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Abstract
This thesis investigates the performance of simulation-based estimation meth-
ods in financial econometrics, specifically focusing on their application to agent-
based models. Traditional estimation techniques often fail due to the in-
tractability of analytical solutions in agent-based models, necessitating the
use of innovative simulation-based approaches. The study compares two fre-
quentist methods, Simulated Method of Moments (SMM) and Non-parametric
Simulated Maximum Likelihood (NPSML), with their Bayesian counterparts,
Approximate Bayesian Computation (ABC) and Bayesian Estimation (BE),
respectively. On simple benchmark models, such as the AR(2) model and the
ARMA(1,1)-GARCH(1,1) model, the simulation-based methods match the per-
formance of traditional techniques. The well-known agent-based model from
Franke and Westerhoff (2012) is the main model of interest. The results do
not indicate a clear overall winner, as the performance varies parameter by
parameter. However, Bayesian methods generally outperform their frequentist
counterparts. ABC and SMM provide less biased estimates than the likelihood
methods, NPSML and BE. On the other hand, the estimates from NPSML
and BE are more stable across different simulation runs. Additionally, this
study contributes to the understanding of the behavior of an extended NPSML
approach designed to handle latent variables.
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Abstrakt
Tato diplomová práce zkoumá výkonnost metod simulovaného odhadu ve fi-
nanční ekonometrii, se specifickým zaměřením na jejich aplikaci na multiagent-
ních modelech. Tradiční odhadové techniky často selhávají kvu̇li neřešitelnosti
analytického řešení v multiagentních modelech, což vyžaduje použití inova-
tivních metod založených na simulacích. Studie porovnává dvě frekventistické
metody, Simulovanou metodu momentu̇ (SMM) a Neparametrickou simulo-
vanou maximální věrohodnost (NPSML), s jejich bayesovskými protějšky, Při-
bližný bayesovský výpočet (ABC) a Bayesovský odhad (BE). Na jednoduchých
referenčních modelech, jako je AR(2) model a ARMA(1,1)-GARCH(1,1) model,
metody založené na simulaci dosahují srovnatelné výkonnosti s tradičními tech-
nikami. Hlavním modelem zájmu je známý multiagentní model od Franke
a Westerhoff (2012). Výsledky neukazují jasného celkového vítěze, protože
výkonnost se liší parametr od parametru. Nicméně, bayesovské metody obecně
překonávají své frekventistické protějšky. ABC a SMM poskytují méně zkreslené
odhady než metody založené na věrohodnosti, NPSML a BE. Na druhou stranu,
odhady z NPSML a BE jsou stabilnější napříč ru̇znými simulacemi. Tato studie
také přispívá k pochopení chování rozšířeného NPSML, který je navržen pro
práci s latentními proměnnými.

Klasifikace JEL C13, C15, C52, C58, G40
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Chapter 1

Introduction

Expectations are an integral part of everyday life, as opinions about the future
shape our decisions. They are also a cornerstone of economic theory, with most
models built on certain assumptions about expectations. These assumptions
have evolved throughout history to align with the current state of knowledge
and the needs of economic theory.

In the early days of economic research, the dominant assumptions were
static or naive expectations (Evans & Honkapohja 2001). Under these assump-
tions, expectations were either the same as in the past period or extrapolated
from past values. However, to improve forecasting accuracy, these expecta-
tions were largely replaced by the concept of rational expectations, introduced
by Muth (1961). Under rational expectations, individuals form their decisions
based on all available information and their understanding of the economic
model. This shift to rational expectations has provided an important ground-
ing for many economic models and has significantly influenced economic theory
and policy.

In empirical financial data, it is typical to find occurrences of extreme re-
turns (fat tails), periods of clustered volatility, speculative bubbles, and the
absence of autocorrelation. These are known as stylized facts (Cont 2001).
Traditional techniques based on rational expectations often fail to replicate
these stylized facts (Hong & Stein 1999). This has led researchers to focus
on heterogeneous expectations. A prominent approach in this shift is the use
of financial Agent-Based Models (ABMs). ABMs simulate the interactions be-
tween boundedly rational agents, creating unique dynamics that can replicate
and explain stylized facts (Cont 2007). Allen & Taylor (1990) and Frankel
& Froot (1990) demonstrate that financial market behavior is mainly driven
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by two types of agents: fundamentalists, who expect mispricing to correct to
fundamental values, and chartists, who trade based on recent trends. These
two types of agents are the cornerstone of most financial ABMs. The dynam-
ics of the model are driven by the interactions and strategy-switching between
these agents (Brock & Hommes 1997; Alfarano et al. 2008; Franke & Westerhoff
2012).

The correct estimation of financial ABMs is a major challenge they face in
order to be widely adopted in practical applications (Lux & Zwinkels 2018).
The analytical solutions of ABMs are often intractable, preventing the use of tra-
ditional estimation techniques. Therefore, researchers must apply novel meth-
ods to estimate the parameters, with most attention given to simulation-based
methods. Recent literature has focused more on introducing and developing
new approaches, creating a gap in the literature devoted to the comparison
and benchmarking of current methods, as their theoretical properties are still
not well understood (Grazzini et al. 2017; Platt 2020). Further comparison can
provide researchers with more insight into the current methods, allowing them
to make better decisions about when to use each method.

This thesis builds on the comparison work of Platt (2020) by incorporating
new methods and different types of benchmark models. Following Platt (2020),
we utilize the most popular method among financial ABMs, the Simulated
Method of Moments (SMM), but with new insights from Zila & Kukacka (2023).
Additionally, we introduce a recently promising method, the Non-parametric
Simulated Maximum Likelihood (NPSML), which has shown encouraging results
in Kukacka & Barunik (2017). The emergence of Bayesian techniques in the
literature motivates us to include Bayesian counterparts to these two methods.
Specifically, we incorporate the likelihood-based Bayesian Estimation (BE) from
Zhang et al. (2023), which approximates the posterior distribution using likeli-
hoods obtained via NPSML. A variant of this approach is the winning method
in Platt (2020). Finally, we include the likelihood-free method Approximate
Bayesian Computation (ABC) inspired by Lux (2023a), which employs moment
matching similar to the SMM and is popular among biological ABMs. Thus,
we utilize simulated versions of the popular frequentist methods of moments
and maximum likelihood, along with their Bayesian counterparts. We extend
Platt (2020) by incorporating two new methods, while slightly modifying the
remaining two based on recent findings.

For the benchmark models, our primary focus is on models with latent
variables, extending the work of Platt (2020), where the presence of latent
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variables is debatable. We begin with a simple Autoregressive (AR) model,
which provides a baseline every method should meet. The second model is
an Autoregressive Moving Average (ARMA)-Generalised Autoregressive Con-
ditional Heteroskedasticity (GARCH) model. This traditional model, with its
latent variable, offers much more complex dynamics. Both models are typi-
cally estimated using traditional econometric tools, allowing us to compare the
performance of our methodologies with these conventional approaches. The
last model is our main interest: the Franke & Westerhoff (2012) model, which
is not feasible for traditional methods. This model, popular among financial
ABMs, examines the interaction between fundamentalists and chartists in the
financial market, with a switching mechanism driven by the dynamics of a la-
tent variable. Models with latent variables provide an interesting framework
to test our methods. To our knowledge, the NPSML method has been utilized
for financial ABMs with latent variables only as part of Bayesian estimation by
Platt (2022). Therefore, we aim to shed more light on its performance in this
context, including its application in a frequentist framework.

The thesis is structured as follows: Chapter 2 presents the historical de-
velopment inside the financial ABM framework and the recent literature. The
presented methods’ theoretical properties and implementation are in Chap-
ter 3. Chapter 4 describe the benchmark models in more detail and state their
parametrization. The settings of the overall comparison study, the individual
methods, and the optimization constraints are described in Chapter 5. Chap-
ter 6 provides the results and assesses the methods’ performance. Chapter 7
continues with the sensitivity analysis and further possible improvements. Fi-
nally, the conclusion of the thesis is in Chapter 8.



Chapter 2

Literature Review

The chapter presents the literature to delve more into the historical evolution
of the financial ABMs and the current state of the research. Firstly, Section 2.1
surveys the development of the ABMs in the financial environment. Subse-
quently, Section 2.2 lists the estimation techniques used within the financial
ABMs as the correct estimation of the parameters is the main difficulty for the
empirical use of ABMs.

2.1 Financial Agent-Based Models
The central assumption of economic research is a fully rational agent (Hirsh-
leifer 1985). However, the rationality assumption within the models limits the
resulting time series. This assumption does not explain the stylized facts of the
financial markets (Cont 2001). For the empirical financial data, it is typical to
find occurrences of volatility clustering or fat-tailed returns (Ding et al. 1993;
Fama 1965).

The alternative can be financial ABMs, which explain the financial markets
by the interaction of the individual agents, such as traders and market mak-
ers. The agents do not act under the rationality assumption. Instead, they
are characterized by bounded rationality. Zeeman (1974) conducts one of the
pioneering studies in the financial ABMs using the catastrophe theory to the
unstable asset price returns. The agents in this model are divided into groups
deciding based on the fundamental value or the recent trend in price changes.
This template can be seen even in recent models. Bornholdt (2001) reproduces
clustered volatility and fat-tails with the Ising model, where buyers and sellers
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are put on the grid, and the agents switch based on probability conditional on
their neighbors.

Two types of expectations can control the dynamics of financial markets
(Allen & Taylor 1990; Frankel & Froot 1990). Fundamentalists base their
expectations on the belief that any mispricing will eventually be corrected to
align with the fundamental value. In contrast, chartists justify their decisions
by predicting that the current trend will persist in the short term. These two
strategies allow for constructing a 2-type model or N -type model with one
fundamentalist strategy and many chartist strategies.

Further important developments are conducted by Kirman (1993) and Brock
& Hommes (1997). Kirman (1993) utilizes an ant type of system; the agents
switch between the strategies based on the behavior of other agents. An impor-
tant feature is a herding mechanism; the probability of switching is influenced
by the proportion of agents in each state (strategy). Alfarano et al. (2005; 2008)
generalizes the approach by introducing a different probability of switching to
each group. The ant type of system models can replicate the stylized fact of
financial time series.

Brock & Hommes (1997) take another approach, guiding the transition
through the adaptive belief system. The agents select one of the available
strategies using a metric that evaluates each based on past performance, pre-
diction errors, or profits. The intensity of the choice parameter influences the
overall willingness to switch. Gaunersdorfer & Hommes (2007) extend the
former model by incorporating nonlinear feedback mechanisms in the agents’
strategy-switching process.

A popular model established by Franke & Westerhoff (2012) is inspired
by both philosophies of switching systems. However, it is much closer to the
adaptive belief system. The paper implements two switching regimes. The
transition probability approach incorporates individual probabilities of switch-
ing to each strategy group. The discrete choice approach is not different from
the one in an adaptive belief system. Franke & Westerhoff (2012) implement
four factors influencing the switching regimes in both approaches: herding,
wealth, predisposition, and misalignment. After calibration and comparing the
empirical time series, the winning model is constructed using a discrete choice
approach with herding, predisposition, and misalignment.
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2.2 Estimation Techniques
The analytical solution of the ABMs is usually not feasible, forbidding tradi-
tional estimation techniques. However, in a few examples, it is possible to
utilize the classical methods, such as least squares, method of moments, or
Maximum Likelihood Estimator (MLE). The catastrophe model by Zeeman
(1974) is solvable and obtains the closed-form solution using the method of
moments (Cobb 1981). Boswijk et al. (2007) successfully employ the nonlin-
ear least squares on asset pricing model inspired by Brock & Hommes (1997);
another example is ABM for the British pound during the European monetary
crisis (De Jong et al. 2009). The Ising model by Bornholdt (2001) and the ant-
type system model (Alfarano et al. 2005; 2008) are analytically solved utilizing
the MLE.

More complex ABMs do not have a closed-form solution. Therefore, the re-
searchers need to apply novel methods. The most used is the SMM invented by
the McFadden (1989) and Pakes & Pollard (1989). They also derive the asymp-
totic properties of this method. One of the initial applications in the ABMs field
is the simplified version of the Kirman (1993) model (Gilli & Winker 2003).
The series of papers by Franke & Westerhoff (2011; 2012; 2016), which focus
on developing an already stated model and studying its statistical properties,
also employ the SMM with the development of the weighting matrix to better
capture the covariances between given moments. Chen & Lux (2018) study
the convergence of the SMM to the Generalized Method of Moments (GMM)
on the Alfarano et al. (2008) model and conduct that due to the limited num-
ber of sensible moments for a univariate asset-pricing model, the convergence
requires a large sample size. The SMM is sensitive to the moment set selec-
tion; thus, Zila & Kukacka (2023) implement moment selection extension to
the SMM based on machine learning techniques with the success of achieving a
higher performing moment set. Their contribution is also an extension to the
weighting matrix from Franke & Westerhoff (2012) with the addition of the
overlapping blocks to the bootstrap, which allows the construction of a higher
number of the bootstrapping blocks.

The recent rivaling method is NPSML, where the likelihood function is ap-
proximated using the simulations from the model, and Kernel Density Esti-
mation (KDE) methods. Kristensen & Shin (2012) develop the NPSML with
its theoretical properties, and demonstrate the method on the dynamic mod-
els without an analytical solution. The NPSML was firstly utilized in ABMs
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by Kukacka & Barunik (2017) on the Brock & Hommes (1997) with extensive
study of its properties and the sensitivity to the different specifications of the
noise term, their empirical application then delve insight into the slight domi-
nance of the fundamentalists in the world’s markets. Kukacka & Sacht (2023)
further generalize the method for the multivariate macroeconomics model with
adjustments in the KDE. The NPSML has an advantage over the SMM in that
it does not rely on the preselected set of moments by the research. However,
it depends on the assumption that the distribution of the noise term is known
beforehand.

The extensive part of the literature is dedicated to the Bayesian techniques
with the benefit that the estimation yields the posterior distribution instead
of the point estimate. Grazzini et al. (2017) pioneer usage of the Bayesian
techniques, with the posterior being derived using grid search or the Markov
Chain Monte Carlo (MCMC). Both variants are fed with a parametric or non-
parametric approximation of the likelihood. For simple single-parameter esti-
mation, the parametric approach with grid search performs better; however, the
grid search became overwhelming with more parameters. Therefore, Grazzini
et al. (2017) recommend for the empirical usage the MCMC algorithm with the
non-parametric likelihoods as the parametric approach depends on the speci-
fication given by the researcher. Gatti & Grazzini (2020) extend the method
by adding information about the time structure of the time series. Another
example of the MCMC is in the study from Bertschinger & Mozzhorin (2021)
and Lux (2022).

However, the MCMC tends to get stuck in local mode (Zhang et al. 2023).
Lux (2018) explores the use of the Sequential Monte Carlo (SMC) in the finan-
cial ABMs as the more robust algorithm to local modes. SMC is employed to
approximate the conditional densities entering the likelihood calculation. Lux
(2023b) follows up on his work by implementing two versions of SMC, one to
capture the hidden state system to approximate the likelihood and the second
as the posterior sampler. The SMC proves to be computationally less demanding
than the MCMC within the ABMs. Zhang et al. (2023) combine the SMC as the
posterior sampler with the non-parametric likelihood approximation approach
from Kristensen & Shin (2012) on the macroeconomical ABM, their simulation
study conducts that the SMC can deal with multimodal likelihood.

Recently, the usage of the Bayesian likelihood-free methods is being stud-
ied in the financial ABMs framework; this approach is popular in the biological
ABMs. Lux (2023a) compares variations of the ABC on the Alfarano et al. (2008)
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model. The ABC is implemented with a rejection sampler and three different
versions of the SMC. ABC instead of the likelihood relies on the approach simi-
lar in SMM. Based on the numeral simulation exercises, Lux (2023a) concludes
that ABC seems more efficient with the information obtained from moments
than SMM, and it can be used for sample sizes, which are difficult for numer-
ical likelihood methods. ABC is also briefly studied in Grazzini et al. (2017),
with the rejection sampler achieving comparable results with the likelihood
approaches.

Emerging machine-learning techniques find their place in the study from
Platt (2022). The Bayesian estimation is extended with likelihood approxima-
tion using neural networks and is able to outperform the approach given by
Grazzini et al. (2017) on the Brock & Hommes (1997) model and the Franke
& Westerhoff (2012) model. Surrogate modeling is another promising machine
learning approach. Lamperti et al. (2018) utilize the XGBoost algorithm as
the meta-model, which learns the relationship between the model’s parameters
and its output to be then used on the model estimation; the performance is
studied on the Brock & Hommes (1997) model.

