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Abstract: In times of climate change, soil moisture monitoring is an important aspect

for its understanding and possibly mitigation. SAR data with high spatial resolution is

an important tool for this purpose. This thesis deals with their use in SM retrieval from

Sentinel-1 satellite data. The applied change detection model is further calibrated in

order to remove the influence of vegetation on the resulting SM estimates by using the

SAR variable cross-polarisation ratio. The RMSD decreased by 7% and the correlation

increased by 8% using the calibration. The results presented do not achieve the accuracy

of the ASCAT SM product but indicate the potential for vegetation correction using the

Cross-polarization Ratio variable in further research to obtain a higher spatial resolution

SM product.

Keywords: surface soil moisture, soil moisture retrieval, Sentinel-1, SM Change

detection, vegetation correction

Abstrakt: V době klimatických změn je sledování půdní vlhkosti důležitým aspektem

pro její pochopení. a případné zmírnění jejího dopadu. Data SAR s vysokým pros-

torovým rozlišením jsou pro tento účel důležitým nástrojem. Tento práce se zabývá

jejich využitím při získávání SM z dat družice Sentinel-1. Použitý model detekce změn

je dále kalibrován za účelem odstranění vlivu vegetace na výsledné odhady SM pomocí

modelu SAR. proměnného poměru příčné polarizace. Kalibrací se RMSD snížila o 7% a

korelace se zvýšila o 8%. Předložené výsledky nedosahují přesnosti produktu ASCAT

SM, ale naznačují potenciál vegetace. korekce pomocí proměnné Cross-polarization

Ratio v dalším výzkumu k získání produktu SM s vyšším prostorovým rozlišením.

Klíčová slova: povrchová vlhkost půdy, získávání vlhkosti půdy, Sentinel-1, detekce

změn SM, korekce vegetace
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1 Introduction
Soil moisture is one of the 55 Essential Climate Variables (ECVs) defined by the

Global Climate Observing System (GCOS). It stands for the water content stored in

the vadose (unsaturated) soil zone. Soil moisture is an important variable for both the

water and energy cycle [Seneviratne et al., 2010]. It plays a crucial role in vegetational

evapotranspiration, which is of great importance as according to [Oki and Kanae, 2006],

60% of the total land precipitation returns to the atmosphere through this process.

Additionally, land evapotranspiration consumes more than 50% of the entire solar

energy absorbed by land surfaces [Trenberth et al., 2009]. These data confirm the great

importance of soil moisture in monitoring climate change and the processes that influence

it. Therefore, soil moisture is one of the variables that need to be monitored on a global

scale and with sufficient temporal as well as spatial resolution. Ground measurements

are still the most accurate method of determining soil moisture, but covering a larger

area is particularly challenging. Hence, remote sensing (RS) methods are increasingly

being explored for soil moisture monitoring purposes.

The presented thesis addresses the determination of surface soil moisture at field

scale using the SM Change detection model and Sentinel-1 Synthetic Aperture Radar

(SAR) data. Estimates from satellite sensors are compared with in-situ measurements

from the International Soil Moisture Network database (ISMN) in Romania in order to

evaluate the model performance. Furthermore, a model calibration is proposed in order

to correct for vegetation influence on the SM estimate from the Sentinel-1 satellite. The

results of the calibrated model are compared with the original Change detection model

without vegetation correction, with in-situ ISMN data as well as with the established

SM product from the Advanced SCATterometer sensor (ASCAT).

In the following Introduction section (1.1), different retrieval methods for soil

moisture estimation using RS techniques are introduced in the scope of relevant studies

within the past decades. Strong emphasis is put on Microwave RS (MRS) as it is still

the preferred method to estimate surface SM from RS data and is the primary method

utilized for currently available SM products at global or regional scale [Li et al., 2021].

In addition, different approaches to correct for vegetation impact are also introduced in

the section 1.2. The 1.3 section introduces relevant principles of measuring the Earth’s

surface using SAR sensors, particularly the C-band SAR sensor on board of Sentinel-1.

The last section (1.4) is dedicated to the Cross-polarization Ratio variable (CR) and its
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importance in describing vegetation since CR is used in the current thesis for vegetation

correction in the SM Change detection model.

1.1 Soil moisture retrieval methods from RS

Over the past 50 years, extensive research has been dedicated to generate reliable

soil moisture products from RS techniques rather than from costly and time-expensive

ground-based measurements [Liu and Yang, 2022]. A wide variety of space-borne sensors

receiving reflected or emitted energy from the Earth’s surface has been applied to monitor

SM. Signal from visible (VIS), near-infrared (NIR), thermal-infrared (TIR) as well as

microwave electromagnetic spectrum has been exploited to retrieve information about

surface SM in the past [Petropoulos et al., 2015, Zhang and Zhou, 2016, Li et al., 2021].

1.1.1 Optical RS methods

Retrieving information about SM from VIS/NIR electromagnetic spectrum (350–

1 400 nm) is based on the relationship between changes in surface soil reflectance

properties [Babaeian et al., 2019]. Alterations of soil reflectance due to different wa-

ter content have been observed already early in the 20th century [Ångström, 1925,

Bowers and Smith, 1972]. A decrease in soil surface reflectance with an increase in

soil water content can be observed due to energy absorption within the NIR band

[Ångström, 1925]. Several empirical models exploiting either spectral information

from a single band or combining spectral signal into an index have been proposed

[Li et al., 2021]. The problem associated with all empirical models is the strong

site dependency on specific surface conditions [Petropoulos et al., 2015, Li et al., 2021].

Albeit less frequently used, physically-based models attempt to overcome this ob-

stacle [Li et al., 2021]. The OPtical TRApezoid Model (OPTRAM) proposed by

[Sadeghi et al., 2017] exploits the linear relationship between surface SM and short-wave

infrared reflectance. The results have shown a Root Mean Square Deviation (RMSD)

of less than 0.05 m3.m−3 applied on Sentinel-1 and Landsat-8 data with high spatial

resolution for VIS/NIR (10–30 m).

TIR electromagnetic signal (1 400–14 000 1.55 µm) measuring the land surface

temperature (LST) differences can be utilized to obtain estimates of thermal inertia (TI)

[Petropoulos et al., 2015]. TI is a function of thermal conductivity and heat capacity

[Zhang and Zhou, 2016]. Water abundance due to increased SM causes a rise in both

variables and in this way indirectly leads to an increase of TI [Zhang and Zhou, 2016].
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Despite a very clear physical connection between SM and TI, which can be estimated from

diurnal LST observations [Kahle, 1977], this method is not well suited for moderately

or densely vegetated soils with an evapotranspiration effect [Li et al., 2021] and is also

influenced by the soil type, therefore, it is not transferable and applicable at larger

scales [Petropoulos et al., 2015].

1.1.2 Microwave active and passive RS methods

Microwave RS methods are preferred when retrieving SM [Barrett et al., 2009,

Li et al., 2021]. It encompasses passive and active sensors measuring signal within

the wavelength range of 1 mm–30 cm. For SM retrieval, signal from the X-, C-

and L-band is generally used as it enables reliable data about soil dielectric prop-

erties for the first 0–1 cm (X-, C-band) and 0-5 cm (L-band) of the surface soil

[Lv et al., 2018, Li et al., 2021]. They are widely applied also because of their low fre-

quency which allows to neglect scattering or absorbing effects of atmosphere molecules

[Karthikeyan et al., 2017]. Therefore, it is assumed that all interactions with any

medium take place first at the surface-air boundary. L-band is broadly accepted as the

best option for SM detection as C- and X-band signal might not penetrate through vegeta-

tion deeply enough [Petropoulos et al., 2015]. In addition, [Njoku and Entekhabi, 1996]

showed that the L-band is less sensitive toward vegetation water content up to 5 kg.m2

in comparison to the X- and C-band (1.5 kg.m2). The main principle of moisture

detection is built upon the difference between soil dielectric constant during wet and

dry conditions. Consequently, SM retrieval models for microwave sensors exploit the

relationship between sensor-measured quantity (surface emission by passive MRS and

backscatter coefficient by active MRS) and dielectric properties of soil, and the depen-

dency on the dielectric constant and SM [Karthikeyan et al., 2017].

Passive sensors measure surface thermal emission as brightness temperature TB,

which can be indirectly related to soil water content [Karthikeyan et al., 2017]. An

increase in SM reduces the emissivity of the soil surface which further leads to a

decrease in TB [Karthikeyan et al., 2017]. In the first studies, several empirical mod-

els have been developed connecting measured TB with SM [Li et al., 2021]. These

models were usually dependent on land cover or specific surface conditions. There-

fore, physical approaches became more popular. They consist of a combination of

two models – the Radiative Transfer Model (RTM) and the dielectric mixing model
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[Karthikeyan et al., 2017]. As for the first one, through solving radiative transfer equa-

tions TB is related to dielectric constant under various conditions (e.g., temperature,

surface roughness, vegetation, atmosphere, and cosmic background) and sensor charac-

teristics [Karthikeyan et al., 2017]. Nowadays, the so-called t-ω model [Mo et al., 1982]

is the common model used in the first retrieval phase and is applied in all passive MRS

SM retrieval models [Babaeian et al., 2019]. It describes the interaction of microwave

wavelength with the soil surface and vegetation. Thus, the contribution of the soil

surface can be separated from that of vegetation and further inverted to soil moisture

estimates. The model requires two input parameters – vegetation optical depth (VOD)

as an indicator of radiation attenuation by vegetation and single scattering albedo

ω describing the portion of radiation scattered by vegetation relatively to the total

extinction [Li et al., 2021].

