
CHARLES UNIVERSITY
FACULTY OF SOCIAL SCIENCES

Institute of Economic Studies

Consistency of S-weighted estimators in
panel data models

Master’s thesis

Author: Bc. Jan Provazník
Study program: Economics and Finance
Supervisor: RNDr. Michal Červinka, Ph.D.
Year of defense: 2024

http://www.cuni.cz/UKEN-1.html
https://fsv.cuni.cz/en
ies.fsv.cuni.cz
https://is.cuni.cz/studium/eng/dipl_st/index.php?KEY=Az1
https://is.cuni.cz/studium/eng/dipl_st/index.php?KEY=Az1

Declaration of Authorship
The author hereby declares that he or she compiled this thesis independently,
using only the listed resources and literature, and the thesis has not been used
to obtain any other academic title.

The author grants to Charles University permission to reproduce and to dis-
tribute copies of this thesis in whole or in part and agrees with the thesis being
used for study and scientific purposes.

Prague, July 30, 2024

Jan Provaznik

Abstract
The thesis focuses on the S-weighted estimator and its performance on contam-
inated data. The first part summarizes the historical background, providing a
basic orientation in the field of robust statistics and reviewing the existing liter-
ature on S-weighted estimator. In a simulation study performed in Matlab, the
estimator’s performance is compared with that of LWS and S-estimator. The
results show that S-weighted estimator achieves the same efficiency as LWS
in lower contamination levels. Contamination exceeding 10% causes signifi-
cantly higher mean squared error of the S-weighted estimates. The last part of
the thesis focuses on developing a simple implementation of the estimator in
Python.

JEL Classification F12, F21, F23, H25, H71, H87
Keywords consistency, S-weighted estimators, panel data
Title Consistency of S-weighted estimators in panel

data models

Abstrakt
Tato práce se zaměřuje na S-vážený odhad a jeho výkon na kontaminovaných
datech. První část práce shnuje historický kontext, poskytuje základní orientaci
v oblasti robustní statistiky a sumarizuje existující literaturu o S-váženém
odhadu. V simulační studii provedené v jazyce Matlab porovnáváme kvalitu
odhadů pořízených pomocí S-váženého odhadu s metodou LWS a S-odhadem.
Výsledky ukazují, že v nízkých úrovních kontaminace je účinnost S-váženého
odhadu stejná s metodou LWS. Kontaminace vyšší než 10 % způsobuje výz-
namně vyšší střední kvadratickou odchylku u S-váženého odhadu. Závěrečná
část práce se věnuje jednoduché implementaci S-váženého odhadu v jazyce
Python.

Klasifikace JEL F12, F21, F23, H25, H71, H87
Klíčová slova consistency, S-weighted estimators, panel data
Název práce Konzistence S-vážených estimátorů v modelech

panelových dat

http://ideas.repec.org/j/F12.html
http://ideas.repec.org/j/F21.html
http://ideas.repec.org/j/F23.html
http://ideas.repec.org/j/H25.html
http://ideas.repec.org/j/H71.html
http://ideas.repec.org/j/H87.html
http://ideas.repec.org/j/F12.html
http://ideas.repec.org/j/F21.html
http://ideas.repec.org/j/F23.html
http://ideas.repec.org/j/H25.html
http://ideas.repec.org/j/H71.html
http://ideas.repec.org/j/H87.html

Acknowledgments
The author is grateful especially to RNDr. Michal Červinka, Ph.D. for his
helpful advice and for his infinite patience. The author would also like to
express gratitude to prof. Víšek for introduction to the topic and for providing
invaluable Matlab codes.

Typeset in LATEXusing the IES Thesis Template.

Bibliographic Record
Provaznik, Jan: Consistency of S-weighted estimators in panel data models.
Master’s thesis. Charles University, Faculty of Social Sciences, Institute of
Economic Studies, Prague. 2024, pages 82. Advisor: RNDr. Michal Červinka,
Ph.D.

https://is.cuni.cz/studium/eng/predmety/index.php?do=predmet&kod=JEM001

Contents

List of Tables vii

List of Figures viii

Acronyms ix

Thesis Proposal x

1 Introduction 1

2 Overview of robust statistics 3
2.1 Contamination . 3
2.2 Early robust methods . 7
2.3 Standard robust methods . 11
2.4 Least Weighted Squares . 17
2.5 S-estimator . 22

3 S-Weighted Estimator 27

4 Simulation 33
4.1 Simulation setup . 33
4.2 Results . 38

4.2.1 Only outliers . 38
4.2.2 Only bad leverage points 41
4.2.3 Outliers and good leverage points 43
4.2.4 Good and bad leverage points 45
4.2.5 Outliers and good and bad leverage points 47
4.2.6 Recapitulation . 48

5 Implementation of S-weighted estimator in Python 50

Contents vi

6 Conclusion 58

Bibliography 63

A Algorithm for finding optimal c I

B Implementation of S-weighted estimator in Python III

List of Tables

2.1 Calibration table . 25

4.1 Scenarios . 35
4.2 Kolmogorov-Smirnov test, scenario 1 40
4.3 Kolmogorov-Smirnov test, scenario 2 42
4.4 Kolmogorov-Smirnov test, scenario 3 44
4.5 Kolmogorov-Smirnov test, scenario 4 46
4.6 Kolmogorov-Smirnov test, scenario 5 48

6.1 Types of contamination . 59

List of Figures

2.1 The effect of an outlier . 6
2.2 The effect of a bad leverage point 6
2.3 Example of ρ function . 10
2.4 Local-shift sensitivity of high breakdown-point estimators 18
2.5 Weight function based on Tukey’s ρ function 20
2.6 Tukey’s ρ function . 24
2.7 Selection of parameter c in Tukey’s ρ function 26

3.1 Structure of contaminated data 31

Acronyms

OLS Ordinary Least Squares

LTS Least Trimmed Squares

LMT Least Median of Squares

LWS Least Weighted Squares

WLS Weighted Least Squares

EDF Empirical Distribution Function

MSE Mean Squared Error

Master’s Thesis Proposal

Author Bc. Jan Provazník
Supervisor RNDr. Michal Červinka, Ph.D.
Proposed topic Consistency of S-weighted estimators in panel data mod-

els

Motivation The standard method of estimation of regression coefficients, the or-
dinary least squares estimation (OLS), is based on minimizing the sum of squared
residuals. This means that the farther a given observation is from the regression
plane, the more influential it is in determining the result. Thus we say that the
OLS method is susceptible to outliers. An outlier may not only be an untypical
observation, it can also be a contaminated or otherwise unfit one. The branch of ro-
bust statistics has been developed to address these issues. The S-weighted estimator
modifies the OLS method in two ways. Firstly, it minimizes the sum of a function of
residuals, a function which does not grow to infinity as fast as the quadratic function
used in OLS. Thus the outliers do not increase the sum as much as in OLS. Secondly,
it uses a weight function designed so as to further diminish the impact of outliers (the
largest residuals are assigned the least weight in the sum and vice versa.) The first
alteration - different objective function - is inherited from a robust method called
S-estimator. The second - the employment of weight function - is inherited from
the method of least weighed squares (LWS). Hence the name S-weighted estimator.
The literature on S-weighted estimator is limited. Professor Víšek (2019) proved its
consistency under heteroscedasticity. But the application of this method to typical
problems encountered in econometrics has, to my knowledge, not yet been studied.
One of the tasks of the thesis shall therefore be to develop the S-weighted estimator
for the study of panel data. The analogue has been done in Víšek (2014) for LWS.
Since the fixed and random effects models belong to the standard methods employed
in econometric studies, it is useful to develop their robustified versions which can
provide reliable estimates even in cases of contaminated data.

Hypotheses

https://ies.fsv.cuni.cz/

Master’s Thesis Proposal xi

Hypothesis #1: The S-weighted estimator is a weakly consistent estimator of
regression coefficients in the fixed effects panel-data framework.

Hypothesis #2: The S-weighted estimator is a weakly consistent estimator of
regression coefficients in the random effects panel-data framework.

Hypothesis #3: In a study on simulated, partially contaminated data, the
S-weighted estimator gives estimates which are closer to the true parameters
than the estimates generated by other robust and non-robust methods.

Methodology The first two hypotheses must be proved mathematically. Similarly
as in Víšek (2014), this might be attainable by generalization to the panel-data case
of the analogous result proved for the cross-sectional case in Víšek (2019). The third
hypothesis will be tested by estimating a panel-data model on simulated data with
various levels of contamination. The simulation will follow the Monte Carlo method
and will be performed in MATLAB.

Expected Contribution Apart from developing the method and studying the
properties of its estimates, which was discussed above in the section on motivation,
the thesis shall also contain a chapter summarizing the history and theory of robust
statistical methods written in such a way as to be understandable to a student of
IES master’s program. In the planned simulation study, the S-weighted estimator
will be employed together with OLS, LWS and possibly other robust methods, which
should shed light on the strengths and weaknesses of each.

Outline

1. Introduction

2. History and theory of robust statistics

3. S-Weighted estimator

4. Consistency of S-Weighted estimator in panel-data models

5. Simulation study

6. Conclusion

Core bibliography

Bramati, M.C. & Croux, C. (2007): ”Robust estimators for the fixed effects
panel data model.” The Econometrics Journal 10: pp. 521-540.

Master’s Thesis Proposal xii

Rousseeuw, P.J. & Leroy, A.M. (1987): ”Robust regression and outlier detec-
tion.” New York: Wiley.

Víšek, J.Á. (2014): ”Estimating the Model with Fixed and Random Effects by
a Robust Method.” Methodology and Computing in Applied Probability. 17.
DOI: 10.1007/s11009-014-9432-5.

Víšek, J.Á. (2015): ”Representation of the least weighted squares.” Advances
and Applications in Statistics 47: pp. 91-144.

Víšek J.Á. (2019): ”Asymptotics of S-Weighted Estimators.” In: Crocetta C.
(eds) Theoretical and Applied Statistics. SIS 2015. Springer Proceedings in
Mathematics & Statistics, vol 274. Springer, Cham. DOI: 10.1007/978-3-030-
05420-5_4

Chapter 1

Introduction

Regression analysis has become the primary tool employed by econometricians,
as it allows to quantify the effect of one or more variables on another. The stan-
dard method used for the estimation of regression models, the ordinary least
squares, has been shown to suffer greatly from the effect of outlying observa-
tions. Whether these are natural occurrences of unlikely cases, or the product
of contamination in the data, it might be beneficial to use a method which,
sacrificing some efficiency, produces results that are unaffected by solitary in-
fluential observations.

For this purpose, statisticians have devised various estimators, but most
of them suffered from significant problems. Various robust estimation meth-
ods have been devised by statisticians. The M-estimators proposed by Huber
(1964) have not achieved great popularity due to their lack of regression equiv-
ariance which necessitated standardization of residuals by a robust estimator
of spread. On top of that, they also turned out to be immune only up to
100/p% of contamination, p being the dimension of the model. Siegel (1982)
discovered the first method robust to 50% contamination, the repeated me-
dian of squares, but its calculation was not feasible for any reasonable sample
sizes. The least median of squares and the least trimmed squares methods
proposed by Rousseeuw (1984) achieved robustness to up to 50% contamina-
tion, but their estimates turned out to be unstable with respect to very small
shifts of individual observations. These problems have largely been overcome
by the least weighted squares estimator developed by Víšek (2000) and by the
S-estimator developed by Rousseeuw (1984).

This thesis focuses on a recently developed method, the S-weighted estima-
tor, which was proposed by Víšek (2015) as a combination and generalization

1. Introduction 2

of least weighted squares and S-estimator. We summarize the very limited ex-
isting literature on this topic, and study the behavior of S-weighted estimator
on simulated data in a range of situations, comparing its results with older
estimators. Specifically, we evaluate the performance of S-weighted estimator
and compare it to its two predecessors, the method of least weighted squares
and the S-estimator. We find that the S-weighted estimator inherits from least
weighted squares the ability to utilize good leverage points and acquire bet-
ter estimates than S-estimator, however, in higher contamination levels, the S-
weighted estimator’s performance does not equal that of least weighted squares.
Since the literature contains very little information on how the estimator is to
be calculated, we discuss in some detail the algorithm by Boček & Lachout
(1995), modified by Víšek (2016b). As there is presently no publicly available
implementation of this particular algorithm, we offer our implementation in
Python. Note that this content differs from the original intentions described
in the proposal. The complexity of the proof of S-weighted estimator’s consis-
tency in panel data models turned out to be an insurmountable obstacle while
promising very little use, as the consistency in standard cross-sectional case
has already been proved.

The rest of the thesis is organized as follows. In Chapter 2 we study the
sources and types of contamination in data and provide some basic terminology.
Also in the same chapter, we summarize the development of robust statistical
methods of estimating regression models, provide basic orientation in the field
and explain some mathematical concepts that robust statistics utilizes and that
will also be utilized in our study of S-weighted estimator. Chapter 3 reviews the
existing literature on S-weighted estimator and explains in some detail the logic
of its definition and functioning. The algorithm for the estimator’s calculation
is described. Chapter 4 presents the methodology and results of our simulation
study. In Chapter 5 we present our implementation of the S-weighted estimator
in Python, and Chapter 6 concludes.

Chapter 2

Overview of robust statistics

2.1 Contamination
Before we dive into the discussion of various methods of robust statistics, we
need to spend some time on the topic of contamination. We will give a specific
meaning to the term and briefly review the causes of contamination that have
been identified by statisticians. Then we will define those types of contami-
nation which are the most destructive in terms of their effects on regression,
and look at some simple cases that illustrate those effects. That will provide a
motivation to the subject of the thesis.

In the broadest sense, then, we could perhaps define contamination as any
deviation of the collected data from the true quantities that have been mea-
sured. From this, we can immediately see that any dataset is necessarily littered
with contamination. No quantity is ever measured with infinite exactitude and
no data gathering process is impervious to error. Not every minor shift of
value, however, has the potential to affect the results of whatever analysis we
may choose to perform on the data. In what follows, we shall reference the dis-
cussion of Hampel et al. (1986), which classifies contamination into four main
types and assesses the harm they may potentially cause. These types are: the
occurrence of gross errors, rounding and grouping, approximate model, and
approximately fulfilled independence assumption.

Gross errors are the cause of outliers and leverage points and thus constitute
the most dangerous kind of contamination. They are consequences of wrong
copying, typos, computation errors and many other possible blunders. Another
source of outliers is the situation, which can also possibly occur, that part
(presumably a small part) of the data follows a different distribution. The

2. Overview of robust statistics 4

presence of gross errors, especially in data collected manually, is not uncommon.
The observation contaminated by gross error can have a completely random
value and thus can possibly influence the results significantly, it can even spoil
the analysis entirely. A typical example of a magnitude-changing type of gross
error is a wrongly placed decimal point. Hampel et al. (1986) provide an
extended passage on the causes and frequency of gross errors. They distinguish
between high-quality data with almost no gross errors, or with no gross errors
at all (which is very rare, but instances are known,) and routine data which
typically contains 1-10% of gross errors, but can be much worse. Let us note for
completeness that outliers do not of course have to be an instance of gross error.
They can occur naturally by virtue of the data having a long-tail distribution.
That is a case of approximate model and is treated below. As will be seen,
robust statistical methods can deal with outliers quite well.

Rounding is considered a mild deviation from the model. It is however
present in all data. Since the precision in any dataset is always finite, we
are in fact always dealing with discrete data. Usually the data are rounded,
sometimes grouped or otherwise distorted. Sometimes the data are infected by
a small but systematic inaccuracies in measurement. Although the effects of
these factors are generally considered harmless, Hampel et al. (1986) state that
the mild deviations from normality caused by rounding and other systematic
inaccuracies can cause up to 30% loss of efficiency. As we will see in Section 2.3,
small shifts of data can cause surprisingly large shifts of estimates by some
robust methods, and thus are not as harmless as might seem. The effect of
contamination of this class can be studied by means of local-shift sensitivity, a
property of influence function which will also be discussed later.

Sometimes the model is conceived as approximate, for instance when the
statistician ignores the normality assumption, relying on central limit theorem.
Even high-quality data often follow distribution which is longer-tailed than the
normal distribution. It can also happen that the distribution is shorter-tailed
than normal, although it is much less frequent. This may be the case when the
data have been artificially cleaned of all outliers prior to the statistical analysis.
With the normality assumption being broken or only approximately fulfilled,
the statistical inference can be invalid. Standard errors of the estimates can
turn out to be much larger than they previously seemed to be.

