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Abstract
This study investigates the application of machine learning models for GDP
nowcasting, the process of predicting current and near-future economic ac-
tivity based on high-frequency data. Particularly, the focus is set on their
predictive accuracy and interpretability. The performance of various machine
learning algorithms, including neural networks, random forests, boosted trees,
support vector regression, and K-nearest neighbors, is compared in forecasting
Argentina’s monthly GDP indicator. The results indicate that machine learning
models can enhance predictive accuracy compared to traditional econometric
models, aligning with existing literature. Several interpretability techniques are
also explored, aiming to understand what insights can be effectively retrieved
from these models. It is revealed that the methods are limited in their ability to
answer questions related to the functional forms of relationships between vari-
ables, but are well-suited to explain the drivers of specific predictions, which is
a more important issue in nowcasting. Additionally, a framework for assessing
the impact of revisions on predicted estimates is proposed. Ultimately, it is rec-
ommended that central banks incorporate machine learning models into their
forecasting suites to improve prediction accuracy, while also being mindful of
the models’ limitations and complexities.

JEL Classification F12, F21, F23, H25, H71, H87
Keywords GDP, Nowcasting, Machine Learning, Inter-

pretability, Revisions
Title Machine Learning in Macroeconomic Nowcast-

ing

Abstrakt
Tento dokument zkoumá aplikaci modelũ strojového učení pro nyné̊jí před-
povědi HDP, což je proces předpovídání aktuální a blízké ekonomické aktivity
na základě dat s vysokou frekvencí. Zejména je zaměřena pozornost na je-
jich prediktivní přesnost a interpretovatelnost. Výkon rũzných algoritmũ stro-
jového učení, vc̃etně neuronových sítí, náhodných lesũ, boostovaných stromũ,
regresí s podporovýıvektory a K-nejbližších sousedũ, je porovnáván při před-
povídání měsíčního ukazatele HDP v Argentině. Výsledky naznačují, že modely
strojového učení mohou zlepšit prediktivní přesnost ve srovnání s tradičními
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ekonometrický modely, což je v souladu s existujíıliteraturou. Také jsou prozk-
oumány rũzné techniky interpretovatelnosti, které mají za cíl pochopit, jaké
poznatky lze efektivně získat z těchto modelũ. Ukazuje se, že metody mají
omezenou schopnost odpovíadat na otázky ty̌kajíıse funkčních forem vztahũ
mezi proměnnými, ale jsou dobře přizps̃obeny k vysvětlení faktorũ konkrét-
ních předpovědí, což je v případě nyné̊jší předpovědí dũležitější otázka. Kromě
toho je navržen rámec pro hodnocení dopadu revizí na předpovězené odhady.
Nakonec se doporučuje, aby centrální banky začlenily modely strojového učení
do svých předpovědních sad, aby zlepšily prediktivní přesnost, a zároveň by
měly být obezřetné vũci omezení mǎ a složitostem těchto modelũ.

Klasifikace JEL F12, F21, F23, H25, H71, H87
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Interpretovatelnost, Revize
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Proposed topic Machine Learning in Macroeconomic Nowcasting

Motivation The timely estimation of macroeconomic variables, such as Gross Do-
mestic Product (GDP), is of utmost importance to policymakers, investors, and
researchers. Accurate predictions in near real-time enable informed decision-making,
risk mitigation, and timely responses to economic fluctuations. Traditional economet-
ric models, such as autoregressive integrated moving average (ARIMA) and vector
autoregressive (VAR) models, have been widely used for nowcasting. However, with
the emergence and increasing popularity of machine learning techniques, there is an
opportunity to enhance the accuracy and breadth of macroeconomic nowcasting.

Machine learning techniques offer several advantages over traditional econometric
models. They provide greater flexibility in capturing complex nonlinear relationships
in macroeconomic data, resulting in improved prediction accuracy. Furthermore,
machine learning models can handle high-dimensional datasets and incorporate a
wide range of economic indicators and alternative data sources, leading to more
comprehensive predictions. Moreover, machine learning techniques can not only
predict existing variables but also extract and create new variables that enhance the
understanding and forecasting of economic trends.

One drawback from machine learning algorithms lies in the interpretability field.
These models often operate as "black boxes," making it difficult to discern the specific
features and patterns driving their predictions. This lack of interpretability can
limit the ability to provide policymakers, investors, and researchers with meaningful
insights into the economic factors influencing GDP fluctuations. Additionally, it may
hinder the adoption of ML-based nowcasting methods in environments where model
transparency and interpretability are paramount

Hypotheses
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Hypothesis #1: Machine learning regression models exhibit superior perfor-
mance in capturing complex relationships between economic variables com-
pared to traditional econometric models.

Hypothesis #2: The use of larger datasets in the nowcasting process—which
can only be managed through the use of machine learning algorithms—enhances
prediction accuracy by incorporating additional information beyond the vari-
ables used in traditional models.

Hypothesis #3: Ensemble methods, which combine multiple machine learning
models, provide the most accurate and robust estimates for macroeconomic
nowcasting compared to individual models, thereby improving the reliability
of final predictions.

Hypothesis #4: Achieving interpretability in machine learning algorithms is
attainable through computational methods, enhancing the transparency of the
underlying model drivers.

Methodology The first hypothesis will be tested using a comparative analysis
approach. A set of relevant macroeconomic variables will be selected, and various
machine learning regression models, such as neural networks, boosted trees, support
vector regression (SVR), and k-nearest neighbors (KNN), will be applied to estimate
GDP and CPI inflation. These models will be trained and tested on the same dataset,
utilizing evaluation metrics such as mean absolute percentage error (MAPE) and root
mean squared error (RMSE). Additionally, a benchmark econometric model, namely
an AR(1) model, widely regarded as benchmark in nowcasting, will be included for
comparison.

To investigate the second hypothesis, the addition of new variables not typically
used in the nowcasting literature will be explored, along with the use of machine
learning algorithms for feature cleaning. The flexibility of machine learning models
will be leveraged to generate new variables that capture insights from the original
macroeconomic variables. These synthetic variables will be incorporated into the
nowcasting models, and the impact on accuracy will be assessed.

The third hypothesis will be evaluated by constructing an ensemble model that
combines predictions from the most accurate and informative individual models iden-
tified in the previous steps. Techniques such as averaging or stacking will be em-
ployed to form the ensemble. The performance of the ensemble model will be assessed
against the individual models and the benchmark econometric model to determine
if it offers superior nowcasting accuracy.

To address the fourth hypothesis, various established methods in the realm of
machine learning model interpretation will be employed. These methods will be
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utilized to comprehend the impact of each variable within the model. By employ-
ing these techniques, the study aims to unravel the intricate relationships between
the input variables and the predictions made by the machine learning algorithms.
Comparative analysis will be conducted across multiple algorithms, ensuring that
the identified relationships remain consistent and robust across different modeling
approaches. Furthermore, the interpretations derived from these methods will be
assessed to ascertain their alignment with established economic theories or intuitive
expectations.

Expected Contribution The anticipated contribution of this research lies in its
ability to enrich the existing literature on the application of machine learning (ML)
methods to macroeconomic nowcasting. The current landscape primarily centers
around how ML models outperform traditional models in terms of data fitting. While
this has been an essential facet of research in the field, the focus has often sidestepped
the equally crucial dimension of model interpretability.

This study aims to augment the existing body of knowledge by providing ad-
ditional empirical evidence that supports the superiority of ML models in fitting
economic data. By doing so, it reinforces the growing consensus that ML models of-
fer more accurate nowcasting predictions. However, what sets this research apart is
the secondary facet of interpretability. The utilization of established interpretability
methods within these ML models seeks to delve deeper into the relationships between
economic variables, unraveling the "black box" nature often associated with ML al-
gorithms. This interpretability element constitutes a distinctive contribution to the
literature and is crucial for elucidating how and why these models make predictions.

The intrinsic value of enhanced interpretability extends beyond academic curios-
ity. It holds the potential to bridge a significant gap in the broader adoption of ML
techniques in macroeconomic nowcasting. By shedding light on the inner workings
of these models and demonstrating their utility in understanding complex economic
relationships, this research can play a pivotal role in bringing down barriers to their
acceptance and implementation by policymakers and practitioners. Ultimately, the
anticipated contribution of this research is twofold: to affirm the enhanced predic-
tive performance of ML models over traditional methods and to establish the crucial
importance of interpretability in further advancing the field of macroeconomic now-
casting.

Outline

1. Introduction: Providing motivation for integrating machine learning into macroe-
conomic nowcasting and its potential impact on policy formulation and invest-
ment decisions.
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2. Literature Review: Synthesizing existing research on the use of machine learn-
ing techniques in macroeconomic nowcasting and identifying gaps in the liter-
ature.

3. Data: Describing the data used, the process of feature selection, and the cre-
ation of synthetic variables using machine learning techniques.

4. Methodology: Detailing the various machine learning models employed (neu-
ral networks, boosted trees, SVR, KNN) and explaining their application to
macroeconomic nowcasting.

5. Results: Presenting the comparison between the machine learning models, the
benchmark econometric model, and assessing the importance of each variable
in improving predictions.

6. Interpretability: discussion and use of multiple interpretability methods from
the field of machine learning to the exercise of GDP nowcasting.

7. Conclusion: Summarizing the key findings, discussing their implications, and
suggesting future directions for research in the field of machine learning in
macroeconomic nowcasting.

8. References: Listing the cited sources and providing a comprehensive bibliog-
raphy in the required format.
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Chapter 1

Introduction

Nowcasting is defined by Banbura et al. (2013) as "the prediction of the present,
the very near future, and the recent past." This term, a contraction of fore-
casting and now, has become a regular exercise mainly among central banks.
Nowcasting aims to provide an estimate for current economic conditions, as
official indicators, such as GDP, are typically reported with a significant delay.
Since timely data is a necessary condition for well-informed decision making—
both by policymakers and private agents—these delays constitute a significant
drawback on the usefulness of the indicators, and the need for producing early
estimates becomes crucial.

The fundamental premise of nowcasting is that certain indicators provide
sufficient information to estimate GDP figures prior to their official release.
For these indicators to be effective, they must exhibit a strong correlation with
GDP and be available well in advance of the official GDP data. Typically, these
variables encompass a range of financial metrics, both historical and current
macroeconomic data, sector-specific production indicators, and survey results,
among others.

Nowcasting is primarily utilized by central banks to support informed decision-
making regarding monetary policy and economic intervention. Additionally,
other agents may employ nowcasting techniques for different purposes: eco-
nomic analysts for public disclosure, firms for guiding their strategic decisions,
etc. Its relevance in theoretical economic research, on the other hand, is some-
what limited. Where the focus in economic research tends to be on establishing
causal relationships, nowcasting’s main goal is to accurately predict indicators
and understanding the predictions.

Nowcasting encompasses more than just the generation of predictions. Ban-
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bura et al. (2013) argue that "the nowcasting process goes beyond the simple
production of an early estimate [...]" to emphasize the importance of under-
standing how new data influences these estimates. I align with their perspec-
tive and argue that understanding the inner workings of the model, identifying
the drivers of the predictions and assessing the impact of data revisions are all
integral aspects of the nowcasting process.

Central banks typically rely on a variety of models for their GDP predic-
tions. The most commonly used models include dynamic factor models, bridge
equations, and various forms of autoregressive models (AR models), such as
ARIMA. Additionally, structural econometric models and Bayesian vector au-
toregression (BVAR) are often employed.

Machine learning models, however, are primarily designed as prediction
tools and offer several advantages over traditional econometric approaches.
They can effectively handle larger datasets and are capable of capturing com-
plex, potentially non-linear relationships within the data. With the growing
availability of high-frequency data and advancements in computational power,
machine learning models are becoming increasingly appealing, especially when
the primary goal is to enhance predictive accuracy rather than to conduct
causal analysis.

There is a growing body of literature exploring the application of machine
learning algorithms for GDP nowcasting. Most of the studies focus on com-
paring the predictive accuracy of these models to that of traditional economic
models, and there is a consensus that machine learning algorithms can sig-
nificantly improve forecasting accuracy. While central banks are beginning
to incorporate machine learning techniques into their modeling suites, several
challenges hinder their broader adoption. One major limitation is the lack
of transparency associated with these algorithms, which raises concerns about
accountability in the predictions they produce. As a result, interpretability
becomes a critical factor that restricts the widespread use of machine learning
models in GDP nowcasting, as decision-makers often require clear insights into
the underlying mechanics of the models to trust their outputs.

