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Abstract: Flow cytometry allows inexpensive monitoring of large and diverse

cell populations using fluorescent markers, providing immense applications in

studying biological properties of blood and tissues as well as diagnostics in the

clinical setting. Recent methodological advances highlight automatic clustering as

a tool of choice for data analysis, and many clustering algorithms were developed

for various use cases. However, the applicability of such algorithms in biology and

medicine remains challenging unless the tools expose user-friendly, interactive

interfaces that are accessible to domain experts. The goal of the thesis is to review

the available methods that allow such interaction and supervision of the clustering

process by the user, specifically focusing on interfaces desirable in clinical settings

that do not require the user to interact with programming environments. As

the main practical result, the thesis should design a new tool that builds upon

previously developed methodology (iDendro, gMHCA), allowing the application

of the researched methodology on real datasets. By using proper data visualization

techniques, the end user should be able to interact with the dataset in a way that

is both intuitive and useful for producing biologically relevant results.
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Introduction

Flow cytometry is a technique widely used in cell population analysis, particularly

in clinical fields such as immunology or hepatology. It facilitates cell identification

in various biological samples and as such can be useful in both research and clinical

settings. The technique is based on a relatively simple principle: it measures

fluorescence intensity when a laser beam travels through the sample. With

flow cytometry, thousands of cells can be processed in a second. Although high

processing speed is desirable, it can lead to processing challenges, as the vast

amount of data that is collected has to be processed and analyzed.

The challenge of identifying cells has been traditionally solved by manual

gating. Manual gating is a process in which the user needs to specify a region on

plotted data - this can often be a scatter plot depicting two features - and draw

boundaries around it. Everything that is a part of that region is then classified to

be a cell of that particular type. Although manual gating requires manual labour

and huge time investment, the process is still used today. But the identification

of cell populations can also be formulated as a clustering problem. Hierarchi-

cal clustering combines the advantages of both supervised and unsupervised

approaches as it automatically forms the clusters based on chosen metric, but a

human remains responsible for cutting the dendrogram and choosing the proper

number of clusters. The issue with hierarchical clustering is that the complex-

ity of computation rises super-linearly with the amount of data. Furthermore,

some variants of hierarchical clustering compute dissimilarity matrix, imposing

quadratic space complexity. This further hinders its practical usability, especially

for more complex datasets.

Recently, there have been many works on improving the performance of

hierarchical clustering in various ways. As one example, Smelko et al. [1] took

advantage of parallel accelerators by implementing GPU-accelerated method. This

work demonstrated order of magnitude speedup and improved the scalability of

the methods, which opens doors to processing bigger and more complex datasets.

The aim of this thesis is to bridge the gap between methodological advance-

ments and domain experts, who often come from environments with little pro-

graming background. The thesis demonstrates how user-supervised hierarchical
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clustering outperforms manual gating in terms of convenience, speed, and ac-

curacy that can be achieved even on large datasets and with no requirement of

programming experience from the user.

As a practical result, this thesis presents Ash, a software that empowers domain

experts to conveniently analyze their data and use hierarchical clustering to assign

data points to clusters via graphical user interface. The intended workflow is that

the user imports their data, inspects various visualizations, assigns data points to

clusters by cutting dendrogram branches, and finally exports the newly formed

cluster assignment to .csv file. The respective data can come from gMHC [1] or any

other widely used clustering tool such as the R hclust package.

Ash draws inspiration from iDendro [2] R package and adds functionality on

top of it. There are three main advantages Ash offers:

• a more granular method for splitting clusters,

• usable scalability on larger data,

• no programming knowledge requirement.

The custom method for user-supervised cluster assignment and the conversion

tool between Python and R dendrogam formats are published as a standalone

Python package on PyPI.

Further in this thesis, the practical usability of Ash is tested by identifying

incorrectly labeled eosionphils in Samusik dataset [3]. Corrected labels are also

published along with this thesis. The aim is to demonstrate that with such tool as

Ash, domain experts can be empowered to perform analysis that was previously

reserved for data scientists.

The thesis is structured into four chapters. The first chapter focuses on flow

cytometry, describes how it works and what data are generated during the pro-

cess, and why user-supervised hierarchical clustering is suitable for this problem.

Furthermore, possible issues with manual gating are discussed and existing solu-

tions are reviewed. In the second chapter it is explored where Ash fits into the

landscape of other interactive clustering tools. Architectural decisions behind

Ash are briefly described, what technology was used and why is explained. Three

ways to use Ash are described, one of them being the available web application,

the second one being the local installation, and the third one being a standalone

Python package. The third chapter showcases the application of Ash on real

life data and presents the collected evidence for the mislabeling of eosinophils

in Samusik dataset [3]. The fourth and final chapter concludes the thesis and

suggests possible future work.
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Chapter 1

Introduction to Flow Cytometry
Data Analysis

In this chapter, the concept of flow cytometry is explained. This chapter should

help the reader understand how flow cytometry works and get familiar with

flow cytometry related terminology. Being familiar with the process can help

the reader better understand the information that is produced and analyzed in

this thesis. Several methods used for flow cytometry data analysis are introduced,

with the focus mainly on manual gating and hierarchical clustering. In the final

section, an overview of data visualization techniques is given.

1.1 Principles of Flow Cytometry
Flow cytometry is a laboratory technique used in both qualitative and quanti-

tative cell analysis. It can be used for sorting cells based on their physical and

chemical properties. In research, flow cytometry plays a crucial role in providing

insights into cellular processes, functions, and interactions. For instance, it is

used to study immune responses, cell cycle progression, and apoptosis. In the

industry, flow cytometry is indispensable for diagnosing and monitoring a wide

range of diseases, including cancers such as leukemia and lymphoma, immune

disorders, and infections. By analyzing cell surface markers and intracellular

molecules, clinicians can identify abnormal cells, assess disease progression, and

tailor treatments to individual patients. A more in depth review can be read in

McKinnon [4].

In order to understand flow cytometry, it is important to understand the basic

three principles it builds upon:

• laser beams can be used to identify the properties of the cells passing

through the beam,
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• the cells have to be separated so that they flow through the flow cytometer

one by one,

• and antibodies with fluorescent markers can identify cells of interest.

The following paragraphs elaborate on these principles.

Light scattering is a process in which particles deviate from their trajectory

when they encounter an obstacle. In case of flow cytometry, the obstacle is a cell

passing through the beam. When detectors are put on the opposite side of the

passing cell, they can measure the light that was scattered. A detector directly

opposite to the laser beam is called forward scatter detector and it can be used to

measure the size of the passing cell. The other detectors are placed at 90 degrees to

the laser beam and are called side scatter detectors. They measure the granularity

of the cell, such as its organelles or specific proteins the cell expresses [5].

To ensure that only one cell at a time passes through the laser beam, sheath

fluid is used to circulate through the cytometer. The fluid ensures that constant

flow is maintained. The sample is injected by droplets under different pressure

than the sheath fluid and the separation is achieved by passing the sample through

narrow nozzle that vibrates. Flow cytometer cell schema can be seen in Figure

1.1.

Cytometers do not have to measure only the size and the granularity of cells.

They can also measure the presence of specific proteins. This is achieved by using

antibodies that bind to the protein of interest. They can be labeled either directly

with a fluorescent marker or indirectly by using a secondary antibody that is

labeled. Fluorophore molecules are commonly used for labeling purposes. They

are a fluorescent chemical compound that can re-emit light of certain wavelength

upon light excitation [6].

If a device has detectors that are able to detect these wavelengths, it can

measure the presence of the specific protein. The more protein is present, the

more light is emitted and the more light is detected. Commonly, multiple detectors

are contained in a single cytometer [7]. Emitted light can be directed by mirrors

and multiple antibodies can bind to same cell [8]. That allows magnitudes of

different measurements per sample, although technically it is limited by the

number of detectors.
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Figure 1.1 Schema of a flow cytometer cell used for collecting information [5].

