
CHARLES UNIVERSITY
FACULTY OF SOCIAL SCIENCES

Institute of Economic Studies

Comparative Analysis of Outlier Detection
Models for Transaction Monitoring

Master’s thesis

Author: Ing. Petra Kohoutová
Study program: Economics and Finance
Supervisor: prof. PhDr. Ladislav Krištoufek, Ph.D.
Year of defense: 2024

http://www.cuni.cz/UKEN-1.html
https://fsv.cuni.cz/en
ies.fsv.cuni.cz

Declaration of Authorship
The author hereby declares that he or she compiled this thesis independently,
using only the listed resources and literature, and the thesis has not been used
to obtain any other academic title.

The author grants to Charles University permission to reproduce and to dis-
tribute copies of this thesis in whole or in part and agrees with the thesis being
used for study and scientific purposes.

Prague, July 25, 2024

Ing. Petra Kohoutová

Abstract
Outlier detection is a critical task in various domains, such as finance and cy-
bersecurity, as it helps identify anomalies that can provide valuable insights
for data cleansing and decision-making. The increasing availability of large
and complex datasets has led to a growing demand for effective outlier de-
tection models. While numerous approaches exist, there is a need for com-
prehensive research that compares and evaluates these models to understand
their performance and suitability for different datasets and outlier scenarios.
This thesis aims to conduct a comparative analysis of outlier detection mod-
els and apply them to data used in transaction monitoring, to gain insights
into their strengths, weaknesses, and real-world applicability in this field. The
models examined include Isolation Forest, cluster-based analysis, and copulas,
each suitable for different sets of use cases. Given the challenges of evaluating
transaction monitoring data due to missing or unreliable data labels, this com-
parative analysis seeks to provide a clear understanding of how these models
perform under such conditions and how can they be evaluated based on the
expert-based knowledge.

JEL Classification C39, C52, G21, L59, O16, O33
Keywords outliers, anomaly, model, data
Title Comparative Analysis of Outlier Detection

Models for Transaction Monitoring

Abstrakt
Detekce odlehlých pozorování je klíčovou součástí různých oblastí, jako jsou fi-
nance a kybernetická bezpečnost, protože pomáhá identifikovat anomálie, které
mohou poskytnout cenné poznatky pro čištění dat a rozhodování. Zvyšující se
dostupnost velkých a komplexních datových souborů vedla ke zvyšující se pop-
távce po efektivních modelech detekce odlehlých pozorování. I když existuje
mnoho přístupů, je potřeba komplexního výzkumu, který porovná a vyhodnotí
tyto modely, aby porozuměl jejich výkonu a vhodnosti pro různé soubory dat
a specifické scénáře. Tato práce si klade za cíl provést komparativní analýzu
modelů detekce odlehlých hodnot, aby bylo možné získat náhled na jejich silné
a slabé stránky a jejich použitelnost v reálném světě. Izolační les, klastrová
analýza a kopule jsou modely, které jsou všechny vhodné pro různé případy

http://ideas.repec.org/j/C38.html
http://ideas.repec.org/j/C52.html
http://ideas.repec.org/j/G21.html
http://ideas.repec.org/j/L59.html
http://ideas.repec.org/j/O16.html
http://ideas.repec.org/j/O33.html

použití. Další metody jsou zmiňovány především proto, že transakční data
používaná pro trénování těchto modelů jsou často bez označení, případně jejich
značení není spolehlivé a hodnocení výkonnosti těchto modelů je často dělané
na expertní znalosti jedince.

Klasifikace JEL C39, C52, G21, L59, O16, O33
Klíčová slova odhledlá pozorování, anomálie, model,

data
Název práce Komparativní analýza modelů detekce

odlehlých pozorování pro účely moni-
toringu transakcí

http://ideas.repec.org/j/C38.html
http://ideas.repec.org/j/C52.html
http://ideas.repec.org/j/G21.html
http://ideas.repec.org/j/L59.html
http://ideas.repec.org/j/O16.html
http://ideas.repec.org/j/O33.html

Acknowledgments
The author is especially grateful to prof. PhDr. Ladislav Krištoufek, Ph.D.for
his guidance, comments, and ideas that helped improve this thesis’s contents.
Additionally, the author expresses deep appreciation to their colleagues for their
essential knowledge and support, which were instrumental in the completion of
this work. Special thanks are also due to Dr. Mehyar Najla and Dr. Andrea
Gagna for their exceptional guidance and numerous crucial ideas that greatly
enriched this thesis.

Typeset in LATEXusing the IES Thesis Template.

Bibliographic Record
Kohoutová, Petra: Comparative Analysis of Outlier Detection Models for Trans-
action Monitoring. Master’s thesis. Charles University, Faculty of Social Sci-
ences, Institute of Economic Studies, Prague. 2024, pages 89. Advisor: prof.
PhDr. Ladislav Krištoufek, Ph.D.

https://is.cuni.cz/studium/eng/predmety/index.php?do=predmet&kod=JEM001

Contents

List of Tables viii

List of Figures ix

Acronyms xi

1 Introduction 1

2 Literature Review 4
2.1 Supervised Learning . 5
2.2 Unsupervised Learning . 6
2.3 Outlier Detection . 7

3 Methodology 9
3.1 Transaction Monitoring . 9
3.2 Customer Segmentation . 12
3.3 Scenarios . 13
3.4 Isolation Forest . 16

3.4.1 Masking and Swamping Phenomena 17
3.4.2 Anomaly Score . 20

3.5 Clustering . 21
3.5.1 K-Means . 22
3.5.2 Euclidian Distance . 23

3.6 Copulas . 24
3.6.1 Theoretical Framework of COPOD 26

4 Data 29
4.1 Artificial Data . 29
4.2 Real-world Data . 32
4.3 Data Preparation . 38

Contents vii

5 Model Implementation 43
5.1 Isolation Forest . 45
5.2 K-Means . 52
5.3 Copulas . 60

6 Limitations 66

7 Model Comparison 69

8 Conclusion 73

Bibliography 78

List of Tables

5.1 Performance metrics of Isolation Forest on real-world data . . . 50
5.2 Outliers detected by Isolation Forest after applying the thresh-

olds to scenarios . 51
5.3 Performance metrics of K-Means on real-world data 59
5.4 Outliers detected by K-Means after applying the thresholds to

scenarios . 60
5.5 Performance metrics of COPOD on real-world data 65
5.6 Outliers detected by COPOD after applying the thresholds to

scenarios . 65

7.1 Quantitative performance metrics of models across all scenarios 71
7.2 Qualitative performance metrics of models across all scenarios . 72

List of Figures

3.1 Transaction monitoring process 10
3.2 Example of scenario . 11
3.3 Example of TM system coverage with proper segmentation model 13
3.4 Isolation Forest separation example 17
3.5 Isolation Forest . 18
3.6 Original dataset . 19
3.7 Example of subsampling . 19
3.8 K-Means steps . 23

4.1 Conceptual schema of the artificial data 31
4.2 Default distribution of artificial transactions 31
4.3 Conceptual scheme of the real-world data 34
4.4 Methodology of the parametrization process 39
4.5 Transaction count by segment and risk category 39

5.1 Confusion Matrix of Isolation Forest - Scenario 1 47
5.2 ROC Curve of Isolation Forest - Scenario 1 47
5.3 Confusion Matrix of Isolation Forest - Scenario 2 48
5.4 ROC Curve of Isolation Forest - Scenario 2 48
5.5 Confusion Matrix of Isolation Forest - Scenario 3 49
5.6 ROC Curve of Isolation Forest - Scenario 3 50
5.7 Feature Distribution - Scenario 1 [zoomed in] 51
5.8 Inertia - Scenario 1 . 53
5.9 Confusion Matrix of K-Means - Scenario 1 54
5.10 ROC Curve of K-Means - Scenario 1 55
5.11 Inertia - Scenario 2 . 55
5.12 Confusion Matrix of K-Means - Scenario 2 56
5.13 ROC Curve of K-Means - Scenario 2 56
5.14 Inertia - Scenario 3 . 57

List of Figures x

5.15 Confusion Matrix of K-Means - Scenario 3 57
5.16 ROC Curve of K-Means - Scenario 3 58
5.17 Inertia - Scenario 1 . 58
5.18 Inertia - Scenario 3 . 59
5.19 Inertia - Scenario 2 . 59
5.20 Confusion Matrix of COPOD - Scenario 1 61
5.21 ROC Curve of COPOD - Scenario 1 62
5.22 Confusion Matrix of COPOD - Scenario 2 63
5.23 ROC Curve of COPOD - Scenario 2 63
5.24 Confusion Matrix of COPOD - Scenario 3 64
5.25 ROC Curve of COPOD - Scenario 3 64

Acronyms

AI Artificial Inteligence

AUC Area Under the Curve

AML Anti-Money Laundering

BST Binary Search Tree

CTF Counter Financing of Terrorism

COPOD Copula-based Outlier Detection

FATF Financial Action Task Force

FP False Positive

IF Isolation Forest

ML Machine Learning

SAR Suspicious Activity Report

TM Transaction Monitoring

WA Worthy Alert

Chapter 1

Introduction

In the contemporary information era, Machine Learning (ML) assumes a pivotal
role in various industries, driving revolutionary trends. Positioned as a subset
of artificial intelligence (AI), machine learning operates within the realm of
computational science, dedicated to analyzing and interpreting patterns and
structures in data. Its primary objective is to autonomously facilitate learning,
reasoning, and decision-making, transcending human interaction. This process
endows systems with the capability to learn and improve from experience with-
out explicit programming, underscoring the transformative potential of ma-
chine learning (Jhaveri et al. 2022). Essentially, users can input vast datasets
into computer algorithms, enabling the system to autonomously analyze data
and provide data-driven recommendations and decisions based solely on input
data. Experiential learning is manifested through data collected within specific
application domains, typically comprising values on various features relevant
to the scenarios.

Fundamental to machine learning is the assumption that collected data en-
capsulates multiple potential patterns through which the characteristics of in-
teresting behaviors can be modeled. Machine learning aims to devise scientific,
compelling, and robust approaches to unveil these underlying models. Machine
learning algorithms broadly fall into two categories: generative and discrimi-
native models. Despite their categorization, both types of models operate on
the premise that the collected data represents a set of samples from unknown
distributions. Generative models seek to learn the distribution of generating
the data by estimating the parameters of the assumed model (Goodfellow et al.
2016). On the other hand, discriminative models aim to optimize the observed
data with fewer assumptions on the underlying distributions. As the volume of

1. Introduction 2

training examples increases, discriminative models tend to outperform gener-
ative models with superior performance. Consequently, discriminative models
are favored, mainly when dealing with large datasets, to ensure performance
and robustness (Alpaydin 2020).

Discriminative models, further classified into regression and classification,
play a crucial role in machine learning (Bishop 2006). Regression models ex-
plore how the target value changes concerning variations in independent feature
variables while keeping other independent variables fixed. These models find
widespread application in prediction and forecasting. In classification, sam-
ples in the dataset are assumed to belong to different classes distributed across
various regions of the feature space, with a hyperplane existing between each
class's areas.

Outlier detection, or one-class classification, becomes particularly relevant
when data primarily comes from one category, with minimal or no represen-
tation from other classes (Chandola et al. 2009). This scenario is common in
many real-world applications, such as fraud detection, network security, and
medical diagnosis, where the normal cases vastly outnumber the anomalies.
Identifying outliers is crucial because they often represent significant, albeit
rare, events that can impact the system’s performance or security. For in-
stance, in fraud detection, outliers may indicate fraudulent transactions that
deviate from normal spending patterns. In network security, unusual patterns
of data can signal potential intrusions or attacks. Similarly, in medical diagno-
sis, detecting anomalies in patient data can lead to the early identification of
rare diseases or conditions. By focusing on the majority class and identifying
deviations from it, one-class classification models can effectively isolate these
outliers, providing critical insights and enhancing the robustness of predictive
models (Murphy 2012a).

This thesis undertakes the construction and comparison of three machine
learning models, assessing their capability to identify outliers. These models
range from simplistic to more complex approaches, and their performance is
assessed using multiple metrics tailored to specific use cases and labeled data.

The models will undergo testing on two types of transactional data used
in transaction monitoring scenarios. Transaction monitoring presents a unique
challenge for outlier detection, which is integral to optimizing system perfor-
mance and therefore crucial for identifying potential money laundering activity.

The thesis is structured as follows. Chapter 2 provides a theoretical foun-
dation for machine learning models, encompassing both supervised and unsu-

1. Introduction 3

pervised learning methodologies. Chapter 3 focuses on the methodology used
in this study, detailing the specific use cases where these models are applied. It
also examines outlier detection techniques employed in the analysis. Chapter
4 elaborates on the datasets utilized, including the creation of synthetic data
and the procurement of real-world transactional data. It discusses the processes
involved in data preparation and addresses the challenges encountered during
this phase.

Chapter 5 centers on the training of machine learning models and evalu-
ates their predictive capabilities using various performance metrics. Chapter
6 discusses the limitations inherent in transaction monitoring and examines
the complexities involved in accurately assessing model performance on trans-
actional data. Chapter 7 compares the performance of each machine learning
model, offering insights into their respective strengths and weaknesses across
different use cases. Finally, Chapter 8 synthesizes the findings from the pre-
ceding chapters, presenting a comprehensive summary of the study’s outcomes
and implications.

Chapter 2

Literature Review

The following literature review section focuses on academic papers predomi-
nantly centered on Outlier Detection techniques, recognizing the inefficiency of
simple methods in handling vast datasets. Consequently, the review empha-
sizes Machine Learning methods for Outlier Detection due to their aptitude for
managing large and complex datasets.

There exist various definitions of Machine Learning. Mitchell (1997) pro-
vides a technical definition: "A computer program is said to learn from experi-
ence E with respect to some class of tasks T and performance measure P if its
performance at tasks T, as measured by P, improves with experience E." To elu-
cidate the use case of Outlier Detection, task T involves detecting anomalies in
a given dataset. Task E comprises the training data supplied to the algorithm,
controlled by P, to ensure the algorithm operates with high performance.

Numerous algorithms are tailored to address function approximation prob-
lems, wherein the objective is encapsulated within a function. For instance,
in the context of fraud detection, the task may involve assigning a "fraud" or
"not fraud" label to a given input transaction. The learning challenge revolves
around enhancing the accuracy of this function, with the learning experience
derived from a sample of known input-output pairs of the function. In certain
instances, the function is explicitly represented in a parametrized functional
form, while in other cases, it is implicit and acquired through processes such as
search procedures, factorization, optimization techniques, or simulation-based
procedures. Even in cases of implicit representation, the function typically re-
lies on parameters or other adjustable degrees of freedom, and training involves
determining values for these parameters that optimize the performance metric
(Jordan & Mitchell 2015).

2. Literature Review 5

The two primary approaches in machine learning are called supervised and
unsupervised learning. Each offers diverse applications across various contexts
and datasets. The subsequent chapter will present a detailed exploration of the
advantages and disadvantages of supervised and unsupervised learning meth-
ods.