This last applies also to the fourth kind of contamination, namely the breach
of independence assumption or unexpected serial correlation. As the title sug-
gests, this refers to the situation where the sample cannot be trusted to contain

2. Overview of robust statistics 5

independent and identically distributed observations, or, in case of time series
data, when a variable is correlated with its delayed version. Since this thesis is
focused on the robust estimation of regression parameters, not on the robusti-
fication of test statistics, we will refer the reader to said publication for further
details.

Having appreciated the problems that contamination can cause, we will now
turn our attention to the types of contamination that will concern us in the
present thesis, namely outliers and leverage points. We will not use the term
gross errors, since the origin of outliers and leverage points in the data is not
our concern and we do not necessarily want to label them as false. Perhaps
they are just unlikely cases, unique cases, or maybe the dataset contains two
different populations. All we want to achieve in robust statistics is to define
methods whose results are based on the main part of the data and not on some
one influential observation.

The term outlier is given a rather specific meaning in the context of re-
gression. By an outlier, we will understand an observation whose value of
the explained variable is far from the rest of the data (in other words, in the
tail), while the values of the explanatory variables are close to the bulk of the
data. On the other hand, by leverage point, we will understand that observa-
tion whose explanatory variable has an unusual value, regardless of the value
of the explained variable. Another terminology, which will not be used here,
but can be preferred by some, is ”outlier in the y-direction” and ”outlier in
the x-direction.” Importantly, two types of leverage points are distinguished
according to the value of the explained variable. If the explained variable fol-
lows the same model as the main bulk of the data, i.e. if the observation is
close to the regression line obtained from the uncontaminated part of the data,
then we are dealing with a good leverage point. If the observation is far from
the regression line, then such a leverage point is called a bad leverage point.
For our purposes, this informal definition of outliers and leverage points will
suffice, as the simulation studies in previous literature never required a more
rigorous definition either. In our simulation, we will study various types of con-
tamination, i.e. the specific combination of outliers and leverage points, and
each type of contamination will be studied on multiple levels of contamination,
which we will define as the number of bad leverage points and outliers in the
data divided by the sample size. Note that the good leverage points are not
included, as they are not considered cases of contamination. On the contrary,
it will be to the method’s credit if it is able to disregard the outliers and bad

2. Overview of robust statistics 6

leverage points while at the same time utilizing the information contained in
the good leverage points. We will see that this is indeed possible.

Let us now take a closer look at the effects of outliers and leverage points
on simple regression in very primitive, theoretical examples based on Víšek
(2000). Figure 2.1 depicts the effect of an outlier. In part (a) we see the
default situation which is altered in part (b) by moving one observation along
the y-axis. We can see that the regression line has moved significantly, so much
in fact that the slope estimate now seems to be positive rather than negative.

Figure 2.1: The effect of an outlier

0

1

2

3

4

5

0 2 4 6

(a)

0

1

2

3

4

5

0 2 4 6

(b)

Source: author’s computations (based on Víšek (2000))

Figure 2.2: The effect of a bad leverage point

0

1

2

3

4

5

6

0 2 4 6

(a)

0

1

2

3

4

5

6

0 2 4 6

(b)

Source: author’s computations (based on Víšek (2000))

In Figure 2.2 we see similar effect of a bad leverage point. One observation
has been moved alongside the direction of the x-axis, which has changed the

2. Overview of robust statistics 7

slope of the regression line in such a way that it is almost perpendicular to the
original one. In simple regression it is possible to discover influential observa-
tions graphically as we just have. In multiple regression, however, this becomes
much more difficult and robust statistical methods have to be employed.

2.2 Early robust methods
Attempts to deal with contamination in data are probably as old as statistics
itself. One informal method we have already mentioned is the exclusion of
suspicious outlying values. Using median instead of arithmetic average as an
estimator of expected value is also a simple robust method because median is
robust to outliers. For discrete or grouped data, mode can also be a robust
statistic, see Hampel et al. (1986). According to Bernoulli (1777) the rejection
of outliers was already a common action among astronomers of his time. In
the nineteenth century, this practice started to be formalized by the first objec-
tive rules of rejection, see for instance Peirce (1852) or Chauvenet (1863). On
the other hand, Student (1927) proposed the opposite, namely addition of new
observations obtained as arithmetic averages of two observations which are, ac-
cording to certain rules, considered too far apart. Used together with rejection
of outliers, this method is claimed to have had practical results, although it
seems to not have received further attention in literature.

An early paper written by Fisher (1920) compares the efficiency of two
different estimators of variance of normally distributed data: the standard de-
viation and the mean deviation. He concludes that standard deviation is in
large samples more efficient than mean deviation. Later, Fisher (1922) ad-
dressed the issue of efficiency again, this time in the presence of contamination
in data. He tested the efficiency of the method of moments in the system of
Pearsonian curves and concluded that high efficiency is achieved only on a small
neighborhood of the normal distribution with great losses of efficiency caused
by deviation from this point.

Pursuing further the line of thought initiated by Fisher, the first great pi-
oneer of robust statistics was John Wilder Tukey, who is credited by Hampel
et al. (1986) to have made robust statistics a matter of general interest of statis-
ticians rather than a collection of isolated attempts. His work demonstrates
that even small deviations from standard assumptions can have surprisingly
sizable effects. Similarly to Fisher, Tukey (1960) considered a small and highly
specific deviation from a perfectly normally distributed model. Let us have a

2. Overview of robust statistics 8

small ε ∈ (0, 0.5) which will denote the fraction of data that is contaminated.
Tukeys data then have the following distribution function

F (x) = εΦ
(︃

x

3

)︃
+ (1 − ε)Φ(x),

where Φ is the cumulative distribution function of the standard normal dis-
tribution, i.e. the distribution function is now a linear combination of the stan-
dard normal distribution function Φ (for the ”good” observations) and another
normal distribution function with its standard deviation diminished. Tukey
showed that in this case of contamination, values of ε as small as ε = 0.0018
(sic!) lead to the standard deviation being an asymptotically less efficient esti-
mator than the mean deviation, the situation being the converse in the normal
case, where standard deviation is the optimum, as we mentioned above with
Fisher (1920).

Before we move now to the introduction of the robust methods of estimation,
let us, as a starting point, recall the classical method of estimating regression
coefficients, namely OLS. This will be useful later as the rubustifying alterations
will be more apparent against this background. We will be considering the
standard linear regression model

y = Xβ + u,

y ∈ Rn being the explained variable, X ∈ Rn×p the matrix of explanatory
variables, β ∈ Rp the vector of unknown population parameters, and u ∈ Rn

the vector of unobserved factors. In this regression setup, we define the OLS
estimator in the following way.

Definition 2.1 (The OLS estimator). The OLS estimator is defined as

β̂OLS = argmin
β

(y − Xβ)′(y − Xβ).

Because we will be working extensively with residuals later in the thesis,
it will be useful to rewrite the above definition in terms of them. By the i-th
residual we will understand ri(β) = yi − Xiβ. The OLS estimator would then
be defined as

β̂OLS = argmin
β

n∑︂
i=1

r2
i (β).

Now we may continue in our historical survey. Under the influence of Tukey,

2. Overview of robust statistics 9

researchers started to develop new robust methods and robust statistics became
a general research area. Three approaches have been particularly significant.
Two of them developed by Huber, of which we will briefly summarize one here,
and the third, developed by Hampel, which has the most relevance to our
subject, and thus will be treated in greater detail in a separate section.

The basis for the first comprehensive robust theory was laid down by Huber
(1964) in the form of what is called Huber’s minimax approach. Huber gener-
alized Tukey’s idea of a mixture of two normal distributions. In his ”gross-error
model,” he allows the contamination to have arbitrary distribution, not only
normal. Thus, the overall distribution of the data is

F (x) = ϵH(x) + (1 − ϵ)G(x),

where G is the known distribution function of the healthy data and H is the
unknown distribution of the contaminated data. The essence of Huber’s min-
imax approach lies in utilizing game theory framework to optimize the worst
possible outcome. He uses the form of a two-person zero-sum game: reality
chooses the distribution function F and the researcher chooses the penalizing
function γ. The prize for nature is the asymptotic variance V (γ, F) which the
researcher is intent upon minimizing. Under mild assumptions, Huber shows
the existence of an equilibrium in this game which is composed of a distribu-
tion called Huber’s least favorable distribution and an estimator called Huber-
estimator. A combination of two functions, Huber’s least favorable distribution
is exponential on the tails and normal in the middle.

Huber (1964) also introduced the so-called M-estimator which is a general-
ization of the maximum likelihood estimator, a standard non-robust estimation
method. Let us define each in turn, so that the differences are apparent.

Definition 2.2 (The Maximum Likelihood Estimator). The Maximum Likelihood
Estimator is defined as

β̂ML = argmin
β

n∑︂
i=1

− log f (ri(β)) .

Definition 2.3 (The M-Estimator). The M-estimator is defined as

β̂M = argmin
β

n∑︂
i=1

ρ (ri(β)) .

Instead of a logarithm of the density function, the M-estimator uses a conve-

2. Overview of robust statistics 10

nient non-constant function ρ which allows to be selected from various options.
Thus the M-estimator is actually a class of estimators which follow the same
principle but vary according to the selection of the ρ function. Notice that if
we put ρ(x) = x2, we obtain the ordinary least squares estimator. The M-
estimators can therefore also be understood as a generalization thereof. Huber
derived the properties of the M-estimators such as consistency and asymptotic
normality, but unfortunately these estimators do not have the property of scale
and regression equivariance. Let us illustrate this problem on a specifically
selected function ρ, one which we will work with later. Suppose ρ was defined
as

ρ(x) =

⎧⎪⎨⎪⎩
x2

2 − x4

2c2 + x6

6c4 for |x| ≤ c

c2

6 for |x| ≥ c.

In Figure 2.3 we can see the plot of such a function for c = 5.

Figure 2.3: Example of ρ function

-10 -8 -6 -4 -2 0 2 4 6 8 10
-1

0

1

2

3

4

5

6

Source: author’s computations.

Now suppose we were to multiply every value in every observation both in
the explanatory and in the explained variable by 10. The proportions between
the variables would remain the same, so we would expect the estimates of the
regression coefficients to remain the same. But since the residuals would also
be proportionately increased, they would be ”weighted” differently by the ρ

function, as more of them would now find themselves under the constant part
of it. This means that some residuals would be given less importance relative
to others then they were given in the original situation, and thus the results of
the estimation would now probably be different. This is of course not intended
as a proof, but merely as an intuitive illustration of what scale equivariance
means.

2. Overview of robust statistics 11

The lack of scale and regression equivariance can be solved by standardizing
the residuals. Specifically,

β̂M = argmin
β

n∑︂
i=1

ρ

(︄
ri(β)
Sn

)︄
,

where Sn is some estimator of scale, such as standard deviation or, preferably,
some robust equivalent of it. This, however, is a tedious process and became
one of the reasons why M-estimators are not commonly used. We will see
that more recent robust methods, including the S-weighted estimator, do this
implicitly and therefore are scale and regression equivariant.

The second approach of Huber (1973) is based on robustified likelihood
ratio tests. In this approach, instead of probabilities, Huber uses more general
set functions called Choquet capacities. This can be used for the computation
of robust confidence intervals and robust point estimates of location. By this
approach Huber derived solutions which are exact, not asymptotic, for every
finite sample size. According to Hampel et al. (1986), Huber’s second approach
uses an elegant mathematical theory and gained respect of mathematicians for
the field of robust statistics, but in practice it has not been used very often
due to its limited applicability and certain complications it poses in estimation,
such as the fact that it turned from simple to composite parametric hypotheses.
Therefore, and also because of its difficult mathematical theory, we will not
treat Huber’s second approach in any greater detail here.

2.3 Standard robust methods
A new approach was introduced by Hampel (1968), and later developed and
generalized by Ronchetti (1982), Rousseeuw (1984) and others and turned out
to be the future mainstream of robust statistics. It is based on three important
concepts: qualitative robustness, breakdown point, and influence function. The
first two are important but not unique to Hampel’s approach, therefore we will
focus in our presentation on the third, the influence function, which is a central
concept of Hampel’s approach.

Definition 2.4 (Influence function). Let ∆x and F be distribution functions de-
fined on probability space (Ω, A, P). Then the influence function IF of the

2. Overview of robust statistics 12

functional T at function F is defined as

IF (x, T, F) = lim
t↘0

T ((1 − t)F + t∆x) − T (F)
t

in those x ∈ Ω where the limit exists.

In this definition, function F represents the distribution of the uncontam-
inated data, functional T is some estimator whose robustness we investigate
and ∆x is a probability measure which puts mass 1 at point x. One can under-
stand ∆x as distribution of a random variable whose value is equal to x with
probability 1. The first term in the numerator, then, stands for the estimate
we obtain when fraction t of data is contaminated by values equaling x, and
the numerator as a whole is the difference in the estimate such contamination
causes. Now we can notice that the whole definition resembles the definition
of a derivative of real function. The influence function, therefore, measures
the sensitivity of the estimator T to an infinitesimal amount of contamination
by values equal to x, i.e. the asymptotic bias caused by data contamination.
Using the influence function, we can define three other important terms that
serve as measures of robustness of estimators.

Definition 2.5 (Gross-error sensitivity). The gross error sensitivity of the func-
tional T at function F is defined as

y∗ = sup
x

|IF (x, T, F)|

where the supremum is taken over the set of all x ∈ Ω where the influence
function exists.

The gross-error sensitivity is a measure of the worst influence that a fixed
amount of contamination can have on the estimator. Thus it can be understood
as an upper bound on the asymptotic bias that the estimator has. If the gross-
error sensitivity of an estimator T is finite, we say that T is B-robust, B

standing for bias. Typically there is a trade-off between B-robustness and
efficiency and therefore the goal is to find the optimal B-robust estimator. We
have mentioned earlier that the effects of the second type of contamination,
rounding and grouping, can be gauged by means of local-shift sensitivity.

Definition 2.6 (Local-shift sensitivity). The local-shift sensitivity of the functional

2. Overview of robust statistics 13

T at function F is defined as

λ∗ = sup
x̸=y

|IF (y, T, F) − IF (x, T, F)|
|y − x|

.

Local-shift sensitivity, as seen above, is defined as the supremum of the
slope of influence function, and thus it measures the worst (i.e. the largest)
effect a small change of an observation from x to y can have. Thus it measures
the effect of small fluctuations in the data which can be caused by rounding
or grouping and other small inaccuracies. As we mentioned in the previous
section, no data actually comes from a continuous distribution and therefore
some rounding always takes place.

Definition 2.7 (Rejection point). Let F be the distribution function of a distri-
bution symmetric around 0. Then the rejection point is defined as

ρ∗ = inf{r > 0; IF (x, T, F) = 0 when |x| > r}.

We mentioned at the beginning of this chapter the old robust method of
rejecting outliers at the outset. The rejection point is intended as a mathemat-
ically exact and objective substitute for this method. The idea is that robust
estimators should be constructed in such a way that beyond certain point r,
the influence function is equal to zero. Observations which are beyond this
boundary are rejected entirely and have no influence on the estimates. There-
fore it is desirable for the estimator T to have a finite rejection point. With
non-robust estimators, the exact opposite is the case. The arithmetic average,
for instance, is affected the more, the further the contamination occurs from
the bulk of the data, and therefore its influence function does not converge to
zero, but rather grows beyond any bounds.

Central to the field of robust statistics has become the concept of breakdown
point. This term was coined by Hodges (1967) and later developed by Hampel.
Here we will use its definition as provided by Hampel et al. (1986).

Definition 2.8 (Breakdown point). The finite-sample breakdown point ε∗ of the
estimator Tn at the sample (x1, ..., xn) is defined as

ε∗
n(Tn; x1, ..., xn) = 1

n
max{m; max

i1,...,im

sup
y1,...,ym

|Tn(z1, ..., zn)| < ∞}

2. Overview of robust statistics 14

where sample (z1, ..., zn) is made from sample (x1, ..., xn) by replacing m

observations by arbitrary data points y1, ..., ym.

The value m in the definition above can be understood as the number
of contaminated data points. The asymptotic version of breakdown point is
defined generally in Hampel et al. (1986). Here we will treat it only as the
limit of the finite-sample breakdown point, since in many situations it can be
obtained that way.

ε∗ = lim
n→∞

ε∗
n.

The breakdown point is the smallest fraction of observations which need to
be contaminated in order for the estimator to become unbounded, which means
completely unreliable. In the case of OLS, one observation is sufficient for this,
therefore the finite-sample breakdown point of OLS is 1/n and the asymptotic
breakdown point is zero (as the limit of 1/n for n → ∞ is 0.) The finite-
sample breakdown point of median (as an estimator of expected value) is 1/2.
Generally, the breakdown point takes on values between 0 and 1. The maximal
possible breakdown point, however, is 1/2, as for levels of contamination higher
than 50% there is no justification for calling the minority of the data correct
and the majority contaminated,. For further discussion, see Rousseeuw & Leroy
(1987). As a measure of the global reliability of an estimator, the breakdown
point is one of the most important robustness measures and from now on, as
we inspect various robust estimators, we will always report their breakdown
points.

