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Abstract
This thesis investigates the relationship between climate transition risk and
credit risk using a unique dataset provided by an anonymous Czech bank con-
sisting of financial and carbon footprint information on corporate clients be-
longing to the SME category. Firstly, employing logistic regression, a standard
credit scoring model was estimated using client-level financial predictors from
2022. Four significant financial drivers of credit default were identified based
on the provided data. Second, a set of 11 variables on a client’s carbon foot-
print was separately added to the standard credit scoring model. Results of
the climate-stressed models imply that while direct emitters tend to default
less, indirect emitters pose a higher threat to the bank in terms of credit risk.
Finally, the predictive power of the climate-stressed models was compared to
the standard model. Integrating Scope 2 carbon footprint into the credit scor-
ing model enhances its discriminatory power both in terms of sensitivity and
specificity.

Keywords climate risk, credit risk, credit default, ESG, car-
bon footprint, carbon intensity, probability of
default, logistic regression

Title Climate risk in financial markets



Abstrakt

Tato práce zkoumá vztah mezi rizikem tranzice k uhlíkově čisté ekonomice a
úvěrovým rizikem pomocí unikátní datové sady poskytnuté anonymní českou
bankou, která obsahuje finanční ukazatele a uhlíkové stopy klientů patřících do
kategorie malých a středních podniků. Nejprvě byl pomocí logistické regrese
odhadnut standardní model hodnocení úvěru s využitím finančních prediktorů
klientů z roku 2022. Na základě poskytnutých dat byly identifikovány čtyři výz-
namné finanční faktory úvěrového selhání. Poté byla k standardnímu modelu
hodnocení úvěru osobitě přidána sada 11 proměnných týkajících se uhlíkové
stopy klienta. Výsledky klimaticky zatížených modelů naznačují, že zatímco
přímí emitoři mají tendenci k nižšímu výskytu úvěrového selhání, nepřímí emi-
toři pro banku představují vyšší hrozbu z hlediska úvěrového rizika. Nakonec
byla prediktivní síla klimaticky zatížených modelů porovnána se standard-
ním modelem. Začlenění nepřímé uhlíkové stopy do modelu hodnocení úvěru
zvyšuje jeho diskriminační schopnost jak z hlediska citlivosti, tak specificity.

Klíčová slova klimatické riziko, úvěrové riziko, úvěrové
selhání, ESG, uhlíková stopa, uhlíková in-
tenzita, pravděpodobnost defaultu, logi-
stická regrese

Název práce Klimatické riziko na finančních trzích
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Motivation The term climate risk has become increasingly relevant in recent years
due to the growing recognition of the impact of climate change on global economies.
In 2015, the Paris Agreement set the goal of mitigating the global temperature in-
crease by 1.5 °C for the 21st century compared to the pre-industrial era, achieved
mostly by cutting greenhouse gas emissions. A transition towards carbon neutrality
is a supposed solution to reducing the impacts of climate change. Financial institu-
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(2022) suggested the expected default frequency rises with the carbon emissions of
the borrower.

The purpose of this thesis is to analyze the transition risk in terms of credit risk.
Given the access to unique data from an anonymous Czech bank on corporate loan
data including client-level information on total and financed emissions, this analysis
is set to quantify the impact of the client’s carbon footprint on its probability of
default.

Hypotheses

1. Client carbon footprint increases the odds of the default on corporate loan in
the Czech Republic.

2. Client carbon-intensity increases the odds of the default on a corporate loan
in the Czech Republic.

3. Inclusion of the client’s carbon footprint increases the performance of the model
for default prediction.

4. Inclusion of the client carbon intensity increases the performance of the model
for default prediction.

Methodology The dataset provided by an anonymous Czech bank consists of time
series data on corporate loans in the Czech Republic. The bank measures the carbon
footprint and the carbon intensity of the borrowers internally. Control variables,
such as financial and business sector information, are included in the dataset. Given
the observed variable is the default on the loan, the logistic regression will be em-
ployed, based on its ability to handle binary outcomes such as default and non-default
(Greene 2003; Jorion, 2010). The expected scope of the analysis is the following:

• Estimate a standard and a climate-stressed credit scoring model.

• Assess the estimates of the climate-stressed model.

• Compare the performance of the standard and climate-stressed models in terms
of their ability to correctly predict a credit default.

Expected Contribution The expected contribution is two-fold. Firstly, the anal-
ysis will contribute to the scarce existing research on the presence of climate risk in
financial markets by providing a specific case study of the transition risk in terms
of credit risk of a Czech bank. Secondly, given the opportunity to access a unique
dataset, the thesis proposes a new methodological approach to quantifying the tran-
sition climate risk, which was not yet introduced in the academic literature.
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Outline

1. Theoretical background: We will introduce the main terms such as climate
risk, credit risk and their measure. We will provide a specific definition of
banking default. The current European climate policy will be described in
more detail.

2. Literature review: We will comment on existing literature on climate risk in
financial markets, and identify the literature gap, based on what we formulate
the hypotheses.

3. Data: We will explain the choice of variables in the datasets, and then we will
comment on descriptive statistics of the data.

4. Methodology: We will introduce the method and its assumptions.

5. Model: We will estimate standard credit scoring model.

6. Results: We will provide the baseline results and perform robustness checks
for each hypothesis test.

7. Conclusion: We will summarize findings and implications for future research.
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Chapter 1

Introduction

Climate risk represents a potential loss resulting from either extreme natural
events or a transition towards a carbon-neutral economy. The European Green
Deal is an agreement between the European Union member states upon the
same goal: to cut 55 % of the carbon emissions by 2030 and reach carbon
neutrality by 2050. To achieve such an ambitious goal, those who emit the
most carbon emissions are set to be restrained financially, since money yet
again proved to be the biggest motivation for saving the planet. Financial
institutions do not directly generate any carbon footprint, but they provide
financing to carbon-intensive firms, making them indirect polluters. European
Commission once threatened to raise capital requirements of banks that do
so (Dombrikovskis 2018). Looking at the business sector, the non-financial
carbon-intensive firms are already being sanctioned for their carbon footprint
by regulations such as carbon tax or emission trading systems setting a price
per ton of CO2 they emit. Climate policy might be an indirect credit default
driver, directly impacting banks. The relationship between credit and climate
risk has been subject to several academic papers, suggesting the level of carbon
pollution might be an actual driver of a corporate client default (Capasso et al.
2020).

Given the access to a unique dataset provided by an anonymous Czech bank
(further referred to as the Bank) consisting of client-level data on the financial
situation and the level of carbon footprint (further referred to as transition
risk variables), we were able to examine how the amount and the intensity of
carbon emissions influences the probability of credit default. The relationship
will be studied through a climate-stress test of a standard credit scoring model
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by transition risk variables.

The thesis is structured as follows. In Chapter 2 we define the most impor-
tant terminology used throughout the thesis. In Chapter 3 we summarize the
existing academic literature concerning climate risk in financial markets and
we identify the literature gap based on which the hypotheses are formulated.
Chapter 4 introduces the methodology used to test the hypotheses. In Chapter
5, the adjustments to the original dataset and the descriptive statistics of the
data are discussed. Chapter 6 introduces a standard model for credit default
prediction. Chapter 7 discusses the climate-stressed models. Finally, the find-
ings are summarized in Chapter 8. Given the confidential nature of the banking
data, the dataset is not disclosed but further details on data and the code used
for the analysis can be provided upon request.



Chapter 2

Theoretical Background

This chapter elaborates on the terminology important to the thesis. Section
2.1 introduces two types of climate risk, i.e., physical risk and transition risk.
Credit risk is discussed in Section 2.2.

2.1 Climate risks
There are two main drivers of climate risk in the context of financial markets:
physical risk and transition risk. This section defines these risks and their
relevance to the financial system. The focus of this research is solely placed
on the transition risk, the concept of physical risk is included for completeness
purposes. Unless stated otherwise, the definitions of climate risk discussed in
this section are based on those presented by the European Central Bank (ECB
2020) and the Basel Committee on Banking Supervision (BCBS 2021).

2.1.1 Physical risk

Physical risk represents the financial losses stemming from physical damage
caused by extreme climate change-induced events. The Intergovernmental
Panel on Climate Change recognizes either acute events, i.e., sudden extreme
weather events such as heatwaves, floods, droughts, storms, and wildfires, or
chronic events, i.e., long-term shifts in climate patterns such as rising sea lev-
els, melting glaciers and changing temperature patterns (IPCC 2021). Both
acute and chronic events undermine the stability of the financial system. ECB
recognizes the financial impact of physical risk in all four main risk categories:
credit risk, market risk, operational risk, and liquidity risk.
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In the context of credit risk, financial institutions are exposed via default risk
driven by an increase in the probability of default and decrease in the recovery
rates. For example, severe flood events tend to result in damaged residen-
tial property, causing both mortgage default and the destruction of physical
collateral. Various forms of physical risk tend to be concentrated in distinct
geographical areas. Banks operating in limited geographical areas are likely to
suffer distress induced by the occurrence of a single extreme natural event.