Despite the rapid emergence of new techniques, the accurate estimation of
the financial ABMs remains the main challenge in the field. Recent literature
mainly focuses on introducing novel techniques, with a noticeable gap in studies
that compare current methods to explore their advantages and disadvantages in
depth (Grazzini et al. 2017; Platt 2020). An exception to this trend is the study
by Platt (2020), which benchmarks the SMM with two similar methods, where
approaches from the information theory are utilized instead of the difference
between moments. The SMM and their variants are being employed with two
different optimization algorithms, particle swarm optimization and a surrogate
model method. Additionally, Platt (2020) implements the Bayesian estimation
with non-parametric likelihood with the MCMC from Grazzini et al. (2017).
The performance of these methods is compared using three traditional simple
time-series models and the Brock & Hommes (1997) model, with the Grazzini
et al. (2017) approach demonstrating the best performance.



Chapter 3

Methodology

This chapter presents the estimation techniques employed in this study and
their implementation. We begin with two frequentist methods: SMM in Sec-
tion 3.1 and NPSML in Section 3.2. Subsequently, we transition to Bayesian
techniques, Section 3.3 starts with likelihood-free method ABC, which shares
similarities with SMM. Finally, Section 3.4 concludes this chapter with BE,
which relies on the likelihood approximation.

3.1 Simulated Method of Moments
SMM, also known as the Method of Simulated Moments in the literature, is a
historically popular choice for estimating economic ABMs. SMM extends GMM

to be applicable in situations lacking a closed-form solution. In cases where
there is no analytical or numerical solution to the moments, GMM is inappli-
cable. While SMM applies to a broad family of models, it is important to note
that incorporating simulation introduces a high computational cost, making it
suitable only for scenarios where traditional techniques cannot be employed.

SMM beginnings can be found in McFadden (1989) and Pakes & Pollard
(1989), who develop the method and demonstrate its consistency and asymp-
totic normality under the law of large numbers, provided that the simulation
errors are independent across observations. Subsequent modifications by Lee
& Ingram (1991) and Duffie & Singleton (1990) adapt the method for time se-
ries and panel data models, respectively, by outlining its asymptotic properties
under additional constraints on error terms specific to these model types.

The core concept involves substituting the analytical or numerical solution
of moments by simulation. In statistics, a moment is a quantitative measure
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that provides information about the shape of a probability distribution. Mo-
ments can describe various aspects of the distribution, such as the mean (the
first moment) and the variance (the second moment). Additionally, moments
can also reflect distributional dependencies over time, such as autocorrelation.
In order to achieve an approximation of the moments, it is necessary to con-
duct multiple runs from the model for given parameter set. The objective is to
match the empirical and simulated moments as accurately as possible by run-
ning the simulation for a range of parameter sets and minimizing the weighted
distance between the two sets of moments to obtain the point estimate. Con-
fidence intervals for the estimates are typically obtained through Monte Carlo
simulations, which generate numerous point estimates to calculate standard
errors.

3.1.1 Formal Definition

In the formal definition, we follow the approach outlined by Zila & Kukacka
(2023). Let us define an empirical time series:

{yt}, t = 1, . . . , Temp,

which can be organized in a column vector y.
It is crucial to choose the appropriate moments for a given model and prob-

lem. Let us suppose we have selected D moments. We can then approximate
a given moment using the function md(y), where d = 1, . . . , D, which com-
putes the sample counterparts. For instance, the second-order auto-correlation
moment can be expressed as:

md(y) =
∑︁T

t=2(yt − ȳ)(yt−1 − ȳ)∑︁T
t=1(yt − ȳ)2 .

Here, ȳ denotes the sample mean.
Now, we can define an empirical moment vector:

memp = m(y) = [m1(y), . . . ,mD(y)].

In order to utilise the SMM, it is necessary to have a fully specified stochastic
model from which we can obtain a series of simulated time series yθ of length
Tsim ≥ Temp. Let us consider a model f(θ), where θ is the vector of parameters
of the particular model. Relying on a single time series to approximate the
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moment vector is prone to randomness, making further optimization difficult.
To address this, it is useful to simulate multiple runs from the model, enabling
us to construct a Tsim ×NM matrix, where NM is a number of simulated time
series:

Y θ = [yθ
1 , . . . ,y

θ
NM

].

To determine moments from the simulated data matrix, we compute the
average of the sample moments for each time series:

msim(θ) = [m1(Y θ), . . . ,mD(Y θ)]

md(Y θ) = 1
NM

NM∑︂
n=1

md(yθ
n), d = 1, . . . , D,

which provides us with a vector of simulated moments, similar to what we have
in the empirical case.

As previously noted, parameters are optimized by minimizing the weighted
distance between empirical and simulated time series moments. We first define
the difference between moments:

h(memp,msim(θ)) = memp − msim(θ).

The loss function is then defined as:

J(θ) = h(memp,msim(θ))′Wh(memp,msim(θ)),

where W ∈ RD×D is a positive definite weighting matrix. Then, we can define
the SMM estimator as the minimization of the loss function:

θ̂SMM = arg min
θ
J(θ),

where θ ∈ Θ, Θ is the parameter space. In cases when we use more moments
than we estimate parameters, then it is convenient to use J-test of overidenti-
fying restrictions to evaluate the joint compatibility of all D moments:

f̄ = J(θ̂) T →∞−−−→ χ2
D−K .

The null hypothesis H0 : f̄ = 0 indicates that the model with the given set
of moments sufficiently approximates the data-generating process. Rejecting
the null hypothesis suggests that, in at least one dimension, the model fails to
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replicate the distributional characteristics of empirical data.

3.1.2 Weighting Matrix

The weighting matrix emphasizes stable moments more than those with higher
variability. The distance between empirical and simulated moments should
be more influential on moments we can estimate more precisely than those
with higher variability. It is crucial to note that individual moments are not
independent but can be highly correlated, potentially affecting the optimization
process. Therefore, it is important to consider adding this information to the
weighting matrix. From all stated above, it would be natural to calculate the
weighting matrix W from the covariance matrix Σ of moments:

W = Σ−1.

One approach to obtaining the covariance matrix is to use the Newey-West
method. As shown by Franke (2009) and Chen & Lux (2018), the Newey-West
approach is efficient and consistent even with heteroskedasticity and autocorre-
lation. Therefore, it provides the most efficient SMM estimator. However, this
efficiency does not necessarily translate to small samples, as shown by Altonji
& Segal (1996); it results in a biased GMM estimator and even the identity
matrix can outperform it.

To overcome this limitation and address finite-sample issues, Franke &
Westerhoff (2012) suggest estimating the covariance matrix with a bootstrap
method. A block bootstrap approach is employed to calculate the covariances
for individual moments. Specifically, non-overlapping blocks of 250 observa-
tions are used for short-memory moments (mean, variance, lower-order au-
tocorrelations) and 750 observations for long-memory moments (higher-order
autocorrelations).

In this study, we follow the approach outlined by Zila & Kukacka (2023),
where the block bootstrap is improved by incorporating overlapping blocks to
reduce small sample bias. The non-overlapping approach of sizes up to 750
observations results in small blocks and can suffer from small sample bias, sim-
ilar to the Newey-West approach. Introducing overlapping blocks significantly
increases the number of blocks and mitigates the impact of small sample bias.

Let us obtain the moment vector from the sample block mb, where b =
1, . . . , B and B is the total number of bootstrapped samples. Then, the esti-
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mate of the covariance matrix is given by:

Σ̂ = 1
B

B∑︂
b=1

(mb − m)(mb − m)′,

where m = 1
B

∑︁B
b=1 mb. Then the weighting matrix W is obtained by taking

the inverse of the estimated covariance matrix Σ̂ from the bootstrap procedure.

3.2 Non-parametric Simulated Maximum Likeli-
hood

Kristensen & Shin (2012) introduce the NPSML and present it in the context
of dynamic models. However, its universality can be applied to almost any
type of model. Lee & Ingram (1991) demonstrate NPSML on discrete choice
models without additive errors. The properties of the method in the context of
univariate financial ABMs are investigated in Kukacka & Barunik (2017), and
later, the method is extended to multivariate macroeconomic ABMs by Kukacka
& Sacht (2023).

The primary advantage of this method is its general applicability and the
fact that it does not necessarily need a stationary process. The usage of NPSML

is mainly in models where the conditional likelihood is intractable, as the
method is computationally demanding. The fundamental idea is to take the
model for a given parameter set and use the independent variables for a partic-
ular data point to simulate the dependent variable NL times. Utilizing KDE, we
obtain the distribution of the conditional likelihood for a specified data point
under the model with the given parameter set. Subsequently, the likelihood
for all data points is computed, providing the likelihood of the data under the
given model. The optimization process then seeks to find the parameter set
with the best simulated likelihood.

3.2.1 Formal Definition

In the formal definition, we follow the approach outlined by Kristensen & Shin
(2012) and Kukacka & Barunik (2017). Consider a data process of T observa-
tions, {(yt,xt)}T

t=1, where yt ∈ Rk and xt ∈ χt. The space χt may change over
time, and the process is permitted to be nonstationary. The vector xt may
include both exogenous explanatory variables and lagged dependent variables
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yt. Additionally, let’s assume that a fully parametric model is responsible for
generating the data process:

yt = ft(xt, ϵt; θ), t = 1, . . . , T,

where θ ∈ Θ represents the unknown parameter vector to be optimized, and ϵt

is an i.i.d. noise term with a known distribution Fϵ. Without loss of generality,
we can assume that ϵt is independent of both t and θ.

Let’s also consider a conditional density related to the model in question:

P (yt ∈ A|xt = x) =
∫︂

A
pt(y|x; θ) dy, t = 1, . . . , T,

for any Borel set A ⊆ Rk, a standard approach for estimating θ is to maximize
the conditional log-likelihood:

θ̄ = arg max
θ∈Θ

LT (θ), LT (θ) =
T∑︂

t=1
log pt(yt|xt; θ).

When the conditional density pt(yt|xt; θ) lacks a closed-form solution, mak-
ing it impossible to derive the exact likelihood function, the maximum likeli-
hood estimator becomes infeasible. This occurs when the inverse of ft(xt, ϵt; θ)
either does not exist or does not have a closed-form expression. A common
problem that arises in complex ABMs.

However, let’s assume that we are still able to simulate observations from
the model. In that case, the presented NPSML would then yield a simulated
version of the conditional density. For all 1 ≤ t ≤ T, yt ∈ Rk,xt ∈ χt, and
θ ∈ Θ, we want to derive the simulated version of pt(yt|xt; θ). Utilizing the
knowledge of Fϵ, we produce NL i.i.d. samples {ϵi}NL

i=1 to calculate:

yθ
t,i = ft(xt, ϵi; θ), i = 1, . . . , NL.

These NL simulated random variables
{︂
yθ

t,i

}︂NL

i=1
are i.i.d., and by design, they

follow the target distribution yθ
t,i ∼ pt(·|xt; θ). By employing kernel methods,

we can approximate pt(yt|xt; θ). Let us define:

p̂t(yt|xt; θ) = 1
NL

NL∑︂
i=1

Kh(yθ
t,i − yt).

We define the kernel Kh(v) as Kh(v) = K(v/h)/hk, where K : Rk ↦→ R and
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h > 0 represents the bandwidth. According to Kristensen & Shin (2012), given
the regularity conditions for pt and K, we obtain the following results:

p̂t(yt|xt; θ) = pt(yt|xt; θ) +Op(1/
√︂
NLhk) +Op(h2), NL → ∞,

when h → 0 and NLh
k → ∞, then the remainder terms are op(1). To clarify

notation, Op means a term grows at a certain rate with high probability, while
op means a term becomes negligible compared to another as the sample size
gets very large.

After acquiring the simulated conditional density, we can then compute the
simulated MLE of θ:

θ̂ = arg max
θ∈Θ

L̂T (θ), L̂T (θ) =
T∑︂

t=1
log p̂t(yt|xt; θ).

In numerical optimization, we use the same set of draws for every value of θ.
Furthermore, we can apply the same batch of draws across different values of
t. For numerical optimization to be feasible, L̂T (θ) needs to be continuous and
differentiable in θ. This is valid when K and θ ↦→ ft(xt, ϵt; θ) are continuously
differentiable with respect to r ≥ 0.

3.2.2 Properties

The broad applicability, such as the observations yt not needing to be i.i.d. or
stationary, is due to the density estimator being based on i.i.d. samples that are
independent of the structure present in the observed data. Kernel estimators of-
ten face the curse of dimensionality; to manage the variance in high-dimensional
models, a substantial number of simulations are required. However, in NPSML,
extra smoothing is applied beyond the kernel estimation. The summation of
individual likelihoods acts as an additional smoothing mechanism, managing
variance and maintaining the standard parametric rate of 1/NL.

However, the drawback is that for a fixed NL and h > 0, the NPSML acts
as a biased estimator of the log-likelihood function. To achieve consistency, we
need to let NL → ∞ and h → 0. Selecting the appropriate bandwidth size h is
crucial for a given sample and simulation size. However, if we can make more
robust assumptions about the model’s identification, the choice of bandwidth
becomes less critical. For instance, the standard identification assumption in
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the stationary case is:

E[log p(yt|xt; θ)] < E[log p(yt|xt; θ0)] ∀θ ̸= θ0.

According to Altissimo & Mele (2009) and Kristensen & Shin (2012), if
stronger identification assumptions are met, it is possible to demonstrate that
the estimator remains consistent for any fixed 0 < h ≤ h̄, for some h̄ > 0 as
NL → ∞. It is important to note that with a fixed h > 0, the estimator is not
fully efficient, and the choice of h remains. From a theoretical perspective, it
guarantees that the estimator can accurately identify the parameters in large
finite samples. This indicates that the methodology is quite robust to the choice
of h (Kristensen & Shin 2012).

Given a suitably selected sequence NL = NL(T ) and h = h(NL), if the
theoretical convergence of the simulated conditional density to the true den-
sity is achieved, we would expect that θ̂NP SML and θ̃ML exhibit the same
asymptotic properties. Indeed, Kristensen & Shin (2012) establish that, un-
der a broad set of conditions, θ̂NP SML is first-order asymptotically equivalent
to θ̃ML. This equivalence holds even in the presence of nonstationarity and
when the response variable has a mixed distribution, combining both continu-
ous and discrete components. To establish higher-order asymptotic properties
of θ̂NP SML, additional assumptions, such as stationarity, are needed.

To ensure that p̂ → p converges sufficiently quickly for the asymptotic equiv-
alence of θ̂NP SML and θ̃ML, it is necessary to verify a set of general conditions
that are typically satisfied by most models. For the model and its correspond-
ing conditional density, Kristensen & Shin (2012) establishes a set of regularity
conditions that meet these general requirements. These conditions are satis-
fied under uniform rates of convergence for kernel estimators (Kristensen 2009).
Subsequently, the kernel K should be selected from a broad family of high-order
bias or bias-reducing kernels. Furthermore, to satisfy that the θNP SML behaves
well asymptotically on the log-likelihood function and the associated MLE, we
impose the standard conditions for the consistency of MLE in stationary and
ergodic models.

3.2.3 Extension to Models with Latent Variables

Many ABMs involve latent variables, and it is essential to modify NPSML in
order to be able to deal with latent dynamics. In this extension, we follow the
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approach outlined by Kristensen & Shin (2012) and Creel & Kristensen (2012).
Suppose that yt is generated from:

[yt, wt] = f(yt−1, wt−1, ϵt; θ),

where ϵt
i.i.d.∼ Fϵ and wt is an unobservable latent variable.

To compute the likelihood function, we need to determine the conditional
density using all available past information:

pt(yt|yt−1, yt−2, . . . , y0; θ).

The growing information set can become quite complex. Nevertheless, it is
feasible to construct the Limited Information Likelihood (LIL), particularly its
simulated variant. We define the simulated LIL as follows:

LT (θ) =
T∑︂

t=1
log pt(yt|xt; θ).

Where the set of conditioning variables xt = (yt−1, . . . , yt−m+1), m ≥ 2 is chosen
by the researcher and denotes the number of time-steps we want to simulate,
the conditioning set is then of the size m− 1. It is possible to use m = 1, and
then we are only simulating yt for one step and calculating the LIL without
the conditioning set. Therefore, it becomes almost identical to the standard
NPSML.

LIL impose efficiency loss compared to the full likelihood when estimating
θ, but it has a lower computational burden and is easier to implement. Let us
start by simulating NL trajectories of {yθ

j,i}t
j=t−m+1 for i = 1, . . . , NL by

[yθ
j,i, w

θ
j,i] = f(yθ

j−1,i, w
θ
j−1,i, ϵj,i; θ), j = t−m+ 1, . . . , t,

where the collection of ϵj,i are i.i.d. draws from Fϵ. Note that we assume that
the initial values (yt−m, wt−m) are known. In practice, the wt−m is unknown.
However, we mitigate this problem by simulating the model NL times for the
specified burn-in period with given θ. We obtain a vector of {wi}NL

i=1, which is
then used as the initial value for the latent variable in the trajectory simulation.
However, it brings another randomness into the estimation process, which leads
to the need for a larger NL.