In the next step, when deriving the relation between SM and dielectric constant

multiple dielectric mixing models have been proposed – Wang and Schmugge model

[Wang and Schmugge, 1980], Dobson model [Dobson et al., 1985], Hallikainen model

[Hallikainen et al., 1985] or Mironov model [Mironov et al., 2009]. The models vary in

the input parameters besides SM (particle size, porosity, microwave frequency, dry soil

bulk density, etc.) [Karthikeyan et al., 2017]. In the early years of the mission, the

Dobson model was implemented within the retrieval algorithm until 2013 when it was

supplemented by the Mironov model [Mialon et al., 2015].

The concept of SM derivation from active microwave signal is similarly based on

the relation between soil dielectric properties and soil water content. The difference is

that active microwave instruments transmit their radiation at a specific wavelength and

measure the reflected backscatter coefficient. The backscatter coefficient σ0 is defined

as the radar cross section σ normalized over an area A. Active MRS allows to enhance

the spatial resolution of the final data compared to passive microwave data since the

natural surface emissions within the microwave electromagnetic spectrum are weak

and therefore a large footprint is required to capture a sufficient amount of the signal

resulting in coarse spatial resolution [Karthikeyan et al., 2017]. The active microwave

signal can be absorbed, scattered, reflected, or further transmitted into the deeper

medium layers [Kornelsen and Coulibaly, 2013]. Therefore, the sensor can only measure

the fraction of the original signal scattered back in the sensor’s direction. This fraction

depends on surface conditions and sensor properties [Kornelsen and Coulibaly, 2013].
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Decoupling of the total received backscatter signal to retrieve only information about

soil water content is a complex issue affected by several factors such as incidence angle,

SM, the contribution of different backscattering mechanisms (specular, intermediate

specular/diffuse, diffuse scattering) as well as sensor transmitter/receiver polarization

properties [Verhoest et al., 2008].

Like passive MRS, the backscatter coefficient must be defined as a function of SM

or dielectric constant to be later inverted to model SM content. These models can be

classified according to [Barrett et al., 2009] into physically-based, semi-empirical, and

empirical models. The simplest model linking SM and the backscatter coefficient is a

linear model [Ulaby et al., 1978]. As highlighted by [Verhoest et al., 2008] this model

is not transferable between study sites as the slope of the linear fit varies strongly

depending on the location. Moreover, [Barrett et al., 2009] emphasized that this model

is designed for specific datasets and under specific sensor parameters.

Semi-empirical models unlike empirical models are designed upon a physical/theo-

retical basis but still require experimental data to be calibrated [Verhoest et al., 2008].

[Oh et al., 1992] simulated the CR of the backscatter coefficient in different polarizations

as a function of SM and roughness conditions given by normalized root mean square (rms)

surface roughness. The advantage of this model is the single parameter needed to account

for surface roughness. Nevertheless, many studies proved its unsuitability for airborne

and spaceborne SAR sensors [Boisvert et al., 1997, van Oevelen and Hoekman, 1999,

Baghdadi and Zribi, 2006]. Dubois model designed by [Dubois et al., 1995] simulates

the co-polarized backscatter coefficient as a function of soil dielectric constant and rms

of surface roughness. The model was found to be less sensitive to system noise due to

accounting only for co-polarized signal [Barrett et al., 2009].

Physically based models can be implemented when surface roughness parameters

are known [Barrett et al., 2009]. Small Perturbations Model (SPM), Geometric Optics

Model (GOM), Physical Optics Model (POM), or Integral Equation Model (IEM) which

incorporates SPM are used to model the interaction of electromagnetic waves with rough

surface. All of these models have their shortcomings and lead to better results under

different roughness conditions [Barrett et al., 2009]. Overall, IEM and its modified

version Advanced IEM (AIEM) are most widely applied as it is applicable across a

broader surface roughness range [Verhoest et al., 2008, Barrett et al., 2009]. It should

be noted that all of these models neglect the impact of vegetation cover and are there-

fore suitable for bare soil, in areas with sparse vegetation cover [Verhoest et al., 2008,
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Barrett et al., 2009]. Additionally, in arid regions, IEM also neglects the sub-surface

scattering effect [Verhoest et al., 2008].

The aforementioned models can be used to simulate backscatter from single im-

agery correcting for soil roughness or vegetation. They are the forward models of

backscatter behavior under various environmental and sensor conditions. SM is further

simulated using the dielectric mixing model as a function of measured backscatter.

The parameterization of surface and vegetation properties is, however, difficult in

most cases [Kornelsen and Coulibaly, 2013]. Therefore, Change detection models are

a very popular SM retrieval method. They assume that surface roughness and land

cover conditions stay constant over time. As stated in [Zhu et al., 2022] there are

long-term and short-term Change detection models (LTCD, STDC). STDC requires

a collection of temporally dense imageries and uses the time series to retrieve SM

[Balenzano et al., 2021]. LTCD was originally designed by [Wagner et al., 1999] and

assumes a linear relationship between observed backscatter and long-term SM range.

SM range (dynamic range or sensitivity) is defined as the difference between long-term

reference backscatter during the driest and wettest conditions. This method was initially

developed for the former European Remote Sensing Satellite (ERS) mission and later

re-used in the past Environmental Satellite (ENVISAT) mission and the current Mete-

orological Operational satellite (MetOp) mission carrying the ASCAT scatterometer.

The backscatter references are found by applying the cross-angle concept which assumes

that under a specific incidence angle, the backscatter signal is affected solely by SM. The

angle reference was set empirically to 25° and 40° for dry and wet conditions, respec-

tively [Naeimi et al., 2009]. The Change detection method is very simple and hence was

applied to provide global SM products from previously mentioned spaceborne missions.

Both STCD and LTDC were also applied to Sentinel-1 SAR data to generate a 1-

km macroscale SM product [Bauer-Marschallinger et al., 2019, Balenzano et al., 2021].

The main difference within the applied methods is the character of retrieved SM. In

the former study (applying LTCD) relative SM scaled between dry and soil reference is

computed whereas in the latter one absolute values of SM were estimated. In addition,

according to [Zhu et al., 2022], the constant soil roughness assumption can be found

valid for the STCD but is vague for LTCD.
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1.2 Vegetation correction

To simulate vegetation impact on the measured backscatter coefficient, models

for vegetation cover were designed in previous research – Michigan microwave canopy

scattering (MIMICS) and Water Cloud Model (WCM). The former model defines a

set of very specific geometrical parameters to characterize forest canopy and divides

it into three parts – crown, trunk, and ground [Ulaby et al., 1990]. Compared to

MIMICS, WCM simplifies the structure of vegetation to minimize the amount of

describing parameters. WCM assumes the vegetation layer to be represented by water

droplets distributed randomly within a “cloud” layer of air and vegetation. The theory

behind this concept is the assumption that vegetation water content is the main factor

affecting vegetation backscatter and that up to 99% of vegetation volume consists of air

[Attema and Ulaby, 1978]. With this model definition, backscatter can be simulated

requiring only four parameters. Two of these parameters, extinction of microwave signal

due to vegetation water content VWC and extinction due to vegetation scattering, are

linked to the parameters t and ω in the previously mentioned t − ω model. In essence,

WCM combines the t − ω model to account for vegetation backscatter and the linear

model for backscatter over bare soil [Wagner et al., 2019]. One shortcoming of the WCM

model is the neglect of multiple scattering effects [Kornelsen and Coulibaly, 2013]. In the

latest version of WCM [Kweon and Oh, 2015] the authors included new parameters to

characterize the angular distribution of leaves which led to lower RMSD for backscatter

in vertical-vertical (VV) and horizontal-horizontal (HH) polarization over corn and bean

fields compared to the original WCM. According to [Ma et al., 2020], the MIMICS model

is more suitable for forest canopy as it was originally developed for this land cover and

only later modified for vegetation of lower height [Li et al., 2021]. On the other hand,

it requires insertion of many parameters that are difficult to obtain and, hence, it is not

as widely applied as the WCM [Li et al., 2021]. WCM is also implemented in Terra-Sar

spaceborne-mission providing SM product at a global scale [Liu and Yang, 2022].

In the case of the SM product from the ASCAT sensor, the above-mentioned

cross-angle principle can be modified so that the model also directly captures changes

in vegetation and thus corrects for their effect on the resulting soil moisture esti-

mate. In their studies [Pfeil et al., 2018, Hahn et al., 2021b, Vreugdenhil et al., 2016],

researchers from the Vienna University of Technology (TU Wien) showed that the

selection of reference cross-angles and the subsequent impact on the determination of

dry and wet reference in the Change detection model helped to improve the soil moisture
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determination.

1.3 SAR specifics

Synthetic Aperture Radar (SAR) belongs to the active RS. SAR sensors transmit

microwave pulses with a wavelength between 1 mm and 1 m and measure the backscat-

tered intensity of the transmitted puls as well as the time lag between transmission and

signal reception. Depending on the wavelength of the emitted pulse, SAR sensors can

be distinguished according to the different bands of the microwave spectrum, which

are indicated by letter abbreviations from Ka (0.75 – 1.1 cm) to P (0.3 – 1 m). The

most commonly used bands are X (2.4 – 3.75 cm), C (3.75 – 7.5 cm) and L (15 – 30

cm). The longer wavelength signal penetrates deeper to the surface through terrestrial

objects while the shorter wavelength signal can also record details of objects on the

surface. Sentinel-1 carries a C-band sensor on its board.