2.1.2 Transition risk

Transition risk represents a risk of financial loss caused by the process of adjust-
ment towards a low-carbon economy. The process of transition might involve
carbon pricing policies or adjustments to market prices. For a carbon-intensive
industry, transition risk translates to higher operating or financing expenses.
The amount of carbon emissions produced by a firm can be interpreted by two
concepts:

• Carbon footprint: the total amount of carbon emissions that are di-
rectly or indirectly associated with a firm, measured in units of mass of
carbon dioxide.

• Carbon intensity: the amount of carbon emissions produced per unit
of economic output. Countries usually use GDP-based carbon intensity,
firms tend to use revenue-based or production-based carbon intensity.

The European Central Bank (ECB) recognizes three scopes for estimating the
carbon emissions of a firm:

• Scope 1: Direct carbon emissions that result from sources that are owned
or controlled by the firm, such as the combustion of fossil fuels in firm-
owned facilities or vehicles.

• Scope 2: Indirect emissions associated with the firm’s operations, such
as electricity, steam, heating or cooling purchased from suppliers and used
in production.

• Scope 3: All other indirect emissions that occur in the value chain of the
firm. Financial institutions belong to Scope 3 since they provide financing
to direct and indirect polluters.
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The transition towards a low-carbon economy can consist of gradual in-
terventions (Nordhaus 2007) or more restrictive policies (Stern 2009). The
Network for Greening the Financial System published four main categories of
future climate scenarios (NGFS 2021) :

• Orderly transition: Policies to reduce carbon emissions are imple-
mented at an early stage and are gradually scaled up to achieve carbon
neutrality by 2050. Physical and transition risks are effectively mitigated.

• Disorderly transition: Policies to mitigate carbon emissions are im-
plemented at a later stage in a more abrupt manner, resulting in a failure
of investors to anticipate the impact of climate policies on their business
models (Battiston et al. 2017). The resulting stranded assets are those
that have suffered from unanticipated or premature write-downs or deval-
uations (Caldecott et al. 2014). While physical risk might be mitigated,
the transition risk is dominant in this scenario.

• Hot house world: Strict climate policies are implemented in some re-
gions, but globally they remain uncoordinated and insufficient. Physical
risk becomes the most dominant threat to the financial system.

• Too little too late: Transition policies are ineffective on an international
level. There is elevated transition risk in some countries and high physical
risk in all countries as critical temperature thresholds have been exceeded.

European climate policies

The European Green Deal is a package of policy initiatives by the European
Union with the aim of making the EU carbon-neutral by 2050. The Euro-
pean climate law obliges the member states to reduce their net GHG emissions
by at least 55 % compared to 1990 by 2030 and reach carbon neutrality by
2050. Fit for 55 is a set of proposals for the EU to revise and put in use in
order to achieve the 55% reduction goal by 2030. This subsection discusses the
most important adopted or planned climate measures by the EU that represent
significant drivers of transition risk for the financial markets.

• EU ETS: The European Union Emission Trading System is a market-
based mechanism that sets a yearly cap on total carbon emissions allowed
to be emitted. One traded allowance equals one ton of carbon emitted.
If the carbon emissions of a firm exceed the amount covered by permits,
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the firm is fined. The yearly cap is progressively lowered, and the carbon
price is derived from the market. The measure has been in practice since
2005 and applies in all member states.

• Carbon tax: a governmental fiscal policy to price emissions. Tax is
levied directly per ton of Scope 1 emissions. The tax rate and the tax
scope are set by the member state government. Carbon tax applies in 14
member states. The Czech Republic is currently only subject to the EU
ETS.

• CBAM: Carbon Border Adjustment Mechanism is a mechanism to pre-
vent carbon leakage (EC 2023). Carbon leakage occurs when firms move
their carbon-intensive production to countries with less stringent climate
policies. The price set per ton of emissions is derived from the price under
the EU ETS. The measure is expected to enter fully into force in 2026.

• GSF: The Green Supporting Factor is a proposed measure that would
allow a reduction of the capital requirements for banks that finance green
projects. It represents a downward shift in risk weights for green loans.
Contrary to GSF, the Brown Penalty represents an upward shift in risk
weights. The proposal is currently being reconsidered due to the concerns
of weakening the financial sector (Dombrikovskis 2018).

2.2 Credit risk
Credit risk is defined as the potential financial loss of the lender due to the
counterparty’s unwillingness or inability to fulfill their contractual obligations
(Jorion et al. 2010). Credit risk is the most significant financial risk for the
banking sector since loans compose the majority of its assets (BIS 2023). In
the context of credit risk, a usual distribution of returns is asymmetrical and
left-skewed, as the upside return potential for the lender is limited by the con-
tract. Negative skewness also implies a higher probability of extreme losses
than extreme gains.

Expected loss (EL), a measure of credit risk, represents an estimate of the
potential loss to the lender over a given time horizon. EL is calculated as a
product of three components: the probability of default (PD), loss-given default
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(LGD), and exposure at default (EAD).

EL = PD ∗ LGD ∗ EAD − PD ∗ (1 − recovery rate) ∗ EAD (2.1)

PD is a statistical measure representing the likelihood that a borrower will fail
to meet its debt obligations within a specified timeframe. PD is estimated by
statistical models leveraging a range of quantitative and qualitative factors,
including financial ratios, credit histories, and economic indicators, to assess
the creditworthiness of individuals, companies, or entities. The most common
methodologies for PD estimation encompass logistic regression or more com-
plex machine learning algorithms.

LGD represents the extent of financial loss that a lender is likely to incur
in the event of a borrower’s default. It can be expressed as (1−recovery rate).
The recovery rate represents the share of debt that can still be recovered. The
recovery rate is estimated using historical data on past defaults, calculating
the average or median recovery rate for a specific business segment or type of
exposure. A more case-specific method for recovery rate estimation is using
the Discounted Cash Flow model.

Credit risk of a firm can also be proxied by credit rating or credit default
swap. A credit rating refers to a quantified evaluation of a borrower’s credit-
worthiness concerning a particular debt. Expressed as a letter grade, it is issued
by a credit rating agency or assigned to a borrower by a bank itself based on
its internal metrics. A credit default swap is a financial derivative that enables
an investor to offset the credit risk stemming from a defaultable loan or bond
by transferring it to a swap seller (Jorion et al. 2010). The swap buyer pays an
ongoing regular protection premium to the swap seller in return for a condi-
tional payment in case of loan or bond default. The higher the premium paid
for the swap, the more risky the debt.

As further mentioned in Chapter 3, researchers tend to proxy the credit risk
by the Merton distance-to-default (DD) or the Expected Default Frequency
(EDF) since these measures can be derived from available market data on pub-
licly traded companies. The DD is a credit risk measure based on the structural
model of default introduced by Merton (1974). The model assumes that the
equity of a firm is a call option on the underlying value of the firm and that



2. Theoretical Background 8

a firm defaults when its value falls below the face value of its debt. The DD
is computed as the number of standard deviations between the expected asset
value and the liability threshold. The EDF is a measure of the probability that
a firm will default over a specified time period, typically one year. EDF is built
on an assumption that firm default is driven by the market value of the assets
being lower than the liabilities payable (Hamilton et al. 2011). EDF value is
determined by the market value of assets, the level of the firm’s obligations,
and the volatility of the firm’s market value.



Chapter 3

Literature Review

This chapter discusses the literature relevant to the thesis. The academic re-
search relevant to the thesis can be classified into three main strains. First,
climate risk impact on financial system resilience is discussed in Section 3.1.
Second, climate risk impact on the pricing of securities is studied in Section
3.2. Third, climate risk implications for credit risk management are covered in
Section 3.3. Finally, after the literature gap is identified, the hypotheses are
formulated in Section 3.4. Given the research design of this thesis, the focus is
solely placed on studies aimed at climate transition risk.

3.1 Climate risk impact on financial system
Research on the transition risk effect on the economy gained prominence mostly
after the Paris Agreement in December 2015, when the majority of global econ-
omies agreed upon a coordinated effort to mitigate carbon emissions. The con-
ference gave a clear signal of upcoming climate policies intended to financially
restrain polluter firms and industries. Therefore, transition risk is most often
proxied by the carbon footprint or the carbon intensity of the studied sub-
ject. When quantifying transition risk, the academics face inconsistency in the
reporting of carbon emissions across the business sectors (Battiston et al. 2021).