The first method with 50% breakdown point was introduced by Siegel
(1982), in the form of the repeated median of squares estimator. It has de-
sirable properties and it can be computed, but as it requires the computation
of a parameter vector for every subset of p observations, it becomes unfeasible
for larger datasets. Thus this method, although important theoretically, be-
cause it showed that an estimator with 50% breakdown point is possible, could
not be employed in practice.

The later methods became standard equipment of robust statisticians. They
are the least median of squares estimator and the least trimmed squares esti-
mator. Both were first introduced by Rousseeuw (1984), the latter was only
mentioned and formally it was developed later by Rousseeuw & Leroy (1987).
We will now briefly discuss each.

2. Overview of robust statistics 15

The least median of squares was originally defined literally as the name
suggests:

β̂LMS = argmin
β

med(r2
i (β)).

Later, however, it was redefined in a slightly generalizing way, which we will
follow here, as it has become the standard. Let us denote by r2

(i)(β) the order
statistics of the i-th squared residual, so that r2

(1)(β) ≤ r2
(2)(β) ≤ · · · ≤ r2

(n)(β).
Now the least median of squares estimator is defined in the following way.

Definition 2.9 (The least median of squares). The least median of squares esti-
mator (LMS) is defined as

β̂LMS,n,h = argmin
β

r2
(h)(β),

where h ∈ N, n
2 ≤ h ≤ n.

This definition therefore does not use the median of squares, but some other
squared residual larger than, but close enough to the median one, as the value
which is to be minimized. The asymptotic breakdown point of LMS is 50%
and it is scale and regression equivariant without the need of standardizing the
residuals. The optimal value of h for which the breakdown point reaches its
maximum for finite sample can be calculated as h = n/2 + (p + 1)/2 where p

is the dimension of the model.
The main problem with this estimator is its slow rate of convergence with

respect to the sample size. Since it is only 3
√

n-consistent, it is less efficient than
√

n-consistent estimators and thus requires comparatively larger samples in
order to provide strong estimates. The other method, first mentioned together
with LMS by Rousseeuw (1984), but mathematically developed only later by
Rousseeuw & Leroy (1987), is based on rejecting those observations which yield
the largest residuals.

Definition 2.10 (The least trimmed squares). The least trimmed squares estima-
tor (LTS) is defined as

β̂LT S,n,h = argmin
β

h∑︂
i=1

r2
(i)(β),

where h ∈ N, n
2 ≤ h ≤ n.

2. Overview of robust statistics 16

It is easy to see that the least trimmed squares estimator is equivalent
to OLS computed on those h observations that have the smallest residuals.
Just as the LMS, LTS estimator is scale and regression equivariant. The main
advantage over LMS consists in its faster rate of convergence and therefore
higher efficiency than the LMS has. Rousseeuw & Leroy (1987) proved that the
optimal value of h is, as with LMS, h = n/2 + [(p + 1)/2]. Under this selection,
the estimator attains the same finite-sample breakdown point as LMS, namely
(((n − p)/2) + 1)/n, which for large sample sizes converges to 1/2. Therefore
the asymptotic breakdown point of LTS is 50%.

We shall now pay some attention to the way LTS estimates can practically
be obtained, since the same means will be employed for obtaining the results of
simulation study in this thesis. Rousseeuw & Leroy (1987) used an algorithm
implemented as a program called PROGRESS. This algorithm randomly selects
p observations (p being the number of explanatory variables, which means
that p observations in general position define a regression plane exactly), fits
a model through them and calculates the sum S = ∑︁h

i=1 r2
(i)(β) obtained from

that model. This is repeated until there is sufficient probability that at least
one uncontaminated p-tuple of observations has been selected. Then the model
resulting in the smallest S is returned as the solution.

Without going into technicalities, it is obvious that this algorithm can only
be used for small sample sizes. Larger n would result in too many possible
subsamples of size p and it would take the algorithm too long to investigate
sufficiently many of them. An improvement was presented by Boček & Lachout
(1995). Their algorithm, with straightforward modifications, can also be used
for calculation of LWS and S-weighted estimator, therefore we will now present
it in some detail. We will not use the original notation of Boček & Lachout
(1995) as it introduces too many terms that would have to be explained despite
serving no purpose here. Rather, we will follow the algorithm as presented by
Víšek (2000), whose formulation is much more intuitive.

1. Select p observations at random and fit a regression plane through them.

2. Calculate the residuals from this regression for all observations.

3. Select h points with the smallest squared residuals and save the sum of
these residuals.

4. If the sum is smaller than the sum obtained previously, go to step 5.
Otherwise go to step 6.

2. Overview of robust statistics 17

5. Estimate a new regression plane by OLS on the h observations and go to
step 2.

6. If the same model has been found for q times or the algorithm has already
gone through r repetitions, end the algorithm. Otherwise go to step 1.

This is obviously not a rigorous description of an algorithm, but it is suffi-
cient to allow one to implement the procedure in a programming language. We
shall make a few clarifying comments on some of the steps. Beginning with step
1, p is the dimension of the model. If a model with intercept is considered, then
it is included in p and there are p−1 explanatory variables. That means that p

observations determine a regression plane exactly (with no residuals). Looking
at step 3, the idea of the algorithm is, then, to select h observations more or
less at random, much like Rousseeuw & Leroy (1987) did in PROGRESS, and
then to iterate a few times to slightly better selections of h observations, until
the iterations stop bringing improvement. Once the algorithm reaches the same
best model for q different random selections according to step 1, the program
stops. Values around q = 100 seem to have been found sufficient. If there is no
model that the algorithm repeatedly finds itself converging to, the procedure
is stopped after r repetitions of the outer cycle. The same algorithm, with
straightforward changes, was used by Víšek (2012) for the calculation of LWS,
and later also for the S-weighted estimator. We shall discuss this in more detail
in later sections.

The main problem with LMS and LTS is that their estimates can be very
different. This is especially concerning bearing in mind that these methods
are supposed to be robust. The cause of their variation is their high local-
shift sensitivity. As illustrated in Figure 2.4 which is based on Víšek (2000),
they may take into consideration only very narrow majority of observations,
and then the shift in one point (depicted in part (b) of Figure 2.4) can cause
the regression line to move dramatically, so much as to be orthogonal to the
original. Therefore the robust statisticians continued to search for new methods
that would not suffer from this issue while preserving the efficiency and high
breakdown point of LTS.

2.4 Least Weighted Squares
The least weighted squares estimator, designed to overcome the issue of high
local-shift sensitivity of LMS and LTS, was introduced by Víšek (2000). We

2. Overview of robust statistics 18

Figure 2.4: Local-shift sensitivity of high breakdown-point estimators

-3

-1

1

3

5

7

9

-6 -2 2 6

(b)

-3

-1

1

3

5

7

9

-6 -2 2 6

(a)

Source: author’s computations.

shall begin with the definition and then we will follow Víšek (2012) in an
overview of the LWS estimator’s properties.

Definition 2.11 (The least weighted squares). The least weighted squares estima-
tor (LWS) is defined as

β̂LW S,n,w = argmin
β

n∑︂
i=1

w
(︃

i − 1
n

)︃
r2

(i)(β),

where w(i) is a weight function.

Definition 2.12 (Weight function). The weight w : [0, 1] → [0, 1] is a continu-
ous, non-increasing function such that w(0) = 1. Moreover, w is Lipschitz in
absolute value, i.e. there is L ∈ R such that for any u1, u2 ∈ [0, 1] we have
|w(u1) − w(u2)| ≤ L|u1 − u2|.

The last condition in 2.12 requires that the slope of w be bounded, that is,
that w is sufficiently smooth in this sense. It is easy to see that LTS is a special
case of LWS. We just select h ∈ (0.5, 1) and put

w(x) =

⎧⎪⎨⎪⎩1 for x ∈ [0, h]

0 for x ∈ (h, 1].

Similarly, we can obtain OLS by putting w(x) = 1, x ∈ [0, 1] and LMS by
w(x) = 1 for x ∈ (h − ϵ, h + ϵ) for some ϵ < 1/n, and 0 otherwise. Of course
then w would not be Lipschitz, so the theorems proven about LWS cannot
automatically be extended to OLS, LMS or LTS.

2. Overview of robust statistics 19

The LWS estimator is, in essence, the LTS with the weight function grad-
ually decreasing instead of being zero-one. Thus it inherits several properties
from LTS. It is

√
n-consistent and scale and affine equivariant. The breakdown

point depends on the selection of weight function. Naturally one would like
to put w(i/n) = 1 for those observations that we are certain to be uncontam-
inated and w(i/n) = 0 for those that are clearly instances of contamination,
such as bad leverage points. It is convenient that there can be an interval on
which the weights diminish smoothly, because in real life situations the level of
contamination is unknown. It has been this very property that has led to the
choice of weights based on Tukey’s ρ function. The idea behind this particular
weight function is that we subdivide the interval [0, 1] into three parts with the
use of constants h < g ∈ (0, 1). On (0, h) and (g, 1), the function is constant on
values 1 and 0 respectively. On (h, g) it takes the shape of Tukey’s ρ function,
which will be treated in more detail in the section on S-estimator. In summary,
we obtain the following function

w(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 for x ∈ [0, h],

3 (g−x)2

(g−h)2 − 3 (g−x)4

(g−h)4 + (g−x)6

(g−h)6 for x ∈ (h, g],

0 for x ∈ (g, 1].

(2.1)

Figure 2.5 depicts such a function for h = 0.5, g = 0.9. The constants
were selected in such a way as to make all three sections of w function visible.
But what should their values be in practical application to data? Víšek (2017)
performed a simulation in order to find the values of h and g that minimize
the mean squared error (MSE) of estimates for various levels of contamination
by bad leverage points. Simplifying his results a little, we can say that for
contamination level c, the optimal value of g seems to be g = 1 − c. That
means that all bad leverage points are assigned weight zero. The variations in
h appeared not to have strong effect on the MSE of estimates, but steep decline
of w, i.e. h close to g seemed to be somewhat better. In our simulation study
we will follow the rule on g and devise a simplified rule for h. It is clear that by
putting h and g very close to each other, we obtain in effect the LTS estimator,
and therefore we are able to achieve its asymptotic breakdown point of 50% as
well.

Let us turn our attention to the benefits of LWS as compared to previous
methods, namely LTS. To begin with, the smoothly decreasing weight function
seems to improve the method’s sensitivity to inliers (that is, decreases it),

2. Overview of robust statistics 20

Figure 2.5: Weight function based on Tukey’s ρ function

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

Source: author’s computations.

because while LTS either included an observation by assigning weight 1, or
disregarded it altogether, LWS can assign any weight from [0, 1], so it does not
switch between two very different models, but rather glides smoothly between
them. Further, diagnostic tools for robust methods are seldom developed, as the
robust statisticians focus primarily on estimation. However, Víšek (2017) shows
the distribution of the t-statistics for LWS, which allows to test significance of
obtained estimates. The estimator has also been developed to accommodate
various special situations, such as panel data, instrumental variables estimation,
or estimation in presence of heteroscedastic error term.

Before we discuss the algorithm by means of which the estimator is cal-
culated, let us recall a non-robust method called the weighted least squares
(WLS), firstly because it is utilized in the algorithm, and secondly to illustrate
how the reversed order of words in the name corresponds to the difference
between the two estimators.

Definition 2.13 (The weighted least squares). The weighted least squares estima-

2. Overview of robust statistics 21

tor (WLS) is defined as

β̂W LS,n,w = argmin
β

n∑︂
i=1

wir
2
i (β),

where wi ∈ (0, 1) are weights assigned to residuals.

The difference between the methods is that WLS requires an extrinsic rule
according to which the weights are assigned to the residuals. LWS, on the
other hand, assign the weights implicitly. The weighting takes place, as it
were, inside the procedure, so the word ”weighted” is placed in the middle of
the name. Now we can describe the algorithm. It uses the same logic and
follows the same steps as Boček & Lachout (1995)’s algorithm for LTS, with
rather logical alterations. Again, further details can be found in Víšek (2012).

1. Select p observations at random and fit a regression plane through them.

2. Calculate the residuals from this regression for all observations.

3. Reorder the observations according to the smallest squared residual and
save the sum of the residuals weighted by function w.

4. If the sum is smaller than the sum obtained previously, go to step 5.
Otherwise go to step 6.

5. Estimate a new regression plane by WLS using weights w and go to step
2.

6. If the same model has been found for q times or the algorithm has already
gone through r repetitions, end the algorithm. Otherwise go to step 1.

The alterations occur in steps 3 and 5. Instead of considering h observations
with the smallest squared residuals, we sort the observations from smallest
squared residual to the largest, multiply each by the appropriate weight, and
save the resulting sum. If the sum is smaller than the one obtained in previous
iteration, we estimate a new model not by OLS on the h observations with
smallest squared residuals, as we would in LTS, but by WLS on all observations,
using the same weighting function w.

2. Overview of robust statistics 22

2.5 S-estimator
The S-estimator was first proposed by Rousseeuw & Yohai (1984), that is, in
the same year as LMS and LTS. It follows the logic of M-estimators, which we
discussed at the beginning of this chapter, and supplements it so as to rem-
edy their weaknesses. Let us recall that these were two, in principle. Firstly,
the M-estimators are not scale and regression equivariant and require studen-
tization of residuals be means of a robust estimator of scale. Secondly, it was
discovered that in multiple regression their breakdown point is only 1/p, p

being the dimension of the regression model. Therefore Rousseeuw & Yohai
(1984) designed the S-estimator in such a way that instead of minimizing some
objective function as was the case with the other estimators we have covered
so far, it minimizes the scale of residuals under a certain constraint. Let us
follow the steps in which the estimator was defined originally.

Assumption 2.1 (The objective function). Function ρ : R → [0, ∞] is symmetric,
continuously differentiable and ρ(0) = 0. Moreover, there is c > 0 such that ρ

is strictly increasing on [0, c] and constant on [c, ∞).

For a sample (x1, . . . , xn) the scale estimator s(x1, . . . , xn) is defined as the
solution of

1
n

n∑︂
i=1

ρ
(︃

xi

s

)︃
= K

where K = EΦ[ρ], where Φ is the standard normal distribution. This last is
to be understood as follows. Let us have a random variable X with distribution
N(0, 1). Then K = EΦ[ρ] = E(ρ(X)). Then the S-estimator is defined as

β̂S,n,ρ = argmin
β

s(r1(β), . . . , rn(β)).

For our purposes, we will reformulate the definition in a way that is equiv-
alent, but more convenient. This definition can be found for instance in Víšek
(2015) and is analogical to the way the S-weighted estimator is defined, so we
will be able to see very clearly the differences.

Definition 2.14 (The S-estimator). The S estimator is defined as

β̂S,n,ρ = argmin
β

{︄
σ ∈ (0, ∞) :

n∑︂
i=1

ρ

(︄
ri(β)

σ

)︄
= K

}︄
,

2. Overview of robust statistics 23

where K = EΦ[ρ], where Φ is the standard normal distribution.

This definition is somewhat more complex than the definitions of previous
estimators, let us therefore shortly contemplate its logic. Suppose we calculate
the value of K. That can be done analytically. For an explicit formula, see
Campbell et al. (1998). Then we can select some β, i.e. some regression plane,
at random and calculate the corresponding residuals. After that, we need to
find s such that the equality in the definition (within the set) holds. We save
the value of s and proceed to another β. If we did this for all possible values
of β, we would select the one that resulted in the smallest value of s. In other
words, we choose the value of β for which the residuals were the least spread.
Notice that while in other definitions we were minimizing a specified value, in
this definition, in the curly bracket, we specify a set and request that value of
β which results in the minimum of the set. We pay special attention to the
definition, because the definition of S-weighted estimator is analogical.

The estimator’s definition specifies properties required of the objective func-
tion ρ, but allows for various functions to be selected, much like M-estimators.
Rousseeuw & Yohai (1984) proposed to use Tukey’s ρ function, which we have
already mentioned in passing. Let us take a look at it, since it will be used in
our simulation study. Tukey’s ρ function is defined as follows.

Definition 2.15 (Tukey’s ρ function). Let c ∈ (0, ∞). Then Tukey’s ρ function is
defined as

ρ(x) =

⎧⎪⎨⎪⎩
x2

2 − x4

2c2 + x6

6c4 for |x| ≤ c

c2

6 for |x| ≥ c.