2.1 Supervised Learning
Supervised learning is a machine learning technique wherein the algorithm
is trained on a labeled dataset. In this paradigm, the algorithm learns to
establish a mapping between input features and targets based on the labeled
training data. The essence of supervised learning lies in the provision of input
features along with corresponding output labels to the algorithm, allowing it
to generalize from this information and make predictions on new, unseen data
(Jhaveri et al. 2022).

Models developed through Supervised Learning demonstrate exceptional ef-
ficacy in addressing classification and regression tasks, particularly in datasets
that are appropriately labeled. Common applications include spam identifica-
tion, facial recognition in images, and weather forecast price predictions. These
applications exemplify the function approximation problem discussed earlier,
where training data takes the form of (x, y) pairs, and the objective is to
generate predictions y* in response to a query x*. As previously mentioned,
supervised learning is prominently employed in two main tasks: classification
and regression (Murphy 2012b).

Classification represents a supervised learning method wherein the algo-
rithm acquires the ability to assign input data to specific categories or classes
based on input features. The output labels in classification are discrete values,
and these algorithms can either be binary, with the output belonging to one
of two classes, or multiclass, allowing for multiple class possibilities. In the
context of our test case, we are exclusively dealing with two classes, making it
a binary classification problem.

On the other hand, regression, another form of supervised learning, involves
algorithms learning to predict continuous values based on input features. The
output labels in regression are continuous values, such as stock prices or hous-
ing prices. Despite the multitude of regression models available, this thesis
concentrates solely on the classification problem, as the data at hand pertains
to a binary classification scenario (Jordan & Mitchell 2015).

2. Literature Review 6

The advantages of supervised learning are in the ability to manually delin-
eate class boundaries, providing specificity in defining desired classes. More-
over, supervised learning tends to be computationally less demanding, trans-
lating into reduced processing time. However, it may exhibit limitations in
exceptionally complex tasks compared to unsupervised learning.

In the realm of transaction monitoring, a critical challenge arises with su-
pervised machine learning methods. Given the limited approaches in current
transaction monitoring practices and their inefficiency, there is a scarcity of
labeled data available. Moreover, these methods become obsolete when imple-
menting entirely new monitoring scenarios due to the inability to utilize existing
labels. Consequently, supervised machine learning methods prove viable for es-
tablished scenarios with reliable labels, while unsupervised machine learning
methods become essential for cases lacking such labeled data, as expounded in
the subsequent chapter.

2.2 Unsupervised Learning
Unsupervised learning stands as a potent pattern recognition approach, em-
ploying artificial intelligence algorithms to scrutinize datasets devoid of prede-
fined categories or labels for data points. These algorithms autonomously un-
cover latent relationships within datasets, governed by assumptions about the
underlying structural properties, often articulated through algebraic or proba-
bilistic frameworks (Jordan & Mitchell 2015). This methodology proves espe-
cially valuable for exploratory data analysis, cross-selling strategies, customer
segmentation, and image recognition, showcasing a remarkable capability to
discern patterns, similarities, and differences in information, including image
recognition.

A noteworthy adaptation involves transforming several supervised machine
learning methods into unsupervised counterparts. This is achieved by intro-
ducing the concept of artificial class labels, distinguishing "observed" data from
synthetically generated data, where the observed data represents the original
unlabeled data, and synthetic data are drawn from a reference distribution (Shi
& Horvath 2006).

Unsupervised learning, distinct from supervised learning due to the absence
of labeled data, signifies a paradigm where there is no predetermined relation-
ship between datasets, and outcomes cannot be anticipated. Characterized by
minimal human involvement, unsupervised learning relies on dataset observa-

2. Literature Review 7

tions to unveil intrinsic data qualities. Clustering, a fundamental concept in
unsupervised learning, facilitates the identification of diverse groupings within
a dataset. Two subcategories of unsupervised learning challenges include clus-
tering and dimensionality reduction (Pham & Ruz 2009).

Clustering algorithms strategically group similar data points based on their
characteristics, with the goal of identifying distinct clusters within the dataset.
In contrast, dimensionality reduction algorithms streamline datasets by reduc-
ing the number of input variables while preserving as much original information
as possible, thereby aiding in dataset simplification for visualization and anal-
ysis (Fujimaki et al. 2005).

While unsupervised learning boasts advantages, such as not requiring la-
beled data and fostering the discovery of novel patterns and relationships, it is
not without limitations. The absence of a predefined output may lead to algo-
rithms producing potentially meaningless or inaccurate results. Additionally,
evaluating the performance of unsupervised learning algorithms is a complex
task due to the lack of a predefined correct output for comparison (Kohoutová
2023). The computational demands and time complexity of these algorithms
increase, especially with a growing number of features, contributing to height-
ened model complexity. Despite being less prevalent in finance compared to
supervised learning, unsupervised algorithms find a niche in fraud detection
within transaction monitoring, where labeled data is often scarce.

2.3 Outlier Detection
Outlier detection comprises a diverse array of techniques, often sharing funda-
mental similarities but adopting different terminologies, such as outlier detec-
tion, novelty detection, anomaly detection, exception mining, noise detection,
or deviation detection, as observed in the literature. For the scope of this thesis,
the term chosen to encapsulate these techniques is "outlier detection."

In tandem with the varied nomenclature, authors have proposed numerous
definitions of an outlier, and no single definition has gained universal accep-
tance. Aggarwal & Yu (2001) highlights the divergence, noting that outliers
might be perceived as noise points lying outside a defined cluster set, or alter-
natively, they could be points outside the set of clusters yet distinct from the
noise. Another perspective, put forth by Hawkins (1980), characterizes an out-
lier as an observation deviating significantly from others, prompting suspicion
that it originated from a distinct mechanism. For the purposes of this thesis,

2. Literature Review 8

outliers are defined as data points situated at an abnormal distance from others
within a dataset. In the context of transaction monitoring, such outliers can
indicate potentially suspicious or fraudulent activities (Kohoutová 2023).

In applications like mobile phone or transaction monitoring, detecting sud-
den changes in usage patterns is crucial for identifying potential fraud, such as
stolen phones or money laundering. Outlier detection analyzes time series usage
statistics to achieve this (Ngai et al. 2011; Chandola et al. 2009). In areas like
loan processing or social security benefit payments, an outlier detection system
can identify anomalies in applications before approval or payment, ensuring
data consistency and integrity (Iglewicz & Hoaglin 1993). Equity or commod-
ity traders use outlier detection to monitor markets for novel trends, indicating
buying or selling opportunities (Ahmed et al. 2016). In news delivery sys-
tems, outlier detection ensures timely updates on changing stories. Outliers in
databases may indicate errors or fraudulent cases, requiring different handling
based on the application area (Hodge & Austin 2004). For natural anomalies
like extreme population features, a robust classification algorithm accommo-
dating outliers is essential. In safety-critical or fraud detection environments,
real-time detection and immediate alarms are crucial (Xia et al. 2020). Once
addressed, anomalous readings may be stored separately for comparison with
new cases but are often not included in the main system data, which typically
models normality to detect anomalies (Chandola et al. 2009).

Chapter 3

Methodology

This chapter outlines the methodology and models employed in this study. We
begin by introducing and explaining transaction monitoring, detailing its pur-
pose and functionality to provide a clear understanding of why specific models
were chosen and how outlier detection is integral to transaction monitoring
systems. This foundational knowledge is crucial for grasping the overall logic
behind the use of outlier detection.

Following this introduction, we delve into the specific methodologies of each
model utilized in this thesis. Each model’s methodology is explained in de-
tail, highlighting how it fits into the transaction monitoring framework and its
relevance to identifying suspicious activities. By providing a comprehensive
overview of both the transaction monitoring process and the models used, this
chapter aims to offer a thorough understanding of the research approach and
the rationale behind it.

3.1 Transaction Monitoring
Implementing Transaction Monitoring systems in compliance with Anti-Money
Laundering (AML) policies deters criminals from infiltrating the financial sys-
tem with illegal funds. Organizations avoid involvement in money laundering
due to potential consequences such as significant fines for non-compliance, rep-
utational damage linked to crimes like modern slavery, human trafficking, or
drug distribution, and personal liability that could lead to imprisonment.

An AML solution includes a system or set of tools specifically designed
to prevent and detect activities related to money laundering, terrorist financ-
ing, and other illicit financial transactions. These solutions typically integrate

3. Methodology 10

advanced technologies, established processes, and comprehensive regulatory
frameworks to identify suspicious financial activities, monitor transactions, and
report anomalies to the relevant authorities. The systematic approach em-
ployed by these solutions is illustrated in Figure 3.1. Financial institutions
such as banks, credit unions, and brokerage firms, as well as entities involved
in financial transactions like casinos and money service businesses, primarily
use these solutions.

Figure 3.1: Transaction monitoring process
Source: Own elaboration

Implementing an AML solution helps organizations mitigate the risks asso-
ciated with money laundering, protect their reputation, fulfill regulatory obli-
gations, and contribute to global efforts to combat financial crimes.

AML solutions operate based on a set of rules known as scenarios, which
include logical operations such as conjunction, disjunction, and negation. These
scenarios are designed to monitor specific behaviors that have been previously
identified as criminal activities in terms of AML/CTF.

The overall monitoring process may vary among banks, but it generally
follows these basic principles:

1. Transaction Monitoring - Transactions are monitored using predefined
scenarios.

2. Suspicious Activity Detection - Scenarios are employed to detect sus-
picious activities.

3. Alert Generation - The system determines whether to generate an alert.
Most systems generate an alert immediately upon detecting suspicious
activity, while others require confirmation from multiple scenarios.

3. Methodology 11

4. Activity Investigation - Suspicious activities are manually investigated
and escalated as necessary.

5. Case Resolution - After gathering sufficient information about the en-
tities involved in the transaction, the investigation team makes a final
determination and closes the case as either a false positive or a Suspi-
cious Activity Report (SAR). If a SAR is warranted, a form must be
completed and submitted, along with any supporting evidence, to the
regulatory authority (Monson & Vandermark 2013).

A model situation is shown in Figure 3.2. In this example, money is being
laundered within a criminal group, with each member depositing a certain
amount into their accounts, which is later transferred to a joint account. A
scenario to monitor this particular behavior would be designed to track an
unusual number of low-value transactions occurring within a short period (e.g.,
a week or a day). If the quantity and value of these transactions surpass a
predefined threshold, the system would generate an alert for further manual
investigation. Otherwise, the behavior would be evaluated as expected.

Figure 3.2: Example of scenario
Source: Own elaboration

3. Methodology 12

This is where outlier detection becomes crucial, as correctly determining
thresholds is essential for the proper functionality and effectiveness of transac-
tion monitoring scenarios. Thresholds are typically set through tuning anal-
ysis, which uses different outlier detection models to find the "right" cut-off
point between regular, unproblematic transactions and potentially suspicious
ones. It is important to note that tuning must occur regularly, at least once a
year, as criminals continually develop new patterns for money laundering, and
advances in AI further complicate detection efforts. Additionally, customer
behavior changes over time, necessitating regular tuning assessments.

3.2 Customer Segmentation
Choosing the correct model is important for another reason. As previously
described, transaction monitoring scenarios function based on set thresholds.
However, it is not advisable to use a single threshold for the entire customer
portfolio, as customers vary in the amount, size, and type of transactions they
make. For example, a large enterprise conducts very different transactions
compared to a regular student, yet both groups need proper monitoring. Set-
ting thresholds too high to accommodate the substantial financial activities
of big corporations may result in insufficient monitoring of students, allowing
potentially problematic transactions to go undetected. Conversely, excessively
stringent thresholds based on student behavior could lead to an overwhelming
number of false positives for transactions involving big corporations. An exam-
ple illustrating the impact of proper segmentation on monitoring is shown in
Figure 3.3. Refined customer segmentation ensures that transactional thresh-
olds align with the risk profiles of each customer group, striking an optimal
balance between detection accuracy and false positives.

Customer segmentation involves grouping a customer portfolio into clusters
based on similarities in user profiles. By employing appropriate and comprehen-
sive segmentation techniques, financial institutions can significantly enhance
their ability to monitor all customers diligently, thereby reducing the likelihood
of overlooking malicious transactions. In 2021, the Financial Action Task Force
(FATF) recommended behavioral customer segmentation as the best option in
transaction monitoring models. Behavioral segmentation combines business
understanding with various machine learning algorithms to identify customers’
real behavioral patterns and risks, thus improving the efficiency and effective-
ness of risk-pattern identification. Through analysis, clusters of customers with

3. Methodology 13

Figure 3.3: Example of TM system coverage with proper segmenta-
tion model

Source: Own elaboration

similar behaviors can be defined and applied as a new segmentation model in
the transaction monitoring system. This also includes providing explanations
and descriptions of the new segments so that AML analysts fully understand
the type of customers included in each segment. However, many financial in-
stitutions still predominantly employ simple clustering models based primarily
on client type, which may not yield optimal efficiency in practice.

3.3 Scenarios
AML scenarios are critical components of transaction monitoring systems in fi-
nancial institutions, designed to detect and prevent suspicious activities related
to money laundering and other financial crimes. To ensure their effectiveness,
these scenarios require regular updates and revisions. They are developed based
on real-world AML/CTF cases investigated by authorities such as FATF and
the Egmont Group. These organizations regularly publish reports that high-
light new criminal behavior patterns and trends, which inform the creation and
adjustment of AML scenarios.

For this analysis, three specific scenarios have been created. These scenar-
ios are designed to cover both low-dimensional and higher-dimensional cases,
to test the introduced models under different conditions. The assumption is
that simpler models will perform better in low-dimensional cases, while more
complex models will excel in higher-dimensional cases.

3. Methodology 14

The first scenario, which will be referred to as Scenario 1, is a simple one.
In the Transaction Monitoring (TM) context, this scenario might be considered
too simple and, on its own, insufficient to fully represent real criminal behavior.
Therefore, it would likely be used in combination with other scenarios. How-
ever, we are introducing this scenario to conduct a proper comparative analysis
of different outlier detection models in low-to-high dimensions, starting with
one dimension. This scenario focuses on "Transactional amount exceeding a
threshold.". It is straightforward: a hit is generated when the amount of a cus-
tomer’s transactions in the past seven days exceeds a certain threshold. This
scenario is executed on a weekly basis. The logic is encoded as follows:

// Scenario Logic

WireDebitAmount_Customer_PastWeek > Threshold_1

Here, "WireDebitAmount_Customer_PastWeek" represents the amount of
a transaction made by the customer.

The second scenario, which we will refer to as Scenario 2, focuses on "High
daily amount of incoming wire transfers compared to 3-month turnover." This
scenario consists of 2 quantitative parameters to be calibrated. In this scenario,
a hit is generated at the end of the day if the following conditions are met:

• The amount of incoming wire transfers to an account during the past day
exceeds a threshold.

• The amount of incoming wires to an account exceeds 10% of the average
credit turnover of the customer in the past three months.