1.3.1 Acquisition geometry

SAR sensors are characterized by their side-looking measuring technique. The signal

is transmitted in an oblique direction to the surface of the earth. Depending on the

direction, two resolutions are distinguished in SAR systems – across-track (range) and

along-track (azimuth) resolution. SAR range depends on the length of the transmitted

pulse. If the distance between two objects on the surface is greater than half of the

pulse’s length (in range dimension, not on the ground), the objects can be separated

from each other by the sensor. The beamwidth determines the azimuthal resolution as

with the increasing distance from the sensor the radar illumination also increases and,

consequently, the resolution gets coarser. Accordingly, two objects in the so-called near

range can be separable but might not be in the far range. The along-tack resolution

can be enhanced considerably by increasing the antenna length since the beamwidth

is inversely proportional to this length. With a longer antenna, the beamwidth gets

narrower and therefore the along-track resolution is improved. SAR data are typical for

their high spatial resolution, which is achieved using the synthetic aperture technique.

SAR sensors use this technique to simulate a longer antenna by measuring not only the

intensity of the received pulse but also its phase and by means of the Doppler effect the

respective distance from a specific sensor position relatively to the Earth surface can

be determined. This technique replaces the need for a long physical antenna that is

impossible to install on the carrier.
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Sentinel-1 mission is further characterized by a regular orbital path and a finite

number of relative orbits over a specific location on Earth surface. In other words, a

particular location is always observed by the C-SAR sensor on Sentinel-1 from two (at

the equator) up to six (at the poles) positions. The regular acquisition geometry of

C-SAR Sentinel-1 influences also the temporal analysis of SAR time series. Depending

on the current relative orbit, the incidence angle θ of the signal, defined as the angle

between the nadir and the direction of the SAR signal, varies. The change in θ directly

influences the intensity of the measured signal back by the sensor. When using imageries

from different relative orbits of a sensor, the difference in the incidence angle has to

be considered and corrected to achieve comparability between them. The difference

in the intensity of the signal from various orbits can be up to 2.7 dB as found by

[Gauthier et al., 1998]. According to [Dobson and Ulaby, 1986], a low incidence angle

of 10°–20° is recommended for SM retrieval for the C-band of an active microwave

sensor. In the thesis, specifically, the impact of Local incidence angle (LIA) is corrected

which is defined as the angle between normal to the Earth surface and the direction of

the SAR signal to account also for the terrain properties at specific locations.

1.3.2 Polarization

Microwave wavelengths can be characterized by the orientation of their electromag-

netic field. The polarization is defined by the direction of the electric component of the

field, which is oriented always perpendicularly to the magnetic component. SAR sensors

can transmit electromagnetic waves of a known polarization. The transmitted signal

interacts with the objects on the ground. Depending on the object’s properties the

interaction can depolarize the transmitted signal which leads to a different polarization

state of the signal traveling back to the antenna, where it is subsequently recorded.

Sentinel-1 C-SAR can transmit and receive signal from different polarizations and

supports the so-called dual-polarization. This means that the sensor transmits signal at

one polarization (vertical or horizontal) and is able to record the backscattered signal

at both polarizations (vertical+horizontal or horizonal+vertical). The dual polarization

is mostly known and noted as VV+VH or HH+HV considering Sentinel-1. Measuring

more than only one polarization can reveal more information about the complexity of

the object’s properties. Objects that are dominant more in vertical direction (e.g., tree

stems, branches, buildings) lead to a stronger response for a vertically polarized wave.

Surface structures of an irregular form can, on the contrary, lead to depolarization and
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enhance the opposite polarization in the backscattered signal than in the transmitted

one. When considering the soil moisture retrieval and the impact of polarization, HH

polarization proved to be more accurate to the surface soil moisture than to the ob-

jects on the surface than HV [Barrett et al., 2009]. However, [Holah et al., 2005] found

stronger sensitivity to SM in VV polarization than in HV or HH.

1.4 Cross-polarization Ratio

The total measured backscatter signal can be described as a sum of three scattering

components [Vreugdenhil et al., 2020] – volume scattering, surface scattering, and inter-

action scattering. This fractional composition of the total measured backscatter coeffi-

cient changes during vegetation growth with increased contribution of vegetation-inflicted

volume scattering and vegetation water content [Veloso et al., 2017]. In this study, the

authors propose that CR (VH/VV) is a good indicator for monitoring vegetation growth

being less sensitive towards SM or double-bouncing effects than single polarized backscat-

ter. However, CR temporal behavior differs over various land cover types, particularly

cropland/grassland and broadleaf deciduous forest. [Vreugdenhil et al., 2020] studied

the relationship between CR from backscatter data of Sentinel-1 characterized by its

high spatial resolution and two VOD datasets from passive radar measurements – the

first one obtained from active microwave scatterometer ASCAT and the second one

from the long-term VOD Climate Archive (VODCA). VOD was retrieved utilizing the

combined TU Wien Change detection model/Water-Cloud-Model and Land Parameter

Retrieval Model for active and passive radar data, respectively. CR and VOD over

grassland and cropland correspond with each other the best, with a Pearson correlation

coefficient greater than 0.75 over the entire Europe. Less satisfying correlations were

found over needleleaf tree land cover, with a moderately low Pearson coefficient of 0.38.

Surprising behavior of CR time series is found for areas covered by broadleaf deciduous

forests. As CR is expected to be more sensitive to changes in vegetation rather than

SM [Veloso et al., 2017, Khabbazan et al., 2019, Vreugdenhil et al., 2020], an increase

in volume scattering during the tree leaf growth in spring/summer was anticipated to

lead to a rise in CR as well. However, CR decreases in summer while VOD increases

over broadleaf deciduous forests resulting in a negative correlation of -0.33 over entire

Europe. During winter, a rise in CR is observed. The authors argue this might be

caused by soil-vegetation interactions from branches and stems. CR decrease during

summer is further addressed in a very recent study by [Yu et al., 2023] and explained
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to be a consequence of strong vegetation attenuation and a decrease in woody water

content as a result of leaf transpiration.

23



2 Data
This chapter presents the datasets utilized in the thesis, organized into five key

sections. Section 2.1 introduces the in-situ data used for ground-truth validation. Section

2.2 describes the Sentinel-1 satellite data employed for the soil moisture retrieval model.

Section 2.3 is subdivided into four parts. Subsection 2.3.1 describes the vegetation

index NDVI, which is used for the comparison with the primary calibration variable CR.

Subsection 2.3.2 introduces the Vegetation Phenology Parameters dataset (VPP) used

to define seasonal periods in the time series. Subsection 2.3.3 describes the ASCAT SM

product used to benchmark the results against an established soil moisture product.

Finally, the subsection 2.3.4 includes ISMN in-situ precipitation data to analyze the

model’s capability to capture rainfall events, and ISMN soil temperature data used for

filtering purposes.

2.1 ISMN Soil Moisture

The International Soil Moisture Network (ISMN) is a collaborative initiative fostering

collecting, sharing, and distributing in-situ soil moisture data. It serves as a platform

where researchers, scientists, and organizations from around the world can contribute

their soil moisture measurements to improve our understanding of soil moisture dynamics

across different regions and climates. The data is provided by the cooperating stations

and can be measured at different sampling rates or units, across various time zones or

in multiple depth levels. Therefore, some level of standardization is necessary to achieve

a harmonized database [Dorigo et al., 2021]. The common standard sampling rate for

the ISMN database is hourly Coordinated Universal Time (UTC) reference time steps.

Therefore, in the provided data the closest measurements within the 0.5-hour interval

are always matched with the reference [Dorigo et al., 2021].

The data is available on the ISMN website, where it is possible to filter the data by

location, time period, properties of the measuring sensors and the surrounding environ-

mental conditions of the stations. Each ISMN dataset is distributed with mandatory

metadata originating from an external source [Dorigo et al., 2021]. The mandatory

metadata contains the respective Köppen-Geiger category (source data resolution is 0.1°)

[Peel et al., 2007], land cover (LC) information for years 2000, 2005 and 2010 from the

European Space Agency’s Climate Change Initiative (ESA CCI) (version 1.6.1 with 300

m resolution) and soil properties from the Harmonized World Soil Database (HWSD, ver-
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Figure 2.1 Low plateau, data source: ISMN

sion 1.1 with 1 km resolution) provided by [FAO/IIASA/ISRIC/ISS-CAS/JRC, 2009].

Soil moisture data is accessible via the Python package ismn developed and published

by [Preimesberger et al., 2023]. The ISMN database can be further converted into a

pandas dataframe directly in a Python interpreter using the pandas library, which

enables an efficient data handling via data structures like DataFrame and Series1.

2.1.1 Site description and pre-processing

For the master thesis, data from the Romanian Soil Moisture Network (RSMN)

incorporated in the ISMN initiative was used. RSMN encompasses together 20 measur-

ing stations distributed across the entire country. The measurements are harmonized

using the same technique and are available for the depth of 0–0.05 m (surface soil

layer). Currently, not all of the stations provide soil moisture measurements (e.g.,

Slobozia, Adamclisi). In addition, as reported on the official website of ISMN one of the

stations (Chisineu Cris) shows characteristics of "low plateau" since April 2018 (Fig.

2.1)2. The measuring sites are located primarily within the borders of meteorological

stations or directly next to them. The majority of the RSMN stations are located

on grassland. Cropland is often found in their immediate vicinity. However, multiple

RSMN stations are surrounded by high objects such as agricultural/industrial buildings

or residences and their presence might impact the radar signal. Therefore, due to short

SM measurements archive, dubious SM behavior and presence of high objects capable

of disrupting SAR signal, only 10 stations were eventually selected for further work –

Banloc, Corugea, Cotnari, Dej, Dumbraveni, Oradea, RosioriideVede, SannicolauMare,

SatuMare, Tecuci. The aerial imageries for the selected stations are displayed in Figure

2.2 and they are listed in Table 4.1.