It is easy to see that for any fixed point x ∈ R and increasing c, Tukey’s ρ

converges to 1
2x2. For large c, therefore, the S-estimator uses in effect the same

objective function as OLS. This point is illustrated in Figure 2.6 where we can
see Tukey’s ρ function for for c = 5, 6, 7, 8 and the uppermost curve is 1

2x2.
Consider what the objective function ρ does. We can imagine the residuals

as points on the x-axis. If they are close to zero, they will be evaluated similarly
as if we were using OLS. If they get farther, however, their influence stops
growing, as ρ is already constant. That means that outlying observations do
have an influence, but only to a limited extent. Once they are evaluated by
the estimator as outliers, the regression plane can get farther away from them
without penalization.

Rousseeuw & Yohai (1984) proved that the asymptotic breakdown point of

2. Overview of robust statistics 24

Figure 2.6: Tukey’s ρ function

-10 -8 -6 -4 -2 0 2 4 6 8 10

0

2

4

6

8

10

12

Source: author’s computations.

S-estimator is 50%. Moreover, for any objective function ρ satisfying 2.1, the
asymptotic breakdown point is λ, if

EΦ[ρ]
ρ(c) = λ

for λ ∈ (0, 1
2). Being mostly interested in the maximum breakdown point

available, that is 50%, and considering Tukey’s ρ function, Rousseeuw & Yohai
(1984) report the value c = 1.547 that yields this result. However, in prac-
tice as well as in simulation, we might be interested in S-estimator with lower
breakdown point, if we are expecting (or simulating) lower degree of contam-
ination. The idea is that healthy observations provide useful information and
therefore should not be suppressed. For this purpose, we shall now embark on
a side-quest of sorts, to estimate all 50 values of c that result in corresponding
integer value of breakdown point of S-estimator. It will be useful to us later in
the simulation study. Let us describe our method.

Our objective is for every λ ∈ {0.01, 0.02, . . . , 0.50} to find cλ > 0 so that

EΦ[ρ]
ρ(cλ) = λ.

For finite sample sizes, EΦ[ρ] can be calculated exactly, see for instance

2. Overview of robust statistics 25

Campbell et al. (1998), but as we are interested in asymptotic breakdown point,
and we do not need extremely precise values of c, we can generate a random
sample (x1, . . . , xn) from standard normal distribution and simply approximate
as

EΦ[ρ] ≈ 1
n

n∑︂
i=1

ρ(xi).

Of course we know that ρ(c) = c2/6, so we obtain the formula

6∑︁n
i=1 ρ(xi)
nc2 = λ.

We cannot isolate c from this formula, so we try different values of c until
the left-hand side is close enough to the right-hand side. An algorithm was
implemented in Matlab and we provide the code in Appendix A. In Table 2.1
we report all the calculated values and the same is depicted in Figure 2.7 where
we have the desired breakdown point on the x-axis and the corresponding c

value on the y-axis. We will make use of these results in our simulation study.

Table 2.1: Approximate value of parameter c in Tukey’s ρ function

λ c λ c λ c λ c λ c
0.01 16.90 0.11 4.90 0.21 3.30 0.31 2.50 0.41 1.94
0.02 12.03 0.12 4.65 0.22 3.20 0.32 2.43 0.42 1.89
0.03 9.83 0.13 4.47 0.23 3.11 0.33 2.37 0.43 1.84
0.04 8.61 0.14 4.27 0.24 3.03 0.34 2.31 0.44 1.80
0.05 7.52 0.15 4.07 0.25 2.93 0.35 2.26 0.45 1.75
0.06 6.91 0.16 3.95 0.26 2.85 0.36 2.20 0.46 1.72
0.07 6.30 0.17 3.80 0.27 2.79 0.37 2.14 0.47 1.68
0.08 5.87 0.18 3.68 0.28 2.70 0.38 2.09 0.48 1.64
0.09 5.51 0.19 3.56 0.29 2.63 0.39 2.04 0.49 1.59
0.10 5.20 0.20 3.42 0.30 2.56 0.40 1.98 0.50 1.54

2. Overview of robust statistics 26

Figure 2.7: Selection of parameter c in Tukey’s ρ function

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

2

4

6

8

10

12

14

16

18

20

Source: author’s computations.

Chapter 3

S-Weighted Estimator

The S-weighted estimator was first introduced by professor Jan Ámos Víšek
(2015) and to this day, literature on the subject is very thin. To the best
of the present author’s knowledge, only five articles have been published con-
cerning the estimator, all of them authored by professor Víšek. They include
the just referenced article S-Weighted Estimators, then Representation of SW-
estimators and Coping with Level and Different Type of Contamination by
SW-Estimator published the following year, and two more papers from 2019,
Asymptotics of S-Weighted Estimators and S-Weighted Instrumental Variables.
To make things even worse, some of these articles are rather difficult to obtain.

Our general discussion of the S-weighted estimator will be somewhat shorter,
since we have established all the preliminaries in the previous chapter, and the
estimator’s definition consists essentially in putting together all the estimators
discussed so far. Let us therefore proceed with the definition.

Definition 3.1 (The S-weighted estimator). The S-weighted estimator is defined
as

β̂SW,n,ρ = argmin
β

{︄
σ ∈ (0, ∞) :

n∑︂
i=1

w
(︃

i − 1
n

)︃
ρ

(︄
r(i)(β)

σ

)︄
= K

}︄
,

where K = EΦ[ρ], where Φ is the standard normal distribution and w is a
weight function.

We can see that this is a modification of the definition of S-estimator. What
is new is the inclusion of the weight function in the sum. We can therefore see
the S-weighted estimator as the combination of LWS and S-estimator, which
was exactly the idea that led to its formulation. Víšek (2015) showed how
LWS and the S-estimator are all covered by S-weighted estimator as its special
cases. Since LMS and LTS can be obtained from LWS by employing appropriate

3. S-Weighted Estimator 28

weight functions, LMS and LTS are also subsumed under S-weighted estimator.
Finally, to turn S-weighted estimator into an S-estimator, one needs merely to
put w(x) = 1, x ∈ [0, 1]. It is in this sense that Víšek (2015) characterizes the
S-weighted estimator as a ”roof” of all the estimators that precede.

Now to the estimator’s properties. Its consistency was proved together with
its proposal for a slightly narrower case where σ is restricted in the definition
to a finite interval [a, b], 0 < a < b < ∞. This however is a technicality
only, because there seem to be no limitations on b, except that it be finite. In
addition to that, in Representation of SW-estimators, Víšek (2016b) proved the
√

n-consistency, so that we know that the rate of convergence of the estimator
is the standard one in this field (recall LMS which suffered from slow rate of
convergence, being only 3

√
n-consistent. In the same paper, the asymptotic

representation of the estimator is derived, facilitating future development of
diagnostic tools.

Some properties of S-weighted estimator follow from its definition and the
fact that the two main components that constitute it, LWS and S-estimator,
also possess them. S-weighted estimator is clearly scale and regression equiv-
ariant for the same reasons that the S-estimator is – the residuals are implicitly
being standardized inside the objective function. The breakdown point seems
to require more attention in future research, since it appears to be barely men-
tioned in the existing literature. This is probably also due to the estimator’s
derivation from LWS and S-estimator, whose breakdown points are known. It
is however an entirely new feature that the S-weighted estimator allows us to
decide what part of the robustness is achieved in S-fashion, that is, by the
objective function ρ, and what part is achieved in the LWS-fashion, that is, by
the weight function w. We shall pay some attention to this in the simulation
study.

Now a crucial problem with this new estimator seems to be its implemen-
tation. In this regard, the present author should like again to express his
gratitude to professor Víšek for very generously providing codes in Matlab,
without which this thesis would not have been possible. The published litera-
ture, however, contains only passing references to the effect that the S-weighted
estimator can be calculated by a straightforward modification of the algorithm
used for LWS and LTS. The only explicit description of thus modified algorithm
that we could discover was in lecture slides from ROBUST 2016 international
statistical conference (Víšek 2016a). We have included a link in the biography
and the slides are also available from the author of this thesis upon request.

3. S-Weighted Estimator 29

Let us see what the modified algorithm presented therein consists in.

1. Select p observations at random and fit a regression plane through them.

2. Calculate S(β̂present) = ∑︁n
i=1 w

(︂
i−1
n

)︂
ρ
(︂

r(i)(β)
σ

)︂
.

3. If S(β̂present) < S(β̂past), go to step 4. Otherwise go to step 5.

4. Reorder the observations by the order of the smallest squared residuals,
estimate new β̂present by weighted Mρ-estimator using weights w and go
to step 2.

5. If the same model has been found for q times or the algorithm has already
gone through r repetitions, end the algorithm, and return β̂ for which
S(β̂) was the smallest. Otherwise go to step 1.

Observe that step 3 is the crucial one here. The algorithm would still work
if we only selected random p-tuple of observations, evaluated the sum from step
2 and saved it if it was the smallest one found so far. That is in essence what
PROGRESS does (see Section 2.3) and the only problem is that it is too slow.
That is why Boček & Lachout (1995) added the inner cycle that iteratively
improves on the randomly selected model from first step. It in fact makes no
difference what estimator is used in step 4, as long as the result is checked in
step 3 as to whether it is closer to the solution of the extremal problem or not.
Of course some estimators can make the algorithm faster, as they converge
faster to the solution, some estimators might not converge to it at all. But as
long as the algorithm returns some result at the end (and provided that the r

in step 5 is sufficiently high), it will return a model that is close to the sought
out minimum (the closest one it could find at any rate).

We shall now turn our attention to simulation studies in which the estimator
has so far been employed. The first article, S-Weighted Estimators presents
the new estimator and offers the proof of its consistency, but contains yet
no numerical study. The four remaining papers all include at least a minor
simulation study.

In Coping with Level and Different Type of Contamination by SW-Estimator,
Víšek (2016b) performs the relatively most systematic simulation that has been
performed so far. He considers the standard linear regression model with con-
stant and four explanatory variables and contaminates the data in three dif-
ferent ways. First by bad leverage points only, then by bad and good leverage

3. S-Weighted Estimator 30

points, and finally by outliers and good leverage points. Each type of contami-
nation is done on five different levels of intensity, namely on 1, 2, 3, 5, and 10%
contamination levels. For each level and type of contamination, the model is
estimated by OLS, S-estimator, W-estimator, and S-weighted estimator. We
do not discuss W-estimator in this thesis, since it is not one of the standard
tools of robust statistics, so let us only repeat after Víšek (2016b) that it is a
modified S-estimator that is estimated only after deleting those observations,
whose Mahalanobis distance from the center of gravity of the whole dataset
exceeds given threshold.

The results show that the S-weighted estimator is able to obtain estimates
closer to the real regression parameters of the uncontaminated population than
the other estimators (most notably S-estimator) whenever good leverage points
were present. This is illustrated by means of a scatter plot which we replicate
in Figure 3.1. The blue filled circles represent the uncontaminated data, the or-
ange diamond-shaped points are the outliers, and the green empty circles depict
good leverage points. All robust methods were able to distinguish outliers and
suppress their influence. But S- and W-estimators, according to Víšek (2016b),
in effect look for the smallest-volume ellipsoid containing a priori given portion
of the data, and thus are led to rejecting the good leverage points, while the
S-weighted estimator includes them. Thus in cases where good leverage points
were present, the S-weighted estimator performed significantly better than S-
and W-estimators. This is the main conclusion which was also reaffirmed in
the simulation studies that followed.

We can present the rest of the simulations in more brevity, since they are
less extensive and bring no conclusions comparable in significance to the one
we just described. Representation of SW-estimators (Víšek 2016c) includes
minor simulation, which considers only contamination by outliers on 1% and
5% levels, with the presence of good leverage points. The standard linear model
is estimated by OLS, S- and S-weighted estimators, the last one surpassing S-
estimator in exactness of estimation. It is worthwhile to mention that even for
1% of contamination the OLS estimates were already completely off.

Asymptotics of S-Weighted Estimators (Víšek 2019a) contains pretty much
the same simulation setup, only investigating more different levels of contam-
ination. Again, due to the presence of outliers and good leverage pooints, the
S-weighted estimator performs better than S-estimator, but strangely this time
the OLS estimates are basically correct and even vary less than those obtained
by S-estimator. The paper includes no detailed discussion of the results of the

3. S-Weighted Estimator 31

Figure 3.1: Structure of contaminated data

-6 -4 -2 0 2 4 6 8 10 12 14
-6

-4

-2

0

2

4

6

8

10

12

14

Source: author’s computations.

simulation, but after experiences from our simulation study, we can attribute
this effect also to the good leverage points. Since the OLS method does not
suppress any observations, the good leverage points exert their strong influence
and force OLS to estimate the correct values.

Finally, S-Weighted Instrumental Variables (Víšek 2019b), as the title sug-
gests, investigates a modified model, which is developed for those situations
where the orthogonality condition is broken. The usual set of estimators is put
to test, namely OLS, S-, W- and S-weighted estimator. Leading to the same
conclusions as previous studies, this simulation is noteworthy (apart from es-
timating a specialized model, different from the basic linear regression in the
preceding articles) for varying the generated sample sizes from 100 to 500 in
100-observations steps.

To summarize, the limited existing literature on S-weighted estimator con-
tains its definition and proof of

√
n-consistency, derives the asymptotic repre-

sentation and tests the estimator’s performance in mostly standard situations,
comparing it primarily to OLS and S-estimator. The main limitation is the
algorithm for the estimator’s calculation as well as its implementation, which

3. S-Weighted Estimator 32

seem to have never been properly published. Further, the existing simulation
studies focus on comparisons of the estimator with S-estimator. No numer-
ical study has been found comparing the estimator’s performance to that of
LWS. Yet, such a comparison is important, firstly since LWS, not S-estimator,
appears to be the state-of-the-art method of robust statistics, and secondly
because the S-weighted estimator is a combination of the two, so a side-by-side
employment of all three methods would be logical. These two tasks, therefore
shall be performed in the following chapters of this thesis.

Chapter 4

Simulation

4.1 Simulation setup
In the previous chapter we have summarized the simulation studies involving
the S-weighted estimator that have been performed so far. We came to the
conclusion that for a full appraisal of the new estimator’s merits, a study should
be conducted to compare its performance not only with the S-estimator but also
with the LWS estimator, as these two are the S-weighted estimator’s ”parents.”
To such a simulation is devoted this section.

Our simulation will follow generally the same patters as that of Víšek
(2016b), the main difference being that we shall include a LWS estimate.
Let us describe the simulated data first. We will be considering a standard
linear model with a constant and four i.i.d. explanatory variables Xk ∼
N(0, 1), k = 1, . . . , 4. The vector of true population parameters will be βtrue =
(1, 2, −3, 4, −5)T . The selection of these parameters is more or less arbitrary,
since all of the estimators we employ are scale and affine equivariant. We
therefore selected integer values that are easy to remember and include both
positive and negative values. The vector of disturbances e is independent of
the explanatory variables and also normally distributed, e ∼ N(0, 1). Putting
this all together, we obtain the model

yi = 1 + 2Xi1 − 3Xi2 + 4Xi3 − 5Xi4 + ei, i = 1, . . . , n.

In selecting the sample size n we kept in mind the computational require-
ments of the whole simulation, and the need to have large n relative to the
dimension of the model p. Parenthetically, let us say explicitly, to prevent any
misunderstanding, that in the model dimension we include the constant, there-

4. Simulation 34

fore the dimension is p = 5. Taking all this into consideration, the sample size
shall be n = 500.

We consider two types of contamination: outliers and leverage points. More-
over, in some scenarios, we also include good leverage points, but those are not
considered contamination, since they strengthen the results of the regression
(if the estimator is able to utilize the information they contain.)

For an outlier, the X values were left the same, but the response variable y

was replaced by

ỹi = −5 (1 + 2Xi1 − 3Xi2 + 4Xi3 − 5Xi4) + ei.

This definition ensures that the values of the X variables are within the main
bulk (except for rare naturally occurring outliers) while the y value is unusual.
We also considered simply adding a constant to shift the outliers alongside
the y-axis like so: ỹ = y + c, but it seems that this would contaminate only
the estimate of intercept. Therefore we decided for this kind of definition of
outliers, which in effect results in part of the data following a different model
with all the parameters being different from the model of the uncontaminated
data.

The leverage points were generated as follows. First we multiplied the
explanatory variables (but not the constant) as X̃ ik = 20Xik, k = 1, 2, 3, 4.
Then the y variable was calculated as

ỹi =

⎧⎪⎨⎪⎩1 + 2X̃ i1 − 3X̃ i2 + 4X̃ i3 − 5X̃ i4 + ei for a good leverage point,

−1
(︂
1 + 2X̃ i1 − 3X̃ i2 + 4X̃ i3 − 5X̃ i4

)︂
+ ei for a bad leverage point.

