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Abstract
This thesis explores the application of machine learning models for detecting
fraudulent claims in motor insurance. It compares the effectiveness of several
algorithms, including logistic regression, random forest, XGBoost, histogram-
based gradient boosting, and multilayer perceptron (MLP). The study ad-
dresses the challenge of class imbalance in fraud detection, utilizing tech-
niques such as Synthetic Minority Over-sampling Technique (SMOTE) and
class weighting to enhance model performance. Real-world data provided by
UNIQA pojišťovna a.s., including detailed information on insurance contracts
and claims, serve as the basis for the empirical analysis. Among the models
tested, XGBoost with SMOTE resampling and class weighting achieved the
highest recall rate, detecting over 90% of fraudulent claims, while maintaining
a reasonable level of precision. The feature importance analysis highlighted key
predictors of fraud, such as claim amount, type of coverage or vehicle age. The
findings underscore the potential of advanced machine learning techniques to
improve the efficiency of fraud detection systems in the insurance industry.
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Abstrakt
Tato diplomová práce zkoumá aplikaci modelů strojového učení pro detekci
podvodných pojistných událostí v pojišťení motorových vozidel. Porovnává
účinnost několika algoritmů, včetně logistické regrese, random forest, XG-
Boost, histogram-based gradient boosting machine a multilayer perceptron
(MLP). Studie se zabývá výzvou nevyrovnaného datasetu v detekci podvodů,
přičemž využívá techniky jako je Synthetic Minority Over-sampling Technique
(SMOTE) a vážení efektu jednotlivých kategorií. Reálná data poskytnuta
UNIQA pojišťovnou a.s., včetně podrobných informací o pojišťovacích smlou-
vách a nárocích, slouží jako základ pro empirickou analýzu. Mezi testovanými
modely dosáhl model XGBoost s využitím SMOTE tranformace a vážení kat-
egorií nejvyšší míry zachycení podvodů s více než 90% detekovaných podvod-
ných nároků. Analýza d ​uležitosti jednotlivých proměnných zdůraznila klíčové
ukazatele podvodů, jako je výše nároku, typ krytí nebo stáří vozidla. Závěry
této práce ukazují potenciál pokročilých technik strojového učení ke zvýšení
efektivity systémů detekce podvodů v pojišťovnictví.
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Chapter 1

Introduction

Insurance companies around the world lose billions of euros every year due to
fraudulent insurance claims. In the Czech Republic alone, in 2023 6 242 frauds
were confirmed in a total amount of 1 664 million CZK, of which 434.4 mil-
lion CZK were originating from vehicle insurance (Česká associace pojišťoven
(2024)). Moreover, both the number of frauds and their total amount have
been increasing in recent years, making it a pressing issue for Czech insurance
companies as well as insurance companies all over the world. It is important
to note that these figures only represent detected fraud, leaving the extent of
undetected fraud to speculation. Currently, the level of sophistication of fraud
detection systems varies significantly among insurance companies and a system
solution is often missing. The market standard, especially for smaller insurers
that are not part of an international insurance group, is to implement scenario-
based fraud detection techniques rather than to utilize more advanced data
analytics or machine learning methods.

The purpose of this thesis is to analyze the suitability of a machine learning
solution for detection of insurance fraud. It provides a comparison of several
supervised machine learning techniques that could be used to fight insurance
fraud by flagging potentially fraudulent claims. These include logistic regres-
sion, random forest, histogram-based gradient boosting, XGBoost and multilayer
perceptron models. Moreover, fraud detection is a highly unbalanced problem
as frauds usually amount to only a few percentage points of the total number
of incurred claims. Therefore, two approaches are tested for each of the models
to correct for this imbalance. These are the Synthetic Minority Oversampling
Technique (SMOTE) and weighting the effect of each class. The goal is to de-
velop a model that can be used to score or pre-flag claims before the liquidation
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process.
Furthermore, the interpretability of given machine learning methods is ex-

plored in order to verify the decision-making process of the model and provide
insight into the determinants of insurance fraud, which could further help insur-
ance companies understand its clients and potential risk groups among them.
The interpretability and understandability of the machine learning solution are
often overlooked by modern empirical research. We use the permutation impor-
tance and the concept of SHAP values to evaluate the importance of individual
variables and their effects on the model prediction. This enables us to provide
an interpretable automated mechanism for detecting fraudulent claims.

This thesis focuses on motor insurance - more specifically on MTPL and
CASCO insurance. The empirical analysis is performed on a unique real-world
dataset assembled and provided for the purpose of this thesis. The data were
provided by one of the leading insurers in the Czech market and contain in-
formation on real insurance contracts and claims. This enables us to derive
information about the effects of individual features without biasing the results
by using a fully synthesized dataset. Using a dataset on actual claims from the
Czech Republic and Slovakia helps illustrate the potential benefit for Czech
and Slovak insurers from applying the model.

The structure of this thesis is as follows. First of all, in Chapter 2 we provide
a theoretical background on vehicle insurance in the Czech Republic and Slo-
vakia and current fraud detection systems and research available. In Chapter 3
the proposed models are presented, and the class imbalance correction, model
evaluation and feature importance extraction methods are discussed. Followed
by Chapter 4 which provides a description of the data used for the model-
ing, their specifics and pre-processing performed. In Chapter 5 the results of
the models are presented and discussed - both the performance of respective
models and the importance of variables used for the estimation, and the main
implication of the research are summarized. Finally, Chapter 6 summarizes the
thesis and concludes on the most important findings.



Chapter 2

Theoretical background

2.1 Vehical insurance in Czechia and Slovakia
The Motor Third Party Liability insurance (in Czech ’povinné ručení’ or
’pojištění odpovědnosti z provozu vozidla’) is a mandatory insurance in both
Czech Republic and Slovakia, as well as in the whole European Union. It is
required by act n.168/1999 Sb. - The vehicle liability insurance act1 and act n.
381/2001 Z.z. - Act on compulsory contractual liability insurance for damage
caused by the operation of a motor vehicle2 respectively. These regulations
are an incorporation of European regulations and determine that any motor
vehicle that is to be operated on public communications needs to be insured.
The MTPL insurance is designed to protect individuals and their property from
damage caused by motor vehicles operated by third party. It covers bodily
injury and property damage caused to third parties in the event of a road
traffic accident up to an amount specified in the respective act. Therefore,
the MTPL insurance covers the damage caused by the insured vehicle, not the
damage to that vehicle.

On the other hand, the Casualty and Collision insurance (in Czech havar-
ijní pojištění ) is a voluntary insurance intended to cover damage to the insured
vehicle and/or its passengers. Generally, this insurance covers accidents, natu-
ral disasters, theft or vandalism. Additionally, this insurance is often comple-
ment by supplementary insurances such as windshield insurance, health insur-
ance for people in the vehicle, luggage insurance and costs of renting a replace-

1in Czech Zákon o pojištění odpovědnosti z provozu vozidla
2in Slovak Zákon o povinnom zmluvnom poistení zodpovednosti za škodu spôsobenú pre-

vádzkou motorového vozidla
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ment vehicle and assistance services coverage. As this is a voluntary insurance,
the coverage differs by contract given the client and insurer’s agreement.

2.2 Insurance Fraud
Insurance fraud is a significant and persistent challenge in the insurance indus-
try. It is defined as any act committed with the intent to obtain a benefit to
which the claimant is not entitled. It can manifest in various forms - from ex-
aggerated claims or providing untruthful or incomplete information to entirely
fabricated incidents. In the context of motor insurance, fraud can involve, for
example, staged accidents, inflated repair costs, or false theft claims. These
deceptive practices not only lead to substantial financial losses for insurance
companies but also result in higher premiums for honest customers and a gen-
eral mistrust in the insurance system.

In 2017, the value of fraudulent claims detected in Europe reached 2.6
billion euros and Insurance Europe (the European insurance and reinsurance
federation) estimated that combined detected and undetected fraud in Europe
reached up to 13 billion euros (InsuranceEurope (2019)). In the Czech Re-
public, the Czech Association of Insurers (ČAP) collect and annually publishes
statistics on insurance fraud. In 2023, Czech insurance companies confirmed
6 242 fraudulent cases amounting to 1.7 billion CZK, which is an almost 17%
increase compared to the previous year, arising mainly from property and lia-
bility insurance. The motor insurance amounted to 408 million CZK (approx.
25% of the total amount). Note that this is only the value of convicted frauds,
leaving the total amount to speculation. The volume of fraud and its increas-
ing tendency over the past years makes this significant challenge for insurance
companies (Česká associace pojišťoven (2024)).

From a risk management perspective, insurance fraud is naturally also per-
ceived as a potential risk. The non-insurance risks connected to the insurance
business as defined by Solvency II are market risk, credit risk (also known as
default risk), and operational risk. All of these have a direct impact on the cal-
culation of the solvency capital requirement. Solvency II defines operation risk
as the risk of loss arising from inadequate or failed internal processes, person-
nel, or systems, or from external events and divides the operational risk into
internal and external, which also includes fraud in insurance claims. Having
an efficient and reliable fraud detection system can significantly decrease the
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level of risk faced by the insurance companies and, subsequently, decrease not
only unnecessary cost to the business, but also the capital requirement.

2.3 Fraud detection systems
As of now, the level of sophistication of fraud detection systems in insurance
companies varies significantly. Although there has been intensive development
recently, the market standard, especially for smaller insurers, is still a scenario-
based detection system rather than utilizing advanced machine learning algo-
rithms. This means that there is a predetermined set of condition rules, usually
set by the insurers’ employees. If those rules are satisfied, the claim is flagged
as suspicious. However, the main responsibility for fraud reporting still remains
in the judgment of claim adjusters, appraisers, examiners, and investigators,
which can be resource-consuming and inefficient.

In order to help the insurance companies fight the insurance fraud, Czech
Association of Insurers (Česká associace pojišťoven) developed and maintains
two information systems for automated exchange of information about suspi-
cious insurance activities. This aims to help with both prevention and detection
of insurance fraud. The SVIPO I system provides information on motor vehi-
cle insurance activity and can flag suspicious insurance claims that might have
been a purposeful or unlawful act. The SVIPO II is a very similar system focused
on personal insurance, more specifically life and health insurance. The systems
are not publicly accessible, but according to ČAP the majority of insurers on
the Czech market have joined the initiative and actively use the systems.