1.2 Flow Cytometry Output Data

This section discusses the way flow cytometry output data are stored and what

type of data is gathered. The output of flow cytometry is a complex dataset that

provides detailed information about individual cells in the sample. The output

data provides an entry for each cell and parameters that were measured for the

cell, such as size or the amount of specific proteins.

One of the main strengths of flow cytometry is its cost-to-output ratio. Thou-

sands of particles can be evaluated per second. Usual throughput of a cytometer

ranges between 100-1000 cells per second [9]. That unavoidably leads to large

datasets. Additionally, recent advancements, such as the use of fluorescent dyes,

have significantly increased dataset output size [10]. Up to 105
of rows could be

expected in a single dataset in resulting from one milliliter of the sample [9].

In addition to fluorescence, flow cytometry records frontal scatter and side

scatter. However, the number of dimensions or columns in columnar format is

limited by hardware and fluctuates around couple of tens of dimensions, based

on the type of the respective machine.
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1.2.1 Cytometry Data Format

The output data is stored in the flow cytometry standard format with .fcs extension

and was developed by the International Society for Advancement of Cytometry

[11].

Figure 1.2 shows the structure of an .fcs file structure. Notably, the HEADER

contains information about the version used ("FCS3.0"). The arguably most im-

portant part of the file is the DATA segment, which encodes the measurements

for each particle or cell in the sample.

From programming perspective, there are several ways how .fcs could be read.

Most notably, Python as well as R both contain multiple packages that allow

that. Nevertheless, reading binary data is supported by virtually all programming

languages, so the format itself is not a limiting factor.

Figure 1.2 The structure of .fcs file from Drakos et al. [12].
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1.3 Flow Cytometry Data Analysis
This section describes how manual gating can be used on flow cytometry data.

Additionally, clustering is introduced, as it is the approach this thesis build on.

The section also discusses some of the limitations of manual analysis techniques

and why there is a room for improvement in this kind of analysis.

1.3.1 Manual Analysis Techniques
Despite technological advancements, it is still common to manually group cells

into clusters in a process called manual gating. However, as new technology

enables more and more parameters to be collected, this process becomes tedious

and time-consuming.

Manual gating is a technique used to create subsets of cells based on a 2D

projection of flow cytometers output. The user can manually define regions called

“gates”. Gates can have various dimensions and shapes. An example of gated data

can be seen in Figure 1.3. However, the complexity of manual gating grows with

each marker added to the analysis, as every combination needs to be analyzed.

For example, with 20 markers there are

(︂
20
2

)︂
= 190 possible 2D plots.

According to Maecker et al. [13], analysis, particularly gating, is a significant

source of variability in the results. Maecker et al. [14] later suggest that gating

can be the largest source of variability. Additionally, every manual gating ap-

proach relies on the researcher’s prior knowledge, thus introducing a bias toward

“expected" results [15]. Parts of the variability might come from other sources,

such as hardware.

Due to the apparent simplicity of manual gating, many researchers have

attempted to automate the gating process. Automation offers advantages such

as human error prevention and speed increase. However, automated gating

becomes challenging with increasing non-convex cell populations, which have

complex shapes that curve in various directions, or other multidimensional shapes.

Automated systems can struggle with elliptical shapes that are often produced by

flow cytometry [16].

1.3.2 Clustering Methods
Clustering is an essential method in data analysis and machine learning, used

to group a set of objects into clusters based on their similarities. It is a form of

unsupervised learning, meaning it does not rely on pre-labeled data. Instead,

clustering algorithms discover the inherent structure in the data by organizing

objects that are more similar to each other, according to chosen metric, into the

same cluster, while placing dissimilar objects into different clusters. The primary
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Figure 1.3 Example gated data from Kowarsch et al. [17].

goal of clustering is to ensure that objects within the same cluster have high

degree of similarity, while objects in different clusters are as distinct as possible.

This is achieved through various clustering methods, each with its own approach

to defining and identifying clusters. The choice of a clustering method depends on

the nature of the data and the specific requirements of the analysis. Clustering has

a wide range of applications across different fields: in marketing, it can be used

for customer segmentation; in biology, for classifying species or genes; in image

processing, for object recognition; and in social network analysis, for community

detection.

There are many possible approaches to clustering such as centroid-based clus-

tering, density-based clustering, distribution-based clustering, and hierarchical

clustering [18].

The following paragraphs explore hierarchical clustering in detail, as it is the

main approach relevant to this thesis.

Hierarchical Clustering

Hierarchical clustering, also known as connectivity-based clustering, is an algo-

rithm that groups objects based on their similarity. It provides insights into the

data structure by allowing associations between subclusters. It differs from other

clustering methods by not requiring the number of clusters to be specified and

instead creates a tree-like structure that shows how clusters would be formed for

different similarity thresholds.

There are two main approaches to hierarchical clustering: bottom up, which

is also known as agglomerative, and top down, which is also known as divisive.

In the bottom-up approach, the algorithm starts with individual data points and

iteratively merges the closest elements into clusters. The newly merged points

become a new cluster that is referred to as a “node”, and nodes are further merged
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with the rest of the data points and nodes until one single cluster is formed.

In comparison, the top-down divisive approach begins with all data points in a

single cluster and recursively splits it into smaller clusters. Only the agglomerative

approach is discussed in this thesis.

One common way to visually represent hierarchical clustering is through

dendrograms, which will be described later in the thesis.

Distance Metrics in Hierarchical Clustering

The choice of a distance metric influences the outcome of clustering algorithms.

In this section, the foundation for understanding these metrics is established.

Clustering algorithms are usually agnostic to distance metrics, which means that

the user can provide their own metric. No single metric is universally better, as

the choice depends on the type of data and often also on computational speed

and intuition. The metrics capture the notion of closeness of two data points.

According to Chen et al. [19], distance metric is a real valued function d(x, y)
defined on S × S, where S is a set of points, that can be compared (x, y ∈ S),

provided that it satisfies following conditions:

1. d(x, y) ≥ 0 (non-negativity)

2. d(x, y) = d(y, x) (symmetry)

3. d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

4. d(x, y) = 0 if and only if x = y (identity of indiscernibles)

All four of these properties originate from the notion of distance in the real

world. Non-negativity ensures distance between objects has to be non-negative

and it is zero if and only if these objects actually refer to the same point (identity

of indiscernibles). Symmetry guarantees that if the measurement is taken from

point x to point y the same measurements are obtained as from y to x. Lastly,

triangular inequality captures the fact that the direct path between x and z must

not be longer than the most probable indirect path that also goes though y.

In Kumar et al. [20], it is shown how the choice of metric influences the

resulting performance of the clustering algorithm in terms of accuracy, inter-

cluster and intra-cluster distances. The paper uses ten datasets (some artificial,

some real) and concludes there is no single winner. Comparison is also attempted

by Singh et al. [21]. Despite conclusive results suggesting superior performance

of Euclidean distance, their applicability to this thesis remains questionable as the

authors uses different algorithm (k-means clustering) and only a single dataset.

The default distance metric is usually Euclidean, although in flow cytometry

context, the use of Mahalanobis distance might be preferred [22].
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Selected commonly used metrics The most commonly used distance metric

is called Euclidean distance. It is represented by the following formula:

d(x, y) =
⌜⃓⃓⎷ n∑︂

i=1
(yi − xi)2

It extends the Pythagorean theorem to n-dimensional spaces, therefore is

often the most intuitive choice. The potential issue with Euclidean distance is that

if variables have different scales, some of them will affect the resulting distance

more than others. That can be solved by Mahalanobis distance. Mahalanobis

distance between points x and y with respect to a covariance matrix S is defined

as follows:

d(x, y) =
√︂

(x − y)T S−1(x − y)
Notice the vector notation, as opposed to the notation of Euclidean distance. S

is covariance matrix of target variables and it has to be either known or estimated.

Put simply, the introduction of the inverted covariance matrix basically transforms

coordinate system of our variables, so that they are not correlated anymore and

variance of each equal zero. Then, Mahalanobis distance equals Euclidean distance

on the transformed data.

There are many more commonly used metrics, such as Minkowski distance.