In other words, the good leverage points follow the same model, only their
values of explanatory variables are extreme, while the bad leverage points follow
a model with the signs switched.

We considered five different combinations of outliers and leverage points,
which we call scenarios. In the first scenario, we contaminate the data by out-
liers only. Then, in the second scenario, we include only bad leverage points.
This allows us to observe the effects of these two different kinds of contamina-
tion separately. Scenario three includes outliers and good leverage points. This
is the case where the S-weighted estimator was observed in the past simula-
tions to outperform the S-estimator, as the latter disregarded the information
provided by good leverage points. The fourth scenario contains both good and

4. Simulation 35

bad leverage points but no outliers. This is to see whether the estimators can
utilize the former and avoid confusion by the latter. Finally, in the fifth and last
scenario we include all of the above, namely outliers, bad leverage points, and
good leverage points. For better orientation, we summarize this in Table 4.1.

Table 4.1: Scenarios

Scenario 1 Only outliers
Scenario 2 Only bad leverage points
Scenario 3 Outliers and good leverage points
Scenario 4 Good and bad leverage points
Scenario 5 Outliers and good and bad leverage points

In each scenario we considered six different levels of contamination, namely
1%, 2%, 3%, 5%, 10%, and 25%. As we have already mentioned, good leverage
points are not considered as contamination, and their number was always the
same as the number of contaminated observations. For instance in scenario 3,
we had 50 outliers and 50 good leverage points for contamination of 10%. In
scenario 5, contamination 2%, we had 5 outliers, 5 bad leverage points (that
is, 10 observations out of 500 were contaminated) and 10 good leverage points.

For each sample, we estimated the model by OLS, LWS, S-estimator and
S-weighted estimator. While the first requires no further comments, the re-
maining three allow selection from various weight and objective functions, and
the algorithms by which they are calculated have flexible rules regarding the
repetitions of inner and outer cycles. Therefore we now need to discuss our
choices of these parameters.

Recalling the definition of the LWS (least weighted squares) estimator

β̂LW S,n,w = argmin
β

n∑︂
i=1

w
(︃

i − 1
n

)︃
r2

(i)(β),

we can see that the weight function w needs to be specified. Throughout
the simulation, we are going to be using the weight function described in Equa-
tion 2.1. It decreases smoothly on [h, g], 0 < h < g < 1. The choice of constants
h and g is described in Section 2.4 and we will follow it here. We device the
following rule. Let κ be the level of contamination, not as percentage now but
as a fraction, so that κ ∈ [0, 0.5). We calculate the constants h and g as

g = 1 − κ − 0.005

4. Simulation 36

h = −0.3 + 1.3g.

This rule was obtained by collecting the values of h and g from previous simu-
lations and regressing g on κ, then h on g (each time with constant) and then
rounding a little. Generally, g is set in such a way that all the contamina-
tion has a chance to receive weights 0 (function w equals 0 on [g, 1]). As we
concluded in Section 2.4, the value of h seems not to have a strong influence
or the results, so we follow the rule obtained from the regression. The slope
coefficient 1.3 means that the interval [h, g] should be a little wider for higher
contamination levels.

In case of the S-estimator

β̂S,n,ρ = argmin
β

{︄
σ ∈ (0, ∞) :

n∑︂
i=1

ρ

(︄
ri(β)

σ

)︄
= K

}︄
,

we are to select the ρ function. We continue with the traditional choice of
Tukey’s ρ function

ρ(x) =

⎧⎪⎨⎪⎩
x2

2 − x4

2c2 + x6

6c4 for |x| ≤ c

c2

6 for |x| ≥ c.

As we discussed in Section 2.5, the constant c determines the breakdown
point (which we treat as the measure of robustness against outliers and leverage
points) of the estimator, and we have calculated the approximate value of c

for every integer value of breakdown point that we might desire (Table 2.1).
However, it turned out in trial simulations that it is better to set c a little lower,
so as to obtain a higher breakdown point than the barest minimum required.
For instance, if the contamination is 10%, then we need the breakdown point
to be more than 10%. Furthermore, looking at simulations such as was done
by Víšek (2016b), where some optimal values of c were estimated by a forward
search, we can confirm that the optimal breakdown point is higher than the
level of contamination. Therefore we decided to set c in such a way that the
resulting breakdown point equals twice the contamination level.

Finally, as the S-weighted estimator

β̂SW,n,ρ = argmin
β

{︄
σ ∈ (0, ∞) :

n∑︂
i=1

w
(︃

i − 1
n

)︃
ρ

(︄
r(i)(β)

σ

)︄
= K

}︄
,

uses both a weight function and an objective function, we have to figure

4. Simulation 37

out both. Strangely, nothing explicit can be found in the existing simulations
with S-weighted estimator. Constants c, h, and g are selected for S-estimator
and LWS, respectively, and then the same values are used for the S-weighted
estimator. Let us consider it. The residuals first go to the objective function ρ,
where the largest ones are suppressed but not quite obliterated, thus achieving
some degree of robustness. But then they are weighted by function w in such
a way that the largest ones are removed completely. Does this not add more
robustness on top of that achieved by the objective function ρ? In other words,
we conjecture that by using the same values of constants c, h, and g, the S-
weighted estimator is calibrated in such a way that it becomes more robust
and potentially less efficient than LWS and S-estimator. To make our results
comparable with those obtained by Víšek (2016b), we keep constants c, h, and
g the same, not deriving separate values for the S-weighted estimator. We try
to answer this issue in a separate part of the simulation.

For each scenario and for each level of contamination, we create m = 100
datasets and estimate the model on each of them by OLS, LWS, S-estimator,
and S-weighted estimator. For each estimator we summarize the results by
arithmetic average and mean squared error (MSE) separately for each estimated
coefficient

β̂
estimator

k = 1
100

100∑︂
j=1

β̂
estimator

k,j , k = 1, . . . , 5,

MSEˆ
(︃

β̂
estimator

k

)︃
= 1

100

100∑︂
j=1

(︃
β̂

estimator

k,j − βtrue
k

)︃2
, k = 1, . . . , 5.

Note that we are using mean squared error and not sample variance or some
other estimate of scale. That is because we are interested in how far on average
the estimates are from the ones we were hoping to obtain. Observe that mean
squared error does not measure the spread of the values. Even if the estimator
reported the same estimates every time we repeated the simulation, MSE would
still be positive if they were systematically different from βtrue.

4. Simulation 38

4.2 Results

4.2.1 Only outliers

Contamination level = 1%, c = 12.15, h = 0.980, g = 0.985
β̂

(OLS)
(MSE) 0.926(0.072) 1.846(0.110) −2.783(0.118) 3.704(0.178) −4.656(0.191)

β̂
(LW S)
(MSE) 0.990(0.020) 2.013(0.014) −2.980(0.018) 3.998(0.022) −4.975(0.016)

β̂
(S)
(MSE) 0.986(0.020) 2.009(0.015) −2.970(0.019) 3.987(0.020) −4.969(0.016)

β̂
(SW)
(MSE) 0.990(0.021) 2.014(0.015) −2.978(0.018) 3.999(0.022) −4.977(0.016)

Contamination level = 2%, c = 9.85, h = 0.968, g = 0.975
β̂

(OLS)
(MSE) 0.897(0.100) 1.773(0.156) −2.603(0.249) 3.507(0.368) −4.452(0.424)

β̂
(LW S)
(MSE) 1.003(0.022) 2.003(0.020) −3.000(0.021) 3.995(0.019) −4.989(0.015)

β̂
(S)
(MSE) 1.004(0.023) 2.006(0.017) −2.987(0.021) 3.984(0.018) −4.974(0.017)

β̂
(SW)
(MSE) 1.003(0.022) 2.000(0.020) −3.001(0.022) 3.995(0.018) −4.985(0.016)

Contamination level = 3%, c = 7.55, h = 0.954, g = 0.965
β̂

(OLS)
(MSE) 0.807(0.168) 1.659(0.265) −2.480(0.383) 3.280(0.708) −4.103(1.013)

β̂
(LW S)
(MSE) 1.004(0.020) 1.997(0.020) −2.996(0.018) 4.016(0.020) −4.995(0.023)

β̂
(S)
(MSE) 0.999(0.018) 1.984(0.020) −2.996(0.018) 4.011(0.018) −4.982(0.022)

β̂
(SW)
(MSE) 1.010(0.020) 1.995(0.022) −3.002(0.019) 4.010(0.022) −4.992(0.024)

Contamination level = 5%, c = 5.15, h = 0.928, g = 0.945
β̂

(OLS)
(MSE) 0.662(0.308) 1.359(0.628) −2.103(1.023) 2.807(1.651) −3.526(2.457)

β̂
(LW S)
(MSE) 1.003(0.023) 1.982(0.025) −3.016(0.022) 3.994(0.022) −4.982(0.020)

β̂
(S)
(MSE) 1.007(0.023) 1.966(0.024) −3.003(0.023) 3.984(0.020) −4.981(0.021)

β̂
(SW)
(MSE) 1.013(0.026) 1.976(0.032) −3.002(0.027) 3.991(0.027) −4.983(0.022)

Contamination level = 10%, c = 2.92, h = 0.863, g = 0.895
β̂

(OLS)
(MSE) 0.443(0.693) 0.809(1.862) −1.164(3.826) 1.499(6.808) −2.074(9.065)

β̂
(LW S)
(MSE) 1.016(0.024) 1.998(0.030) −2.994(0.030) 4.005(0.026) −5.019(0.025)

β̂
(S)
(MSE) 1.035(0.046) 1.977(0.075) −3.023(0.075) 4.025(0.069) −5.053(0.063)

β̂
(SW)
(MSE) 1.016(0.041) 2.018(0.051) −3.009(0.034) 4.016(0.033) −5.027(0.043)

Contamination level = 25%, c = 1.55, h = 0.669, g = 0.745
β̂

(OLS)
(MSE) −0.642(3.245) −1.065(10.237) 1.299(19.347) −1.883(35.453) 2.461(56.666)

β̂
(LW S)
(MSE) 0.990(0.047) 1.990(0.033) −2.993(0.030) 3.979(0.034) −5.009(0.035)

β̂
(S)
(MSE) 0.812(4.824) 2.273(17.168) −1.902(36.794) 2.937(32.411) −3.361(45.118)

β̂
(SW)
(MSE) 1.053(0.252) 1.923(0.375) −3.044(0.382) 3.889(0.251) −5.020(0.367)

4. Simulation 39

In this section we present the main results of the simulation. Let us briefly
inspect the structure of the table, since it will stay the same in all the scenarios.
In each heading we can see the contamination level, beginning with the lowest,
1%, and increasing up to 25%, the highest level of contamination we were
considering. For each level we report the values of the tuning constants, c for
objective function ρ in S- and S-weighted estimators, and constants h and g

which determine the shape of weight function w utilized by LWS and S-weighted
estimator. Below the heading, we have the results, always beginning with OLS
as the baseline against which we compare the robust methods, followed by
LWS, S- and S-weighted estimates. Each cell contains the average estimate
and small, in the parenthesis, the mean squared error. The leftmost column of
the results contains the estimate of intercept and the remaining columns are
the four slope estimates from β1 to β4.

Looking at the results for scenario 1, where we contaminated the data only
by outliers, we can first notice that all three robust estimators performed better
than OLS. Even 1% contamination already shifts the OLS estimates’ average
values and causes MSE to be higher than that of robust methods by an order
of magnitude. Apart from the highest contamination level, all three robust
methods return estimates close to the true values of the parameters and do so
with relatively small MSE. At contamination levels up to 5%, the results of
LWS, S-, and S-weighted estimators are basically indistinguishable. At level
10%, the S-estimator begins to suffer from slightly larger MSE as compared
to other two robust estimators. At 25% contamination, the S-estimators MSE
skyrockets into double digits and even its average estimates are somewhat off.
We are at a loss to find an explanation for this failure. The c constant that
we used for this level of contamination, c = 1.55 in fact results in the theoretic
breakdown point of S-estimator being close to 50%. Perhaps we have made
the estimator too robust, sacrificing too much of its efficiency. But the same
value of c was used for the S-weighted estimator which seems to be doing much
better at this contamination level.

Looking now at the S-weighted estimator’s performance, we can conclude
that up to 10% of contamination the results are indistinguishable from those
of LWS. At 25% contamination, the S-weighted estimator is still robust, its
estimates are close to the real values, but the MSE here is ten times that of
LWS. We perform two-sided Kolmogorov-Smirnov test to confirm this finding.
For details on this test, see for example Bartoszynski & Niewiadomska-Bugaj
(2008). In Table 4.2 we can see the p-values from all the individual test, which

4. Simulation 40

were performed separately for each parameter and each contamination level.
The values are generally very high, except for 25% contamination where we can
reject the null hypothesis of the S-weighted estimates and LWS estimates being
from the same distribution. Therefore at the highest contamination level, we
conclude that the S-weighted estimator has performed slightly worse than the
LWS.

Table 4.2: Kolmogorov-Smirnov test, scenario 1

β1 β2 β3 β4 β5
1% 0.9921 1.0000 0.9995 0.9921 0.9995
2% 0.9995 0.9921 1.0000 0.9610 0.9610
3% 0.9995 0.9610 0.9921 0.5560 0.8938
5% 0.6766 0.6766 0.5560 0.9610 0.8938
10% 0.5560 0.5560 0.8938 0.4431 0.5560
25% 0.0205 0.0205 0.0003 0.0010 0.0006

To add one final, minor observation, we can notice that more often than
not, all three robust estimates seem to be deviated in the same direction. All
three of them are either a little higher than the true value, or all three of them
are a little lower. We conjecture that this is on account of the structure of the
data caused by the artificial contamination, but to give a deeper analysis is
beyond this thesis’ scope.

4. Simulation 41

4.2.2 Only bad leverage points

Contamination level = 1%, c = 12.15, h = 0.980, g = 0.985
β̂

(OLS)
(MSE) 1.077(0.307) −0.751(10.680) 1.096(20.695) −1.139(30.202) 0.992(40.235)

β̂
(LW S)
(MSE) 0.990(0.016) 2.002(0.022) −3.005(0.023) 4.000(0.019) −5.007(0.023)

β̂
(S)
(MSE) 0.992(0.016) 1.995(0.021) −2.995(0.020) 4.002(0.020) −5.004(0.020)

β̂
(SW)
(MSE) 0.991(0.017) 2.007(0.026) −3.005(0.023) 4.000(0.020) −5.004(0.024)

Contamination level = 2%, c = 9.85, h = 0.968, g = 0.975
β̂

(OLS)
(MSE) 0.989(0.330) −1.238(11.315) 1.905(25.041) −2.587(44.426) 3.299(70.096)

β̂
(LW S)
(MSE) 1.023(0.022) 1.990(0.023) −3.018(0.022) 3.984(0.026) −4.996(0.026)

β̂
(S)
(MSE) 1.025(0.020) 1.989(0.021) −3.019(0.019) 3.982(0.023) −5.007(0.018)

β̂
(SW)
(MSE) 1.021(0.023) 1.995(0.023) −3.011(0.025) 3.984(0.028) −4.994(0.025)

Contamination level = 3%, c = 7.55, h = 0.954, g = 0.965
β̂

(OLS)
(MSE) 0.921(0.362) −1.634(13.343) 2.325(28.549) −3.192(51.901) 3.924(79.919)

β̂
(LW S)
(MSE) 1.018(0.020) 2.008(0.027) −2.995(0.021) 3.995(0.020) −5.003(0.026)

β̂
(S)
(MSE) 1.015(0.019) 2.005(0.020) −3.002(0.014) 3.996(0.013) −4.998(0.023)

β̂
(SW)
(MSE) 1.021(0.022) 2.008(0.030) −2.997(0.025) 3.990(0.021) −5.009(0.029)

Contamination level = 5%, c = 5.15, h = 0.928, g = 0.945
β̂

(OLS)
(MSE) 1.003(0.457) −1.775(14.277) 2.700(32.513) −3.569(57.327) 4.514(90.544)

β̂
(LW S)
(MSE) 0.989(0.025) 2.038(0.027) −3.032(0.029) 4.027(0.024) −4.992(0.019)

β̂
(S)
(MSE) 0.992(0.022) 2.023(0.018) −3.032(0.023) 4.024(0.023) −5.007(0.021)

β̂
(SW)
(MSE) 0.996(0.030) 2.028(0.031) −3.026(0.031) 4.018(0.029) −5.005(0.023)

Contamination level = 10%, c = 2.92, h = 0.863, g = 0.895
β̂

(OLS)
(MSE) 1.069(0.438) −1.906(15.262) 2.858(34.325) −3.802(60.876) 4.746(94.982)

β̂
(LW S)
(MSE) 1.021(0.023) 1.968(0.043) −2.982(0.038) 4.009(0.044) −4.971(0.039)

β̂
(S)
(MSE) 1.014(0.041) 2.024(0.053) −2.977(0.070) 4.002(0.056) −4.935(0.071)

β̂
(SW)
(MSE) 1.012(0.043) 1.977(0.045) −3.012(0.061) 4.009(0.064) −4.944(0.056)

Contamination level = 25%, c = 1.55, h = 0.669, g = 0.745
β̂

(OLS)
(MSE) 0.960(0.416) −1.971(15.768) 2.947(35.372) −3.935(62.972) 4.924(98.488)

β̂
(LW S)
(MSE) 0.995(0.040) 1.962(0.115) −3.011(0.116) 4.010(0.061) −4.968(0.066)

β̂
(S)
(MSE) 1.053(1.574) 2.076(4.129) −3.543(17.310) 3.986(1.554) −4.877(3.398)

β̂
(SW)
(MSE) 1.061(0.409) 1.824(3.119) −2.901(1.686) 3.969(1.557) −4.894(0.981)

4. Simulation 42

Having contaminated the data with bad leverage points exclusively, we can
see that the OLS method is completely lost even at 1% contamination level. At
25%, its estimates have the correct absolute value, but the signs are switched,
which reflects the way we have defined the bad leverage points. Notice however,
that at the highest contamination level, OLS still suffers from high MSE, which
suggests that the bad leverage points are not strong enough to completely
overpower the healthy observations. It seems that the leverage points here have
convinced OLS that they represent the true model, but the uncontaminated
data still function as strong noise.