In this thesis, we explore the feasibility of machine learning application in
the detection of fraudulent claims in motor vehicle insurance. More specifically,
the models are developed as a pre-flagging mechanism to indicate which claims
are at risk of being fraudulent. Therefore, the models are designed to detect as
many potentially fraudulent claims as possible while keeping prediction errors
reasonable. Due to the very low availability and quality of the data, academic
research in this area is not very extensive. To our knowledge, there is virtu-
ally no publicly available dataset for the Czech or Slovakian insurance market,
and therefore there has not been any academic research yet. In international
research, several studies have been conducted on insurance fraud. Hanafy &
Ming (2021b) provides a comprehensive overview of existing research and a
comparison of multiple machine learning models and sampling techniques for
automobile insurance based on data from an Egyptian car insurance company.
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Hanafy & Ming (2021a) and Singhal et al. (2023) show a comparison of several
machine learning methods on data from Brazilian automotive company and
publicly available data from kaggle.com respectively. Severino & Peng (2021)
compared several machine learning techniques, including a deep neural network
and GBM, on a Brazilian property insurance dataset. They also tested several
techniques, such as the permutation importance and the SHAP values, to in-
terpret variable impotence and their effects on the prediction of the model. In
all of this research, machine learning models appear to provide interesting per-
formance for application within insurance fraud detection, as the best models
range from 0.5 to 0.9 in recall and from 0.6 to 0.9 in AUC scores. However, the
quality of the underlying dataset can significantly influence the research results.
Nalluri et al. (2023) compared several machine learning models for medical in-
surance fraud detection and tested them on two dataset, data obtained from
kaggle.com and data from the CMS database, and the resulting performance of
the models differed drastically. Therefore, it will be difficult to make a direct
comparison with previous research and its results.

An area, where fraud detection research has been extensive in recent years
and machine learning techniques provide satisfactory results, is the area of
credit card fraud detection (e.g. Alarfaj et al. (2022), Trivedi et al. (2020),
Khatri et al. (2020) or Sinčák (2023)). However, it is important to note a
crucial difference between these two fraud detection applications. In credit card
fraud, the fraud is usually committed by a third-party and the goal is to prevent
the fraudulent transaction from happening. In case the fraudulent transaction
goes undetected, it will usually be reported by the card holder. Thus, there is
a feedback mechanism for the model to learn from. The situation of insurers is
a little more complicated. In case of insurance fraud, the fraudster is usually
the counterparty, i.e. the client. If the insurance fraud goes undetected by the
insurance company, there is no natural feedback or back-testing mechanism to
correct the model’s prediction. Improving and correcting the fraud prediction
model for insurance claims is thus a complex process and regular testing needs
to be conducted to ensure correctness of training data.

https://www.kaggle.com/code/sandeshpatkar/auto-insurance-fraud/input
https://www.kaggle.com/datasets/rohitrox/healthcare-provider-fraud-detection-analysis


Chapter 3

Methodology

There are two main approaches to machine learning - the supervised and un-
supervised learning. Supervised learning involves training models on labeled
datasets, where each training example is paired with an output label. In con-
trast, unsupervised learning deals with unlabeled data, focusing on identifying
patterns and structures within the data without explicit guidance on what to
predict. In this thesis, we will focus on comparing several models from the
supervised learning field.

There are numerous models in supervised learning that are suitable for
classification problems such as fraud detection. In this thesis, the logistic re-
gression, random forest, XGBoost, Histogram-Based GBM and multilayer per-
ceptron are compared. This chapter provides a theoretical background and
discusses the advantages and disadvantages of the proposed models and the
established literature that summarizes their applications. Moreover, to provide
a comparison between the models, suitable metrics are chosen and explained.
Since fraud detection is a highly imbalanced problem, its implications for mod-
eling are discussed and several methods to correct the imbalance are introduced.
Lastly, in addition to understanding the models and their performance, it is
also important to understand the decision-making of the models and the role
that the respective features in the dataset play in the prediction. Therefore,
two methods are introduced for the evaluation of the importance of individual
features and their effects on the predictions. These include the permutation
importance and the SHAP values.
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3.1 Evaluated models

3.1.1 Logistic regression

First of the proposed models is the logistic regression. The logistic regression
is an extension of linear regression, where the estimated class is assumed to
follow the Bernoulli distribution. It is used for binary classification problems;
however, it can also be extended for multi-class classification. First, the linear
part of the model is estimated and then the logistic transformation is applied.
Linear regression is defined as y = β0 + β1x1 + . . . + βnxn or using the matrix
notation as y = xw+b. Therefore, the output of the linear part of the regression
is equal to ȳ(x; w) = xw. To ensure that the predicted probability is in the
range < 0, 1 >, the sigmoid transformation is applied σ(x) = 1

1+e−x . Hence,
the output of the logistic regression can be represented as:

y(x; w) = σ(ȳ(x; w)) = σ(xw).

The algorithm, as applied in this thesis, is estimated based on maximum
likelihood estimation (MLE) and the weighs updates are performed using stochas-
tic gradient descent (SGD) with L2 regularization.

Logistic regression has been researched for various areas of financial fraud
detection, such as automobile insurance fraud (Rukhsar et al. (2022), health
care insurance fraud (Obodoekwe & Van der Haar (2019)) or credit card fraud
(Sinčák (2023)). Although it is usually outperformed by more complicated
or ensembled models, some research shows that, for specific datasets, logis-
tic regression combined with under-sampling can actually achieve competitive
results (Itoo et al. (2021)).

The main advantage of this method is its interpretability. The logistic re-
gression is based on a linear method, therefore the effects of individual variables
on the probability of a claim being fraudulent can be easily extracted and ex-
amined. Another advantage of this model is the estimation time, as the training
time of this model is significantly faster than the ensembled methods (Sinčák
(2023)). However, since our dataset is rather small with limited number of
features, the training time is not an issue and does not need to be taken into
account. Logistic regression is used mainly as a baseline model for comparison
of the performance of the other methods.
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3.1.2 Decision tree

To understand more complex and ensembled methods, we need to first intro-
duce their building blocks, also called base learners, which are decision trees.
Decision trees are a versatile machine learning method that can be used for
both classification and regression. It is a non-parametric method that splits
the data into subsets based on feature values, effectively creating a tree-like
structure. In each splitting node, a chosen criterion (such as Gini impurity, log
loss or entropy) is evaluated, and feature and its values, which divide the data
into the most homogeneous subsets, are chosen for the splitting. In the context
of classification, a decision tree predicts the class of data entry by traversing
from the root to a leaf, following the branches according to the feature values of
the instance. The predicted class is then based on the majority class of training
data belonging to a given leaf.

The main advantage of the decision tree model is its intepretability and
comprehensibility. The decision making process is based on a series of if-based
steps which can be easily explained and visualized. In addition, the importance
of individual data features can be easily extracted. Moreover, it is a non-
parametric model, hence no underlining distribution needs to be assumed. On
the other hand, if left unrestricted, the decision tree model is prone to create an
overly complex tree that overfits the training data and struggles to generalize
on unseen data. They can also be unstable and sensitive to minor changes in
data (Murphy (2012)).

Despite its limitations, decision three is a strong baseline model and is used
as an underlying model for many ensembled methods. Its application to fraud
detection has been investigated for applications within automobile insurance
fraud, but it is usually outperformed by its ensembled versions such as the
Random forest and XGBoost classifiers (Hanafy & Ming (2021b), Rukhsar
et al. (2022)).

3.1.3 Random forest

The random forest is effectively an extension of the decision tree model. This
method builds multiple decision trees and merges their results to improve per-
formance and control overfitting. By combining the predictions of several base
estimators (also called weak learners), it enhances the robustness and general-
ization capability of the model.

Each tree in the forest is trained on a random subset of the training data.
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Additionally, at each node of the tree, a random subset of features is selected,
and the best split is determined only from this subset. This introduces an
additional layer of randomness, which helps reduce the correlation between
trees and leads to a more diverse set of base models. The final prediction,
as implemented in the scikit-learn library, is then obtained by averaging the
probabilistic prediction of individual trees (Pedregosa et al. (2011)).

Since each tree in the random forest is trained using different data sub-
sets and uses different features, they remain uncorrelated with one another
reducing instability commonly seen in single decision trees. Additionally, the
large number of trees significantly reduces the risk of overfitting. Studies have
shown its effectiveness in identifying fraudulent claims in various fields - in
credit card fraud (Udeze et al. (2022), Sinčák (2023)), car insurance (Hanafy
& Ming (2021b)) or health insurance fraud (Nalluri et al. (2023)).

However, the increase in performance of the model comes with its cost, as
the random forest sacrifices some of the interpretability compared to a single
decision tree. Moreover, with a large number of features and a large number
of base estimators (i.e. trees in the forest), the estimation time can increase
significantly (Sinčák (2023)). However, considering the usual size and number
of features of the insurance claims dataset, this is not of concern.

3.1.4 Gradient boosting methods

Gradient boosting is a generic framework that employs the gradient descent al-
gorithm that can be used to minimize various loss functions (Friedman (2001)).
The descent is done in subsequent steps, where each estimation is built to cor-
rect mistakes made by previous estimation by optimizing the model weights
based on the errors of previous iterations. Finally, all the predictions obtained
from each of the iterations are combined to form a final prediction. An exten-
sion of this algorithm is the gradient-boosted decision trees method (Friedman
(2001)), where each iteration in the gradient descent is based on a decision
three. All trees built during the estimation are then combined into a final
prediction.

Extreme Gradient Boosting (XGBoost) is a relatively new implementation of
gradient-boosted decision trees proposed by Chen & Guestrin (2016). It is an
advanced implementation designed for speed and performance and has become
one of the most popular machine learning algorithms for structured or tabular
data due to its high accuracy, efficiency and flexibility. In addition to the other
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gradient boosting methods, it adds a regularization form to the loss function
during its training. This limits the complexity of the model and prevents
overfitting. The binary log loss, also known as binary cross-entropy loss, was
used as a loss function. Moreover, XGBoost leverages parallel and distributed
computing to enhance speed. The suitability of the XGBoost algorithm for fraud
detection has already been shown in several fields - in credit card fraud (Sinčák
(2023)), health insurance (Gupta et al. (2021)) or motor insurance (Baran
& Rola (2022)), and this model usually ranks among the highest performing
within the compared methods.

Another extension of the gradient-boosted trees is the Histogram-Based
Gradient Boosting method. This algorithm was inspired by LightGBM as
proposed by Ke et al. (2017). It bins the input samples into integer-valued
bins, which tremendously reduces the number of splitting points to consider,
and allows the algorithm to leverage integer-based data structures (histograms)
instead of relying on sorted continuous values when building trees (Pedregosa
et al. (2011)). It is an efficient estimator developed for a larger dataset (with a
number of samples over 10 000). Binary log loss is used as a loss function, and
the implementation in the scikit-learn library also allows for the inclusion of an
L2 regularization term, similar to the XGBoost algorithm. Histogram-Based
Gradient Boosting Classifier is a rather new method developed to enhance
speed, but has already been shown to provide competitive results in the field
of fraud detection (Nhat-Duc & Van-Duc (2023), Mahmood et al. (2023)).

3.1.5 Multilayer perceptron

The multilayer perceptron (MLP) is esentially a feed-forward artificial neural
network. The artificial neural network is a powerful model capable of learning
complex patterns within the data. It was originally inspired by neurons in the
human brain and can be used for both regression and classification.