Minkowski distance is a name used for an entire family of metrics parametrized

by p and defined as:

d(x, y) = (
n∑︂

i=1
|yi − xi|p)1/p

Notice that for p = 2, Minkowski distance equals Euclidean distance. Another

common parameter choices are p = 1 and limiting case when p approaches

infinity. Resulting metrics are called Manhattan distance and Chebyshev distance

respectively. As p approaches infinity: d(x, y) = maxn
i=1 |yi − xi|.

Contrary to popular belief, cosine distance is not a distance metric as it does

not satisfy identity of indiscernibles. It is defined as:

d(x, y) = 1 −
∑︁n

i=1 xiyi√︂∑︁n
i=1 x2

i

√︂∑︁n
i=1 y2

i

Cosine distance does not solve the curse of dimensionality. In layman’s terms,

the curse of dimensionality refers to distance metrics losing their usefulness as

dimensionality of the data approaches infinity. Cosine similarity is typically used

on high dimensional data in text analysis, where text embeddings can have up to

hundreds of thousands dimensions, but such embeddings often contain only few

non-zero numbers. The best uses for cosine similarity are very sparse, discrete

domains such as the aforementioned text analysis. Therefore, it is not suitable for

flow cytometry.
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Clustering in Flow Cytometry

As discussed in Section 1.3.1, flow cytometry data are traditionally analyzed

by manual gating. However, manual gating has limitations, such as requiring

deep knowledge of cell biology for data interpretation. It is highly subjective,

time-consuming, and with increasing data size, the complexity requirements

increase. Analyzing flow cytometry data can be defined as a clustering problem,

and clustering approaches can be used to facilitate data analysis. Especially with

recent advancements, hierarchical clustering can be fast even on larger datasets,

and using the right distance metric for the problem, such as the Mahalanobis

distance, can also increase the effectiveness of clustering [1].

Hierarchical clustering outputs are tree-like structures named dendrograms,

which allow the researchers to explore relationships between individual cells and

cell populations. By utilizing hierarchical clustering, it becomes feasible to align

cell subsets across different samples, which facilitates direct comparisons. Fur-

thermore, by leveraging shared information across multiple samples, sensitivity

can be enhanced for detecting low-frequency cell subsets [23].

However, clustering data can bring some pitfalls. In biological context, it can

be difficult to discern whether the clustering produced biologically relevant results

as there can be nuances in the data that cannot be accessed via unsupervised

learning algorithms. It is important to know about the common pitfalls and how

to avoid them, as proposed by Ronan et al. [24].

In the next section, various visualization techniques which can help users

indicate clustering errors are presented.

1.4 Data Visualization in Flow Cytometry
It his section, data visualization techniques are reviewed. Additionally, their

meaning in the context of flow cytometry and what can be learned from each one

of them is discussed.

Data visualization helps translating data and information into a graphical

representation. Visual representation can help researchers understand their data

better. Especially large datasets can be hard to navigate and understand, and it

is often important to make informed decisions. Data visualization is useful in

many fields including network security [25], improvement of services [26], money

laundering and other crime detection [27, 28]. A review of how data visualization

can be useful in the medical field can be found in Park et al. [29] and Aung et al.

[30].

Graphical representation can make it easier to identify patterns, trends, and

outliers. Relationships between datapoints can be represented by various plots
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depending on whether it is desirable to represent relationships or connections in

a form of a network. It is also believed that data visualization is closely related to

human creativity [31, 32].

Data visualization can be either static or interactive. Static data visualization

displays data in a fixed format. The advantage of an interactive solution is that

it allows the user to explore the data with various filters, highlighting possible

subsets of the collected data. A proof of concept of how switching plots from

static to interactive can improve data exploration can be found in Weissgerber et

al. [33].

In the following paragraphs, an overview of the most typically used visualiza-

tion techniques is given.

Heatmap A heatmap is a 2D grid. In a heatmap, data is represented by mapping

values to colors, making it easy to spot areas with similar marker levels. Another

advantage of a heatmap is that the user can visualize large amounts of data

compactly, because labeling values by color takes less space. An example of a

heatmap is shown in Figure 1.4.

Figure 1.4 An example of a heatmap which shows protein markers on y-axis and
individual samples on x-axis based on sampled data from Levine_32 dataset [34]. The
continuous color-scale represents protein marker levels. Patterns can be spotted visually
in such representations and can help with differentiating cell populations.

In flow cytometry context, users should focus on areas with similar colors, as

they represent similar marker levels. It serves a purpose of identifying clusters

based on marker values (similar shades) and as a visual confirmation that cells

with same values are within same cluster.
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Dendrogram A dendrogram, also known as a tree diagram, is a 2D data repre-

sentation that is designed to reveal the hierarchical structure of data. The use of

dendrograms is popular in biology, where it can be useful for taxonomy [35] and

visualization of multiscale networks [36], or structural analysis [37]. An example

dendrogram is shown in Figure 1.5.

The data points are called leaf nodes. Leaf nodes are linked together by

branches, and branches are joined together in nodes. Clusters share the same

upper nodes, and color can be used to highlight separate nodes, especially in

dendrograms which show a lot of datapoints.

Figure 1.5 An example of a dendrogram. This dendrogram represents data from Levine
et al. [34] and was plotted is Ash. Leaf nodes are individual cell samples. The hierarchical
clustering algorithm took into account features that represent marker levels.

Scatter plot Scatter plots are a common statistical chart type that represent data

using dots. In the plot, each dot is a representation of a data point. These plots

are useful for visualizations of distribution in a dataset, especially for continuous,

quantitative, univariate data. In manual gating, these plots are the place where

user draws gates. Scatter plots are particularly useful for small data sets and they

allow outliers detection. An scatter plot example can be seen in Figure 1.6.

Dimensionality reduction Dimensionality reduction techniques are com-

monly used to plot high-dimensional data in low-dimensional space, allowing for

exploration of data structures that can be difficult to identify otherwise. While

humans can comfortably plot and explore data in 2D and 3D spaces, higher dimen-

sions are challenging and remain hard to plot and therefore explore visually. The

aim of dimensionality reduction algorithms is to preserve the original structure

of the data while making exploration possible. To overcome this challenge, well-

known dimensionality reduction algorithms were developed such as principal

component analysis (PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE),

or uniform manifold approximation and projection (UMAP).

A comparison of how different dimensionality reduction algorithms handle

the same input data can be seen in Figure 1.7.

15



Figure 1.6 An example of a scatter plot as used in flow cytometry from Jahan-Tigh et
al. [38]. Rare events and high-frequency area can be located easily.

Principal Component Analysis (PCA) PCA is an unsupervised algorithm

based on linear combinations of original variables. It creates a new set which

consists of of uncorrelated variables which capture variation in the original data.

It is also applicable to large datasets. However, it can struggle with datasets that

have non-linear structure or are non-normally distributed.

PCA is sensitive to scaling and works better on normalized data. It may also be

difficult to interpret the meaning of the principal components as the components

don’t have intuitive meaning in terms of original variables.

An overview of using PCA in flow cytometry can be found in Lugli et al. [39].

t-Distributed Stochastic Neighbor Embedding (t-SNE) In contrast, t-

SNE is a non-linear technique that can better handle data with underlying non-

linear structure. It preserves pairwise distances between data points and can

identify outliers, but it is computationally expensive and may require fine tuning.

Computational expenses grow with the number of dimensions. Additionally,

t-SNE is not deterministic and due to its non-parametric nature cannot be used

as a classification method for previously unseen data points. A comparison of

conventional and t-SNE guided gating can be found in Eshghi et al. [40].

Uniform Manifold Approximation and Projection (UMAP) UMAP is

similar to t-SNE in many aspects. It aims to preserve local structure rather than

global. UMAP can work well with outliers and can handle large datasets. It also

scales well. However, UMAP may require fine tuning and is not guaranteed to

converge to a local minimum. More about using UMAP in flow cytometry is

reviewed in Stolarek et al. [41].
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Figure 1.7 An example of PCA, t-SNE, and UMAP done on data from Levine et al.
[34]. These plots were generated in Ash. The data was reduced from 32 dimensions to 2
dimensions.
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Chapter 2

Implementation of Ash

The following chapter discusses the process of creating an interactive visualization

tool named Ash. Firstly, currently available clustering tools for flow cytometry

are reviewed. Secondly, selection of appropriate tools and frameworks is explored,

and how to use available tools to create new solutions to explore flow cytometry

data is discussed. Thirdly, the architectural design and challenges of the final

solution are described. Finally, the user interface of Ash is described.