Battiston et al. (2017) build a methodological base for conducting a climate-
stress test of the financial system using data on shareholders of all EU and US
publicly listed companies and loan portfolios of the 50 largest EU banks. The
study revealed that investment and pension funds have the largest holdings of
brown assets. Around 11.4 % of bank assets were exposed to transition risk,
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which implies the banking sector is resilient at the moment, but this figure is
expected to arise with the intensifying reach of climate policy (Battiston et al.
2017). Monasterolo et al. (2017) extended the model by Battiston et al. (2017)
by examining the weight of each subject’s exposure to transition risk on the
resilience of the financial system overall. The study suggests that governmen-
tal and individual investors are the most vulnerable to transition risk, yet the
structure of their portfolios is not systematically important. Industry compa-
nies and investment funds emerge as the most exposed and important. Banks
stand the middle ground both in terms of exposure and importance (Monas-
terolo et al. 2017).

Studies evaluating individual climate policies examine both the consequences
of the policy on the financial system and their contribution to fostering a green
economy transition. Dunz et al. (2019) examines the implications of GSF and
carbon tax on the economy. Study suggest GSF might have only a short-term
effect on increased green lending but may introduce potential trade-offs for fi-
nancial stability. A carbon tax should be complemented with welfare measures
to prevent unintended effects on non-performing loans and household budgets
(Dunz et al. 2019). Dafermos & Nikolaidi (2021) also find only a limited effect
of GSF and BP on the increase of green lending. Nevertheless, both studies
underline the transition risk stemming from these policies.

3.2 Climate risk impact on pricing of securities
Green securities have been gaining popularity among investors during the past
decade. Green bonds, i.e., bonds that are used for sustainable project financing,
are the most relevant among green securities. The first green bond was issued
in 2010, and the first corporate green bond in 2013. Growing demand for these
bonds can be partially attributed to arousing social responsibility among the
investors, not seeking a financial advantage but rather a contribution to the
environmental cause (Maltais & Nykvist 2020). At the same time, numerous
academic papers suggest potential evidence of the yield and pricing difference
in comparison to peers. The greenium is the amount by which the yield on
the green instrument is lower, implying a lower cost of debt financing (CBI
2017). The concept of the greenium has raised the academic debate as mixed
empirical evidence has been uncovered. Although green securities specifically
are not the subject of this thesis research, the academic evidence on greenium
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is a valid argument when examining the climate risk in financial markets.

Greenium was first mentioned in the study published by the Climate Bond
Initiative (CBI 2017). This study did not find any clear difference in yields,
however, suggested that green bonds are generally issued at yields above the
yield curve. Karpf & Mandel (2018a) compared the green bonds with their
peers over 6 years, from 2010 to 2016. There has been a significant positive
yield premium on green bonds during the first 4 years of the observed period.
During the last 2 years, the yield of conventional bonds significantly exceeded
the yield of green bonds (Karpf & Mandel 2018a). Gianfrate & Peri (2019)
analyze 121 European green bonds issued between 2013 and 2017 to find that
green bonds are issued at significantly lower prices. Zerbib (2019) identifies
a small but significant negative yield premium of green bonds, using data on
the European bond market between 2013 and 2017. The study employed a
coarsened matching method, which consisted of paring green and conventional
bonds with the same characteristics except the green label to avoid selection
bias. The results suggest an average yield difference of -2 basis points (Zerbib
2019).

Contrary to findings of the previous studies, Hachenberg & Schiereck (2018)
did not find a clear difference in pricing, but suggested that on average, green
bonds trade with tighter bid-ask spread than conventional bonds. A tighter
bid-ask spread is an indicator of lower credit and liquidity risk for an investor.
Fatica et al. (2021) uncover the presence of the greenium on bonds issued by
supranational institutions and corporates. The result implies that issuers that
have a positive environmental reputation are favored by investors indicating the
investors are wary of the greenwashing tactics. Despite the mixed evidence,
there is a visible trend in recent literature, that points out the incentives of
many investors are rather turning in the direction of social responsibility. This
supports the idea that green investments carry a lower cost of debt and, hence,
less risk for the lender.
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3.3 Climate risk implications for credit risk man-
agement

In terms of approximating transition risk, academic studies suggest several ap-
proaches for modeling the relationship between credit risk and climate risk.
Earlier studies suggested employing the ESG rating as a proxy of transition
risk, mostly due to lack of disclosed data on borrower emission amount. How-
ever, as climate policy impact on a firm is directly derived from its carbon
footprint, carbon intensity, and carbon footprint represent the closest determi-
nants of transition risk.

Concerning the studies using ESG rating as an observed variable, Oikonomou
et al. (2014) observe the ESG effect on credit spread and credit bond rating.
The study suggests that a better sustainability rating can materially reduce the
risk premium associated with corporate bonds and thus decrease the cost of
corporate debt. These findings appear to be fairly robust across sectors. Newer
studies find evidence that a better ESG score is associated with better credit
rating (Devalle 2017), lower CDS spreads (Blasberg et al. 2021), and a lower
bond risk premium (Kotró & Márkus 2020). Höck et al. (2020) suggest that
for firms with ex-ante high creditworthiness, the higher environmental score is
associated with low leverage and higher market capitalization. Chava (2014)
argues that firms with multiple environmental concerns must pay higher costs
on their bank loans.

Employing direct carbon emissions as an independent observed variable, Jung
et al. (2018) find the cost of bank debt of Australian firms increases with
an increase in firms’ carbon footprint, using a panel regression. Wang et al.
(2021), using the Generalized Method of Moments, find firms with high car-
bon footprint facing more stringent loan covenants and tighter loan repayment
schedules. Zhang et al. (2023), using pooled OLS regression, suggest higher
Scope 1 emissions increase CDS spreads of the firms, whereas Scope 2 and 3
emissions are not yet priced by the credit market.

Several recent academic papers focus solely on direct drivers of credit risk,
i.e., probability of default, Merton distance-to-default (DD) or Expected de-
fault frequency (EDF), and their dependence on the carbon footprint of the
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borrower. This strain of literature is the most relevant given the research de-
sign. Capasso et al. (2020) show that DD is negatively correlated with the
firm’s carbon footprint and carbon intensity. The result implies firms with a
higher carbon footprint have a lower distance to default, i.e., are more likely
to default. Market data on 458 companies between 2007 and 2017 was used
to estimate DD. Then the DD was employed as a dependent variable in panel
regression, with carbon intensity and carbon footprint used as observed in-
dependent variables. Capasso et al. (2020) identified COP21 as an exogenous
policy shock, as DD was significantly lower for carbon-intensive firms post-2015.

Carbone et al. (2021) performed an analysis similar to Capasso et al. (2020),
using stock data on 558 large US and EU companies from 2010 to 2019. The
study came to the conclusion that high emissions tend to be associated with
higher credit risk, but disclosing emissions and setting a forward-looking en-
vironmental commitment may mitigate this effect. Carbone et al. (2021) also
capture the deterioration of credit ratings of the most climate risk-exposed
firms post-COP21. Kabir et al. (2021) extends the research by Carbone et al.
(2021) by studying over 2700 firms from 42 economies, to come to the same
causal relationship between the firm DD and emissions. Kabir et al. (2021) find
evidence that control variables ROA and cash flow volatility are the potential
channels through which a firm carbon footprint affects the DD. The public
environmental commitments of firms tend to reduce the negative impact of
emissions on DD.

Faralli & Ruggiero (2022) employ EDF as a measure of credit risk along with
carbon footprint to investigate their causal relationship. Data from 1841 firms
from 2008 to 2019 were used in fixed-effect panel regression. The use of EDF
as the credit risk proxy allowed to observe the effects of carbon footprint on
the main drivers of default separately. The emission level is relevant to the
probability of default mainly through the asset volatility channel. In line with
Capasso et al. (2020) and Carbone et al. (2021), Faralli & Ruggiero (2022) also
identified an effect of COP21 on the riskiness of polluter firms. Nguyen et al.
(2023) perform a follow-up study to Capasso et al. (2020), observing S&P 500
firms during the 2010-2019 period, to find that the negative effect of transition
risk on firms’ distance to default is stronger for firms headquartered in states
with carbon pricing.
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Not employing direct carbon emission data but rather testing transition risk
scenarios, Bell & van Vuuren (2022) simulate corporate equity price projections
using Geometric Brownian Motion to approximate the effects of climate policy
shocks. Inputs are then used to estimate a climate-stressed PD. As a result,
there are negligible increases in PDs for highly rated credit, but the effect of
policy shocks increases with worsened credit quality.

3.4 Formulation of the hypotheses
Based on the literature review, there is evidence of the possible relationship be-
tween transition and credit risk. Given the access to a unique dataset provided
by the Bank, consisting of data on corporate loans and client-level financial and
carbon footprint information, this thesis will closely examine the effect of client
carbon emissions on the probability of loan default. The research questions are
the following:

1. Client’s carbon footprint increases the odds of default on a corporate loan
in the Bank.

2. Client’s financed carbon footprint increases the odds of default on a cor-
porate loan in the Bank.

3. Client’s carbon intensity increases the odds of default on the corporate
loan in the Bank.



Chapter 4

Methodology

This chapter elaborates on the method chosen for the empirical analysis. First,
Section 4.1 introduces the concept of logistic regression. Second, Section 4.2 is
dedicated to the estimation and evaluation of logistic regression models.