Then, we can utilize a modified kernel estimator to approximate a simulated
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version of pt(yt|xt; θ):

p̌t(yt|xt; θ) =
∑︁NL

i=1 Kh(yθ
t,i − yt)Kh(xθ

t,i − xt)∑︁NL
i=1 Kh(xθ

t,i − xt)
,

where xθ
t,i = (yθ

t−1,i, . . . , y
θ
t−m+1,i) is a conditioning set. A similar approach is

taken by Altissimo & Mele (2009).
A few potential problems can make the convergence of p̌ slower relative to

p̂. Firstly, the dimension of (yθ
t,i,x

θ
t,i) can become overwhelming. Furthermore,

there is now a dependent structure inside simulated variables. Moreover, the
optimization procedure requires choosing a larger NL to approximate condi-
tional densities correctly. The assumption of stationarity would be helpful to
deal with the dependent structure. However, Kristensen & Shin (2012) show
that the NPSML in the LIL adjustment can also work under nonstationarity.
Karlsen & Tjøstheim (2001) and Bandi & Phillips (2003) demonstrate that
with a nonstationary recurrent Markov process, the kernel estimator is con-
sistent and asymptotically mixed normally distributed, but the convergence is
much slower and path-dependent.

3.3 Approximate Bayesian Computation
Rubin (1984) sets the grounding for the ABC algorithm for applied Bayesian
inference, and Tavaré et al. (1997) demonstrate its first empirical application.
ABC is a likelihood-free method that circumvents the likelihood computation
using distance methods. Similar to SMM, it uses simulations of the process
to approximate a simulated moment vector, which is then compared with the
empirical moment vector. ABC can be considered the Bayesian counterpart of
the SMM as the distance comparison part is the same. However, instead of
optimizing to obtain a point estimate, ABC employs particle filters or other
techniques to accept proposal particles whose simulated moment vector is close
enough to the empirical moment vector. The accepted particles provide us
with a posterior distribution p(θ|y), where θ is the parameter set and y is the
evidence, our data.

The simplest case of the particle filter is a rejection filter (Rubin 1984;
Tavaré et al. 1997). The rejection filter incrementally draws particles from the
prior distribution and calculates the distance between the moments vector by
simulations. If the distance is lower than a threshold set by the researcher,
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the particle is accepted. The problem with the rejection sampler is that the
rejection rate is very large, imposing a high computational burden. Alterna-
tives include MCMC (Marjoram et al. 2003), which creates a Markov chain by
sequential steps of moves of particles to approximate the posterior distribution,
where each step is either accepted or rejected. Secondly, one can utilize SMC

(Drovandi & Pettitt 2011), which employs importance sampling to create a
sequence of distributions, starting with the prior and ending with the desired
posterior distribution. The individual distributions in SMC are formed from
weighted particles sampled from the precedent distribution and resampled so
that the sequence of distributions converges to the posterior distribution.

In our study, we follow the approach of Lux (2023a), where four variants of
ABC are compared on the financial ABMs. The first is with a rejection sampler,
and the remaining three use different variants of SMC. The rejection sampler
proves to have the highest computational burden. Our study employs the third
method, which utilizes an SMC variant from Drovandi & Pettitt (2011). This
method, as shown in Lux (2023a), achieves the best results regarding precision
and computational complexity. It uses the fact that, in each step of SMC, it
drops τ share of particles, and the rest are resampled to keep the total number
of particles constant. It automatically derives the acceptance threshold δs of
the distance between simulated and empirical for the following step. Then,
the algorithm employs an MCMC kernel of the invariant distribution to update
the particles. The updates run Rs times for each particle, where Rs is derived
from the acceptance rate from the last step to ensure that each particle is
moved with a set probability threshold. The acceptance is based on whether
the distance between the simulated moment vector using the proposed particle
and the empirical moment vector is below the threshold. Lastly, when the
final threshold δSA

is reached, the final particles are corrected with a linear
adjustment that extrapolates the particles to the limiting case δ = 0.

3.3.1 Formal Definition

We mainly follow Drovandi & Pettitt (2011) and Lux (2023a). ABC aims to
get samples from the joint approximate posterior distribution

p(θ,yθ|ϱ(y,yθ) ≤ δSA
) ∝ p(yθ|θ)π(θ)1ϱ(y,yθ)≤δSA

,
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where θ is the parameter vector, π(θ) the prior distribution, ϱ is the distance
metric between summary statistics of the empirical data y, and the simulated
data yθ obtained from the model with parametrization of θ, typically the mo-
ments are used as summary statistics. The final tolerance is denoted by δSA

.
Lastly, the indicator function 1 is one when the distance condition is satis-
fied; otherwise, it is zero. Marginalization over the simulated data gives us the
approximate posterior for the parameter:

p(θ|ϱ(y,yθ) ≤ δSA
) ∝

∫︂
yθ
p(yθ|θ)π(θ)1ϱ(y,yθ)≤δSA

dyθ.

To converge to this approximation, we utilize the version of SMC without
likelihoods, where for the non-increasing sequence of the tolerances, δ1 ≥ δ2 ≥
· · · ≥ δSA

, s = 1, . . . , SA, we subsequently create a following sequence of distri-
butions:

πs(θ,yθ|ϱ(y,yθ) ≤ δs) ∝ p(yθ|θ)π(θ)1ϱ(y,yθ)≤δs
.

Each distribution is approximated using NA weighted particles, {θi
s,W

i
s}, i =

1, . . . , NA. By π0(θ), we denote the importance distribution for the first target,
typically the prior distribution. The original variant from Sisson et al. (2007)
utilizes a Markov transition kernel and a backward Markov kernel. However,
these kernels are, in fact, chosen to be equal, which leads to a much simpler
weighting formula. However, this arbitrary choice results in bias (Beaumont
et al. 2009). Correction of bias and choice of more optimal backward kernel
turn the algorithm into O(N2), meaning the time it takes to run the algo-
rithm increases proportionally to the square of the number of elements N . Lux
(2023a) adopts an alternative approach by Drovandi & Pettitt (2011) where
the forward and backward kernels are exchanged with MCMC kernel, which re-
moves the bias and returns the algorithm to an O(N). Marjoram et al. (2003)
verifies the theoretical validity of the MCMC kernel without likelihoods. Under
a suitable kernel, the MCMC step becomes just a rejection method based on
description summaries. The incremental weights are derived from importance
sampling; the current target is divided by importance distribution (the previous
distribution in SMC step).

Unfortunately, the drawback is the possibility of duplicated particles. There-
fore, the MCMC kernel is repeated Rs times for each particle to mitigate this
problem. Using the acceptance rate γacc

s−1 from the last iteration, we can update
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the value of Rs dynamically

Rs = log(c)
log(1 − γacc

s−1)
,

where c is a constant the user chooses, and 1 − c denotes the probability that
the particle is moved at least once with the assumption of binary trials.

The choice of the sequence of thresholds δ1, . . . , δSA
can be crucial for quick

convergence, and it can increase the running time substantially. In Drovandi
& Pettitt (2011), the sequence is derived adaptively so that the particles are
sorted based on their distances at the end of the iteration. Then, 100τ percent
of particles with the largest distance are dropped. Then, the threshold for the
next iteration is chosen as the maximum distance from the remaining particles.
This step is theoretically grounded on the incremental weights which, with the
MCMC kernel, are given by

w̃i
s =

1
ϱ(y,y

θi
s−1 )≤δs

1
ϱ(y,y

θi
s−1 )≤δs−1

,

therefore W i
s ∝ w̃i

sW
i
s−1, and it is clear that the weights are ones for the re-

maining particles and zero for the dropped particles.
To keep the size of particles constant, the particles are resampled from the

remaining ones to fill the dropped particles, and as already said above, they
are updated with the MCMC kernel. The algorithm finishes when the maximum
distance of the population is below the final threshold δSA

. Note that the need
to choose the sequence of thresholds is replaced with only tuning the τ and
δSA

parameters. The pseudo-code for ABC by Drovandi & Pettitt (2011) is
described in Algorithm 1.

Following Lux (2023a), we utilize the moments as the summary statistics.
The summary statistics function is the moment function m(y) from Section 3.1.
The distance measure is identical to the one in SMM:

ϱ(y,yθ) = h(memp,msim(θ))′Wh(memp,msim(θ)),

where W is derived using approach from Subsection 3.1.2. Note that similarly
to the SMM, the moments for given parameter vector are derived using multiple
simulations of the data, therefore, it would be more convenient to denote yθ

as Y θ, however, for simplicity and the fact that we are mainly describing the
SMC algorithm within ABC we follow the original notation.



3. Methodology 22

Algorithm 1 An ABC algorithm from Drovandi & Pettitt (2011)
1: Let Nτ be the integer part of (1 − τ)NA

2: for i in 1 to NA do
3: repeat
4: draw particle from prior θi ∼ π(·)
5: simulate data from the model yθi ∼ f(·|θi)
6: ϱi = ϱ(y,yθi)
7: until ϱi ≤ δ0

8: end for
9: sort particles by ϱi

10: set the max distance δmax = ϱNA

11: while δmax > δSA
do

12: drop Nτ particles with the largest ϱ
13: set the next threshold δ = ϱNA−Nτ

14: for j in NA −Nτ + 1 to NA do
15: resample θj from {θi}NA−Nτ

i=1

16: for k in 1 to R do
17: update θj using an MCMC kernel of invariant distribution
18: end for
19: end for
20: calculate R from the acceptance rate of the MCMC step
21: sort particles by ϱi

22: set the max distance δmax = ϱNA

23: end while

It is important to note that ABC converges to the so-called partial posterior
p(θ|memp), which acts as an approximation to the true posterior p(θ|y). The
partial posterior, conditional on moments memp, is equal to the true poste-
rior only if the moments are sufficient statistics, which generally exists only
for the exponential family of distributions. Fearnhead (2018) summarizes the
results on asymptotic properties of ABC, more precisely, the posterior concen-
tration around the true value with a increasing sample size of the empirical
data T → ∞ and the threshold level decreasing with the increasing sample
size, δT → 0. Furthermore, the identifiability condition needs to be met by
the limit of the summaries for the true parameter vector. In order for the
ABC to converge to the partial posterior, if the summary functions obey a cen-
tral limit theorem with rate

√
T , then the tolerance level δT should decline as
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δT = o(1/
√
T ). Otherwise, there is no Gaussian limit, and the convergence to

the partial posterior is not satisfied, i.e., δT

√
T → c > 0 (Frazier et al. 2018).

3.3.2 Regression Adjustment

Using an ABC, we obtain p(θ|ϱ(y,yθ) ≤ δSA
) which serves as an approximation

to the posterior. It would be practical to have an approximation in the case
where δSA

→ 0 with the increasing sample size as it would guarantee the con-
centration of the posterior at the exact partial posterior p(θ|memp). However,
the sample size is usually fixed in empirical studies, and we need to compromise
with a case of δSA

> 0.
The solution can be linear regression adjustment (Lux 2023a), which ex-

trapolates the finite δSA
to the limiting case δSA

= 0. When we assume a linear
relationship between accepted particles and summaries, then for each element
of the particle set, we can perform a series of regressions:

θi,j = αj + β′
j(msim(θi) − memp) + ηi,j,

where θi,j denotes the j-th parameter of the i-th accepted particle for poste-
rior p(θ|ϱ(y,yθ) ≤ δSA

), msim(θi) − memp is the difference between moment
vectors of the simulated data and the empirical data for the given particle.
Lastly, ηi,j is the error term. Note that the regression is conducted separately
for each parameter. To reduce the influence of outliers and increase the concen-
tration around δ = 0, we utilize the weighted regression, where the weights are
calculated using the distance between moments to emphasize particles whose
distance to the empirical moments is closer to 0. The weights are determined
using a bounded kernel function Kδ: ŵi ∝ Kδ[ϱ(y,yθi)]; the thesis utilizes the
Epanechnikov kernel as recommended by Blum (2017).

The regression coefficient β̂j, α̂j and the residuals η̂i,j are used for correcting
the sample of particles:

θ̂
i,j = θi,j − β̂

′
j(msim(θi) − memp) = α̂j + η̂i,j.

Corrected posterior should be closer to the case where δ → 0 and the
obtained posterior better approximates the partial posterior p(θ|memp). The
adjustment is a standard choice in ecology and evolutionary genetics research
where the ABC is used more often than in economics. It is also possible to
utilize more flexible approaches such as the nonlinear heteroskedastic model,
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ridge regression, or neural networks (Blum 2017). We stick to the simplest
method, linear regression.

3.4 Bayesian Estimation
We conclude the methodology with the description of the BE. It is important
to note at the beginning that the ABC is also a BE technique, but we separate
them, and by BE, we refer to the likelihood-based methods. The likelihood-
based methods have been gaining popularity in the ABMs field. Grazzini et al.
(2017), Platt (2020) and Lux (2022) utilize MCMC as the sampling scheme to
obtain posterior distribution. Lux (2023b) and Zhang et al. (2023), on the other
hand, exploit the usage of the SMC while argument that likelihood of ABMs is
often multimodal. Therefore, the MCMC can get stuck inside the local node of
the likelihood function, where the SMC is a much more robust alternative.

We imitate the implementation from Zhang et al. (2023) who are able to
estimate parameters of the macroeconomic ABM by approximating the like-
lihood function using the non-parametric approach with KDE method in the
same manner as the NPSML1. There is also a similarity with the ABC as for
obtaining the samples from posterior, it utilizes the SMC algorithm. However,
the version of SMC is different than in the ABC.

Again, the SMC estimates the posterior distribution by construction of a
sequence of distribution utilizing the importance sampling. The first step is
drawing the particles from the prior distribution. This initialization step is
followed with recursion. The recursion aims to create an intermediate distribu-
tion, which bridges the distributions from the precedent and the next iteration.
In the beginning, these distributions are close to the prior, but in the end, they
should converge to the posterior distribution.

Each recursion consists of three steps to create this sequence of distributions.
Starting with correction, it is reweighting the particles from the last stage
to reflect the density change in the new iteration and evaluate the particle’s
quality based on likelihood obtained using the same approach as in Section 3.2.
The second step is selection, where the particles are either resampled using
systematic resampling, or they are kept as they are. The decision to resample or
not is made adaptively based on effective sample size, which assesses how much
the weights are distributed evenly. Therefore, the main purpose of resampling

1Actually, our implementation of these two methods is calling the same function for the
likelihood calculation.
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is to deal with particle degeneracy and eliminate particles with near-zero weight
for the price of some particle duplication. The recursion ends with a mutation.
The Markov transition kernel propagates forward particles to adjust them to the
current intermediate distribution. Following Zhang et al. (2023), the mutation
utilizes the Metropolis-Hastings algorithm, and the Markov transition kernel
uses a simple random walk with Normal distribution, where the covariance is
adaptively derived using particles from the last iteration and the acceptance
rate. The selection and mutation are crucial for the accuracy of the SMC as they
keep the sample diversity and the spread of weights even across the particles,
which improves the accuracy of the importance sampling (Herbst & Schorfheide
2014).

3.4.1 Formal Definition

The likelihood approximation is identical to the covered in Section 3.2. The
SMC inside Section 3.3 is easier than the one covered here in BE as the version
in ABC is special in that weights are either one or zero, where the importance
sampling is reduced to the acceptance of the particle based on distance. Fol-
lowing the definition by Zhang et al. (2023) and Herbst & Schorfheide (2014),
the SMC aims to obtain the posterior density given by

p(θ|y) ∝ p(y|θ)π(θ).

We abbreviate the notation of the right-hand side with ṗ(θ) = p(y|θ)π(θ).
The cornerstone of each SMC algorithm is the importance sampling, which aims
to approximate p(θ|y) with the help of different, tractable density ġ(θ), which
should be easy to sample from. Then, the importance sampling is derived from
the identity

Ep(·|y)[h(θ)] =
∫︂
h(θ)p(θ|y) dθ = 1

Z

∫︂
h(θ)ẇ(θ)ġ(θ) dθ,

where ẇ(θ) = ṗ(θ)
ġ(θ) , Z is normalizing constant such that p(θ|y) = 1

Z
ṗ(θ)

and h is placeholder function to represent quantity which expected value we
want to estimate, e.g., h(θ) = θ, then Ep(·|y)[h(θ)] is the mean of θ under the
distribution p(θ|y). Then suppose that we have θi iid∼ ġ(θ), i = 1, . . . , N then
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we can utilize the weights to calculate weighted average

h̄ =
N∑︂

i=1
h(θi)W̃ i

, where W̃
i = ẇ(θi)∑︁N

j=1 ẇ(θj)
.

Under regularity conditions (Geweke 1989), the estimate converges almost
surely to Ep(·|y)[h(θ)] as N → ∞. The accuracy of the approximation de-
pends on the closeness of ġ(θ) to ṗ(θ). We want to have the weights as even
as possible.