This study seeks to contribute to the existing literature in two ways. First,
it aims to provide additional evidence regarding the ability of machine learning
algorithms to produce more accurate predictions compared to standard econo-
metric models. Second, it tries to bring interpretability into the conversation
by demonstrating the application of various methods to elucidate the insights
that can be retrieved from thes models and what limitations exist. There are
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two smaller chapters discussing the advantages and disadvantages of machine
learning algorithms and common preprocessing techniques that are popular in
the field for realizing these algorithms’ full potential. The ultimate goal is to
promote the adoption of machine learning models in economic forecasting by
advancing the discussion into new territory.

In this study, the performance of a suite of machine learning algorithms—
including a neural network, random forest, boosted trees, support vector re-
gression, and K-nearest neighbors (KNN)—is tested for predicting Argentina’s
monthly GDP indicator. Additionally, the performances are compared against
a benchmark AR(1) model to assess if they are indeed capable of outperforming
it. Following the performance assessment, the study explores interpretability
techniques that allow for a deeper understanding of how the predictions were
generated. Lastly, a simple simulation-based framework is proposed to evalu-
ate the impact of revisions on the predicted estimates, offering insights into the
uncertainty surrounding the forecasts.

The remainder of this document is structured as follows: Chapter 3 explores
the advantages and disadvantages of machine learning models in the context
of regression tasks. Chapter 2 provides a summary of the existing literature
on the application of these models for GDP nowcasting. In Chapter 4, vari-
ous preprocessing techniques commonly used in machine learning are discussed
in detail. Chapter 5 introduces the models employed in the empirical study,
followed by a concise overview of the data in Chapter 6. Chapter 7 focuses
on the performance evaluation process and presents the results of applying the
models to the dataset. Chapter 8 emphasizes the significance of interpretability
and outlines several techniques available for achieving it. The final analytical
section is presented in Chapter 9, where a framework for understanding the
impact of revisions in the explanatory variables on the predictions is proposed.
Finally, Chapter 10 wraps up the discussion and highlights the key findings of
the study.



Chapter 2

Literature Review

Much like the topic of GDP nowcasting grew rapidly among academic studies
in the past decade, it is now the application of machine learning techniques
for nowcasting that is rapidly evolving. Characterized by a growing body of
literature, it is a relatively new topic, as most of the studies in the field appeared
in the last 5 years.

Most studies emphasize the ability of machine learning models to fit the
data more effectively than traditional econometric approaches, while a smaller
segment addresses the interpretability of these models. While explainable ma-
chine learning—popularly referred to as XAI—also is a growing topic that has
picked interest recently, the literature exploring its implications for economic
modeling remains limited.

2.1 Model performance
Several studies emphasize the comparison of fit between different models and
against traditional econometric models.

For instance, Richardson et al. (2018) assess the performance of a suite
of machine learning algorithms including K-Nearest Neighbors (KNN), Least-
Squares Boosting, Lasso, Ridge, Elastic Net, Support Vector Machine (SVM),
and feedforward Neural Networks for GDP nowcasting in New Zealand. They
benchmarked these models’ performance with traditional econometric mod-
els such as AR(1), a factor model, and Bayesian VAR and find that machine
learning algorithms consistently outperform these traditional models, partic-
ularly when individual nowcasts are combined. Similarly, Fornaro & Luo-
maranta (2020) evaluate multiple methods including boosting and regression
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trees against an ARIMA benchmark for Finnish economic activity, conclud-
ing that combined models provide better fit than both ARIMA and individual
methods. Tiffin (2016) also applies elastic net regression and random forests for
nowcasting GDP in Lebanon but does not compare against other models, focus-
ing solely on improving fit with ensemble methods. On the U.S. data, studies
by Babii et al. (2022) and Soybilgen & Yazgan (2021) utilize dynamic factor
models and tree-based ensemble models, respectively, and support the conclu-
sion that machine learning models can outperform standard models. Additional
studies on U.S. data include Loermann & Maas (2019) and Hopp (2024).

Additionally, there are several studies exploring the effectiveness of machine
learning approaches in other contries. Zhang et al. (2023) analyze Chinese GDP
nowcasting using a wide array of ML models, including ridge regression and
dynamic factor models, finding that some machine learning methods surpass the
benchmark dynamic factor model. In the case of India, both Ranjan & Ghosh
(2021) and Malik & Agarwal (2022) incorporate high-frequency macroeconomic
and financial data, with their findings suggesting that machine learning models
provide substantial improvements over traditional models. Meanwhile, Jonsson
(2020) evaluates a nearest neighbor algorithm for Swedish GDP nowcasting,
reporting results comparable to conventional linear indicator models. Other
studies include Marcellino & Sivec (2021) for Luxemburg, Tamara et al. (2020)
for Indonesia, Dauphin et al. (2022) for a sample of European countries, Cepni
et al. (2019) for emerging countries, and Fan (2019) also for New Zealand.

To avoid redundancy, not every study is discussed in detail. In general,
these studies evaluate the fit of a consistent set of standard machine learning
algorithms, including Ridge Regression, LASSO, Elastic Net, Random Forest,
Boosted Trees, K-Nearest Neighbors, Support Vector Machines, and Neural
Networks. The benchmark models primarily consist of AR(1) models, while
some studies incorporate traditional econometric approaches such as dynamic
factor models, VAR models, or internal model suites utilized by central banks.
Overall, the majority of these studies support the conclusion that machine
learning algorithms achieve greater prediction accuracy compared to traditional
econometric models when applied to the same datasets. Additionally, they
demonstrate that ensemble methods can further enhance predictive accuracy.
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On the data used

Most studies leverage the capacity of machine learning algorithms to han-
dle larger datasets, incorporating extensive sets of high-frequency data, of-
ten with uneven frequencies. Typically, the datasets utilized in these studies
comprise macroeconomic and financial variables, with some incorporating ad-
ditional sources such as survey data, uncertainty indices, text-based variables,
and microeconomic data.

Certain studies explicitly address data-related challenges. For instance,
Soybilgen & Yazgan (2021) employ dynamic factor models to resolve the ragged
edge problem across ten groups of variables. Similarly, Cepni et al. (2019)
evaluate the performance of their models using various dimensionality reduction
techniques to enhance their predictive capabilities.

A noteworthy characteristic of many of these studies is the relatively short
timespan of the datasets, which often consist of quarterly data covering periods
of 8 to 15 years. This is relevant as machine learning models generally require
larger datasets in order to effectively learn from the data.

2.2 Interpretability
Interpretability of machine learning within economic contexts remains mainly
uncovered territory, as fewer studies delve into this aspect. Two studies involv-
ing GDP nowcasting touch on the topic of interpretbilit: Park & Yang (2022)
assess the use of XAI on long short-term memory (LSTM) networks to identify
the most important features in the model; then, in their nowcasting study of
Egypt’s GDP, Abd El-Aal et al. (2023) also assess feature importance in their
trained random forests and gradient boosting models.

Overall, the available literature underscores the potential of machine learn-
ing techniques for improving GDP nowcasting accuracy across various countries
and methodologies. The exploration of interpretability, still in its infancy in
macroeconomic modeling, will be essential for building trust and understanding
the implications of machine learning applications in this field.



Chapter 3

Machine Learning vs. Traditional
Econometric Models

Machine learning models are generally considered to offer multiple advantages
over traditional econometric models, primarily in their ability to detect non-
linear relationships within economic data. Traditional models often rely on
linear assumptions and predefined equations, which can limit their ability to
capture the full complexity of economic interactions. In contrast, machine
learning algorithms are designed to learn from data without explicit program-
ming, enabling them to automatically identify and model complex, non-linear
patterns and interactions that may be difficult to capture using conventional
methods. This capability is especially valuable in economic modeling, where
subtle, non-linear interactions between variables can provide additional insights
into GDP dynamics.

The flexibility and adaptability of machine learning algorithms further en-
hance their appeal. These models can easily adjust to new data and incor-
porate evolving economic conditions, making them particularly well-suited for
forecasting and nowcasting in volatile or uncertain environments. For instance,
when new economic indicators or unexpected events arise, machine learning
models can quickly adapt by retraining on the updated data. Traditional econo-
metric models, on the other hand, often require significant manual adjustments
and recalibration to respond to changes in the data environment, potentially
leading to delays and inaccuracies.

Another advantage of machine learning is its proficiency in handling large
and diverse datasets. In modern economies, where vast amounts of informa-
tion are generated daily, the ability to process and analyze big data becomes
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increasingly valuable. Modern datasets bundle standard economic indicators,
such as sectoral production indicators and financial variables, with newer types
of data like text-based indicators such as sentiment measures, online searches
and other social media behavior, high-frequency environmental variables, etc.
Machine learning models can efficiently manage and extract more information
from these extensive datasets, capturing the nuances of economic activities that
might be overlooked by traditional methods.

Lastly, and connected to the point above, lie the often built-in mechanisms
for feature selection and dimensionality reduction. These techniques, which
are essential for identifying the most relevant economic indicators to bring out
the information in the data, have the additional effect of reducing the risk of
multicollinearity, a common issue in traditional econometric models. Feature
selection algorithms, such as LASSO or tree-based methods, can automatically
identify and retain the most informative features while discarding irrelevant or
redundant ones. Dimensionality reduction techniques, like Principal Compo-
nent Analysis (PCA) or its more flexible alternative, autoencoders, help sim-
plify the data by reducing the number of variables, thus enhancing predictive
performance and providing clearer insights into the factors driving economic
changes.

Despite their numerous advantages, machine learning models also present
several challenges compared to traditional econometric approaches. One major
drawback is the "black box" nature of many machine learning models. These
models pass data through multiple layers of non-linear transformations and in-
teractions, making it difficult to interpret the exact pathways and mechanisms
through which they generate predictions. Additionally, machine learning al-
gorithms are often part of a broader modeling framework that is preceded by
feature selection and dimensionality reduction techniques as outlined above,
standardization, etc. These steps add extra layers of complexity to the overall
modeling process, further decreasing interpretability. This opacity can obscure
the understanding of how specific input features influence the output, raising
concerns about accountability and transparency in decision-making processes.
For economic policy and forecasting, where interpretability is crucial, this lack
of transparency can hinder the acceptance and trust in machine learning-based
predictions.

Another significant disadvantage is the susceptibility of machine learning
models to overfitting. Without proper regularization and validation, these
models may perform exceptionally well on training data but fail to general-
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ize effectively to new, unseen data. This issue underscores the importance of
rigorous model validation, including techniques such as cross-validation and the
use of regularization parameters (e.g., dropout in neural networks or pruning
in decision trees) to prevent overfitting and ensure robust nowcasting results.
These considerations, while not absent in traditional econometric models, are
generally less important as models tend to be simpler and do not require as
many validation steps.

Generally speaking, the computational complexity of advanced machine
learning models can also pose a challenge. Models such as deep learning archi-
tectures, which involve numerous layers and potentially millions of parameters,
can be computationally intensive, requiring substantial computing resources
and specialized hardware such as GPUs or TPUs. This complexity can lead to
longer training times and increased operational costs. While technological ad-
vancements and the availability of cloud computing have significantly lowered
this barrier, computational complexity remains a consideration, particularly for
researchers and institutions with limited resources. However, it is worth noting
that for GDP nowcasting, which typically involves a relatively small number
of features compared to other applications like image or speech recognition,
the computational demands are generally manageable and do not constitute a
major constraint.

In summary, while machine learning models offer powerful tools for eco-
nomic nowcasting, their application requires careful consideration of their lim-
itations. Addressing issues related to interpretability, overfitting, and compu-
tational complexity is essential to fully capture the potential of these models
and ensure their effective integration into economic forecasting and nowcasting
practices.



Chapter 4

Preprocessing techniques

The use of machine learning in economic modeling is not limited to better
regression algorithms. Machine learning-based techniques can also be imple-
mented in the preprocessing stage, when large and diverse datasets are being
analyzed and transformed for the specific exercise the modeler is doing. While
machine learning and traditional econometric models share many preprocessing
steps, such as data collection, integration and cleaning, exploratory analysis,
or handling of imbalanced data, there are others in which machine learning can
provide additional value to the overall modeling pipeline. In this section, the
focus is on feature selection and dimensionality reduction techniques, gener-
ally considered to be the two steps that most influence the performance and
accuracy of predictive models.

Feature selection is the process of identifying and retaining the most rel-
evant variables from a dataset while discarding those that are redundant or
irrelevant. This technique is crucial for mitigating multicollinearity, enhanc-
ing model interpretability, and improving predictive performance. By focusing
on the most informative features, machine learning models can achieve more
accurate and robust nowcasting results. Various methods, such as filter-based
approaches, wrapper methods, and embedded techniques, can be employed to
perform feature selection, each offering distinct advantages and applications.