Before the in-situ RSMN data was merged with the satellite data, measurements
1https://pandas.pydata.org/docs/
2https://ismn.earth/en/news/
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not labeled as good (G) were eliminated from the dataset. The ISMN database

provides the quality labels together with the SM measurements for each data point

[Dorigo et al., 2021]. Table 4.1 lists for each station the assigned Köppen-Geiger, ESA

CCI LC class, time window covering SM measurements and the fraction of reliable

measurements of the original dataset. Reliable measurements preserved for further

analysis represent at least 71% of the original dataset. It is worth noting, that even

though the provided ESA CCI LC layer assigns some of the stations to the urban area

class, this is primarily due to the coarser spatial resolution of 300 m and the aerial

imageries prove that the stations’ neighborhood can be selected in such a way that only

natural land cover (cropland, grassland) will be considered.

KG class ESA CCI LC (2010) Coverage G fraction [%]

Banloc Dfb urban areas 2014/11 - 2023/06 87.7

Corugea Dfa urban areas 2014/07 - 2021/07 83.7

Cotnari Dfb cropland, rainfed 2014/12 - 2023/06 80.0

Dej Dfb urban areas 2014/06 - 2023/06 71.6

Dumbraveni Dfc cropland, rainfed 2014/06 - 2021/05 75.0

Oradea Dfb cropland, rainfed 2014/07 - 2023/06 87.9

RosioriideVede Dfb cropland, rainfed 2014/06 - 2023/06 86.7

SannicolauMare Dfa cropland, rainfed 2015/06 - 2020/08 85.9

SatuMare Dfb cropland, rainfed 2014/07 - 2023/06 83.1

Tecuci Dfb urban areas 2014/06 - 2022/12 83.7

Table 2.1 Climate and LC classification; Cfa: humid subtropical, Dfa: humid continental

(hot summer), Dfb: humid continental (warm summer)
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Figure 2.2 Aerial photos, data source: GEE

2.2 Sentinel-1 SAR

The Sentinel-1 mission (S-1) is part of the ESA Copernicus program, designed to

provide continuous all-weather, day-and-night radar imaging for land and ocean services

[Sentinel-1, nd]. Launched in April 2014, S-1 consists of two identical satellites orbiting

Earth, equipped with SAR instruments capable of capturing high-resolution images.

These images are used for various applications, including monitoring changes in land

use, detecting natural disasters, managing environmental resources, and supporting

maritime surveillance. The mission contributes valuable data for scientific research,

disaster management, and policy-making worldwide.

The S-1 data was gained from the C-bad Synthetic Aperture Radar Ground Range

Detected (S-1 SAR GRD) image collection on the platform Google Earth Engine (GEE)

for the time window 2014–2023. Of the four S-1 acquisition modes, the Interferometric

Wide swath (IW) mode is mainly used for the landmasses, therefore the data was obtained
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in IW mode with the high ground range resolution of 20 x 22 m [Bourbigot, 2016] and

for the dual-polarization system VV and VH. The pixel size of the collection is 10 x 10

m [Bourbigot, 2016].

The GEE image collection is available already pre-processed making use of the

Sentinel Application Platform SNAP S-1 Toolbox [GEE, ndc]. The pre-processing steps

include the application of orbit file, GRD border noise removal, thermal noise removal,

radiometric calibration, and terrain correction (orthorectification).

2.2.1 Data pre-processing

As depicted in Figure 2.2, for each point station a polygon was manually created in

the GEE environment either covering the station’s coordinates or is located directly next

to a station in order to extract the radar signal, particularly for the neighboring fields or

grassland. The S-1 SAR GRD collection was then imported filtering for the specific time

range, location, acquisition mode IW and for the VV as well as VH transmitter-receiver

polarisation. To reduce the speckle noise of the filtered S-1 imageries a 5x5 boxcar

convolution filter was applied. The JavaScript code ready to be used in the GEE was

designed and published by [Mullissa et al., 2021].

In the thesis, both, the ascending and descending orbits, were used. Since us-

ing radar data from different orbits, each scene has a different local incidence an-

gle for the corresponding orbit and the local terrain specifications. LIA directly af-

fects the backscatter coefficient, with greater LIA leading to lower backscatter value

[Bauer-Marschallinger et al., 2021]. Hence, before exporting the S-1 SAR GRD data

from GEE in order to correct the LIA impact, the information about LIA was calculated

and added as the next band of each pixel for every radar scene of the collection. This

is done by applying the function addLIA.js designed directly for the GEE JavaScript

environment and developed by [Paluba, 2020], primarily dedicated to removing the nor-

malization effect of LIA over forests. After the LIA information was added, pixel values

within the polygons were sampled, once again for each image scene of the collection.

This created a FeatureCollection which was further exported from GEE as a csv file

containing information for the bands VV, VH and LIA. The exported dataset represents

a time series of observation either early in the morning (ca. 04:30:00) or early evening

(ca. 16:30:00). The temporal sampling rate varies between 6 and 12 days.

The last step in the SAR data pre-processing is the elimination of extreme backscat-

ter coefficient values from the time series that most probably are not representa-
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tive for the soil moisture conditions [Bauer-Marschallinger et al., 2019]. The SAR

backscatter coefficient outliers were, therefore, eliminated from the time series follow-

ing the procedure as described in studies by [Bauer-Marschallinger et al., 2019] and

[Vreugdenhil et al., 2020]. In particular, a lower threshold of -20 and -26 as well as an

upper threshold of -5 and -11 dB was set for the VV, VH time series, respectively.

2.3 Ancillary data

2.3.1 NDVI

To evaluate the CR variable and its suitability to describe vegetation growth and

development, two ancillary datasets are used, in particular, the Normalized Difference

Vegetation Index (NDVI) from Sentinel-2 (S-2) and from the Moderate Resolution

Imaging Spectroradiometer (MODIS).

The S-2 NDVI product was calculated in GEE using Level-1A S-2 imageries from

the harmonized GEE collection S-2 Surface Reflectance (SR) with the spatial resolution

of 10 x 10 m and temporal resolution of approximately 10 days. The scenes are available

from 2017/03/28. The image collection was filtered for the location of interest, for the

time window 2017 - 2023 and preliminary filtered, so only up to 20% of the scene is

covered by clouds. Furthermore, the cloudy pixels are filtered out by a cloud mask

provided in the QA60 band of the product [GEE, nda]. The vegetation index NDVI

was then computed for each scene of the collection utilizing the 4th and 8th band of the

product, which represent the RED and NIR bands in the following definition of NDVI:

NDV I = NIR − RED

NIR + RED

The second NDVI dataset is created from the daily surface reflectance composites

obtained by MODIS with a pixel size of approximately 500 m [GEE, ndb]. To preserve

the underlying temporal evolution of the vegetation NDVI index, a moving average

with a window size of 30 days is applied to the daily time series eliminating the noisy

character.

Both NDVI datasets carry different advantages. S-2 NDVI data aligns more with

the high resolution of S-1 data whereas the MODIS dataset provides higher temporal
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coverage which is limited in S-2 data by lower revisit time as well as by cloudy weather.

The datasets were exported from the GEE platform in the same way as the S-1 time

series by extracting the mean pixel value for each polygon and further processed as a

dataframe in Jupyter Notebook.

2.3.2 Vegetation Phenology Parameters

For the analysis and evaluation of the SM estimates within seasonal periods, the

VPP product administrated by Copernicus Land Monitoring Service (CLMS) is de-

ployed. The phenology data has been available since 2017. VPP product provides 13

metrics describing yearly vegetation evolution by means of Plant Phenology Index (PPI)

obtained from S-2 optical data at the original 10 x 10 m resolution [Smets et al., 2023a].

Particularly, the Start of the Season (SOS) and the End of the Season (EOS) dates were

extracted from the product for each of the RSMN stations. For the data extraction

the Harmonized Data Access (HDA) Application Programming Interface (API) is used

[Smets et al., 2023b].

2.3.3 ASCAT

The surface soil moisture product obtained by ASCAT on board of MetOp satellites

and is operated by Satellite Application Facility on Support to Operational Hydrology

and Water Management (H-SAF), which is a part of the European Organisation for

the Exploitation of Meteorological Satellites (EUMETSAT) [Wagner et al., 2013]. This

product was used for the comparison between the original SM Change detection model

without vegetation correction and for the calibrated Change detection model. The

spatial resolution varies between 25 and 34 km. The product is available at a fixed grid

point sampling rate of 12.5 x 12.5 km [Wagner et al., 2013] given by a WARP 5 Grid,

a representation of a Discrete Global Grid [H SAF, 2022]. ASCAT SM product can be

obtained from the H-SAF server in a NetCDF format. The global product is divided into

many cells covering the entire Earth surface [H SAF, 2022] with one cell being defined

as 5° x 5°. To access a corresponding ASCAT SM time series of a specific location, first,

the unique identifier for the corresponding grid point (Grid Point Index GPI) and the

cell number is found using a Python package ascat [Hahn et al., 2021a]. For each of the

RSMN stations, a GPI and a cell number were identified and the respective NetCDF
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sub-product was extracted. The time series were loaded as a pandas dataframe into the

Jupyter Notebook environment. The time series were further filtered by a provided frost

and snow mask to eliminate unreliable soil moisture measurements [Wagner et al., 2013].

The data represent measured relative SM obtained for the timestamps between 7:00-

10:00 and 17:00-20:00.