The MLP consists of the input layer, one or more hidden layers, and the
output layer. In the hidden layer, each neuron applies a weighted sum of its
input (neurons from the previous layer) followed by an activation function.
Some common examples of activation function are the ReLU (Rectified Linear
Unit), sigmoid or tanh function. In our case, ReLU proved to provide the best
results. In the output layer, a softmax activation function is applied for a clas-
sification task to transform the output to probabilities. The estimation process
in an MLP involves adjusting the weights of the connections between neurons
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to minimize the loss function, typically using backpropagation combined with
an optimization algorithm such as stochastic gradient descent (SGD) or Adam
optimizer.

The main advantage of neural network model is its capability to capture
complex relationships and work even with unstructured data. However, it is
considered a ’black-box’ model, as it is very difficult to interpret. It also con-
tains a lot of hyperparameters, which need careful fine-tuning. Moreover, with
large dataset and complicated architectures, the network can quickly become
computationally complex and time-consuming.

Nowadays, there are naturally many extensions of the original algorithm.
Zakaryazad & Duman (2016) examined several neural networks for the pur-
pose of detecting credit card fraud, also considering the savings provided by
the different models. Their research showed that the original simple neural
network provided the best accuracy. However, in recent years, there has been
an extensive development in the field of deep learning and especially in neu-
ral networks based on transformers. Specifically, transformers and pre-trained
transformers show promising results in the field of fraud detection (Yu et al.
(2024), Yuan (2022)). However, we include MLP mainly to provide a compari-
son to tree-based methods and leave the development of the optimal advanced
neural network for further research.

3.2 Evaluation methods
Choice of the right evaluation methods is important to ensure the correct setting
of the model and its usability and efficiency for a given classification task.
There are several performance evaluation methods suitable for a classification
problem.

Accuracy: The accuracy gives the percentage of the right predictions out
of all the predictions. Thanks to its intepretability, it is a common choice for
classification problems. However, given the high class imbalance in the data,
since fraudulent claims only form approximately 3.5% of the data, accuracy is
not a suitable measure for the fraud detection problem.

Precision: The precision reports the proportion of actual frauds in the
total number of frauds predicted. In terms of the confusion matrix shown in
Figure 3.1, it is the True Positives (that is, fraudulent claims indeed marked by
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the model as fraudulent) divided by True Positives and False Positives (that is,
nonfraudulent claims marked by the model as fraudulent), i.e T P

T P +F P
. Hence,

this measure refers to how efficient a given model would be in fraud detection.

Recall: The recall (also called sensitivity) refers to the proportion of cor-
rectly predicted frauds to all fraudulent claims. In terms of the confusion
matrix, this is the T P

T P +F N
. Hence, this metric reports how much of the actual

fraudulent claims is the given model capable of capturing.

Specificity: The specificity, also called the true negative rate, measures
the proportion of correctly classified non-fraudulent claims to all non-fraudulent
claims. In terms of the confusion matrix, this is T N

T N+F P
. Since we are mainly

concerned with fraudulent claims, this measure is not as informative.

F1 score: Obviously there is a trade-off between precision and recall. The
F1 score attempts to capture this trade-off. It is calculated as follows:

F1 = 2 × Precision × Recall
Precision + Recall

Therefore, this metric penalizes the model for poor performance in either pre-
cision or recall and is often used to evaluate classification models.

ROC and AUC: Another metric used to evaluate classification models
that captures the sensitivity-specificity trade-off is the receiver operating char-
acteristic curve (ROC). This is a graphical representation of the true positive
rate (sensitivity) and the false positive rate (1 - specificity) at various classifi-
cation thresholds. The closer the curve is to the top-left corner of the plot, the
higher is the specificity and the lower is the false positive rate across different
decision threshold and hence the better the model performs.

The Area Under the Curve (AUC) is a quantification of the ROC curve and
refers to the area under ROC. Its value falls in the range from 0 to 1, where
the higher the value, the better the discrimination power of the model. A
model that has no discrimination power (i.e., is similar to random guessing)
has an AUC of 0.5. Therefore, an AUC is a good measure of model performance
regardless of whether precision or recall is intended to be maximized, since
those can be highly influence by threshold setting. Therefore, an AUC of at
least 0.5 was used as a baseline condition for the models.
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Actual Positive Actual Negative
Predicted Positive True Positive (TP) False Positive (FP)
Predicted Negative False Negative (FN) True Negative (TN)

Table 3.1: Confusion Matrix

The goal of this thesis is to test algorithms for the purpose of pre-flagging
potentially fraudulent claims. This assumes that the program will be used
as input information for a subsequent process of liquidation of the insurance
claim. Therefore, the models were designed with the purpose of detecting as
many potentially fraudulent claims as possible while keeping the prediction
errors reasonable. Hence, recall was maximized while keeping the F1 score
reasonable. Furthermore, the AUC was used to assess the overall quality of the
model.

3.3 Unbalanced dataset problem
The fraud detection problem is a high unbalanced dataset problem as detected
frauds usually represent only up to a few percent of the total number of claims.
Such an extreme under-representation of one class can cause the classification
problem to be biased towards the majority class, which leads to worse perfor-
mance of the classifier (Hanafy & Ming (2021b), Kaur et al. (2019)).

Several techniques have been developed for handling unbalanced datasets.
Generally, there are two approaches to the problem of class imbalance. Either
the effect of each class is adjusted by weighting, or the dataset itself is adjusted
(resampled) so that the classes are represented more equally. For the purpose
of this thesis, we have decided to employ two techniques - the weight balancing
and SMOTE, which represent the two different approaches.

The weight balancing, also called the class weighting, is a simple method
where observations are assigned weights based on the distribution in the train-
ing data, usually inversely proportional to their frequency in the data. Hence,
the weights are set as follows:

weightclassi
= Total number of observations

Number of observations of classi

The exception to this is the implementation of the XGBoost algorithm, where
the class weighting is performed by parameter scale_pos_weight and the weight
is set to number of negative instances/number of positive instances.
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Hence, the fraudulent data, which are significantly under-represented in the
dataset, will be assigned higher weights, whereas the non-fraudulent data will
assigned lower weights, effectively imposing stronger regularization for updates
based on non-fraudulent observations. The application of this method for fraud
detection has been explored for example by Udeze et al. (2022) and shows
promising results, especially for the XGBoost estimation.

The second method that will be applied is the Synthetic Minority Over-
sampling Technique (SMOTE) as proposed by Chawla et al. (2002). This
method creates a new synthetic observation by interpolating between minor-
ity class observations already existing in the dataset. For each of the under-
represented observations, k-nearest neighbors which also belong to the minor-
ity class are selected (based on the kNN algorithm), and new observations are
generated by interpolating between the selected observation and its randomly
chosen k-nearest neighbor. This method has proven to outperform standard
over-sampling and under-sampling techniques, where observations are simply
randomly dropped or duplicated, for application in fraud detection in insur-
ance (Hanafy & Ming (2021b)) and also in other finance frauds such as credit
card frauds (Muaz et al. (2020)) and perform especially well with the Random
Forest classifier (Muaz et al. (2020)). The SMOTE method also performs well in
combination with under-sampling methods (Haixiang et al. (2017)). However,
in our dataset the fraudulent claims have already been complemented by only
a representative sample of non-fraudulent claims, therefore under-sampling in
fact has already been applied, in this thesis only SMOTE is applied.

The SMOTE also enables to control the degree of over-sampling by control-
ling how many synthetic observations will be created. Therefore, we will also
explore the possibility of a combination of both approaches - the class weighting
and the SMOTE. Firstly, the dataset will be partially balanced by the synthetic
over-sampling and then the observations will be weighted based on their in-
verse frequency in the resampled dataset to further limit the bias of the model
towards the majority class.

3.4 Feature importance
With more complicated models being developed, it is ever more important to
also develop mechanisms to understand the model processes and uncover what
is happening within the ’black-boxes’. In order to understand and be able
to verify the decision-making of the model, it is important to understand on



3. Methodology 16

what the model bases its decisions. Since most of the compared methods are
nonlinear, the effects of individual features on the prediction cannot be easily
extracted. Therefore, two methods, which can be applied to all the compared
models, were chosen to evaluate the importance and effect of individual features
on models’ predictions. These include the permutation importance, which as-
sess solely the importance of individual features for the models’ performance,
and the SHAP values, which are more complex with longer estimation time,
but provide also an evaluation of the effect of given feature on the prediction.
It is important to note that both methods evaluate the importance of given
features, but not the quality of the prediction itself. That is, some feature
might not be important for a bad model, but might be important for a good
one. Therefore, it is also important to always separately evaluate the quality
of the model itself.

3.4.1 Permutation importance

Permutation feature importance is a model-agnostic technique that provides a
measure of the importance of each feature. This method assesses the decrease in
model performance when the values of a particular feature are randomly shuf-
fled, thus causing the relationship between the feature and the target variable
to be broken. Firstly, the model is estimated and the baseline performance is
measured with respect to the chosen metric. In our case, the recall is chosen as
the evaluation metric. Then, for each feature separately, its values are shuffled
to break the relationship with the target variable. The decrease in performance
is then measured and this corresponds to the importance of a given feature.
The shuffling of feature values can be performed repeatedly to avoid selection
bias and to provide a confidence interval on the estimated importance.

This approach is particularly useful due to its simplicity, ability to be ap-
plied to any model, and short estimation time. Moreover, compared to the
impurity-based importance implemented for tree-based algorithms, it does not
exhibit bias toward high cardinality (usually numeric) features (Pedregosa et al.
(2011)).

3.4.2 SHAP values

The SHapley Additive exPlanations (SHAP) values, as introduced by Lundberg
& Lee (2017), is a method based on cooperative game theory that aims to
provide a model-agnostic evaluation of the importance of model features and
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their effect on the model’s prediction. It was derived from Shapley values
that originate from cooperative game theory (Shapley et al. (1953)), but it
was adapted for the interpretation of machine learning models. The effect of
each feature on the final prediction is based on its marginal contribution to
the prediction, and it is calculated by considering all possible combinations
(subsets) of features. The key idea is to fairly distribute the difference between
the prediction and the average prediction across the features based on their
contributions. Formally, SHAP values are defined as follows:

ϕi =
∑︂

S⊆N\{i}

|S|! · (|N | − |S| − 1)!
|N |!

[︂
fS∪{i}(xS∪{i}) − fS(xS)

]︂

where N is the set of all features, S is a subset of N not containing feature
ii, fS∪{i} is the prediction of the model including the examined feature and fS

is the model where the feature is withheld, |S| is the number of features in
subset and |N | is the total number of features.

The SHAP values satisfy the assumption of local accuracy, missingness and
consistency (Lundberg & Lee (2017)). They are calculated for each observation
individually, which allows for local feature importance extraction and interpre-
tation of how every individual prediction of the model has been made. Most
importantly, they do not only indicate which features are important, but also
how they contribute to the final prediction (both in terms of direction and mag-
nitude), offering valuable insights into the model’s decision-making process.

The main disadvantage of SHAP values is their computational complexity.
As they are calculated for every observation, every feature and all possible
subsets of features, the estimation time can be considerably high. Therefore,
since the introduction of the original kernel algorithm, several algorithms for
different models were developed to approximate the SHAP values to make the
estimation more feasible, e.g. TreeSHAP (Lundberg et al. (2018)).