In practice, finding good density ġ(θ), which would lead to efficient im-
portance sampling, takes a lot of work. Therefore, SMC utilize importance
sampling to construct a sequence of particle approximations to intermediate
distributions, which serve as the bridge between the prior and posterior; we
index them by n and define them as

πs(θ) = ps(θ)
Zs

= [p(y|θ)]Φsπ(θ)∫︁
[p(y|θ)]Φsπ(θ) dθ

,

for s = 1, . . . , SB. The sequence is controlled by the tempering schedule
{Φs}SB

s=1, where Φ1 = 0 and ΦSB
= 1. Note that for s = 1 the initial distribu-

tion is equal to the prior π0(θ) = π(θ). Therefore, the algorithm’s initialization
is quite straightforward and consists of only drawing NB particles from prior
and defining the particle’s weight W i

1 = 1, obtaining {θi
1,W

i
1}, i = 1, . . . , NB.

However, as shown by Herbst & Schorfheide (2014), the tempering schedule
is important. The linear schedule results in the likelihood of dominating the
prior too quickly. Therefore, using a schedule where the distance is smaller in
the early stages is a good idea. Both, Herbst & Schorfheide (2014) and Zhang
et al. (2023) utilize following schedule with λ > 1:

Φs =
(︃
s− 1
SB − 1

)︃λ

.

Based on terminology from Herbst & Schorfheide (2014), the transformation
of particles to the next distribution in sequence is called recursion. The first
step is correction. All particles from the iteration s − 1 are reweighted by
incremental weights used for the normalization of weights from past iterations:

w̃i
s = [p(y|θi

s−1)]Φs−Φs−1 , W̃
i

s = w̃i
sW

i
s−1

1
NB

∑︁NB
j=1 w̃

j
sW

j
s−1

.
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Algorithm 2 An SMC algorithm from Zhang et al. (2023)
1: define the tempering schedule {Φs}SB

s=1

2: Initialization:
3: for i in 1 to NB do
4: draw particle from prior θi ∼ π(·) and set W i

1 = 1
5: end for
6: Recursion:
7: for s in 2 to SB do

8: Correction: w̃i
s = [p(y|θi

s−1)]Φs−Φs−1 , W̃
i

s = w̃i
sW

i
s−1

1
NB

∑︁NB
j=1 w̃

j
sW

j
s−1

9: Selection:
10: calculate effective sample size ESSs = NB/(

1
NB

∑︁NB
i=1(W̃

i

s)2)
11: if ESSs < NB/2 then
12: resample the particles using systematic resampling from multinomial

distribution {θi
s−1, W̃

i

s}
NB
i=1 and set W i

s = 1, i = 1, . . . , NB

13: else
14: keep particles and W i

s = W̃
i

s, i = 1, . . . , NB

15: end if
16: Mutation: calculate ĉs and Σ̃s

17: for i in 1 to NB do
18: propose particle ϑi

s|(θi
s, Σ̃s) ∼ N (θi

s, ĉ
2
sΣ̃s)

19: define acceptance probability ξ(ϑi
s|θi

s) = min
{︄

1, [p(y|ϑi
s)]Φsπ(ϑi

s)
[p(y|θi

s)]Φsπ(θi
s)

}︄
20: if accept particle with probability ξ(ϑi

s|θi
s) then

21: θi
s = ϑi

s

22: else
23: keep particle θi

s = θi
s

24: end if
25: end for
26: end for

The second step is selection; firstly, we calculate the effective sample size
ESSs = NB/(

1
NB

∑︁NB
i=1(W̃

i

s)2). It measures how the weights are spread equally;
as Herbst & Schorfheide (2014) note, uneven weights lead to inaccurate particle
approximation of the distribution and proposes adaptive version selection used
by Zhang et al. (2023) as well. If ESSs < NB/2, resample the particles using
systematic resampling by draws from a multinomial distribution {θi

s−1, W̃
i

s}
NB
i=1
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and set W i
s = 1. Otherwise, keep particles and their weights, θi

s = θi
s−1,

W i
s = W̃

i

s. Herbst & Schorfheide (2014) demonstrate that the systematic
resampling adds noise to the approximation, but the subsequent even weights
reduce the variance in the correction step. Therefore, it is important to balance
these two effects.

Finally, mutation updates the particles to move them toward the current
distribution via the Metropolis-Hastings algorithm with a Markov transition
kernel (Chopin 2004). Zhang et al. (2023) propagate particles using proposal
ϑi

s from normal distribution:

ϑi
s|(θi

s, Σ̃s) ∼ N (θi
s, ĉ

2
sΣ̃s),

where Σ̃s is importance approximation of variance based on {θi
s−1, W̃

i

s}
NB
i=1, and

ĉs is derived from average acceptance rate γacc
s−1 in past recursion and for s > 2

it follows

ĉs = ĉs−1f̂(γacc
s−1), f̂(x) = 0.95 + 0.1 e16(x−0.25)

1 + e16(x−0.25) .

We accept the proposal and let θi
s = ϑi

s with probability ξ(ϑi
s|θi

s), and
otherwise, we keep the particle unchanged; the probability is calculated as

ξ(ϑi
s|θi) = min

{︄
1, [p(y|ϑi

s)]Φsπ(ϑi
s)

[p(y|θi
s)]Φsπ(θi

s)

}︄
.

Then the approximation of Ef(·|y)[h(θ)] is given by

h̄s,NB
= 1
NB

N∑︂
i=1

h(θi
s)W i

s .

The recursion is iterated for SB times; the main advantage is that the
proposal distributions are constructed adaptively, where the πs(θ) is a proposal
distribution for πs+1(θ) making it more robust to initial values than MCMC

(Zhang et al. 2023). Note that with f̂(0.25) = 1, the ĉs ensures that the
average acceptance rate is around 25%. The researcher needs to choose the
NB, SB and λ ex ante. The pseudo-code is shown in Algorithm 2.

Herbst & Schorfheide (2014) provide the formal analysis of the non-adaptive
version of this algorithm, and under regularity conditions, the SMC approxima-
tion satisfies the strong law of large numbers and central limit theorems for
NB → ∞ with other parameters fixed. They provides three theorems that
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establish the properties of the three main steps: correction, selection, and mu-
tation. That is important as it characterizes the trade-offs inside the design
of SMC algorithms. The Herbst & Schorfheide (2014) also discuss the asymp-
totic properties of the adaptive version used in our thesis and shows that the
adaptive version of the transition kernel does not affect the asymptotic vari-
ance. The convergence also satisfies the adaptive version of the selection step
(Del Moral et al. 2006).

3.4.2 Computational Stability

The formal definition of the algorithm works with likelihoods. However, as
the likelihood is either the product of likelihoods for each time-stamp or exp
of the sum of log-likelihoods for each time-stamp, therefore, with increasing
sample size T the likelihood is prone to underflow; in other words, the computer
rounds the given number to zero as it becomes too small for the computer to
represent it accurately. It has a simple solution. Only the correction step
and acceptance probability inside the mutation need to be rewritten to work
with log-likelihoods instead of likelihoods. These adjustments are inline with
Naesseth et al. (2019). We start with acceptance probability:

log[ξ(ϑi
s|θi

s)] = log
[︄
min

{︄
1, [p(y|ϑi

s)]Φsπ(ϑi
s)

[p(y|θi
s)]Φsπ(θi

s)

}︄]︄
.

Moreover, log is a continuous strictly monotonic increasing function. Therefore,
we can put the log inside the min function, and with the help of basic properties
of the log function, it is easy to obtain the following formula

log[ξ(ϑi
s|θi

s)] = min
{︂
0,Φs log[p(y|ϑi

s)] + log[π(ϑi
s)] − Φs log[p(y|θi

s)] − log[π(θi
s)]
}︂
.

As we can see now, the calculation works only with log probabilities, making
it much more stable. To transform the final log probability to the original
probability is straightforward with the exp function.

Now, we move to the correction step. The incremental weights are simple:

log(w̃i
s) = log{[p(y|θi

s−1)]Φs−Φs−1} = log[p(y|θi
s−1)](Φs − Φs−1).
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Subsequently, also deriving the formula for weights normalization:

log(W̃ i

s) = log

⎛⎜⎜⎜⎝ w̃i
sW

i
s−1

1
NB

∑︁NB
j=1 w̃

j
sW

j
s−1

⎞⎟⎟⎟⎠
= log(w̃i

s) + log(W i
s−1) − log(1/NB) − log

⎛⎝NB∑︂
j=1

w̃j
sW

j
s−1

⎞⎠ .
The only problem remains in log(∑︁NB

j=1 w̃
j
sW

j
s−1). It is important for stability

to use a logarithm of incremental weights. We utilize the LogSumExp (LSE)
function:

LSE(x1, . . . , xn) = log
[︄

N∑︂
i=1

exp(xi)
]︄
.

To provide computational stability robust to underflow and overflow, the LSE

is using the following trick under the hood:

LSE(x1, . . . , xn) = log
(︄

N∑︂
i=1

[exp(x∗) exp(xi − x∗)]
)︄

= log
(︄

exp(x∗)
N∑︂

i=1
exp(xi − x∗)

)︄

= x∗ + log
(︄

N∑︂
i=1

exp(xi − x∗)
)︄
,

where x∗ = max{x1, . . . , xn}. This provides us with a tool to rewrite the sum
inside the normalization of weights to the stable formula:

log
⎛⎝NB∑︂

j=1
w̃j

sW
j
s−1

⎞⎠ = log
⎛⎝NB∑︂

j=1
exp[log(w̃j

sW
j
s−1)]

⎞⎠
= log

⎛⎝NB∑︂
j=1

exp[log(w̃j
s) + log(W j

s−1)]
⎞⎠

= LSE
[︂
log(w̃1

s) + log(W 1
s−1), . . . , log(w̃NB

s ) + log(WNB
s−1)

]︂
.

These three adjustments turn the SMC into a stable algorithm robust to
underflow.



Chapter 4

Implemented Models

This chapter overviews the theoretical models employed to compare simulated
estimation methods. Section 4.1 first introduces a simple AR model to demon-
strate the functionality of our methods. Then, Section 4.2 moves to a more
difficult example with the classical ARMA-GARCH, a popular model in finan-
cial economics. Both of these models are typically estimated using traditional
econometric methods, which we use as a additional benchmark to our methods.
Lastly, Section 4.3 presents the financial ABM proposed by Franke & Westerhoff
(2012).

4.1 Autoregressive Model
As the baseline model, we consider the AR model. This simple random pro-
cess where the output variable linearly depends only on its past values and a
stochastic term (noise). The AR(p) model is given by:

yt =
p∑︂

i=1
ψiyt−i + ϵt,

where ϵt ∼ N(0, σ2). The AR(p) is the mean-corrected process, and thus weak-
sense stationary, if the polynomial ψ(z) = 1 − ψ1z − · · · − ψpz

p has all roots
lying outside of the unit circle (Sathe & Upadhye 2022).

The AR process provides trivial dynamics, and it is used as the benchmark
where all the methods stated above should perform well, thus demonstrating
their validity. In the same manner, it is used in the ABM calibration methods
comparison by Platt (2020), where the AR of order p = 1 is utilized. We add
lag and use AR(2) as our testing model. The calibration follows a bootstrap
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simulation study by Souza & Neto (1996), therefore, we set the parameters in
the following way: ψ1 = 0.2, ψ2 = −0.9, and σ2 = 0.1. We estimate only ψ1 and
ψ2, due to the theoretical properties of NPSML where the noise is assumed to
be known a priori to the estimation. Therefore, the noise’s variance parameter
σ2 is fixed. One simulation of the given specification of the AR(2) process is
shown in Figure 4.1.

Figure 4.1: Simulated data from AR(2) model

Note: A time series of 3000 periods and a burn-in period 500.

4.2 ARMA-GARCH Model
Our second benchmark combines two traditional econometrics univariate mod-
els. The GARCH is utilized for the second moment modeling, and the mean
equation is represented by ARMA process.

We start with the depiction of the GARCH model, introduced by Boller-
slev (1986) to address the modeling of the second moment in time-series with
the assumption of heteroscedasticity. The GARCH models the variance as an
autoregressive moving average process, where there is a linear dependence be-
tween current variance and constant long-term variance, past variances, and
past squared residuals. Formally, the GARCH(k,l) is given by three equations:

yt = νt + ϵt, ϵt = σtζt

σ2
t = ω +

k∑︂
i=1

αiϵ
2
t−i +

l∑︂
j=1

βjσ
2
t−j,

where dependent variable yt is derived from the mean νt and the error term
ϵt. The error term is deconstructed into normally distributed white noise inno-
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vation ζt and the conditional volatility σt. An autoregressive moving average
process models the conditional volatility, where ω depicts the long-term baseline
level of volatility, α represents the linear relationship of past squared errors on
current volatility, and β measures the impact of the past conditional variances.

The magnitude of α parameters characterizes the persistence of the short-
term shocks inside the model, and the persistence of the long-term shocks
corresponds to the sum of both α and β (Campbell et al. 1998). The conditional
variance must exist and be finite to ensure that the GARCH process is stationary.
Therefore, the baseline level of volatility needs to be positive ω > 0 and the
rest of the parameters nonnegative αi ≥ 0 for i = 1, . . . , k, and βj ≥ 0 for j =
1, . . . , l. For the conditional variance to remain finite, the sum of parameters
must satisfy ∑︁k

i=1 αi + ∑︁l
j=1 βj < 1 (Hull 2012). It is common only to use

GARCH(1, 1) as it is already capable of capturing complex volatility behavior,
and this simple specification can outperform more complicated methods (Miah
et al. 2016).

As already stated, we utilize two processes, and we model the mean νt with
ARMA, which is a combination of AR from Section 4.1 and Moving Average
(MA). The ARMA(p, q) is given by

yt = ν +
p∑︂

i=1
aiyt−i +

q∑︂
j=1

bjϵt−j + ϵt,

where the ν denotes the long-term mean, ai and bi depict the linear dependence
on past lags of the dependent variable and past error terms, respectively, errors
ϵt are obtained using above specified GARCH process. The MA process is always
stationary. Thus, the stationarity of the ARMA model is determined by the AR

part; therefore, the ARMA must satisfy the same condition as already stated in
Section 4.1.

We chose simple ARMA(1,1) for our analysis. Therefore, the final model
ARMA(1,1)-GARCH(1,1) used as our benchmark is given by:

yt = ν + a1yt−1 + b1ϵt−1 + ϵt

ϵt = σtζt

σ2
t = ω + α1ϵ

2
t−1 + β1σ

2
t−1.

The σt can be considered as the latent variable. Therefore, this model
provides us with the first benchmark in an environment with latent variables.
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Similar benchmark is used in Platt (2020), where the author utilizes ARMA(2,2)-
GARCH(2,0). The parameterization of the model is taken from an estimation
study by Sathe & Upadhye (2022), where the parameters of the ARMA part are
set in the following way: ν = 0, a1 = 0.7, and b1 = 0.1. The parameters of the
GARCH part are: ω = 0.001, α1 = 0.1, and β1 = 0.3. The single realization of
the model with the given specification is demonstrated in Figure 4.2.

Figure 4.2: Simulated data from ARMA(1,1)-GARCH(1,1) model

Note: A time series of 3000 periods and a burn-in period 500.

4.3 Franke and Westerhoff (2012) Model
Finally, we present our main benchmark model, one of the most popular finan-
cial ABM. The roots of this model can be traced to the Franke (2008), where
the individual agents are based on transition probabilities switching between
two sentiments, optimism and pessimism. Franke & Westerhoff (2011) then
introduce two groups of agents, chartist, and fundamentalist. Fundamentalists
are considered the ones with long time horizons and base their demand on the
deviation between the current price and the fundamental value. Chartists, on
the other hand, analyze the market based on the latest price trends. A key
feature of their model is that agents have the flexibility to alternate between
strategies, making decisions based on recent price levels and a herding effect.

The model is further enriched by Franke & Westerhoff (2012), who intro-
duce two potential switching mechanisms and outlines various methods for
calculating the attractiveness of different strategies. In their work, Franke &
Westerhoff (2012) propose seven distinct variations of the model and evaluate
them based on how well they capture the typical characteristics of financial
data. The model gains popularity and is used in many estimation studies. To
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name a few, Zila & Kukacka (2023) utilize the model to demonstrate the ma-
chine learning extension of the SMM. Lux (2022) and Platt (2020) use it as a
benchmark in their study of the Bayesian estimation in the ABM field. Franke
& Westerhoff (2016) then take the winner from the model variants and further
studies its properties in the phase plane of the price and a majority index,
which quantifies the share of given strategies. Our description only focuses on
this variant of the model.