4.1 Logistic Regression
Logistic regression is a statistical method used for the estimation of the depen-
dent variable of a binary outcome. The linear form of the logistic regression
with n features can be expressed as a natural logarithm of the odds ratio:
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where:

• P
1−P

represents the odds of an observed event occurring,

• βi represents a vector of coefficients of the model,

• Xi represents a vector of independent variables.
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If an estimator of the predictor is negative, the increase in this predictor
decreases the odds of the event occurring and vice versa. Logistic regression
requires several assumptions to be fulfilled. Dependent variables are of a binary
outcome, either 1 or 0. These classes are exclusive and no observation can be
part of both. The classes should be balanced, as the model estimates might be
biased towards the majority class. The relationship between the dependent and
independent variables is linear. There should be no perfect separation of the
classes, i.e., estimates of odds should not be equal to 1 or 0. Logistic regression
assumes no multicollinearity, i.e., high correlation between predictors. Multi-
collinearity can be either identified in the correlation matrix or by computing
the Variance Inflation Factor (VIF) for each predictor. VIF is calculated as the
ratio of the variance of a coefficient when fitting the full model to the variance
of a coefficient when fitting that predictor variable in a single variable model.
A value between 5 and 10 represents a moderate correlation. If the VIF of a
predictor is higher than 10, it is likely to be severely correlated with another
predictor in the model (Greene 2003).

Logistic regression is a standard method used for the credit risk assessment of a
potential client (Jakubík et al. 2011). Compared to more sophisticated machine
learning models such as neural networks or decision trees, logistic regression
is favored because of its simplicity and interpretability of results (Dumitrescu
et al. 2022). A trained logistic model represents a set of parameters on selected
financial inputs, estimated using historical data. Financial information on a
new potential client is plugged into the model which returns a probability of
default, i.e., a credit score, based on which the decision whether a loan will be
granted is taken.

4.2 Evaluation of the Logistic Regression
When the model is specified, its predictive power is tested on an unobserved
testing set. The odds returned by the model are translated to binary predic-
tions based on the threshold probability value. If this threshold is set to 0.5,
all generated estimates carrying a value of 0.5 or higher would be evaluated
as positive, hence the event is predicted to occur. Estimates below 0.5 would
be evaluated as negative, hence the event is not predicted to occur. These
binary predictions are compared to actual events in testing data and the model
is evaluated based on the number of the correct matches.
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True positive prediction (TP) means the model correctly predicted the oc-
currence of an event given the threshold. True negative (TN) prediction means
the model correctly identified an event not happening. False positive prediction
(FP), i.e., Type 1 error, occurs when a model predicted an event to happen but
in fact, it did not. False negative prediction (FN), i.e., Type 2 error, occurs
when the model fails to predict an event that occurred. A more sensitive model
tends to create fewer Type 2 errors while a more specific model will aim for
fewer Type 1 errors. Whether a more specific or more sensitive model is needed
depends on the nature of the analysis. In the context of credit risk, a Type
1 error results in credit denial to creditworthy clients. A Type 2 error leads
to classifying high-risk clients as creditworthy. A credit scoring model aims to
reach as high sensitivity as possible while keeping specificity at high enough
levels.

To find a balance between specificity and sensitivity, the Receiver Operating
Characteristic (ROC) curve is employed in this thesis for the model assess-
ment. The ROC curve plots the true positive rate (sensitivity) against the true
negative rate (specificity) for all possible thresholds of the model’s predicted
probabilities. The size of the area under the ROC (AUC-ROC) curve, also
referred to as the AUC score, indicates the discriminatory power of the model.
AUC score value of 0.5 suggests the model is random guessing, with no pre-
dictive power. The closer the AUC score gets to a value of 1, the better the
model is in the outcome prediction. An AUC score above 0.7 indicates that
the model has reasonably good discriminatory power. The major drawback of
AUC is that it ignores the class imbalance. Therefore, even a model unable to
detect any defaults can achieve a high AUC score as the number of correctly
identified negative events is prevalent. Models should be able to reach as high
a magnitude of AUC as possible but it is important to look at rates of true
positives and false positives separately.
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Given this thesis employs logistic regression, three new hypotheses are for-
mulated, as we uncovered new potential academic contributions that can be
drawn from the analysis:

1. Inclusion of the client’s carbon footprint increases the performance of the
model for default prediction.

2. Inclusion of the client’s financed carbon footprint increases the perfor-
mance of the model for default prediction.

3. Inclusion of the client’s carbon intensity increases the performance of the
model for default prediction.



Chapter 5

Data

This chapter discusses the data used in the empirical analysis. First, the origi-
nal dataset from the Bank and the adjustments made are introduced in Section
5.1. Second, descriptive statistics of the adjusted data are presented in Section
3.2. Finally, the correlation matrix of all variables is interpreted in Section 5.3.

5.1 Dataset
We were provided with unique data from the Bank consisting of three parts.
First, the dataset of all active accounts on corporate loans in years 2022 and
2023, including the information on defaults in 2023. Secondly, a list of all
active corporate clients and their financial information spanning from 2017 to
2022. Finally, a dataset consisting of total and loan-financed carbon footprint
information on all corporate clients. One corporate client could have several
open accounts on different loan products. The Bank stated that if a client
defaults on one of his accounts, all his other accounts are flagged as default-
ing too. Therefore, any information on the loan type does not contribute to
further analysis as it is impossible to confidently assume which account of the
particular client initiated the default.

The initial dataset consisting of 2,329 observations on 69 variables was cre-
ated by merging data from three datasets based on the client ID. We keep only
the financial data for 2022, due to the amount of missing values in earlier years.
We add new predictor variables derived from the provided data. Finally, we
are left with an initial dataset of 2,329 observations on 39 variables. Defaults
represent 31 observations and non-defaults represent 2,289 observations.
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5.1.1 Adjustments of the dataset

There are three major issues with the initial dataset, which required several
adjustments to proceed with the analysis. First, the amount of missing values
in the subset of defaulting clients. Second, a large number of extreme values.
Finally, a standard challenge in credit risk research is a class imbalance, i.e.,
the count of default observations being very small (Jorion et al. 2010). The
issues were handled using standard approaches used in empirical research.

Data imputation

To address the problem with the missing values, we opted for the data impu-
tation technique consisting of the replacement of the missing observations with
the value of selected sample statistics. Data imputation has to be done with
caution as the original distribution of data may become altered due to excessive
usage. Our main reason for data imputation is to prevent further loss of default
observations, therefore, we impute only those. Missing values of non-default
observations are omitted. As sample statistics, we select the sample median
since the outliers do not have such an effect on it as they would on the sample
mean (Jorion et al. 2010). We recorded 17 out of 31 default observations that
lack financial data from 2022, mainly caused by the shifted fiscal years of these
clients, hence the audited financial statements were not available at the time
of data collection. Part of the missing financial data from 2022 can be replaced
by data from 2021. For the remaining 6 observations, we impute the medians
of the sample for every missing observation.

Data partition

Data have to be partitioned into the training set for model preparation and
the testing set for model validation. We split the data proportionally, 55:45 in
favor of the training set. We check whether the shape of the distribution of
the sample and the defaulting subgroup corresponds between the training and
testing sets. Random partition is repeated until the most corresponding distri-
butions are achieved, although it is nearly impossible to split a default sample
of 31 observations into two identical distributions as every single instance in
such a small subset influences a distribution shape.
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Winsorization

Winsorization, a technique to handle extreme values, consists of computing
the upper and lower percentile of the data distribution and replacing all values
that exceed the upper and lower threshold by the value of the upper and lower
percentile respectively. This prevents further loss of data while conserving the
original distribution. It has to be applied separately on the training and testing
set to prevent data leakage from the testing set. The percentile threshold values
are derived only from the training set. The extreme values above the upper
and below the lower thresholds are replaced by the percentile values. The
threshold values derived from the training set are also used to replace extreme
values in the testing set. We set the lower percentile to be equal to 1 % of the
distribution and the upper percentile to be at 99 % of the distribution (Leone
et al. 2019).

Oversampling

Oversampling is a data augmentation technique used to address class imbal-
ance. If one class is significantly underrepresented compared to another class,
logistic regression model may be biased towards the majority class. Oversam-
pling is applied only to the training data to prevent data leakage from the
testing set. The classes should be balanced based on the natural proportions
of the classes. Before adjustment, defaults represent 2.25 % of the training
set. We set the desired proportion of defaults to 10 %, which is in line with
the reality as the non-performing loan ratios in Europe were generally ranging
from around 2 % to over 10 % in 2022 (Huljak et al. 2022).