The scenario logic is encoded as follows:

// Scenario Logic

WireCreditAmount_Customer_PresentDay > 1,000 * Threshold_1

AND

WireCreditAmount_Customer_PresentDay > Threshold_2 * 0.01 *

(WireCreditAmount_Customer_Past1Month +

WireCreditAmount_Customer_Past2Month +

WireCreditAmount_Customer_Past3Month)

/

(0.001 +

(WireCreditAmount_Customer_Past1Month > 0) +

(WireCreditAmount_Customer_Past2Month > 0) +

3. Methodology 15

(WireCreditAmount_Customer_Past3Month > 0))

In this structure, WireCreditAmount_Customer_PresentDay represents the
total amount of incoming wire transfers credited to the customer on the given
day. WireCreditAmount_Customer_PastXMonth represents the credit turnover
on the customer for each of the past three months. The constant 0.001 is added
to ensure the formula holds even if the turnover on the account is zero in any
of the months of interest.

The third scenario, referred to as Scenario 3, is named "Volume and fre-
quency of incoming wire transfers increases rapidly." In this scenario, a hit is
generated if the customer’s credit activity increases compared to the previous
6 months. This scenario involves calibration of 4 quantitative parameters and
checks 1 quantitative variable to ensure the account age is at least 6 months.
The following conditions must be met:

• The sum of credit transaction amounts in the last 30 days exceeds a
threshold.

• The number of credit transactions in the last 30 days exceeds a threshold.

• The sum of credit transaction amounts in the previous 6 closed calendar
months is below a threshold.

• The number of credit transactions in the previous 6 closed calendar
months is below a threshold.

• The customer must have been with the bank for at least 180 days.

The scenario logic is encoded as follows:

// Scenario Logic

WireCreditAmount_Customer_Past1Month > Threshold_1

AND

WireCreditNumber_Customer_Past1Month > Threshold_2

AND

(WireCreditAmount_Customer_Past1Month +

WireCreditAmount_Customer_Past2Month +

WireCreditAmount_Customer_Past3Month +

WireCreditAmount_Customer_Past4Month +

WireCreditAmount_Customer_Past5Month +

WireCreditAmount_Customer_Past6Month) < Threshold_3

3. Methodology 16

AND

(WireCreditNumber_Customer_Past1Month +

WireCreditNumber_Customer_Past2Month +

WireCreditNumber_Customer_Past3Month +

WireCreditNumber_Customer_Past4Month +

WireCreditNumber_Customer_Past5Month +

WireCreditNumber_Customer_Past6Month) < Threshold_4

AND

NumberDays_Customer_Open >= 180

In this structure, WireCreditAmount_Customer_PastXMonth represents
the total amount of wire credit transactions credited to the customer in each of
the past months of interest, and WireCreditNumber_Customer_PastXMonth
denotes the number of wire credit transactions in each respective month. Num-
berDays_Customer_Open indicates the duration of the customer’s relationship
with the bank in days.

3.4 Isolation Forest
One notable algorithm for outlier detection is the Isolation Forest. As an
unsupervised machine learning method, it identifies observations as outliers
based on their separability from the overall data population. The Isolation
Forest employs a binary tree structure, iteratively partitioning the data into
two parts until a specific tree height is reached or further splitting is impractical,
yielding a structure known as an iTree (Liu et al. 2012).

In the iTree, samples closer to the root or at the beginning of the split have
a higher potential for being anomalous, while normal samples may require more
iterations for isolation. Each node in the iTree can be an external node with
no children or an internal node with two children, as shown in Figure 2.1. The
path length, which indicates the number of edges from the root node to the
external node, characterizes the isolated sample (Chen & Wu 2018).

In the realm of data-induced random trees, instances undergo iterative par-
titioning until complete isolation is achieved. This stochastic partitioning leads
anomalies along shorter paths due to their infrequent occurrence, resulting
in fewer partitions and consequently shorter paths within the tree structure
(Zhang et al. 2015). Moreover, instances with distinctive attribute values are
more likely to be segregated early in the partitioning process. Therefore, when

3. Methodology 17

Figure 3.4: Isolation Forest separation example

Source: Own elaboration

a set of random trees yields shorter path lengths for specific data points, those
points are highly likely to be anomalies (Ahmed et al. 2016).

With that being said, let X = {X1, . . . , Xn} be a set of d-dimensional
points and X ′ ⊂ X a subset of these data points. The Isolation Tree (iTree)
is structured as a data model where nodes are defined as either external nodes
with no children or internal nodes with a "test" consisting of an attribute q and
a split value p, determining the traversal of a data point to either Tl or Tr.
The iTree is built by recursively partitioning X ′ through random selection of
an attribute q and a split value p, continuing until each node contains only one
instance or all instances at the node share the same attribute values (Liu et al.
2008; Zhang et al. 2015). Once fully grown, each point in X is isolated at one
of the external nodes. Anomalous points, with shorter path lengths in the tree,
are easier to isolate. The path length h(x) of a point x is defined as the number
of edges x traverses from the root node to an external node in an iTree. During
the evaluation stage, the mean h(x) in the ensemble of iTree is computed for
each value x, and an average h(x) is used to calculate the anomaly score.

3.4.1 Masking and Swamping Phenomena

Anomaly detection faces challenges in accurately labeling rare events, which can
lead to issues such as swamping and masking. Swamping occurs when normal
events are incorrectly labeled as anomalies, while masking arises when data

3. Methodology 18

Figure 3.5: Isolation Forest

Source: Hariri et al. (2018)

points from different clusters merge, making it difficult to detect outliers. These
challenges become more pronounced in larger datasets and underscore the need
for robust anomaly detection techniques to ensure reliable performance.

To address these obstacles, Isolation Forest (IF) leverages a unique feature
— the ability to construct a partial model through sub-sampling. Sub-sampling
helps control the dataset size, enabling IF to better isolate instances of anoma-
lies. Moreover, each isolation tree can specialize because each sub-sample may
contain a different set of anomalies or none at all. This characteristic of IF
is illustrated in Figure 3.6 using an artificial dataset where normal points sur-
round anomaly clusters. In Figure 3.7, a sub-sample of 256 instances is taken
from the original data, resulting in clear identification of anomaly clusters and
improved anomaly detection.

For performance evaluation, the Area Under the Curve (AUC) metric is
utilized, which quantifies the ability of a binary classifier to distinguish between
classes. The AUC for IF using the entire sample is 0.83, whereas the AUC for a
sub-sample of size 128 reaches 0.98. This demonstrates IF’s enhanced capability
in anomaly detection through reduced sub-sampling.

3. Methodology 19

Figure 3.6: Original dataset

Source: Own elaboration

Figure 3.7: Example of subsampling

Source: Own elaboration

3. Methodology 20

3.4.2 Anomaly Score

The anomaly score, also known as the anomaly measure or anomaly probability,
is a numerical value that quantifies the degree of abnormality of a data point or
observation in comparison to the rest of the dataset. In the context of anomaly
detection algorithms, such as Isolation Forest, the anomaly score indicates how
likely a data point is to be an anomaly or outlier.

The anomaly score, denoted as s(x, i), is calculated as the average h(x) in
IF normalized by the average path of unsuccessful searches in a Binary Search
Tree (BST). The formula for c(i), which represents the average of h(x) given i,
is used to normalize h(x) as follows:

c(i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2H(i− 1) − 2(i−1)

n
for i > 2

1 for i = 2
0 otherwise

where:

• H is the harmonic number, estimated as H(.) = ln(.) + γ (Euler's Con-
stant),

• n is the testing data size,

• i is the size of the sample set.

The anomaly score allows anomaly detection algorithms to rank data points
based on their abnormality level, making it easier to set a threshold for iden-
tifying outliers. By specifying a threshold for the anomaly score, analysts can
determine which data points are considered anomalies and trigger alerts or
further investigation.

Lower anomaly scores indicate a higher likelihood of being normal, while
higher anomaly scores suggest a higher probability of being an anomaly.

The formula for the anomaly score, s(x, i), uses the average h(x) from a
collection of iTrees and is expressed as:

s(x, i) = 2− E(h(x))
(n) (3.1)

where:

• E(h(x)) is an average value of h(x) from a collection of iTrees.

From that we can draw a following conclusions:

3. Methodology 21

• scores close to 1 indicates an anomaly,

• scores much smaller than 0.5 indicates normal observations,

• if all scores are close to 0.5 than the entire sample does not seem to have
clearly distinct anomalies.

3.5 Clustering
Clustering, an unsupervised learning technique, finds application across diverse
fields, including engineering, computer science, life sciences, medical sciences,
earth sciences, social sciences, and economics (Wang et al. 2018). Despite its
versatility, clustering introduces confusion due to varying terminologies and
objectives. Algorithms tailored to specific domains often make assumptions
that favor the particular application of interest, influencing their performance
in other scenarios. For instance, the K-Means algorithm, relying on Euclidean
measure, tends to generate hyperspherical clusters. If real clusters take different
geometric forms, K-Means may become less effective, necessitating alternative
approaches (Xu 2005; Jain et al. 2020).

In general, clustering methods fall into three groups: partitioning, hierar-
chical, and density-based clustering (Kaufman & Rousseeuw 2009). This thesis
focuses on partitioning clustering, specifically K-Means, as the distance mea-
sure aligns well with the purpose throughout. Partitioning aims to maximize
similarity within a cluster while minimizing similarity to other clusters (Hen-
nig et al. 2015). A clustering method’s efficacy is determined by well-defined
clusters with high intra-class similarity. Instances are organized into subsets,
represented as C = C1, . . . , Ck of S, where S = ⋃︁k

i=1 Ci and Ci ∩ Cj = ∅ for
i ̸= j. The goal is to cluster the dataset into K different clusters, with K as
a design parameter. The set Z = µ1, . . . , µK with µ1, . . . , µK ∈ RD represents
the center of each cluster within K. The objective is to assign each data point
to a cluster center, minimizing the overall distance (Wang et al. 2018).

Introducing an indicator variable, rnk, such that

rnk =

⎧⎨⎩ 1 if data point xn is assigned to cluster k
0 otherwise,

the clustering problem can be written as

3. Methodology 22

min
µk,rnk

J =
N∑︂

n=1

K∑︂
k=1

rnk∥xn (3.2)

s.t. rnk ∈ {0, 1} (3.3)
K∑︂

k=1
rnk = 1∀n. (3.4)

3.5.1 K-Means

The K-Means algorithm provides a simple and efficient solution for clustering
datasets. This iterative optimization method approximates a clustering prob-
lem through two steps, alternating between optimizing with respect to µk and
rn,k while holding the other parameter constant. The process begins with the
random initialization of µk, followed by optimization with respect to rn,k and
µk held fixed. Since the clustering problem’s objective function is linear with
respect to rn,k and independent of n, optimization for each n occurs in the
following way:

rnk =

⎧⎨⎩ 1 if k = arg minj ∥xn − µj ∥2

0 otherwise.

The optimization then proceeds with respect to µk, keeping rn,k fixed. The
clustering problem’s objective function becomes quadratic and convex, allowing
the minimum to be found by equating the derivative to zero (Gustavson 2019):

∂J

∂µk

= 2
N∑︂

n=1
rnk(xn − µk) = 0. (3.5)

This yields the optimal µk as:

µk =
∑︁

n rnkxn∑︁
n rnk

. (3.6)

The optimization continues iteratively until convergence is reached, result-
ing in

rnk,∀n ∈ 1, . . . , N, k ∈ 1, . . . , K. (3.7)

and
Z = {µ1, . . . , µK}. (3.8)

Due to the reduction in the objective function at each step, the method

3. Methodology 23

guarantees convergence. It’s crucial to note that K-Means may converge to local
minima, and the algorithm doesn’t ensure convergence to the global minimum.

3.5.2 Euclidian Distance

The fundamental concept behind the K-Means algorithm involves defining k

centroids, each designated for a specific cluster. Placing these centroids strate-
gically is essential, as their location significantly influences the outcome. Ide-
ally, centroids should be positioned as far away from each other as possible.
The process proceeds by associating each point in the dataset with its nearest
centroid. Once all points are assigned, the initial grouping is completed, and
k new centroids are recalculated. This initiates a loop where each data point
is then re-associated with the nearest new centroid. The loop continues until
the k centroids no longer change their positions, signifying the algorithm’s con-
vergence (Stojanovic et al. 2022). Ultimately, the objective is to minimize the
clustering problem (Bora & Gupta 2014).

Figure 3.8: K-Means steps

Source: Own elaboration

In the K-Means algorithm, the distance between each dataset point and
every analyzed centroid is calculated. Points are then assigned to the cen-
troid with the minimum distance. This distance calculation is pivotal to the
clustering algorithm, and various techniques are available for its computation.
The choice of a technique depends on factors such as the data’s properties and
the dataset dimensions. For this purpose, we employ the Euclidean distance
measurement defined as:

3. Methodology 24

⌜⃓⃓⃓
⎷ k∑︂

j=1
(aj − bj)2 (3.9)

Euclidean (and squared Euclidean) distances are typically computed from
raw data rather than standardized data. An advantage of this method is that
the distance between any two objects remains unaffected by the addition of
new objects to the analysis, even if they are outliers. However, differences
in scale among dimensions can significantly impact distances. Transforming
dimensions to similar scales is often recommended to mitigate this effect.

While effective, the K-Means algorithm’s speed can be relatively slow as it
computes the Euclidean distance for every data point in each iteration. How-
ever, faster convergence can be achieved by initializing µk from a random subset
of K data points within the dataset (Gustavson 2019).

In subsequent tests on transaction monitoring data, we will observe that the
algorithm may not be highly suitable for assessing outliers in complex scenarios,
particularly in the banking sector. The extensive iterations required for diverse
customer groups and risk levels make it impractical and costly for institutions.
The algorithm’s efficiency is, therefore, most applicable in specific scenarios
and situations.

3.6 Copulas
The paper by Zheng Li (2020) introduced a novel Copula-based Outlier Detec-
tion technique known as COPOD. Before this development, several prominent
outlier detection methodologies had been proposed, predominantly centered
around clustering principles. These methodologies typically involved comput-
ing distances between data points and flagging those exhibiting significant de-
viations from their neighboring points. In contrast, COPOD diverges from
this paradigm by leveraging a statistical construct know as copula. A copula
functions is a bridge between univariate marginal distributions, facilitating the
construction of their corresponding joint multivariate distribution. This fea-
ture proves particularly advantageous in detecting outliers within financial time
series data. Empirical studies have consistently highlighted the non-normal
nature of financial data, often characterized by skewness, leptokurtosis, and
symmetric dependencies as in Joe (2014). Recent scholarly contributions un-
derscore the growing recognition of copulas in financial modeling, driven partly

3. Methodology 25

by the inadequacies of assuming multivariate normality, especially evident in
transactional monitoring scenarios where multidimensional data are prevalent
(Patton 2012).