Chapter 4

Data

This chapter provides a description of the dataset used for empirical analysis.
It discusses the source and specifics of the data, initial pre-processing needed,
and feature engineering performed. Moreover, it presents summary statistics
of the most important variables.

4.1 Data source
This thesis utilizes real-world data on insurance contracts and claims from the
Czech Republic and Slovakia from the period of 01/2020-8/2023. The dataset
was provided by UNIQA pojišťovna, a.s., who is one of a leading insurers in
motor insurance in both Czech and Slovakian market.1 The dataset provided by
the insurance company was essentially obtained from two sources - the contract
data and the accident information.

The contract data consist of both information about the policyholder (e.g.
year of birth and municipality of residence) and the contract itself. Data about
the contract contain information about the type of insurance coverage - whether
it is MTPL or CASCO. Moreover, it includes information about the sum assured,
frequency of premium payment, contract signing and effective dates. Further-
more, these were complemented by information on the number and amount
of claims on a given contract in the last three years and the total number of
claims in the contract history. Unfortunately, the information about premium
is not available due to maintaining the trade secrets. The data are captured as
of the moment the claim was reported (except for the premium frequency and

1As of year end 2022, UNIQA is fifth largest insurer in the MTPL in the Czech market both
in terms of number of vehicles insured and gross written premium and fourth largest insurer
in CASCO insurance in terms of gross written premium (Česká associace pojišťoven (2022)).
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the number and amount of claims on a given contract in the last three years,
which are captured at a date of data extraction).

Then the accident data is available. This includes data on both the damaged
and insured vehicle, the accident circumstances (such as a location, number of
vehicles involved, if a police was called, if there were witnesses or bodily injuries,
etc.), the date of the accident and the date that the accident was reported,
information about how many claims were filed with respect to given accident
and given insurance contract (there can be damaged to the car, property, bodily
injuries etc.) and most importantly the claimed amount.

The data provided by the insurance company were available from 01/2020
to 10/2023, when they were extracted from their internal systems. However,
we have decided to exclude the last two months (in terms of a date when the
claim has been reported) since there were no frauds detected in this period.
This is clearly given by the fact that fraud detection requires a considerable
amount of time and these claims were not fully resolved by the time of the data
extraction.

Therefore, the dataset consists of 22 000 reported claims in the period of
01/2020 to 8/2023. Considering the features available, we are focusing solely
on insurance claims regarding damage on a vehicle and the information about
bodily injuries, property and other damages are used as additional feature.
This leaves us with 19 661 observations, of which 760 have been marked by the
insurance company as frauds. It is important to note that this is a complete list
of frauds detected during the period, but not a complete list of claims incurred.
The fraudulent data have been complemented by only a representative sample
of the non-fraudulent claims. Nevertheless, we are dealing with a highly unbal-
anced dataset as for both MTPL and CASCO the proportion of fraudulent claims
amounts to approximately 3.5% of the total number of observations available.

Table 4.1: Proportion of fraudulent claims by the type of insurance

CASCO MTPL
No Fraud 13486 5415
Fraud 486 274
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4.2 Data pre-processing
In total, the obtained dataset contained 41 columns. However, some of these
columns were identifiers, some were directly not suitable for machine learning
tasks (such as, for example, the car brand or address), and many suffered from
very low data quality and many missing values. For example, the car millage
had almost half of the values missing or filled with zeros and therefore had to be
excluded from the analysis. Since a significant part of the data is filled manually
by the client when reporting the claim, the quality of the data and the number
of missing values were the main issue when processing the dataset. Moreover,
many columns contained time-related information (e.g., year of birth, year of
manufacture of the car, or date of the accident and its reporting). Those were
converted to information relative to the moment of the accident (e.g. age at
the time of the accident, age of the car at the time of the accident, or number of
days it took to report the accident). Finally, 18 variables with sufficient data
quality and meaningful informational value were selected for analysis. This
includes 10 numerical variables, 4 categorical variables and 4 binary variables.
The complete list with a detailed description can be found in Appendix A Table
A.1 and the most interesting variables are further discussed in Section 4.4.

In addition to choosing suitable variables, the data need to be pre-processed
in order for the model to process them correctly. Firstly, numerical features
need to be appropriately scaled, as machine learning models often perform
better when the input variables are on a similar scale. This ensures that no
single feature dominates the learning algorithm due to its larger magnitude.
The most common scaling techniques include standardization (scaling features
to have zero mean and unit variance) or normalization (scaling features to a
range, typically between 0 and 1). Since our data clearly do not follow the
normal distribution, as can be seen in Figure A.1 in Appendix A, normaliza-
tion is applied. More specifically, MinMax scaling is applied to all numerical
variables. The MinMax scaler is defined as follows:

Xscaled = X − Xmin

Xmax − Xmin

This transforms the data into an interval < 0, 1 > while keeping the original
distribution and relative relationship between the values.

Furthermore, some machine learning algorithms require a numerical input.
Therefore, categorical variables need to be encoded as numbers and it needs to
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be done in such a way that the model does not assume an ordinal relationship
where one does not exist. A relatively straightforward approach for dealing with
categorical variables encoding is the one-hot encoding. This method creates
a separate column for each of the categories of a given variable, which then
acquires binary values indicating whether the observation belongs to a given
category or not. Since machine learning models process binary variables well,
this is a commonly used method. However, in case of dataset with many
categorical variables with a large number of categories, the resulting dataset
can become high-dimensional, which may slow down the estimation. There are
techniques to tackle working with categorical variables with a large number of
categories. This includes, for example, the learned embeddings. This method
was developed to represent words and their relative meanings in text analyses
but is very flexible and also often used in other fields. It transforms categorical
variables into one or more vectors of continuous numerical values. However, by
using the learned embeddings, additional interpretability is lost as it is hard to
map the original categories to the new numerical values. Therefore, we decided
to manually adjust variables with an undesirably high number of categories.
For example, in variable ’DAMAGE_CAUSE’ the various categories for flood,
storm, fire and animal encounter causes were merge into a category ’nature’
and various regulation violation and criminal activity causes were merged into a
category ’lawbreak’. Similarly, for the variable ’DAMAGED_VEH_TYPE’ the
various vehicle types in the dataset were divided into big (such as buses, truck,
tractors, etc.), small (such as motorcycles or quad bikes), auto (cars) and other
(marked as other or non-specified). Analogously, similar transformation and
grouping were performed for other categorical variables and categories. Since
there were no more than 21 values per variable, this approach was feasible and
allowed us to retain as much interpretability as possible. Moreover, by being
able to supervise the grouping process, we ensure meaningful encoding without
having to rely on a ’black-box’ embeddings. After the encoding of categorical
variables is applied, the dataset contains a total of 32 numerical or binary
variables.

Finally, the data are divided into training and validation sets. Data are
randomly assigned to the sets in the proportion of 70% to the training set
and 30% to the validation set. This split is performed before any methods to
correct for the class imbalance are applied (as described in Section 3.3). The
idea of splitting data into training and validation sets is that the validation data
should not influence the model training in any way. Therefore, it is important
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to divide the data before resampling so that the resampling does not bias the
reported results. We are interested in the performance of the models on the
real dataset, not the artificially adjusted balanced one. Otherwise we might
end up with a model that performs well on balanced data but struggles on
unbalanced data, which frauds clearly are.

4.3 Inherited bias in the data
We are working with a real-world dataset on insurance fraud, therefore it is
important to keep in mind some specifics of such a dataset. The fraud flag in
the dataset refers to the frauds detected by the insurance company as there is no
way to account for the undetected fraud. Therefore, it is important to note that
the controls and fraud detection mechanism in place can have a direct influence
on which frauds are most likely to be detected by the model. For example (and
note that this is just an illustrative example), due to its limited resources, the
company might decide to concentrate on insurance claims with higher claim
value and thus higher potential loss, which inevitably brings a bias into the
input data and might cause the models to underestimate the true probability
of fraud for nominally lower claims. Moreover, some types of fraud might be
more difficult to detect and prove than others. Due to obvious reasons, the
current processes in place to detect fraudulent claims cannot be, have not been
and will not be shared - neither publicly, nor with the author. Nevertheless,
current detection systems may significantly influence the variables’ importance
and models’ predictions, and it is important to be aware of these limitations.

Additionally, as mentioned previously, we are dealing with a real-wold
dataset where major part of the data is filled in by people (e.g. clients when
reporting the claim) and it is not possible to verify the correctness of the input
data. There are certainly some controls in place when the claim is being investi-
gated, especially for more suspicious claims, but no backward check is possible.
Considering the amount of missing or suspicious values in some features, which
might have been useful but had to be excluded from the analysis, this is one of
the main drawbacks in using real-world data. Although the quality of the in-
cident report also contains interesting information about the claim (e.g., claim
with a lot of missing information might also be a sign fraud), improving data
quality and data controls would likely improve model performance significantly.

All of this brings bias into the data we are dealing with. This bias cannot be
avoided (in case of detection systems bias) or is very difficult to avoid (in case
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of data validation problem) and it belongs to such fraud detection problems,
however, it is important to keep it in mind when interpreting the results and
potential next steps to be taken.

4.4 Data description
As mentioned previously, the claims to be investigated are motor (MTPL or
CASCO) insurance claims with damage to a vehicle. Bodily injuries, property
damage and other damages are excluded and used as additional feature - the
’OTHER_CLAIMS’ as a binary flag indicating whether any additional claims
were filled. The majority of incidents (93%) were a single claim on the damaged
vehicle, the rest contained 1 to 5 additional claims. Figure 4.2 shows the
representation of individual damaged vehicle types in the dataset. The vast
majority of vehicles in the dataset are cars (98%). The other categories included
are ’big’ (such as trucks, buses or tractors), small (such as motorcycles and quad
bikes) and other (non-specified).

Table 4.2: Distribution of damaged vehicle type

car big small other
No Fraud 18 514 252 92 43
Fraud 738 15 4 3

Probably the most interesting and important variable in our dataset is the
’CLAIM_AMOUNT’. This corresponds to the value of the given claim reported
in Czech crowns (CZK). Table 4.3 shows the summary statistics of the variable.
This variable should be particularly useful in combination with some variables
that refer to the value of the car or the extent of the damage. Together, they
should help identify exaggerated claims.

Table 4.3: Descriptive statistics of claim amount

mean std min 25% 50% 75% max

CLAIM_AMOUNT 34 290 54 434 0.00 7 825 18 355 40 000 1 458 500

Moreover, Figure 4.1 represents the distribution of claim amount graphi-
cally. For better representation, the data in the figure are restricted to 250 000
CZK, which corresponds to approximately the 99th percentile. On the left there
is the distribution of claim amount and on the right the proportion of frauds in
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Figure 4.1: Distribution of claim amount

each of the bins is displayed (fraudulent claims are depicted in orange whereas
non-fraudulent claims are depicted in blue). We can observe that majority of
claims received by the insurance company have a lower nominal value as the
data are strongly skewed to the right. There is a clear trend in the data where
with a higher claim amount the proportion of frauds in the sample increases.
This can be an example of inherited bias in the data caused by the detection
mechanism in place, as mentioned in Section 4.3, but it can also be the true
underlying distribution of frauds. Nevertheless, the claim amount is expected
to be an important variable for fraud detection.