Dimensionality reduction, on the other hand, involves transforming the orig-
inal set of variables into a lower-dimensional space while preserving as much
of the underlying information as possible. This technique is particularly useful
in handling high-dimensional datasets, where the presence of numerous vari-
ables can lead to increased computational complexity and overfitting. Dimen-
sionality reduction methods, such as Principal Component Analysis (PCA),



4. Preprocessing techniques 11

t-Distributed Stochastic Neighbor Embedding (t-SNE) and autoencoders, help
simplify the data structure, making it easier to visualize, analyze, and use in
the modeling stage.

In the following subsections, various methodologies and machine learning
algorithms used for feature selection and dimensionality reduction will be de-
scribed. We will examine their applications in economic nowcasting, discussing
their advantages and limitations. Additionally, in Chapter 7, the impact of a
number of these techniques on the predictive accuracy of the models is tested.

4.1 Feature Selection
Feature selection is the process of choosing the subset of explanatory variables
or features that offer the most predictive power. This process is specially valu-
able when dealing with larger sets of features or when there are many closely
related variables, as it replaces the need for the modeler’s judgement on what
variables are useful with automatic techniques, helps reducing model complex-
ity, lowers the model’s computational costs, reduces the risk of overfitting, and
potentially improves the model’s performance. The main feature selection tech-
niques can be broadly categorized into three groups: filter methods, wrapper
methods, and embedded methods. Only the first two are explained in this
section, as embedded models can be addressed directly in the section where
regression algorithms are covered (as their name suggests, these methods are
incorporated as steps in the algorithm’s training process).

4.1.1 Filter Methods

In filter methods, features are usually scored through a statistical test or based
on summary statistics. Thus, these methods are independent of the regression
or classification algorithm that will be used in a later stage, allowing them to
be used in a broad set of applications. In the context of economic modeling,
this proves valuable when multiple algorithms are to be run, compared, and
potentially integrated.

ANOVA F-value

The simplest filtering method is the ANOVA F-value, where features are ranked
based on their individual linear relationship with the outcome variable. This
method, which is based on the traditional analysis of variance, is widely used
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in economic modeling as it provides a simple implementation and is relatively
easy to interpret, at the expense of lost information, since the model only cap-
tures linear relationships, potentially defeating the purpose of using Machine
Learning algorithms over econometric models.

Mutual Information (MI)

A similar, more powerful technique for identifying the variables with the most
explanatory power in a dataset relies on the Mutual Information measure. Also
called Information Gain in other applications, this metric calculates the degree
of information one variable can offer about another. Calculated as the difference
between unconditional and conditoinal entropy of a given variable:

I(X; Y ) = H(X)â£ıH(X|Y )

where X and Y are two random variables, it allows for the capturing of non-
linear relationships as well as linear relationships, thus providing added value
on the above-mentioned ANOVA F-value technique.

Variance Threshold

An alternative to statistical tests is relying on descriptive statistics of a series
to determine its usefulness. One such technique is filtering variables based on
whether or not their variance are above a minimum threshold. The underlying
idea is that variables with little variation in their values are unlikely to have
explanatory power. At the extreme, a feature with zero variance (i.e., a con-
stant) will have no correlation with any other variable. Outside of the extreme,
however, even a low-variance variable can correlate with the outcome variable,
and this method fails to take that relationship into account.

Alternatives to using variance are the Mean Absolute Difference (MAD)
and Dispersion Ratios.

4.1.2 Wrapper Methods

While filtering methods are agnostic of the regression or classification algo-
rithm to be used and rely on general information about the features, wrapper
methods do not analyze the characteristics of the variables, but rather exhaus-
tively test the performance of models with different subsets of features to find
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the best possible subset. While filtering methods are naturally more computa-
tionally efficient and generally less prone to implementation mistakes, wrapper
methods are agnostic of assumptions of specific relationships between variables
and provide a fuller picture of the value of the different features.

Naturally, since different models process the information in different ways,
the choice of method becomes increasingly important when using wrapper
methods, as the selection of variables for one model will not necessarily be
optimal for another model.

Exhaustive Feature Selection

The most robust feature selection method tests all possible combinations of
features for a given model, and outputs the best performing one. Naturally the
most computationally costly because of the number of iterations it requires to
find the final result, is usually not chosen, and instead other, less exhaustive
methods are considered. It should be noted, however, that when dealing with
relatively small datasets, like in the case of economic modeling (with the ex-
ception of exercises involving financial markets data, which tend to be larger),
this cost is not as important and this method remains a feasible and sensible
alternative.

Forward Feature Selection

This iterative method begins with one variable and tests how adding each
possible value to the first one improves the model performance to select the
best one and incorporate it into the set of features to keep. After a new feature
is chosen to be added, the process is repeated on top of the already selected
set until a certain criterion is met.

Backward Feature Elimination

This method works in the opposite way to the forward feature selection. When
performing backward feature elimination, the starting point is a model includ-
ing all features, and removing one at a time to find the one that adds the least
predictive power. Once one feature is chosen to be removed, the process is
repeated with the remaining variables in the model until a certain criterion is
met.
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Recursive Feature Elimination

Starting from the full set of variables, this method relies on an assessment
of importance to select the least contributing feature and remove it from the
sample. Once a feature has been permanently removed, the model is retrained
and the process is repeated until a certain criterion is met.

Genetic Algorithms

Genetic algorithms are optimization methods inspired by the dynamics of natu-
ral selection. In feature selection, these models start with a population of feature
subsets, evaluate their performance on the machine learning model (the perfor-
mance metric is generally referred to as fitness function in genetic algorithms),
and iteratively select the best-performing subsets. The selected variables from
different subsets are then combined to create new subsets, and again the best-
performing one is selected (this process is called crossover). This process is
repeated, aiming to find the optimal subset of features that maximizes model
performance.

4.2 Dimensionality Reduction
Dimensionality reduction is the practice that aims to simplifying datasets by re-
ducing the number of variables while retaining as much information as possible.
The dimensionality reduction method par excellence is Principal Component
Analysis (PCA), whose use has expanded across different applications. How-
ever, alternative methods have emerged in recent years that provide different
advantages to PCA. In this subsection, Kernel PCA (an augmented version of
PCA), and autoencoders (neural networks used for dimensionality reduction)
are outlined.

4.2.1 Principal Component Analysis (PCA)

Principal Component Analysis is a widely used dimensionality reduction tech-
nique that transforms a dataset with potentially correlated features into a set
of linearly uncorrelated components called principal components. This trans-
formation is achieved by identifying the directions, or axes, along which the
variance in the data is maximized. The first principal component accounts
for the greatest variance, followed by the second, and so on, with each sub-
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sequent component being orthogonal to the previous ones. By projecting the
original data onto these principal components, PCA reduces the number of fea-
tures while preserving as much variability as possible. This technique relies on
simple mathematical relationships, allowing easier traceability in interpreting
the construction of the components. While advantageous from a computational
efficiency and traceability standpoints, the transformation of the data into prin-
cipal components obscures the way each initial variable affects the model; even
when combined with simple algorithms such as linear regression, the use of
PCA implies that the original variables will not have a direct coefficient that
can be used for economic analysis. An additional cost of PCA is that it is
designed to capture only linear relationships between the variables, potentially
leaving information on the table. This lack justifies the advent of alternative
methods for dimensionality reduction such as the ones outlined in this section.

4.2.2 Kernel PCA

Kernel Principal Component Analysis is an extension of the standard PCA
that allows for capturing non-linear relationships in the data. By means of a
kernel function, this method projects the data into a higher-dimensional space
to then reduce it again in a similar manner to PCA. This provides additional
information to the new set of features, at the expense of reduced interpretabil-
ity.

4.2.3 Autoencoders

Autoencoders are a type of neural network primarily used for dimensionality
reduction. An autoencoder maps the input data to a lower-dimensional latent
space and then reconstructs the original data from this compressed representa-
tion. The network is trained to minimize the reconstruction error, ensuring that
the latent space captures the most significant features of the input data. Neural
networks are explained in more detail in Chapter 5, and only the essentials of
autoencoders are addressed here.

Starting from the full set of features, the input layer, the algorithm performs
non-linear transformations on the variables to create new features or nodes
in a lower-dimensional space. Once the new nodes have been created, they
constitute a new layer, and the transformation process is performed again onto
a new lower-dimensional set. The overall process is repeated until the desired
number of nodes remains. This comprises the first part of the autoencoder,
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called the encoder. The final result of the encoder is a set of new features that
will be the starting point for the second part, the decoder.

The decoder acts in the opposite way: it takes the new features from the en-
coder and, through the use of more transformations, it projects the information
of these nodes on a higher-dimensional space. The process works by increasing
the dimension in each layer, until the final number of features is achieved in
the output layer.

Advantages and disadvantages of autoencoders

Autoencoders work with highly non-linear transformations, allowing them to
capture more complex relationships than the standard PCA method, consti-
tuting one of the main justifications for their use. Additionally, their end
use-agnostic nature allows autoencoders to be used in a broad range of appli-
cations generally and in combinations with different regression algorithms in
particular. Lastly, neural networks are generally flexible, allowing the modeler
to customize their network for the specific needs arising from their exercise and
data.

The benefits of a more powerful algorithm with increased flexibility natu-
rally comes with an associated computational cost. Neural networks are com-
putationally intensive, with high-dimensional datasets entailing an increased
cost in both time and resources. This cost is proportional to the gain of using
autoencoders, as more data generally bring out the most benefits from them.



Chapter 5

Models

In this section, an overview of the models utilized in the empirical application
will be presented. Since these models are well-established in the literature, the
descriptions will be concise, focusing on their key characteristics and relevance
to the study. For readers seeking more in-depth information, it is recommended
to consult additional resources or relevant literature.

5.1 Neural Networks
Artificial Neural Networks (ANN) are one of the most popular algorithms in
machine learning. Inspired by the way the human brain works when processing
information, it is used in a broad range of applications such as time series
modeling, pattern recognition, generative AI, image recognition, among others.
In the economics and finance field, neural networks have witnessed an increase
in popularity in recent years, due to their ability to incorporate large and
complex datasets that characterize modern economies and financial markets,
and their potential to capture more complex dynamics, improving prediction
accuracy.

Neural networks consist of interconnected layers of nodes, or neurons, that
process information in a hierarchical manner. Each node in a neural network
is analogous to a biological neuron, receiving input, processing it, and passing
the output to the next layer of nodes.1

The starting point of a neural network is the input layer, comprised by the
initial features in the model, which take the name of nodes (x). The nodes

1There are several types of ANNs. In this study, only one type is considered, the so called
Feedforward Neural Network. In particular, a Multilayer Perceptron is described.
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in the input layer serve as the input of the second layer, or the first hidden
layer. Each node in the hidden layer takes the inputs from the previous layer
together with a set of weights (w) and a bias (b), and applies a transformation
on them through a non-linear function, the activation function, to produce the
final value of the node:

xj+1
i = f

(︄
n∑︂

i=1
wj,j+1

i xj
i + b

)︄
(5.1)

This process is repeated sequentially from one layer to the next, until the
last one, the output layer, is reached. In regression tasks, the output layer is
generally comprised of a single node, which represents the network’s prediction
of the target value.

The weights and biases in each layer and node of the neural network are
initially random, and it is through their adjustment that the network improves
its prediction. Neural networks are trained using a process called backpropaga-
tion. This involves adjusting the weights based on the difference between the
predicted output and the actual target output. The most common algorithm
used to minimize the error is stochastic gradient descent (SGD).

wk+1 = wk − η
∂e

∂wk
(5.2)

where η is the learning rate, and ∂e
∂wk is the gradient of the error with respect

to the weight.

Advantages and disadvantages of Neural Networks

The main advantage of neural networks against other algorithms, and most
notably against traditional econometric models, lies in their flexibility and scal-
ability. Neural networks are able to capture non-linear relationships between
variables that are potentially lost in other algorithms. Cybenko, G. (1989)
proved that certain types of neural networks are able to approximate any func-
tion to any desired level of accuracy. This result, popularly referred to as the
Universal Approximation Theorem, suggests that neural networks should in
theory be able to capture any possible relationship between variables.

The complex nature of neural networks, which results in their flexibility
and overall potential, presents challenges and drawbacks. One of the main
challenges lies in the data requirements: in order to be trained effectively,
neural networks usually need large datasets, which are not always available in
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economic modeling exercises (and particularly in developing economies, where
the need for better performing algorithms is arguably highest).