We opt for the SMOTE algorithm (Synthetic Minority Over-sampling Tech-
nique), which generates synthetic samples in the minority class to balance the
dataset. For each minority class observation, the algorithm finds its k-nearest
neighbors given the variable. SMOTE randomly selects one of these neigh-
bors and creates a synthetic example at a randomly selected point between
the example and its chosen neighbor. This process continues until the de-
sired balance between the minority and majority classes is achieved (Douzas
et al. 2018). Given the small number of original observations, the original and
oversampled distributions are not perfectly corresponding but the oversampled
distribution of defaults mirrors the original data. Table 5.1 shows the number
of observations after the adjustments were made.
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Table 5.1: Observation count after adjustments

Data 0 1
Original data 2.289 31

Imputation
Imputed data 1.375 31

Partition
Train data 757 17
Test data 618 14

Winsorization
Train data 757 17
Test data 618 14

Oversampling
Train data 757 85
Test data 618 14

5.2 Descriptive statistics
This section contains a descriptive analysis of the adjusted data, as described
in the previous section. Since the data was partitioned into the training and
testing set so that the distributions of all predictors correspond, this section
features descriptive statistics of the merged testing and training set prior to
the oversampling, assuming both sub-samples carry similar patterns.

The default flag from the year 2023 serves as the dependent variable of the
analysis. There are two qualitative variables in the dataset, the NACE code
of an industry sector and the postal code of the headquarters of a client. The
possible predictors that are part of the dataset can be classified into two main
categories: transition risk variables and financial predictors.

Several important insights can already be taken from the first look at the data.
Most of the clients in the dataset are headquartered in Prague and Northern
Bohemia. The regions with the highest proportion of defaulting clients are Cen-
tral Bohemia followed by Northern and Eastern Bohemia as featured in Table
5.2. The dataset also contains a small group of corporate clients headquartered
in Slovakia, whose postal code begins with the number 8 or 9.
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Table 5.2: Regional classification of clients

Regional N. of ob-
servations

Proportion
of defaults

Prague 364 2.20 %
Northern Moravia 240 2.08 %
Eastern Bohemia 214 2.34 %
Southern and Western Bohemia 180 2.22 %
Central Bohemia 163 3.07 %
Southern Moravia 160 1.25 %
Northern Bohemia 80 2.50 %
Slovakia 5 0.00 %

The NACE (Nomenclature of Economic Activities) code is a four-digit code
that indicates business activity and is primarily used within the EU. The first
digit indicates a high-level industry sector of a firm. Table 5.3 features the
number of clients in the dataset per industry sector and the proportion of de-
faults in that sector. Table 5.4 features the average amount of emissions per
industry sector observed in the dataset. Most of the sample belongs to category
(4), characterized by Scope 3 emissions, representing roughly 75 % of the total
average emissions. Category (2), second in default proportion, has around 80
% of the total average emissions reported as Scope 3.

The most polluting categories in terms of the total average emission are the
categories (3) and (2). The least polluting industry sector is the category (6),
the financial sector. The largest Scope 1 (direct, from production) emitters
belong to categories (3) and (1). The largest Scope 2 emitters (indirect, from
production) belong to categories (2) and (8). The largest Scope 3 emitters
(indirect, from the supply chain) are part of the categories (2) and (3). Scope
3 emissions represent a majority of the average emissions across all categories,
and Scope 1 emissions are usually the second.
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Table 5.3: Industry sector of clients

Industry sector N. of ob-
servations

Proportion
of defaults

(1) Agriculture, forestry and fishing 241 2.90 %
(2) Manufacturing, mining and quarrying 250 3.60 %
(3) Construction 90 1.11 %
(4) Wholesale, retail, transportation, accommo-
dation and food services

650 1.69 %

(5) Information and communication 29 0.00 %
(6) Finance and insurance 73 2.74 %
(7) Real estate 55 0.00 %
(8) Professional, scientific, technical and ad-
ministration services

24 4.17 %

(9) Public administration, defense, education,
human health and social work

24 0.00 %

Table 5.4: Average carbon footprint per industry sector (mil.m3 C02)

Industry sector Scope
1

Scope
2

Scope
3

(1) Agriculture, forestry and fishing 2,265 190 3,148
(2) Manufacturing, mining and quarrying 907 395 5,269
(3) Construction 3,271 209 3,684
(4) Wholesale, retail, transportation, accommo-
dation and food services

573 43 1,836

(5) Information and communication 1,094 162 3,338
(6) Finance and insurance 383 77 785
(7) Real estate 523 61 1,622
(8) Professional, scientific, technical and ad-
ministration services

606 265 2,893

(9) Public administration, defense, education,
human health and social work

119 119 940

The banking sector is exposed to climate transition risk via its interest-
earning assets, i.e., via the emissions financed through its loans. The financed
carbon footprint of a client is important for the Bank in the context of climate
policy. Table 5.4 illustrates that categories (2) and (3) have the highest average
financed carbon footprint just as it is in the case of the average carbon footprint.
Categories (9) and (7) are financing the least emissions through their loans.
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Table 5.5: Average financed carbon footprint per industry sector
(mil.m3 C02)

Industry sector Scope 1,2 Scope 3
(1) Agriculture, forestry and fishing 325 497
(2) Manufacturing, mining and quarrying 183 683
(3) Construction 380 417
(4) Wholesale, retail, transportation, accommo-
dation and food services

98 272

(5) Information and communication 149 354
(6) Finance and insurance 300 273
(7) Real estate 72 204
(8) Professional, scientific, technical and ad-
ministration services

120 275

(9) Public administration, defense, education,
human health and social work

39 144

5.2.1 Transition risk variables

Table 5.6 features the descriptive statistics of the total and financed carbon
footprint. Separate financed carbon footprint for Scope 1 and 2 could not
be provided by the Bank. The largest proportion of emissions is attributed to
Scope 3 for both total and financed carbon footprint. Scope 2 carbon emissions
represent the smallest portion of the emissions in the sample. Distributions of
all variables tend to be right-skewed, as the medians are significantly lower
than the means.

Table 5.6: Descriptive statistics of carbon footprint (ths. m3 C02)

Statistic Mean St. Dev. Min Median Max
Carbon footprint

Scope 1 1,087,094 2,277,454 6,731 330,170 16,342,336
Scope 2 151,978 306,767 19,881 41,067 1,851,534
Scope 3 2,760,649 3,870,008 13,200 1,309,172 22,101,437

Financed carbon footprint

Scope 1 and 2 180,095 377,352 0 52,030 2,285,294
Scope 3 389,810 652,077 0 157,402 3,935,159
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Looking at the distributions of financed carbon footprint for defaulting and
non-defaulting subsets, one can notice a median of defaulters being significantly
higher than that of non-defaulters, both in the case of the Scope 1,2 financed
footprint in Figure 5.1 and of Scope 3 financed footprint in Figure 5.2. No other
carbon footprint variable had a distinctively higher median of the distribution
of defaulters.

Figure 5.1: Distribution of Scope 1 and 2 financed carbon footprint

Figure 5.2: Distribution of Scope 3 financed carbon footprint

There are two types of variables representing the carbon intensity in this
dataset. Carbon intensity per unit of sales, calculated as a fraction of the total
carbon footprint and the gross sales of a particular client, describes how much
of the emissions are linked to each unit of sales. The carbon intensity of assets
is calculated as a fraction of the total carbon footprint and total assets. Both
types of carbon intensity account for the size bias that might occur in the
case of the total or financed carbon footprint, as bigger and more profitable
firms produce more emissions, but usually tend to default less. Looking at
the descriptive statistics featured in Table 5.7, carbon intensity per earning
asset tends to be higher than per unit of sales. Distributions are generally
right-skewed, as the mean values are significantly higher than the medians.
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Table 5.7: Descriptive statistics of carbon intensity (m3 C02/CZK)

Statistic Mean St. Dev. Min Median Max
per unit of Sales

Scope 1 5.357 9.248 0.142 1.834 50.519
Scope 2 0.588 0.779 0.0003 0.383 4.768
Scope 3 10.446 6.850 0.263 10.138 44.247

per unit of Assets

Scope 1 6.265 11.151 0.031 3.369 82.942
Scope 2 0.776 1.039 0.0003 0.367 5.685
Scope 3 16.724 14.798 0.090 12.760 79.206

A similar trend in distributions of the Scope 2 and 3 carbon intensities
can be observed. The median of the distribution of defaulters is distinctively
pointed to the right in the case of both types of carbon intensities as seen in
Figure 5.5, Figure 5.4, Figure 5.5 and Figure 5.6. This might suggest that Scope
2 and 3 carbon emissions might be the potential drivers of a credit default.