2.1 Overview of Interactive Clustering Tools for
Flow Cytometry

This section briefly describes available tools for interactive clustering. For the

purposes of this section, available tools are compared across four dimension.

These are:

• Licensing model and respective cost

• Support for clustering methods

• Required programming knowledge

• Web-based or desktop-based interface

Ash is compared to FlowJo [42], FlowLogic [43], Cytobank [44], AUTOKLUS

[45], iDendro [46], XCluSim [47], Geono-Cluster [48].

For the purpose of this thesis, a distinction is not made between the nuances

of particular licenses. Instead, the focus lies on the price and whether the source

code can be subjected to inspection. Arguably, the most popular tools are only

available commercially. Among such solutions, FlowJo is the most established

one. FlowJo is mainly focused on gating, although a clustering module is also
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available. According to the documentation [49], it offers k-means and k-nearest

neighbours, but hierarchical clustering, that this thesis focuses on, is not available.

The method that comes closest to the Ash approach is the FlowSOM plugin. The

plugin supports clustering and uses dendrograms combined with heatmaps to

display clusters similar to Ash. FlowLogic, a FlowJo alternative, is also commercial

and does not offer the functionality to use or plot hierarchical clusters either.

Both offer a vast amount of features and are available as desktop applications

and do not require any programming knowledge. Contrary to them and similar

to Ash, Cytobank offers a web-based interface instead of a desktop one and also

provides some clustering methods such as FlowSOM and SPADE. But similar to

FlowJo and Flowlogic it, is also not freely available. All of these tools support

reading .fcs files in drag-and-drop fashion and are well regarded within the field

for their versatility and reliability.

Among the freely available GUI tools are Geono-Cluster [48] , XCluSim [47],

iDendro [2] and AUTOKLUS [50]. Geono-Cluster aims specifically to help domain

experts without data science training to merge and split clusters via a GUI using a

drag-and-drop interface. The intended workflow is that the user indicates an initial

cluster assignment, and Geono-Cluster chooses the most appropriate method

to achieve that assignment. Supported algorithms include k-means, DBScan,

agglomerative clustering, and spectral clustering [48]. The implementation of

algorithms is not exposed to the user. On the other hand, XCluSim focuses on

comparing different clustering algorithms, not on the cluster assignment itself. It

uses dendrograms as a tool to compare the similarity between different cluster

assignments. iDendro is a tool that inspired Ash the most. iDendro enables the

user to plot large dendrograms, which can be zoomed in, panned, and inspected

interactively by selecting and coloring clusters anywhere in the dendrogram [2].

Ash strives to replicate that without requiring R language knowledge. AUTOKLUS

only runs on Windows [50], supports k-means but is mostly outdated. The

differences between the aforementioned tools are highlighted in Table 2.1.

This thesis and Ash are not limited to any single metric, as the expectations

are that users provide their own data in the form of dendrogram, regardless of

the distance metric used to construct it. The input format is specified further in

the Section 1.2. Ash offers users the option to analyse their data from hierarchical

clustering algorithm variation of their choice, and helps them see patterns in the

data and manipulate cluster assignment of the individual data points.

2.2 Selected Technologies and Architecture
In this section, an overview of technologies that were considered is presented.

Arguments for the Python, Plotly and the selected Dash stack are discussed.
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Tool Licencing
Model

Clustering
Support

Programming
Knowledge

Graphical
Interface

FlowJo commercial multiple not required desktop

FlowLogic commercial multiple not required desktop

Cytobank commercial multiple not required web

AUTOKLUS free k-means not required desktop

iDendro free user-

supervised

hierarchi-

cal

limited desktop

XCluSim free compare

only

not required desktop

Geono-

Cluster

free multiple not required desktop

Scipy free multiple required desktop

hclust free hierarchical required desktop

Ash free user-

supervised

hierarchi-

cal

not required web

Table 2.1 Comparison of visualisation tools.

Section 2.2.1 discusses the choice of Python as the programming language and its

advantages compared to R. Section 2.2.3 reviews available plotting frameworks

and provides a rationale for selecting Plotly. Section 2.2.2 discusses the choice of

Dash and how it compares to Shiny, Streamlit and PyScript.

2.2.1 Programming Language
Ash is written in the programming language Python 3. Python was chosen as

it is a widely popular language, suitable for data analysis and has a lot of tools

to facilitate working with data. In Python’s ecosystem, it is easy to distribute

packages so other people could use them for their projects.

When open-sourcing a project, choosing a popular tool is important to make

tool customization accessible to users who are interested. Popularity is even more

important when available tools and libraries are considered. Compared to R, the

community has been leaning towards Python recently [51], which resulted in

more people who are familiar with Python and more tools that are available for

Python.
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The popularity has driven the decision to use Python for Ash instead of R, but

R would be suitable as well. Other languages often lack the tools focused on data

analysis, which Python and R both have.

2.2.2 Interactive Dashboarding Frameworks
This sections compares the three most popular interactive dashboard frameworks

for Python: Dash, Streamlit, and Shiny. Dashboarding frameworks help create

well-rounded dashboards, connecting individual elements together. In Ash, dash-

boarding serves as glue between individual visualizations and menus. Dash and

Streamlit are Python only frameworks, compared to Shiny, which originates from

the R ecosystem but has been available for Python since 2023. Each of them can

be installed from Python packaging index and on high level, they all provide

comparable functionality. At their core, they are all web building frameworks that

set up a web server that listen to user requests (made through a web browser) and

they change the content of the page accordingly. This approach enables straight-

forward deployment and sharing of the application that is further described in

Section 2.3.3.

For the purposes of this thesis, they mainly differ in three areas: level of

abstraction, backend architecture, and maturity. This thesis does not imply that

any of the frameworks is superior but rather that these frameworks are suitable

for different use cases. Overview of the differences can be inspected in the Table

2.2.

Level of Abstraction

All of the frameworks are considered to be high level because the user does

not have to concern themselves with the underlying web server, nor with CSS,

JavaScript, and other web technologies. That can be either an advantage or a

disadvantage, depending on the use case. The amount of control over the outcome

is traded off for the ease of use. Among the three frameworks, there are still

differences in the level of abstraction, most notably between Streamlit and the

other two.

Streamlit focuses on extreme simplicity and is well suited for developing

workable prototypes as fast as possible. The main disadvantage of that approach

is low level of control and customization. That is demonstrated the best on the

fact that Streamlit lacks the ability to trigger an update of a specific part of the

page, something which both Dash and Shiny can do.

The implication is that any time a change occurs anywhere in the application,

Streamlit recalculates the entire page regardless of what has changed. Shiny

and Dash use Python decorators to link an output element with UI elements
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which leads to updating only the necessary parts of the page. Updating the whole

page is not an issue when all the calculations are fast, but one slow calculation

suffices to make the user experience unpleasant. In case of repetitive long-running

calculations, Streamlit offers caching mechanism that loads the precomputed

results instead of recalculating them.

On the other hand, controlling what gets updates can easily lead to code that is

hard to understand and maintain. The reasoning behind the code and debugging

it gets harder, especially when one trigger initiates a chain of other triggers.

Back-end Architecture

In terms of back-end architecture, the most notable differences between the frame-

works are used web protocols and statelessness or statefulness of the framework.

Both of these dimensions are of concern for the scalability rather than for the

local run. Statelessness is a server property that does not store any information

regrading client’s session, which allows seamless switching between multiple

servers and helps distributing the load. This process is also known as scaling the

application horizontally. That can be advantageous if the application is expected

to be used by many users at the same time. However, scientific workloads are

often CPU-bound, so the horizontal scalability on its own may not ensure the

best performance. From the three frameworks, only Dash is stateless. But the

importance of statelessness is dependent on the use case.