An additional challenge, and particular focus of this research, is the lack
of transparency of the algorithm. The architecture of neural networks, from
the number of parameters (weights and biases) and different layers, to the ac-
tivation functions used in each transformation, make it increasingly difficult to
understand the inner workings of the algorithm and to trace how one variable
affects the final prediction. This is a particularly relevant challenge, as inter-
pretability is a fundamental aspect for model selection in economics, where the
final prediction is often not the most important output of the exercise, and
instead understanding the role of one variable, or identifying the main drivers
for a change in output, is of interest to decision makers.

5.2 Regression Trees
Decision trees (and their regression-tailored version, regression trees), are an-
other group of popular algorithms in machine learning. When applied to eco-
nomics and finance, these algorithms are often used for tasks such as credit
risk modeling, where borrowers have to be classified into groups based on the
probability of them defaulting on their loans, or fraud detection in credit card
systems, where transactions have to classified into fraudulent or legitimate ac-
cording to certain characteristics. Regression trees, however, can also be used
for time series modeling, and are particularly useful when combined with ex-
planatory variables whose movements are expected to drive the target.

The process begins with the dataset including the input features and a
target variable. The tree-building process involves recursively splitting the data
into subsets, based on the value of a given feature (e.g., a numerical variable
being above or below a certain threshold, or a categorical variable falling into
one group or another). Each split is chosen to maximize the Informational
Gain (IG), which is a measure of the increase of purity of the nodes after the
split. The IG can be defined as follows:

IG(Dp, f) = I(Dp) −
m∑︂

j=1

Nj

Np

I(Dj)

Here, f is the feature on which the split will be performed, Dp and Dj are the
dataset of the parent and j-th child node; I is the impurity measure; Np and Nj
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are the number of observations in the parent and j-th child node, respectively.
The IG then measures how much the impurity changes between the parent and
the children nodes - a larger IG means a lower impurity of the child nodes, a
positive outcome.

The impurity, a measure for the homogeneity in a node, can take different
forms depending on the problem at hand. In the case of classification problems,
Gini impurity (IG), entropy (IH), and classification error (IE) are commonly
used; in regression problems, the mean squared error (MSE) is the usual choice:

I (t) = MSE (t) = 1
Nt

∑︂
i∈Dt

(︂
y(i) − ˆ︁yt

)︂2

Here, Nt is the number of observations at node t, y(i) is the true target value,
and ˆ︁yt is the predicted target value (usually the sample mean of the node).
In order to choose the right split, the algorithm tests every possible binary
split across all available variables and compares their associated IG. For com-
putational reasons, the split considered for each variable is done based on its
mean.

It can be seen how the splitting process aims at reducing the variance of the
estimation; at the limit, a deep-enough tree can split the N observations into
N nodes of Nt = 1∀t, predicting each observation in the training set perfectly,
at the cost of generalization power. Hence, it is common practice to prune the
trees or stop the optimization process at a certain depth (number of splits) to
avoid overfitting. The pruning process involves separating the initial training
set into two new sets, namely training and validation. After the tree is grown
to its largest possible on the new training set, the validation set is used in a
backwards manner to assess the IG in reverse, to test if a specific split should
be removed, as the impurity is smaller on the parent node than in the leaf
nodes.

Advantages and disadvantages of Regression Trees

Despite their simple mechanics, regression trees have proved to perform well
in regression tasks, often outperforming other more complex algorithms. Trees
are able to capture relatively more complex relationships as the splits do not
rely on linearity. The main advantage of tree-based algorithms, however, lies in
their relatively high interpretability: binary splits are easy to visualize, and the
purity-maximizing nature of the splits provides an implicit feature importance
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measure (for this reason, trees are also often used as a preprocessing step for
feature selection).

The primary disadvantage of using regression trees over other algorithms
is that not all variables are used in the splits, hence leaving potentially useful
information on the table. An additional drawback of regression trees is their
instability, as small changes in the data can lead to a different choice of splits,
potentially resulting in severely different trees. This challenges are overcome,
however, by the use of Random Forests, an ensemble method that builds on
multiple trees that are trained on different subsets of the data and potentially
using different variables, to then aggregate the information into a final pre-
diction. These algorithms are generally more stable and can incorporate more
information as each tree is train individually and together they can make use
of a larger set of features. Random forests are briefly described in the following
subsection.

5.3 Random Forest
Random forests are an ensemble learning method that builds multiple decision
trees during training and outputs the mode of the classes for classification
problems or the average prediction for regression problems. The idea is to
combine different decision trees that usually suffer from high variance to build
a more robust model that is less susceptible to overfitting.

Each tree in the random forest is trained on a bootstrapped sample, which
is a random sample with replacement from the original dataset. Additionally,
at each split in the decision tree, only a random subset of features is consid-
ered. This introduces further randomness into the algorithm and adds diversity
among the trees, helping prevent overfitting to improve the model’s out of sam-
ple performance.

For classification tasks, the final prediction is determined by a majority vote
among the trees. For regression tasks, it is the average of the predictions.

Classification

Final Prediction (Classification) = Mode(Predictions from Trees) (5.3)



5. Models 22

Regression

Final Prediction (Regression) = 1
N

N∑︂
i=1

Predictioni (5.4)

where N is the number of trees and Predictioni is the prediction of the i-th
tree.

Advantages of Random Forests

As mentioned in the previous subsection, Random Forests are typically more
robust to data changes and potentially incorporate more information than indi-
vidual trees. A byproduct of this robustness is that random forests typically do
not require an exhaustive search for the trees hyperparameters, as the ensem-
bling algorithm compensate for the noise from the individual trees. In practice,
mostly the only parameter considered when building random forests is the num-
ber of trees k. Typically, a larger k improves the prediction accuracy, at the
expense of an increase in computational cost. This increase in accuracy natu-
rally comes at the expense of lost interpretability, as the final decision is based
on an average of multiple trees. Methods for interpretability are discussed in
Chapter 8.

5.4 Boosted Trees
Boosted trees are an alternative ensemble learning technique that enhances the
performance of decision trees by combining multiple weak learners (trees) to
create a robust predictive model. The boosting algorithm aims to correct the
errors of the previous models, sequentially improving the overall performance.2

The boosting process begins with the full training set. In the first step, the
first tree is trained and the prediction errors are recorded. In the next step,
the second tree is trained on the same data, but assigning different weights
to those observations that were incorrectly predicted by the previous learner 3

The process of constructing trees and re-weighting the observations that were
wrongly predicted is repeated M times, where M is a hyperparameter repre-
senting the number of trees in the model. Once all weak learners have been

2There are multiple algorithms that
3While the inclusion of the full training set and the use of weights are specific to the

Adaptive Boosting (AdaBoost) and Gradient Boosting algorithms, these are the most usual
algorithms used in practice.
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trained, the final prediction is achieved as a weighted average in the case of
regression problems, with the weights reflecting the performance of each tree:

Final Prediction =
N∑︂

i=1
αihi(x) (5.5)

where N is the number of weak learners, αi is the weight of the i-th learner,
and hi(x) is the prediction of the i-th learner.

The advantages and disadvantages of using boosted trees are generally sim-
ilar to those of using random forests: while prediction accuracy is improved
and non-linearity is captured, it comes at the expense of interpretability and
added risk of overfitting. Computational costs are also a concern when dealing
with large datasets and multiple iterations.

5.5 Support Vector Machine Regression
Support Vector Machines (SVMs) are versatile machine learning models ini-
tially designed for classification. Support Vector Regression (SVR), as sug-
gested by its name, is a derivation that is particularly suited for regression
tasks. In economic and financial applications, SVR is generally less popular
than other machine learning algorithms such as neural networks and random
forests. However, the model still provides the ability to capture non-linear
relationships and is robust to outliers, reason why it has seen an increase in
popularity among regression tasks and is included in this research.

Support Vector Regression is an extension of the SVM algorithm used for
predicting continuous outcomes. Unlike traditional regression models that min-
imize the error between predicted and actual values, SVR aims to fit the best
line (or hyperplane in higher dimensions) within a specified margin of tolerance.
This margin, known as the epsilon (ϵ) margin, allows SVR to focus on captur-
ing the overall trend of the data rather than individual data points, making it
less sensitive to outliers.

The SVR model optimizes an objective function that balances two terms:
minimizing the model’s complexity (ensuring a flat hyperplane) and penalizing
the errors of data points that lie outside the epsilon margin. The regulariza-
tion parameter (C) controls this trade-off, where a higher C value puts more
emphasis on minimizing errors, potentially leading to a more complex model.

Linear SVR For linear SVR, the objective function is:
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min
w,b,ζ,ζ∗

1
2∥w∥2 + C

N∑︂
i=1

(ζi + ζ∗
i ) (5.6)

subject to

yi − (w · xi + b) ≤ ε + ζi,

(w · xi + b) − yi ≤ ε + ζ∗
i ,

ζi, ζ∗
i ≥ 0,

where w is the weight vector, b is the bias, ζi and ζ∗
i are slack variables, and

C is the regularization parameter.

Non-linear SVR The non-linear SVR objective function with a kernel is:

min
α,α∗

1
2(α − α∗)T K(α − α∗) + C

N∑︂
i=1

(ξi + ξ∗
i ) (5.7)

subject to

yi −
N∑︂

j=1
(αj − α∗

j )K(xi, xj) ≤ ε + ξi,

N∑︂
i=1

(αi − α∗
i ) = 0,

ξi, ξ∗
i ≥ 0,

where α and α∗ are Lagrange multipliers, K is the kernel function, and ξi

and ξ∗
i are slack variables.

The prediction for SVR is given by:

ŷ =
N∑︂

i=1
(αi − α∗

i )K(x, xi) + b (5.8)

where N is the number of support vectors, and the formula simply represents
the use of the hyperplane parameters.

Advantages and disadvantages of Support Vector Regression

Similarly to other machine learning algorithms, the main benefit of SVR lies
in its ability to capture non-linear relationships, improving predictive accu-
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racy, and its disadvantages in the lost of interpretability and computational
complexity.

In addition, SVR are robust to outliers and their complexity is to some
extent under the control of the modeler through the choice of hyperparameters.
Along with this control over complexity, however, comes the challenge of finding
the right set of hyperparameters.

5.6 K-Nearest Neighbors
K-Nearest Neighbors (KNN) is a non-parametric, instance-based learning al-
gorithm that makes predictions based on the similarity of an observation to
others used in the training process. It is a popular algorithm in economics and
finance, mainly used for consumer behavior analysis, real estate valuation and
credit risk assessment.

Given a training dataset with input features and target variable, the KNN
algorithm for regression computes the distance between the instance and all
observations in the training set using a distance metric (usually Euclidean
distance), to determine which k observations are the most similar ones, the
k-nearest neighbors. Then, the final prediction is calculated as the weighted
average of the target value among the neighbors.

The K-Nearest Neighbors algorithm is a relatively simple and less compu-
tationally intensive than other algorithms like Neural Networks or Random
Forests. KNN makes no assumptions about the underlying data distribution,
allowing it to model complex relationships between economic variables with-
out requiring predefined functional forms. While the connections are implicit
in comparing instances based on the similarity of the features to produce the
prediction, this algorithm does not calculate parameters for the features, nor
does it compute operations on their values. Hence, model interpretability is
reduced to purely simulated approaches.
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Data

The dataset used for this study ranges from January 2004 to December 2023
(240 months) and is comprised of 40 variables. The dependent variable or target
is the EMAE, the official monthly GDP indicator, and the explanatory vari-
ables or features are a mix of financial variables, sectoral indicators, sentiment
data, macroeconomic variables, and others. Both dependent and explanatory
variables are described in more detail in the following subsections.

6.1 EMAE
The Monthly Economic Activity Estimator (EMAE) is an index published by
the National Institute of Statistics and Censuses (INDEC) that provides a pro-
visional estimate of the national Gross Domestic Product (GDP) on a monthly
basis. Essentially, it involves a nowcasting exercise on GDP, which has a quar-
terly frequency and is presented with a lag of at least three months after the
end of the reference quarter. The EMAE is published with a lag of between 50
and 60 days after the reference month, creating the need to observe alternative
indicators for information on recent economic activity performance.

The indicator provides aggregated information for various sectors of eco-
nomic activity:

1. Agriculture, livestock, forestry, and hunting

2. Fishing and related services

3. Exploitation of mines and quarries

4. Manufacturing industry
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5. Electricity, gas, and water

6. Construction

7. Wholesale and retail trade and repairs

8. Hotels and restaurants

9. Transport, storage, and communications

10. Financial intermediation

11. Real estate, business, and rental activities

12. Public administration and defense

13. Education

14. Social and health services

15. Other community, social, and personal service activities

16. Services of private households employing domestic staff

6.2 Explanatory variables
The set of variables used in this exercise builds on a subset of the ones used
in D’Amato et al. (2017), which consists of two groups of indicators: one with
variables published with a delay of less than 10 days after the reference month,
and another with variables published with a delay between 10 and 30 days.
A total of 16 variables are taken from their study. This study incorporates
24 additional variables to take advantage of a broader range of information
for enhanced GDP nowcasting. The inclusion of these variables stems from
recent developments, either in the increased accessibility of certain data or in
the capacity of advanced models to seamlessly integrate them. Table 6.1 shows
the full set of indicators used as inputs in the model.

