Title: U-based thin films: electronic structure and physical properties

Author: Oleksandra Koloskova

Department / Institute: Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University

Supervisor of the doctoral thesis: Doc. RNDr. Ladislav Havela, CSc., Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Prague, The Czech Republic

Abstract: This thesis presents studies of U-based thin films synthesized by means of the DC sputter deposition, which allows to vary the composition and microstructure and perform in photoelectron spectroscopy studies. The subjects are U-Mo and U-Zr alloys, Uranium hydrides (UH₃ and UH₂), and U hydrides with Zr/Mo substitution.

In-situ analysis was followed by *ex-situ* studies of structure, magnetic and transport properties. Despite the superconducting ground state of the U-T alloys, only one film ($U_{0.92}Mo_{0.08}$) exhibited superconductivity, with the transition at 0.55 K.

All hydrides are ferromagnetic, with Curie temperatures around 120 K for UH₂ and 170 K for both α - and β -UH₃. This ferromagnetism is robust and independent of structural details. By varying sputtering parameters, one can obtain UH₂ (nonexistent in bulk form), β -UH₃, or a mix of UH₂ and α -UH₃ (first observed in film form). Inclusion of hydrogen atoms drastically changes properties, shifting from paramagnetic alloys to ferromagnetic hydrides, with the U-H polar bond being crucial for magnetism. The nature of UH₃ as a band ferromagnet was clarified by comparing DMFT calculations with XPS and UPS spectra, revealing final-state 5*f*² multiplet and emphasizing electron-electron correlations in UH₃.

Zr substitution in hydride films stabilized UH₂ instead of the expected α -UH₃ phase. Series (UH₃)_{1-x}Mo_x, (UH₃)_{1-x}Zr_x, and (UH₂)_{1-x}Zr_x have lower Curie temperatures than their bulk counterparts and pure UH₂ or UH₃ films. This decrease is attributed to a destabilization of hydrogen caused by the incorporation of transition metals and the excessive energy from the deposition process.

Keywords: Thin Films, Uranium, Superconductivity, Hydride, Electronic Structure, Magnetism