COPOD exploits copulas to dissect the interrelationships among multiple
features, even in scenarios where the underlying distributions of individual fea-
tures are unknown (Faesel 2022). Formally, a d-variate copula, denoted as
C : [0, 1]d → [0, 1], represents the empirical cumulative distributive function
(CDF), which describes the probability at each point that a random variable
(U1, U2, ..., Ud) drawn from Uniform(0,1) marginals, falls below or equals a spec-
ified point

CU(u) = P(U1 ≤ u1, ..., Ud ≤ ud) (3.10)

where P (Uj ≤ uj) = uj for j ∈ 1, ..., d and uj ∈ [0, 1]. These uniform
distributions can be transformed into desired distributions via inverse sampling:

Xj = F−1
j (Uj) ∼ Fj (3.11)

Sklar’s theorem, formulated by Sklar (1959), underscores the ubiquity of
copulas by revealing that any joint distribution function F (x1, ..., xd) with
marginal distributions F1, ..., Fd can be expressed in terms of copulas:

F (x) = C(F1(x1), ..., Fd(xd)) (3.12)

This theorem offers considerable modeling flexibility for high-dimensional
datasets, as it permits the separate modeling of each dimension with a guar-
anteed method for linking marginal distributions to form joint distributions.
When the marginals are continuous, the copula function can be uniquely de-
termined. By substituting the inverse transformation from equation 3.11 into
equation 3.10, the copula equation can be expressed in terms of joint and in-
verse cumulative distribution functions:

CU(u) = P(FX1(X1) ≤ u1, ..., FXd
(Xd) ≤ ud)

= P(X1 ≤ F−1
X1 (X1), ..., Xd ≤ F−1

Xd
(Xd))

= FX(F−1
X1 (u1), ..., F−1

Xd
(ud))

(3.13)

Together, these insights from Sklar’s theorem underscore the existence of
a copula for any given multivariate continuous distribution and provide a sys-
tematic approach for constructing copulas (Zheng Li 2020).

3. Methodology 26

3.6.1 Theoretical Framework of COPOD

The theoretical framework of COPOD involves several key components:

A. Empirical Copula
An empirical copula is a non-parametric estimator of the copula function

based on observed data, which is used by COPOD. It provides a way to es-
timate the underlying dependence structure among variables without making
assumptions about the functional form of the copula Genest & Favre (2007).
Let X denote a dataset comprising n observations in d dimensions. For clarity,
we denote the ith observation of the jth dimension as Xj,i. The empirical CDF,
F̂ (x) is calculated as:

F̂ (x) = 1
n

n∑︂
i=1

I(Xi ≤ x) (3.14)

This transforms the original data into ranks, effectively converting them into
uniform marginals. With the rank-transformed data Ui,j, the joint empirical
distribution function is computed

Ĉn(u1, u2, ..., ud) = 1
n

n∑︂
i=1

I(Ũ1,i ≤ u1, ..., Ũd,i ≤ ud) (3.15)

This function gives the probability that each variable falls below or equals a
specified rank uj for j = 1, 2, ..., d. The empirical copula, denoted as Ĉn(u1, u2, ..., ud),
is then obtained from the joint empirical distribution function. This serves as
an estimator for the true copula function underlying the multivariate distribu-
tion Nelsen (2006).

B. Tail Probability Estimation
COPOD uses the empirical copula to approximate the tail probability of

observing extreme events in the dataset. By analyzing the copula-based tail
probability, COPOD identifies outliers that deviate significantly from the ex-
pected dependence structure captured by the copula. To achieve this, COPOD
estimates the tail probabilities associated with observing extreme points in the
data. We assume, that xi is distributed according to some d-variate distribu-
tion function FX , the left and right tail probabilities FX(xi) and 1 − FX(xi)
are computed, representing the likelihood of observing values as extreme as xi

on either end of the distribution. In case xi is an outlier, the probability of
observing a point at least as extreme as xi should be small Zheng Li (2020). By

3. Methodology 27

quantifying the rarity of extreme observations through tail probabilities, CO-
POD identifies potential outliers that deviate significantly from the expected
behavior of the dataset.

Building on the estimation of tail probabilities, COPOD employs compu-
tational techniques to empirically compute these probabilities for each obser-
vation in the dataset. This involves leveraging the empirical copula function
to approximate the tail probabilities based on the observed data. By system-
atically evaluating the tail behavior of the dataset across multiple dimensions,
COPOD gains a comprehensive understanding of outlier characteristics and
their underlying distributional properties.

In high-dimensional spaces, the probability of observing extreme events
tends to decrease exponentially as the dimensionality of the dataset increases.
This phenomenon, known as the curse of dimensionality Bellman (1961), poses
a challenge for outlier detection algorithms like COPOD. To mitigate the im-
pact of diminishing tail probabilities, COPOD adopts a logarithmic transfor-
mation of the tail probabilities. If we consider equation 3.15 in both low dimen-
sional and high dimensional settings, we see, that as dimensionality increases,
the probability of Ũ j,i ≤ uj,∀j decreases exponentially (Zheng Li 2020). By
taking the negative logarithm of the tail probabilities, COPOD ensures that the
probabilities remain relevant and informative even in high-dimensional settings,
thereby enhancing the accuracy of outlier detection.

− log(Ĉ(u)) = − log(P(Ũ1,i ≤ u1) × . . .× P(Ũd,i ≤ ud))

= −
d∑︂

j=1
log(P(Ũ j,i ≤ uj)) = −

d∑︂
j=1

log(uj)
(3.16)

C. Skewness correction
The skewness of the dataset is essential in determining whether to use left

or right tail probabilities for outlier detection. When outliers exhibit skewed
behavior, traditional methods relying solely on one tail may produce subop-
timal results. COPOD addresses this by introducing a skewness correction
mechanism that adapts the selection of tail probabilities based on the skewness
of each dataset dimension. By dynamically adjusting the tail probabilities,
COPOD enhances its ability to detect outliers across various distributional
characteristics, improving robustness and effectiveness.

In transaction monitoring, the expertise of analysts is crucial. Typically, the

3. Methodology 28

focus is on the upper-tail for detecting anomalies. For instance, in a scenario
where transactions exceeding a certain amount and their frequency surpass
specified thresholds, only the upper-tail is relevant. Conversely, a scenario that
monitors structured cash amounts would focus on lower-tail probabilities.

By understanding and applying the appropriate tail probabilities, analysts
can more effectively monitor and detect potential money laundering activities,
ensuring that the transaction monitoring system operates optimally and accu-
rately.

Chapter 4

Data

In this section, a comprehensive description of the data, along with its imple-
mentation will be provided. Initially, we detail the creation process of synthetic
data designed to mimic the transactional data structure used in transaction
monitoring. These data were created to follow the behavior of a specific cus-
tomer group. Following this, we focus on the examination of anonymized data
obtained from real-world institutions, along with their advantages and limita-
tions.

4.1 Artificial Data
Constructing artificial data is straightforward since we do not need to navigate
complex layers of data typically obtained from real financial institutions, which
would require detailed descriptions of their construction, which will be further
introduced in the section dedicated to real-world data. However, to grasp the
underlying structure of this data, a few key points are worth mentioning.

For instance, as previously discussed, customer segmentation plays a piv-
otal role in the transaction monitoring pipeline. Outlier detection models are
specifically applied to transactional data within defined customer segments to
ensure accurate assessment, avoiding misleading outliers from customers with
vastly different behavioral patterns. In constructing artificial data, this seg-
mentation aspect is unnecessary, as the data inherently represents a synthetic
segment of customers with uniform behavior.

That being said, the default transactional data are designed with the follow-
ing characteristics based on industry knowledge to reflect an average customer
segment:

4. Data 30

• 100,000 transactions

• 500 unique customers

• 10 different transaction types (e.g., wire, cash, etc.)

• 25% of transactions are international (with 10% involving high-risk coun-
tries)

• Spanning a one-year time period

• Chi-squared distribution (6 degrees of freedom) (χ2
6)

The default data settings are consistently applied throughout the analysis.
The structure of the table is illustrated in the conceptual schema in Figure 4.1,
and the distribution of transactions is depicted in Figure 4.2. The adoption of
a chi-squared distribution with 6 degrees of freedom is consistent with one of
the standard transaction distributions described in earlier chapters. This choice
underscores a critical aspect of our analysis: legitimate transactions, which may
not involve any illicit activity, can still be flagged as suspicious and identified
as outliers in our models during transaction monitoring. For the purposes of
this analysis, transaction amounts are considered in EUR. Customer tenure is
randomly assigned, with 1% of customers having a tenure of fewer than 180
days.

The columns and their specifications are as follows:

• CUSTOMER_ID: Links the transaction to a specific customer.

• CUSTOMER_TENURE: Number of days the customer has been with
the institution.

• TRANSACTION_ID: Unique identifier for each transaction.

• ACCOUNT_NO: Links the transaction to a specific account.

• EXECUTION_DATE: Date when the transaction occurred.

• TRANSACTION_AMOUNT: Amount of the transaction converted
to EUR (as scenarios typically operate in a single currency).

• DIRECTION: Transaction direction (credit or debit).

• COUNTRY: Customer’s country.

4. Data 31

Figure 4.1: Conceptual schema of the artificial data

Source: Own elaboration

Figure 4.2: Default distribution of artificial transactions

Source: Own elaboration

4. Data 32

• CONTRA_COUNTRY: Counterparty’s country.

• INTERNATIONAL_FLAG: Boolean indicating if the transaction is
international.

• CASH_FLAG: Boolean indicating if the transaction involves cash.

• BUSINESS_TYPE: Type of transaction (wire, cash, etc.).

To meet specific scenario requirements and ensure applicability, the data
must be further adjusted so that each scenario has its unique dataset with
outliers that correspond to the specific suspicious activities targeted by the
scenario. Therefore, each dataset includes some outliers, whose amounts were
selected randomly to maintain the randomness characteristic of real transac-
tional data. From a business perspective, as it is not feasible to determine
the exact number of outliers with certainty, the choice is informed by business
experience and the targeted number of transactions to be considered outliers.
Financial institutions typically cannot investigate every flagged transaction due
to the cost implications and must balance the cost of investigations with po-
tential regulatory penalties for insufficient transaction monitoring coverage. As
such, the typical percentage of outliers varies between 5-15%. For each scenario,
we will select a random percentage with a mean of 10 and a standard deviation
of 5. The detailed approach for each scenario will be further explained in Sec-
tion 4.3. The outliers will be either increased or decreased by a factor known as
the outlier factor. This factor is determined randomly, with an average increase
set to 3 and a standard deviation of 2.

4.2 Real-world Data
To ensure streamlined analysis and compatibility across different Transaction
Monitoring systems, our data structure remains independent of any specific
TM system and adheres strictly to the analytical requirements.

For this use case, we collected anonymized data from a real-world, medium-
sized financial institution spanning 12 months. This timeframe ensures that our
models can capture seasonality and other annual trends effectively. A 12-month
period is typically sufficient for training transaction monitoring models, striking
a balance between efficiency and the ability to gather essential information.

In contrast to artificially created data, the real-world data we employ in-
cludes all information provided by the institution. This encompasses details

4. Data 33

about alerts generated by scenarios, although these are not the primary focus
of our analysis, as well as data on customers who did not conduct transactions
during the observed period, necessitating additional data preprocessing.

To facilitate data representation and management, we have identified and
defined six distinct tables that comprehensively represent our input data. Fig-
ure 4.3 below illustrates the conceptual schema of these tables which are:

• transactional

• alert

• customer

• threshold

• alert-scenario mapping

• alert-feature mapping

The obtained tables contain the following information:

• 8,879,643 transactions

• 3,493,688 customers

• 17 segments

• 35 distinct scenarios

• 6,120 alerts

Transactional Table
The Transactional table includes essential information crucial for our anal-

ysis, as transactions are the primary input for training the models in this re-
search. It encompasses details about all transactions made during the observed
period at the institution. The columns presented in the Transactional table are:

• CUSTOMER_ID: Links the transaction to the particular customer.

• TRANSACTION_ID: Unique identifier of the transaction.

• ACCOUNT_NO: Links the transaction to the particular account.

• EXECUTION_DATE: Date when the transaction was executed.

4. Data 34

Figure 4.3: Conceptual scheme of the real-world data

Source: Own elaboration

4. Data 35

• CURRENCY_ACCOUNT: Currency in which the account making
the transaction is held.

• CURRENCY_TRANSACTION: Currency in which the transaction
was made.

• AMOUNT_LOCAL: The amount of the transaction in the currency
of the transaction.

• AMOUNT_EUR: The amount of the transaction converted to EUR
(as scenarios typically function in one currency).

• DIRECTION: Direction of the transaction (credit or debit).

• COUNTRY: Country of the customer.

• CONTRA_COUNTRY: Country of the counterparty.

• INTERNATIONAL_FLAG: Boolean value indicating if it’s an inter-
national transaction.

• CASH_FLAG: Boolean value indicating if it’s a cash transaction.

• BUSINESS_TYPE: Type of transaction (wire, cash, etc.).

• CONTRA_CUSTNO: Unique identifier of the counterparty (if appli-
cable).

• CONTRA_ACCNO: Account number of the counterparty.

Alert table
The dataset includes a comprehensive record of alerts generated throughout

the analyzed period. It encompasses crucial details such as the unique alert
identifier, creation date, closed date (if applicable), investigation outcome, and
additional fields like customer maturity and transaction type.

During the investigative process, each alert may result in one of three out-
comes:

• False Positive (FP): Alerts where no substantial evidence of suspicious
activity is found.

• Worthy Alert (WA): Alerts escalated for further investigation, but with-
out sufficient evidence to confirm suspicious activity, resulting in closure
as WA.

4. Data 36

• Suspicious Activity Report (SAR): Alerts thoroughly investigated and
substantiated as suspicious, subsequently reported to regulatory author-
ities.

Key fields in the Alert table include:

• ALERT_ID: Unique identifier of the alert within the TM system.

• CUSTOMER_ID: Key linking to the customer table.

• CREATION_DATE: Date when the alert was generated.

• CLOSED_DATE: Date when the alert was closed, if applicable.

• OUTCOME_CODE: Outcome of the investigation (provided only if
the alert has been closed).

• RISK: Risk category assigned to the transaction.

• TRANSACTION_TYPE: Type of transaction associated with the
alert.

• MATURITY: Length of the customer’s relationship with the institution
at the time of the transaction.

Customers Table
The Customers table contains essential customer data, excluding personally

identifiable information necessary for analysis. It includes information about
customer segments, crucial for accurately classifying customers based on similar
patterns of behavior. These segments were created using behavioral segmenta-
tion, an approach recommended by the FATF since 2021 as the optimal choice,
with its implementation detailed in a previous chapter. The table features the
following key columns:

• CUSTOMER_ID: This column serves as a unique identifier for each
customer. If actual customer IDs are withheld by the bank, data can be
anonymized, and new identifiers can be generated.

• SEGMENT_CODE: This column provides a unique identifier for dif-
ferent customer segments, such as Private Individuals, Legal Entities,
SMEs, and others.