Since the original data is presented a different frequencies (financial and
monetary variables are generally presented in daily frequency), all variables
were aggregated to monthly frequencies. Additionally, the variables were sea-
sonally and inflation-adjusted, as necessary. Lastly, as a pre-processing step,
three sets of synthetic variables were included: lagged EMAE (from 1 to 12
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lags), and two sets of running averages of all explanatory variables, using win-
dows of 3 and 12 months.

Table 6.1: Set of Variables

Variable Additional Adjustments
1 Automobile production
2 Automobile exports
3 Vehicle sales to dealerships
4 Cement dispatches
5 Steel Production: Raw
6 Steel Production: Iron
7 Steel Production: Cold Rolled Steel
8 Steel Production: Hot Rolled Steel
9 Power Demand
10 Income Tax Collection (Total)
11 Income Tax Collection (DGI)
12 Income Tax Collection (DGA)
13 Value Added Tax Collection (Total)
14 Value Added Tax Collection (DGI)
15 Value Added Tax Collection (DGA)
16 Other Activity-Related Tax Collection
17 Other Trade-Related Tax Collection
18 Other Import-Related Tax Collection
19 M2
20 Private M2
21 Interest Rate Adjusted by inflation expectations
22 S&P MERVAL Index
23 Blue Chip Swap Spread
24 Real Exchange Rate Adjusted by BCS spread
25 Commodity Price Index Adjusted by BCS spread
26 Deposits on Commercial Banks
27 Loans Provided by Commercial Banks
28 MoM CPI Inflation
29 YoY CPI Inflation
30 YoY Inflation Expectations
31 FX Rate (US Dollar)
32 Consumer Confidence Index: General
33 Consumer Confidence Index: National
34 Consumer Confidence Index: GBA
35 Consumer Confidence Index: Personal Situation
36 Consumer Confidence Index: Macroeconomic Situation
37 Google Trends: Job
38 Google Trends: Tourism
39 Google Trends: Mercado Libre
40 Google Trends: Wheels
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Performance Evaluation

7.1 Error metric
To evaluate the performance of the models, the Absolute Error will be the
primary metric. Defined as follows,

et = (yt̂ − yt) , (7.1)

where ŷ and y represent the estimate and actual value of the month-over-month
percentage change of the GDP indicator, respectively:

yt = EMAEt

EMAEt−1
− 1

The error metric, et, then represents the forecast error in percentage points.
To calculate the time-series average error, we will use the Mean Absolute

Percentage Error (MAPE):

MAPE =
∑︁n

t=1 |et|
n

,

where n is the number of out-of-sample observations.

7.2 Out-of-sample Testing
We employ a walk-forward cross-validation approach to assess the models’ out-
of-sample performance. This method involves iteratively training the models
and individually predicting each data point in the test set, using all available
information up to that point. Specifically, our test set spans 96 months, from
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January 2016 to December 2023. For each month in this period, the model is
trained on all prior data and then used to make a single prediction for that
month. The steps in the testing process can be summarized as follows.

a. Determine the initial training and evaluation sets. In this exercise,
the first 131 observations make up the train set, and the last 96 observations
make up the test set. This implies a 60/40 split between the train and test
sets.

b. Evaluate the prediction of EMAE at time (t).

1. Train the model with the information available up to time (t−1) included.

2. With the obtained parameters, estimate EMAEt.

3. Calculate the percentage deviation (et).

c. Evaluate the prediction of EMAE at time (t + 1).

1. Retrain the model with the information available up to time (t) included.

2. With the obtained parameters, estimate EMAEt+1.

3. Calculate the percentage deviation et+1.

d. Repeat the process for each observation in the evaluation set and
calculate MAPE:

• MAPE =
∑︁96

t=1 et

96

This approach presents two benefits:

• Ensures that the models are evaluated in a manner that closely mimics
real-world forecasting scenarios, where future data points must be pre-
dicted based on historical information alone, avoiding the look-ahead bias.
1

• Captures the real-time benefit of re-training the model when new infor-
mation becomes available, as parameters become less informative as the
series evolve and relationships change.

1Banbura, et. al. (2013) presents the distinction between real-time and pseudo real-time
out-of-sample forecast evaluation based on the presence of data vintages. In most studies,
when data vintages are not available, final data is used, ignoring the potentially significant
impact of revisions in the data. This naturally biases the performance evaluation by not
fully reflecting the information available at the time of a real-life use of the models.
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7.3 Results
Table 7.1 presents the out-of-sample performance of various machine learning
models (columns) across different filtering techniques (rows) as measured by
the Mean Absolute Percentage Error (MAPE), and the standard deviations
of the errors between under them. To provide additional context to the error
metric, the performance of the models is compared to that of an AR(1) model
where the only independent variable is the lagged target variable by one period.

The results indicate that, with the exception of the Neural Network, all
models outperform the AR(1) benchmark in terms of MAPE, irrespective of
the feature selection technique used. This finding is consistent with the existing
literature on machine learning algorithms, although it contrasts with previous
research that typically identifies Neural Networks as the best-performing al-
gorithm. If the mean error of each algorithm is relativized to its standard
deviation, however, the Neural Network and the KNN algorithm show a de-
crease in performance against the benchmark AR(1).

An additional finding is the moderte impact of the filtering technique on
model performance. Most models achieve their lowest MAPE when the data
is filtered using the ANOVA F-test (ANOVA). Filtering based on Mutual In-
formation (MI ) results in a slightly higher MAPE in most algorithms, and
the combination of both sets of features leads to a significantly higher MAPE.
These results suggest that models perform better with fewer features, as filter-
ing based on ANOVA leads to a smaller set of variables. This is possibly due to
low signal-to-noise ratio in some variables; removing these variables may lead
to more accurate learning.

Lastly, when the exercise is run on data without any filtering, the resulting
MAPE is at least as high as with the filtered dataframes.

7.3.1 Statistical significance of the results

As a final step, a Diebold-Mariano Test is conducted to evaluate the statistical
significance of the performance differences among the models. Results for this
exercise are shown in Tables 7.2 to 7.2.

We start by comparing each model’s performance against the AR(1) bench-
mark. The results indicate that the Gradient Boosting model consistently
outperforms the AR(1) model across all specifications, with differences found
to be statistically significant at the 10% level. Furthermore, the improvement
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Table 7.1: Out-of-sample Performance

NN RF SVR GB KNN AR(1)

Full dataset 0.021 0.015 0.017 0.014 0.018 0.019
(0.020) (0.020) (0.020) (0.017) (0.019) (0.022)

ANOVA 0.023 0.014 0.016 0.014 0.016 0.019
(0.022) (0.016) (0.020) (0.017) (0.017) (0.022)

MI 0.021 0.015 0.017 0.014 0.017 0.019
(0.019) (0.020) (0.020) (0.017) (0.017) (0.022)

ANOVA + MI 0.019 0.014 0.017 0.014 0.017 0.019
(0.019) (0.019) (0.020) (0.018) (0.018) (0.022)

of the Random Forest model over the benchmark is confirmed only under the
ANOVA filtering specification. For the other models, we are unable to reject
the null hypothesis, suggesting that their performance does not significantly
differ from that of the AR(1) model.

Additionally, we compare all model’s performance against each other for
each specification. The results show that only under certain specifications the
models are different from each other at a statistically significant level.

When adjusting our results for statistical significance, this study can only
support existing literature suggesting that machine learning algorithms out-
perform a benchmark to some extent. Several factors may contribute to this
outcome: the data not being fully processed (as we intentionally refrained from
applying PCA or autoencoders to maintain interpretability), the available in-
dicators for Argentina exhibiting a low signal-to-noise ratio, or the models not
being calibrated to their full potential.

It is important to note that Argentina’s economy over the past 30 years has
been characterized by abrupt changes in economic regimes and shifts in the
country’s economic structure. While machine learning algorithms are generally
expected to capture complex relationships more effectively than traditional
models, the constantly evolving nature of the underlying economic system may
hinder their ability to learn from the complete dataset. In this context, addi-
tional steps can be taken to improve the predictive accuracy, such as using a
moving window for training, or incorporating other variables such as mobility,
traffic, payments, and sentiment data. The application of these suggestions is
left for future studies.
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Table 7.2: Diebold-Mariano Test - Full Dataset

NN RF SVR GB KNN AR(1)
NN 0.193 0.082 0.005 0.012 0.901
RF 0.656 0.233 0.840 0.316

SVR 0.098 0.392 0.500
GB 0.103 0.089

KNN 0.386
AR(1)

Table 7.3: Diebold-Mariano Test - ANOVA

NN RF SVR GB KNN AR(1)
NN 0.001 0 0.002 0 0.433
RF 0.104 0.352 0.218 0.078

SVR 0.213 0.155 0.397
GB 0.65 0.091

KNN 0.159
AR(1)

Table 7.4: Diebold-Mariano Test - Mutual Information (MI)

NN RF SVR GB KNN AR(1)
NN 0.357 0.208 0.085 0.016 0.924
RF 0.601 0.228 0.965 0.259

SVR 0.178 0.265 0.468
GB 0.387 0.09

KNN 0.285
AR(1)

Table 7.5: Diebold-Mariano Test - ANOVA + MI

NN RF SVR GB KNN AR(1)
NN 0.297 0.664 0.102 0.012 0.632
RF 0.460 0.276 0.833 0.210

SVR 0.241 0.188 0.496
GB 0.495 0.095

KNN 0.280
AR(1)
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Interpretability

As previous studies have shown, and this study supports partially, machine
learning algorithms have the potential of providing more accurate estimates
of GDP than traditional econometric techniques, and hence improving deci-
sion making and potentially our overall understanding of the dynamics driving
GDP. In order to grasp these models’ full potential, however, the challenge of
interpretability has to be overcome.

As outlined in Chapter 3, the main and most common disadvantage of ma-
chine learning algorithms is their black-box nature. And it is this challenge
that halts their adoption in practice: understanding the model being used is
as important as the final estimation and, often times, even more. The interest
in interpretability is different depending on the goal of the researcher: while
academic research may be mainly interested in understanding the underlying
relationships between variables, forecasters and analysts may be more inter-
ested in understanding how a certain estimate is reached, identifying its main
drivers and potential errors, and policymakers will be interested in both.

In this chapter, the main aspects to the issue of eXplainable AI, popularly
referred to as XAI, are briefly introduced and a number of interpretability
methods that can be used in the context of macroeconomic nowcasting and
forecasting are exposed. The aim of this chapter is then to assess whether this
challenge can be sorted and if the questions typically asked by researchers can
be answered through these models.

As a comprehensive discussion of the topic of interpretability falls beyond
the scope of this paper, for a more in-depth exploration of these methods,
the work in Molnar (2024) is highly recommended. There is much written on
machine learning interpretability, and the focus of this study is not to propose
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new methods, but rather to bring them into the context of economic modeling.

8.1 Types of interpretability
Generally, interpretability methods can be classified according to three main
criteria: intrinsic vs. post hoc methods, model specificity vs. model agnosticity,
and global vs. local interpretability.

8.1.1 Intrinsic and Post Hoc Methods

Intrinsic interpretability refers to models that possess a structure that is in-
herently understandable. The par excellence example of intrinsic interpretabil-
ity is that of a linear regression, as the impact each variable has on the output
is fully available in the coefficients. A short regression tree is an additional
example of intrinsic interpretability, as understanding the rules over a handful
of variables is typically within reach for the modeler, specially if the variables
have a simple interpretation (i.e., are not composites of other variables). Post
hoc interpretability, conversely, involves applying interpretive methods to
the model after it has been trained. They provide insights into model behavior
by analyzing the model’s behavior and predictions outside of the training pro-
cess. Permutation importance is a popular example of post hoc interpretability
techniques; this method quantifies the contribution of each feature by measur-
ing the degradation in model performance when the values of that feature are
randomly shuffled. A more detailed description of this and other techniques is
provided in the following subsection.

While intrinsic interpretability is generally a desirable characteristic, it
comes tied to simple models, which often present a cost in terms of accuracy.
For that reason, as practical applications steer towards more complex models
to gain prediction accuracy, intrinsic interpretability is increasingly reduced,
and the need for post hoc interpretability methods grows.

