the semiology in distinct animal models, the severity

of seizures in rodent models for TLE is measured by the Racine scale and its modified versions.

The essence of the progression remains the same, meaning that the least severe manifestations

are often facial movements and behavioral arrest, whereas the most severe are tonic-clonic

seizures (Raedt et al. 2009), (Ngoupaye et al. 2022). In humans with TLE, we can observe a

similar progression, where seizures can start with aura and focal seizures and progress to far

more severe manifestations of generalized seizures (Maillard et al. 2004).

Genetically predisposed rodents that are exposed to audio stimulation experience seizures

characterized by wild running, tonic-clonic seizures, and high seizure susceptibility

(Vinogradova, Vinogradov, and Kuznetsova 2006), (Kulikov et al. 2021), (Vergnes et al. 1987).

Reflex epilepsy in humans triggered by sound leads to similar seizure types, with tonic-clonic
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seizure type included (Al‐Attas, Al Anazi, and Swailem 2021). There are also other animal

models for reflex epilepsy, such as photosensitivity, but these are usually not rodent models

(Douaud et al. 2011).

When it comes to absence epilepsy, the presence of SWDs and similar behavioral

symptoms in both rodents and humans represent the validity of these models for studying

absence epilepsy (Thomas, Valton, and Genton 2006), (Medvedeva et al. 2020).

In humans, FCD II manifests with motor patterns and frequent nocturnal seizures (Sheikh

et al. 2023), (Jin et al. 2018). Animal models mimic the structural abnormalities and seizure

patterns, which is ideal for studying the genetic and developmental aspects of FCD (Ribierre et

al. 2018). These models exhibit a variable semiology, highlighting the variability also observed

in human patients. But there is a need for further research to explore the complexities of FCD

and the seizure variability associated with it (Hu et al., 2018).

Post-TBI epilepsy in humans can lead to a variety of seizure types, including SE (Arndt

et al. 2013). Animal models replicate the injury and subsequent epileptogenesis, helping to

understand the mechanisms (Kharatishvili et al. 2006).

5. Conclusion
Epilepsy is a disorder that profoundly affects the life of those who suffer from it, not only

during seizures, but also socially due to the possible comorbidities, yet current ASDs are only

effective in ⅓ of cases. Therefore there is a considerable amount of ASDs that are available, and

new ones are continually being developed.

Animal models play an important role in the research and drug development process.

They offer a controlled environment to study the progression of epilepsy from the insult to

chronic epilepsy. By replicating specific etiologies (such as genetic mutations, trauma, or

cortical malformations) and targeting specific brain regions, these models provide valuable

insights into the mechanisms of epilepsy.

The aim of this thesis was to compare the behavioral semiology of seizures in animal

models (experimental observations) and human patients (clinical observations), focusing on well

characterized models such as electrical and audiogenic kindling, chemical induction (using

pilocarpine, KA and tetanus toxin), those with cortical malformations and TBI. These and many

other models show a variety of seizure types, many of which parallel the semiology in human

epilepsy.
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In the animal models, most often the Racine scale was used to categorize severity of the

seizures. In some cases, there can be an occurence of additional behavior, such as wild running

or wet dog shakes. Human behavioral manifestations during seizures in conditions such as TLE,

absence epilepsy, FCD II and PTE, provide information for localizing seizure onset and planning

future treatment strategies.

This thesis provides similarities (seizure severity, the main seizure stages) and

differences (more detailed manifestations such as whisker trembling for animals or aura for

humans) between the observed semiology of rodent models and human patients. This

comparative approach is essential for translating animal research into successful clinical

applications, ultimately benefiting patients with epilepsy by improving diagnostic accuracy and

therapeutic efficacy.

In addition to addressing the treatment of epilepsy symptoms, the potential for treating

epilepsy as a whole was also mentioned in this thesis. Current scientific research is also focused

on the discovery of possible effective treatments of epilepsy. Understanding the mechanisms of

epilepsy development is fundamental for this achievement, and luckily animal models do

provide these insights. Although it is still in early stages for applying these findings on human

treatments, a promising approach is to administer preventative treatments to patients who have

suffered from TBI and are at high risk of developing epilepsy. Therefore, one of the targets for

future studies could be the identification of a reliable biomarker that would predict, as early as

possible, the development of epilepsy following an initial insult and prevent the progression to

chronic epilepsy.

Though animal models of epilepsy cannot fully mimic the natural condition of human

epilepsy (as they are more stereotyped and not as complex), they are still useful in understanding

the disease's mechanisms and in testing treatment options. Continued development in research

into these models of epilepsy is crucial to advancing our ability to treat epilepsy and to improve

the quality of life of those living with such a debilitating condition.
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