The robust methods have successfully identified the bad leverage points
as contamination and suppressed their influence. At contamination levels up
to 5% there is no discernible difference between them. At 10%, LWS seems to
perform ever so slightly better than the other two estimators, which is reflected
in the somewhat smaller p-values in Kolmogorov-Smirnov tests. At level 25%
we can reject the null hypothesis that LWS and S-weighted estimator give
estimates from the same population, with LWS being the more successful one.
Recalling that the S-weighted estimator was developed as a combination of
LWS and S-estimator, we can conjecture that perhaps its S-element is at fault
here, since the results of S-estimator are worse still. Nevertheless, we must
acknowledge that all three robust methods have provided reliable estimates at
all levels of contamination.

Table 4.3: Kolmogorov-Smirnov test, scenario 2

β1 β2 β3 β4 β5
1% 0.9995 0.9995 0.9995 0.9921 0.9995
2% 0.9995 0.9921 0.9921 0.9995 0.9921
3% 0.9921 0.9995 0.8938 0.9921 0.9921
5% 0.9610 0.5560 0.7942 0.7942 0.9610
10% 0.5560 0.9610 0.6766 0.4431 0.4431
25% 0.0003 0.0000 0.0006 0.0001 0.0030

4. Simulation 43

4.2.3 Outliers and good leverage points

Contamination level = 1%, c = 12.15, h = 0.980, g = 0.985
β̂

(OLS)
(MSE) 0.963(0.055) 1.963(0.021) −2.902(0.030) 3.915(0.026) −4.893(0.027)

β̂
(LW S)
(MSE) 1.002(0.015) 1.999(0.008) −2.987(0.006) 4.005(0.007) −4.991(0.008)

β̂
(S)
(MSE) 0.997(0.015) 1.986(0.024) −2.983(0.014) 3.997(0.020) −4.977(0.024)

β̂
(SW)
(MSE) 1.002(0.016) 1.996(0.009) −2.986(0.006) 4.005(0.007) −4.990(0.008)

Contamination level = 2%, c = 9.85, h = 0.968, g = 0.975
β̂

(OLS)
(MSE) 0.892(0.101) 1.965(0.012) −2.946(0.012) 3.920(0.015) −4.908(0.017)

β̂
(LW S)
(MSE) 0.996(0.018) 2.009(0.005) −2.994(0.004) 3.990(0.004) −4.997(0.004)

β̂
(S)
(MSE) 0.991(0.018) 1.997(0.023) −2.985(0.017) 3.983(0.019) −4.970(0.022)

β̂
(SW)
(MSE) 0.999(0.020) 2.011(0.005) −2.994(0.004) 3.989(0.004) −4.996(0.004)

Contamination level = 3%, c = 7.55, h = 0.954, g = 0.965
β̂

(OLS)
(MSE) 0.798(0.184) 1.955(0.007) −2.942(0.008) 3.938(0.009) −4.896(0.018)

β̂
(LW S)
(MSE) 1.008(0.020) 2.000(0.002) −2.991(0.002) 4.005(0.002) −5.000(0.002)

β̂
(S)
(MSE) 0.998(0.020) 2.023(0.017) −2.978(0.017) 4.010(0.018) −4.994(0.017)

β̂
(SW)
(MSE) 1.003(0.021) 1.999(0.002) −2.991(0.002) 4.004(0.002) −5.001(0.002)

Contamination level = 5%, c = 5.15, h = 0.928, g = 0.945
β̂

(OLS)
(MSE) 0.688(0.260) 1.956(0.006) −2.947(0.005) 3.932(0.008) −4.916(0.009)

β̂
(LW S)
(MSE) 1.021(0.017) 1.999(0.001) −2.997(0.001) 4.002(0.001) −4.997(0.001)

β̂
(S)
(MSE) 1.017(0.018) 2.018(0.017) −2.979(0.020) 3.982(0.017) −4.975(0.019)

β̂
(SW)
(MSE) 1.029(0.023) 2.000(0.001) −2.999(0.001) 4.002(0.001) −4.998(0.001)

Contamination level = 10%, c = 2.92, h = 0.863, g = 0.895
β̂

(OLS)
(MSE) 0.470(0.731) 1.969(0.002) −2.950(0.004) 3.936(0.005) −4.921(0.008)

β̂
(LW S)
(MSE) 1.012(0.025) 1.996(0.001) −2.998(0.001) 4.001(0.001) −5.003(0.001)

β̂
(S)
(MSE) 1.006(0.043) 1.973(0.057) −2.945(0.072) 3.987(0.059) −4.982(0.054)

β̂
(SW)
(MSE) 1.005(0.042) 1.999(0.001) −2.998(0.001) 3.998(0.001) −5.002(0.001)

Contamination level = 25%, c = 1.55, h = 0.669, g = 0.745
β̂

(OLS)
(MSE) −0.438(3.081) 1.969(0.001) −2.956(0.003) 3.936(0.005) −4.922(0.007)

β̂
(LW S)
(MSE) 0.992(0.039) 1.999(0.000) −3.003(0.000) 3.998(0.000) −4.999(0.000)

β̂
(S)
(MSE) 0.962(0.207) 1.840(2.895) −3.037(0.987) 4.034(0.590) −5.036(1.953)

β̂
(SW)
(MSE) 1.085(0.473) 1.964(0.137) −2.974(0.223) 4.024(0.066) −5.045(0.116)

4. Simulation 44

In the third scenario, we have contaminated the data by outliers, and for
every outlier we have included one good leverage point. This is the type of
data on which the S-weighted estimator outperformed the S-estimator in past
simulations. Let us see whether our results confirm this. Beginning with a
general overview, we can say that all methods, even OLS, have returned correct
estimates, except, in case of OLS, the intercept. For some reason the good
leverage points attract the regression plane strongly enough to enforce the
correct slope estimates but not the correct intercept. The robust methods do
not suffer from this nearly as much, but we can notice in case of LWS and S-
weighted estimator that the MSE on the intercept is higher than on the other
coefficients. This is not the case with S-estimator, which seems to be having
no more problem with the intercept than with the slope. In all contamination
levels, the S-estimator has a significantly higher MSE than the other two robust
methods, which is one of the results we were curious to see confirmed. LWS
and S-weighted estimator confirm their ability to utilize the information in good
leverage points, while the S-estimator fails to do so. This is also the reason
why S-estimator’s MSE is of the same magnitude for all five coefficients: the
leverage points helped OLS, LWS and S-weighted estimator in estimating the
right values of slope estimates, but not with the intercept, where their MSE is
mostly comparable to that of S-estimator. As to the comparison between LWS
and S-weighted estimator, the situation is similar to the previous scenarios:
at contamination levels up to 5%, they are basically the same, at 10% LWS
becomes slightly better, and it is significantly better at 25%. Again, note the
p-values of Kolmogorov-Smirnov test in Table 4.4.

Table 4.4: Kolmogorov-Smirnov test, scenario 3

β1 β2 β3 β4 β5
1% 1.0000 0.9995 1.0000 0.9921 1.0000
2% 1.0000 1.0000 0.9921 1.0000 1.0000
3% 0.7942 0.9610 0.9995 0.9610 0.9921
5% 0.6766 0.7942 0.9921 0.8938 0.6766
10% 0.5560 0.1400 0.5560 0.3439 0.6766
25% 0.0470 0.0000 0.0002 0.0002 0.0000

4. Simulation 45

4.2.4 Good and bad leverage points

Contamination level = 1%, c = 12.15, h = 0.980, g = 0.985
β̂

(OLS)
(MSE) 0.835(0.500) 0.203(7.456) −0.420(12.459) 0.673(17.128) −0.854(25.364)

β̂
(LW S)
(MSE) 0.997(0.020) 1.981(0.009) −2.991(0.008) 3.997(0.007) −5.001(0.007)

β̂
(S)
(MSE) 0.999(0.019) 1.978(0.019) −2.974(0.021) 3.991(0.020) −4.991(0.015)

β̂
(SW)
(MSE) 0.997(0.021) 1.980(0.009) −2.992(0.008) 3.998(0.007) −5.001(0.007)

Contamination level = 2%, c = 9.85, h = 0.968, g = 0.975
β̂

(OLS)
(MSE) 0.876(1.230) −0.000(6.805) −0.322(10.351) 0.561(15.078) −0.128(27.265)

β̂
(LW S)
(MSE) 0.986(0.024) 2.003(0.003) −2.995(0.003) 4.000(0.003) −5.002(0.004)

β̂
(S)
(MSE) 0.987(0.024) 1.976(0.018) −2.986(0.020) 3.978(0.015) −4.993(0.022)

β̂
(SW)
(MSE) 0.990(0.023) 2.003(0.004) −2.995(0.003) 3.998(0.004) −5.004(0.004)

Contamination level = 3%, c = 7.55, h = 0.954, g = 0.965
β̂

(OLS)
(MSE) 1.155(2.084) −0.100(6.777) 0.061(11.783) 0.074(17.769) −0.416(23.776)

β̂
(LW S)
(MSE) 1.031(0.018) 2.004(0.002) −2.999(0.002) 4.002(0.002) −5.003(0.002)

β̂
(S)
(MSE) 1.028(0.018) 2.024(0.018) −3.006(0.019) 3.992(0.023) −4.998(0.018)

β̂
(SW)
(MSE) 1.030(0.020) 2.003(0.002) −2.998(0.002) 4.003(0.002) −5.003(0.002)

Contamination level = 5%, c = 5.15, h = 0.928, g = 0.945
β̂

(OLS)
(MSE) 0.631(3.371) 0.011(5.218) −0.226(8.841) 0.034(17.065) −0.195(24.632)

β̂
(LW S)
(MSE) 0.991(0.021) 1.996(0.002) −3.002(0.001) 4.000(0.001) −4.997(0.001)

β̂
(S)
(MSE) 0.996(0.021) 2.003(0.024) −3.006(0.022) 3.988(0.024) −5.021(0.026)

β̂
(SW)
(MSE) 0.989(0.028) 1.996(0.002) −3.000(0.001) 4.001(0.001) −4.995(0.001)

Contamination level = 10%, c = 2.92, h = 0.863, g = 0.895
β̂

(OLS)
(MSE) 0.988(7.269) 0.020(4.661) 0.106(10.336) 0.053(16.291) −0.179(23.906)

β̂
(LW S)
(MSE) 0.986(0.023) 2.002(0.000) −3.001(0.001) 3.999(0.001) −4.998(0.001)

β̂
(S)
(MSE) 0.994(0.031) 2.014(0.040) −3.024(0.054) 4.016(0.043) −5.012(0.050)

β̂
(SW)
(MSE) 1.000(0.039) 1.999(0.001) −2.996(0.002) 4.000(0.001) −4.996(0.001)

Contamination level = 25%, c = 1.55, h = 0.669, g = 0.745
β̂

(OLS)
(MSE) 1.581(21.526) 0.052(4.084) 0.012(9.348) −0.008(16.295) −0.000(25.408)

β̂
(LW S)
(MSE) 0.959(0.041) 1.999(0.000) −2.999(0.000) 4.000(0.000) −5.000(0.000)

β̂
(S)
(MSE) 0.947(0.198) 2.084(0.351) −3.012(0.479) 4.055(0.376) −4.878(0.393)

β̂
(SW)
(MSE) 0.715(4.275) 1.767(0.878) −2.754(1.731) 3.682(2.910) −4.560(5.156)

4. Simulation 46

Having contaminated the data with bad leverage points, and at the same
time countering their effect with good leverage points, we are interested to
see how well the estimators can ignore the former and pay heed to the latter.
Unsurprisingly, we observe that the OLS estimator can not do the first. As
the contamination level rises, the effects of the good and bad leverage points
cancel out and the slope estimates of OLS tend to zero. The intercept seems
unaffected by leverage points much like in the previous scenarios, and there-
fore here the OLS estimates remain more or less correct. LWS and S-weighted
estimator, on the other hand, have successfully distinguished the good from
the bad and report correct values of all estimates with very small MSE. The
exception again being the 25% level of contamination, where S-weighted esti-
mator performs worse than LWS both in higher MSE and in having the average
estimate farther away from the correct value. Kolmogorov-Smirnov test con-
firms this description. The S-estimator returns the correct values of estimates
for all contamination levels, although its MSE is generally higher. Consistent
with Víšek (2016b), we attribute this tho the fact that S-estimator disregards
any leverage points, good or bad, and therefore obtains good results but with
higher MSE.