8.1.2 Model Specific and Model Agnostic Methods

Model-specific methods are tailored for particular types of models, deliver-
ing clear interpretations relevant to those models. The coefficients of a linear
regression or feature importance metrics in tree-based models are prime ex-
amples of model-specific interpretability, as they are derived specifically from



8. Interpretability 36

the models’ structures. On the other hand, model-agnostic methods are
those that can be utilized with any machine learning model, regardless of their
structure. These methods involve techniques that are general enough to be
applied across different models. Permutation Importance is also an example of
a model-agnostic interpretability method.

While the examples provided for model-specific methods happen to be in-
trinsic, this needs not be the case; a post-hoc example of model-specific tech-
niques is Layer-wise Relevance Propagation (LRP), a method designed specifi-
cally for interpreting Neural Networks. The opposite is, however, not true: all
model-agnostic methods are post hoc in nature.

8.1.3 Local and Global Methods

Local interpretability methods focus on individual predictions, offering ex-
planations for specific outcomes or for the model through the lens of a par-
ticular observation. The LRP technique mentioned above is an example of a
local method, as it traces back the generation of a particular prediction to get
a measure of the importance each variable had in it. Global interpretabil-
ity methods, conversely, aim to explain the overall behavior of the model.
These explanations are not tied to specific predictions, but rather to the entire
dataset. Feature importance are usually measured using global interpretability
techniques (although not always).

8.2 Interpretability Methods
Interpretability in machine learning refers to the degree to which the internal
workings and predictions of a model can be understood by humans. Addition-
ally, when used for economic modeling, interpretability should be expanded
beyond the understanding of the mechanics of the algorithms, to the under-
standing of the underlying relationships between variables and the general dy-
namics of the system trying to be captured by the models. When using ma-
chine learning algorithms for economic estimations, researchers typically seek
to understand aspects such as how different variables influence the model (and
system), which variables are deemed most significant, how a specific prediction
is achieved, etc. The choice of interpretability method can vary based on the
question to be answered and the specific models used. In this subsection, a
number of techniques are explained and tested.
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8.2.1 Feature Importance

One of the most popular questions in economics is what are the most important
drivers of a variable of interest. Researchers typically attempt to quantify the
impact that one explanatory variable has on the response variable to under-
stand how they are related and potentially how that relationship can be used.
Naturally, this question is answered through the use of economic models, and
there are multiple techniques through which this information can be retrieved
from machine learning algorithms.

Feature importance techniques can be both intrinsic and post hoc, model-
specific and model-agnostic, local and global. Intrinsic measures of feature im-
portance can be found in tree-based algorithms like Random Forests and Gradi-
ent Boosting, as they are calculated directly from the informational gain in the
training process. Alternatively, Layer-wise Relevance Propagation is a model-
specific, post hoc measure of feature importance for Neural Networks. There
are model-agnostic alternatives, such as permutation importance or SHAP val-
ues.

Additionally, feature importance can be interpreted both as an ordinal or a
cardinal measure, depending on the interest of the model. In this section, both
views are considered.

Feature importance in tree-based algorithms

As part of their training process, regression trees measure the informational
gain (IG) derived from splitting the data based on every possible variable, and
performs the split on the variable that maximizes it. This metric constitutes
an intrinsic measure for feature importance in regression trees.

Naturally, this metric can also be computed for ensembles of trees such as
Random Forests and Gradient Boosting, by aggregating the IG of each feature
across the different trees that make the ensemble model. Particularly, a feature
importance metric for these algorithms can be the simple average of the IGs
associated to each feature:

FIi = 1
n

n∑︂
1

IGi,n

where i indicates the feature, and n the number of trees in the ensemble model.
Table 8.1 displays the ten most important features identified by the Random

Forest model, along with their associated importance scores. It also presents
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the importance metrics for the same set of features using Gradient Boosting.
Each model includes two columns: the first column indicates the ranking posi-
tion of the feature based on importance, while the second column presents the
corresponding feature importance score.

A notable observation from the table is the overall similarity between the
two rankings. Both models assess the importance of features in a comparable
manner, with cement dispatches and vehicle production occupying the top two
positions in both rankings. Furthermore, seven out of the ten features are
common to both models’ top rankings, although their positions differ. This
finding is consistent with the comparable learning characteristics of the two
models. It should be noted that this metric provides a measure of how the
models’ accuracy generally improves based on a feature, but it does not provide
information on the direction or shape of the feature’s impact.

Table 8.1: Feature Importance - Tree-Based Algorithms

Feature RF (1) RF (2) GB (1) GB (2)

cement 1 0.190 1 0.240
vehicles_production 2 0.117 2 0.143
import_taxes 3 0.066 5 0.073
cement_ma_3 4 0.044 13 0.012
raw_steel_sa 5 0.039 21 0.008
iva_dga 6 0.037 14 0.011
vehicles_exports 7 0.034 4 0.074
m2_prive_ma_3 8 0.032 9 0.019
cement_ma_12 9 0.028 3 0.101
iva 10 0.027 6 0.044

Layer-wise Relevance Propagation

Another model-specific method is the Layer-wise Relevance Propagation (LRP).
LRP is a post hoc interpretability method specifically designed for deep learn-
ing models, particularly Neural Networks.

The fundamental idea behind LRP is to attribute the prediction made by
the model back to the input features by propagating the relevance scores from
the output layer to the input layer. This is accomplished through a set of rules
that distribute the prediction score (or relevance) of a neuron back to its input
features based on their contribution to the neuron’s activation. The process
starts with the output layer, where the final prediction is assigned a relevance
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Table 8.2: Layer-wise Relevance Propagation - Global

Rank (Train) Relevance Score (Train) Rank (Test) Relevance Score (Test)

dollar_off 1 0.522 1 0.675
iva_dga_ma_3 2 -0.496 2 -0.71
hot_lam_sa_ma_3 3 -0.312 6 -0.437
gtrends_wheels_ma_3 4 0.329 3 0.478
cold_lam_sa_ma_12 5 -0.273 5 -0.402
power_demand 6 0.313 8 0.43
gap_blue_ma_3 7 -0.294 4 -0.448
inflation_mom_ma_3 8 -0.242 30 -0.278
ganancias_dgi_ma_12 9 0.249 11 0.406
ganancias_ma_12 10 0.227 9 0.37

score, which is then propagated backward through the network layers. Each
neuron in the hidden layers receives a portion of the relevance score based on
its contribution to the activations of subsequent neurons.

While Layer-wise Relevance Propagation (LRP) is inherently a local method,
it can also be utilized to gain insights into the overall model by calculating rel-
evance scores across a large set of instances and then averaging these scores
for each variable. Table 8.2 displays the normalized average relevance scores
of the ten most important features across both the training and test sets. One
notable finding is that the relevance assessments for both sets are very simi-
lar, indicating that averaging across multiple instances effectively captures the
overall mechanics of the model.

Regarding the selected features, the differences compared to the feature
importance rankings derived from tree-based models are significant. None of
the variables identified as most important in the Random Forest and Gradient
Boosting models appear in the Neural Network’s list of key features. This high-
lights how different models can interpret and utilize the same data in distinct
ways. This pattern will be further explored throughout this section.

LRP for local interpretability

By employing Layer-wise Relevance Propagation (LRP), researchers can mea-
sure the contribution of each variable to the final prediction, thereby gaining
insight into the model’s decision-making process. Table 8.3 presents the top 10
normalized relevance scores for the May 2022 prediction made by the Neural
Network model. The table reveals that several features have relatively similar
relevance scores in absolute values, suggesting that the prediction is influenced
not by a single variable, but rather by the interaction of multiple variables.

Similarly to the intrinsic feature importance from tree-based algorithms,
LRP’s specificity to Neural Networks poses a limitation as it cannot be used
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Table 8.3: Layer-wise Relevance Propagation - Local

Feature Relevance Score
dollar_off 0.430
iva_dga_ma_3 -0.396
gtrends_wheels_ma_3 0.375
power_demand 0.313
steel_sa_ma_3 0.291
hot_lam_sa_ma_3 -0.289
raw_steel_sa_ma_12 0.273
cold_lam_sa_ma_12 -0.265
emae12 -0.257
gap_blue_ma_3 -0.235

to explain other algorithims. Researchers utilizing other models must seek
alternative methods for feature importance analysis. Therefore, in the following
sections, we will explore model-agnostic approaches to address this limitation,
namely permutation importance and SHAP.

Permutation Importance

A popular post hoc model-agnostic method for measuring feature importance
is permutation importance. This technique involves evaluating how the per-
formance of a trained model degrades when the values of a specific feature
are randomly shuffled or permuted. By disrupting the relationship between
the feature and the target variable, the method simulates the presence of a
non-informative feature. By quantifying the change in accuracy, researchers
can infer the contribution of that feature to the overall performance of the
model. A greater decrease in accuracy indicates a higher importance of the
variable, while a smaller drop suggests that the feature has little relevance to
the predictions.

The methodology for feature permutation typically involves several steps.
First, a baseline performance metric (e.g., accuracy, F1 score, or mean squared
error) is established using the original dataset. Subsequently, the values of the
feature being analyzed are randomly shuffled, and the model’s performance is
reassessed on this permuted dataset. This process is repeated multiple times
to ensure robustness and to account for variability. The final importance score
for the feature is calculated as the average decrease in the model’s performance
across all permutations.

One of the primary advantages of permutation importance is its model-
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agnostic nature, which allows researchers to compute a comparable metric
across different models. The results of calculating permutation importance
across all models in this study are presented in Table 8.4. For this table, the
most important features for each model are selected, provided that they are
statistically significant. This significance is determined by ensuring that the
mean importance of the feature across all permutations is greater than two
times its standard deviation.

Table 8.4 illustrates the variations in the way each algorithm learned from
the data. Although certain features are recognized as important across all
models (again cement dispatches and vehicle production), there are significant
differences regarding the number of features deemed important and the specific
variables identified. Features that rank among the most important in one model
may not be considered significant in another, highlighting the diverse influences
the variables have depending on the algorithm being used.

As in the case of the intrinsic feature importance measure in tree-based
algorithms, permutation importance also does not provide information on the
direction or shape of the impact of the variables in the models. Additionally,
it is important to note that the permutation importance metric does not dis-
tinguish between individual effects and interaction effects when assessing the
impact of a variable. If a variable influences the model through both an indi-
vidual channel and through an interaction with another variable, the measured
decrease in model performance will reflect both influences without indicating
their specific contributions. Lastly, the presence of correlated variable presents
to potential issues: first, it can lead to bias in the results due to unrealistic
simulated permutations; second, the importance of correlated features may be
underestimated as the models can learn from one instead of the other, hence
making each individual variable less important. A possible workaround this
problem is to combine the correlated features’ importance, although additivity
is not necessarily a characteristic of the metric.

Table 8.4: Permutation Importance

Rank NN RF GB SVR KNN

1 cement vehicles_production vehicles_production cement gtrends_tourism_ma_12
2 deposits_ma_12 cement cement power_demand IPMP_ccl
3 vehicles_production ganancias_dga_ma_3 - emae12 iva_dgi_ma_12
4 - loans_ma_3 - hot_lam_sa_ma_12 vehicles_sales_ma_3
5 - vehicles_exports_ma_3 - - gtrends_wheels_ma_3
6 - merval_ma_12 - - emae12
7 - payroll_taxes_ma_3 - - ganancias_dga_ma_3
8 - raw_steel_ma_12 - - iva_ma_3
9 - - - - loans_ma_3
10 - - - - iva_dgi
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SHAP

SHapley Additive exPlanations, commonly referred to as SHAP is another post
hoc, local model-agnostic framework for interpreting the predictions of machine
learning models. Grounded in cooperative game theory, the method was first
proposed by Lundberg and Lee (2017). In essence, Shapley values measure
the contribution of each feature to the overall prediction by computing how
the predictions change when the value of the feature varies over all possible
combinations of the other features.1 The final contribution is then the average
contribution of the feature across all the computed combinations.

One of the primary advantages of SHAP is its ability to produce additive ex-
planations, meaning that the prediction of a model can be expressed as the sum
of the contributions from each feature. This property facilitates interpretabil-
ity, as stakeholders can easily understand the impact of individual features on
model predictions —a particularly useful application in economics, where ac-
countability of predictions is a paramount requirement. SHAP provides the
contribution of each feature to the prediction on top of the base value, which
is the average estimated value of the target variable. Moreover, as in the case
of permutation importance, it also can be applied to a wide range of machine
learning algorithms. Its versatility has led to widespread adoption in various
fields, including finance.