Regarding the variables that indicate the value of the damaged car, unfor-
tunately the value itself is not available. However, there are two variables that
can serve as a partial proxy - the ’CAR_AGE’ and the ’SUM_INSURED’.
Unfortunately, information on premium paid for the policy, which would indi-
cate the value of the vehicle as well as the riskiness of the policyholder, is also
not available due to maintaining trade secrets.

The variable ’CAR_AGE’ refers to the number of years between the man-
ufacture of the vehicle and the incident, effectively the age of the vehicle. The
vehicle to which it refers is the damaged vehicle, not the insured vehicle (which
can be different, for example in case of the MTPL insurance). Figure 4.2 shows
the distribution and proportion of frauds in the samples for this variable. Again
we observe an increasing trend, as with the age of the vehicle the proportion
of frauds increases. This is true at least for the first 20 years, where majority
of the data lies. The damaged vehicles in the dataset are generally rather new,
as the average age of the vehicles is just 6 years.

The ’SUM_INSURED’ variable corresponds to the coverage limit of a given
insurance policy. That is the maximum amount that an insurance company
will pay out in the event of a claim for damage or loss to the insured vehicle.
For MTPL insurance, the minimum coverage is prescribed in the respective
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Figure 4.2: Distribution of car age

regulation. As of 2024, in the Czech Republic the mandatory coverage for cars
is 50 million for bodily injuries for each of the harmed parties and 50 million
for property damage and loss of profit (regardless of the number of parties).
However, the client can choose to arrange a higher coverage if he wants. For
CASCO insurance, the coverage for given policy is agreed upon by the client
and the insurance company. Table 4.4 shows the overall summary statistics,
as well as the summary statistics for each insurance product separately. We
can see that the sum insured for the MTPL insurance is strongly determined by
the legal requirements. For CASCO, the coverage varies significantly. Figure 4.3
presents the distribution of the sum insured for CASCO policies for more details.
The data are again restricted to the 99th percentile for better visualization.

Table 4.4: Descriptive statistics for sum insured (in millions)

mean std min 25% 50% 75% max
SUM_INSURED 40.82 72.33 0.00 0.33 5.78 53.00 300.00
SUM_INSURED (CASCO) 0.52 1.05 0.00 0.27 0.42 0.63 110.00
SUM_INSURED (MTPL) 139.79 65.51 0.00 110.00 110.00 110.00 300.00

Figure 4.3: Distribution of sum insured of CASCO insurance

The next numerical variable, that is closely followed in the insurance indus-
try, is the ’POLICY_AGE’. This refers to the number of days since the signing
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of the contract to the time of the accident. In Figure 4.4 the distribution and
the proportion of frauds in the distribution can be observed. Again, the data
are restricted to the 99th percentile, which corresponds to approximately 11
years. We observe that most of the policies are rather young as the average
policy is younger than 3 years at the moment of the accident. This is not
surprising, as it is not uncommon to change the insurance provider and the av-
erage age of the vehicle in the dataset is only 6 years. The policy age variable
also has negative values, where the accident happened before the contract was
signed (total of 68 negative records, with a maximum of 56 days and a median
of 2 days). Although counterintuitive, this is possible, but unsurprisingly the
fraud rate for these claims is 16.2% (compared to 3.5% on the whole dataset).

Figure 4.4: Distribution of policy age

Another interesting aspect of claim reporting can be its timing. Therefore,
we have created a variable ’DAYS_TO_REPORT’, which captures how many
days it took to report the claim. Figure 4.5 shows the distribution of this
variable and the proportion of frauds across the distribution. Once again,
the values are restricted to the 99th percentile, which corresponds to 188 days
(approximately half year). The vast majority of claims are filled within the first
days after the accident. We can observe a marginal increase in the proportion of
frauds with increasing time to report the claim, but probably not a statistically
significant trend.

From the categorical variables, probably the most interesting one is the
’DAMAGE_TYPE’. This variable refers to the classification of damage to the
vehicle, or more precisely to the type of coverage applicable. Various initial
categories were grouped into seven categories: accidents (traffic accidents),
parking, nature (nature forces, collision with an animal or inanimate object),
vandalism (vandalism and theft), windshield damage, other (other damages
or non-specified) and MTLP (where there is no further division). Figure 4.6
presents the distribution of the data between the categories and the proportion
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Figure 4.5: Distribution of days it took to report the claim

of frauds in individual categories. The most represented CASCO coverages are
accident and windshield. For the windshield coverage, it is interesting to note
that, although there are many entries, there is not a single fraud among them.
This could be another example of the selection bias of the detection system,
as mentioned in Section 4.3, as the average claim amount for the windshield
coverage is significantly lower than for the other coverage categories (approx-
imately half the next lowest category). In contrast, we observe a significantly
higher proportion of frauds for vandalism coverage.

Figure 4.6: Distribution of damage type

Lastly, let us take a look at some demographic variables available in the
dataset - the ’SEX’ and the ’PH_AGE’ variables. The ’SEX’ variable con-
tains information on whether the policyholder is a female (F), male (M) or a
company (C). Note that the variable does not refer to the driver or the owner
of the vehicle but to the owner of an insurance policy. As can be seen in Table
4.5, the data in the dataset are fairly equally divided between the policy being
owned by a natural person and a legal person, with men approximately two
times more represented than women. However, neither of the groups displays
a higher propensity to frauds as the proportion of fraudulent claims is similar.
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The ’PH_AGE’ represents the age of the policyholder at the time of the ac-
cident (in years). For companies, the age (or the year of foundation) was not
available, therefore the values were filled with ’-1’ and they are excluded from
the following figure. Figure 4.7 presents the age distribution for women and
men. We can observe that majority of the the policies held by natural persons
are owned by people in the age between 40 to 60 years. It seems that younger
people are slightly more prone to frauds, but no clear trend is observable.

Table 4.5: Representation of men, women and companies in the sam-
ple

Company Female Male
No Fraud 9 784 3 030 6 087
Fraud 376 116 268

Figure 4.7: Distribution of policyholder age

This discussion only contains some of the most interesting variables from all
the variables chosen for the modelling. More information on the other variables
and additional summary statistics can be found in Appendix A.

Before building any model on the data, it is important to check the cor-
relation between the variables. Therefore, we construct a correlation matrix,
which is presented in Figure 4.8. The matrix shows the strength and direction
of the correlation for all numerical and binary variables used.

We can observe that fraud detection in insurance claims is indeed very
difficult, as there is no strong correlation between fraud and any of the variables
in the dataset. The most significant is the slightly positive correlation with the
’CLAIM_AMOUNT’ variable. As for the other variables, there is a fairly
strong correlation between variables ’N_CLAIMS_SINCE_2020’,
’CLAIMS_VALUE_SINCE_2020’ an ’NT_CLAIM’, which can be expected
as all of them refer to the client’s claim history. Another significant correlation
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Figure 4.8: Correlation matrix of numerical and binary variables

can be seen among variables ’N_CAR_INVOLVED’, ’SUM_INSURED’ and a
binary variable ’OTHER_CLAIMS’. This also makes sense to have more claims
in accidents in which more vehicles were involved. Moreover, such accidents
are likely stemming from MTPL insurance which generally has a significantly
higher sum insured than CASCO policies. Besides that, the degree of correlation
among our variables is fairly low.



Chapter 5

Results

This chapter presents empirical results of the proposed models on the real-
world motor insurance dataset. Firstly, individual models’ performance and
results are described in detail and features important for individual models
are discussed. Then we provide a comparison of the model and an overall
discussion of the modelling result and the most important features and their
implication on further development in insurance fraud detection. Lastly, we
discuss possible extensions of our modelling approach.

Each of the proposed models has many hyperparameters that influence their
performance and decision-making. Therefore, hyperparameter tuning was done
for each model separately using the grid search of a grid of proposed parameters
to find the most suitable ones. The size of the grid varies between the models
as the number of parameters and their possible values also varies. The k-
fold validation was applied to prevent sampling bias and, since the goal of
the model is to pre-flag fraudulent claims, the recall was chosen as the metric
to be optimized. In the following text, the results presented are the already
optimized models on the validation set. An overview of used parameters can
be found in Appendix B in Table B.1.

One of the parameters that were optimized is the degree of resampling ap-
plied. As described in Chapter 3, in a highly unbalanced classification problem
such as fraud detection, it is important to account for the class imbalance.
Therefore, both of the techniques proposed in that chapter, the class balancing
and the SMOTE, were tested. Empirical research on real data showed a clear
need to correct the class imbalance, as all the models performed better when
some class balancing was applied. However, a simpler class weighting proved
to outperform the more complex SMOTE and their combination for many of
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the evaluated models. Even in cases where the SMOTE transformation im-
proved performance, the improvement is not truly difference making. This is
likely given by the fact that our data are fairly sparse as they contain a lot
of categorical variables or numerical variables with limited number of values.
The interpolation performed within the SMOTE rebalancing then does not cre-
ate records that would add significant value to the model’s learning ability.
Nevertheless, in the following text, results for the models estimated both with
and without SMOTE resampling are presented to provide a comparison of their
performance and to evaluate the value added by the SMOTE transformation.
The class weighting is applied in all the models presented, as it significantly
improved performance in all of them1.

5.1 Individual model results

5.1.1 Logistic regression

The first of the evaluated models is the logistic regression. This model was
included mainly as a baseline comparison for the more complex methods. How-
ever, it seems to provide fairly competitive performance. In Table 5.1 the re-
sults of the logistic regression without and with SMOTE (with sampling strategy
equal to 0.4) are presented.

As we are mainly interested in detecting frauds, the most interesting per-
formance metric is the recall of the fraudulent data. Here, the model achieved
a recall of 0.83 without SMOTE and 0.8 with SMOTE, which means that the
model can detect more than 80% frauds. The precision and F1 scores are al-
most identical for the two models. However, the low precision on fraudulent
data is one of the main drawbacks of the model, since only 9% of the claims
marked as frauds by the model are actually fraudulent. On the other hand, if
a claim is marked by the model as non-fraudulent, then we can be fairly sure
it is not a fraud as 99% of ’no-frauds’ predictions are made correctly. Lastly,
the AUC is 0.75 for model without SMOTE and 0.74 with SMOTE, which means
that even though there is still considerable room for improvement, the model
is significantly better than random guessing. Overall, the results for with and
without SMOTE are fairly similar, but in the two most important metrics, which
are the recall of fraudulent records and the AUC, the model without SMOTE

1Except for the MLP model where the class weighting is not implemented.



5. Results 32

slightly outperforms the one with SMOTE transformation applied. In any case,
these results are quite good for a baseline model.