4. Data 37

Alert-Feature Mapping Table
The Alert-Feature Mapping table records variables calculated by scenarios

for each alert. The number of attributes (features) varies based on the scenarios
being optimized and their respective thresholds. The columns in this table
include:

• ALERT_ID: A unique identifier of an alert in the TM system.

• FEATURE_X: Variable number X.

Alert-Scenario Mapping Table
The Alert-Scenario Mapping table associates alerts with the respective sce-

narios that generated them. In some systems, an alert may be triggered by
multiple scenarios. This table includes the following columns:

• ALERT_ID: A unique identifier of an alert in the TM system.

• SCENARIO_CODE: A unique identifier of the scenario that triggered
the alert.

Threshold Table
The Threshold table stores the configuration for each scenario in the form

of thresholds. It includes the following columns:

• THRESHOLD_ID: A unique identifier of the threshold amount.

• THRESHOLD_NAME: A unique code assigned to the threshold.

• FEATURE_COLUMN: The name of the column containing the thresh-
old value.

• SCENARIO_CODE: A unique identifier of the scenario to which the
threshold belongs.

• SEGMENT_CODE: A unique identifier of the segment to which the
threshold is applicable.

• CURRENT_VALUE: The current value of the threshold.

• IS_LOWER_BOUND: A Boolean value indicating whether the thresh-
old is a lower bound (1) or an upper bound (0).

4. Data 38

• TO_BE_OPTIMIZED: A Boolean value indicating whether the thresh-
old value will be reconfigured.

• LOGICAL_GROUP: A unique identifier of the logical group. Thresh-
olds within the same logical group have a condition ’AND’ between them.

• RISK: The risk category for which the threshold is defined.

• MATURITY: The maturity of the client for whom the threshold is
configured − time the customer has spent with the institution.

4.3 Data Preparation
Figure 4.4 illustrates a comprehensive six-step methodology for the parametriza-
tion process using the current segmentation model. The analytical focus is on
achieving an optimal balance between compliance costs, primarily reducing
false positives, and the risks of non-compliance, where potential instances of
suspicious activity might go undetected.

The preceding section described the initial data required for analysis. How-
ever, further preprocessing is necessary to apply this data to outlier detection
models and to align it with the parametrization process described above. The
first step in this preprocessing phase involves consolidating the data into a
single table that contains all necessary information. This step is unnecessary
for artificial data, as it has been structured accordingly from inception. For
real-world data, all pertinent information scattered across various tables must
be integrated into a transactional table, which serves as the primary source for
feature computation.

Given that the transactional data encompasses the entire customer portfo-
lio, segmentation information from the customer table will be used to differen-
tiate transactions by specific segments.

Figure 4.5 displays transaction counts across different segments and risk
categories. For the analysis, we will focus on the Individuals segment and the
Medium-risk category, chosen for its adequate transaction volume and relatabil-
ity to the average reader’s understanding of individual transactional behavior.

Next step is to integrate tables containing information about generated
alerts. It is notable that this institution generated a minimal number of alerts
across all scenarios, which suggests that thresholds may have been set too high.

4. Data 39

Figure 4.4: Methodology of the parametrization process

Source: Own elaboration

Figure 4.5: Transaction count by segment and risk category

Source: Own elaboration

4. Data 40

Moreover, the same thresholds were applied across all customer in the porfolio-
as visible in the figure 4.5, the bank employs the general segment which includes
all the customers in its portfolio "All Customers". This likely contributed to
underperformance in scenario detection, given the diverse behavioral patterns
within this large segment.

As a result, the dataset provided lacks labeled instances because no alerts
were generated, precluding conventional quantitative evaluation. This limita-
tion will be further discussed in Chapter 6. Consequently, the evaluation of
this dataset will primarily adopt a qualitative approach, enabling an initial
exploration of model performance in the absence of established ground truth.
Quantitative metrics will be assessed solely on the artificial dataset, where
labels are generated during outlier creation.

After completing the initial data preprocessing phase, we proceed with spe-
cific preprocessing tailored to each scenario. In the first scenario, the objective
is straightforward: identifying weekly debit transactions that significantly ex-
ceed a predefined threshold. To prepare the dataset for the outlier detection
model, we focus solely on the relevant features. Specifically, we calculate the
total sum of debit transactions made by customers on a weekly basis across
the entire period. This aggregated sum will serve as the input feature for our
analysis. For the artificial data, we must manually introduce outliers. Here’s
the approach: we randomly select a number of transactions to designate as
outliers, adhering to the earlier mentioned percentage range (typically between
5-15%). Each selected outlier transaction amount is increased by an outlier
factor.

The second scenario will consist of two features, as we need to identify two
potential thresholds. We first need to calculate the parameters of the scenario.
In this case, we have four parameters to calculate:

• WireCreditAmount_Customer_PresentDay,

• WireCreditAmount_Customer_Past_n_Month,

where N = 3. To calculate these parameters, we will first aggregate the
amounts of wire credit transactions made by each customer on a given day.
Then, for each day, we will create 30, 60, and 90-day lookback periods and
calculate the amounts of wire credit transactions made by each customer during
these periods. Using these parameters, we will derive the final features.

To illustrate how the features are calculated, we can modify the scenario
syntax into Equation 4.3:

4. Data 41

X1 > 1000 × T1

X1 > T2 × 0.01 ×
(︄

Y1 + Y2 + Y3

0.001 + (Y1 > 0) + (Y2 > 0) + (Y3 > 0)

)︄ (4.1)

where:

• X1 = WireCreditAmount_Customer_PresentDay,

• T1 = Threshold_1,

• T2 = Threshold_2,

• Yn = WireCreditAmount_Customer_Past_n_Month,

Next, we will manipulate the equation to isolate both thresholds:

X1

1000 > T1

X1

0.01 ×
(︂

Y1+Y2+Y3
0.001+(Y1>0)+(Y2>0)+(Y3>0)

)︂ > T2
(4.2)

These two expressions will be our features:

X1

1000 = F1

X1

0.01 ×
(︂

Y1+Y2+Y3
0.001+(Y1>0)+(Y2>0)+(Y3>0)

)︂ = F2
(4.3)

where F1 = Feature 1 and F2 = Feature 2. Similarly to the previous
scenario, we will further adjust these results for the artificial dataset to create
outliers. In this instance, we will separately increase both features using a
random outlier factor.

The final scenario will consist of four features, as we are identifying four
thresholds. Similar to previous scenarios, we first need to calculate the param-
eters, which are:

• WireCreditAmount_Customer_Past_n_Month,

• WireCreditNumber_Customer_Past_n_Month,

• NumberDays_Customer_Open >= 180.

4. Data 42

Where N = 6. In this case, the parameter NumberDays_Customer_Open
is used for filtering the initial dataset rather than for calculation. Since the
scenario partially focuses on transactions with a 180-day lookback, we need to
consider only customers who have been clients of the bank for at least the last
180 days. Therefore, this parameter will be used to remove customers who do
not meet this condition.

For the remaining customers, we will create 30, 60, 90, 120, 150, and 180-day
lookback periods and calculate the amounts and counts of wire credit transac-
tions made by each customer during these periods. Using these parameters, we
will derive the final features.

As before, we will modify the scenario syntax into Equation 4.4:

X1 > T1

Y1 > T2

(X1 +X2 +X3 +X4 +X5 +X6) < T3

(Y1 + Y2 + Y3 + Y4 + Y5 + Y6) < T4

(4.4)

where:

• Tn = Threshold_n,

• Xn = WireCreditAmount_Customer_Past_n_Month,

• Yn = WireCreditNumber_Customer_Past_n_Month,

From this, we can derive the features as follows:

X1 = F1

Y1 = F2

(X1 +X2 +X3 +X4 +X5 +X6) = F3

(Y1 + Y2 + Y3 + Y4 + Y5 + Y6) = F4

(4.5)

where Fn are the four features. Additionally, for the artificial dataset, we
will create the outliers by increasing Feature 1 and Feature 2 by a random
outlier factor and, conversely, decreasing Feature 3 and Feature 4 by the same
random outlier factor.

With this approach, we have created six feature datasets: three from arti-
ficial data with manually added outliers and three from real-world unlabeled
data. Each dataset is tailored to a particular scenario and its outlier detection
requirements.

Chapter 5

Model Implementation

In this section, we delineate the process of constructing each of our models
and determining the significance of the variables. Additionally, we explain the
business logic and underlying motivations for the adopted methodologies. The
models will be applied to the dataset described in the preceding chapter.

For the purpose of this thesis, the primary evaluation and tuning of the
models will be conducted on synthetic data, since, in real-world scenarios,
labeled transactions are often unavailable or inconclusive, as will be further
discussed in Chapter 6.

This thesis employs two approaches for model tuning. In the context of
transaction monitoring, the objective is to maximize the correct classification
of transactions as fraudulent, which we define as outliers. To achieve this, the
institutions adopt the cost-sensitive approach presented by Elkan (2001). The
goal is to enhance the performance of the models on the imbalanced sample.
While it might seem straightforward to choose a performance metric for trans-
action monitoring, this is not the case. Ideally, marking all suspicious trans-
actions as potentially fraudulent would be logical. However, in reality, each
flagged transaction undergoes a review process by an employee, which varies
by transaction but is typically time-consuming and costly for the institution.
Moreover, if too many transactions are flagged, the investigation team might
be unable to thoroughly investigate all cases, necessitating either additional
hires or incurring high fees from regulatory bodies.

Our analysis aims to balance two performance metrics: sensitivity and speci-
ficity. Sensitivity refers to a model’s ability to correctly identify fraudulent
transactions, measuring the proportion of frauds labeled as fraudulent, thus
correlating with a low false negative rate. Specificity, conversely, refers to an

5. Model Implementation 44

algorithm’s ability to correctly identify genuine transactions, measuring the
proportion of valid transactions labeled as valid, thus correlating with a low
false positive rate. Our aim is to achieve high sensitivity while maintaining
sufficiently high specificity. Precision is also considered as a complementary
performance measure, describing the proportion of true positives among all
transactions labeled as fraudulent, where higher precision indicates a low false
positive rate.

Furthermore, we examine the Area Under the ROC Curve (AUC). In our
context, a high AUC is necessary but not sufficient to conclude that our model
performs well due to the significant imbalance between fraudulent and genuine
transactions in our dataset. As described in Fayzrakhmanov et al. (2020), the
usage of ROC curve might be suboptimal in such cases. A high AUC might
be misleading if our model predominantly labels transactions as legitimate,
rendering it ineffective. Nonetheless, AUC cannot be disregarded entirely as
there remains a risk of mislabeling both fraudulent and legitimate transactions.
Thus, while ensuring that our models achieve high AUC, we must also consider
other performance metrics.

Drawing upon our findings from the real-world dataset, we provide a de-
tailed rationale for selecting an appropriate threshold, informed by the out-
comes of various outlier detection models and aligned with the established
business criteria. The objective is to determine the number of potential alerts
each algorithm identifies and to evaluate the performance and suitability of
each model based on these figures.

However, merely assessing the outliers identified by the model is insufficient.
The nature of outliers can vary significantly throughout the feature space, ne-
cessitating a more nuanced approach to threshold selection. In this context, we
aim to identify the tail value in the data where outliers become more prevalent
or where the entirety of the data can be classified as outliers across all feature
spaces.

To achieve this, the identified outliers from each model are first applied
separately to each feature. This step involves sorting the data by each feature’s
values to determine the distribution of outliers within individual feature spaces.
By doing so, we can assess where outliers begin to cluster and at what point
they become more common.

After this feature-wise assessment, the sorted data are merged to identify
a tail value point. This tail value is critical as it represents the threshold
where outliers are consistently flagged across multiple features. By examining

5. Model Implementation 45

these tail values, we can pinpoint the threshold where outliers begin to emerge
uniformly across the entire feature space.

This comprehensive approach ensures that the selected threshold accurately
reflects the areas of the data where outliers are most likely to occur, providing
a robust basis for evaluating the appropriateness of the results. By considering
the tail value across all features, we ensure that our outlier detection is both
thorough and aligned with the practical needs of the business, leading to more
reliable and actionable insights.

It is important to note that after the initial threshold proposal, the final
choice of thresholds may still differ based on the institution’s risk appetite.
Even though some thresholds might seem optimal from a purely analytical
perspective, they might not align with the institution’s risk tolerance and op-
erational strategies. Hence, the ultimate threshold selection must balance an-
alytical rigor with the institution’s specific risk management policies.

5.1 Isolation Forest
We employ Isolation Forest as our initial model for detecting outlier transac-
tions. For this analysis, we use the IsolationForest package. The outlier de-
tection process with Isolation Forest comprises two stages. The first stage, the
training stage, involves building isolation trees using subsamples of the train-
ing set. The second stage, the testing stage, involves passing the test instances
through the isolation trees to obtain an anomaly score for each instance.

In the training phase, isolation trees (iTrees) are built by recursively split-
ting the training dataset until each instance is isolated or a predetermined tree
height is achieved, resulting in a partial model. The number of splits required
to isolate a sample corresponds to the path length l from the root to the ter-
minal node, determined by the subsampling size ψ : l = ceiling(log2 ψ). The
average path length across a forest of such trees acts as a measure of normal-
ity, forming the basis of our decision function. We focus on data points with
shorter-than-average path lengths, as these are more likely to be anomalies.

The Isolation Forest algorithm relies on two primary parameters: the sub-
sampling size ψ and the number of trees t. The subsampling size dictates the
amount of training data used. Once ψ reaches an optimal value, further in-
creases do not improve detection performance but do increase processing time
and memory requirements. Empirical evidence suggests that setting ψ to 256
generally suffices for effective anomaly detection across various datasets (Liu

5. Model Implementation 46

et al. 2015). Thus, we adopt ψ = 256 as our default value. The number of
trees t determines the size of the ensemble. Path lengths typically stabilize well
before t = 100 (Liu et al. 2015), so we use t = 100 as our default value unless
specified otherwise.

At the conclusion of the training process, a collection of trees is prepared
for the evaluation phase. An anomaly score s is calculated from the expected
path length E(h(x)) for each test instance by passing it through the isolation
trees. The path length h(x) is the number of edges e from the root to the
terminal node. If x terminates at an external node with Size > 1, the value
returned is e plus and adjustment c(Size). Once h(x) is obtained for each tree,
an anomaly score s(x, ψ) is computed as in Equation 3.1. The complexity of
this process is O(nt logψ), where n is the testing data size. To find the top m

anomalies, the data is sorted by s in descending order, and the first m instances
are identifies as anomalies.

We begin with the results of Scenario 1 on the artificial dataset. The pre-
dictive performance is illustrated in Figure 5.1. The Isolation Forest correctly
identified 2,042 outliers while generating 20,425 false positives. This model
achieved a specificity of 89%, indicating its capacity to correctly classify 89%
of potentially genuine transactions. Despite this, it underperformed compared
to the K-Means and Copulas algorithms in terms of specificity.