While SHAP is primarily a local method, it can be utilized to assess feature
importance in the overall model by applying the technique across multiple ob-
servations and averaging the SHAP values for each feature. Table 8.5 presents
the feature importances as calculated through SHAP values for all models in
this study. Each model is represented with two columns: the first column in-
dicates the ranking of the feature in terms of importance, while the second
column displays the median SHAP value of the features, expressed in percent-
age points.

The results shown in Table 8.5 align qualitatively with those obtained
through permutation importance to some extent. Several variables consistently
rank among the most important features across all models, yet the differences
in rankings further illustrate how each model processes the data in different
ways. A particularly notable example is the Neural Network model, which
identifies only iva_dga as one of its most significant features.

1Testing all possible combinations can get computationally expensive quickly as datasets
grow larger. In reality, most practical implementations of SHAP only compute a subset of
the possible combinations.
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These differences in rankings are expected due to the inherent differences
in how they are calculated. Specifically, the intrinsic measure of feature impor-
tance used in tree-based algorithms assesses a variable’s ability to accurately
split the target variable, but it does not account for the size of that impact.
In contrast, SHAP values reflect the size of the effect. In addition, tree-based
feature importance measures the feature’s impact individually, hence not re-
flecting possible interaction effects with other variables, while SHAP accounts
for these interactions.

The main addition in this analysis is the inclusion of the median SHAP
values, which represent the typical impact of each variable on the predictions.
For instance, the cement variable, according to the Random Forest model, typ-
ically increases the prediction by 0.145 percentage points. Alternatively, the
vehicles_production variable typically decreases the prediction by 0.092 per-
centage points. This measure, however, should not be interpreted as reflecting
a negative relation between vehicles_production and the target variable, but
rather the typical impact conditional on the feature’s distribution. If a fea-
ture that correlates positively with the target variable generally takes negative
values, it will typically have a negative SHAP value. This is the case of the
vehicles_production variable, as will be shown in Figure 8.1.

Table 8.5: SHAP-based Feature Importance

Feature RF (1) RF (2) NN (1) NN (2) GB (1) GB (2) SVR (1) SVR (2) KNN (1) KNN (2)

cement 1 0.145 42 0.000 1 0.128 2 0.000 4 0.000
vehicles_production 2 -0.092 95 0.000 2 0.001 97 0.000 95 -0.001
import_taxes 3 -0.094 19 0.006 4 0.008 4 -0.027 3 -0.027
iva_dga 4 -0.088 9 0.008 14 -0.039 5 -0.022 5 -0.031
iva 5 -0.082 65 0.000 3 -0.136 6 -0.011 6 -0.024
cement_ma_3 6 0.005 67 0.001 10 -0.004 9 -0.016 13 0.000
ganancias_dga 7 -0.066 41 -0.004 7 -0.045 10 -0.021 11 -0.017
trade_taxes_ma_3 8 -0.036 84 0.000 39 -0.001 31 -0.007 7 -0.018
gtrends_tourism_ma_12 9 -0.005 71 0.000 12 -0.025 16 0.000 8 0.000
icc_gba_ma_3 10 -0.023 75 0.000 26 -0.013 38 0.000 23 0.000

An alternative visualization technique for interpreting SHAP values is the
summary plot. Figure 8.1 presents a summary plot for the Random Forest
model, created using the full test set.2 This plot displays the most impor-
tant features ranked by their average SHAP values on the y-axis, with the
importance decreasing from top to bottom. The x-axis represents the SHAP
values, which indicate the magnitude and direction of the feature’s impact on
the model’s predictions for each instance.

In this visualization, each point corresponds to a specific observation in the
test set, illustrating the contribution of the feature to that instance’s predic-

2All SHAP-related plots were created using Pythons’s shap library.
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tion. The color gradient of the points indicates the feature values, with red
representing higher values and blue indicating lower values. By examining the
distribution of these points, we can gain insights into the typical effect size and
direction of each feature across the dataset, allowing for a clearer understanding
of how each feature influences the model’s predictions.

Figure 8.1 further illustrates the observation that features positively corre-
lated with the target can exhibit negative SHAP values. In the second row, the
distribution of SHAP values for the vehicles_production variable is displayed.
The positive correlation is evident, as lower values of this feature correspond
to negative contributions to the predictions, while higher values are linked to
positive contributions. The typical negative contribution is then primarily at-
tributed to the feature’s negatively skewed distribution, which leads to negative
impacts occurring more frequently than positive ones.

SHAP for local interpretability

Having established the overall feature importances derived from SHAP values,
it is essential to recognize that SHAP is particularly valuable for local inter-
pretability as well. This capability allows users to understand the contribution
of individual features to specific predictions, providing insights into the model’s
behavior at the instance level.

Table 8.6 illustrates the contribution of each feature to the February 2022
prediction according to the Random Forest model. The SHAP values indicate
how the final prediction of -0.01 was reached: building on the base value of
the target variable, 0.001, each variable’s contribution to the final prediction
is the SHAP value. For example, the import_taxes variable decreased the
prediction by 0.313 percentage points, while the cement variable increased it
by 0.166 percentage points, partially offsetting the negative impact. Overall,
the cumulative contributions of all features explain the difference between the
predicted value and the average value of the target variable.

The contributions to a specific prediction can also be represented visually
in a clear and effective manner. Figures 8.2 and 8.3 illustrate the March 2022
predictions for the Random Forest and Gradient Boosting models, respectively.
These figures display the final prediction as the sum of the contributions from
each feature, along with the base value.3

3While "counteracting forces" conveys the idea of opposing contributions, it may not be
the best choice of words in this context, as SHAP terminology describes features as players
that work together to achieve the final outcome.
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Figure 8.1: SHAP - Summary Plot

Figure 8.2: SHAP Values - Local - Random Forest

Figure 8.3: SHAP Values - Local - Gradient Boosting
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Table 8.6: SHAP Contributions - Random Forest

Feature SHAP Value (p.p.)

import_taxes -0.313
cement 0.166
iva -0.154
raw_steel_sa 0.129
cement_ma_3 0.099
trade_taxes_ma_3 -0.088
iva_dga -0.087
ganancias_dga -0.084
m2_prive_ma_12 0.062
others 0.259
Total -0.011

8.2.2 Shape of the Relationships

While the focus of the chapter so far has been put on methods for measur-
ing feature importance in both local and global scopes, this section addresses
methods that help explain how the variables affect the model and its prediction;
i.e., what is the functional shape of the relationship between the variables and
the target. For this, 2 popular model-agnostic methods are considered: Partial
Dependence Plots (PDPs) and Surrogate Models.

Partial Dependence Plots (PDPs)

A Partial Dependence Plot (PDP) is a visualization tool used to illustrate the
relationship between one or more features and the target variable. The plot
displays the predicted values of the target variable on the y-axis against various
levels of the feature on the x-axis. To create a PDP, the model is evaluated
across a range of potential feature values while keeping all other features con-
stant. PDPs can be viewed as a post hoc, model-agnostic alternative to the
coefficients of linear regression. In a linear model, coefficients indicate that the
target variable will increase by β with every unit change in the explanatory
variable, regardless of the variable’s range. However, with more complex ma-
chine learning models, the relationships between features and the target are
often non-linear, making it non feasible to accurately represent these effects
with a single coefficient. PDPs enable the assessment of a feature’s marginal
contribution to the model’s overall predictions across different value ranges,
providing a more nuanced understanding of these relationships.
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Figure 8.4: Partial Dependence Plot - Random Forest

Figure 8.4 presents Partial Dependence Plots (PDPs) for a selection of vari-
ables using the Random Forest model. From this Figure, there are three main
takeaways. First is the positive influence of the cement, vehicles_production,
import_taxes, and iva_dga variables on the target variable, and the negative ef-
fect of the gtrends_tourism_ma_12 variable. Second is the non-linear nature
of the relationships. For instance, while cement positively affects the target
variable, the magnitude of its impact diminishes as its value increases. Con-
versely, iva_dga initially has a minimal effect on the target in the lower half
of its range, but its influence grows significantly in higher ranges. The third
comes from observing the wider range of values in the y-axis scale for the first
variables, which indicates that their impact is quantitatively more meaningful
than the last variables. This aligns with the findings from the feature impor-
tance assessments, where we found that cement and vehicles_production were
consistently the most impactful features according to the model.

An additional observation is the pronounced jaggedness of the Random
Forest plots. This characteristic stems from the nature of tree-based algorithms’
learning process, where the models build on decision trees that split the data
at discrete thresholds. As a result, the impact of each variable is captured in a
piecewise manner, leading to abrupt changes in the predicted values at specific
levels of the features.

The same analysis is conducted for the KNN and Support Vector Regres-
sion models, with their results presented in Figures 8.5 and 8.6, respectively.
Comparing these figures to Figure 8.4 reveals significant differences in how each
model interprets the impact of the variables. While all models agree on the
direction of the impact, their functional forms differ considerably.

First, the jaggedness observed in the Random Forest plot is absent in the
KNN and SVR models, which exhibit smoother relationships. Second, the
degree of non-linearity varies across the models; KNN offers a more gradual
representation of the relationships than the Random Forest, whereas the SVR
algorithm tends to interpret these relationships as nearly linear. This variation
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Figure 8.5: Partial Dependence Plot - K-Nearest Neighbors

Figure 8.6: Partial Dependence Plot - Support Vector Regression

underscores the influence of the model choice on understanding relationships,
highlighting a potential limitation of using machine learning algorithms in eco-
nomics. This topic will be further explored in the conclusion of this chapter.

Bivariate PDPs

Partial Dependence Plots are a widely used interpretability technique due to
their straightforward and intuitive explanations. A notable application of this
technique is presented by Kohlscheen (2021), who utilizes PDPs to demon-
strate how certain variables influence forecasted inflation according to a regres-
sion tree algorithm. However, these plots—particularly those involving a single
variable—have two key limitations. First, they illustrate only the marginal im-
pact of a variable without considering interactions between multiple variables.
Second, they do not account for feature correlation. In datasets containing
highly correlated features, which is often the case in economics, altering the
value of one variable while holding others constant can produce a set of simu-
lations that does not accurately reflect the data distribution and becomes un-
representative. Although PDPs effectively convey the model’s inner mechanics,
in this context they will fall short in representing the underlying relationships
among variables.

To address these limitations, researchers can employ several techniques.
To account for interactions between variables, bivariate PDPs can be utilized,
which illustrate the response of the target variable to different values of two
variables simultaneously. To tackle the issue of representativeness due to fea-
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Figure 8.7: Bivariate Partial Dependence Plot - Random Forest

ture correlations, Accumulated Local Effects (ALE) plots can be implemented,
as they use the conditional distribution rather than the marginal distribution.
An example of a bivariate PDP will be shown below.

Figure 8.7 illustrates a bivariate Partial Dependence Plot (PDP) depicting
the marginal effects of the cement and vehicles_production variables, as well
as their interaction, for the Random Forest model. This plot reinforces the
findings from the univariate PDPs, indicating that both features positively
influence the target variable.

The key advantage of this bivariate plot is that it reveals how the impact of
one variable varies depending on the value of the other. Specifically, at lower
levels of the cement variable, the effect of vehicles_production appears to be
more pronounced compared to its impact at higher levels. Overall, the plot
qualitatively suggests that both variables synergistically contribute to increas-
ing the target variable. While this particular study does not find any pair of
variables for which the interaction effect would diminish their individual con-
tributions, bivariate PDPs are well-equipped to identify such relationships if
they exist.

Although bivariate PDPs enhance understanding of interaction effects be-
tween two variables, they are limited to examining only two variables at a time,
as visualizing higher-dimensional interactions is not feasible. Therefore, it is
crucial to carefully select the variables included in the plot based on an initial
assessment of the interaction effects among them.

Visual alternatives to PDPs

The disadvantages of PDPs, such as being vulnerable to correlation in the fea-
tures, their inability to capture heterogeneous effects that do not depend on
the feature’s value, can be overcome with the use of alternative methods such
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as Accumulated Local Effects plots (ALE) and Individual Conditional Expec-
tation curves (ICE). The former provide a workaround to the independence
assumption of PDPs by using the conditional distribution of the feature in-
stead of the marginal one; the latter are able to capture heterogeneous effects
by testing the impact of each variable on individual instances and showing the
resulting predictions on a granular level.

Surrogate Models

Surrogate models are simplified, interpretable models that approximate the
behavior of more complex and opaque machine learning models, such as en-
semble methods or deep Neural Networks. These surrogate models are typically
easier to understand and can help understand the underlying decision-making
processes of the original models.