As previously mentioned, the model dynamics are influenced by two types
of agents: chartists and fundamentalists. Through their interactions, a market
maker determines the price for each period. The market maker adjusts the
price according to the excess demand and supply from these two groups, so
that the log price pt at the given period is equal to

pt = pt−1 + µ(nf
t−1d

f
t−1 + nc

t−1d
c
t−1),

where nf
t−1, nc

t−1 = 1 − nf
t−1 denote the proportions of fundamentalist and

chartist agents in the market, respectively. The excess demand from each
group is represented by df

t−1 and dc
t−1. The market marker responds to these

imbalances by adjusting the price with a rate µ > 0.
The demand of an average trader in each group is governed by a straightfor-

ward deterministic rule. Fundamentalists set their demand based on an inverse
relationship with the difference between the price and its fundamental value
(p∗ − pt), where p∗ is a log of the fundamental value, which is treated as an
exogenous constant. As noted by Franke & Westerhoff (2012), the required
stylized facts are obtained even without the random walk behavior of the fun-
damental value. On the other hand, the demand of chartists is determined by
the recent price movement (pt − pt−1). The demands are then derived as

df
t = ϕ(p∗ − pt) + ϵf

t , ϵ
f
t ∼ N (0, σ2

f )

dc
t = χ(pt − pt−1) + ϵc

t , ϵ
c
t ∼ N (0, σ2

c ),

nonnegative parameters ϕ and χ denotes the adjustment constants of the de-
mands, noise terms ϵf

t and ϵc
t are added to the demands, and σf and σc are the

volatilities of the mentioned noise terms. Independent noise terms for each de-
mand are a crucial part of the model as they represent a certain heterogeneity
as then the variation of the log returns rt = pt − pt−1 acts as the sum of two
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normal distributions dependent on the fluctuation of the fundamentalists and
chartists, σ2

t = µ2[(nf
t−1)2σ2

f + (nc
t−1)2σ2

c ]. The change of variance with time is
why the model can match the stylized facts of the returns (Franke & Westerhoff
2012).

A switching mechanism controls the adjustment of population ratios. The
superior variant of Franke & Westerhoff (2012) utilize the Discrete Choice Ap-
proach (DCA) where the impact is directly on nf

t :

nf
t = 1

1 + exp(−βfwat−1)
, nc

t = 1 − nf
t ,

at−1 denotes the relative attractiveness of fundamentalism over chartism. It
is the main force driving the switching mechanism, and βfw is the intensity of
choice influencing the magnitude of the effect of the at−1. Note that at−1 serves
as a latent variable inside the model.

There are various combinations of how to specify the relative attractiveness
at. The dominant variant in Franke & Westerhoff (2012) comprises three parts.
The first principle is called herding, which means that the attractiveness of one
group rises with the number of participants it already has. The implementa-
tion of herding is straightforward in that the at change proportionally to the
difference between shares of the fundamentalists and chartists nf

t − nc
t and the

magnitude of this effect is controlled by αn ≥ 0.
Secondly, it is possible that the agents in question may have an a priori

preference for one of the strategies that can be measured by the parameter α0.
When the parameter is positive (negative), the agents tend towards fundamen-
talism (chartism).

Finally, the third principle, price misalignment, indicates that chartism
seems riskier as the deviation from the fundamental value increases. As a
result, at grows in proportion to the squared deviation of the price from the
fundamental value, (pt − p∗)2. The size of the influence on the relative attrac-
tiveness is measured by parameter αp ≥ 0. Hence, the full equation is given
by

at = αn(nf
t − nc

t) + α0 + αp(pt − p∗)2.

Our parametrization of the model follows Franke & Westerhoff (2012),
where the model is calibrated so it can reasonably capture stylized facts of
returns. The same parametrization is also used by Platt (2022) and Zila &
Kukacka (2023). The parameters controlling the aggressiveness of the individ-
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ual excess demands are set to ϕ = 0.12 and χ = 1.5. The factors determining
the influence of the three principles on relative attractiveness are calibrated
such that α0 = −0.327, αn = 1.79, and αp = 18.43. The remaining parameters
are fixed during the estimation study and set so that σf = 0.758, σc = 2.087,
p∗ = 0, µ = 0.01, and βfw = 1. The volatility parameters of the noise terms
σf and σc are fixed due to theoretical properties of the NPSML where the noise
is assumed to be known a priori to the estimation. The fundamental value is
redundant in a simulation study as treating it as a constant does not influence
the model; nevertheless, in the empirical study, it needs to be calculated by the
researcher (Franke & Westerhoff 2012; Bertschinger & Mozzhorin 2021). When
you closely examine the Franke & Westerhoff (2012) model you conclude that
the adjustment rate of the market maker µ and intensity of the choice βfw are
just multiplicative constants for ϕ, χ, σf , σc and α0, αn, αp respectively, thus,
should not be estimated (Franke & Westerhoff 2012; Bertschinger & Mozzhorin
2021). To verify this, we run a simple simulation exercise with multiple values
of βfw, and the estimation of βfw always converges to 1, because the methods
are scaling other parameters.

The single time series from simulation run with given parametrization is
displayed in Figure 4.3, with the original price level in Figure 4.3a and the log
returns rt = pt − pt−1 in Figure 4.3b. In the simulation study, the methods
with moments, ABC and SMM, utilize the log returns, and Simulated Maximum
Likelihood (SML) methods, BE and NPSML, use the original price levels.

Figure 4.3: Simulated data from Franke and Westerhoff (2012) model

(a) Log price (b) Log returns

Note: A time series of 3000 periods and a burn-in period 500.



Chapter 5

Simulation Setup

The chapter depicts the setting of the simulation exercises. Firstly, Section 5.1
describes the general framework used to compare the methods. Subsequently,
Section 5.2 moves to the particular specification of the individual simulation es-
timation methods. Lastly, Section 5.3 is dedicated to the specific models, their
optimization constraints and priors used by frequentist and Bayesian methods,
respectively, and the selection of moments utilized by ABC and SMM.

5.1 General Setting
The study is conducted in Julia 1.10.0-beta2, which has native build-in
parallel computing with Distributed.jl package. As the exercises are very
computationally heavy, we take advantage of MetaCentrum, which provides the
distributed computing infrastructure for researchers from the Czech Republic
for free.

As the time-series length for all models, we have chosen Temp = 3000. It is a
sensible size corresponding to a dataset of over eight years of daily return, which
is a realistic number to obtain in empirical financial studies. To eliminate the
initial conditions, it is required to conduct a burn-in period where the initial
simulated values are discarded, and after that, the Temp number of data points
are generated. Following Zila & Kukacka (2023) where the warm-up period
is decided using the method from Welch (1983) for the Franke & Westerhoff
(2012) model. The analysis shows that a 100 observation should be enough for
the model’s dynamics to settle; the authors then, for cautious reasons, use the
burn-in period of size 200. We stick to this number for all our models.

The comparison of frequentist and Bayesian methods is not straightforward
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as their output is point estimate or posterior distribution, respectively. How-
ever, we start by simulating 100 time series, the so-called pseudo-empirical,
under different random seeds. We would want a higher number than 100 to
mitigate the randomness, but the computational resources constrain us. Then,
the simulation exercise is conducted as follows: We take one pseudo-empirical
time series. With Bayesian methods, BE and ABC, we estimate the posterior
distribution with NA = NB = 2000 particles (this choice is more discussed in
Section 5.2). In the case of the frequentist methods, SMM and NPSML, we iter-
ate the method numeral times to obtain 96 point estimates. It is an important
step, as the simulation methods are prone to randomness. Therefore, there is a
need for a higher number of point estimates to average it away. The number 96
is chosen to align with the number of CPUs, as we primarily run simulations on
32 CPUs. Also, the time to obtain 96 point estimates roughly equals the pos-
terior estimation between moment/likelihood estimation methods pairs. The
final estimate for a given pseudo empirical time series is then a mean of 96 point
estimates or a mean of 2000 particles, we call it mean estimate. The confidence
or credible intervals are calculated as the quantiles of point estimates or par-
ticles, respectively. This is repeated for each time series; therefore, we end up
with 100 estimates and 100 confidence/credible intervals for each method and
model. The performance is then assessed using density plots of these 100 esti-
mates and tables, which present the average of the estimates and the average
of the confidence/credible intervals. In the case of the AR and ARMA-GARCH

models, we can estimate them with traditional techniques. These techniques
behave deterministically; therefore, each time series is estimated once, and we
derive the standard confidence intervals, obtaining again 100 of these estimates
and intervals in total. As noted by Kukacka & Zila (2024), the quantile version
of the confidence/credible intervals within simulation-based methods acts as an
approximation and should be named rather a confidence/credible intervals of
the sample estimates.

The main analysis compares the quality of the estimates parameter by pa-
rameter. However, to have a single number to evaluate a given estimation
method, we utilize the metrics used in Zila & Kukacka (2023)

RMSEθ̂ = 1
K

K∑︂
k=1

⌜⃓⃓⎷(θ̂k − θtrue
k )2 + σ̂2

k

|θtrue
k |

,

where the nominator is sum of the bias term (θ̂k − θtrue
k )2 and the estimated
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variance of the estimates σ̂2
k, it is normalized by the absolute value of the

true value of the parameter |θtrue
k | to equalize of the effect of parameters with

different magnitudes. The θk is calculated as the average of the 100 final
estimates, and the σ̂k is their standard deviation.

5.2 Methods Setting
For SMM and NPSML to converge to the solution, it is required to select an
optimization algorithm. We utilize the differential evolution optimizer from
the BlackBoxOptim.jl package, it is the recommended default algorithm from
the authors of the library as it ranks on top of a tested set of problems. Zila
& Kukacka (2023) exploit the same algorithm. We also conduct a simple ex-
ercise to compare the performance with other optimization algorithms, more
precisely particle swarm optimization and BFGS algorithm, from Optim.jl li-
brary. However, the BlackBoxOptim.jl delivers the best results. We follow
Zila & Kukacka (2023) and restrict the algorithm to 4000 calls to the loss func-
tion. The lower number increase the variance of the estimator as it can have
happened that it do not converge; on the other hand, a higher number do not
provide better results on outweigh the increase in the computational time.

For the simulated moments, used by SMM and ABC, we set the length of
the simulated series equal to the pseudo empirical ones Tsim = Temp. It is also
essential to decide the number of simulated time series NM , which are used
to approximate the moment vector. We perform a simple simulation exercise
with Franke & Westerhoff (2012) model where the values of NM varies from 50
to 1600. It showcases that lower numbers lead to an increase in variability in
the final estimate; although the computational complexity rises linearly with
NM , the performance is diminishing. Therefore, we have chosen NM = 400 as
a good trade-off between performance and complexity. Finally, the number of
bootstrapped samples for weighting matrix calculation is set in line with Zila
& Kukacka (2023) such that B = 5000.

For likelihood calculation we follow the study by Kukacka & Sacht (2023),
where the conditional density is approximated using Gaussian kernel and the
bandwidth h =

(︂
4

3N

)︂1/5
σ̂, where σ̂ is the standard deviation of the simulated

values for the given conditional density approximation. The number of the
simulations is set using a similar exercise to the simulated moment’s methods;
we decide on NL = 400 for analogous reasons. For ARMA-GARCH and Franke
& Westerhoff (2012) models, we need to decide the trajectory length m to deal
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with the latent variable. The simulation exercises on given models where m
ranged from 1 to 20 show that the likelihood with m > 1 quickly becomes
flat and biased. Therefore, we use the m = 1, which gives us reasonable and
the best-performing results. However, it means that the algorithm from Sub-
section 3.2.3 becomes normal NPSML described in Subsection 3.2.1 with added
vector of the latent variable from the separate burn-in period of the model
with given parameter set. The burn-in period in the likelihood approximation
is increased to 1000 to ensure the model dynamics stabilizes for all parameter
combinations. Finally, we pre-simulate and fix the random noise before each
estimation run as it smooths out the likelihood function (Zhang et al. 2023).

Lux (2023a) and Zhang et al. (2023) utilize particle population of size NA =
NB = 1000; we increase this number to NA = NB = 2000 as it improves
performance, and the particle duplication is lower. For the BE, we set the
number of iterations to SB = 150, which is set such that the number of calls
to the likelihood function is similar to NPSML. The parameter controlling the
distance between bridge distributions λ = 3.4 is set in line with Zhang et al.
(2023). The setting of hyperparameters of ABC is inspired with Lux (2023a),
where the survival rate between iterations τ and the parameter controlling
the average acceptance of the particle moves c are set such that τ = 0.5 and
c = 0.01. The initial δ0 is theoretically set to infinity as we accept every draw
from prior. Setting a good δ0 is complex; the initialization acts as a rejection
sampler and can become overwhelmingly long, and in our exercises, it does
not depend on the initial quality of the particles for the SMC to successfully
converge. Lux (2023a) set the final δSA

to 0.2 percent quantile of the distances
of the initial particle sample. This threshold has been too low in our exercises.
Therefore, we utilize different approach. We monitor the number of calls to the
loss function, and after each iteration, we calculate the total number of calls.
If it is over 300000, we stop the algorithm. This value equals the number of
calls to the loss function by the BE and is a sufficient number for the ABC to
converge.

5.3 Model Constraints and Moments
This section provides an overview of the simulation setup for individual mod-
els. The optimization algorithm used for NPSML and SMM must restrict each
parameter’s search range. Also, the Bayesian methods, ABC and BE, require
the prior distribution as the initial point, which affects the final posterior dis-
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tribution. Finally, the ABC and SMM depend on the moment set selection.
Therefore, we list all this information in subsequent subsections.

There is a lack of literature on the prior selection in the financial ABMs

framework. Studies mostly stick to the uninformative uniform prior, to name
a few Lux (2022; 2023a); Platt (2020; 2022). Following this, all models uti-
lize uniform prior with bounds identical to the optimization constraints. The
uniform priors bring the Bayesian estimation closer to the frequentist methods
(Lux 2023a).

5.3.1 AR(2)

For the optimization constraint and uniform prior of the parameters of the
AR(2) model, we assume ψ1, ψ2 ∈ [−1, 1]. The main point of this range of
values is to ensure that most of the parameters draw results into stationary
series. The parameters’ summary is shown in Table 5.1.

The moment set for methods with simulated moments consists of variance
of raw returns and i-th-order auto-correlations, i ∈ {1, 2, 3}, of raw returns. It
proves to be a sufficient moment set in our experiments.

Table 5.1: Parameters of AR(2) model and their boundaries

Parameter True value Constraint / Prior

ψ1 first lag coefficient 0.2 [-1, 1]
ψ2 second lag coefficient -0.9 [-1, 1]

Fixed parameter
σ2 variance of the noise term 0.1
Note: The optimization constraints and the boundary for uniform priors are

identical; therefore, they are stated in a single column for simplicity. The noise
variance σ2 is fixed and not subject to estimation.

5.3.2 ARMA(1,1)-GARCH(1,1)

The choice of constraints and uniform priors are motivated in the same way as
in Subsection 5.3.1 to ensure that the draws mostly result in a stationary series.
The ARMA parameters are chosen such that a1, b1 ∈ [−1, 1], and the GARCH

parameters α1, β1 ∈ [0, 1]. We assume ν ∈ [−1, 1] and ω ∈ [0, 1], respectively,
for the long-term mean of returns and baseline volatility. The summary is
shown in Table 5.2.
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For ABC and SMM, we consider a moment set of size 10. We calculate
variance, kurtosis, and skewness from raw returns. Then, we exploit the mean
of absolute returns and the first and second order of raw, absolute, and squared
returns. We do not find any more moments that would improve the estimation.

Table 5.2: Parameters of ARMA(1,1)-GARCH(1,1) model and their
boundaries

Parameter True value Constraint / Prior

ν returns long term mean 0 [-1, 1]
a1 autoregressive first lag 0.7 [-1, 1]
b1 moving average first lag 0.1 [-1, 1]
ω baseline volatility 0.1 [0, 1]
α1 squared errors first lag 0.3 [0, 1]
β1 conditional variance first lag 0.001 [0, 1]
Note: The optimization constraints and the boundary for uniform priors are iden-

tical; therefore, they are stated in a single column for simplicity.

5.3.3 Franke and Westerhoff (2012)

The initial ranges for the optimization constraint and uniform prior of parame-
ters are inspired by Platt (2022), but most are moved during preliminary simu-
lation tryouts. The range for the predisposition parameter is kept α0 ∈ [−1, 1].
The parameters of adjustment rates of excess demands and herding are slightly
changed to ϕ, χ ∈ [0, 3], and αn ∈ [0.5, 4], respectively. The parameter con-
trolling the effect of price misalignment is occasionally overestimated, and the
upper bound is insufficient. Therefore, we increase the range to αp ∈ [5, 50].
The summary is depicted in Table 5.3.