2.3.4 ISMN Precipitation and Soil temperature

In addition to the SM measurements, in-situ precipitation and soil temperature data

are used from the ISMN website. As with the RSMN SM database, the time series are

provided at an hourly sampling rate. The precipitation dataset is used for the analysis of

the model and its ability to capture the increase in SM due to rainfall. The soil tempera-

ture dataset is used in the preprocessing of ISMN SM data to eliminate SM measurements

occurring during winter/early spring when soil could be frozen as those conditions cause

unreliable SM estimated from satellite signal [Bauer-Marschallinger et al., 2019].
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3 Methodology
This chapter details the methodology employed in the thesis, structured into four

primary sections. In Section 3.1 Data Processing section is discussed 3.1.1 Local Incidence

Angle normalization and 3.1.2 Merging of Time Series, ensuring comparability of SAR

signal from different orbits and temporal match. Section 3.2 SM Change detection

model introduces the original SM retrieval model. Section 3.3 Calibration of the SM

Change detection model describes the procedures for parameter optimization to correct

for the vegetation influence in the original SM change detection model. Section 3.4

Evaluation explains the criteria and methods used to assess the retrieved SM estimated

from the SM Change detection model with the constant dry reference and with the

calibrated dry reference.

3.1 Data Processing

3.1.1 Local Incidence Angle normalization

LIA is an important step in the processing of SAR data. It enhances the compara-

bility of the data obtained from different orbits. Normalizing LIA reduces the influence

of angle variations, facilitating accurate comparison and integration of data. The linear

relation method to normalize LIA similarly to [Bauer-Marschallinger et al., 2021] was

applied (Fig. 3.1a,b).

Figure 3.1 LIA normalization (a,b); estimation of dry and wet reference (c), source:

[Bauer-Marschallinger et al., 2019]

First, the slope parameter of β was determined using Simple Linear Regression for

LIA (x) and SAR backscatter coefficient (y). Python package function LinearRegression

from the sklearn.linear_model module was used1. The equation 3.1 introduced by
1https://scikit-learn.org/0.20/modules/generated/sklearn.linear_model.

LinearRegression.html
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[Bauer-Marschallinger et al., 2021] was then used to normalize the SAR signal.

σ0
θref ,t = σ0

θ,t − β ∗ (θ − θref ), (3.1)

where σ0
θref ,t is the normalized backscatter coefficient, σ0

θ,t is the backscatter coeffi-

cient for each scene and with a respective LIA (θ), β is the estimated slope parameter

from the linear regression, θ is the respective LIA and θref is the reference angle de-

fined as a rounded mean of LIA value range. The correction was performed for both

polarizations and yields σ0
V Vnorm

and σ0
V Hnorm

.

After LIA correction, CR was calculated using the following definition

CR = σ0
V Hnorm

− σ0
V Vnorm

[dB]. (3.2)

3.1.2 Merging of Time Series

Having all time series pre-processed, the data can be merged. ISMN SM, precipitation

and soil temperature were merged first since they are all provided at the hourly sampling

rates. Satellite data originates from a coarser temporal resolution (ca. 1 - 12 days).

Thus, the closest ISMN measurement was found for each S-1 data point. To guarantee

that the satellite captures the current soil moisture conditions the closest measurement

in the past (backward direction) was found. In the same way, ASCAT SM time series

were matched with the dataframe. As mentioned above, S-1 satellites fly over the areas

of interest around 4:00 in the morning and 16:00 in the early evening. ASCAT sensor

dates the measurements over the areas between 7:00–10:00 and 17:00-20:00. Therefore,

the closest data point from the ASCAT SM dataset was matched with the dataframe.

The remaining datasets (S-2 NDVI, MODIS NDVI) were merged with a left join without

interpolating for the missing values. Data without ISMN SM measurements or with

ISMN soil temperature < 4◦C were eliminated from the dataset [Hahn et al., 2021b].

3.2 SM Change detection model

The original Change detection model was developed by [Wagner et al., 1999], initially

to retrieve SM from the ERS scatterometer. The model is based on the assumption that

the backscatter coefficient can be linearly related to the dielectric properties of soil which

are in turn related to the water content in soil [Wagner et al., 2013]. The backscatter

coefficient is scaled between so called wet (σ0
norm,wet) and dry reference (σ0

norm,dry). They
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represent the long-term driest and wettest soil conditions and should be retrieved from

a multi-year (>10 years) time series [Wagner et al., 2013]. Following the procedure by

[Bauer-Marschallinger et al., 2019] (see Fig. 3.1c) the dry and wet references are calcu-

lated as the 10th and 90th percentile of the backscatter time series. The S-1 data archive

is approaching the 10-year threshold, but as [Bauer-Marschallinger et al., 2019] states

the determination of the dry and wet reference may still be limited due to the insuffi-

ciently long archive and possible outliers due to extreme situations (e.g., frozen soil) that

could be misinterpreted as referred reference. The [Bauer-Marschallinger et al., 2019]

procedure using the 10th and 90th percentiles seems to reduce similar influences. The

percentile backscatter coefficient is further linearly extrapolated to the 0th and 100th

percentile applying the following equations from [Bauer-Marschallinger et al., 2019]

k = 90% − 10%
σ0

90,norm − σ0
10,norm

, (3.3)

d = 90% − k ∗ σ0
90,norm, (3.4)

σnorm,dry = 0% − d

k
[dB], (3.5)

σnorm,wet = 100% − d

k
[dB]. (3.6)

The defined σdry,norm and σwet,norm can later be inserted in the SM Change detection

equation:

SMt =
σ0

norm,t − σ0
norm,dry

σ0
norm,wet − σ0

norm,dry

[−]. (3.7)

Since the dry and wet reference is defined as 10th and 90th percentile, it can happen

that the backscatter coefficient will exceed the scaling value range calculated as described.

In this case, the computed soil moisture estimates are set to 0 or 1, respectively.

The computed soil moisture is only relative to the value range defined by the wet

and dry reference and is expressed in relative number 0–1. To compare the measured

in-situ SM (Θv) given in the volumetric water content unit [m3.m−3] and unitless

relative soil moisture estimates, both variables must be described in the same units.

There are two possible ways to achieve this. The first is to multiply the relative soil
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moisture by soil porosity thus gaining the absolute soil moisture. The soil porosity

dataset used for this conversion is the HWSD (version 1.1 with 1 km resolution)

[Dorigo et al., 2021]. However, the coarse resolution of 1 km can introduce another

source of error by not characterizing the actual local porosity. The next option is

to standardize the retrieved relative SM values to have the same distribution as the

measured in-situ data [Wagner et al., 2019]. This fitting method is described as follows

Θv,t = SMt − SM

σSM
∗ σΘv + Θv, (3.8)

where Θv,t is the observed soil moisture expressed in volumetric units, SMt is the

relative SM retrieved from the satellite, SM and Θv are the means of the retrieved SM

and the observed in-situ SM, σSM and σΘv are the variances of the retrieved relative SM

and the in-situ SM. The latter option is implemented in the thesis as it is not dependent

on ancillary dataset.

3.3 Calibration of SM Change detection model

The main aim of the thesis is to calibrate the original Change detection model

using the CR variable to modify the constant dry reference. Several studies proved the

correlation between CR and vegetation development by comparing the radar variable with

different vegetation indices - NDVI [Veloso et al., 2017], VOD [Vreugdenhil et al., 2020],

Enhanced Vegetation Index (EVI) [Ma et al., 2024]. The new calibrated dry reference

should change with time. Particularly, an increase of the new calibrated reference is

expected with vegetation growth as well as a decrease during periods without vegetation.

The proposed dry reference σ0
norm,dry−cal can be expressed mathematically as follows

σ0
norm,dry−cal = a ∗ CR31 (3.9)

The parameter a is determined by an optimization process, explained in more detail

in next section 3.3.1.

The proposed variable CR31 is defined in two steps. First, the value range of CR

needs to be shifted vertically along the y-axis (standing for σ0
t in [dB]). This step is

necessary in order to preserve the low backscatter value of dry reference. The mean

of the shifted CR time series equals now the defined 0th percentile of the backscatter
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coefficient (Fig. 3.2).

Afterward, the CR31 is defined as a 31-days moving average in order to smooth out

short-term fluctuations and highlight underlying longer-term trends in the shifted CR

time series.

Figure 3.2 below displays the described steps before the optimization - the initial

CR time series and constant dry reference without pre-processing (a), the vertical shift

(b), 31-days moving average smoothing and an example of a calibrated dry reference (c).

Figure 3.2 Shifting and smoothing of CR time series

The variable σ0
norm,dry−cal from Eqaution 3.9 serves as a replacement for the original

time-invariant σ0
norm,dry in the Change detection model (see also Equation 3.7)

SMt =
σ0

norm,t − σ0
norm,dry−cal

σ0
norm,wet − σ0

norm,dry−cal

. [−] (3.10)

Similarly, the relative values can be normalized via the Equation 3.8 to the absolute

units of m3.m−3.
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3.3.1 Optimization process

The calibration was achieved using the optimization method Limited-memory

Broyden-Fletcher-Goldfarb-Shanno L-BFGS-B. The function optimized by this algo-

rithm is RMSD (see Section 3.4.1) between the observed in-situ SM and the retrieved

SM.

The optimization method L-BFGS-B is implemented in the in-built function minimize

from the Python library SciPy.optimize 2. The function requires the following arguments

- fun, x0, args, method. The fun is the objective function to be minimized (RMSD).

The optimization algorithm attempts to find the optimal parameter values in order to

minimize the objective function.

The next argument x0 stands for the initial a parameter guess. The multiplicative

parameter a is optimized for each station. Moreover, the parameter a is optimized for

each day of the year (1-365). The optimized parameter changes for each observation

and can be defined as

aN =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

at1

at2

...

atN

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where N is the length of the time series. As the initial guess for the a parameter is

an N -dimensional vector of ones

1N =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1

1
...