Table 4.5: Kolmogorov-Smirnov test, scenario 4

β1 β2 β3 β4 β5
1% 0.9921 1.0000 0.9921 1.0000 0.9995
2% 0.9921 0.9995 1.0000 0.9995 1.0000
3% 0.9610 0.9921 0.9921 0.9610 0.9921
5% 0.9610 0.9921 0.8938 0.9610 0.7942
10% 0.1400 0.4431 0.1930 0.3439 0.1400
25% 0.0002 0.0000 0.0000 0.0000 0.0000

4. Simulation 47

4.2.5 Outliers and good and bad leverage points

Contamination level = 1%, c = 12.15, h = 0.980, g = 0.985
β̂

(OLS)
(MSE) 1.039(0.304) 1.418(6.570) −1.880(6.181) 2.299(8.454) −2.414(13.433)

β̂
(LW S)
(MSE) 0.994(0.019) 1.999(0.008) −2.989(0.008) 4.005(0.007) −5.011(0.008)

β̂
(S)
(MSE) 0.992(0.018) 1.976(0.023) −2.997(0.015) 3.988(0.017) −5.000(0.018)

β̂
(SW)
(MSE) 0.995(0.019) 2.005(0.009) −2.988(0.009) 4.009(0.006) −5.008(0.007)

Contamination level = 2%, c = 9.85, h = 0.968, g = 0.975
β̂

(OLS)
(MSE) 1.160(1.184) 0.908(4.806) −1.239(6.966) 1.255(12.333) −1.714(15.416)

β̂
(LW S)
(MSE) 0.994(0.026) 1.991(0.003) −3.004(0.003) 3.991(0.003) −5.001(0.002)

β̂
(S)
(MSE) 0.996(0.024) 1.984(0.025) −2.967(0.020) 3.979(0.018) −5.003(0.023)

β̂
(SW)
(MSE) 0.993(0.027) 1.990(0.003) −3.004(0.003) 3.991(0.003) −5.000(0.002)

Contamination level = 3%, c = 7.55, h = 0.954, g = 0.965
β̂

(OLS)
(MSE) 0.901(1.317) 0.905(3.822) −1.007(6.600) 1.584(8.132) −2.063(11.525)

β̂
(LW S)
(MSE) 1.009(0.022) 2.001(0.003) −3.002(0.002) 4.001(0.002) −4.999(0.003)

β̂
(S)
(MSE) 1.009(0.022) 2.016(0.023) −3.003(0.022) 3.993(0.022) −4.996(0.023)

β̂
(SW)
(MSE) 1.012(0.022) 2.001(0.003) −3.003(0.002) 4.001(0.002) −5.000(0.003)

Contamination level = 5%, c = 5.15, h = 0.928, g = 0.945
β̂

(OLS)
(MSE) 0.875(2.885) 0.778(2.979) −1.120(5.100) 1.280(9.350) −1.629(13.080)

β̂
(LW S)
(MSE) 0.990(0.025) 2.000(0.001) −2.996(0.002) 4.000(0.001) −4.997(0.001)

β̂
(S)
(MSE) 0.994(0.020) 1.985(0.018) −3.010(0.025) 4.020(0.023) −4.971(0.024)

β̂
(SW)
(MSE) 0.990(0.027) 2.003(0.001) −2.995(0.002) 3.998(0.001) −4.997(0.001)

Contamination level = 10%, c = 2.92, h = 0.863, g = 0.895
β̂

(OLS)
(MSE) 0.553(5.715) 0.619(2.665) −0.911(5.131) 1.320(8.031) −1.728(11.548)

β̂
(LW S)
(MSE) 0.994(0.019) 1.996(0.001) −2.998(0.001) 3.998(0.001) −5.005(0.001)

β̂
(S)
(MSE) 0.990(0.036) 2.000(0.042) −3.022(0.045) 3.990(0.042) −5.048(0.039)

β̂
(SW)
(MSE) 0.981(0.043) 1.997(0.001) −3.000(0.001) 3.998(0.001) −5.004(0.001)

Contamination level = 25%, c = 1.55, h = 0.669, g = 0.745
β̂

(OLS)
(MSE) −0.482(16.238) 0.729(1.924) −0.994(4.257) 1.387(7.131) −1.657(11.518)

β̂
(LW S)
(MSE) 0.988(0.036) 2.002(0.000) −2.997(0.000) 3.999(0.000) −5.000(0.000)

β̂
(S)
(MSE) 1.110(0.463) 2.039(0.359) −2.983(0.384) 3.949(0.352) −4.870(0.386)

β̂
(SW)
(MSE) 1.035(0.420) 1.918(0.410) −2.988(0.232) 3.903(0.515) −5.127(0.720)

4. Simulation 48

In the final contamination scenario, we include everything. Outliers, bad
leverage points, and good leverage points. Again starting with OLS, we can see
that its estimates have decreased in absolute value, much like they did in the
previous scenario, but they retain the correct sign. This may be explained by
there being as many good leverage points as bad leverage points and outliers
combined. Thus the effect of the good leverage points has been stronger. Other-
wise this scenario brings nothing new compared to the previous ones. LWS and
S-weighted estimator bring excellent results for up to 10% contamination, and
in case of 25% the LWS performs better. The S-estimator gives good results
throughout the different contamination levels, but has systematically higher
MSE than LWS, and, except for the 25% case, also than S-weighted estimator.

Table 4.6: Kolmogorov-Smirnov test, scenario 5

β1 β2 β3 β4 β5
1% 1.0000 0.9921 0.9921 0.9995 0.9921
2% 0.9610 0.9921 0.9995 0.9921 0.9610
3% 0.9610 0.9995 0.9921 0.9995 0.9610
5% 0.8938 0.6766 0.9921 0.9610 0.8938
10% 0.2606 0.1930 0.3439 0.6766 0.0994
25% 0.0030 0.0000 0.0000 0.0000 0.0000

4.2.6 Recapitulation

Let us briefly summarize our methodology and our findings in this simula-
tion study. We have generated m = 100 samples of data for each type and
level of contamination. Considered were five types and six levels of contami-
nation, that is altogether thirty cases, each one simulated one hundred times,
which gives us 3000 datasets. On each dataset, we estimated the standard lin-
ear regression model with intercept and obtained estimates by means of OLS,
LWS S-estimator and S-weighted estimator. The estimates belonging to the
same type and level of contamination were then summarized by means of their
arithmetic average and mean squared error. Since we were most interested
in the difference between LWS and S-weighted estimates, we performed the
Kolmogorov-Smirnov test on the null hypothesis that these two estimates are
from the same distribution.

There has been a number of observations we have made on the results.
Beginning with the OLS method, we saw that it indeed is not robust to any
kind of contamination, least of all bad leverage points. Good leverage points,

4. Simulation 49

on the other hand, were able to force OLS to estimate the correct values,
simply by virtue of not being able to resist any influential observations. The
robust methods did generally perform well in contamination level up to 10%,
returning approximately the correct values of estimators and maintaining small
MSE. The S-estimator and S-weighted estimator usually had worse results in
the 25% contamination case. This might be because of too high breakdown
point which we have set to be twice the contamination, meaning in this case
50%, so the two estimators have perhaps sacrificed too much efficiency. In none
of the scenarios have we found a case of the S-weighted estimator outperforming
the LWS. In most scenarios they reported essentially the same results up to 5%
contamination, on 25% the S-weighted estimator performed worse than LWS.
As to the issue of good leverage points, LWS and S-weighted estimator did prove
to be better suited to utilize their information and obtain stronger results than
S-estimator. This effect only took place in the case of slope estimates, the good
leverage points seemed to provide no help in estimating the intercept.

Generally speaking, we have observed in the behavior of the S-weighted
estimator similarities with both LWS (mainly for smaller contamination levels
and in their ability to use good leverage points to their advantage) and with
S-estimator (mainly in the higher levels of contamination, where both estima-
tors seemed to be having more trouble than LWS.) This is consistent with the
S-weighted estimator being defined as a combination of the two, therefore inher-
iting properties from each. Overall however, we must say that LWS appeared
to be the most reliable and efficient of the three estimators.

Chapter 5

Implementation of S-weighted
estimator in Python

We have remarked earlier that the main practical problem with S-weighted
estimator is lack of available implementation, or even a description of an al-
gorithm by which the estimator is to be calculated. That is why we decided
to include in this thesis our own implementation of the estimator. We have
selected Python to be the programming language in which our implementation
is to be taking place. The code can be found in Appendix B and the author
encourages anybody to use it.

To see in detail what the program does, let us first overview the code from
first line to the last. After that, it will be easy to explain the program as a
whole. We will be citing parts from it here and interjecting our comments.
For the whole code, refer to the above mentioned Appendix B. We begin by
importing the necessary packages.

import numpy as np
import math
from random import seed
from random import gauss
from random import randint
from random import sample
from random import shuffle

The program uses numpy extensively, as most of the commands are opera-
tions with arrays. After that, the next five lines are not absolutely necessary
for the function, they are included in order for the accompanying example code

5. Implementation of S-weighted estimator in Python 51

to be functional. The only function imported here that appears in the main
part of the program is shuffle from the random package. After importing the
packages, we start defining the main function, SW, which contains the whole
rest of the program.

def SW(X,Y,w,c,max_inner,max_outer,max_match):

The entire estimator is implemented as a function which returns nothing
but the estimated regression coefficients. Let us take a look at the arguments.
The function takes the matrix of explanatory variables X, the vector with the
explained variable Y, and the vector of weights w, all as numpy arrays. This
allows the user to define the weight function according to their preferences.
Our sample example code provides a function that calculates vector w based
od Tukey’s ρ function, as we did in the simulation. It takes as arguments only
the constants h and g and the sample size n.

We do not, however allow the user to choose the objective function, as we
have coded Tukey’s ρ function into the workings of the program. The user
only calibrates it by selecting the constant c. In this, the previous chapters
of this thesis can be their guide. The remaining three arguments are the con-
stants that determine the maximum number of repetitions of the algorithm’s
cycles. The inner cycle is stopped after max_inner repetitions, or after it stops
finding better models, whichever comes first. The outer cycle is stopped after
max_outer repetitions or when the same best model has been found max_match
times. Needless to say that these last three arguments should be positive in-
tegers. Experience suggests that setting all three of them to 20 brings reliable
results.

Inside the main function, we begin by defining a number of inner functions
that make the the workings of the algorithm easier to understand and the
whole code more legible. We will briefly comment on each one in turn. They
themselves follow no particular order and could be ordered differently in the
code.

def select_p(X,Y,p,n):
sez = [i for i in range(n)]
shuffle(sez)
SI = [i < p for i in sez]
X_p = X[SI]
Y_p = Y[SI]
return [X_p, Y_p]

5. Implementation of S-weighted estimator in Python 52

We already know from previous chapters that each repetition of the outer
cycle begins with selecting p observations randomly. Function select_p() does
just that. It takes as arguments the dataset X, Y, and its dimensions p and n,
that the outer function determines automatically. The function’s outputs are
arrays X and Y with all but p rows omitted.

def OLS(X,Y):
b_OLS = (X’X)^(-1)X’Y
Xt = X.transpose()
B = np.matmul(Xt,X)
B = np.linalg.inv(B)
B = np.matmul(B,Xt)
B = np.matmul(B,Y)
return B

Function OLS() requires hardly any explanation. Although we had to use
np.matmul() successively, so the computation process is not as obvious as it
would be for example in Matlab, it is still clear that what we are doing here
is to use the well known formula (X ′X)−1X ′y by which the OLS estimate is
obtained. Therefore the function returns a single array of dimension p, which
is the OLS estimate of the regression coefficients.

def objective(r,c):
m = r.shape[0]
C = [c for i in range(m)]
d = np.array([min(r[i], C[i]) for i in range(m)])
rho = (d**2)/2 - (d**4)/(2*(c**2)) + (d**6)/(6*(c**4))
return rho

Function objective() takes a vector of points r and calculates the values
of Tukey’s ρ function with parameter c at those points. Normally we would
put just a one-dimensional arguent in Tukey’s ρ, but here it is convenient to
call the function just once for the whole vector of residuals and receive all the
values in one vector.

def K_estim(c):
n = 1000
K = np.random.normal(loc=0, scale=1, size=n)
K = objective(K,c)

5. Implementation of S-weighted estimator in Python 53

K = sum(K)/n
return K

This function, K_estim, estimates the right-hand side of the equality in 3.1.
We have said that it can be calculated analytically, the formula can be found
in Campbell et al. (1998), but that is not necessary for this purpose. Here we
estimate it on a random sample of size 1000 from standard normal distribution,
which gives sufficiently close results. This is a potential opportunity for further
development, since the direct calculation might make the algorithm faster. The
output of this function is then used by function S_estim which we shall describe
now.

def S_estim(n,w,c,r_s,K):
S_small = 0
S_big = 10000
r_ss = r_s**(0.5)
summa = 0
while abs(summa - K) > 0.01:

S = (S_small + S_big)/2
r = r_ss/S
rho_r = objective(r,c)
summa = np.dot(w,rho_r)
if summa > K:

S_small = S
if summa < K:

S_big = S
return S

In this function, S_estim, we calculate the σ from 3.1 which is to be min-
imized. Therefore, the output of this function is that quantity by which the
algorithm assesses the just estimated model’s worth. Let us inspect the logic of
this function in somewhat more detail. Recall that in 3.1, the nature of func-
tion ρ prevents the equality from being solved for constant σ and then simply
calculated. Instead, we have to try different σ’s until we find one for which the
left-hand side of the equality is sufficiently close to the right-hand side. Recall-
ing also the shape of function ρ, and the fact that σ is in the denominator, we
see that in normal circumstances, the left-hand side is decreasing in σ. From
now on, we shall be referring to the left-hand side as summa, since that is the
name given to it in the code.

5. Implementation of S-weighted estimator in Python 54

At the beginning of our approximation, we set two values of potential σ,
S_small and S_big. The algorithm needs S_big to be higher than the σ we
are looking for, so for some purposes our value of 10000 might not be sufficient,
but we could not use infinity. In the next step, we take the average between
S_big and S_small and calculate summa. If summa is larger than the right-hand
side value K, then we need a larger σ. That means that the σ we just used is
too small, and so we can use its value to be the new S_small. Then we try
the arithmetic average between S_big and the new S_small again, and so we
iterate until we find the value of σ which is close enough to the solution of the
equality in 3.1. It sounds complicated, but since each step divides the distance
by 2, the algorithm can find an appropriate σ rather quickly.

def WLS(X,Y,w):
b_WLS = (X’WX)^(-1)X’WY
W = np.diag(w)
Xt = X.transpose()
B = np.matmul(Xt,W)
B = np.matmul(B,X)
B = np.linalg.inv(B)
B = np.matmul(B,Xt)
B = np.matmul(B,W)
B = np.matmul(B,Y)
return B

Function WLS() takes the dataset X and Y, and a vector of weights and
calculates the weighted least squares estimate. The output value is the array
of estimates of dimension p.

def ordered_r(X,Y,b):
r = (Y - np.matmul(X,b))**2
r_s = np.sort(r)
order = np.argsort(r)
return [r_s, order]

Function ordered_r() takes the data and a vector of coefficients obtained
from previous regression and calculates the squared residuals from that regres-
sion. Then it reorders them from smallest to largest and returns a list of two
arrays. First is the vector of ordered squared residuals, and second, the way in

5. Implementation of S-weighted estimator in Python 55

which they were reordered. The last is necessary later when we need to reorder
the whole dataset in the same way the residuals were reordered.

def inner(X,Y,w,p,n,K,c,max_inner):
S_past = float(’inf’)
X_p, Y_p = select_p(X,Y,p,n)
b = OLS(X_p, Y_p)
r_s, order = ordered_r(X,Y,b)
X_s, Y_s = X, Y
S_present = S_estim(n,w,c,r_s,K)
while S_present < S_past and max_inner > 0:

S_past = S_present
X_s, Y_s = X_s[order], Y_s[order]
b = WLS(X_s, Y_s, w)
r_s, order = ordered_r(X_s,Y_s,b)
S_present = S_estim(n,w,c,r_s,K)
max_inner = max_inner - 1

return [b, S_present]

Finally we get to the last inner function. It is the one which calls all the
other functions that we have so far discussed, and performs the inner cycle
of the algorithm. As arguments, it is given the data X, Y, array of weights
w, dimensions of the data p, n, the right-hand side K of the equality in 3.1,
constant c for Tukey’s ρ function, and the stopping parameter max_inner.

First we assign infinity as the value of S_past, since later the cycle will
iterate as long as it keeps finding models with S_present < S_past. Then
we select p observations at random and fit a regression plane exactly through
them by OLS(). We use the estimate from this regression to calculate the
residuals, reorder them and save the information on how we reordered them.
Then, by S_estim(), we calculate the σ from this regression and we enter the
loop. Inside the loop, we first save the latest value of σ since that is what
we will be comparing the next value of σ with. We reorder the observations
in the same way we reordered the residuals and we estimate a new regression
model on the ordered data by means of WLS(). Here we can see the significance
of reordering the data, because WLS requires an extrinsic rule for weighting
the observations. Reordering ensures that the smallest weights are assigned to
the largest squared residuals. As we have discussed in Chapter 3, a different

5. Implementation of S-weighted estimator in Python 56

choice of estimator in this particular step cannot spoil the results of the algo-
rithm as long as max_outer is sufficiently high, but it can make the algorithm
slower. Employing a weighted Mρ-estimator here might therefore improve the
algorithm’s performance. After obtaining the new estimates, we calculate the
new ordered squared residuals, estimate the value of σ this model results in,
decrease the number of remaining repetitions of the loop by 1 and proceed to
repeat the loop. When the repetitions stop bringing models better in terms of
σ or when the maximum number of repetitions of the inner cycle is reached,
the function returns the best estimate found and the corresponding value of σ.

n = X.shape[0]
p = X.shape[1]
K = K_estim(c)
S_best = float(’inf’)
match = max_match
while match > 0 and max_outer > 0:

max_outer = max_outer - 1
[b, S_new] = inner(X,Y,w,p,n,K,c,max_inner)
if S_new < S_best:

S_best = S_new
b_best = b
match = max_match

if S_new == S_best and sum(b - b_best) == 0:
match = match - 1

return b_best

It remains now to discuss the outer function, which contains the outer cycle
of the algorithm and calls function inner(). First the function establishes the
dimensions of the data and estimates constant K. We preallocate infinity as
the value of S_best, so that the first model we obtain from the inner cycle is
accepted as an improvement. Then we step inside the outer cycle. This cycle
is repeated maximum max_outer times or until we have found the same best
model max_match times, whichever comes first.

In the outer cycle, we decrease max_outer by 1 and call function inner()
to provide us with some model and its σ value. If the value of σ is worse than
the best one yet, nothing happens and we try again. If it is the same as the best
one yet and the model is the same as the best one obtained, we decrease match

5. Implementation of S-weighted estimator in Python 57

by 1, match being the number of times the best model has yet to reappear in
order for us to decide that it is the really best model. If the value of σ is the
smallest one yet, it means that we have found a new best model, so we save
the estimate and the σ value and reset match to max_match, meaning that we
have to find the same model another match times in order to believe that it
is the best model there is. When the algorithm performs all the repetitions
of the outer cycle, it stops and returns the estimated values of the regression
coefficients.