The frameworks also differ in the web protocol they use. Only Dash uses

HTTP(S), while Streamlit and Shiny both use WebSockets. In case of WebSockets,

the connection between the server and the client is kept open, which allows

for more complex communication patterns, such as server periodically pushing

updates to the client. That is well suited for use cases where data is changing in

real time and the server does not wait for the client to request the data. However,

the open connection is one additional obstacle for scaling as requests cannot be

load balanced (responded by different servers) easily.

On the other hand, a lot of resources exist on HTTP(S) can be load balanced,

but the user has to actively request the data.

Maturity

Maturity of the framework influences how often the framework is updated, how

many outstanding issues it has, and how big the community is. Despite the fact

that no universal metric for maturity exists, the differences in maturity between

Dash and Streamlit are arguably negligible, but one can argue that Shiny is the

least mature of them. That is mainly because Shiny for Python was released in

2023. On the other hand, it is a ported variant of the reputable Shiny for R, which
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was released in 2012. Other possible metric is the amount of stars on GitHub,

which is summarized in the Table 2.2.

Dash Shiny Streamlit

Abstraction Level high high very high

Partial Updates yes yes no

Web Protocol HTTP(S) WebSockets WebSockets

Statefulness Stateless Stateful Stateful

Maturity high medium high

Stars on GitHub 21k [52] 1.1k [53] 33.6k [54]

Table 2.2 Dashboarding frameworks comparison

2.2.3 Plotting Frameworks
In this section, the most popular plotting Python frameworks are compared: Mat-

plotlib, Seaborn, Plotly and Bokeh, and Altair. Plotting frameworks are essential

for creating coherent data visualizations. They can help transform data into ac-

tionable insights. The chosen frameworks are compared on the level of abstraction,

interactivity, and maturity. Same rationale as in the previous section applies:

• The higher the level of abstraction, the more control is traded for ease of

use.

• No framework is inherently superior but rather more suitable for different

use cases.

Level of Abstraction

Plotting frameworks cannot be evaluated in isolation because a lot of them are

often just high level interfaces on top of another plotting library. Among the five

frameworks, only Matplotlib and Bokeh are not built on top of something else.

Seaborn is built on top of Matplotlib, and Plotly and Altair are built on top of

D3.js, which is a JavaScript plotting library. Seaborn targets statistic plotting and

Altair and Plotly focus on providing different interface. Frameworks are built on

top of another one usually for increasing user convenience. That makes Plotly,

Altair, and Seaborn all high level frameworks. Plotly offers even higher level of

abstraction with Plotly Express, which is a wrapper around Plotly.

On the other hand, Matplotlib and Bokeh are both low level frameworks that

allow very fine-grained control over what is plotted. Matplotlib is the oldest of the

five, and it aspired to bring Matplot-like plotting to Python. It offers two separate
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interfaces but both are verbose and low level. Bokeh differentiates itself from

Matplotlib by focusing more on interactivity but it is still a low level framework.

Interactivity

Interactivity was introduced in the Section 1.4 as a key feature of visualization

tools. The frameworks that are compared in this chapter all apart from Seaborn

offer some level of interactivity.

In case of Matplotlib, interactivity is limited as it was not a main focus of the

library. That clarifies why no interactivity is present in Seaborn, as it is built on

top of Matplotlib.

Altair and Plotly are built on top of D3.js, therefore they are both producing

plots in web compatible formats that can utilize interactivity and can be easily

shared. The advantage of that is that all interactivity happens in the browser,

which does not require any additional installation from user. Neither Altair nor

Plotly specializes on displaying large datasets and the difference between them

is mainly in the philosophy of the library interface and integration. Plotly and

Dash are both maintained by the same company, which leads to better integration

between the two. Alternatively, using Altair in a Dash application is possible as

well.

Bokeh’s output can be also displayed in the browser, turned to dashboard and

exported to HTML with the interactivity in mind.

Maturity

The most mature of the five is Matplotlib, but in terms of maturity all frameworks

are mature enough to be used in production environments without hesitation. As

a proxy variable to judge the maturity, the number of stars on GitHub is used,

similarly to the previous section. See the Table 2.3 for the summary.

Matplotlib Seaborn Plotly Bokeh Altair

Abstraction level low high high low high

Interactivity limited no yes yes yes

Maturity very high high high high high

Stars on GitHub 19.8k [55] 12.3k [56] 15.8k [57] 19.1k [58] 9.1k [59]

Table 2.3 Plotting frameworks comparison.
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2.2.4 The Arguments for Plotly and Dash
For the purpose of this thesis, Plotly and Dash were chosen as the main tools

for the development of Ash. The choice started with the selection of dashboard-

ing framework. Dash was selected because it supports partial updating and is

more mature than Shiny. Partial updating is especially important because dimen-

sionality reduction algorithms described in the Section 1.4 are computationally

expensive. That could likely be solved by caching the results, but size of matrices

to be stored can be large.

In terms of plotting frameworks, Plotly was selected because of its integration

with Dash, however, the choice was not as essential as the choice of a dashboarding

framework. Many other plotting frameworks would suit the use case well, as

should be apparent from the Section 2.2.3.

2.3 Architectural Challenges
The following section discusses selected challenges that were faced during the

development of Ash. Internal representation of dendrograms in Ash is described

and the way it relates to format of expected input data is explored. Once the input

data format is addressed, the custom splitting algorithm and the way it led to

custom re-implementation of Plotly’s dendrogram function is described. The last

section describes the deployment and three possible ways of using Ash.

2.3.1 Dendrogram Parsing and Representation
A custom parsing solution was developed to read and translate input data neces-

sary for the dendrogram visualization. The file format was inspired by the output

of R’s hclust function, but internally Ash uses Scipy because it is embedded in

the Plotly ecosystem. The parsing algorithm is capable of converting from R’s

hclust format to Scipy’s dendrogram format and is published in a supplementary

PyPI package. This format is also expected from user as they bring their own data

to Ash.

Four files are expected:

• heights.csv

Heights.csv file refers to the height attribute of dendrogram. The height

attribute represents the heights of individual nodes (clusters) in the dendro-

gram in the form of a numeric vector. Each element of the vector is tied to

a specific node. It has the same number of rows as merge.csv and denotes

the value of the distance metric when two nodes (either observation or
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clusters) were merged together. Usually, the values are in ascending order,

but it may not hold for every metric.

• merge.csv

Merge.csv is a 2D matrix that describes the connections between clusters

and observations, in other words what is merged together. Each row is a

description of two components used in a merger. Positive values indicate

individual observations (leaf nodes) and negative values indicate clusters

formed in previous mergers. More on the iterative process of hierarchical

clustering can be read in Section 1.3.2.

• order.csv

Order.csv is a vector of positive integers that describes the order in which

observations were merged together. The indexing of the data in order.csv is

expected to start at 1, as DataParser subtracts 1 from each element to match

Python’s indexing, which starts at 0. Order is useful for data visualization

as it helps the program navigate the easiest way to plot leaves without

creating unnecessary cross-overs.

• data.csv

The data.csv should contain a matrix in which columns represent features

and rows represent each of the samples. It can either be raw or preprocessed

data. This file is used to plot data represented in dendrogram with the aim

to make data exploration more accessible.

Additionally, custom precomputed dimensionality reduction files can be pro-

vided. The files should contain relevant matrices, and they will serve for caching

purposes if provided. Should the data not be found it is created by leveraging the

sklearn library, and saved in the reduced_dimensions folder for later use.

2.3.2 Splitting Algorithm
Guided yet flexible way of assigning points to clusters is essential for enabling

fast and precise cluster assignment. It gives an option to be very granular but does

not tie the user’s hand with restrictions. Responsibility for the final assignment

is in the hands of the user.