1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
The args argument is a set of optional arguments required for the computation

of the objective function fun. For the presented case, the variables necessary for the

model (VV_norm, CR, the original constant σnorm,dry, σnorm,wet) are passed to the

args argument.

2https://docs.scipy.org/doc/scipy/reference/optimize.minimize-lbfgsb.html#

optimize-minimize-lbfgsb
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3.4 Evaluation

For the quantitative evaluation of models’ performances, two metrics are computed

namely RMSD and Pearson correlation coefficient r.

3.4.1 RMSD

The root mean square deviation RMSD is a statistical metric used to measure the

mean absolute deviation between values predicted by a model and the values observed.

It provides a single value that represents the mean magnitude of these differences. It is

expressed as

RMSD =

⌜⃓⃓⎷ 1
N

N∑︂
i=1

(Xi − Yi)2. (3.11)

Xi is the observed reference variable, Yi the retrieved estimate and N stands

for the number of data samples. Common target RMSD value is 0.004 m3.m−3

[Gruber et al., 2020].

3.4.2 Pearson correlation coefficient r

The Pearson correlation coefficient (r) is a statistical measure that assesses the

strength and direction of the linear relationship between two variables. It ranges from

-1 to 1, where 1 indicates a perfect positive linear correlation, -1 indicates a perfect

negative linear correlation and 0 signifies no linear correlation. The coefficient is defined

as

r =
∑︁N

i=1(Xi − X) ∗ (Yi − Y )√︂∑︁N
i=1(Xi − X)2 ∗

√︂∑︁N
i=1(Yi − Y )2

, (3.12)

where Xi is the observed reference variable, Yi the retrieved estimate and X and Y

denote the respective mean variable value.

38



4 Results
The following chapter is devoted to describing the results of the thesis experiment.

Using the S-1 SAR data, soil moisture was estimated by applying the SM Change detec-

tion model (Section 4.1). A new calibrated dry reference σ0
norm,dry−cal was determined

using optimization of the parameter a and subsequently used in the SM Change detection

model instead of the original constant dry reference (Section 4.2). The horizontal line in

Tables 4.1 and 4.2 outlines the boundary between stations meeting the required target

threshold of 0.04 m3.m−3 (Section 3.4.1).

The main problem addressed in the thesis is the correction of vegetation influence

on soil moisture determination from satellite data and its elimination. Therefore, the

results for the original SM Change detection model as well as the calibrated Change

detection model are compared with each other for both seasonal and off-seasonal periods.

In this way, it is possible to evaluate the hypothesis whether the calibration has a more

significant benefit to the model during the presence and growth of vegetation (Section

4.3).

In addition, the results of both models were compared with the established ASCAT

SM product at 12.5 km resolution (Section 4.4). Again, the calibration contribution

compared to the original SM Change detection and to the ASCAT SM product is

evaluated for the whole dataset as well as for the season and off-season.

4.1 Results for SM Change detection model

SM Change detection model with the constant dry reference retrieved soil moisture

with RMSD between 0.021 and 0.091 m3.m−3 (Table 4.1). Only two out of the total 10

stations reached RMSD smaller than 0.04 m3.m−3 being the target threshold. Station

RosioriideVede achieves the lowest RMSD with a relatively high Pearson correlation of

58%. The Corugea station yields low RMSD of 0.034 m3.m−3 with moderate correlation

of 41%. Cotnari station, albeit achieving low RMSD of 0.041 m3.m−3, shows a very

low correlation of less than 9%. Stations Tecuci, Oradea and Dumbraveni obtain all

the same RMSD of 0.047 m3.m−3 with different correlation coefficients. The highest

overall correlation between the satellite estimates and ground observations of almost

60% is reached for the Oradea station. Station SannicolauMare exhibits similar RMSD

(0.055 m3.m−3) and correlation coefficient (28.6%) value to the overall mean RMSD of

0.053 m3.m−3 and mean correlation of 33%. Stations Banloc, SatuMare and especially
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station Dej obtain the highest RMSD and weak correlation up to 32%.

Station RMSD [m3.m−3] r [%]

RosioriideVede 0.021 58.12

Corugea 0.034 41.43

Cotnari 0.041 8.89

Tecuci 0.047 30.08

Oradea 0.047 59.3

Dumbraveni 0.047 23.81

SannicolauMare 0.055 28.6

Banloc 0.072 24.61

SatuMare 0.076 31.56

Dej 0.091 32.18

Mean 0.053 33.86

Table 4.1 Results - SM Change detection model with constant dry reference

4.2 Results for the calibrated SM Change detection model

The calibrated SM Change detection model with the new dry reference decreased the

mean RMSD by 7.5% (0.004 m3.m−3) relative to the original SM model and increased

the correlation coefficient by approximately 8.7% (Table 4.2). However, the calibration

leads to a decrease in RMSD under the threshold of 0.04 m3.m−3 only for the station

Cotnari compared to the original model.

The highest percentual decrease in RMSD is achieved for the stations Banloc (by

13.89%) and Cotnari (by 9.76%) and in absolute units again for the station Banloc

(from 0.072 m3.m−3 to 0.062 m3.m−3), Dej (from 0.091 m3.m−3 to 0.084 m3.m−3) and

SatuMare (from 0.076 m3.m−3 to 0.07 m3.m−3). The original model performs poorly for

the stations Banloc, Dej and SatuMare (Table 4.1). The calibration was able to enhance

SM retrieval the most for these stations. The correlation coefficient also improved

especially for these stations by almost 20%, 10% and more than 9%, respectively. For

the stations RosioriideVede and Corugea, neither RMSD nor correlation improves

distinctly after the model calibration compared to the original model as the original

model performed already very well for these locations. Great improvement in terms
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of the correlation coefficient is observed for the station Cotnari from ca. 8% to more

than 25%. This station can be specifically distinguished from all the other stations by

being located next to a vineyard (Fig. 2.2). The remaining stations Oradea, Tecuci,

Dumbraveni and SannicolauMare show a slight decrease of RMSD and an increase in

correlation between 5.4 and 7.9%.

Generally, model calibration leads to better performance of the SM Change detection

model, though the highest improvement is observed for the stations where the original

model performed poorly. On the other hand stations with relatively good results yielded

from the original model are enhanced by the calibration only a little or moderately.

Station RMSD ∆ RMSD [%] r ∆ r [%]

RosioriideVede 0.02 -4.76 61.13 +3.01

Corugea 0.032 -5.88 45.27 +3.84

Cotnari 0.037 -9.76 25.48 +16.59

Oradea 0.044 -6.38 64.72 +5.42

Tecuci 0.045 -4.25 35.75 +5.67

Dumbraveni 0.045 -4.26 29.77 +5.96

SannicolauMare 0.052 -5.45 36.51 +7.91

Banloc 0.062 -13.89 44.42 +19.81

SatuMare 0.07 -7.89 41.69 +10.13

Dej 0.084 -7.69 41.63 +9.45

Mean 0.049 -7.53 42.64 +8.78

Table 4.2 Results - calibrated SM Change detection model with modified dry reference

4.3 Temporal evaluation

The model calibration was applied to the entire time series. However, the main

impact of the calibration should be detected over the seasons during vegetation growth.

Hence, the evaluation metrics are computed separately for season (Table 4.3-4.4) and

off-season periods (Table 4.5 - 4.6) to assess the temporal impact of the calibration.

The VPP dataset was used to identify seasons for the locations. The VPP dataset is

available only for the years 2017–2022 and therefore this evaluation is available for this

specific time window. Both winter and summer seasons are considered. Table 4.3-4.6
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are ordered by the highest enhancement caused by calibration (∆ column).

After selecting seasons and off-seasons, it is clear that for the majority of stations

the original SM Change detection model has more complications with the off-season

periods. Mean RMSDseason is 0.048 m3.m−3 and rseason is 38.95 % compared to the

mean RMSDoff-season of 0.057 m3.m−3 and roff-season of 29.74%. By calibrating the

model, it was possible to reduce the imbalance between the two periods and to achieve

comparable RMSD (RMSDseason = 0.045m3.m−3, RMSDoff-season = 0.057m3.m−3)

and correlation values (rseason = 45.28%, roff-season = 41.76%). In general, the calibration

appears to have identified the periods that have the greatest impact on the poor

performance of the original model and these have been adjusted the most.

As is the case for the entire time series, the analysis of the individual locations shows

large differences between stations. The results for single stations are described in the

next Sections 4.3.1 and 4.3.2.

4.3.1 Season

Calibration of the model results in an average decrease of RMSDseason by 5.64%

(0.003 m3.m−3) compared to the original SM Change detection model (Table 4.3) and

to an average increase in rseason by 6.33% (Table 4.4). The greatest improvement in

terms of RMSD is observed for the station Corugea (∆RMSDseason = −9.68%) but

correlation is not improved a lot by calibration (∆rseason = +3.89%). Station Corugea

is burdened by many ISMN data dropouts and thus the entire time series is very short

(257 data points) compared to the remaining stations. Selecting only seasonal time

windows reduces the number of data and therefore puts an even greater burden on

the interpretation of the results. A similar limitation occurs for Dej (460 data points),

SannicolauMare (561 data points) and Dumbraveni (684 data points) stations, although

the length of the total time series is not as low as for Corguea station. All of the

mentioned stations appear at the bottom of Table 4.3 exhibiting no or only a low

decrease in RMSDseason between 0 to 4.6%. The remaining time series consists of more

than 1 000 data.