We have seen that there are opportunities for improvement of this imple-
mentation. Yet we must stress that, to the best of the present authors knowl-
edge, no other implementations are publicly available and by publishing this
one, imperfect as it is, we are attempting to make the use of the S-weighted
estimator one step easier.

Chapter 6

Conclusion

In this thesis we focused on the newly developed S-weighted estimator in three
crucial ways: first summarizing the existing literature on the subject and pro-
viding historical context, then putting the estimator to use and comparing
its performance with that of other estimators, and finally implementing the
algorithm by which the estimator can be calculated.

In the first section, we briefly surveyed the history of robust estimation
methods and explained the terminology that the field uses. We summarized
the early attempts at robustifying regression estimation and mentioned two
early approaches, Huber’s minimax method and the robustified likelihood ratio
approach by the same author. Then we studied Hampel’s approach based on
influence functions and paid some attention to the terms defined therein, most
notably the notion of breakdown point which has become the center of focus
of robust statisticians.

In particular detail were studied two relatively more successful methods, the
least weighted squares developed by Víšek (2000) and the S-estimator proposed
by Rousseeuw & Yohai (1984). The logic of their definitions were at the center
of our attention, because it is inherited by the S-weighted estimator which is
defined as their combination and intended as a unification that subsumes the
former two, and by extension even some other, older methods, as its special
cases.

In Chapter 3, we summarized the available literature on S-weighted esti-
mator, focusing primarily on two subjects. Fist, the connection between the
estimator’s definition and the algorithm by which it is to be calculated. Here
we had to rely to some extent on unofficial sources, since the explicit descrip-
tion of the algorithm could not be found in published literature. Second, we

6. Conclusion 59

summarized the up to now performed simulation studies and found a lack of a
study employing side-by-side the S-weighted estimator and its two immediate
predecessors, the LWS and the S-estimator.

In Chapter 4 we performed a simulation study wherein four estimators,
namely OLS, LWS, S- and S-weighted estimator, were employed to estimate
the standard linear regression model with contaminated data, and the quality
of their results was compared. Each on 1%, 2%, 3%, 5%, 10%, and 25% levels
of intensity, the following types of contamination were considered:

Table 6.1: Types of contamination

Scenario 1 Only outliers
Scenario 2 Only bad leverage points
Scenario 3 Outliers and good leverage points
Scenario 4 Good and bad leverage points
Scenario 5 Outliers and good and bad leverage points

By comparing the average value of the obtained estimates and their mean
squared error, and by testing whether the estimates of LWS and S-weighted
estimator were from the same distribution by means of Kolmogorov-Smirnov
test, we came to the following conclusions.

1. The OLS estimator is not robust against any kind of contamination and
suffers the most from contamination by bad leverage points. It performs
somewhat adequately in presence of good leverage points because they
force the method to return the proper results. In combination of good
and bad leverage points, the method gives hardly any results, because
the effects of good and bad leverage points cancel each other out.

2. All robust methods performed adequately in all scenarios up to 10%
contamination. S- and S-weighted estimators experienced higher mean
squared error in case of 25% contamination, which we attributed to cali-
bration for overly high breakdown point.

3. The estimates of LWS and S-weighted estimator were indistinguishable
for contamination up to 5%. For higher levels, especially 25%, LWS
attained significantly smaller mean squared error and more exact average
of estimates.

6. Conclusion 60

4. The S-weighted estimator behaved similarly to LWS in small contamina-
tion and to S-estimator in high contamination, confirming that both S-
and LWS-elements of are present and active in its functioning.

5. Overall, the LWS method appeared to be the most reliable and efficient
of the three.

We hope to have shed some light on the working and merits of these par-
ticular robust methods and provided a simple guide in how they are to be
employed. This last was also our goal in providing an implementation of the
S-weighted estimator in Python, which was the content of Chapter 5. Therein
we explain the implementation step-by-step, commenting on every part of the
code. The resulting function is reliable although not very fast. Parts that pro-
vide opportunity for improvement are indicated. Apart from facilitating the
use of S-weighted estimator in practice, the chapter might also be useful in
supplementing deeper understanding of the underlying algorithm that is be-
ing implemented. Future research might focus on the behavior of S-weighted
estimator in higher levels of contamination and trying to find a better calibra-
tion of the weighting function and the objective function which might be able
to improve the estimator’s performance. The implementation in Python is of
course very basic and constitutes only the first step in developing a versatile
tool for the estimator’s employment. Most notably, more research is needed
for developing diagnostic tools that would allow not only estimation but also
testing of the estimates’ qualities.

Bibliography

Bartoszynski, R. & M. Niewiadomska-Bugaj (2008): Probability and Sta-
tistical Inference. Hoboken, N.J: Wiley-Interscience.

Bernoulli, D. (1777): “Dijudicatio maxime probabilis plurium observa-
tionum discrepantium atque verisimillima inductio inde formanda.” Actu
Acud. Sci. Petropolit. 1: pp. 3–33.

Boček, P. & P. Lachout (1995): “Linear Programming Approach to LMS-
Estimation.” Computational Statistics & Data Analysis 19: pp. 129–134.

Campbell, N. A., H. Lopuhaä, & P. Rousseeuw (1998): “Onthe calculation
of a robust s-estimator of a covariance matrix.” Statistics in medicine 17:
pp. 2685–2695.

Chauvenet, W. (1863): “Method of Least Squares.” Appendix to Manual of
Spherical and Practicul Astronomy 2: pp. 469–566.

Fisher, R. A. (1920): “A mathematical examination of the methods of deter-
mining the accuracy of an observation by the mean error and by the mean
square error.” Monthly Notices of the Royal Astronomical Society 80: pp.
469–566. Reprinted in Collected Papers of R. A. Fisher, ed. J. H. Bennett,
Vol.1, 188-201, University of Adelaide.

Fisher, R. A. (1922): “On the mathematical foundations of theoretical statis-
tics.” Philosophical Transactions of the Royal Society of London 222: pp.
309–368.

Hampel, F. R. (1968): “Contributions to the theory of robust estimation.”
Ph.D. thesis. University of California, Berkeley .

Hampel, F. R., E. M. Ronchetti, P. J. Rousseeuw, & W. A. Stahel
(1986): Robust statistics: the approach based on influence functions. New
York: Wiley.

Bibliography 62

Hodges, Jr., J. L. (1967): “Efficiency in normal samples and tolerance of
extreme values for some estimates of location.” In “Proceedings of the Fifth
Berkeley Symposium on Mathematical Statistics and Probability,” 1, pp.
163–168.

Huber, P. J. (1964): “Robust estimation of a location parameter.” The Annals
of Mathematical Statistics 35: pp. 73–101.

Huber, P. J. Strassen, V. (1973): “Minimax tests and the Neyman-Pearson
lemma for capacities.” Annual Statistics 1: pp. 251–263. 2, 223-224.

Peirce, B. (1852): “Criterion for the rejection of doubtful observations.” As-
tronomical Journal 2: pp. 161–163.

Ronchetti, E. (1982): “Robust testing in linear models: The infinitesimal
approach.” Ph.D. thesis. ETH, Zurich. .

Rousseeuw, P. & V. Yohai (1984): “Robust Regression by Means of S-
Estimators.” In J. Franke, W. Härdle, & D. Martin (editors), “Robust
and Nonlinear Time Series Analysis,” pp. 256–272. New York, NY: Springer
US.

Rousseeuw, P. J. (1984): “Least median of squares regression.” Journal of
the American Statistical Association 79: pp. 871–880.

Rousseeuw, P. J. & A. M. Leroy (1987): Robust regression and outlier
detection. New York: Wiley.

Siegel, A. F. (1982): “Robust regression using repeated medians.” Biometrika
69: pp. 242–244.

Student (1927): “Errors of routine analysis.” Biometrika 19: pp. 151–164.

Tukey, J. (1960): “A survey of sampling from contaminated distributions.”
In “Contributions to Probability and Statistics, I. Olkin (ed.),” pp. 448–485.
Stanford University Press, Stanforn, Calif.

Víšek, J. A. (2000): “Regression with high breakdown point.” Proceedings of
ROBUST 2000 pp. 324–356.

Víšek, J. A. (2012): Advantages and disadvantages, challenges and threads of
robust methods. Faculty of Social Sciences, Charles University, Prague.

Bibliography 63

Víšek, J. A. (2015): “S-Weighted Estimators.” Proceedings of the 16th Con-
ference on the Applied Stochastic Models, Data Analysis and Demographics
2015 pp. 1031–1042.

Víšek, J. A. (2016a): “Are the Bad Leverage Points the most Difficult Problem
for Estimating the Underlying Regression Model?” https://www.karlin.
mff.cuni.cz/~antoch/robust16/prednasky/Nedele/visek.pdf. Lecture
notes from Robust 2016 (Jeseníky) international statistical conference. On-
line; accessed 19-July-2024.

Víšek, J. A. (2016b): “Coping with Level and Different Type of Contamina-
tion by SW-Estimator.” In A. Colubi, A. Blanco, & C. Gatu (editors),
“Proceedings of COMPSTAT 2016, 22nd International Conference on Com-
putational Statistics,” pp. 59–72.

Víšek, J. A. (2016c): “Representation of SW-estimators.” Proceedings of the
4th Stochastic Modeling Techniques and Data Analysis International Confer-
ence with Demographics Workshop, SMTDA 2016 53: pp. 425–438.

Víšek, J. A. (2017): “Instrumental Weighted Variables under Heteroscedastic-
ity. Part II — Numerical study.” Kybernetika 53: pp. 26–58.

Víšek, J. A. (2019a): “Asymptotics of S-Weighted Estimators.” Springer Pro-
ceedings in Mathematics & Statistics 274: pp. 31–42.

Víšek, J. A. (2019b): “S-Weighted Instrumental Variables.” Data Analysis and
Applications 1: pp. 53–71.

https://www.karlin.mff.cuni.cz/~antoch/robust16/prednasky/Nedele/visek.pdf
https://www.karlin.mff.cuni.cz/~antoch/robust16/prednasky/Nedele/visek.pdf

A. Algorithm for finding optimal c II

Appendix A

Algorithm for finding optimal c

function [c] = c_finder(breakdown)
% c_finder takes the required breakdown point of S-estimator and returns
% the value of c in Tukey’s rho function that results in it

c_low = 1.3;
c_high = 1000;

n = 10^5; %sample size. The bigger the n, the more exact the calculation

breakdown_point = 0;

function [output] = rho(x, c)
% rho - calculate value of Tukey’s rho function with parameter c at point x

x = abs(x);
x = min([x,c]);
output = (x^2)/2 - (x^4)/(2*(c^2)) + (x^6)/(6*(c^4));

end

while abs(breakdown - breakdown_point) > 0.001

c = (c_low + c_high)/2;
e = normrnd(0,1,[1,n]);

for i = 1:n
e(i) = rho(e(i),c);

end

for i = 1:n
breakdown_point = breakdown_point + e(i);

end

breakdown_point = breakdown_point/n;
breakdown_point = (6*breakdown_point)/(c*c);

if breakdown_point < breakdown; c_high = c; end
if breakdown_point > breakdown; c_low = c; end

end
end

Appendix B

Implementation of S-weighted
estimator in Python

import numpy as np
import math
from random import seed
from random import gauss
from random import randint
from random import sample
from random import shuffle

def SW(X,Y,w,c,max_inner,max_outer,max_match):

def select_p(X,Y,p,n):
sez = [i for i in range(n)]
shuffle(sez)
SI = [i < p for i in sez]
X_p = X[SI]
Y_p = Y[SI]
return [X_p, Y_p]

def OLS(X,Y):
b_OLS = (X’X)^(-1)X’Y
Xt = X.transpose()
B = np.matmul(Xt,X)
B = np.linalg.inv(B)

B. Implementation of S-weighted estimator in Python IV

B = np.matmul(B,Xt)
B = np.matmul(B,Y)
return B

def objective(r,c):
C = [c for i in range(r.shape[0])]
d = np.array([min(r[i], C[i]) for i in range(n)])
rho = (d**2)/2 - (d**4)/(2*(c**2)) + (d**6)/(6*(c**4))
return rho

def K_estim(c):
n = 1000
K = np.random.normal(loc=0, scale=1, size=n)
K = objective(K,c)
K = sum(K)/n
return K

def S_estim(n,w,c,r_s,K):
S_small = 0
S_big = 10000
r_ss = r_s**(0.5)
summa = 0
while abs(summa - K) > 0.01:

S = (S_small + S_big)/2
r = r_ss/S
rho_r = objective(r,c)
summa = np.dot(w,rho_r)
if summa > K:

S_small = S
if summa < K:

S_big = S
return S

def WLS(X,Y,w):
b_WLS = (X’WX)^(-1)X’WY
W = np.diag(w)
Xt = X.transpose()

B. Implementation of S-weighted estimator in Python V

B = np.matmul(Xt,W)
B = np.matmul(B,X)
B = np.linalg.inv(B)
B = np.matmul(B,Xt)
B = np.matmul(B,W)
B = np.matmul(B,Y)
return B

def ordered_r(X,Y,b):
r = (Y - np.matmul(X,b))**2
r_s = np.sort(r)
order = np.argsort(r)
return [r_s, order]

def inner(X,Y,w,p,n,K,c,max_inner):
S_past = float(’inf’)
X_p, Y_p = select_p(X,Y,p,n)
b = OLS(X_p, Y_p)
r_s, order = ordered_r(X,Y,b)
X_s, Y_s = X, Y
S_present = S_estim(n,w,c,r_s,K)
while S_present < S_past and max_inner > 0:

S_past = S_present
X_s, Y_s = X_s[order], Y_s[order]
b = WLS(X_s, Y_s, w)
r_s, order = ordered_r(X_s,Y_s,b)
S_present = S_estim(n,w,c,r_s,K)
max_inner = max_inner - 1

return [b, S_present]

n = X.shape[0]
p = X.shape[1]
K = K_estim(c)
S_best = float(’inf’)
match = max_match
while match > 0 and max_outer > 0:

max_outer = max_outer - 1

B. Implementation of S-weighted estimator in Python VI

[b, S_new] = inner(X,Y,w,p,n,K,c,max_inner)
if S_new < S_best:

S_best = S_new
b_best = b
match = max_match

if S_new == S_best and sum(b - b_best) == 0:
match = match - 1

return b_best

Example code that can be used to run the program:

creating uncontaminated data
N = 500
p = 5
X = []
e = []
S = []
sigmae = 1
sigmax = 1
for i in range(N):

e.append(gauss(0, sigmae))
beta = [randint(-5,5) for i in range(p)]
ones = [1 for i in range(N)]
X.append(ones)
for i in range(p-1):

newcol = []
for j in range(N):

newcol.append(gauss(0, sigmax))
X.append(newcol)

X = np.array(X)
X = np.transpose(X)
Y = np.matmul(X, beta) + e

def TukeyWeights(n,h,g):
g = min(1,g)
h = min(0.999*g, h)
c = g-h

B. Implementation of S-weighted estimator in Python VII

cc = c*c
cccc = cc*cc
w = [0 for i in range(n)]
for i in range(n):

x = (i-1)/n
if x < h:

w[i] = 1
elif x <= g:

y = g-x
w[i] = 6*((y**2)/2-(y**4)/(2*cc)+(y**6)/cccc)/cc

else:
w[i] = 0

return np.array(w)

c = 5
h = 0.8
g = 0.9
w = TukeyWeights(N,h,g)
max_inner = 20
max_outer = 20
max_match = 20
betaSW = SW(X,Y,w,c,max_inner,max_outer,max_match)
print(beta)
print(betaSW)

	Abstract
	Contents
	List of Tables
	List of Figures
	Acronyms
	Thesis Proposal
	1 Introduction
	2 Overview of robust statistics
	2.1 Contamination
	2.2 Early robust methods
	2.3 Standard robust methods
	2.4 Least Weighted Squares
	2.5 S-estimator

	3 S-Weighted Estimator
	4 Simulation
	4.1 Simulation setup
	4.2 Results
	4.2.1 Only outliers
	4.2.2 Only bad leverage points
	4.2.3 Outliers and good leverage points
	4.2.4 Good and bad leverage points
	4.2.5 Outliers and good and bad leverage points
	4.2.6 Recapitulation

	5 Implementation of S-weighted estimator in Python
	6 Conclusion
	Bibliography
	A Algorithm for finding optimal c
	B Implementation of S-weighted estimator in Python