Table 5.1: Logistic regression results

Precision Recall F1-score

no SMOTE

No Fraud 0.99 0.67 0.80
Fraud 0.09 0.83 0.16

Macro avg 0.54 0.75 0.48
Weighted avg 0.95 0.68 0.78

AUC 0.75

SMOTE

No Fraud 0.99 0.69 0.81
Fraud 0.09 0.80 0.17

Macro avg 0.54 0.74 0.49
Weighted avg 0.95 0.70 0.79

AUC 0.74

To better understand the model results, we perform an analysis of features
importance. Even though exact coefficients can be extracted for logistic re-
gression, the main goal of this thesis is to provide a comparative study of the
models. Therefore, the same metrics and methods are applied and presented
for all the models, and hence the permutation test and SHAP values are also
presented for the evaluation of feature importance for logistic regression. The
feature importance analysis is performed for the better model from the ones
presented above, which is the one without SMOTE resampling.

Figure 5.1: Permutation importance for logistic regression

Figure 5.1 shows the permutation importance of variables for logistic re-
gression. The ’num’ before the variable names denotes numerical variables and
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the ’cat’ denotes binary and categorical variables. For spatial reasons, only 15
of the most important features out of the 32 total features are shown in the
figure. It is important to note that the permutation importance shows only the
importance for the model performance, not the effect on the target variable
(in our case the probability, or more specifically log-odds, of the claim being a
fraud). We observe that windshield damage type, vehicle age, information on if
other claims were filled and the claim amount are the most important variables
in our dataset for fraud detection. This is in line with our expectations based
on the analysis of the dataset described in Section 4.4.

Figure 5.2: SHAP values for logistic regression

Figure 5.2 presents a summary plot of SHAP values on the left and plot of
the mean of absolute SHAP values on the right. Again, only 15 most important
variables are displayed. The most important variables based on SHAP values
are again the damage type windshield, the vehicle age and the information
about other claims during the incident, followed by whether the coverage is
MTPL or CASCO and damage type accident. We can observe that with damage
type windshield, the probability of the claim being fraudulent decreases. On the
contrary, with damage type accident, the probability of fraud slightly increases.
Moreover, with a higher vehicle age, the probability of fraud increases. Whereas
with the claim being from the CASCO insurance (in other words not being
MTPL) or if there are other claims, the probability of fraud decreases. All of
this is in line with what we observed during the data analysis performed in the
previous chapter. We can observe that the prediction is strongly driven by the
windshield category, but then the magnitude of the effect is distributed across
many variables. This is likely given by the linear nature of logistic regression.
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5.1.2 Random forest

Next model whose suitability for fraud detection is evaluated is the random
forest model. This model is based on combing the output of multiple decision
trees to obtain a robust, accurate and stable estimate. The results of the
random forest model can be found in Table 5.2 and are again presented for a
model on the original data and on the data with SMOTE resampling applied
(with a sampling strategy of 0.3).

The results of the two models are fairly similar. However, we are mostly
interested in detecting frauds, and there the model without resampling out-
performs the one with SMOTE resampling (recall of 0.83 compared to 0.77).
On the other hand, the model with SMOTE performs better in detecting non-
fraudulent cases and provides higher precision and F1-score. Nevertheless, the
precision for fraudulent cases still remains the main drawback of the models, as
it is still only 0.08 and 0.09 for models without and with SMOTE respectively,
meaning that less than 10% of the claims marked as frauds actually prove to be
fraudulent. In terms of AUC, the model with SMOTE transformation is slightly
better (0.73 compared to 0.72), but the difference is only minor. Overall, the
model with SMOTE seems to provide slightly better general results, but for
the purpose of pre-flagging fraudulent claims, the model without SMOTE works
better.

Table 5.2: Random forest results

Precision Recall F1-score

no SMOTE

No Fraud 0.99 0.61 0.75
Fraud 0.08 0.83 0.14

Macro avg 0.53 0.72 0.45
Weighted avg 0.95 0.62 0.73

AUC 0.72

SMOTE

No Fraud 0.99 0.70 0.81
Fraud 0.09 0.76 0.16

Macro avg 0.54 0.73 0.49
Weighted avg 0.95 0.70 0.79

AUC 0.73

Interestingly, the performance of the random forest model is not better than
the baseline logistic regression model as would be expected. On the contrary,
the logistic regression actually outperforms the random forest model in both
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precision and recall and also in the AUC, although the differences are rather
minor.

To better understand the decision-making of the model, an analysis of the
importance of individual features is performed. Again, the analysis is performed
for the better of the two models described above, which, for the purpose of
fraud pre-flagging, is the one without SMOTE transformation. Only 15 most
important features are shown in the figures for a clearer presentation.

Figure 5.3: Permutation importance for random forest

Figure 5.3 displays the permutation importance of individual features for
the random forest estimation. We can see that clearly the most important
variables for model performance are the claim amount, followed by windshield
damage type and vehicle’s age and the information about other claims filled
with respect to the incident and previous claims on the policy. We can see a
shift in the distribution of the importance of individual features compared to
logistic regression. This is probably given by the random forest model’s ability
to capture also non-linear relationships.

In Figure 5.4 the SHAP values for the random forest model are presented.
On the left there is a summary plot of individual SHAP values, and on the
right the mean of absolute SHAP values for each feature is illustrated. We
can observe that the variable that influences the prediction the most is again
the claim amount, where with a higher claim amount the probability of the
claim being fraudulent also increases. It is followed by the damage type wind-
shield, where if the claim is a claim on the windshield, the probability of being
fraudulent significantly decreases. Similarly, for damages caused by stones, the
probability of fraud is lower than for those not caused by stones. Next, with
a higher vehicle’s age, the probability of fraud increases, and the amount of
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Figure 5.4: SHAP values for random forest

previous claims since 2020 seems to slightly decrease the probability of fraud,
whereas if there were no other claims filled with respect to the incident, the
probability of fraud slightly increases. However, we can observe that the pre-
diction is strongly determined mainly by two variables - the claim amount and
the damage type windshield. The directions of the influences are similar to
what we observe for the logistic regression and correspond to the expectation
based on the dataset analysis. The magnitude of effects and order of the vari-
ables differ for random forest and logistic regression as the models are based
on different principles and treat variables significantly differently. Moreover, in
the case of random forest the SHAP values refer to a change in probabilities,
whereas for logistic regression the SHAP values refer to change log-odds.

5.1.3 Histogram-based gradient boosting

The next model considered for fraud detection purposes is the histogram-based
gradient boosting. This is an advanced implementation of the gradient boost-
ing algorithm provided by the scikit-learn library. Using histogram-based tech-
niques, the algorithm is able to enhance efficiency and therefore is particularly
useful for larger datasets. The results of the histogram-based gradient boosting
model without and with SMOTE resampling (with a sampling strategy of 0.2)
can be found in Table 5.3.

In terms of the ability to detect fraud, the model without SMOTE performs
better than the one with SMOTE (with recall of 0.81 compared to 0.75). The
issue of our model with low precision, and therefore rather low efficiency, per-
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sists as the models still achieve a precision of only 0.9 without SMOTE and 0.10
with SMOTE, meaning that 90% of the claims marked by the model as frauds
are actually not frauds. However, the main goal is to test suitable models for
pre-flagging before further claim processing, therefore high recall is the main
priority. In terms of the overall quality of the model, proxied by the AUC, the
model without SMOTE seems to be slightly better, but the difference is rather
minor. In conclusion, once again, the model with SMOTE resampling provides
slightly better results in terms of precision and F1-score, but in the two most
important metrics, which are recall for frauds and the AUC, the model without
SMOTE resampling achieves higher results.

Table 5.3: Histogram-based gradient boosting results

Precision Recall F1-score

no SMOTE

No Fraud 0.99 0.67 0.80
Fraud 0.09 0.81 0.16

Macro avg 0.54 0.74 0.48
Weighted avg 0.95 0.67 0.77

AUC 0.74

SMOTE

No Fraud 0.99 0.71 0.83
Fraud 0.10 0.75 0.17

Macro avg 0.54 0.73 0.50
Weighted avg 0.95 0.72 0.80

AUC 0.73

Interestingly, the histogram-based gradient boosting model also does not
outperform the baseline logistic regression model. Logistic regression provides
slightly better results both in terms of recall for the fraudulent class and the
AUC, which are the two most important metrics in our use case.

An analysis of feature importance is again carried out for the better of
the two models presented above, which, for the purpose of detecting insur-
ance fraud, is the model without SMOTE. Figures 5.5 and 5.6 show the 15
most important variables based on permutation importance and SHAP values,
respectively.

In Figure 5.5, we can observe that the predictions are strongly influenced by
the variable claim amount, followed by damage type windshield, information
on additional claims, vehicle’s age and value of other claims since 2020. These
variables essentially determine the model’s decision process, as the importance
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Figure 5.5: Permutation importance for histogram-based gradient
boosting

of the other variables is negligible. In comparison to the previous models, here
we clearly see the most influential feature and the four other important features,
whereas for logistic regression and random forest models the importance was
more distributed among different features. Nevertheless, the most important
features remain the same, although their ranking slightly differs.

Figure 5.6: SHAP values for histogram-based gradient boosting

Figure 5.6 presents the individual SHAP values on the left and the mean of
absolute SHAP values on the right. In line with the permutation importance
and same as for random forest, we can observe that the claim amount is driving
our prediction. However, the effect in the case of histogram-based gradient
boosting model is not as simple as in the case of the random forest. It seems
that with a higher claim value, the probability of fraud still increases, but there
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is a cluster of high values also around SHAP values equal to zero. This is likely
given by an integration with another variable within the decision trees. For
example, the claim amount might increase the probability of fraud, except for
cases when the car is new (i.e. vehicle age is low) and the high amount is
justified. However, we would need to examine the relationship between the
variables more closely to confirm this hypothesis. As for the damage type
windshield and information about additional claims, they both significantly
decrease the probability of the claim being fraudulent. On the other hand, with
a higher vehicle age, the probability of fraud increases. Lastly, with a higher
value of other claims since 2020, the probability of this claim being fraudulent
seems to decrease, which might be a little counterintuitive, as we would expect
a policy holder with a high number of claims to be more suspicious for fraud
commitment, but this does not prove in the data. These five variables drive the
model’s predictions, as the SHAP values of the other variables are negligible.

5.1.4 XGBoost

The last tree-based model tested is the XGBoost algorithm. XGBoost is an ad-
vanced implementation of the gradient boosting framework, which utilizes de-
cision trees as base learners and employs regularization techniques to improve
model generalization. XGBoost package enables a parallel tree boosting to im-
prove efficiency and decrease training time. Table 5.4 presents the results for
the XGBoost estimation without SMOTE resampling and with the SMOTE re-
sampling with a sampling strategy of 0.4.