To form clusters from a dendrogram, multiple methods exist. The three most

common are:

• Thresholding the height

• Thresholding the amount of clusters
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• Thresholding intra-cluster distance

Thresholding the height means selecting target height, then every branch of

the dendrogram under that height forms a separate cluster. Thresholding the

amount of clusters selects a height threshold, such that the final number of clusters

equals number of clusters desired. If the user wants individual distances between

points within all clusters to not exceed chosen value, the intra-cluster distance

thresholding is used. All three methods are standard with many implementations

available.

The method that is implemented in this thesis aims to solve two issues with

the previously mentioned methods:

• Apply thresholds only to a specific part of the dendrogram

• Allow co-assigning points to same cluster despite not being the closest in

terms of the chosen metric.

Both of them are addressed by a simple algorithm. The user selects a node by

either clicking on the dendrogram or by entering the node number and pressing

the button for splitting. Then the dendrogram is traversed recursively starting

from the selected node until the leaves are reached. Any leaf that is reached is

assigned to the cluster specified by id entered by the user.

The algorithm allows a split at different heights on different branches, but

having a meaningful split is the responsibility of the user. For instance, when

the user selects a node that is a parent of previously selected node, the split will

effectively be overwritten.

Figure 2.1 A screenshot from Ash, depicting how to add a dendrogram node into an
already existing cluster. Figure cropped for better visibility.

Thanks to the ability of naming clusters with unique IDs, Ash user can add a

dendrogram node into an already existing cluster, provided the same ID is entered.

This functionality is depicted in Figure 2.1, where the dendrogram is split in a way
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that cluster 1 (yellow) consists of two parts. The same figure also demonstrates

that splitting can be done at different heights on different branches. Otherwise,

the cluster 0 (black) would be split into parts as well. That is important because

the chosen metric takes into account all features of the input data, which might

not be the most suitable for particular cell types and because of the curse of

dimensionality (see Section 1.3.2). This feature allows the user to form clusters

disregarding the possibly inaccurate higher-level dendrogram structure created

by the distance metric.

The algorithm is implemented in a recursive manner. Despite Python’s lack

of tail call optimization, the depth of the dendrogram is not expected to be large,

so the recursion is not expected to be a problem.

2.3.3 Accessibility and Deployment
The user of a visualization tool should be able to use it without tedious installation

process. In case of Ash, ease of access is addressed by the deployment as a

standalone web application, but a docker image is also provided for situations

where more computing power is needed.

One of planned accessibility features of Ash is that the user should be able

to use the tool without programming knowledge. That is achieved by provid-

ing a simple dashboard-like interface that can be navigated by clicking on the

dendrogram or buttons and selecting options from dropdown menus.

There are three options how to use Ash:

• Web application
1

• Docker image

• Natively running the source code

The option with the lowest barrier to entry is through the website. Alter-

natively, the docker image can be downloaded. The image can be deployed on

premise or to cloud via services like Kubernetes. The most hands-on approach is

to interact with the code, which is hosted on github.com.

The decision to use Dash as a visualization framework enables web deployment

without additional effort, as Dash creates the web server, runs it on the machine,

and handles concurrent requests, user sessions and other challenging task. For

the deployment, Heroku platform was selected. Heroku [60] is a serverless

option that can scale in minutes without laborious migrations. The deployment

process is fairly standardized, leaving just a few options for the user. That is

an advantage for situation where the use-case is straightforward, but for less

1
Accessible from https://ash-clustering-80f7adc27a4c.herokuapp.com/
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straightforward use-cases, Heroku is not suitable. The ease of use is exchanged

for the price. The price of the service is higher than virtual machine of equivalent

performance. That leads to limitation of using the web app. Operations that

are intensive on computing power, such as calculating t-SNE, will run much

slower in the web application. For that reason the web application is suitable

for experimentation with smaller datasets, exploring the application and the

exploration of the application features. Once the dataset gets bigger, the other

deployment variants, such as containerization of the native run, are more suitable.

The Docker image is a solution for situations where the user needs more

computing power. The image is isolated from the environment of the host machine,

which makes it transferable across different systems and machines, allowing

frictionless deployment on a more powerful machine. The ideal situation in

which the Docker image should be used is to deploy Ash for a limited group of

users that knows their use case in advance. That could be, for instance, a lab.

If the user has programming skills, there are additional options to use Ash.

The source code of Ash is available on github.com
2
, where it can be downloaded,

edited or users can run it as a Python script from their own computer. Lastly, a

PyPI package can be installed, but the package only contains two utility functions

- the splitting algorithm and conversion tool between R dendrograms and sklearn

dendrograms.

2.4 User Interface

Ash’s user interface aims to be simple and easy to navigate. On top of Ash, there

is a header with three tabs pictured in Figure 2.2. The three tabs are Instructions,
Interactive Clustering, About.

In Instructions, Ash and its components are explained. In About, information

about Ash is provided. The main tab is Interactive Clustering. In this tab, all Ash’s

dashboards are available to the user.

Figure 2.2 A screenshot from Ash, depicting the header and three tabs.

2
Accessible at https://github.com/aemiliaurban/ash-interactive-dendrogram-tool
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The following description refers to individual components found in Interactive

Clustering.

The majority of options is available on the left side of Ash. The menus can be

seen in Figure 2.4.

On top of the column, there is a button that allows the user to import their

data. Clicking a button opens a pop-up window in which the user selects their

files. It is necessary to select all files the user wants to import. The required files

are described in the Section 2.3.1.

The menu that controls colors on all graphs in Ash is a simple drop-down

menu that allows the user to turn colorblind palette on and off.

Figure 2.3 Demonstration of node numbering in Ash. The top node is number one and
the number is increased with every other split as indicated by the orange arrow.

The two following input boxes are tied to the dendrogram which can be found

on the right to the menu. Beneath “Split at Node”, there is an input text box which

accepts integers. The input integer refers to the target node in the dendrogram,

beneath which the split will be made. Nodes are numbered from top down as

depicted in Figure 2.3. Furthermore, it is possible to assign the newly formed

cluster to a user defined cluster by entering an integer in the second text input

box. To add the split, the user needs to click on the “Add Split Point Button”.

Splitting can be performed via the menu or by clicking on dendrogram nodes.

Additionally, there is a button “Remove Split Point” that allows the user to remove

a selected split point. It is also possible to clear current clusters by clicking on

the “Remove All Split Points” button.

The last option in this part of the user interface is the “Download File” button

which allows the user to save the newly clustered data to a .csv file. The file

contains the original columns with an extra integer column which shows the final

cluster.
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Figure 2.4 A screenshot from Ash, depicting available menus.

Figure 2.5 shows the available graphs in Ash. As described above, the menu

ties to the available dendrogram representation. The data in the example were split

into 4 clusters. Beneath the data points is a heatmap. The heatmap is connected

to features selected in the drop-down menu of Cluster Specific Heatmap, and are

presented in the same order as the end leaf nodes of the dendrogram. This allows

the user to spot potential differences between the clusters. Only two features are

selected in the example, however, it is possible to select more.

The next element shows the cluster specific heatmap. It is connected to

the Cluster Statistics table below, which also serves as a radio button menu for

selecting which specific cluster should appear on the cluster specific heatmap.

Furthermore, the Cluster Statistics element allows the user to inspect the number

and share of samples in each cluster.

The final two plots are the Two features plot and the Dimensiolanility reduc-

tion plot. The colors in these plots correspond to their assigned clusters in the

dendrogram.
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Figure 2.5 A screenshot from Ash which shows the available menus and plots.
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Chapter 3

Case Study: Eosinophils in
Samusik_all Dataset

In this chapter, Ash is used to analyze Samusik_all dataset [3]. The structure and

characteristics of Samusik_all dataset are introduced in Section 3.1. Once the

dataset is introduced, the heterogeneity among the cells labeled as eosinophils

is highlighted. This heterogeneity is further explored using Ash with the aim

of identifying two distinct clusters, likely representing distinct cell populations

among the cells that should only be eosinophils, according to their manually

gated labels. Marker levels of the two suspected populations are investigated and

results are reported.

Based on the results of the analysis, alternative labels for the Samusik_all

dataset are proposed, and they are compared to the original labels. By the end of

this chapter, the reader should be familiar with the workflow of using Ash and

what kind of insights can be gathered from it.