The value of surrogate models lies in their capacity to bridge the gap be-
tween model accuracy and interpretability. They are especially useful when
the original model is too complex for stakeholders to understand or when reg-
ulatory requirements demand clear explanations. One common approach to
creating a surrogate model involves fitting a linear regression to the predictions
of a more complex model, using the same input features.

A surrogate model was developed based on the predictions of the Support
Vector Regression (SVR) model in this study, with the most important vari-
ables and their coefficients presented in Table 8.7. However, the results reveal
some unintuitive relationships, indicating that interpretations derived from this
method may be misleading. First, let us interpret the table before assessing
the results further. The coefficients are straightforward to interpret: according
to the surrogate model, a unit increase in the ganancias_dgi_ma_12 variable
is associated with an average increase in the prediction by the SVR model
of 2.554%, a unit increase in the ganancias_ma variable leads to an average
decrease of 1.984%, and so on.

These results show two issues. First, the assessment of variable impor-
tance differs significantly from that in the original model. Second, unintuitive
coefficients; when using a linear regression model as a surrogate, correlation
between features can pose challenges. The coefficients of correlated features
may become misleading, as they do not accurately represent each feature’s
unique contribution to the prediction. This undermines the interpretability of
the surrogate model. For instance, the opposing effects of the features ganan-
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Table 8.7: Feature Coefficients - Surrogate Model on the SVR

Variable Coefficient

ganancias_dgi_ma_12 2.554
ganancias_ma_12 -1.984
activity_taxes_ma_12 -0.800
iva_dga_ma_3 0.729
import_taxes 0.524
import_taxes_ma_3 -0.466
m2_prive_ma_12 -0.350
iva_dga -0.329
dollar_off -0.317
icc_gba_ma_12 -0.313

cias_dgi_ma_12 and ganancias_ma_12, which should capture essentially the
same dynamics, serve as evidence of this issue.4

Furthermore, surrogate models are limited in their applicability and can
only be employed under specific conditions. Since the primary goal of a sur-
rogate model is to explain the inner mechanics of the original algorithm, it is
essential that the simpler model effectively predicts the outputs of the more
complex model. In addition to the exercise conducted for the Support Vector
Regression (SVR) model, a linear model was also fitted on the predictions of the
Random Forest and K-Nearest Neighbors (KNN) models. Their out-of-sample
accuracy is illustrated in Figure 8.8. The poorer performance of the surro-
gate models when applied to the Random Forest and KNN models, compared
to the SVR, indicates that these models are unlikely to provide an accurate
representation of the underlying mechanics of the original algorithms.

8.3 Conclusion on interpretability
In testing various interpretability methods, it becomes clear that different mod-
els comprehend the underlying relationships between variables in distinct ways.
Each technique assigns varying degrees of importance to individual features and
interprets functional forms with subtle differences. While these variations are
not overly pronounced, they raise questions about the adequacy of these models

4A popular alternative to linear regression as the surrogate model is to use regression
trees. While these models are inherently simpler than most of the other algorithms, their
degree of interpretability is not adequate to take them as the surrogate model in economics.
If they were, we would not have dedicated a chapter to understanding them.
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Figure 8.8: Surrogate Models

for comprehensively understanding the relationships within the data. Without
a robust theoretical framework to anchor the models, the capacity to utilize
machine learning techniques to elucidate these relationships is somewhat lim-
ited. This contrasts with traditional econometric models, which are typically
built on pre-existing theories regarding their functionality.

While the interpretability methods may accurately reflect how inputs in-
fluence model predictions, the emphasis in economics tends to lean toward the
broader systems being represented rather than the mechanics of the models
themselves. Therefore, if different models significantly distort these interpreta-
tions, and there is no theoretical underpinning to evaluate them, their utility
becomes less appealing.

Interestingly, when the various methods converge on specific observations—
such as consistently identifying the *cement* variable as the most important or
establishing a positive relationship with sectoral indicators—this convergence
may indicate that the models are effectively capturing the true dynamics of the
system. Nonetheless, this conclusion hinges on the adequacy of the data used.
In this context, the presence of correlated inputs poses significant challenges for
interpretability, both in measuring importance and assessing the true relation-
ship between an individual variable and the target. Although these challenges
can be partially addressed through dimensionality reduction techniques like
PCA to mitigate feature correlation, such solutions often introduce an addi-
tional layer of complexity to interpretation, complicating the connections back
to the original variables.

However, the primary focus in nowcasting is not necessarily on understand-
ing the intricate relationships between variables, but rather on enhancing pre-
dictive accuracy and providing explanations for those predictions. Then, de-
spite these limitations in understanding relationships, it can be concluded that
the models and interpretability techniques explored in this chapter may be
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well-suited for the primary goal of nowcasting: generating more accurate pre-
dictions and providing meaningful explanations for those predictions. This
suggests that machine learning approaches can be beneficial for the nowcast-
ing framework, enhancing the ability of researchers and practitioners to make
informed decisions based on timely and accurate economic forecasts.



Chapter 9

Dealing with Revisions

Revisions in economic data are an integral aspect of the nowcasting process,
as they directly influence the accuracy and reliability the predictions. The im-
portance of these revisions lies in the continuous availability of new data and
the periodic updates to previously published estimates: as new information be-
comes accessible, the predictions made using earlier data may be rendered less
relevant or entirely inaccurate, necessitating a reassessment of the nowcasting
outputs.

Previous studies, such as Banbura et al. (2013) and Hayashi & Tachi (2021),
have explored the implications of revisions in the context of GDP nowcasting.
These investigations have predominantly focused on developing methodologies
that assess the impact of new data and updates on existing forecasts. In con-
trast, this chapter seeks to address a different but critical question: how do
revisions affect the certainty surrounding our GDP predictions?

The presence of revisions introduces an inherent uncertainty into the now-
casting framework, as updates in data lead to modifications in predictions.
This chapter will propose a framework for modeling the uncertainty surround-
ing predictions due to data revisions. Particularly, it will build on the observed
behavior of revisions to understand how the uncertainty around an explanatory
variable translates into the uncertainty around the GDP prediction.

9.1 The methodological framework
Let us define an observation of a generic explanatory variable x for period
t as xt. A vintage refers to the moment in time when this observation was
computed; let us denote an observation (or estimate) of xt in the vintage v
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as xt,v, where v can be expressed as an ordinal number 1, 2, . . . , V , with V

representing the final version of this estimate (limv→V xt,v = xt,V ).
The key idea of this framework is that xt,v is the best estimate of xt,V

available at time v, and that the final estimate can be characterized as a random
variable whose value equals the estimate at time v plus a stochastic error term
ϵt,v. This can be expressed as:

xt,V = xt,v + ϵt,v

where the error decreases to 0 in its latest version (ϵt,V = 0). Furthermore, if
we assume that there is no systematic bias in the estimates, E[ϵt,v] = 0. The
final value xt,V can then be characterized as following an unknown distribution
Fx with mean xt,v and standard deviation σx,v, where σx,v is assumed to be
constant across different values of t, but specific to a given v. This yields:

xt,V ∼ Fx(xt,v, σx,v)

Since our variable of interest, yt, is a function of the explanatory variables
(yt = f(xt)), the final estimate will also be vulnerable to the revisions of xt.
It follows that this additional dimension of uncertainty will also be reflected in
the outcome variable:

yt,v = f(xt,v)

The question then is how to leverage the information from the vintages of xt to
learn about the uncertainty of our estimates of yt. Our approach is to translate
the possible realizations of xt,V , given xt,v, into a distribution of the outcome
variable yt through simulations.

9.2 Application on pseudo-synthetic data
Since vintage data for Argentinian time series are not available in my sources
at the time of this study, identifying the empirical distributions of the data
around their estimates at different points in time is not feasible. However, to
illustrate the framework, a synthetic distribution can be assumed.

Let us assume that we have three vintages for some of our variables, V =
1, 2, 3, where the last vintage represents the final estimate of the indicator
(V = 3). Furthermore, let us assume that the final estimate of the variables
xV follows a vintage-dependent normal distribution around the value of the
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estimate at vintage v xv, as follows:

xV |v ∼ N(xv; σ2
v)

Note that we drop the time subscript and the feature subscript to make the
equations simpler. Without loss of generality, we are referring to the uncer-
tainty around one feature an the estimation of one data point. Lastly, let us
assume σ1, σ2 and σ3 are 0.3, 0.15 and 0, respectively. σ3 = 0 reflects that it is
the final estimate and there is no revision-related uncertainty anymore.

This distribution is illustrated in Figure 9.1 for the cement variable. In the
figure, the value of the variable in the December 2023 observation is taken. By
assuming that the observed value of -1.126 is the estimate of the variable at a
given vintage, the possible values of the final version (V = 3) can be obtained
by simulation. First, if we assume the observed value corresponds to vintage
v = 1, where σ1 = 0.3, the distribution of the final estimate is plotted in
blue. The distribution is centered around the current estimate of the variable -
1.126, and ranges roughly between -2.25 and 0. In a second step, let us assume
the estimate at v = 2 is the same value. Now, the uncertainty around the
final estimate is reduced, as σ2 = 0.15. Through new simulations, the new
distribution of possible values is obtained and the results are plotted in orange.
The new distribution is considerably narrower, ranging roughly from -1.75 to
-0.5.

Our approach involves simulating 10,000 realizations of the final values of
the variables conditioned on the available information xV |v and computing the
final outcome for each realization. This simulation yields a distribution of the
output conditional on the current vintage, yv, which captures the uncertainty
stemming from the revisions of the explanatory variables. As time progresses
and more accurate estimates of the explanatory variables are utilized for predic-
tion, the uncertainty surrounding the final value of yV is expected to decrease
consistently.

It is important to note that this simulation process can be applied to both
individual variables and groups of variables. This flexibility provides a com-
prehensive view of the uncertainty in the predictions, as well as insight into
the contributions of each variable to the overall uncertainty. However, cau-
tion must be exercised in interpreting these contributions, as the uncertainty
associated with each feature may not necessarily be additive.

Figure 9.2 illustrates the results of this exercise, in which we assumed that
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Figure 9.1: Uncertainty Around the Estimate - Cement

10 variables in our dataset followed the specified revision dynamics, using the
Random Forest model. In this figure, 10,000 combinations of feature estimates
were computed, with their corresponding predictions plotted in blue for the
first vintage and in orange for the second vintage.

The resulting distributions are notably non-normal, reflecting the non-linear
effects that each of the variables has on the target variable. The current pre-
diction, which stands at -0.012, is derived from applying the currently observed
input values through the model. Under the assumption of no systematic bi-
ases, this value serves as our conditional expectation for GDP in this instance.
Given that the distributions for the vintages are synthetic, further analysis of
these results is not warranted. However, if the true distributions were available,
researchers could utilize this technique to assess the uncertainty surrounding
their predictions effectively.

9.3 On decomposing the impact of revisions
While this study presents a technique for assessing the uncertainty that revi-
sions bring to the predictions, it does not address the decomposition of the new
forecast into the old forecast plus revision. The methods proposed by Banbura
et al. (2013) and Hayashi and Tachi (2021) rely on the nowcasts being pro-
duced by a linear Kalman filter, allowing for an additive decomposition. This is
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Figure 9.2: Uncertainty Around the GDP Prediction

not feasible, however, when the predictions are produced using more complex
machine learning algorithms like the ones in this study. The answer to this
question is left for further studies along with the question of how much each
variable adds to the overall uncertainty. Identifying the contribution of each
variable then becomes a crucial step towards reducing the uncertainty revolving
the final prediction.



Chapter 10

Conclusions

In this paper, the application of various machine learning models for GDP
nowcasting was explored, with a specific focus on their predictive accuracy
and interpretability. The results obtained from fitting these models provide
partial support for the existing literature, affirming that increased accuracy in
forecasting economic indicators can be yielded by machine learning techniques.
Additionally, several interpretability techniques were examined, which proved
useful for addressing some questions related to the predictions but not all. In
particular, it was found that these methods align well with the specific ques-
tions pertinent to nowcasting, which primarily revolve around the generation
of accurate forecasts. Furthermore, a framework for understanding the impact
of revisions on these predictions was proposed, adding another layer of insight
to the nowcasting process.

These findings suggest that central banks would benefit from the incorpo-
ration of machine learning models into their suite of nowcasting tools. The
predictive capabilities of these models can be enhanced, providing more timely
and accurate assessments of economic conditions. However, it should be noted
that policymakers should remain mindful of the limitations inherent in these
models, particularly concerning interpretability and the complexities of under-
lying relationships within the data. By doing so, the strengths of machine
learning can be leveraged by central banks while maintaining a critical aware-
ness of the challenges involved in economic modeling.
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