The XGBoost model without SMOTE resampling achieves a recall of 0.74,
precision of 0.12 and hence the F1-score of 0.21, and the AUC of 0.77. This is
slightly lower performance in recall than we observed in the previous models,
but a not insignificant improvement in precision and AUC compared to the
previous models. Overall, the general results of the model are good, but in
the recall, which is the most important metric for fraud detection, the XGBoost

model without SMOTE resampling is falling behind the other models. On the
contrary, for the XGBoost model with SMOTE resampling, we observe the best
performance in recall so far with 0.92. This means that this model is able to
capture more than 90% of fraudulent claims. The precision of 0.9 is similar to
logistic regression, random forest and the histogram-based gradient boosting
and remains the biggest weakness of our modelling approach. The AUC is
0.77 which is also the best result among all models considered. Overall, for
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the purpose of fraud detection, the XGBoost model with SMOTE transformation
seems to provide the best results with a recall of 0.92 and reasonable efficiency
costs, in terms of claims incorrectly classified as frauds.

Table 5.4: XGBoost results

Precision Recall F1-score

no SMOTE

No Fraud 0.99 0.79 0.88
Fraud 0.12 0.74 0.21

Macro avg 0.55 0.76 0.54
Weighted avg 0.95 0.78 0.85

AUC 0.76

SMOTE

No Fraud 0.99 0.62 0.77
Fraud 0.09 0.92 0.16

Macro avg 0.54 0.77 0.46
Weighted avg 0.96 0.63 0.74

AUC 0.77

To better understand the model and its decision making, a feature impor-
tance analysis is again performed for the better of the two models described
above. This time, the best model for fraud detection is the one with SMOTE

transformation applied.

Figure 5.7: Permutation importance for XGBoost

Figure 5.7 illustrates the permutation feature importance for the 15 most
important variables for the XGBoost model with SMOTE resampling. We ob-
serve that the performance of the model is again strongly determined by the
claim amount variable, followed by the damage type windshield. The other sig-
nificant variables are information about additional claims for the incident and
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the vehicle’s age. The importance of other variables is low or even negligible.
This is similar to what we observed in the previous models. Compared to the
other gradient boosting method, here the importance is slightly more evenly
distributed, but the performance is still strongly driven by the claim amount.

Figure 5.8: SHAP values for XGBoost

The SHAP values for the XGBoost model with SMOTE resampling are pre-
sented in Figure 5.8, where again the SHAP values for individual observations
are displayed on the left and the mean absolute SHAP values are shown on the
right. The feature that drives the prediction is, similarly to the other tree-based
models, the claim amount, where with a higher claim amount, the probability
of fraud increases. It is followed by the damage type windshield, which signifi-
cantly decreases the probability of the claim being fraudulent. With increasing
vehicle’s age, the probability of the claim being fraudulent also increases, but
the relationship is not as clear as we have seen in previous models. Generally,
these variables and the direction of their effects are in line with what we have
observed in the previous models and the data analysis performed in Section 4.4.
Regarding the number of previous claims and the number of claims since 2020,
a higher number of previous claims in the policy history and previous claims
since 2020 tend to increase the probability of fraud. Compared to the other
tree-based models, especially the other gradient boosting method, we observe
that the SHAP values are more distributed among many variables.
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5.1.5 Multilayer perceptron

Lastly, to provide a comparison to the tree-based methods, the multilayer per-
ceptron (MLP) is trained. The MLP is an artificial neural network that consists
of at least three layers of fully connected neurons (in our case 4 layers - an
input, 2 hidden and a output layers) with a nonlinear activation function. Ta-
ble 5.5 presents the results of two different MLP models, where both rely on
the same underlying algorithm, but were trained on a different set of parame-
ters. The parameters used can be referred to in Table B.1 in Appendix B. The
SMOTE resampling has been applied for both models, since the class weighting
is not implemented within the MLP framework and the class balancing proved
to improve model performance significantly. The sampling strategy was set to
0.7 for the first model and to 0.8 for the second model.

The first MLP model achieves a very high recall for fraudulent cases (recall
of 0.97), but the precision (0.06) for frauds and the AUC (0.65), as well as
the recall for non-fraudulent claims (0.34), are very low compared to the other
models. Basically, this model is predicting everything as a fraud unless it is
absolutely sure that the claim is not a fraud. Therefore, even though this
model performs the best in terms of recall on fraudulent claims, which is our
main evaluation metric, it is not a good model, as it is not suitable for real-
word application due to its very low efficiency (given by the low precision) and
poor model quality (given by the low AUC). The second MLP model provides
more balanced results. The precision is 0.11, the recall for ’no-frauds’ is 0.76
and the AUC bounces back to 0.73, which is comparable to the previous models.
However, the improvement in precision causes the recall for fraudulent claims to
drop significantly to 0.7. Here we can clearly see the problem of precision-recall
trade-off. The results of the second MLP model are generally worse than the
previous models, including the baseline logistic regression model. Therefore,
we would probably need a more complex architecture of the neural network to
properly capture the relationships between the data. The future of application
of neural networks for fraud detection might lie in the deep neural network
based on transformers and pre-trained transformers. These have already been
shown to outperform traditional machine learning techniques, as well as some
other deep learning architectures, for the purpose of detecting credit card fraud
(Yu et al. (2024)).

Nevertheless, we also perform a feature importance analysis for the MLP
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Table 5.5: Multilayer perceptron results

Precision Recall F1-score

MLP 1

No Fraud 1.00 0.34 0.50
Fraud 0.06 0.97 0.10

Macro avg 0.53 0.65 0.30
Weighted avg 0.96 0.36 0.49

AUC 0.65

MLP 2

No Fraud 0.98 0.76 0.86
Fraud 0.11 0.70 0.18

Macro avg 0.55 0.73 0.52
Weighted avg 0.95 0.76 0.83

AUC 0.73

model. The feature importance measures displayed are calculated for the sec-
ond, more balanced, MLP model.

Figure 5.9: Permutation importance for multilayer perceptron

The permutation importance for 15 most important variables for the MLP

is shown in Figure 5.9. We observe that the importance is more distributed
among the variables than in the case of tree-based methods. Nevertheless, the
performance of the model is still strongly determined by the claim amount,
followed by the vehicle’s age, information about additional claims filled with
respect to the incident, and damage type windshield. This is similar to what
is observed in the other models and it is in line with expectation based on the
dataset exploration.

Figure 5.10 presents the SHAP values for the MLP model. Due to high
computational demand, the SHAP values for MLP were calculated only for
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Figure 5.10: SHAP values for multilayer perceptron

a randomly sampled subsample, which should provide sufficient evidence to
derive conclusions about the effects of individual features. We can observe that
the prediction are again determined mainly by claim amount and vehicle’s age,
where with a higher value of these variables the probability of fraud increases.
Followed by the number of cars involved, which is a new one compared to the
previous models, but the effect from simple plotting of the SHAP values is
rather inconclusive. Furthermore, with damage type windshield and if other
claims were filled with respect to the incident, the probability of the claim
being fraudulent decreases. These are the main drivers of the prediction, then
the SHAP values are evenly distributed among many features. Except for the
number of vehicles involved in the accident, these are similar to what we have
observed in the previous models. Compared to previous models, especially
the tree-based methods, the effects of individual feature values have a more
continuous nature, but also exhibit less outliers than logistic regression. This
is given by the significantly different and more complex structure of the MLP

model.

5.2 Performance comparison
The goal of this thesis was to compare several machine learning methods
and their suitability for application within the detection of motor insurance
frauds. These include logistic regression, random forest, histogram-based gra-
dient boosting, XGBoost and multilayer perceptron. For each of them, a version
with and without the SMOTE transformation was tested. The only models
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where the SMOTE provided a significant value to the model performance were
the XGBoost and the MLP models, which does not support the class weighting
option. Table 5.6 shows an overview of the results of the models. A complete
overview of all 10 models can be found in Appendix B in Table B.2. The table
presents the precision, recall and F1-score for fraudulent claims and the AUC.

Table 5.6: Comparison of models’ results

Model Precision Recall F1-score AUC
Logistic Regression 0.09 0.83 0.16 0.75
Random Forest 0.08 0.83 0.14 0.72
Histogram-based GBM 0.09 0.81 0.16 0.74
XGBoost with SMOTE 0.09 0.92 0.16 0.77
MLP (2) 0.11 0.70 0.18 0.73

From the overview table, we can clearly see that the XGBoost outperformed
the other models in number of fraud detected, as it is the only model that
reached a recall of more than 0.9. The precision and F1-score are almost iden-
tical across the models, except for the MLP, but there the recall is significantly
lower. In term of AUC, which is used to evaluate overall model quality, the
XGBoost also provides the best result among all the tested approaches with
AUC of 0.77. Hence, XGBoost as the best of the tested models can detect 92%
of frauds, but at the cost of only 9% of the claims marked as frauds being an
actual fraud. This precision-recall trade of can be adjusted to current needs by
setting a different decision threshold, but the XGBoost should still provide the
best results thanks to it higher AUC score.

In terms of comparison with existing literature, it is very difficult to make
one, as the performance of the models is strongly determined by the char-
acteristics of the underlying dataset. Since we are using a unique real-world
dataset that was assembled for the purpose of this thesis, there is no research
on the same data to compare our results with. However, XGBoost as the best
model is not surprising, as it has been shown to provide the best results among
many models for several fraud detection use cases (Maina et al. (2023), Sinčák
(2023)).

The main tool to increase the performance of the models would be the
input data - both in sense of size of the dataset, specifically the number of
detected frauds, but also in terms of features available and feature engineering.
There are several important characteristics of the insurance contract that were
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not available in the current dataset. This includes the policy premium or
information about the vehicle’s value. Moreover, when the incident is reported,
the report form is accompanied by a text description of the incident and photo
documentation of the scene and the damage to the vehicle. These could also
be processed and used as additional input information for the models. Some
advanced text analytics for motor insurance claim has been explored by Wang &
Xu (2018) and considerably improved the results. Lastly, many of the variables
suffer from poor data quality. Therefore, introducing thorough controls for the
information entered in the report form would be beneficial.

All the tested models can be adjusted for practical applications to provide
a probability or scoring instead of 0/1 flags. Additionally, information on value
at risk, in other words the potential loss due to the fraud, can also be added to
the prediction process. This can further help insurance companies to efficiently
allocate resources available for claim investigation.

5.3 Feature importance
Besides the evaluating the model themselves, an analysis of feature importance
was also performed. This is important to better understand the complex ma-
chine learning models and to be able to verify that they base their prediction
on reasonable inference, not a random coincidence in the sample (note that
the data on frauds were complemented by only a representative sample of non-
fraudulent claim).

The most important features were similar for all the tested models, even
if their ranking differed slightly between the models. The main drivers of our
models in terms of both permutation importance and SHAP values include the
’CLAIM_AMOUNT’, ’DAMAGE_TYPE_WINDSHIELD’, ’CAR_AGE’ and
’OTHER_CLAIMS’. The XGBoost estimation also adds a ’NTH_CLAIM’,
’N_CLAIMS_SINCE_2020’ and ’DAYS_TO_REPORT’ into the mix.