3.1 Dataset Characteristics
The dataset used for the analysis originates from Samusik et al. [3]. In their paper,

Samusik et al. [3] are concerned with finding cell populations algorithmically with

their novel X-shift algorithm. The authors demonstrate X-shift’s performance on

a dataset that was manually gated for the purposes of the paper. Three cytometry

experts were tasked with identifying 24 cell populations in the dataset. The gating

strategy of these experts was the same, but the gates were selected independently.

Resulting labels that were assigned and published with the paper were obtained

from the consensus among the three experts.

Two versions of the dataset were published. Samusik_all dataset contains all

cells, while Samusik_01 contains data points from the sample 01 only. For the
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overview of both versions of the dataset, refer to the Table 3.1.

This thesis uses Samusik_all dataset for the analysis, but comparable results

on Samusik_01 by Becht et al. [61] are briefly discussed in the following sections.

Samusik_all dataset Samusik_01 dataset

Number of cells 841 644 86 864

Number of dimensions 39 39

Number of manually gated population 24 24

Share of manually gated cells 61% 61%

Origin 10 C57BL/6 mice 1 C57BL/6 mouse

Table 3.1 Overview of the Samusik_all dataset.

3.2 Eosinophils in Samusik Datasets
Eosinophils are a type of white blood cells that is involved in the immune response

to parasites and allergic reactions. This section investigates the heterogeneity

among them in the Samusik datasets.

As of 2024, UMAP as well as t-SNE are commonly used to aid clustering for

flow cytometry data. Examples can be found in Stolarek et al.[41] and Mair et

al. [15]. Both methods are harder to interpret due to their non-linear nature,

and because resulting projection depends on hyperparameters. Choice of hyper-

parameters influences whether the algorithms focus more on local structure or

global structure of the data. In the example of the t-SNE cluster size as well as

distances between clusters can be meaningless [62]. Despite the caution that

must be taken when interpreting the results, the methods aim to maintain high

dimensionality structure and map it to a lower dimension. For that reason, distinct

cell populations are expected to be visually separated to a high degree.

In case of the Samusik_all dataset, eosinophils exhibit a concerning level of

heterogeneity. See Figure 3.1 for the UMAP representation of the dataset with

eosinophils highlighted. The yellow color represents manually gated eosinophils.

Visual inspection suggests two distinct clusters among the cells labeled as

eosinophils. Comparable heterogeneity was also reported by Becht et al. [61] on

the Samusik_01 dataset. See Figure 3.2 for the UMAP and t-SNE with eosinophils

highlighted.

In the Samusik datasets, eosinophils were gated using SiglecF and CD11b

markers. The data points where both markers were high are labeled as eosinophils.

See Figure 3.3 for the exact shape of the gate.

SiglecF and CD11b are commonly used markers for eosinophils, but other

cells with high levels of these markers exist. One of the possible reasons for the
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Figure 3.1 UMAP representation of the Samusik_all dataset with eosinophils high-
lighted.

Figure 3.2 UMAP and t-SNE projections of the Samusik_01 dataset with eosinophils
highlighted. Taken from Becht et al. [61]. Highlight by the author of this thesis.

heterogeneity in UMAP and t-SNE projections is that other cells with high SiglecF

and CD11b were mistakenly considered to be eosinophils.

Neutrophils can be mistaken for eosinophils, as both cell types express CD15

and CD66 [63] but none of these markers are available in the Samusik datasets.
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Figure 3.3 Manually gated eosinophils from Samusik_all dataset. CD11b and SiglecF
were chosen as markers by the authors of the dataset. Taken from supplementary
materials [3].

Bolden et al. [64] suggest that CD11b+ SiglecF+ IL5Rα- cells develop into non-

eosinophil granulocytes in C57BL/6 mice. But as of 2024, the research on other

CD11 and SiglecF non-eosinophils in mouse bone marrow is limited. For the

overview of markers that are used to identify eosinophils see the Table A.1.

Instead of identifying eosinophils by markers they express, lack of expression

can be used as supportive evidence as well. According to this article on Life

Sciences [63] and Thurau et al. [65], eosinophils lack CD16 which is a marker

found on the surface of NK cells and monocytes [66]. See the Figure 3.4 from

Thurau et al. [65] showing the lack of CD16 expression. Samusik datasets do not

contain CD16 marker, but they contain CD16/32.

Figure 3.4 Lack of CD16 expression on eosinophils. Taken from Thurau et al. [65].

Next section describes how Ash was used to identify two distinct clusters
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among the cells labeled as eosinophils in Samusik_all dataset.

3.3 Clusters Among Eosinophils
This section investigates the heterogeneity among the cells labeled as eosinophils

in the Samusik_all dataset.

3.3.1 Methodology
The analysis was applied only to eosinophils from the Samusik_all dataset. Before

the analysis, the dataset was split into 11 parts to ensure the plots remain clear

and legible. Each part but the last consists of 5 000 cells and R hclust was used

to generate dendrogram data in the required format. For each part of the dataset

the following procedure was applied:

Load data to Ash

For performance reasons, the version of Ash that was used ran on a local machine

with Apple M1 chip and 16 GB of RAM. Output of R hclust was exported to a

.csv file and was loaded to Ash together with the dataset.

Cluster data

Once the data was loaded, UMAP plot was used to guide the clustering. Target

number of clusters was set to 2, as eosinophils were observed to form two distinct

clusters on the Figure 3.1. Then node or nodes that achieved the best separation

on the UMAP plot were selected to split the data. Nodes, where dendrograms

were split, Ash configuration and resulting clusters are all available on GitHub
1
.

See Figure 3.5 for an example of the resulting split.

Inspect and identify discriminating markers

The aim of this step was to interact with the scatter plot and heatmap with the

goal of identifying markers that are different between the two clusters. SiglecF

and CD11b were expected to have high values, as their high values was the criteria

for data points to be labeled as eosinophils. Special attention was paid to CD16/32,

as it is expected to be absent in eosinophils [65] and it was not part of the gating

process. For the example of different levels among the two clusters refer to the

Figure 3.6.

1
Accessible from https://github.com/aemiliaurban/ash-interactive-dendrogram-tool

39



Figure 3.5 UMAP guided clustering of the 9th part of the Samusik_all dataset. The
Figure was generated in Ash and cropped for the improved visibility.

Figure 3.6 Scatter plot of Ly6C (on horizontal axis) and F480 (on vertical axis) markers
from part 9 of the Samusik_all dataset.

Label clusters based on CD16/32

This step starts with downloading the data from Ash through the export button.

The data is further processed so that clusters are not labeled by their index, but

by the mean CD16/32 level (low or high). The goal of such labeling is to be able

to combine all parts of the dataset back together to reconstruct the UMAP plot

(see Figure 3.1) with the clusters labeled by their CD16/32 levels.

Reconstruct the UMAP with labeled clusters

In case of the data mislabeling, it is expected to observe clusters tightly packed

together with minimal mixing between them. The cluster with low CD16/32 is

expected to be correctly labeled eosinophils, while the cluster with high CD16/32

is expected to be mislabeled cells.

3.3.2 Results
Major attention was paid to CD16/32 as it is expected to be absent on eosinophils

[65], but other markers were noticeably different for both clusters among all

parts of the dataset. In general, all data parts exhibited very similar patterns with
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only limited variation across different parts. The markers that were consistently

different between the two clusters were CD16/32, F480, Ly6C. For the reference

on how noticeable the difference between markers level was, please refer to the

Figure 3.6. The Figure demonstrates the scatter plot of F480 and Ly6C on the

ninth part of the data. In this particular case it is clearly visible that t-SNE guided

clusters separate the population almost perfectly.

Detailed differences in means of CD16/32, F480, Ly6C between clusters can be

inspected in the Tables B.1, B.2, B.3 respectively. Note that the Table B.1 should

be interpreted with caution. Cluster labeled as cluster with low mean levels of

CD16/32 has low mean levels of CD16/32 by design.