The second highest decrease in terms of RMSD is observed for Cotnari station

with a distinct vineyard vegetation by more than 8% for RMSDseason and by the

greatest increase in rseason by more than 12%. Interestingly, the original model performs

distinctly better during the seasonal periods than outside the season (rseason = 21.97%
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vs. roff-season = −10.7%).

The remaining stations exhibit a decrease in RMSDseason between 2.3% up to 8%

and an increase in correlation coefficient between 2% to 9% with the lowest improvement

particularly for the stations with short time series.

Station Original Calibrated ∆ RMSD [%]

Corugea 0.031 0.028 -9.68

Cotnari 0.035 0.032 -8.57

SatuMare 0.063 0.058 -7.94

Tecuci 0.052 0.048 -7.69

Banloc 0.054 0.05 -7.41

RosioriideVede 0.019 0.018 -5.26

Dej 0.087 0.083 -4.6

Oradea 0.046 0.044 -4.35

Dumbraveni 0.042 0.041 -2.38

SannicolauMare 0.05 0.05 0.0

Mean 0.048 0.045 -5.64

Table 4.3 Seasonal RMSD for original and calibrated model

Station Original Calibrated ∆r [%]

Cotnari 21.97 34.51 +12.54

Tecuci 19.49 28.85 +9.36

SatuMare 33.54 42.81 +9.27

Banloc 37.43 45.05 +7.62

Dej 29.96 35.97 +6.01

Oradea 53.85 58.57 +4.72

Dumbraveni 28.72 33.31 +4.59

Corugea 60.93 64.82 +3.89

RosioriideVede 57.85 61.11 +3.26

SannicolauMare 45.78 47.82 +2.04

Mean 38.95 45.28 +6.33

Table 4.4 Seasonal r for original and calibrated model
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4.3.2 Off-season

Mean RMSDoff-season decreased by more than 9% (0.05 m3.m−3) in comparison to

the original model (Table 4.5) and the calibration improved by 12% (Table 4.6). The

biggest improvement in off-season results occurred at Banloc station. This station also

showed a slightly above average improvement during the season (Tables 4.3,4.4). From

the results in Table 4.2, it can be seen that the calibration had the greatest impact on

this station and produced the highest change in RMSD and correlation. Therefore, the

calibration for this station had an impact for both time periods, although here too the

effect is more visible for the off-season. It should also be noted that both the seasonal

and off-seasonal time series are almost identically long and thus there is likely no bias

in the results due to the unbalanced dataset size. A similar improvement for the season

and off-season can be seen for the Cotnari station.

Stations Sannicolau and Dej, which are also at the top of Tables 4.5 and 4.6, show

only average to below-average improvement using calibration during saeson (Table

4.3,4.4). Nevertheless, the calibration led to overall high changes across the time series

(Table 4.2) and therefore it is evident that the largest change occurred in the off-season.

In general, model calibration was most helpful in the off-season as defined by the

VPP dataset. The only site for which the opposite behavior, and thus a greater im-

provement during the season than the off-season, is observed is the Tecuci station with

a greater ∆RMSDseason of more than 7% and ∆rseason of more than 9% (Table 4.3,

4.4) compared to only a marginal ∆RMSDoff-season of 2% and ∆roff-season of less than 3%.
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Station Original Calibrated ∆ RMSD [%]

Banloc 0.087 0.071 -18.39

SannicolauMare 0.054 0.047 -12.96

Cotnari 0.049 0.043 -12.24

Dej 0.088 0.079 -10.23

Oradea 0.047 0.043 -8.51

SatuMare 0.092 0.085 -7.61

RosioriideVede 0.023 0.022 -4.35

Dumbraveni 0.05 0.048 -4.0

Corugea 0.034 0.033 -2.94

Tecuci 0.042 0.041 -2.38

Mean 0.057 0.051 -9.54

Table 4.5 Off-seasonal RMSD for original and calibrated model

Station Original Calibrated ∆r [%]

Banloc 16.55 44.23 27.68

Cotnari -10.7 11.73 22.43

SannicolauMare 16.31 37.62 21.31

Dej 32.66 44.15 11.49

SatuMare 29.68 40.5 10.82

Dumbraveni 21.16 29.46 8.3

Oradea 62.94 69.24 6.3

Corugea 30.43 35.78 5.35

RosioriideVede 57.37 60.89 3.52

Tecuci 41.04 43.95 2.91

Mean 29.74 41.76 +12.01

Table 4.6 Off-seasonal r for original and calibrated model

4.4 Cross-Comparison

The results in the presented work from high spatial resolution S-1 data are compared

in this section with the well-established 12.5 km resolution ASCAT SM product for the
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entire time series, season and off-season (Fig. 4.1).

Overall, it can be assessed that the calibrated model compared to the original

model led to a slight decrease in RMSD and a more pronounced increase in correlation.

Despite the overall improvement of results through calibration as well as achieving a

higher overall correlation r at 2 stations (Fig. 4.1d), the ASCAT SM product shows a

slightly lower mean and median RMSD as well as higher correlation r in general. For

the season, the mean and median RMSD values (Fig. 4.1b) as well as the correlation

(Fig. 4.1e) between the calibrated model and ASCAT SM are comparable. Nevertheless,

the differences between stations are somewhat smaller in the case of ASCAT SM than

between the results from the calibrated S-1 model. Regarding the off-season results, it is

interesting to observe that all three models lead to large differences in RMSDoff-season

between stations which is reflected in the width of the boxplot (Fig. 4.1c). ASCAT SM,

as well as the results of both S-1 models, show a higher RMSDoff-season. Nevertheless,

roff-season for ASCAT SM is much higher than roff-season of S-1 model even after cali-

bration (Fig. 4.1f). The lowest roff-season for ASCAT SM is more than 35% (Corugea)

which is still higher than the result for the same station after calibration (30%, see Table

4.6) and much more than the lowest roff-season for the S-1 calibrated model (Cotnari, 11%).

Figure 4.1 Cross-comparison of all three products with displayed mean (green triangle) and

median (orange line)
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5 Discussion
The presented thesis studies the potential of CR to be used for vegetation correction

in soil moisture retrieval at field-scale by C-SAR S-1. This was done by modifying the

constant dry reference by the smoothed and shifted annual monthly CR time series.

The new time-varying dry reference was then multiplied by a calibrated parameter time

series to optimize its amplitude. The results are evaluated in the temporal domain,

comparing the in-situ and satellite SM retrieval within a long-term time span (>8 years,

if in-situ SM is available). Spatial agreement between the in-situ data and satellite

estimates is not included because for each station only one point-like measurement is

available.

5.1 SM Change detection model

The S-1 Change detection model with static dry reference achieved the worst results

among the three models. The constant dry reference fails to capture changes in the

land surface caused by vegetation that varies over time. Thus, a bias element is

introduced into the model that causes either under- or overestimation of SM estimates.

As mentioned in the Results section 4 there are large differences between stations and

for the cause of this, it is necessary to evaluate the time series for each site individually.

The RMSD for the Dej station is significantly higher than for the remaining stations.

This station is heavily burdened by the low number of data points in the time series

due to the frequent absence of in-situ SM measurements. Upon closer analysis of the

time series, strong noisy behavior of the SAR time series can be observed. The noise

causes extreme fluctuations in the backscatter signal (Fig. 5.1). This is not a positive

or negative bias, but a chaotic fluctuation. It is this behavior between successive data

that could indicate insufficient LIA correction between relative orbits. The LIA effect

has not been removed completely and it is likely that particularly for this station it

causes problems. The noise is particularly pronounced during the decline of the in-situ

SM measurements (dry periods) and their constantly low value (highlighted in black).

The SAR signal is complex and reflects not only the volume of water in the soil but

also changes in the surface, its roughness or the structure of the vegetation. Local

soil properties can also have an impact. The fluctuations may also be a reflection of

these local factors appearing during drier conditions. The noise is observable for the

original model as well as the calibrated one, while it becomes slightly more pronounced
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after calibration. This is a consequence of the narrowing of the so-called sensitivity or

dynamic range which represents the range between dry and wet reference (Fig. 5.1c).

As explained by [Pfeil et al., 2018] if the sensitivity is too narrow it can result in high

noise in the SM retrieval.

Figure 5.1 Noise presence in SM satellite estimates under dry conditions, (a) 2017, (b) 2018,

(c) static and calibrated dry reference with highlighted change in the sensitivity (red vertical

line)

At the Cotnari station, the opposite result can be observed, namely a relatively

low RMSD but at the same time the lowest correlation. Low correlation between

satellite time series and in-situ measurements was reported also in the study by

[Bauer-Marschallinger et al., 2019] with the lowest correlation of 11%, similar to the

correlation coefficient of Cotnari station. Even though the correlation improved the

result considerably, the location represents an area where the backscatter coefficient does

not appear to capture the in-situ SM temporal course. Cotnari station is characterized
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by vineyards. Vineyards have a characteristic field structure defined by inter-row spacing

or their orientation and jumps in between them as well as the vegetation characteristic

structure with vertical stems and branches and woody plant components. This location

is therefore particularly challenging due to the potential roughness aspect as well as

vegetation attenuation.