The claim amount is the variable that drives the prediction for majority
of the models. With a higher claim amount, the probability that the claim is
fraudulent increases. The relationship between the claim amount values and
their SHAP values (hence, their effects on prediction) can be seen in Figure
5.11, which shows the SHAP values for individual observations in the validation
set based on the XGBoost model with SMOTE transformation.2 We can see that

2Note that the data in the figure are normalized and restricted of outliers for better
illustration of the relationship.
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Figure 5.11: SHAP values for claim amount

indeed with increasing claim amount the SHAP values increase. However,
the relationship is not linear, as from certain claim amount the SHAP values
remain at a similar level. The color of the points represents the vehicle’s age.
However, we do not observe any distinct pattern between the claim amount and
the vehicle’s age. Overall, the effect of the claim amount on the probability
of fraud is reasonable. Since the insurance company operates with limited
resources towards the claim liquidation, they are likely to concentrate more on
higher claims. Also, from the client point of view, committing a fraud for a
nominally low damage might not be worth the reward, whereas for big damage,
the clients might deem it worth the attempt for a fraud.

The second variable that usually drives the prediction is the damage type
windshields. With a damage type windshield, the probability of fraud signif-
icantly increases. This might be due to several reasons. Firstly, this type of
insurance usually incurs claims with a nominally lower amount (in our data
the mean claim amount for windshield coverage is half the next lowest). As
described for the claim amount variable, the negative effect on probability of
fraud might be caused by this type of damage not being a priority for fraud
detection due to low potential loss. In addition, windshield damage frauds are
especially hard to prove.

The next variable that strongly influences the predictions for most of the
models is the vehicle’s age. Figure 5.12 shows the SHAP values of the vehicle’s
age for individual validation set observations. The SHAP values are again based
on XGBoost model with SMOTE resampling, as the best performing model. For
newer vehicles, we observe that with increasing age of the vehicle the probability
of fraud also increases. But from a certain age the probability starts to slightly
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Figure 5.12: SHAP values for vehicle’s age

decrease with increasing vehicle’s age. Generally, it can be assumed that older
cars might be more prone to breaking which the client might try to stage
as an accident claim. Moreover, one of the most common frauds is inflated
repair costs, which is more likely in an older car than in a brand new one.
Additionally, this is the best proxy for the value of the damaged car available
in the dataset. The color scale shows the value of the claim amount for the
individual observations. Similarly to the claim amount plot, here we also do
not see any clear pattern.



Chapter 6

Conclusion

Insurance fraud is a constantly present challenge for insurers around the world.
Fraudulent activities in the insurance sector not only lead to substantial fi-
nancial losses but also contribute to increased premiums for honest customers
and erode trust in the insurance system. This thesis explored the suitability of
advanced machine learning algorithms for application within insurance fraud
detection. It provides a comparison of several supervised machine learning al-
gorithms and modelling approaches. The selected algorithms include logistic
regression, random forest, histogram-based gradient boosting machine, XGBoost

and multilayer perceptron (MLP). In addition, the importance and effects of
individual features were explored to improve the interpretability and under-
standability of the machine learning solution.

For the empirical analysis, a unique real-world dataset was provided by one
of the leading MTPL and CASCO insurers in the Czech Republic. The fraud
detection is a highly unbalanced problem as fraudulent claims amount to only
about 3.5% of the observations in the dataset. Therefore, two approaches for
correcting class imbalance were tested - the Synthetic Minority Over-sampling
Technique (SMOTE) and the class weighting. Empirical research showed a clear
need to address the class imbalance, as all models performed significantly better
with the class weighting. The synthetization of additional fraudulent observa-
tions proved to improve the results only for the XGBoost and MLP models.

The performance of the real fraud detection system was not available, there-
fore, logistic regression was used as the baseline model. However, even the base-
line logistic regression achieved satisfactory results in terms of recall and AUC,
which were the main metrics used to evaluate the quality of the models. The
only model that significantly outperformed logistic regression was the XGBoost
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model with the SMOTE transformation. This model achieved an AUC of 0.77
and was able to detect 92% of frauds in the dataset. The biggest weakness of
the modelling approach was precision as only 9% of the frauds predicted by the
models were actual frauds.

Nevertheless, machine learning models offer a flexible and fast solution
with simple implementation that can be easily updated and adjusted to cur-
rent needs. However, many of them are considered ’black-box’ models as the
decision-making process of the model cannot be easily extracted. Therefore,
permutation feature importance and the SHAP values were used to evaluate
the effects of individual features. The most important features for fraud pre-
diction were shown to be the nominal amount of the claim, type of insurance
coverage (i.e., type of damage), the vehicle’s age and information about other
claims filled for the same incident. The analysis of feature effects within the
models proved a reasonable interference of the machine learning algorithms as
the effects are in line with the general logic behind the insurance fraud and the
data analysis performed.

In conclusion, the integration of machine learning into the fraud detection
systems of insurance companies could provide a significant advancement in the
fight against fraud. The results of this thesis underscore the potential of these
technologies to provide efficient, scalable and automated solution as an alter-
native to traditional scenario-based methods and people-dependent models.
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Appendix A

Data Description

Variable Description Type
CAR_AGE Age of the damaged car [years] Numerical

CLAIM_AMOUNT Value of the claim [CZK] Numerical

CLAIMS_VALUE_SINCE_2020 Sum of claims on given policy since 2020 [CZK] Numerical

DAYS_TO_REPORT Number of days from the incident to the day the claim
was reported

Numerical

N_CARS_INVOLVED Number of cars involved in the incident Numerical

N_CLAIMS_SINCE_2020 Number of claims on given policy since 2020 Numerical

NTH_CLAIM Rank of the claim in the whole policy history (i.e.
how many claim there are in the policy history)

Numerical

PH_AGE Age of the policy holder [years] Numerical

POLICY_AGE Age of the policy [days] Numerical

SUM_INSURED The sum assured of the policy [CZK] Numerical

DAMAGE_CAUSE Cause of the damage [stones / nature (nature forces
as floods, fires etc. and animals encounters) / traffic]

Categorical

DAMAGE_TYPE Type of the damage incurred [accident / parking /
theft / windshield /MTPL / nature (nature force,
damage by both living and inanimate things)]

Categorical

DAMAGED_VEH_TYPE Type of the damaged vehicle [big (e.g. bus, truck,
work machinery) / auto / small (e.g. motorcycle) /
other (other or unspecified)]

Categorical

SEX Sex of the policy holder or indication of legal entity
owner [M (Male) / F (Female) / C (the policy is held
by a company)]

Categorical

BODY_INJURIES If there were bodily injuries during the accident Binary

POLICE If police was called to the incident Binary

OTHER_CLAIMS If there were any other claims filled with respect to
the incident (bodily injuries, other property damages
etc.)

Binary

WITNESS If any external witnesses were reported Binary

Table A.1: Variables description



A. Data Description II

Figure A.1: Numerical variables distributions and correlations plot

Table A.2: Descriptive statistics for numeric variables

mean std min 25% 50% 75% max

SUM_INSURED 40 818 280 72 325 590 0 331 516 577 600 53 000 000 300 000 000
N_CARS_INVOLVED 1 0.4 1 1 1 2 5
CLAIM_AMOUNT 34 291 54 434 0 7 825 18 355 40 000 1 458 500
DAYS_TO_REPORT 12 42 -1 0 2 7 913
NTH_CLAIM 2 5 1 1 1 2 658
PH_AGE 25 28 -7 -1 -1 51 91
POLICY_AGE 1 070 910 -56 369 849 1 552 7 266
CAR_AGE 7 5 -1 2 5 9 46
N_CLAIMS_SINCE_2020 1 2 0 1 1 1 162
CLAIMS_VALUE_SINCE_2020 29 199 94 881 0 0 0 23 671 6 017 390



A. Data Description III

Figure A.2: Distribution of damage cause

Table A.3: Distribution of other binary variables

POLICE WITNESS BODY_INJURIES

0 1 0 1 0 1

No Fraud 16 451 646 18 576 748 18 822 755
Fraud 2 450 114 325 12 79 5



Appendix B

Models

Table B.1: Model parameters

Model Parameters

Logistic Regression C: 0.3,
penalty: ’l2’,
solver: ’liblinear’

Logistic Regression with SMOTE C: 0.3,
penalty: ’l2’,
solver: ’saga’ ,
smote__sampling_strategy: 0.4

Random Forest bootstrap: False,
class_weight: ’balanced’,
criterion: ’entropy’,
max_depth: 3,
min_samples_split: 2,
n_estimators: 50

Random Forest with SMOTE bootstrap: False,
class_weight: ’balanced’,
criterion: ’entropy’,
max_depth: 3,
min_samples_split: 2,
n_estimators: 100,
smote__sampling_strategy: 0.2

Continued on next page



B. Models V

Model Parameters

Histogram-based Gradient Boosting class_weight: ’balanced’,
min_samples_leaf: 50,
l2_regularization: 0.5,
learning_rate: 0.1,
max_depth: 3

Histogram-based GBM with SMOTE class_weight: ’balanced’,
min_samples_leaf: 30,
l2_regularization: 0.5,
learning_rate: 0.1,
max_depth: 3,
smote__sampling_strategy: 0.2

XGBoost scale_pos_weight: 24.86,
max_depth: 3,
colsample_bynode: 0.7,
eta: 0.1,
gamma: 0.5,
reg_lambda: 1.2

XGBoost with SMOTE scale_pos_weight: 24.86,
max_depth: 3,
colsample_bynode: 0.7,
eta: 0.1,
gamma: 0.5,
reg_lambda: 1.0,
smote__sampling_strategy: 0.4

MLP 1 random_state: 420,
hidden_layer_sizes: (32,16),
learning_rate_init: 0.3,
activation: ’tanh’,
batch_size: ’auto’,
early_stopping: True,
learning_rate: ’adaptive’,
solver: ’adam’,
smote__sampling_strategy: 0.7

Continued on next page



B. Models VI

Model Parameters

MLP 2 random_state: 420,
hidden_layer_sizes: (64,32),
learning_rate_init: 0.1,
activation: ’relu’,
batch_size: ’auto’,
early_stopping: True,
learning_rate: ’adaptive’,
solver: ’adam’,
smote__sampling_strategy: 0.8

Other parameters are kept to their default values.

Table B.2: Full comparison of models’ results

Model Precision Recall F1-score AUC

Logistic Regression 0.09 0.83 0.16 0.75
Logistic Regression with SMOTE 0.09 0.80 0.17 0.74

Random Forest 0.08 0.83 0.14 0.72
Random Forest with SMOTE 0.09 0.76 0.16 0.73

HGBM 0.09 0.81 0.16 0.74
HGBM with SMOTE 0.10 0.75 0.17 0.73

XGBoost 0.12 0.74 0.21 0.76
XGBoost with SMOTE 0.09 0.92 0.16 0.77

MLP (1) 0.06 0.97 0.10 0.65
MLP (2) 0.11 0.70 0.18 0.73
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