Summarized levels of the markers among combination of all data parts can

be inspected on Figure 3.7. It is visible that group with lower CD16/32 levels has

also lower F480 but higher Lyc6 marker levels.

Figure 3.7 Boxplot of CD16/32, F480, and Ly6C markers for the combined clusters
with low and high CD16/32. Cluster 1 respresent the cluster with low mean CD16/32,
cluster 2 represents the cluster with high mean CD16/32.

Ly6c is an antigen commonly used to differentiate between classical and non-

classical monocytes/macrophages [67] and F480 is a marker for macrophages [68].

In the context of previously observed heterogeneity that could mean that the

cluster with lower levels of CD16/32 could be true eosinophils as we expect low

values of CD16/32 [65]. The other cluster’s higher value of Ly6C would suggest

it might either be a population of monocytes or a population of macrophages.

Argument against macrophages would be the relatively lower level F480 among

the cells in the cluster. These observations suggest that the heterogeneity among

eosinophils could be explained by monocytes being mistaken for eosinophils.

When all data parts are combined back with the original Samusik_all dataset,

a UMAP plot can be formed. Compared to the Figure 3.1, UMAP on combined

dataset allows highlighting both clusters that were formed in Ash. If the het-

erogeneity from the Figure 3.1 is caused by monocytes, the suspicious points

(ones that visually does not belong to the cluster of eosinphils) are expected to
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have higher CD16/32, lower F480 and higher Ly6C. The aforementioned UMAP

is depicted in the Figure 3.8. Suspected monocytes form their separate cluster,

that is visually distinct from the rest of the eosinophils. That further support the

hypothesis of mislabeling.

Figure 3.8 UMAP representation of the Samusik_all dataset clusters formed in Ash.

The analysis in this chapter demonstrates, how a visualization and clustering

tool can help to discover the irregularities in the data. As this analysis only

compared relative levels of selected markers, further research is encouraged,

and it can be built upon the foundation of this chapter. Along with this thesis

an alternative cellular population labels for Samusik_all are published, where

eosinophils are split to the aforementioned clusters based UMAP-guided clustering

procedure described in this chapter and performed in Ash. The labels are available

from the Author’s Github.
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Conclusion

This thesis describes Ash, a visualization and clustering tool for flow cytometry

data analysis.

The first chapter introduces flow cytometry, covering its fundamental princi-

ples, data outputs, and currently available analysis techniques, including manual

analysis techniques and automated clustering methods. The last part of the

chapter is dedicated to data visualization in flow cytometry.

The second chapter dives into currently available clustering tools in flow

cytometry. It focuses on Ash, the proprietary visualization tool for flow cytom-

etry data analysis developed in this thesis. It covers the selected technologies,

architecture and architectural challenges, and user interface. Ash is designed to

allow interactive and intuitive visualization and clustering of preprocessed data.

It offers a variety of plots including interactive dendrogram, which can be used

to split data into clusters interactively by the user. The dendrogram is connected

to a heatmap, which can help the user see patterns in the data. Furthermore, it is

possible to plot two features of user’s choice on a scatter plot, and see the data in

plots based on dimensionality reduction algorithms PCA, t-SNE, and UMAP. The

algorithms are available in both 2D and 3D.

To validate Ash’s effectiveness, the benchmark Samusik_all dataset was anal-

ysed. The data is tested under the hypothesis that using data visualization tech-

niques can reveal underlying patterns and help with data analysis. The analysis

dicovered an incorrect labeling of one of the cell populations. The cells that

were labeled as eosinophils by manual gating are a heterogeneious group. The

samples in this group express different CD16/32 levels, markers that can be found

in neutrophils but not in eosinophils. However, the levels of markers F480 and

Ly6C indicate that the cells might be monocytes. The separation of these two

cell populations is visible on the UMAP plot, in which the two populations are

located in different areas of the plot.

The outcomes of this thesis highlight the potential of powerful data visualiza-

tion tools such as Ash as key parts of flow cytometry data analysis. By providing

user-friendly and customizable visualization options, researchers can interact

with data in more efficient ways, leading to more accurate and reliable results.

43



The main contribution of this thesis lies in the development of a user-friendly

and open-source tool that can be used by flow cytometry researchers to improve

their data analysis for free. The free availability of Ash can hopefully encourage

the wider adoption of data visualization techniques among those with limited

programming experience.
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Appendix A

Markers used to identify
Eosinophils

Figure A.1 Markers used to identify eosinophils. Taken from Life Sciences [63].
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Appendix B

Difference in Marker levels among
UMAP-guided Clusters of
Eosinophils

Mean CB16/32 levels

Data Part Cluster with
low CB16/32

Cluster with
high CB16/32

Part 1 3.868 4.126

Part 2 3.82 4.237

Part 3 3.906 4.174

Part 4 4.041 4.158

Part 5 4.133 4.413

Part 6 4.046 4.31

Part 7 4.104 4.276

Part 8 3.896 4.224

Part 9 3.961 4.121

Part 10 4.059 4.386

Part 11 3.785 4.284

Table B.1 Mean levels of CD16/32 for each data part
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Mean F480 levels

Data Part Cluster with
low CB16/32

Cluster with
high CB16/32

Part 1 2.211 0.682

Part 2 2.324 0.71

Part 3 2.239 0.683

Part 4 1.583 2.181

Part 5 2.184 0.962

Part 6 1.888 0.621

Part 7 2.199 0.532

Part 8 2.331 0.981

Part 9 2.315 0.472

Part 10 2.214 1.036

Part 11 2.398 1.448

Table B.2 Mean levels of F480 for each data part

Mean Ly6C levels

Data Part Cluster with
low CB16/32

Cluster with
high CB16/32

Part 1 0.905 4.057

Part 2 0.931 3.14

Part 3 0.932 3.245

Part 4 2.197 0.877

Part 5 0.749 3.048

Part 6 0.641 3.206

Part 7 0.833 3.846

Part 8 0.749 3.345

Part 9 0.756 3.731

Part 10 0.788 3.025

Part 11 0.644 2.606

Table B.3 Mean levels of Ly6C for each data part
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Appendix C

Local installation guide

Ash is freely available on GitHub, and can be downloaded from its cloud-based

repository hosting service at

https://github.com/aemiliaurban/ash-interactive-dendrogram-tool.

The applications comes with demo data included. The source of the data is the

Levine dataset [34]. There are multiple ways the project can be downloaded to

the end user’s computer.

It is possible to use the git clone command for users who have pre-established

HTTPS or SSH connections to GitHub, however, setting up these connections is

out of the scope of this thesis.

For users without pre-established GitHub connections, it is possible to down-

load the application as .zip by clicking on the "<> Code" button and choosing the

option "Download ZIP", as represented in figure C.1 by green square. Once the

.zip file is downloaded, unzip the files to location of choice, and the installation is

complete.

Ash supports python3.10. Make sure you have it installed on your machine.

It can be installed from terminal with homebrew:

brew install python@3.10
OPTIONAL: creating a virtual environment (highly recommended):

python3.10 -m venv venv
Activate the virtual environment (operation system dependent):

source venv/bin/activate
Install requirements:

pip install -r requirements.txt
Run the app: Before running the app, make sure you are in the ash directory

(relative paths).

python app.py
The virtual environment has to be activated via a command. Activation of

the virtual environment is system and shell dependent, as shown in table C.1.
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Figure C.1 Download menu on GitHub.

Platform Shell Command to activate virtual environment
POSIX bash/zsh source <venv>/bin/activate

POSIX fish source <venv>/bin/activate.fish

POSIX csh/tcsh source <venv>/bin/activate.csh

POSIX PowerShell <venv>/bin/Activate.ps1

Windows cmd.exe <venv>\Scripts\activate.bat

Windows PowerShell <venv>\Scripts\Activate.ps1

Table C.1 Virtual environment activation commands for individual systems and their
shells.
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Appendix D

Building Docker Image

It is also possible to run Ash from the included Dockerfile. Commands ought to

be run from the root of the repo. Alternatively, you can adjust the paths.

Build the image:

docker build . -t ash –no-cache
Run the container:

docker run -p 8050:8050 ash
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