5.2 Calibration and vegetation correction

The results suggest potential in the here introduced vegetation correction, albeit with

some limitations and with differences between single locations indicating the relevance of

the local properties. Generally, the calibration led to a higher correlation coefficient by

more than 8% and to lower RMSD by more than 7%. Also, model calibration benefited

especially in locations where the original Change detection model fails. Compared to the

vegetation correction in ASCAT SM retrieval by [Pfeil et al., 2018], the increase in corre-

lation due to vegetation correction is smaller (9% vs. 15%). [Bhogapurapu et al., 2022]

performed vegetation correction for SM retrieval using the Change detection model and

Dual-pol Radar Vegetation Index (DpRVIc) for the correction. They compared this

methodology with the correction exploiting the NDVI from optical data and achieved

better accuracy for the DpRVIc with very high correlation of more than 80%. Their

results point to the suitability of SAR variables for monitoring and eliminating the

impact of vegetation. Such high correlation coefficients were not obtained in the current

thesis, even though the spatial resolution between the current thesis and the men-

tioned study is more comparable than that in the study by [Pfeil et al., 2018]. The

study area (included in the Texas Soil Observation Network TxSON) in the article by

[Bhogapurapu et al., 2022] is used as calibration and validation site for the SMAP SM

product. Locations used in the study are distributed over much larger area of the entire

Romania and are affected by local and regional phenomena (e.g., weather, vegetation

type, local soil properties) and therefore the applied S-1 model is probably less suited

for some of the locations than for the others.

The station Banloc appears overall to benefit the most from the correction. From the

Google Earth Pro aerial imageries, the area represents grassland. Figure 5.2a displays

the 2017 time series for both models and the observed in-situ SM. Interesting is the

ability of the calibration to eliminate the effect of the underestimation during spring

months (red rectangle). The presence of vegetation leads in general to either over- or

underestimation. The vegetation water contect might increase the backscatter coefficient
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and therefore falsely be interpreted as the soil moisture content. This would lead to

an overestimation of the SM estimates. The underestimation effect was explained by

[Pfeil et al., 2018] as a consequence of the vegetation structural changes from grass-like

to vertical which lead probably to a decrease in received backscatter signal in the SM

retrieval. These effects were studied as well by [Veloso et al., 2017] and the CR variable

appeared very well suited for vegetation monitoring, particularly for this vegetation

growth stage. [Pfeil et al., 2018] performed a correction based on a cross-angle principle

for the ASCAT SM product and detected a similar pattern of SM underestimation

during the spring times along with overestimation of microwave VOD of vegetation for

that time. Using CR as the dry reference as presented in the current thesis successfully

decreased this discrepancy bias by enlarging the sensitivity between the dry and wet

reference (Fig. 5.2b).

As for the overestimation of SM estimates (black rectangle), here too the result was

improved with the help of calibration. However, it is very necessary to correctly set the

maximum range of the parameter during calibration so that the calibrated dry reference

is not too high. This would cause either the mentioned increased noise due to the

small range between the references or even impossible relative SM estimates above 100 %.

Figure 5.2 (a) SM time series for Banloc station (2017), (b) static and calibrated dry

reference

The assumption of the proposed correction is the potential of CR to describe
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vegetation growth. SAR CR proved to be correlated to MODIS NDVI either moderately

or even strongly (Fig. 5.3) and the correlation coefficient reached high values. Similar

results for the correlation gained [Veloso et al., 2017] when comparing seasonal time

series of different winter and summer crop types (wheat, rapeseed, barley, maize,

soybeans, sunflower). Correlations between 63% and almost 91% that are comparable

with the correlation by Veloso et al. (74-89%) were found. However, they reported

differences between single crop types. For sunflower fields correlation between CR

and NDVI was almost non-existent (0.08%) indicating that the vegetation type has

an immense impact on the ability of CR to monitor vegetation or to be used for

vegetation correction. CR should correlate well with the vegetation growth if the VV

backscatter coefficient component reflects mostly the signal from the ground and the VH

component the vegetation volume scattering. Then, CR obtains higher values (Section

3.2, σ0
V Hnorm

− σ0
V Vnorm

). In the case of sunflower, the VV backscatter coefficient stems

mostly from the volume scattering as well as VH backscatter and, hence, CR cannot

suppress the ground effect and highlight the vegetation.

The correlation with the NDVI from S-2, though stemming from sensors with more

comparable spatial resolution, is in general lower than for NDVI MODIS (Fig. 5.4).

The main problem in the comparison between NDVI from S-2 and CR S-1 si the small

number of samples for NDVI due to cloudy weather conditions. The Corugea station

even shows a negative correlation between CR and NDVI, which is most likely due to the

low number of both S-2 NDVI data and ISMN data. Nevertheless, the insight into the

comparison of CR with another NDVI dataset, at a superior spatial resolution, reveals

that low correlation coefficients are found for station RosioriideVede and Dumbraveni.

Both localities do not benefit from the calibration significantly as shown in the Section

4. However, it is very likely not a consequence of the weak correlation between S-2

NDVI and S-1 CR, but other unexplained reasons, since MODIS NDVI points to a high

correlation on the contrary.
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Figure 5.3 Correlation coefficient r and R2 between NDVI MODIS and S-1 CR

Figure 5.4 Correlation coefficient r and R2 between S-2 NDVI and S-1 CR

The relationship between the SAR CR and the optical dataset is also relevant

considering the use of the VPP dataset, which is created from optical data. The initial

assumption that calibration would help most during the season defined by VPP was

not confirmed. This can be largely caused by the different sources of both datasets. As
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stated by [Veloso et al., 2017], CR correlates very well with NDVI, but their time course

is not completely identical. NDVI is characterized by a rapid increase already at the

initial plant appearance, while CR is influenced by structural changes in the vegetation

in the initial phase of growth. Also, after harvest, NDVI decreases immediately due to

changes in absorption and reflectance of NIR and RED, while CR can still be affected

either by the presence of photosynthetically inactive vegetation residues or by changes

in roughness. Although these factors appear outside the season of vegetation growth,

they can still affect SM retrieval and therefore their correction is beneficial.

5.3 Cross-comparison

From the comparison of the work results with the ASCAT SM product, it is obvious

that the ASCAT SM product leads to the best SM estimates. Despite applying the

same Change detection model, there are significant differences between the two products.

These differences between the model using S-1 data and the model with ASCAT data

are the different principle of vegetation correction due to the different methods of

data collection of both sensors, the size of the dataset archive and the spatial resolu-

tion. Temporal and spatial correction of vegetation of the ASCAT model has already

been studied and evaluated in several studies [Hahn et al., 2021b],[Pfeil et al., 2018],

[Vreugdenhil et al., 2016]. S-1 correction is still a less researched topic and is the subject

of future research. The length of the data archive can also cause complications with

the S-1 model as stated by [Bauer-Marschallinger et al., 2019] due to possible failure

to capture dry and wet soil conditions. The influence of spatial resolution can be

demonstrated on the example of the Cotnari station. The ASCAT SM product shows

a lower RMSD (0.03 m3.m−3) for this location as well as, although still moderate, a

higher correlation (ca. 45%) than the S-1 SM estimates. The polygon manually created

to cover the nearby vineyard field next to Cotnari station covers the second smallest

area (3 468 m2). As described by [Bauer-Marschallinger et al., 2019] the small-scale

scattering mechanisms can at field-scale contribute significantly to the backscatter

coefficient and hence distort the time series. Upscaling the data to a coarser resolution

can paradoxically help to improve the agreement between in-situ data and satellite

estimates due to the suppression of small-scale effects.

When comparing the difference between all three products and the in-situ SM, it

is shown that often both sensors (S-1 C-SAR and ASCAT C-band) fail to estimate

measured SM at the same locations (Fig. 5.5). Even with the vegetation correction im-
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Figure 5.5 Comparison of SM estimates by original Change detection model, calibrated

model and ASCAT SM product

plemented in the ASCAT product, there is still a present overestimation during summer

months (red rectangle) as well as for the S-1 SM time series, however the magnitude of

the difference is mostly smaller and closer to 0 (dashed black horizontal line) indicating

a stronger impact of vegetation correction for the ASCAT model than implemented in

the current thesis. In the black rectangle the above mentioned underestimation during

spring months is highlighted showing that calibration even if not outperformed the

ASCAT SM it reaches comparable RMSD values.
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Conclusion
The presented thesis deals with the determination of soil moisture from S-1 SAR

imagery at the individual field level using the SM Change detection model. The

thesis proposes the calibration of this model in order to correct for the influence of

vegetation in the temporal dimension, by creating a new dry reference based on CR

to capture vegetation growth and development. The model calibration achieved an

average improvement of -7.5% in RMSD and almost 8.8% in correlation results. The

results vary between stations however the calibration particularly benefited sites where

the original model failed. The new dry reference in the model was able to reduce the

negative and positive bias that results from the presence of vegetation. Despite the

assumption that the largest difference between the model without and with vegetation

correction would be observable during the season defined by the optical VPP data, the

soil moisture estimates were improved especially during the off-season. This is likely

due to the different SAR and VPP data acquisition processes.

The two models were also compared with the ASCAT SM product. Although

the model calibration improved the results, the SM estimates using ASCAT are still

more accurate. Nevertheless, the results of the thesis indicate the benefit of vegetation

correction using CR in the SM Change detection model. In this work, the Change

detection models are still burdened by the effect of insufficient LIA correction, which

causes signal fluctuation between orbits. A possible solution would be to use data from

only one relative orbit, but this would result in a decrease in the amount of data. The

vegetation correction also shows different results for different years depending on the

given conditions such as temperature and rainfall. The proposed correction is the same

for all years and does not account for individual inter-annual specificities. The results

of the work are based only on data in Romania and therefore may not be representative

for larger than regional scales.

Local factors such as crop type, the influence of temperature and precipitation,

surface roughness factor or soil composition as well as their influence on SM retrieval

would need to be further analyzed in the future research. Additionally, implementation

of the procedure could be interesting and beneficial for lower spatial resolution data

which would not be burdened by small-scale scattering mechanisms. For the spatial

analysis of the correction, it would be beneficial to use calibration data from a denser

network spread over a smaller area and thus evaluate the results of the correction in
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space.
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