As the moments set, we utilize the study from Zila & Kukacka (2023)
where they use a union of moments sets from Chen & Lux (2018) and Franke
& Westerhoff (2012) with additional three moments. The selection consists
of variance, kurtosis, and i-th-order auto-correlations, i ∈ {1, 2, 3}, of raw
returns. Subsequently, the mean, Hill estimator of the right tail at 2.5% and 5%,
and j-th-order auto-correlations, j ∈ {1, 5, 10, 15, 20, 25, 50, 100} of absolute
returns are calculated. Finally, from squared returns, we evaluate the k-th-
order auto-correlations, k ∈ {1, 5, 10, 15, 20, 20}. Even when the study from
Zila & Kukacka (2023) focus on selecting the optimal minimal set, and shows
that even small moment set can lead to superior performance. Their finding
is also that the accuracy of estimates is not significantly declining when the
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weighting is precisely estimated. Therefore, we utilize the total moment set
in our exercises as the weighting matrix proves to be satisfactory in capturing
the covariances between moments, and therefore, the total moment set can be
more robust with different parametrization.

Table 5.3: Parameters of Franke and Westerhoff (2012) model and their bound-
aries

Parameter True value Constraint / Prior

ϕ adjustment rate of fundamentalists 0.12 [0, 3]
χ adjustment rate of chartists 1.5 [0, 3]
α0 predisposition -0.327 [-1, 1]
αn herding 1.79 [0.5, 4]
αp price misalignment 18.43 [5, 50]

Fixed parameter
µ market maker adjustment rate 0.01
βfw intensity of choice 1
σf volatility of fundamentalists’ noise 0.758
σc volatility of chartists’ noise 2.087
p∗ log of fundamental value 0
Note: The optimization constraints and the boundary for uniform priors are identical;

therefore, they are stated in a single column for simplicity. The parameters µ, β, σf , σc and
p∗ are fixed and not subject to estimation.



Chapter 6

Results

The chapter presents the comparison results of the methods from the simu-
lation exercises. Section 6.1 starts with results for the AR(2) model. Subse-
quently, Section 6.2 moves to the first model with latent variable, ARMA(1,1)-
GARCH(1,1). Lastly, Section 6.3 concludes the chapter with the primary model
from the ABM family, Franke & Westerhoff (2012) model. Note that when re-
ferring to the simulation-based methods, the confidence/credible intervals of
the sample estimates are abbreviated simply as confidence/credible intervals.

6.1 AR(2)
The AR(2) model serves as the baseline environment to test the functionality of
our methods. The dynamics should be easy to capture; therefore, the purpose
is to demonstrate that the methods are implemented correctly. The fact that
the process can be estimated with classical econometrics methods provides an
interesting comparison between simulation estimation methods and traditional
Ordinary Least Squares (OLS).

The Figure 6.1 present the density plot of estimates of the parameters for
each method, which are obtained as the mean of the replications of the SMM

and NPSML or as the mean of the posterior distribution in case of ABC and BE

from each of the 100 independent simulation runs. The densities are almost
identical; there is no visible difference with the density of estimates from OLS,
indicating that the simulation methods’ performance can match the traditional
method. However, there is a substantial difference in computational demands.

The more profound insight into the methods can be derived from the Ta-
ble 6.1, where we present average estimates from the given simulation runs.
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Figure 6.1: AR(2): Density of estimated parameters

Note: Kernel density plot of the mean estimates from each of the 100 indepen-
dent simulations. StatsModels.jl and GLM.jl packages are used to obtain OLS
estimates.

Table 6.1: AR(2): Simulation results using mean estimates

θtrue SMM NPSML ABC BE OLS
ψ1 0.2 0.1993 0.1994 0.1994 0.1997 0.1994

(0.1978, 0.2007) (0.1947, 0.2042) (0.1986, 0.2001) (0.1834, 0.2158) (0.1837, 0.2151)

ψ2 -0.9 -0.8991 -0.8988 -0.8992 -0.8988 -0.8987
(-0.9003, -0.8977) (-0.9035, -0.8942) (-0.8999, -0.8985) (-0.9148, -0.8826) (-0.9144, -0.8831)

RMSEθ̂ - 0.0141 0.0133 0.0134 0.0139 0.0133
Note: The table presents average mean estimates of the AR(2) model’s parameters over 100 independent

simulations. The average 95% sample confidence/credible intervals of the sample estimates are inside ()
brackets. The ABC demonstrate estimates after linear adjustment. StatsModels.jl and GLM.jl packages
are used to obtain OLS estimates and confidence intervals.

The individual estimates are similar across the methods, but more interesting
are the 95% confidence and credible intervals of the sample estimates for the
frequentist and the Bayesian methods, respectively. The broadest range is given
by BE, indicating that the particles defining the posterior distribution are more
spread than the frequentist’s point estimates. On the other hand, the narrowest
interval is given by ABC due to the post-processing of the final posterior distri-
bution with linear adjustment. The adjustment pushes the posterior closer to
the true value of the parameter and overall squash the posterior distribution.
However, the true value of the ψ2 is slightly out of the credible interval. The



6. Results 47

lowest RMSEθ̂ is achieved by OLS and NPSML, however, the difference with
other methods is negligible. It is a good sign that our methodology is able to
match the performance of the traditional estimator OLS on this simple time-
series. Overall, the methods prove their functionality. It is interesting to note
that the RMSEθ̂ of the ABC before linear adjustment is 0.0141 equal to the
SMM.

6.2 ARMA(1,1)-GARCH(1,1)
The second baseline model provides us with more complicated dynamics, the
ARMA(1,1)-GARCH(1,1) consists of a latent variable and, therefore, is closer to
our primary model of interest, Franke & Westerhoff (2012). Another reason why
we chose this model is that it is normally estimated with classical econometrics
approaches, which we can use as a benchmark for our methods.

The density of the estimated parameters is demonstrated in Figure 6.2, and
the averaged results are presented in Table 6.2. For the ARMA paramteres,
ν, a1, and b1, there is no notable difference between the likelihood methods
(BE, NPSML, and MLE). However, for the ν parameter, the densities from
SMM and ABC are narrower. The ABC then acts similarly to the likelihood
methods in the case of the a1 and b1 parameters. Whereas the SMM slightly
underestimates the a1 and overestimates the b1. Nevertheless, the true values
of all three parameters lie inside the 95% confidence/credible interval given by
each method.

Moving to the GARCH parameters, the α1 is estimated almost identically by
MLE, NPSML, and BE. The SMM and ABC underestimate a little bit the param-
eter. However, its true values lie inside the 95% confidence/credible interval.
The β1 parameter is where the methods are having the biggest problem. It
is, on average, underestimated by all methods except BE, which overestimates
the parameter. The closest estimate is by ABC, followed by MLE, which has
a broader density of estimated values. However, the 95% confidence/credible
interval of each method contains the true value of β1, but the intervals are very
broad. Finally, the baseline level of volatility ω is reasonably estimated by each
method except the BE, which estimates circa half a true value. However, the
densities indicate a slight upward bias from the other three simulation-based
methods.

It is surprising that in terms of the RMSEθ̂ the MLE is only beating the BE.
ABC achieves the lowest value followed with NPSML. It is important to remind
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Figure 6.2: ARMA(1,1)-GARCH(1,1): Density of estimated parame-
ters

Note: Kernel density plot of the mean estimates from each of the 100 indepen-
dent simulations. ARCHModels.jl package is used to obtain the MLE estimates.
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that the RMSEθ̂ takes into account the bias of the estimate, but the variance
as well. The reason why three methods achieve lower RMSEθ̂ than MLE is
within parameters β1 and ω, where the MLE in average achieve better estimate.
However, when examining the density plot, the MLE estimates are more spread,
whereas our methodology has narrower densities with slight bias. Therefore,
even when the MLE has almost no bias in estimation unlike our methodology,
the deviation of the estimates is what is increasing its RMSEθ̂. Although,
the simulation methods indicates slight bias in comparison to MLE, they are
still able to almost match its performance, proving their correctness within
the latent variable environment. The fact that BE and NPSML is behaving
almost identically to MLE for most of the parameters demonstrate that the
approximation of the likelihood function from the simulation methods should
be very close to the one from traditional approach.

Table 6.2: ARMA(1,1)-GARCH(1,1): Simulation results using mean estimates

θtrue SMM NPSML ABC BE MLE
ν 0 0.0000 0.0000 0.0000 0.0000 0.0001

(-0.0031, 0.0031) (-0.0012, 0.0013) (-0.0022, 0.0022) (-0.0015, 0.0016) (-0.0015, 0.0016)

a1 0.7 0.6770 0.6976 0.6935 0.6975 0.6994
(0.5991, 0.7352) (0.6700, 0.7248) (0.6600, 0.7273) (0.6643, 0.7304) (0.6650, 0.7339)

b1 0.1 0.1323 0.1038 0.1061 0.1031 0.1020
(0.0445, 0.2629) (0.0630, 0.1436) (0.0556, 0.1551) (0.0552, 0.1501) (0.0525, 0.1515)

α1 0.1 0.0803 0.1020 0.0720 0.1105 0.1009
(0.0074, 0.1742) (0.0663, 0.1475) (0.0149, 0.1398) (0.0706, 0.1536) (0.0533, 0.1486)

β1 0.3 0.1768 0.1828 0.2719 0.5575 0.2645
(0.0058, 0.5350) (0.0078, 0.5501) (0.0103, 0.7360) (0.1908, 0.8092) (-0.1135, 0.6425)

ω 0.001 0.0012 0.0011 0.0011 0.0005 0.0011
(0.0006, 0.0016) (0.0005, 0.0014) (0.0004, 0.0015) (0.0002, 0.0011) (0.0005, 0.0017)

RMSEθ̂ - 0.2537 0.2332 0.2271 0.2901 0.2582
Note: The table presents average mean estimates of the ARMA(1,1)-GARCH(1,1) model’s parameters

over 100 independent simulations. The average 95% sample confidence/credible intervals of the sample
estimates are inside () brackets. ARCHModels.jl package is used to obtain the MLE estimates and
confidence intervals.

6.3 Franke and Westerhoff (2012)
The third and final model is the Franke & Westerhoff (2012) as the representa-
tive of the financial ABM. It is the main point of interest to us. The comparison
of the performance on this model is even more critical when we consider that,
to our knowledge, there is no study of the frequentist NPSML on the Franke
& Westerhoff (2012) model. Therefore, we attempt to yield insight into the
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Figure 6.3: Franke and Westerhoff (2012): Density of estimated pa-
rameters

Note: Kernel density plot of the mean estimates from each of the 100 indepen-
dent simulations.
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performance in this type of environment while comparing it with SMM, which
is more conventional in the financial ABM and is already successfully used to
estimate this model (Franke & Westerhoff 2012; Zila & Kukacka 2023), and
with their Bayesian counterparts. Note that the results for ABC are without
the linear adjustment, as it do not improve the results.

The density of the estimates of parameters from each simulation run is
demonstrated in Figure 6.3, and the averaged results over the simulation runs
are presented in Table 6.3. At first glance, we can see that the adjustment rate
of the fundamentalists’ demand ϕ is the parameter with the best results. The
densities from each method are mainly concentrated around the true value.
However, when we look at Table 6.3 on the averaged values, we can notice that
the SMM and ABC overestimate the parameter and that the true value is outside
of the 95% confidence/credible intervals which are averaged over the simulation
runs. As can be seen in the density plot, SMM and ABC tend to overestimate the
parameter in a few simulation runs, increasing the bias in the averaged values.
However, the likelihood methods, BE and NPSML, provide a more stable fit of
the ϕ without the overestimation that occurs with simulated moments methods.
The true value lies inside the 95% confidence/credible interval, with the credible
interval from BE being slightly narrower.

Estimating the adjustment rate of the chartists’ demand χ can be seen as
a success if we only inspect the average estimate. However, all the 95% confi-
dence/credible intervals are very broad. This indicates that within the single
simulation run, the posterior distribution or the point estimates are spread
around the whole range of possible values. Indeed, during all of our estima-
tion exercises, none of the methods can capture the χ parameter with some
consistency.

The predisposition α0 is better captured by the SMM and ABC. However,
the density plot is not evenly distributed around the true value. The likelihood
methods seem to be underestimating the parameter. What is positive is that
the true value of the parameter is inside the 95% confidence/credible interval
for all methods. Furthermore, the SMM and ABC can also provide better esti-
mates for the herding parameter αn, with density plots concentrated around the
parameter’s true value. The NPSML and BE tend to overestimate the αn. Never-
theless, the true value of the parameter lies inside the 95% confidence/credible
interval for each method except for BE.

The price misalignment αp is, on average, overestimated by each method.
However, the likelihood methods and the simulated moments methods differ.
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Table 6.3: Franke and Westerhoff (2012): Simulation results using mean esti-
mates

θtrue SMM NPSML ABC BE
ϕ 0.12 0.2843 0.1231 0.3433 0.1468

(0.1638, 0.5104) (0.0272, 0.2753) (0.1380, 0.6992) (0.0638, 0.2469)

χ 1.5 1.5679 1.5431 1.5082 1.5362
(0.5111, 2.5369) (0.0987, 2.9080) (0.2534, 2.7120) (0.6277, 2.4416)

α0 -0.327 -0.3240 -0.6180 -0.2883 -0.5137
(-0.5506, -0.1488) (-0.9671, -0.2532) (-0.5331, -0.0891) (-0.7426, -0.2987)

αn 1.79 1.8635 2.3360 1.9045 2.3097
(1.5156, 2.2290) (1.5011, 3.2812) (1.5122, 2.2616) (1.8698, 2.8041)

αp 18.43 28.1715 35.3574 26.2287 31.6034
(17.3187, 39.4321) (12.6718, 49.3757) (13.7120, 38.9413) (17.9033, 42.6307)

RMSEθ̂ - 1.3715 1.0776 1.2401 1.0501
Note: The table presents average mean estimates of the Franke & Westerhoff (2012) model’s

parameters over 100 independent simulations. The average 95% sample confidence/credible
intervals of the sample estimates are inside () brackets.

Where the ABC and SMM estimates are spread around the whole possible inter-
val, the densities of the NPSML and BE are narrower but above the true value of
the parameter. The averaged 95% confidence/credible intervals are very broad
within each method. Consequently, they all contain the true value of the αp.

Likelihood methods achieve lower RMSEθ̂ with the BE having the edge over
the NPSML. The ABC has lower RMSEθ̂ than the SMM. The Bayesian methods
prove their rise in the literature is justified as they outperform their frequentist
counterparts. Overall, the difference in performance between methods is not
that big. However, the performance between methods differs per parameter.
The moment’s methods slightly outperform the likelihood methods in terms
of bias in 3 out of 5 parameters, and one of the remaining parameters is not
estimated by any of the methods. On the other hand, the estimates from the
moment methods are more widespread, and the deviation of the estimates is
the primary reason why they have higher RMSEθ̂. It seems like the decision
between the likelihood or moment method is similar to the bias-variance trade-
off. In the case of the Franke & Westerhoff (2012) model, if the researcher seeks
lower bias and does not mind the higher variance, he should choose the moment
method according to our study. The researcher is always free to conduct more
replications of the estimation for the cost of another computational resource to
deal with the higher variance. On the other hand, one of the important aspects
of our study is the establishment of the biases for given methods. Using this



6. Results 53

knowledge, the researcher can then, in the empirical study, treat the estimates
as the upper or lower bound of the parameter based on the direction of the
given bias. Therefore, the likelihood methods seem to provide an appealing al-
ternative to the moment’s methods, as the behavior of the likelihood methods
seems to be more stable over different random seeds. An interesting exercise
can be model averaging, utilizing the knowledge of the method’s performance
and using it for, e.g., a weighted average of the estimates, which could be su-
perior to the independent methods. However, it is out of the scope of this
thesis.



Chapter 7

Discussion

The chapter discusses additional exercises to determine the limitations and
further improvements in the implemented methods. Section 7.1 starts with a
sensitivity analysis to the magnitude of the noise. Subsequently, Section 7.2
moves to robustness to results when the parameters are derived as median
or mode instead of mean. Thirdly, Section 7.3 depicts the trajectory within
the likelihood calculation. Lastly, Section 7.4 concludes the chapter with the
caveats of the linear adjustment.