However, the Isolation Forest demonstrated a sensitivity of 72.1%, out-
performing its peers in this metric. Notably, while it identified 2,500 transac-
tions as potentially fraudulent, it misclassified only 789 transactions as genuine,
which may have been fraudulent. This scenario exemplifies the trade-off be-
tween true positives and false positives that many financial institutions must
navigate. Although the Isolation Forest excels in identifying fraudulent trans-
actions, its accuracy in correctly identifying genuine transactions is limited.
This limitation could lead to increased costs for financial institutions due to
the need for additional investigative efforts.

Figure 5.2 presents the ROC curve for the Isolation Forest model, with an
area under the curve (AUC) of 0.86. This AUC is slightly better compared to
other models, with COPOD showing a similar performance. Furthermore, the
average prediction time for the Isolation Forest was 2.29 seconds. While this
is shorter than the K-Means model, it is significantly longer than COPOD’s
0.02 seconds, especially given the relatively small dataset used in this scenario.
This indicates that although the Isolation Forest’s performance is satisfactory,
its processing time is suboptimal. This inefficiency could become problematic

5. Model Implementation 47

with larger datasets, given the extensive number of results required to tune the
entire customer portfolio and all scenarios.

Figure 5.1: Confusion Matrix of Isolation Forest - Scenario 1

Source: Own elaboration

Figure 5.2: ROC Curve of Isolation Forest - Scenario 1

Source: Own elaboration

The results of the second scenario, involving two dimensions, are presented
in Figure 5.3. In this scenario, the Isolation Forest correctly identified 2,630
fraudulent transactions while generating 37,105 false positives. Although the
Isolation Forest’s specificity increased to 95.5%, it still underperformed com-
pared to other models, though the performance gap was not significant. Con-
versely, the model’s sensitivity decreased to 54.8%, which, although similar
to the performance of the other models, is unsatisfactory. Unlike the one-
dimensional scenario, the two-dimensional model falsely identified more trans-

5. Model Implementation 48

actions as genuine rather than fraudulent. This misclassification could lead to
penalties due to insufficient monitoring of fraudulent transactions.

The ROC curve for the two-dimensional Isolation Forest model is shown
in Figure 5.4, with an AUC of 0.89. This value remains comparable to those
of the other two models. However, the processing time increased significantly
to 6.32 seconds. This finding underscores the previously mentioned concern
regarding high processing times, which could pose significant challenges for
larger financial institutions.

Figure 5.3: Confusion Matrix of Isolation Forest - Scenario 2

Source: Own elaboration

Figure 5.4: ROC Curve of Isolation Forest - Scenario 2

Source: Own elaboration

The four-dimensional analysis, represented as Scenario 3, is shown in Fig-
ure 5.5. In this scenario, the Isolation Forest significantly outperformed both

5. Model Implementation 49

the K-Means and Copulas models, although its results remained close to those
of COPOD. Notably, in higher dimensions, the Isolation Forest’s specificity
increased to 96.9%, and its sensitivity rose to 81.5%, indicating improved per-
formance with higher-dimensional data. The model correctly identified 3,100
fraudulent transactions and misclassified only 706 transactions as false posi-
tives. Additionally, it classified 38,186 transactions as genuine, with only 1,222
incorrectly classified as potentially fraudulent. These results suggest that the
Isolation Forest model yields satisfactory outcomes in higher dimensions.

Figure 5.6 illustrates the ROC curve for the four-dimensional Isolation For-
est model, which boasts an impressive AUC of 0.98. This performance surpasses
that of the K-Means model and matches the results of COPOD. Nonetheless,
the processing time for the Isolation Forest model is still a concern, particu-
larly when compared to COPOD, which keeps its processing times under 0.2
seconds.

Figure 5.5: Confusion Matrix of Isolation Forest - Scenario 3

Source: Own elaboration

5. Model Implementation 50

Figure 5.6: ROC Curve of Isolation Forest - Scenario 3

Source: Own elaboration

As we transition to analyzing real-world data, we face the challenge of
working without labeled data, making it difficult to directly assess the correct
classification of the models. Instead, we evaluate the models based on business
needs and the rationale behind the chosen thresholds. The Table 5.1 shows the
number of transactions evaluated as fraudulent and genuine in each scenario:

Scenario Total features Outliers Outliers (%) Time (s)
1 211,499 29,000 13.71% 24.1952
2 379,969 58,389 15.37% 31.3524
3 328,674 36,332 11.05% 28.0342

Table 5.1: Performance metrics of Isolation Forest on real-world data

In Scenario 1, the process is relatively straightforward. We assess the thresh-
old at the point where transactions start appearing as outliers according to the
model’s feature distribution. Figure 5.7 illustrates this distribution, zoomed in
for clarity due to the large number of transactions and the extensive tail.

Based on this figure, the ideal cut-off point would be a threshold value of
1,500 EUR. This means that from the total 211,499 transactions, the system
would identify 29,000 alerts. It is crucial to note that this scenario was in-
troduced as an example of a one-dimensional analysis and, in practice, would
be more complex or used in combination with other scenarios, significantly
reducing the number of alerts to avoid a high number of false positives.

Given the impracticality of investigating 29,000 alerts, we would look further

5. Model Implementation 51

Figure 5.7: Feature Distribution - Scenario 1 [zoomed in]

Source: Own elaboration

down the distribution to find an optimal cut-off point that aligns with the
number of alerts the institution can feasibly investigate. In the context of
a one-dimensional scenario, the benefit of using Isolation Forest (similarly to
the COPOD algorithm) is the ability to choose the contamination level at the
outset. This means that Isolation Forest can identify the number of alerts that
fit the institution’s risk-based approach and cost considerations.

For Scenarios 2 and 3, the situation is more complex due to the multi-
dimensional nature of the data. Here, assessing the threshold based on a single
distribution function is not feasible. Additionally, setting the contamination
level is less straightforward because we need to evaluate thresholds separately
for each feature. This requires further preprocessing of the results as previously
explained in the model implementation section.

The post-preprocessing results are shown in Table 5.2, indicating a decrease
in the number of potential alerts:

Scenario Total transactions Outliers after applying the threshold Outliers (%)
2 379,969 5,227 1.38%
3 328,674 14,530 4.42%

Table 5.2: Outliers detected by Isolation Forest after applying the
thresholds to scenarios

In Scenario 2, the number of alerts decreased to 5,277, representing 1.38%
of the total features, if we would apply the respective thresholds at the as-

5. Model Implementation 52

sessed cut-off points. This proportion is manageable for most institutions to
investigate and aligns well with average institutional needs.

For Scenario 3, the number of alerts is higher, totaling 14,530. This increase
is due to the scenario being run daily, leading to potential double counting,
particularly in the first half of each month. However, many of these alerts
would eventually be merged as duplicates, reducing the final count to a more
manageable number suitable for threshold proposal.

Even though the overall results seem satisfactory, there is a significant down-
side to using Isolation Forest in this analysis: its high processing times. These
processing times are notably higher than those of our other models, which raises
concerns about its efficiency and practicality for real-world applications. High
processing times can limit the model’s usability. Therefore, while Isolation
Forest demonstrates strong performance in identifying outliers, its extended
processing duration makes it a less efficient choice compared to faster alter-
natives like COPOD, which maintain lower processing times while delivering
comparable results. This efficiency issue must be considered when choosing the
most suitable model for practical deployment in a business setting.

5.2 K-Means
The utilization of K-Means for anomaly detection hinges critically upon the
concept of distance. Anomalies are construed as data points that deviate sig-
nificantly from the predominant cluster within a dataset. By leveraging the
distance between each data point and its nearest cluster centroid, we can ef-
fectively pinpoint instances that lie substantially distant from the established
clusters. A fundamental requirement of the K-Means algorithm is the pre-
specification of the number of clusters, posing a primary challenge in its appli-
cation, particularly in the realm of transactional monitoring.

The K-Means algorithm operates through several stages. Initially, the num-
ber of clusters K is specified. Next, centroids are either chosen sequentially or
randomly from the initial dataset to form K clusters. Then, distances from
each data point to the K centroids are computed. Subsequently, each centroid
is recalculated based on the mean values of the data points assigned to it. Data
points are then reassigned to clusters based on the smallest distance to cen-
troids. Finally, steps 3 through 5 are iterated until there are no further changes
in cluster assignments.

In this analysis, we employ the KMeans package, a tool that necessitates

5. Model Implementation 53

the specification of parameter K, denoting the number of disjoint clusters C,
each characterized by its centroid µj–often referred to as the cluster means.
Notably, these centroids are not typically data points from the set X, although
they reside within the same feature space.

The objective of the K-Means algorithm centers on the minimization of
inertia, a metric employed to determine the optimal number of clusters. Inertia
quantifies the sum of squared distances between each data point X and its
corresponding centroid µj within a cluster. A desirable model exhibits both
low inertia and a conservative number of clusters K. Nonetheless, a tradeoff
exists, as increasing K tends to decrease inertia. To ascertain the optimal K
for a given dataset, we apply the Elbow method, which identifies the point
where the reduction in inertia begins to plateau.

In transaction monitoring, initially considering two clustersâ€”one for po-
tentially fraudulent transactions and one for non-fraudulent onesâ€”seems intu-
itive. However, practical analysis may reveal that two clusters are inadequate.
If the number of identified fraudulent transactions is too small, distinguishing
them from non-fraudulent ones becomes challenging, requiring more clusters for
better separation. Conversely, an excessive number of fraudulent transactions
could overwhelm the algorithm, reducing its effectiveness.

Therefore, selecting the optimal number of clusters for transaction mon-
itoring involves balancing these factors. It requires careful consideration of
dataset characteristics, such as the prevalence of fraudulent transactions, to
ensure effective anomaly detection without compromising accuracy.

The one-dimensional scenario begins with determining the optimal number
of clusters for analysis. Figure 5.8 illustrates the inertia results, which guide the
selection process. Utilizing the elbow method, the optimal number of clusters is
identified at the point where improvements in the inertia value taper off. Based
on this approach, the chosen K falls between 2 and 4. Given the objective of
distinguishing outliers from non-outliers, we can determine the optimal K to
be 2.

Figure 5.8: Inertia - Scenario 1

Source: Own elaboration

5. Model Implementation 54

With K = 2, the model is fitted, and the results are shown in the confu-
sion matrix in Figure 5.9. The K-Means algorithm correctly identified 1,619
fraudulent transactions and classified 1,212 as genuine, resulting in a sensitivity
of 57.2%. This performance is significantly worse than the other models and
could result in substantial regulatory penalties. However, the K-Means algo-
rithm achieved a specificity of 99%, correctly classifying the majority of genuine
transactions and falsely identifying only 222 as fraudulent. This indicates that
while the model minimizes the time spent investigating false positives, it risks
leaving a significant number of fraudulent transactions undetected, posing se-
vere risks to the institution.

Figure 5.10 presents the ROC curve for the K-Means model, which has an
AUC of 0.72, lower than the results achieved by the other models. Like the
Isolation Forest, the K-Means model also experiences relatively long process-
ing times, which can be problematic in a transactional monitoring context.
Furthermore, the requirement to accurately determine the number of clusters
contributes to its time consumption, making it the most time-consuming model
among those evaluated.

Figure 5.9: Confusion Matrix of K-Means - Scenario 1

Source: Own elaboration

5. Model Implementation 55

Figure 5.10: ROC Curve of K-Means - Scenario 1

Source: Own elaboration

In the two-dimensional scenario, the optimal number of clusters is again
determined using the elbow method, as depicted in Figure 5.11. The chosen K
remains at 2.

Figure 5.11: Inertia - Scenario 2

Source: Own elaboration

The results shown in Figure 5.12 indicate that the K-Means model main-
tained high specificity at 98.7%, outperforming the other models with only
488 genuine transactions falsely identified as fraudulent. However, sensitivity
decreased to 48%, correctly identifying 2,300 fraudulent transactions and leav-
ing 2,496 undetected. This trade-off is unfavorable for financial institutions,
as more fraudulent transactions remain undetected, rendering this approach
ineffective for transaction monitoring.

Figure 5.13 displays the ROC curve for Scenario 2, which has an AUC of
0.84. While this is lower compared to the other models, the difference is not
substantial. However, the processing time increased to 7.12 seconds, which is

5. Model Implementation 56

Figure 5.12: Confusion Matrix of K-Means - Scenario 2

Source: Own elaboration

notably longer than COPOD’s 0.1 seconds. This indicates that the K-Means
model is not ideal for this scenario.

Figure 5.13: ROC Curve of K-Means - Scenario 2

Source: Own elaboration

In the four-dimensional scenario, the inertia analysis shown in Figure 5.14
indicates that the optimal number of clusters can remain at 2.

The results presented in Figure 5.15 demonstrate the poorest performance
of all models. The K-Means model correctly identified only 2 fraudulent trans-
actions, leaving 3,804 fraudulent transactions undetected, with a specificity
of only 0.001%. For genuine transactions, only 12,242 were correctly classi-
fied, while 27,166 were falsely identified as fraudulent. This would significantly

5. Model Implementation 57

Figure 5.14: Inertia - Scenario 3

Source: Own elaboration

increase the workload of the investigation team, with almost none of the trans-
actions leading to SARs.

Figure 5.16 illustrates the ROC curve for Scenario 3, which has an AUC of
0.93. Although this is slightly lower than the results from the other models,
the difference is not substantial. However, the AUC alone cannot compensate
for the lower performance in specificity and sensitivity observed in previous
results. Additionally, with a processing time of 4.34 seconds — the highest
among all models — this further underscores the inefficiency of the K-Means
model for this task.

Figure 5.15: Confusion Matrix of K-Means - Scenario 3

Source: Own elaboration

5. Model Implementation 58

Figure 5.16: ROC Curve of K-Means - Scenario 3

Source: Own elaboration

Moving to the real-world dataset, the first step across all scenarios was to
determine the optimal number of clusters K. Surprisingly, scenarios 1 and 3
yielded unexpected results during the assessment of K, as depicted by their
inertia in Figures 5.17 and 5.18. Initially, it appeared that, similar to the
artificial data, the optimal number of clusters would vary between 2 and 4.
However, upon applying the model to each variant, we found that the number
of identified outliers is very low and did not change significantly with additional
clusters.

After experimenting with different K values, we decided to adopt K = 5
across all variants and identify all the points in the smaller cluster as outliers.
This decision was based on observing that increasing the number of clusters
beyond 5 did not notably alter the detection of outliers, indicating diminishing
returns in terms of identifying additional anomalies.

Figure 5.17: Inertia - Scenario 1

Source: Own elaboration

5. Model Implementation 59

Figure 5.18: Inertia - Scenario 3

Source: Own elaboration

In contrast, scenarios 2 in two dimensions required a different approach.
Here, experimenting with K = 2 resulted in a substantial proportion of poten-
tial alerts being identified. Therefore, we retained K = 2 for this scenario, as it
provided a high-enough number of alerts without introducing excessive noise.