Figure 5.3: Distribution of Scope 2 carbon intensity per sales unit

Figure 5.4: Distribution of Scope 3 carbon intensity per sales unit



5. Data 28

Figure 5.5: Distribution of Scope 2 carbon intensity per asset unit

Figure 5.6: Distribution of Scope 3 carbon intensity per asset unit

5.2.2 Financial predictors

A set of 13 financial variables was provided by the Bank: Gross Sales, To-
tal Turnover, EBITDA, Pre-tax Earnings, Non-current Assets, Current Assets,
Total Assets, Net Profit, Total Debt, Equity, Total Liabilities, Cash, and Oper-
ating Cash Flow. Current Liabilities are derived as a difference between Total
Liabilities and Non-current Liabilities. A set of 10 financial predictors, com-
monly used in the credit scoring models, was derived from original financial
data (Jakubík et al. 2011). Table 5.8 shows the list of the derived financial
predictors, their definitions, and optimal values. Ratios are organized into four
categories, based on what aspect of the firm’s financial health they account for.
Table 5.9 features the descriptive statistics of the financial predictors.

Comparing the median or mean values to the optimal values, we observe that
these values roughly correspond in the case of most of the ratios. Regarding
the liquidity measures, the median of the Current ratio suggests the sample
firms are liquid, while the Operating Cash Flow ratio median is quite below
the liquidity threshold. Profitability-wise, we observe the sample to be slightly
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under-performing. Solvency and economic structure indicators are in line with
the expectations.

Table 5.8: List of derived financial predictors

Table 5.9: Descriptive statistics of financial predictors

Statistic Mean St. Dev. Min Median Max
Current ratio 3.004 2.455 0.185 2.275 12.955
Cash Flow ratio 0.760 0.950 −0.508 0.458 5.181
ROE 0.159 0.336 −1.147 0.122 1.727
ROA 0.057 0.084 −0.182 0.043 0.374
Profit margin 0.049 0.106 −0.400 0.031 0.564
Cash Flow margin 0.127 0.173 −0.164 0.076 0.886
Debt to Equity 1.456 3.375 −11.041 0.644 21.547
Debt to Assets 0.309 0.197 0.002 0.280 0.835
Equity ratio 0.403 0.226 −0.087 0.403 0.873
Debt to Capital 0.442 0.268 0.001 0.41 1.205
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5.3 Correlation matrix
Figure 5.7 features the correlation matrix of all variables included in the dataset.
Transition risk variables showcase light to moderate positive correlation be-
tween each other but they are not to be included in one model together. There
is a moderate to strong correlation between the Equity ratio, Debt-to-Capital,
Debt-to-Assets, and Debt-to-Capital, signaling potential multicollinearity in
the model if these variables are included together. The correlation coefficient
between the Equity ratio and the Debt-to-Capital is -0.836, for the Equity ra-
tio and Debt-to-Assets is -0.599, and for Debt-to-Capital and Debt-to-Assets
is 0.838. Debt-to-Equity is not strongly correlated with any of these predic-
tors. There is a moderate correlation between Profit margin, Operating Cash
Flow margin, and Operating Cash Flow ratio. There is a moderate correla-
tion between Current Liabilities and Scope 3 financed carbon footprint as the
correlation coefficient is equal to 0.642.

Figure 5.7: Correlation matrix
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Model

The last step in the preparation for the empirical analysis is to construct a
standard model for the probability of default estimation. The standard model
will be climate-stressed in Chapter 7 by transition risk variables to observe
their effects. Therefore, the model should capture as much endogeneity in the
data as possible and be able to correctly identify a default.

6.1 Model specification
A credit scoring model for corporate loans should be built on four financial
dimensions of a firm (Bartual Sanfeliu et al. 2012). Liquidity, to capture the
short-term financial viability of a firm. Solvency, to capture the long-term fi-
nancial health of a firm. Profitability, to assess the ability of a firm to generate
earnings relative to underlying factors and economic structure, to provide in-
sight into the capital structure of a company. A set of 10 financial ratios and
4 financial inputs were selected as potential predictors in the model based on
the literature on credit scoring models (Jakubík et al. 2011). Values of the 4
financial inputs were standardized, to avoid bias caused by different scales of
variables.

All potential predictors were estimated in a simple model to examine the sig-
nificance and the sign of the estimator. Table 6.1 features the estimators of the
simple models. The effects of predictors, i.e., signs of estimators, are in line
with the expectations of the variable effect on the odds of the default. Debt
estimator has a negative sign, suggesting more debt lowers the chances of de-
fault, however, this estimate is of low weight and has no statistical significance.
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Current Liabilities estimate is negative and significant, as increased value im-
plies fewer long-term debt, i.e., lower interest expense. Operating Cash Flow
margin and Operating Cash Flow ratio are both strongly significant and gain
the lowest value of the Akaike Information Criterion, i.e., these variables might
represent the best fit for the data.

Table 6.1: Simple models

Predictor Coefficient AIC Significance
Operaing CF ratio -2.575 477 ***
Operating CF margin -11.753 484 ***
Equity ratio -3.358 518 ***
ROA -9.177 522 ***
ROE -1.607 535 ***
Profit margin -4.494 539 ***
Equity -0.596 544 **
Current ratio -0.199 545 **
Debt-to-Assets 1.638 547 **
Current Liabilities -0.404 550 *
Assets -0.385 550 *
Debt-to-Capital 0.769 552
Debt-to-Equity 0.018 555
Debt -0.043 555

The model was trained by incremental feature selection, i.e., by progressive
adding of features one by one and observing their effect on the goodness of
model fit and model performance. Two models were selected as the potential
standard models for climate-stressing. Table 6.2 features the summary of the
two models. The simpler model (1) consists of all pillars except for the solvency
ratios which were not significant in any model. Model (2) is a more complex
version of the first model containing a solvency indicator. Table 6.3 indicates
there is no significant multicollinearity in the selected models as the values of
VIF are well below 5. There are only minor differences between the estimates
of the two models, and the levels of significance remained similar. Operating
Cash Flow margin has the most profound effect on the probability of default,
yet its statistical significance is the weakest.
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Table 6.2: Summary of the logistic regression

Dependent variable:
flag_default

(1) (2)
Operating_CF_margin −4.551∗ −4.082∗

(2.504) (2.428)
Operating_CF_ratio −1.561∗∗∗ −1.686∗∗∗

(0.561) (0.561)
Current_liabilities −0.630∗∗ −0.590∗∗

(0.271) (0.269)
Equity_ratio −2.225∗∗∗ −1.893∗∗∗

(0.621) (0.696)
Debt_to_Assets 0.809

(0.713)
Constant −0.796∗∗∗ −1.150∗∗∗

(0.215) (0.385)
Observations 842 842
Log Likelihood −221.914 −221.266
Akaike Inf. Crit. 453.828 454.532

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 6.3: Variance inflation factors

Model CF margin CF ratio Equity ratio Current liab D/A
(1) 2.429 2.478 1.046 1.022
(2) 2.411 2.480 1.272 1.039 1.260

Moving on to the evaluation of model performance, Table 6.4 features the
number of correct and false predictions of the models on the testing set as well
as the specificity and sensitivity rates. As expected, the severe class imbal-
ance caused the model estimates to be biased toward the majority class as no
defaults were correctly indicated using a threshold of 0.5. The defaults orig-
inally represented only 2.2 % of the training sample and the proportion was
synthetically balanced to 10 % as discussed in Chapter 5.
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Table 6.4: Performance evaluation

Model TN FN TP FP Specificity Sensitivity
Model (1) 614 14 0 4 0.9935 0
Model (2) 615 14 0 3 0.9951 0

To show the predictive power of the model not influenced by the class
imbalance bias, we replicate all the default observations in the training set eight
times to obtain a more balanced panel. The number of default observation is
equal to 680 while the number of non-defaults is 757. The models are estimated
using balanced training data as presented in Table 6.5. There is no major
change in the values of the estimators, all the estimators are now of strong
statistical significance. The value of the constant increased significantly as by
balancing the classes, the occurrence of default became more frequent and so
did the odds of a default happening.

Table 6.5: Summary of the logistic regression (balanced data)

Dependent variable:
flag_default

(1) (2)
Operating_CF_margin −4.485∗∗∗ −4.201∗∗∗

(1.177) (1.142)
Operating_CF_ratio −1.403∗∗∗ −1.621∗∗∗

(0.251) (0.256)
Current_liabilities −0.811∗∗∗ −0.780∗∗∗

(0.149) (0.153)
Equity_ratio −2.774∗∗∗ −2.108∗∗∗

(0.365) (0.381)
Debt_to_Assets 1.912∗∗∗

(0.421)
Constant 1.379∗∗∗ 0.566∗∗∗

(0.132) (0.213)
Observations 1,437 1,437
Log Likelihood −740.828 −730.510
Akaike Inf. Crit. 1,491.656 1,473.019

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Looking at the performance of the models estimated on balanced data,
Table 6.6 indicates the model (1) is better at identifying defaults than model
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(2) since the number of true positive predictions is higher. The magnitude of
the AUC, shown in Figure 6.1, is almost equal for the two models indicating
both models have moderately good discriminatory power. Model (1) is slightly
more sensitive, indicating it might be better in avoiding Type 2 errors, i.e.,
failing to predict a default.