7.1 Sensitivity Analysis
The parametrization of the Franke & Westerhoff (2012) model follows the orig-
inal study. However, we examine the sensitivity of the estimation methods
to the different magnitudes of the standard deviation of the noise terms by
scaling the standard deviations by factors 5 and 1/5. More precisely, the stan-
dard deviation for the small noise variant is set such that σsmall

f = 0.1516 and
σsmall

c = 0.4174. In the case of the large noise alternative, the deviations are
σlarge

f = 3.79 and σlarge
c = 10.435. All other parameters have the same value,

and the optimization constraints and uniform biases are unchanged.
The large and small noise results are presented in Table 7.1 and Table 7.2,

respectively. The SMM and ABC have worsened in terms of RMSEθ̂ in both
variants, indicating that the moments matching becomes difficult with different
noise settings. The NPSML and BE achieve slightly better RMSEθ̂ for large
noise variant with NPSML having the lowest value. The RMSEθ̂ is higher for
the small noise alternative. However, it is lower for likelihood methods than
for moment ones.
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The adjustment rate of the fundamentalists’ demand ϕ is overestimated
substantially by SMM and ABC with comparison to results in the Table 6.3.
Whereas the NPSML and BE also show slight overestimation, the true value of
the parameter still lies inside the 95% confidence/credible interval. Estimating
the adjustment rate of the chartists’ demand χ shows the same behavior by all
of the methods as in Table 6.3.

With the predisposition α0, there is not much difference in performance,
only that it is slightly overestimated by SMM and ABC in the large noise variant
and underestimated in the small noise variant. The NPSML and BE estimates
are similar to the standard case. The true value of the α0 lies inside each of the
95% confidence/credible intervals. The same goes for the herding αn, where the
estimates for large noise are similar to the standard case, and for the small noise,
the estimates are slightly smaller. In case of the price misalignment, αp, it is still
heavily overestimated. However, each of the 95% confidence/credible intervals
contains the true value of the parameter. Overall, the likelihood methods show
higher robustness to the different noise magnitudes as their results are similar
to the standard version. It is important to note that the likelihood methods
assume that the noise’s distribution is known, which is why the parameters of
the noise’s volatility are fixed; with moments methods, we can relax it.

Table 7.1: Franke and Westerhoff (2012): Simulation results using mean esti-
mates, large noise

θtrue SMM NPSML ABC BE
ϕ 0.12 0.7926 0.1690 0.9109 0.2005

(0.4183, 1.2685) (0.0233, 0.3840) (0.3553, 1.7035) (0.0898, 0.3285)

χ 1.5 1.5347 1.5053 1.5175 1.5439
(0.2316, 2.8130) (0.0861, 2.9070) (0.1265, 2.8862) (0.6462, 2.4746)

α0 -0.327 -0.2316 -0.5438 -0.2151 -0.4981
(-0.4937, -0.0269) (-0.9141, -0.1020) (-0.5298, 0.0308) (-0.7738, -0.2533)

αn 1.79 1.9595 2.0377 1.9914 2.1247
(1.4316, 2.4282) (0.8092, 3.3009) (1.3243, 2.5893) (1.4614, 2.8986)

αp 18.43 28.6200 28.4730 27.9975 28.4487
(18.4215, 38.5448) (7.6980, 47.8247) (15.6815, 40.1742) (15.3749, 41.6454)

RMSEθ̂ - 1.7708 0.8105 1.6523 1.0342
Note: The table presents average mean estimates of the Franke & Westerhoff (2012) model’s

parameters over 100 independent simulations. The average 95% sample confidence/credible
intervals of the sample estimates are inside () brackets. Standard deviations are set such that
σlarge

f = 3.79 and σlarge
c = 10.435.
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Table 7.2: Franke and Westerhoff (2012): Simulation results using mean esti-
mates, small noise

θtrue SMM NPSML ABC BE
ϕ 0.12 0.7451 0.2238 0.8038 0.2920

(0.3488, 1.1669) (0.0316, 0.5281) (0.2895, 1.4771) (0.0492, 0.6655)

χ 1.5 1.5273 1.4886 1.4994 1.5481
(0.7726, 2.2514) (0.1594, 2.8485) (0.4880, 2.4955) (0.2710, 2.7603)

α0 -0.327 -0.4549 -0.5335 -0.4145 -0.4604
(-0.6680, -0.2295) (-0.8306, -0.2110) (-0.6783, -0.1541) (-0.7618, -0.1662)

αn 1.79 1.5082 1.5101 1.5750 1.6048
(1.1651, 1.8702) (0.9520, 2.0102) (1.1486, 1.9917) (1.0464, 2.0696)

αp 18.43 32.8266 40.9245 30.3750 36.4523
(17.7747, 46.6183) (23.8870, 49.6887) (12.8954, 47.3929) (18.3906, 48.5793)

RMSEθ̂ - 1.7823 1.4614 1.5790 1.2843
Note: The table presents average mean estimates of the Franke & Westerhoff (2012) model’s

parameters over 100 independent simulations. The average 95% sample confidence/credible
intervals of the sample estimates are inside () brackets. Standard deviations are set such that
σsmall

f = 0.1516 and σsmall
c = 0.4174.

7.2 Median and Mode Estimates
The choice of the final estimate being the mean is common in the ABM literature
(Lux 2022; 2023a; Platt 2022; Zhang et al. 2023). This section examines the
difference when we consider the median and also, for the Bayesian methods,
the mode instead of the mean.

When we consider the median of the posterior distribution or the point
estimates as the final estimate within the single estimation run, we present in
the Table 7.3. The Table 7.4 demonstrate a similar thing for the mode of the
posterior distribution for the ABC and BE. We do not see a significant difference
in averaged estimates when we compare the two tables with Table 6.3.

Nevertheless, the RMSEθ̂ are higher for the median and mode estimates.
It can be tempting to say that it implies that within the single simulation run,
the median and mode can be more biased than the mean, resulting in higher
RMSEθ̂. However, it can be moreover dependent on the choice of the metric.
RMSEθ̂ is mainly loss driven by squared differences, which are minimized by
the mean, whereas the median minimizes the absolute differences and mode
the 0 − 1 loss (Murphy 2012). The mean and median should be preferred in
most cases as the mode can lead to atypical points (Murphy 2012; Platt 2020).
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Table 7.3: Franke and Westerhoff (2012): Simulation results using median esti-
mates

θtrue SMM NPSML ABC BE
ϕ 0.12 0.2653 0.1120 0.3156 0.1428

(0.1638, 0.5104) (0.0272, 0.2753) (0.1380, 0.6992) (0.0638, 0.2469)

χ 1.5 1.5934 1.5551 1.5228 1.5538
(0.5111, 2.5369) (0.0987, 2.9080) (0.2534, 2.712) (0.6277, 2.4416)

α0 -0.327 -0.3166 -0.6158 -0.2776 -0.5112
(-0.5506, -0.1488) (-0.9671, -0.2532) (-0.5331, -0.0891) (-0.7426, -0.2987)

αn 1.79 1.8687 2.3124 1.9184 2.3032
(1.5156, 2.2290) (1.5011, 3.2812) (1.5122, 2.2616) (1.8698, 2.8041)

αp 18.43 28.1727 37.1856 26.2675 31.6417
(17.3187, 39.4321) (12.6718, 49.3757) (13.7120, 38.9413) (17.9033, 42.6307)

RMSEθ̂ - 1.4334 1.1741 1.3020 1.1398
Note: The table presents average median estimates of the Franke & Westerhoff (2012)

model’s parameters over 100 independent simulations. The average 95% sample confi-
dence/credible intervals of the sample estimates are inside () brackets.

Table 7.4: Franke and Westerhoff (2012): Simu-
lation results using mode estimates

θtrue ABC BE

ϕ 0.12 0.2758 0.1454
(0.1380, 0.6992) (0.0638, 0.2469)

χ 1.5 1.5646 1.5542
(0.2534, 2.7124) (0.6277, 2.4416)

α0 -0.327 -0.2531 -0.5185
(-0.5331, -0.0891) (-0.7426, -0.2987)

αn 1.79 1.9383 2.2870
(1.5122, 2.2616) (1.8698, 2.8041)

αp 18.43 26.3883 32.4774
(13.7120, 38.9413) (17.9033, 42.6307)

RMSEθ̂ - 1.5041 1.2278

Note: The table presents average mode estimates of
the Franke & Westerhoff (2012) model’s parameters over
100 independent simulations. The average 95% sample
confidence/credible intervals of the sample estimates are
inside () brackets.
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7.3 Trajectory for the Likelihood Approximation
We intend to shed more light on the trajectory utilized in the likelihood calcu-
lation for models with latent variables, depicted in Subsection 3.2.3. As stated
in Section 5.2 during our initial simulation exercises, it shows that it is not
behaving as expected. The best-performing trajectory is of size 1. However, it
practically turns the Subsection 3.2.3 into Subsection 3.2.1 with an additional
burn-in period of the given model to derive the vector of latent variables. This
approach would need further research if the theoretical properties are still sat-
isfied, but it is out of the scope of this thesis.

Our implementation follows Kristensen & Shin (2012) and Creel & Kris-
tensen (2012). The trajectory implementation is based on the extension to a
non-stationary series with a latent variable in Creel & Kristensen (2012). The
robustness to non-stationarity is why we can stick to the original log price with
the Franke & Westerhoff (2012) model even when the time series is not station-
ary. We also try the approach with log returns, which makes the time series
stationary; however, for the trajectory of size 1, the approach is equivalent to
the one with log prices, and for higher trajectories, it has the same or worse
performance.

Figure 7.1: Loglikelihoods of the parameter α0 in the Franke and
Westerhoff (2012) model with different trajectory sizes.

Note: For each trajectory, the loglikelihood is calculated for 1000 values of α0,
equally spaced in the [-1,1] interval, while keeping other parameters fixed.

The Figure 7.1 shows the loglikelihood for predisposition parameter α0 in-
side the Franke & Westerhoff (2012) model while keeping other parameters
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fixed at their true value. For the trajectory of size 1, we can see that the
loglikelihood is almost flat for negative values with a maximum close to the
true value, and the loglikelihood drops for positive values of α0. When the
trajectory size increases, the function’s behavior changes in that it is not so
flat within negative values; however, there is no drop within positive values.
Nevertheless, the maximum of the likelihood is moving to the right side further
from the true value with the increasing trajectory size, which introduces bias
into the estimation procedure.

We assume that the trajectory extension for NPSML should work even with
models without latent variables. Hence, we test it on the simplest model we
use in our study, AR(2). Independently calculating the loglikelihood for both
parameters while keeping the second one fixed at true value, the result is in
the Figure 7.2. For trajectory of size 1, the loglikelihood is well behaved for
both parameters; however, with the increasing trajectory size, the loglikelihood
function starts to change into the bimodal function, and for higher values, flat-
ting across the range of the possible values. Therefore, we believe the KDE and
the trajectory setting when dealing with latent variables need further research.

Figure 7.2: Loglikelihoods of the parameters in the AR(2) model with
different trajectory sizes.

(a) ψ1 (b) ψ1

Note: The loglikelihoods are calculated separately for each parameter in a way
that for each trajectory, the loglikelihood is calculated for 200 values of the given
parameter, equally spaced in the [-1,1] interval, while keeping other parameters
fixed.

From our understanding, the main problem does not lie within the trajec-
tory itself but the conditioning set as it disturbs the KDE. It can be interesting
to use the trajectory without the conditioning set, meaning that for KDE ap-
proximation of the likelihood is used only the last value from the trajectory for a
given time stamp. Another approach can be from the latent variable extension
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in Kristensen & Shin (2012). Note, that our implementation has always start
of the trajectory inside the empirical time series, and separate trajectories are
simulated for each time stamp. Whereas the Kristensen & Shin (2012) recom-
mend simulating the whole time series, the so-called long trajectory. It reminds
the approach inside SMM, where the whole time series are simulated similarly;
nevertheless, the simulated time series are not compared to the empirical time
series using moments but by the KDE methods to derive the likelihood. Note
that this approach needs a stationary series, as the simulated data are not
grounded in the empirical series. Therefore, it needs the data to fluctuate
around a stationary level (we utilize log-returns within Franke & Westerhoff
(2012) model). The researcher is determining the size of the conditioning set
for KDE, but the approximation of the likelihood with the conditioning set is
behaving even worse than the one described above. However, the long trajec-
tory without conditioning set can compete with our approach and can obtain
meaningful results, though, with worse RMSEθ̂ than our approach. Note that
the long trajectory without conditioning set is technically the approach used for
likelihood approximation within Bayesian estimation in Grazzini et al. (2017).
Platt (2022) utilizes the Bayesian estimation with this approach on Brock &
Hommes (1997) and Franke & Westerhoff (2012) models; however, the study
focuses more on likelihood approximation with neural networks.

The limitation in our final approach can be seen that as the initial values of
the latent variable, we derive the vector of these values using multiple burn-in
periods from the model. When the burn-in period is sufficiently long, it should
give us good representative values. As the likelihood is calculated from NL

simulation, we obtain a vector of NL values for the latent variable. Therefore,
it can be seen as a distribution of possible values of the latent variable with
a given parameter set. Note that each time stamp uses this vector of initial
values for latent variables during likelihood calculation. The whole point of the
trajectory simulation is then to give time to the latent variable to settle with the
current dynamics of the model. However, this is redundant when we find out
that the best-performing setting is the trajectory of size 1 (it can also be seen as
no trajectory). There is a possible inspiration inside the classical econometrics
when dealing with latent variables; when estimating the GARCH parameters,
the traditional approach is to determine the initial values of the σ and then
update it step by step as the likelihood is calculated (Francq & Zakoian 2004).
These online updates of the latent variable can be an interesting extension of
our current approach to the likelihood calculation; unfortunately, we leave it
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for further research due to computational and time constraints.

7.4 Linear Adjustment
The linear adjustment proves to substantially improve the results of the ABC

for the AR(2) model. Unfortunately, we have to omit the adjustment in case
of more complex models, ARMA(1,1)-GARCH(1,1) and Franke & Westerhoff
(2012). When the posterior distribution is far from a normal distribution,
e.g., multimodal, weirdly skewed to the one side, then in our experiments, the
linear adjustment do not work as intended, pushing the posterior further away
from the true value. The intercept from the regression mainly determines the
adjustment. It acts as the main point around which the adjusted posterior
is shaped. However, when the initial posterior is not already equally spread
around some value, then the intercept from the regression tends to be estimated
outside of the current posterior, often far away from the true value of the
parameter, pushing the adjusted posterior even behind the bounds of the initial
uniform prior. It is important to note that circa in half of the simulation runs
with the Franke & Westerhoff (2012) model, the linear adjustment can improve
the final posterior. However, the overall instability of the approach forced us
to omit it from the final results.

We try multiple approaches to deal with this problem during the develop-
ment phase. Lux (2023a) also presents a non-linear extension to control het-
eroskedasticity, but the intercept is estimated similarly, thus facing the same
problems as the simple linear adjustment. To mitigate the problem of the
strictly positive parameters being negative after adjustment, we utilize the log
transformation of particles depicted in Blum (2017), then use the linear ad-
justment on the log particles and exponentiate them back. In our exercises,
it results in extreme values. Subsequently, we try different transformations
to reflect the uniform priors; we first move the particles into the [0, 1] range
based on the bounds of the uniform prior, then transform the particles using
the inverse of the logistic function, adjust the transformed particles, and trans-
forming back the adjusted version of the particles. However, this approach
results in the adjusted posteriors being concentrated to the bound of the uni-
form prior. Lastly, we follow Blum (2017) with non-linear correction using a
small neural network. Nevertheless, different initializations of the neural net-
works can provide different results; the corrected posterior can be superior to
other approaches or, worst of all, making the whole procedure very unstable.
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Therefore, we decide to stick to the simplest linear adjustment and present it
only in the case of the AR(2) model to demonstrate its potential in improving
the results from ABC, and further research is needed in the case of the financial
ABM.



Chapter 8

Conclusion

We conduct a comparison study of simulation-based estimation methods focus-
ing on the financial ABMs. These models are gaining in popularity as they can
replicate the stylized facts of the financial markets. However, their analytical
solution is often infeasible, forcing the researchers to abandon the traditional
approaches, such as least squares or maximum likelihood. The most commonly
used approaches are simulation-based methods. More precisely, we selected
four prominent methods consisting of SMM, NPSML, ABC, and BE. The SMM is
widely the most used estimation technique in financial ABMs; its implementa-
tion is straightforward with known theoretical properties. However, it hugely
depends on the selection of moments.

On the other hand, more novel NPSML is by simulating multiple values from
the model approximating the conditional density with KDE methods and using
this information for likelihood calculation. Although the selection of moments
is missing, the NPSML comes with the assumption of the known distribution of
the noise term. We add two methods from the Bayesian framework to these
two frequentist methods. ABC is popular in the biological modeling field, and
it shows promising results in the financial ABMs. The method can be seen
as the Bayesian counterpart of the SMM because it compares the simulated
moments to the empirical ones to assess the quality of a given particle. We
use the SMC algorithm to derive the posterior. Lastly, we implement BE with
likelihood approximation being the same as in NPSML, and again, the posterior
is obtained using SMC algorithm. Therefore, we present a set of likelihood
and likelihood-free estimation techniques based on frequentist and Bayesian
versions.