Figure 5.19: Inertia - Scenario 2

Source: Own elaboration

The results before final preprocessing are summarized in Table 5.3. In
scenario 1, K-Means identified 3,143 alerts, representing 1.49% of the features
triggering an alert, which aligns well with industry standards.

Scenario Total features Outliers Outliers (%) Time (s)
1 211,499 3,143 1.49% 1.5906
2 379,969 253,666 66.76% 1.0054
3 328,674 3,846 1.17% 3.1174

Table 5.3: Performance metrics of K-Means on real-world data

For multi-dimensional scenarios 2 and 3, detailed results are presented in
Table 5.4. Notably, scenario 2 initially identified over 66% of features as out-
liers, which was reduced after preprocessing but still remains too high for prac-
tical use. Conversely, scenario 3 showed a very low proportion of outliers post-
preprocessing (0.05%), suggesting that the analysis may have missed significant
anomalies.

These findings underscore that K-Means does not appear to be a suitable
option in any dimension for effectively identifying outliers in this real-world

5. Model Implementation 60

Scenario Total transactions Outliers after applying the threshold Outliers (%)
2 379,969 162,384 42.74%
3 328,674 151 0.05%

Table 5.4: Outliers detected by K-Means after applying the thresh-
olds to scenarios

dataset. The algorithm’s inability to consistently provide meaningful and ac-
tionable alerts across scenarios raises concerns about its suitability for robust
anomaly detection in financial monitoring and other high-stakes applications.

5.3 Copulas
The last chosen model for our analysis is COPOD, which we will implement us-
ing the COPOD package. COPOD is recognized for its efficiency, particularly
in handling high-dimensional datasets. It follows a structured three-stage pro-
cess designed to produce outlier scores for a given d-dimensional input dataset
X = {X1, . . . , Xn}. These outlier scores, denoted as O(X), range between
(0,∞) and are used comparatively. It’s important to note that the score O(Xi)
does not represent the probability of Xi being an outlier, but rather indicates
how likely Xi is compared to other points in the dataset: the higher the score,
the greater the likelihood of Xi being an outlier.

In the initial step, COPOD fits d empirical left-tail cumulative distribution
functions (CDFs) and d empirical right-tail CDFs by considering the negative
values of X. In the second step, it computes the empirical copula observations
Ûd,i = F̂ d(xi) and V̂ d,i = F̂ d̄(xi) for each Xi. Subsequently, it calculates the
probability of observing a point as extreme or more extreme than xi along each
dimension. The outlier score is determined as the maximum of the negative
logarithm of these probabilities from the left-tail empirical copula, right-tail
empirical copula, and skewness-corrected empirical copula.

Intuitively, smaller tail probabilities correspond to larger negative logarithm
values, leading to the identification of outliers based on low probabilities in
either the left or right tail. This approach allows for flexible outlier assessment
based on specified thresholds: higher thresholds focus on right-tail probabilities,
while lower thresholds emphasize left-tail probabilities.

In addition to its comprehensive outlier detection methodology, COPOD
stands out as a parameter-free model. This characteristic simplifies model fit-

5. Model Implementation 61

ting, eliminating the need for parameter estimation and enhancing its practical
usability.

The predictive performance of the COPOD algorithm for Scenario 1 is illus-
trated in Figure 5.20. The model accurately identified 22,165 genuine transac-
tions, misclassifying only 760 as fraudulent, resulting in a specificity of 96.7%.
On the other hand, COPOD correctly identified 1,816 fraudulent transactions,
with 1,015 false negatives, yielding a sensitivity of 64.1%. While this perfor-
mance is average among its peers, it still showcases the model’s reliability in
distinguishing genuine transactions from fraudulent ones.

The ROC curve for COPOD in Scenario 1, shown in Figure 5.21, exhibits
an AUC of 0.82, closely matching the performance of the Isolation Forest. No-
tably, COPOD’s processing time is significantly lower at only 0.02 seconds,
outperforming the other models in terms of speed. This efficiency makes CO-
POD particularly attractive for real-time transaction monitoring where rapid
processing is critical.

Figure 5.20: Confusion Matrix of COPOD - Scenario 1

Source: Own elaboration

5. Model Implementation 62

Figure 5.21: ROC Curve of COPOD - Scenario 1

Source: Own elaboration

In the two-dimensional scenario, COPOD’s results remain consistent with
its performance in the one-dimensional analysis. The model correctly identified
37,180 genuine transactions, with 1,659 false positives, resulting in a specificity
of 95.7%. However, sensitivity dropped slightly to 56.4%, with 2,705 correctly
identified fraudulent transactions and 2,091 undetected. Despite this slight
decline, COPOD still outperforms its peers overall in this scenario.

Figure 5.23 presents the ROC curve for COPOD in Scenario 2, which has an
AUC of 0.89 — slightly better than K-Means and on par with Isolation Forest.
Notably, COPOD achieves this performance while maintaining a processing
time of just 0.1 seconds, in contrast to the 6.3 seconds required by the Isolation
Forest. This highlights COPOD’s superior efficiency and suitability for real-
time applications, making it the preferred choice in two-dimensional scenarios.

5. Model Implementation 63

Figure 5.22: Confusion Matrix of COPOD - Scenario 2

Source: Own elaboration

Figure 5.23: ROC Curve of COPOD - Scenario 2

Source: Own elaboration

In the four-dimensional scenario, COPOD’s performance improves further.
The model achieved a specificity of 96.9%, accurately classifying 38,106 trans-
actions as genuine, with only 1,302 false positives. Sensitivity also increased
to 79.3%, correctly identifying 3,020 fraudulent transactions and leaving 786
undetected. These results highlight COPOD’s enhanced capability to handle
higher-dimensional data effectively.

The ROC curve for Scenario 3, shown in Figure 5.25, reveals an impressive
AUC of 0.98, comparable to Isolation Forest’s performance. Crucially, COPOD
maintains a processing time of only 1.1 seconds, significantly faster than both
K-Means and Isolation Forest. This rapid processing capability, combined with

5. Model Implementation 64

robust performance, positions COPOD as a highly efficient model for outlier
detection in higher-dimensional datasets.

Figure 5.24: Confusion Matrix of COPOD - Scenario 3

Source: Own elaboration

Figure 5.25: ROC Curve of COPOD - Scenario 3

Source: Own elaboration

Moving to the real-world dataset, we applied the COPOD algorithm to each
scenario. The results are shown in Table 5.5.

COPOD identified 21,150 outliers out of 211,499 total features, constituting
10.00% of the dataset. Given the high volume of potential alerts in this scenario,
careful consideration is required to select a threshold that corresponds to a more
manageable number of alerts.

With a larger dataset of 379,969 features in Scenario 2, COPOD identified
37,996 outliers. After preprocessing, the number of outliers was reduced to

5. Model Implementation 65

Scenario Total features Outliers Outliers (%) Time (s)
1 211,499 21,150 10.00% 1.5906
2 379,969 37,996 10.00% 1.0054
3 328,674 32,868 10.00% 3.1174

Table 5.5: Performance metrics of COPOD on real-world data

6,636, which is 1.75% of the total features. This reduction after preprocessing
aligns closely with the results from Isolation Forest, demonstrating effective
outlier identification suitable for threshold determination.

In post-processing of Scenario 3, as detailed in Table 5.6, the number of out-
liers decreased from 32,868 to 10,613, representing 3.23% of the total. Given the
double-counting issue in this scenario, this level of outliers remains appropriate
and provides a balanced approach for transaction monitoring and threshold
determination.

Scenario Total transactions Outliers after applying the threshold Outliers (%)
2 379,969 6,636 1.75%
3 328,674 10,613 3.23%

Table 5.6: Outliers detected by COPOD after applying the thresholds
to scenarios

Overall, COPOD exhibits consistent performance across different scenarios
in identifying outliers. This makes COPOD comparable to Isolation Forest in
terms of performance, allowing institutions to choose between them based on
specific considerations such as risk appetite and processing time. Notably, CO-
POD demonstrates significantly shorter processing times compared to Isolation
Forest, which is advantageous when evaluating larger numbers of thresholds
across diverse customer portfolios.

Chapter 6

Limitations

This thesis aims to explore various outlier detection models applicable to the
optimization of transaction monitoring (TM) systems. In the realm of TM, a
prevalent challenge lies in assessing the efficacy of adopted approaches. Typ-
ically, financial institutions employ outlier detection models on transaction
datasets to determine optimal threshold values for different scenarios and cus-
tomer segments, often based on targeted alert volumes aligned with the insti-
tution’s risk appetite. Striking a balance between alert volumes is critical, as
it mitigates the risk of underreporting suspicious behavior to regulators while
avoiding excessive alert volumes that may strain investigative resources or ne-
cessitate additional staffing.

Contamination Assessment
Determining the appropriate number of alerts identified by each scenario de-
pends on the desired level of contamination our model should tolerate. It is
challenging to definitively state the proportion of transactions that are inher-
ently suspicious. This proportion is dynamic and can vary across different
seasons, economic conditions, and other factors. Given that we aim to detect
transactions primarily associated with fraudulent activities — such as human
trafficking, terrorism financing, and tax fraud — it remains elusive to pinpoint
the exact correct proportion. Consequently, when assessing the optimal alert
thresholds, we must carefully consider the risk appetite specific to the institu-
tion.

To initiate the optimization process, we must define risk appetite parame-
ters. These parameters consist of weighted factors that assign importance to
false positives (non-suspicious alerts), false negatives (missed Suspicious Activ-

6. Limitations 67

ity Reports or SARs), and true positives (investigated SARs). The risk appetite
parameters reflect the institution’s risk-based approach and can be expressed
as the ratio of the cost of false negatives to the cost of false positives. These
parameters will differ for each institution.

Moreover, it is essential to recognize that risk appetite may vary across dif-
ferent scenarios and contexts, necessitating a nuanced approach to optimizing
transaction monitoring systems.

Model Evaluation
Evaluation of outlier detection models relies heavily on historical alert data
labels, typically categorized as false positives (FP), worthy alerts (WA), and
suspicious-activity reports (SAR). FP alerts are those deemed false upon ini-
tial investigation, while WA alerts undergo further scrutiny but are ultimately
dismissed. SAR alerts are escalated for in-depth investigation and reporting to
regulators. However, this approach presents several challenges.

Firstly, when setting thresholds for new scenarios, the absence of historical
labels disables the possible evaluation. Secondly, with the scenarios previously
used, reliance on above-the-line results may overlook anomalies falling below
previous thresholds, exacerbating the lack of labeled data, as in the first case.
Thirdly, even if a scenario addresses these issues, the accuracy of dataset la-
bels remains uncertain. Label accuracy is contingent upon the effectiveness of
the institution’s investigation processes, susceptibility to human error, and the
ability to identify suspicious activity accurately. Additionally, feedback from
regulators on filed SARs is often unavailable, further clouding label validity.
Consequently, reliance on dataset labels hinges on assumptions rather than
confirmed accuracy.

Evaluating model functionality based on data labels alone is fraught with
complexity and often yields inconclusive results. Instead, reliance on indus-
try expertise and expert knowledge becomes paramount. Nonetheless, outlier
detection within TM remains crucial, enabling institutions to monitor, report,
and potentially mitigate criminal activities such as human trafficking, terrorist
financing, and warfare, underscoring the significance of a well-structured mon-
itoring process.

Scenario Limitations
Transaction monitoring systems are only as effective as the scenarios they em-
ploy. The selection of scenarios plays a pivotal role in identifying suspicious

6. Limitations 68

activities. Financial institutions typically choose scenarios based on various
criteria, including risk assessments, regulatory requirements, historical data,
trends, typologies, and red flags. However, the evolving creativity of criminals,
coupled with advancements in AI, poses a challenge. Scenarios may become
overly robust, exceeding the transaction monitoring system’s capacity to han-
dle them effectively. For instance, consider Scenario 3, which we utilized during
our analysis. This scenario focuses on monitoring the volume and frequency
of deposits, particularly rapid increases. To cover all possible situations, it
operates with an n-day lookback on a daily basis. Notably, the time windows
for the 30-day period and the 6-month period are not mutually exclusive. Ad-
ditionally, customer activity during the last 30 days contributes to monitoring
low activity over the 12-month period. Unfortunately, this approach introduces
an issue of double counting. The challenge is most pronounced during the first
half of each month, potentially limiting the scenario’s ability to generate alerts.
As it stands, the scenario performs optimally toward the end of the month.

Disclosure of Confidentiality
It is important to note that the code and data used in this thesis are propri-
etary and confidential, as they are part of ongoing production processes at the
authors organization. Due to the proprietary nature of these resources, they
can not be shared or made publicly available. This limitation is necessary to
protect sensitive information and intellectual property. While this restriction
may affect the ability to fully reproduce the results, it is in line with standard
industry practices for safeguarding confidential and proprietary information.
The author appreciates the understanding of these constraints and their im-
pact on the availability of detailed resources.

Chapter 7

Model Comparison

The performance evaluation of various models in detecting fraudulent transac-
tions reveals noteworthy insights. Overall, the models demonstrated satisfac-
tory performance, with the exception of K-Means, which exhibited significant
underperformance in both artificial and real-world data scenarios, particularly
in higher dimensions.

Table 7.1 presents the results of model application on artificial datasets,
serving as an initial evaluation before deployment on real-world transactions.
Across different dimensions, all models encountered challenges in achieving
satisfactory sensitivity levels. Notably, Isolation Forest and Copulas showed
varying performance across dimensions, whereas K-Means consistently lagged
behind, especially in sensitivity metrics.

In one dimension, K-Means exhibited the highest specificity (99%), indi-
cating its strength in identifying genuine transactions accurately but at the
cost of lower sensitivity compared to Isolation Forest and Copulas (specifically,
89.1% for Isolation Forest). Isolation Forest and Copulas demonstrated com-
petitive sensitivity (72.1% and 64.1%, respectively) and AUC (0.86 and 0.82,
respectively), highlighting their effectiveness in detecting fraudulent transac-
tions while minimizing false positives. Copulas notably distinguished itself
with a processing time of 0.02 seconds, significantly outperforming the other
models in efficiency.

In two dimensions, Isolation Forest and Copulas maintained competitive
specificity (95.5% and 95.7%, respectively) but experienced decreased sensitiv-
ity (54.8% and 56.4%, respectively) and AUC scores (0.89 both). K-Means
continued to excel in specificity (98.7%) but struggled with sensitivity (48%)
and AUC (0.84), alongside higher processing times, indicating limitations in

7. Model Comparison 70

complex datasets.
In higher dimensions, both Isolation Forest and Copulas exhibited enhanced

performance, maintaining competitive metrics across all dimensions. The Iso-
lation Forest demonstrated an impressive AUC (0.98), with robust sensitiv-
ity (81.5%) and specificity (98.7%), though it came with increased processing
times. Copulas also achieved a high AUC (0.98), with competitive sensitivity
(79.3%) and specificity (96.7%), while showcasing superior processing time effi-
ciency. This underscores Copulas’ capability in handling complex dependencies
effectively. Conversely, K-Means achieved a decent AUC (0.93), but this result
does not compensate for its severely poor specificity (0.001%), highlighting its
inefficiency in higher-dimensional datasets.