Table 6.6: Performance evaluation (balanced data)

Model TN FN TP FP Specificity Sensitivity
Model (1) 456 6 8 162 0.738 0.571
Model (2) 455 7 7 163 0.736 0.500

Figure 6.1: ROC curve (balanced data)

6.2 Robutness check
The robustness of the models was assessed by applying the model on data ad-
justed by alternative parameters from those described in Subsection 5.1.1. Data
was randomly partitioned at a ratio of 60:40, winosorization percentiles were
set to 99.5 and 0.5 % for the upper and lower thresholds respectively. Defaults
in the training set were oversampled so that they represent 8 % of the training
sample. The distributions of the key predictors corresponded across training
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and testing samples. Training data were balanced in the similar manner as in
the previous section.

Table 6.8 features the models (1) and (2) applied to the alternative data. We
observe similar signs of the estimators with several differences such as the Op-
erating Cash Flow margin not being significant in both models. The differences
are caused by different random data partitions of defaults, which represent a
very small subset of the data impossible to split into two perfectly correspond-
ing partitions. The models estimated on imbalanced alternative data rendered
similar results as featured in Appendix A. There is no sign of multicollinearity
as featured in Table 6.7.

Table 6.7: Variance inflation factors (Robustness check)

Model CF margin CF ratio Equity ratio Current liab D/A
(1) 1.572 1.704 1.065 1.046
(2) 2.911 3.258 1.599 1.130 1.806

Table 6.8: Summary of the logistic regression (Robustness check)

Dependent variable:
flag_default

(1) (2)
Operating_CF_margin −0.508 −0.743

(0.580) (0.607)
Operating_CF_ratio −0.483∗∗∗ −0.697∗∗∗

(0.117) (0.129)
Current_liabilities −1.879∗∗∗ −1.756∗∗∗

(0.212) (0.217)
Equity_ratio −3.098∗∗∗ −1.141∗∗∗

(0.313) (0.389)
Debt_to_Assets 3.444∗∗∗

(0.448)
Constant 0.860∗∗∗ −0.912∗∗∗

(0.130) (0.257)
Observations 1,585 1,585
Log Likelihood −934.029 −903.462
Akaike Inf. Crit. 1,878.058 1,818.923

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Concerning the model performance Table 6.9 shows the two models are
equally good in their ability to correctly identify a default given threshold of
0.5. In general, the AUC scores correspond with the baseline models, model
(1) achieves a slightly higher magnitude of the AUC-ROC.

Table 6.9: Performance evaluation (Robustness check)

Model TN FN TP FP Specificity Sensitivity
Model (1) 358 4 8 192 0.651 0.667
Model (2) 368 4 8 182 0.669 0.667

Figure 6.2: ROC curve (Robustness check)

To conclude, the models were estimated on two different random partitions
of data returning similar estimators and achieving similar effectivity in default
detection. Model (1) is chosen to be climate-stressed in Chapter 7, since it man-
aged to correctly predict more defaults and all of the variables are of statistical
significance.



Chapter 7

Empirical analysis

The chapter is structured based on the respective hypotheses set in Chapter 3
and Chapter 4. The hypotheses on the carbon intensity variable will be split
into two separate hypotheses, one for carbon intensity per unit of sales and one
for carbon intensity per asset. The results are summarized in Section 7.9 and
further research opportunities are presented in Section 7.10. The final list of
the hypotheses is following:

1. Client’s carbon footprint increases the odds of default on a corporate loan
in the Bank.

2. Inclusion of the client’s carbon footprint increases the performance of the
model for default prediction.

3. Client’s financed carbon footprint increases the odds of default on a cor-
porate loan in the Bank.

4. Inclusion of the client’s financed carbon footprint increases the perfor-
mance of the model for default prediction.

5. Client’s carbon intensity per unit of sales increases the odds of default on
a corporate loan in the Bank.

6. Inclusion of the client’s carbon intensity per unit of sales increases the
performance of the model for default prediction.

7. Client’s carbon intensity per earning asset increases the odds of default
on a corporate loan in the Bank.

8. Inclusion of the client’s carbon intensity per earning asset increases the
performance of the model for default prediction.



7. Empirical analysis 39

To test the hypotheses, the standard model featured in Chapter 6 was
climate-stressed separately by all types of transition risk variables. Values of
carbon footprint and financed carbon footprint were standardized, to avoid bias
induced by different scales of variables. For the robustness check, the analy-
sis was repeated using the alternative data, also used for the standard model
robustness check in Chapter 6. This Chapter features the models estimated
on the balanced data so that their ability of correctly estimate defaults can be
compared. Models estimated on imbalanced data generated similar values and
significance of parameters as shown in Appendix A.

7.1 Hypothesis 1 testing
Table 7.2 features the summary of the standard and the climate-stressed mod-
els. Values of VIF are below the multicollinearity threshold for all models as
shown in Table 7.1. Transition risk variables used for the Hypothesis 1 testing
are the three scopes of carbon footprint further referred to as Scope 1,2 and
3. The standard model estimators were not changed significantly by adding
a transition risk variable. Scope 1 carbon footprint estimator is not statisti-
cally significant. Scope 2 and 3 carbon footprint estimators are statistically
significant in the model. An increase in Scope 2 carbon footprint results in
an approximately 212 % increase in the odds of default. One unit increase in
Scope 3 carbon footprint results in a roughly 276 % increase in the probability
of default. On imbalanced data, the effects were a bit lower yet significant, i.e.,
142% and 132% respectively.

Table 7.1: Variance inflation factors (H1)

Model CF margin CF ratio Equity ratio Current liab Emission var
(1) 2.429 2.478 1.046 1.022
(2) 2.438 2.479 1.056 1.098 1.095
(3) 2.782 2.859 1.174 1.639 1.875
(4) 2.563 2.653 1.122 1.824 1.969
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Table 7.2: Summary of the logistic regression (H1)

Dependent variable:
flag_default

(1) (2) (3) (4)
Operating_CF_margin −4.485∗∗∗ −4.544∗∗∗ −7.315∗∗∗ −3.949∗∗∗

(1.177) (1.188) (1.579) (1.332)
Operating_CF_ratio −1.403∗∗∗ −1.399∗∗∗ −1.496∗∗∗ −1.819∗∗∗

(0.251) (0.251) (0.316) (0.289)
Equity_ratio −2.774∗∗∗ −2.815∗∗∗ −4.183∗∗∗ −3.716∗∗∗

(0.365) (0.372) (0.431) (0.403)
Current_liabilities −0.811∗∗∗ −0.836∗∗∗ −2.447∗∗∗ −2.441∗∗∗

(0.149) (0.157) (0.284) (0.263)
Scope_1_TotEm 0.064

(0.108)
Scope_2_TotEm 1.140∗∗∗

(0.106)
Scope_3_TotEm 1.325∗∗∗

(0.132)
Constant 1.379∗∗∗ 1.398∗∗∗ 1.384∗∗∗ 1.416∗∗∗

(0.132) (0.136) (0.150) (0.144)
Observations 1,437 1,437 1,437 1,437
Log Likelihood −740.828 −740.655 −621.879 −673.215
Akaike Inf. Crit. 1,491.656 1,493.310 1,255.757 1,358.430

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

7.1.1 Robustness check

Applying the climate-stressed models to the alternative data, the values and the
significance of the Scope 2 and Scope 3 estimators correspond to the baseline
results as presented in the Table 7.4. There is no major change in the values
or significance standard model estimators nor in the values of VIF shown in
Table 7.3 that would suggest multicollinearity.
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Table 7.3: Variance inflation factors (Robustness check H1)

Model CF margin CF ratio Equity ratio Current liab Emission var
(1) 1.572 1.704 1.066 1.046
(2) 1.569 1.709 1.072 1.131 1.093
(3) 1.628 1.743 1.124 1.475 1.511
(4) 1.658 1.776 1.121 2.306 2.378

Table 7.4: Robustness check (H1)

Dependent variable:
flag_default

(1) (2) (3) (4)
Operating_CF_margin −0.508 −0.511 −0.276 0.242

(0.580) (0.576) (0.634) (0.635)
Operating_CF_ratio −0.483∗∗∗ −0.468∗∗∗ −0.543∗∗∗ −0.674∗∗∗

(0.117) (0.116) (0.128) (0.132)
Current_liabilities −1.879∗∗∗ −1.703∗∗∗ −3.038∗∗∗ −3.236∗∗∗

(0.212) (0.215) (0.276) (0.296)
Equity_ratio −3.098∗∗∗ −2.988∗∗∗ −3.701∗∗∗ −3.392∗∗∗

(0.313) (0.315) (0.333) (0.325)
Scope_1_TotEm −0.373∗∗∗

(0.136)
Scope_2_TotEm 1.066∗∗∗

(0.110)
Scope_3_TotEm 0.988∗∗∗

(0.114)
Constant 0.860∗∗∗ 0.791∗∗∗ 0.714∗∗∗ 0.707∗∗∗

(0.130) (0.132) (0.139) (0.138)
Observations 1,585 1,585 1,585 1,585
Log Likelihood −934.029 −929.103 −860.976 −891.470
Akaike Inf. Crit. 1,878.058 1,870.207 1,733.953 1,794.941

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The inclusion of Scope 2 and Scope 3 carbon footprint into the standard
model improved its goodness to fit and generated robust positive and statisti-
cally significant estimators suggesting that higher levels of Scope 2 and Scope
3 carbon emissions might be a driver of defaults in the Bank. Therefore, Hy-
pothesis 1 could not be rejected.
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7.2 Hypothesis 2 testing
Standard and climate-stressed models are moderately good at ranking instances
as presented in Figure 7.1. In terms of the magnitude of the AUC score, only
the model (3) featuring Scope 2 emissions exceeded the standard model. As
shown in Table 7.5 all models managed were equally good in default detection
at a threshold equal to 0.5 but models (3) and (4) achieved a higher sensitivity
score than the standard model.