Our contribution to the literature is not only in the set of the selected
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simulation-based estimation techniques. Our performance comparison mainly
focuses on the financial ABM with latent variable. The latent variable is no
problem for the simulation moment techniques; however, in the case of the
simulated likelihood, it is not so straightforward. We believe we are among
the first to assess the performance of the frequentists NPSML on the financial
ABM with latent variable. As the benchmarking models, we select two tradi-
tional econometric models, AR(2) model and ARMA(1,1)-GARCH(1,1) model,
the leading benchmark being the popular Franke & Westerhoff (2012) model.

The AR(2) model serves only as the simple baseline every method should
pass. All four stated methods can correctly estimate the parameters of AR(2),
and their performance is identical to the traditional OLS. The ARMA(1,1)-
GARCH(1,1) model provides us with more complex dynamics. The model con-
sists of a latent variable. However, it is typically estimated using traditional
techniques. It demonstrates that all four methods can deal with latent vari-
ables and can be close to the performance of the classical MLE. It is interesting
that the parameters of the ARMA part and the parameter controlling the ef-
fect of the past noise on current volatility we estimate almost identically by
MLE, NPSML, and BE with SMM and ABC being not so different. However, the
estimation of the baseline level of volatility and the parameter controlling the
effect of past volatility shows a slight bias.

The main focus is on the estimation of the Franke & Westerhoff (2012) as
the estimation of this model is not feasible with analytical methods. Therefore,
it is the primary model where the stated methods are used. When assessing the
performance purely just by the RMSEθ̂ the likelihood methods are outperform-
ing the moment methods with the Bayesian variants beating the frequentists
counterparts. Similarly to the Platt (2020), BE arrives on top. However, it is
essential to assess the method parameter by parameter. The estimation of the
adjustment rate of the chartists seems to act as a uniform distribution over the
given constraint. Meanwhile, the estimation of the adjustment rate of the fun-
damentalist is more successful, with the likelihood methods being consistently
better. On the other hand, the predisposition and herding parameters are bet-
ter estimated with moments methods, while the likelihood methods show a
bias in the estimation. Lastly, the mispricing parameter is overestimated by
all methods, more by the likelihood methods. Therefore, by the parameter
per parameter assessment, it seems that the ABC and SMM provide less biased
results for the majority of the parameters than NPSML and BE; however, the
likelihood methods has lower variance of their estimates which is the primary
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reason why they achieve lower RMSEθ̂.
The results on the Franke & Westerhoff (2012) suggest that the increase

in the usage of the Bayesian techniques in the financial ABMs is reasonable as
they propose a competitive alternative to the frequentist methods. Although BE

achieves the lowest results in terms of RMSEθ̂, the likelihood approximation
used by NPSML also needs further investigation in the environment with latent
variable to tackle down the bias in the estimation. Precisely, the trajectory
for the likelihood approximation needs to be more closely studied. It is also
possible to take inspiration from the MLE version used for the GARCH models.
The second Bayesian technique, ABC, provides a compelling alternative to the
SMM; however, we are not able to utilize the regression adjustment of the final
posterior, and we believe that further research in the possible adjustments can
improve the performance of the ABC.

The choice between the likelihood and moments methods seems to be based
on a bias-variance tradeoff, where the moments methods demonstrate lower
bias on average; however, there is a higher variance in the estimates than the
likelihood methods. Researchers can utilize the knowledge from our simulation
study to establish the approximate biases in given parameters and utilize it in
empirical study to obtain the lower or upper bound on the given parameter
from the estimated parameters. Further research can be interesting in model
averaging, as the weighted average from the given methods could be superior
to the independent methods.



Bibliography

Alfarano, S., T. Lux, & F. Wagner (2005): “Estimation of agent-based
models: the case of an asymmetric herding model.” Computational Eco-
nomics 26: pp. 19–49.

Alfarano, S., T. Lux, & F. Wagner (2008): “Time variation of higher
moments in a financial market with heterogeneous agents: An analytical
approach.” Journal of Economic Dynamics and Control 32(1): pp. 101–136.

Allen, H. & M. P. Taylor (1990): “Charts, noise and fundamentals in the
london foreign exchange market.” The Economic Journal 100(400): pp.
49–59.

Altissimo, F. & A. Mele (2009): “Simulated non-parametric estimation of
dynamic models.” The Review of Economic Studies 76(2): pp. 413–450.

Altonji, J. G. & L. M. Segal (1996): “Small-sample bias in gmm estimation
of covariance structures.” Journal of Business & Economic Statistics 14(3):
pp. 353–366.

Bandi, F. M. & P. C. Phillips (2003): “Fully nonparametric estimation of
scalar diffusion models.” Econometrica 71(1): pp. 241–283.

Beaumont, M. A., J.-M. Cornuet, J.-M. Marin, & C. P. Robert (2009):
“Adaptive approximate bayesian computation.” Biometrika 96(4): pp. 983–
990.

Bertschinger, N. & I. Mozzhorin (2021): “Bayesian estimation and
likelihood-based comparison of agent-based volatility models.” Journal of
Economic Interaction and Coordination 16(1): pp. 173–210.

Blum, M. G. (2017): “Regression approaches for approximate bayesian com-
putation.”



Bibliography 67

Bollerslev, T. (1986): “Generalized autoregressive conditional heteroskedas-
ticity.” Journal of econometrics 31(3): pp. 307–327.

Bornholdt, S. (2001): “Expectation bubbles in a spin model of markets:
Intermittency from frustration across scales.”

Boswijk, H. P., C. H. Hommes, & S. Manzan (2007): “Behavioral hetero-
geneity in stock prices.” Journal of Economic dynamics and control 31(6):
pp. 1938–1970.

Brock, W. A. & C. H. Hommes (1997): “A rational route to randomness.”
Econometrica: Journal of the Econometric Society pp. 1059–1095.

Campbell, J. Y., A. W. Lo, A. C. MacKinlay, & R. F. Whitelaw (1998):
“The econometrics of financial markets.” Macroeconomic Dynamics 2(4):
pp. 559–562.

Chen, Z. & T. Lux (2018): “Estimation of sentiment effects in financial mar-
kets: A simulated method of moments approach.” Computational Economics
52(3): pp. 711–744.

Chopin, N. (2004): “Central limit theorem for sequential Monte Carlo methods
and its application to Bayesian inference.” The Annals of Statistics 32(6):
pp. 2385 – 2411.

Cobb, L. (1981): “Parameter estimation for the cusp catastrophe model.” Be-
havioral Science 26(1): pp. 75–78.

Cont, R. (2001): “Empirical properties of asset returns: stylized facts and
statistical issues.” Quantitative finance 1(2): p. 223.

Cont, R. (2007): “Volatility clustering in financial markets: empirical facts
and agent-based models.” In “Long memory in economics,” pp. 289–309.
Springer.

Creel, M. & D. Kristensen (2012): “Estimation of dynamic latent vari-
able models using simulated non-parametric moments.” The Econometrics
Journal 15(3): pp. 490–515.

De Jong, E., W. F. Verschoor, & R. C. Zwinkels (2009): “A hetero-
geneous route to the european monetary system crisis.” Applied Economics
Letters 16(9): pp. 929–932.



Bibliography 68

Del Moral, P., A. Doucet, & A. Jasra (2006): “Sequential monte carlo
samplers.” Journal of the Royal Statistical Society Series B: Statistical
Methodology 68(3): pp. 411–436.

Ding, Z., C. W. Granger, & R. F. Engle (1993): “A long memory property
of stock market returns and a new model.” Journal of empirical finance 1(1):
pp. 83–106.

Drovandi, C. C. & A. N. Pettitt (2011): “Estimation of parameters for
macroparasite population evolution using approximate bayesian computa-
tion.” Biometrics 67(1): pp. 225–233.

Duffie, D. & K. J. Singleton (1990): “Simulated moments estimation of
markov models of asset prices.”

Evans, G. & S. Honkapohja (2001): “Expectations, economics of.” In N. J.
Smelser & P. B. Baltes (editors), “International Encyclopedia of the So-
cial & Behavioral Sciences,” pp. 5060–5067. Oxford: Pergamon.

Fama, E. F. (1965): “The behavior of stock-market prices.” The journal of
Business 38(1): pp. 34–105.

Fearnhead, P. (2018): “Asymptotics of abc.” In “Handbook of Approximate
Bayesian Computation,” pp. 269–288. Chapman and Hall/CRC.

Francq, C. & J.-M. Zakoian (2004): “Maximum likelihood estimation of
pure garch and arma-garch processes.” Bernoulli 10(4): pp. 605–637.

Franke, R. (2008): “A microfounded herding model and its estimation on
german survey expectations.” European Journal of Economics and Economic
Policies 5(2): pp. 301–328.

Franke, R. (2009): “Applying the method of simulated moments to estimate a
small agent-based asset pricing model.” Journal of Empirical Finance 16(5):
pp. 804–815.

Franke, R. & F. Westerhoff (2011): “Estimation of a structural stochastic
volatility model of asset pricing.” Computational Economics 38: pp. 53–83.

Franke, R. & F. Westerhoff (2012): “Structural stochastic volatility in
asset pricing dynamics: Estimation and model contest.” Journal of Economic
Dynamics and Control 36(8): pp. 1193–1211.



Bibliography 69

Franke, R. & F. Westerhoff (2016): “Why a simple herding model may
generate the stylized facts of daily returns: explanation and estimation.”
Journal of Economic Interaction and Coordination 11: pp. 1–34.

Frankel, J. A. & K. A. Froot (1990): “Chartists, fundamentalists, and
trading in the foreign exchange market.” The American Economic Review
80(2): pp. 181–185.

Frazier, D. T., G. M. Martin, C. P. Robert, & J. Rousseau (2018):
“Asymptotic properties of approximate bayesian computation.”

Gatti, D. D. & J. Grazzini (2020): “Rising to the challenge: Bayesian esti-
mation and forecasting techniques for macroeconomic agent based models.”
Journal of Economic Behavior & Organization 178: pp. 875–902.

Gaunersdorfer, A. & C. Hommes (2007): “A nonlinear structural model
for volatility clustering.”

Geweke, J. (1989): “Bayesian inference in econometric models using monte
carlo integration.” Econometrica: Journal of the Econometric Society pp.
1317–1339.

Gilli, M. & P. Winker (2003): “A global optimization heuristic for estimating
agent based models.” Computational Statistics & Data Analysis 42(3): pp.
299–312.

Grazzini, J., M. G. Richiardi, & M. Tsionas (2017): “Bayesian estimation
of agent-based models.” Journal of Economic Dynamics and Control 77: pp.
26–47.

Herbst, E. & F. Schorfheide (2014): “Sequential monte carlo sampling for
dsge models.” Journal of Applied Econometrics 29(7): pp. 1073–1098.

Hirshleifer, J. (1985): “The expanding domain of economics.” The American
Economic Review 75(6): pp. 53–68.

Hong, H. & J. C. Stein (1999): “A unified theory of underreaction, momen-
tum trading, and overreaction in asset markets.” The Journal of finance
54(6): pp. 2143–2184.

Hull, J. (2012): Risk management and financial institutions,+ Web Site, vol-
ume 733. John Wiley & Sons.



Bibliography 70

Karlsen, H. A. & D. Tjøstheim (2001): “Nonparametric estimation in null
recurrent time series.” Annals of Statistics pp. 372–416.

Kirman, A. (1993): “Ants, rationality, and recruitment.” The Quarterly Jour-
nal of Economics 108(1): pp. 137–156.

Kristensen, D. (2009): “Uniform convergence rates of kernel estimators with
heterogeneous dependent data.” Econometric Theory 25(5): pp. 1433–1445.

Kristensen, D. & Y. Shin (2012): “Estimation of dynamic models with
nonparametric simulated maximum likelihood.” Journal of Econometrics
167(1): pp. 76–94.

Kukacka, J. & J. Barunik (2017): “Estimation of financial agent-based
models with simulated maximum likelihood.” Journal of Economic Dynamics
and Control 85: pp. 21–45.

Kukacka, J. & S. Sacht (2023): “Estimation of heuristic switching in behav-
ioral macroeconomic models.” Journal of Economic Dynamics and Control
146: p. 104585.

Kukacka, J. & E. Zila (2024): “Wealth, cost, and misperception: Empirical
estimation of three interaction channels in a financial-macroeconomic agent-
based model.” Available at SSRN 4709540 .

Lamperti, F., A. Roventini, & A. Sani (2018): “Agent-based model cali-
bration using machine learning surrogates.” Journal of Economic Dynamics
and Control 90: pp. 366–389.

Lee, B.-S. & B. F. Ingram (1991): “Simulation estimation of time-series
models.” Journal of Econometrics 47(2-3): pp. 197–205.

Lux, T. (2018): “Estimation of agent-based models using sequential monte
carlo methods.” Journal of Economic Dynamics and Control 91: pp. 391–
408.

Lux, T. (2022): “Bayesian estimation of agent-based models via adaptive par-
ticle markov chain monte carlo.” Computational Economics 60(2): pp. 451–
477.

Lux, T. (2023a): “Approximate bayesian inference for agent-based models in
economics: a case study.” Studies in Nonlinear Dynamics & Econometrics
27(4): pp. 423–447.



Bibliography 71

Lux, T. (2023b): “Sequential monte carlo squared for agent-based models.”
In “Artificial Intelligence, Learning and Computation in Economics and Fi-
nance,” pp. 59–69. Springer.

Lux, T. & R. C. Zwinkels (2018): “Empirical validation of agent-based mod-
els.” In “Handbook of computational economics,” volume 4, pp. 437–488.
Elsevier.

Marjoram, P., J. Molitor, V. Plagnol, & S. Tavaré (2003): “Markov
chain monte carlo without likelihoods.” Proceedings of the National Academy
of Sciences 100(26): pp. 15324–15328.

McFadden, D. (1989): “A method of simulated moments for estimation of dis-
crete response models without numerical integration.” Econometrica: Jour-
nal of the Econometric Society pp. 995–1026.

Miah, M., A. Rahman et al. (2016): “Modelling volatility of daily stock re-
turns: Is garch (1, 1) enough.” American Scientific Research Journal for
Engineering, Technology, and Sciences (ASRJETS) 18(1): pp. 29–39.

Murphy, K. P. (2012): Machine learning: a probabilistic perspective. MIT
press.

Muth, J. F. (1961): “Rational expectations and the theory of price move-
ments.” Econometrica: journal of the Econometric Society pp. 315–335.

Naesseth, C. A., F. Lindsten, T. B. Schön et al. (2019): “Elements of
sequential monte carlo.” Foundations and Trends® in Machine Learning
12(3): pp. 307–392.

Pakes, A. & D. Pollard (1989): “Simulation and the asymptotics of opti-
mization estimators.” Econometrica: Journal of the Econometric Society pp.
1027–1057.

Platt, D. (2020): “A comparison of economic agent-based model calibration
methods.” Journal of Economic Dynamics and Control 113: p. 103859.

Platt, D. (2022): “Bayesian estimation of economic simulation models using
neural networks.” Computational Economics 59(2): pp. 599–650.

Rubin, D. B. (1984): “Bayesianly justifiable and relevant frequency calcula-
tions for the applied statistician.” The Annals of Statistics pp. 1151–1172.



Bibliography 72

Sathe, A. M. & N. Upadhye (2022): “Estimation of the parameters of sym-
metric stable arma and arma–garch models.” Journal of Applied Statistics
49(11): pp. 2964–2980.

Sisson, S. A., Y. Fan, & M. M. Tanaka (2007): “Sequential monte carlo with-
out likelihoods.” Proceedings of the National Academy of Sciences 104(6):
pp. 1760–1765.

Souza, R. & A. Neto (1996): “A bootstrap simulation study in arma (p, q)
structures.” Journal of Forecasting 15(4): pp. 343–353.

Tavaré, S., D. J. Balding, R. C. Griffiths, & P. Donnelly (1997): “In-
ferring coalescence times from dna sequence data.” Genetics 145(2): pp.
505–518.

Welch, H. (1983): “Distributed recovery block performance in a real-time
control loop.” In “Proceedings, IEEE Real-Time Systems Symposium,” pp.
268–276.

Zeeman, E. C. (1974): “On the unstable behaviour of stock exchanges.” Jour-
nal of mathematical economics 1(1): pp. 39–49.

Zhang, J., Q. Zhang, Y. Li, & Q. Wang (2023): “Sequential bayesian infer-
ence for agent-based models with application to the chinese business cycle.”
Economic Modelling 126: p. 106381.

Zila, E. & J. Kukacka (2023): “Moment set selection for the smm using
simple machine learning.” Journal of Economic Behavior & Organization
212: pp. 366–391.



Appendix A

Codebase

The whole source code with script files, implementation of individual methods,
cached results, and Jupyter Notebooks analyzing the results is available inside
the archived GitHub repository:

https://github.com/okarlicek/DiplomaThesis.

https://github.com/okarlicek/DiplomaThesis
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