Isolation Forest consistently demonstrated strong overall performance across
dimensions, albeit with increasing processing times in higher dimensions. K-
Means, effective in lower dimensions, struggled with accuracy and efficiency as
dimensionality increased. Copulas consistently offered efficient processing and
competitive performance metrics.

The performance of all models varied notably with dimensionality, with Iso-
lation Forest and Copulas maintaining effectiveness, while K-Means exhibited
differing levels of resilience. Copulas consistently demonstrated more stable
performance across dimensions.

When selecting a model, it is crucial to consider performance metrics along-
side practical constraints such as processing time, especially in scenarios requir-
ing real-time responses for high-frequency transaction monitoring.

The results, from the application of these models to real-world data, are
presented in Table 7.2. K-Means exhibited inconsistent performance across all
dimensions, which raises significant concerns about its reliability for practical
use. The results from K-Means did not align with industry standards, making
it challenging to establish appropriate thresholds for fraud detection. This
inconsistency across dimensions further undermines its suitability for robust
and reliable transaction monitoring systems, where accuracy and consistency
are paramount.

Conversely, both Isolation Forest and Copulas continued to demonstrate
strong performance and practical applicability. Their results consistently met
industry benchmarks across various dimensions, reinforcing their reliability in
detecting fraudulent transactions effectively. Isolation Forest’s ability to main-
tain competitive performance metrics across different dimensionalities, despite

7. Model Comparison 71

Scenario 1
Model Sensitivity Specificity AUC Time (s)
Isolation Forest 0.721 0.891 0.86 2.2900
K-Means 0.572 0.99 0.72 2.9443
Copulas 0.641 0.967 0.82 0.0194

Scenario 2
Model Sensitivity Specificity AUC Time (s)
Isolation Forest 0.548 0.955 0.89 6.318
K-Means 0.48 0.987 0.84 7.122
Copulas 0.564 0.957 0.89 0.1086

Scenario 3
Model Sensitivity Specificity AUC Time (s)
Isolation Forest 0.815 0.969 0.98 4.161
K-Means 0.311 0.001 0.93 4.34
Copulas 0.793 0.967 0.98 0.1097

Table 7.1: Quantitative performance metrics of models across all sce-
narios

increasing processing times in higher dimensions, underscores its suitability for
a wide range of applications.

Copulas, on the other hand, not only delivered competitive performance
metrics but also exhibited exceptional efficiency with processing times, partic-
ularly noteworthy in higher dimensions where computational efficiency becomes
critical. This efficiency makes Copulas particularly advantageous.

The robust performance of Isolation Forest and Copulas in real-world sce-
narios underscores their viability as leading models for fraud detection systems.
Their ability to consistently deliver results that align with industry standards
across dimensions reinforces their practical utility and reliability in detecting
fraudulent activities while minimizing false positives.

7. Model Comparison 72

Scenario 1
Model Potential

Number of
Alerts

Outliers Outlier Per-
centage

Time (s)

Isolation Forest 211,499 29,000 13.71% 24.1952
K-Means 211,499 3,143 1.49% 1.5906
Copulas 211,499 21,150 10.00% 0.7054

Scenario 2
Model Potential

Number of
Alerts

Outliers Outlier Per-
centage

Time (s)

Isolation Forest 379,969 5,227 1.38% 31.3524
K-Means 379,969 162,384 42.74% 1.0054
Copulas 379,969 6,636 1.75% 0.8298

Scenario 3
Model Potential

Number of
Alerts

Outliers Outlier Per-
centage

Time (s)

Isolation Forest 328,674 14,530 4.42% 28.0342
K-Means 328,674 151 0.05% 3.1174
Copulas 328,674 10,613 3.23% 0.9054

Table 7.2: Qualitative performance metrics of models across all sce-
narios

Chapter 8

Conclusion

This thesis conducts a thorough evaluation of three outlier detection methods
— Isolation Forest, K-Means, and a Copula-based approach — specifically in
the realm of fraudulent transaction detection. We detailed the rationale be-
hind selecting these models and explained how their results can be optimized
for transactional monitoring. The discussion also covered the limitations in-
herent to these methods and the complex nature of transactional monitoring,
emphasizing the critical role of expert knowledge in leveraging these models
effectively. One of the takeaways is that an effective customer segmentation
model is crucial for maximizing the performance of outlier detection methods.

Our experimental results and comparative analysis provide significant in-
sights into each method’s strengths and weaknesses across various scenarios.

Isolation Forest consistently delivered strong performance across different
metrics, including sensitivity, specificity, and AUC, in both artificial and real-
world datasets. Although processing times increased with higher dimensional-
ity, its effectiveness in identifying fraudulent transactions makes it a valuable
tool for applications with moderate to high-dimensional data.

The Copula-based approach excelled in efficiency and processing time, par-
ticularly in higher-dimensional contexts. Its capability to model complex mul-
tivariate dependencies and achieve competitive sensitivity and specificity high-
lights its suitability for environments where both computational efficiency and
accuracy are essential. COPOD demonstrated reliable performance and fast
processing, making it particularly advantageous for fraud detection systems.

Conversely, K-Means faced significant challenges in higher-dimensional set-
tings, with reduced sensitivity compromising its reliability as an outlier de-
tection method for complex datasets, despite maintaining a strong AUC. Al-

8. Conclusion 74

though it performed well in terms of specificity with lower-dimensional data,
its effectiveness diminished significantly as dimensionality increased. This de-
cline in performance makes K-Means less suitable for robust fraud detection
compared to Isolation Forest and Copulas, which both excel in handling higher-
dimensional data.

In summary, Isolation Forest and Copulas emerged as the most effective
outlier detection methods in the scenarios tested. Isolation Forest offers a bal-
anced approach between accuracy and computational demands, while Copulas
provide exceptional efficiency and performance, especially in high-dimensional
contexts where modeling complex dependencies is crucial.

When selecting an outlier detection model for practical use, factors such as
dimensionality, processing time, and accuracy must be carefully evaluated. For
low-dimensional data, simpler models may suffice, as the added complexity of
advanced methods might not yield better results. Isolation Forest and Copulas
stand out as leading methods for fraud detection systems, aligning well with
industry standards and practical needs.

This thesis contributes to the field by comparing these models within the
specific context of fraud detection and providing insights into real-world appli-
cability and threshold settings.

Future research could investigate integrating these models or developing
hybrid approaches to harness their individual strengths. Additionally, exploring
other methods and analyzing larger, more diverse datasets could yield deeper
insights and advance anomaly detection techniques.

Bibliography

Aggarwal, C. C. & P. S. Yu (2001): “Outlier detection for high dimensional
data.” ACM SIGMOD Record 30(2): pp. 37–46.

Ahmed, M., J. Hu, X. Hu, X. Liu, J. Kim, D. Dey, & K. Pochiraju (2016):
“Anomaly detection for temporal data: A survey.” ACM Computing Surveys
(CSUR) 50(5): pp. 1–38.

Alpaydin, E. (2020): Introduction to Machine Learning. Cambridge, MA:
MIT Press.

Bellman, R. E. (1961): Adaptive Control Processes. Princeton, NJ: Princeton
University Press.

Bishop, C. M. (2006): Pattern Recognition and Machine Learning. New York:
Springer.

Bora, D. J. & D. A. K. Gupta (2014): “Effect of Different Distance Mea-
sures on the Performance of K Means Algorithm: An Experimental Study in
Matlab.” International Journal of Computer Science and Information Tech-
nologies 6.

Chandola, V., A. Banerjee, & V. Kumar (2009): “Anomaly detection: A
survey.” ACM Computing Surveys (CSUR) 41(3): pp. 1–58.

Chen, Y. & W. Wu (2018): “Isolation Forest as an Alternative Data-Driven
Mineral Prospectivity Mapping Method with a Higher Data-Processing Ef-
ficiency.” Natural Resources Research 28: pp. 1–16.

Elkan, C. (2001): “The foundations of cost-sensitive learning.” Department
of Computer Science and Engineering 0114, University of California, San
Diego, La Jolla, California .

Faesel, K. (2022): Finding Ghosts in Your Data. Apress Berkeley, CA.

Bibliography 76

Fayzrakhmanov, R., A. Kulikov, & P. Repp (2020): “The difference be-
tween precision-recall and roc curves for evaluating the performance of credit
card fraud detection models.” Information Technologies and Computer-Based
System Department, Perm National Research Polytechnic University .

Fujimaki, R., T. Yairi, & K. Machida (2005): “An Approach to Spacecraft
Anomaly Detection Problem Using Kernel Feature Space.” Research Center
for Advanced Science and Technology pp. 401–410.

Genest, C. & A. Favre (2007): “Everything you always wanted to know
about copula modeling but were afraid to ask.” Journal of Hydrologic Engi-
neering 12(4): pp. 347–368.

Goodfellow, I., Y. Bengio, & A. Courville (2016): Deep Learning. Cam-
bridge, MA: MIT Press.

Gustavson, H. (2019): Clustering Based Outlier Detection for Improved Situ-
ation Awareness within Air Trac Control. Ph.D. thesis, KTH ROYAL INSTI-
TUTE OF TECHNOLOGY, SCHOOL OF ENGINEERING SCIENCES.

Hariri, S., M. C. Kind, & R. J. Brunner (2018): “Extended Isolation For-
est.” Instrumentation and Methods for Astrophysics 6.

Hawkins, D. M. (1980): Identification of Outliers. Springer.

Hennig, C., T. F. Liao, & M. Meila (2015): “Cluster analysis and data
mining: An introduction.” Wiley Encyclopedia of Operations Research and
Management Science pp. 1–15.

Hodge, V. J. & J. Austin (2004): “A survey of outlier detection methodolo-
gies.” Artificial Intelligence Review 22(2): pp. 85–126.

Iglewicz, B. & D. C. Hoaglin (1993): Robust Statistics: Theory and Meth-
ods. New York: John Wiley & Sons.

Jain, A. K., J. I. Ghosh, & N. K. Ratha (2020): “Data clustering: A review.”
ACM Computing Surveys (CSUR) 52(3): pp. 1–35.

Jhaveri, R. H., A. Revathi, K. Ramana, R. Raut, & R. K. Dhanaraj
(2022): “ Review on Machine Learning Strategies for Real-World Engineering
Applications.” Mobile Information Systems 2022: p. 26.

Bibliography 77

Joe, H. (2014): Dependence Modeling with Copulas. CRC Press, 1st edition.

Jordan, M. I. & T. M. Mitchell (2015): “Machine learning: Trends, per-
spectives, and prospects.” Science, New Series 349: pp. 255–260.

Kaufman, L. & P. J. Rousseeuw (2009): Finding Groups in Data: An In-
troduction to Cluster Analysis. Wiley, 2nd edition.

Kohoutová, P. (2023): “Detecting financial frauds: the role of anomaly de-
tection in aml pipeline.”

Liu, F. T., K. M. Ting, & Z.-H. Zhou (2008): “Isolation forest.” IEEE
Transactions on Knowledge and Data Engineering 23(6): pp. 993–1006.

Liu, F. T., K. M. Ting, & Z. H. Zhou (2012): “Isolation-Based Anomaly
Detection.” ACM Transactions on Knowledge Discovery from Data 6: pp.
1–39.

Liu, F. T., K. M. Ting, & Z. H. Zhou (2015): “Isolation Forest.” IEEE
International Conference on Data Mining pp. 413–422.

Mitchell, T. M. (1997): Machine Learning. McGraw-Hill: Science/Engineer-
ing/Math.

Monson, D. & S. Vandermark (2013): Suspicious Activity Reports and an-
alytics: Staying ahead of the compliance curve. B.m.: Deloitte.

Murphy, K. P. (2012a): Machine Learning: A Probabilistic Perspective. Cam-
bridge, MA: MIT Press.

Murphy, K. P. (2012b): Machine Learning: A Probabilistic Perspective (Adap-
tive Computation and Machine Learning series). The MIT Press.

Nelsen, R. B. (2006): An Introduction to Copulas. Springer, 2nd edition.

Ngai, E. W., L. Xiu, & K. Chau (2011): “The application of data mining
techniques in financial fraud detection: A review.” Decision Support Systems
50(3): pp. 559–569.

Patton, A. J. (2012): “A review of copulas and their applications in finance.”
Journal of Financial Econometrics 10(4): pp. 621–657.

Bibliography 78

Pham, D. T. & G. A. Ruz (2009): “Unsupervised training of Bayesian networks
for Data Clustering.” Proceeding: Mathematical, Physical and Engineering
Sciences 465: pp. 2927–2948.

Shi, T. & S. Horvath (2006): “Unsupervised Learning With Random Forest
Predictors.” Journal of Computational and Graphical Statistics 15: pp. 118–
138.

Sklar, A. (1959): “Fonctions de rÂ´epartition ‘a n dimensions et leurs
marges.” Publ. Inst. Statist. Univ. Paris 8: pp. 229–231.

Stojanovic, J., M. Ivanovic, & D. Milinkovic (2022): “Efficient k-means
clustering with improved centroid initialization.” Pattern Recognition Letters
152: pp. 192–200.

Wang, L., X. Wang, & Z. Zhang (2018): “A review on clustering algorithms.”
Knowledge-Based Systems 151: pp. 18–36.

Xia, Y., Y. Li, & X. Zheng (2020): “Real-time anomaly detection for safety-
critical systems.” Journal of Real-Time Systems 56(2): pp. 245–267.

Xu, R. (2005): “Survey of Clustering Algorithms.” IEEE Transactions on
Neural Networks 16.

Zhang, H., Y. Zhao, & W. Ding (2015): “Isolation forest with improved
isolation criteria.” Journal of Computer Science and Technology 30(2): pp.
269–285.

Zheng Li, Yue Zhao, N. B. C. I. (2020): “COPOD: Copula-Based Outlier
Detection.” Industrial Conference on Data Mining .

	Abstract
	Contents
	List of Tables
	List of Figures
	Acronyms
	1 Introduction
	2 Literature Review
	2.1 Supervised Learning
	2.2 Unsupervised Learning
	2.3 Outlier Detection

	3 Methodology
	3.1 Transaction Monitoring
	3.2 Customer Segmentation
	3.3 Scenarios
	3.4 Isolation Forest
	3.4.1 Masking and Swamping Phenomena
	3.4.2 Anomaly Score

	3.5 Clustering
	3.5.1 K-Means
	3.5.2 Euclidian Distance

	3.6 Copulas
	3.6.1 Theoretical Framework of COPOD

	4 Data
	4.1 Artificial Data
	4.2 Real-world Data
	4.3 Data Preparation

	5 Model Implementation
	5.1 Isolation Forest
	5.2 K-Means
	5.3 Copulas

	6 Limitations
	7 Model Comparison
	8 Conclusion
	Bibliography