Table 7.5: Performance evaluation (H2)

Model TN FN TP FP Specificity Sensitivity
Standard model 456 6 8 162 0.738 0.571
Model (2) 454 6 8 164 0.735 0.571
Model (3) 480 6 8 138 0.777 0.571
Model (4) 468 6 8 150 0.757 0.571

Figure 7.1: ROC curve (H2)

7.2.1 Robustness check

Looking at Figure 7.2 all climate-stressed models achieved a higher magnitude
of the AUC and also performed better in terms of sensitivity given a threshold
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of 0.5 as shown in Table 7.6. Models (3) and (4) also achieved higher specificity
rates than the standard model.

Table 7.6: Performance evaluation (Robustness check H2)

Model TN FN TP FP Specificity Sensitivity
Standard Model 358 4 8 192 0.651 0.667
Model (2) 353 3 9 197 0.642 0.750
Model (3) 374 2 10 176 0.680 0.830
Model (4) 370 2 10 180 0.673 0.833

Figure 7.2: ROC curve (Robustness check H2)

Model (3) stressed by the Scope 2 carbon footprint gained a higher magni-
tude of the AUC score on both data partitions. Moreover, it also repeatedly
achieved higher sensitivity and specificity rates than the standard model. The
inclusion of the Scope 2 carbon footprint can enhance the model’s predictive
power and therefore Hypothesis 2 can not be rejected.

7.3 Hypothesis 3 testing
Table 7.7 features the summary of the standard and the climate-stressed mod-
els. Values of VIF are below the multicollinearity threshold for all models as
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shown in Table 7.8. Transition risk variables used for the Hypothesis 1 test-
ing are Scope 1,2 and Scope 3 financed carbon footprint. The standard model
estimators were not changed significantly by adding a transition risk variable.
Both Scope 1,2 and Scope 3 financed carbon footprint estimators are positive
and statistically significant. One unit increase in Scope1,2 emissions results in
an increase of 70 % in the odds of the default. The probability of default would
be shifted by 177 % if the Scope 3 financed footprint increases by one unit.
On imbalanced data, the effects were a bit lower yet significant, i.e., 49% and
133% respectively.

Table 7.7: Summary of the logistic regression (H3)

Dependent variable:
flag_default

(1) (2) (3)
Operating_CF_margin −4.485∗∗∗ −4.424∗∗∗ −2.360∗

(1.177) (1.217) (1.219)
Operating_CF_ratio −1.403∗∗∗ −1.530∗∗∗ −2.124∗∗∗

(0.251) (0.260) (0.288)
Equity_ratio −2.774∗∗∗ −2.855∗∗∗ −2.402∗∗∗

(0.365) (0.370) (0.379)
Current_liabilities −0.811∗∗∗ −1.021∗∗∗ −1.650∗∗∗

(0.149) (0.165) (0.212)
Fin_Scope12 0.530∗∗∗

(0.089)
Fin_Scope3 1.022∗∗∗

(0.084)
Constant 1.379∗∗∗ 1.372∗∗∗ 0.857∗∗∗

(0.132) (0.134) (0.141)
Observations 1,437 1,437 1,437
Log Likelihood −740.828 −721.030 −635.961
Akaike Inf. Crit. 1,491.656 1,454.060 1,283.923

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 7.8: Variance inflation factors (H3)

Model CF margin CF ratio Equity ratio Current liab Emission var
(1) 2.429 2.478 1.046 1.022
(2) 2.377 2.441 1.049 1.191 1.188
(3) 2.397 2.562 1.043 1.422 1.560
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7.3.1 Robustness check

Looking at the results of the robustness check featured in Table 7.9, both Scope
1,2 and Scope 3 financed carbon footprint estimators remained positive and
statistically significant. The weight of both estimators decreased. An increase
of one unit in Scope 1,2 financed footprint increases the odds of default by 34
% and Scope 3 financed footprint by 116 %. Multicollinarity is not present in
the model as shown in Table 7.10.

Table 7.9: Robustness check (H3)

Dependent variable:
flag_default

(1) (2) (3)
Operating_CF_margin −0.508 −0.353 0.257

(0.580) (0.586) (0.605)
Operating_CF_ratio −0.483∗∗∗ −0.514∗∗∗ −0.605∗∗∗

(0.117) (0.120) (0.126)
Current_liabilities −1.879∗∗∗ −2.126∗∗∗ −2.816∗∗∗

(0.212) (0.233) (0.277)
Equity_ratio −3.098∗∗∗ −3.070∗∗∗ −2.532∗∗∗

(0.313) (0.314) (0.318)
Fin_Scope12 0.291∗∗∗

(0.080)
Fin_Scope3 0.773∗∗∗

(0.087)
Constant 0.860∗∗∗ 0.789∗∗∗ 0.296∗∗

(0.130) (0.132) (0.146)
Observations 1,585 1,585 1,585
Log Likelihood −934.029 −927.327 −881.915
Akaike Inf. Crit. 1,878.058 1,866.654 1,775.829

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 7.10: Variance inflation factors (Robustness check H3)

Model CF margin CF ratio Equity ratio Current liab Emission var
(1) 1.572 1.704 1.066 1.046
(2) 1.564 1.722 1.065 1.231 1.183
(3) 1.601 1.737 1.071 1.530 1.502
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Scope 1,2 and Scope 3 financed carbon footprints had positive and statisti-
cally significant estimators in the climate-stressed models, suggesting the level
of loan-financed emissions increases the odds of default. Therefore, Hypothesis
3 could not be rejected.

7.4 Hypothesis 4 testing
Standard and climate-stressed models perform moderately well in ranking in-
stances, as presented in Figure 7.3. In terms of the magnitude of the AUC,
none of the climate-stressed models exceeded the standard model. Given the
threshold equal to 0.5, the models perform none of the climate-stressed models
exceeded the standard model in terms of sensitivity rate as presented in Table
7.11.

Table 7.11: Performance evaluation (H4)

Model TN FN TP FP Specificity Sensitivity
Standard Model 456 6 8 162 0.738 0.571
Model (2) 457 7 7 161 0.739 0.500
Model (3) 488 8 6 130 0.790 0.429

Figure 7.3: ROC curve (H4)
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7.4.1 Robustness check

When assessing the performance of the climate-stressed models on the alterna-
tive data, the model stressed by the Scope 3 financed carbon footprint reaches a
higher magnitude of AUC than the standard model as presented in Figure 7.4.
Given a threshold equal to 0.5, both models predict more defaults correctly.

Table 7.12: Performance evaluation (Robustness check H4)

Model TN FN TP FP Specificity Sensitivity
Standard model 358 4 8 192 0.651 0.667
Model (2) 353 3 9 197 0.641 0.750
Model (3) 362 2 10 188 0.658 0.833

Figure 7.4: ROC curve (Robustness check H4)

Assessing the performance of the climate-stressed models on the two differ-
ently adjusted partitions of the data, the climate-stressed models did not prove
to perform better in terms of default prediction than the standard model, there-
fore Hypothesis 4 can be rejected.
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7.5 Hypothesis 5 testing
Table 7.13 features the summary of the standard and the climate-stressed mod-
els. Values of VIF are below the multicollinearity threshold for all models as
shown in Table 7.14. Transition risk variables used for the Hypothesis 1 testing
are Scope 1,2 and Scope 3 carbon intensities per unit of sales. The signs and
significance of the standard model estimators remained similar in the standard
and climate-stressed models. All transition risk variables are statistically sig-
nificant. Scope 1 carbon intensity estimator is negative suggesting its increase
result in a decrease in the probability of default by 8 %. Scope 2 carbon inten-
sity increase translates to an upward shift of 133 % in odds of default and Scope
3 carbon intensity to a slight upward shift of 11 %. The effects correspond to
those measured on imbalanced data.

Table 7.13: Summary of the logistic regression (H5)

Dependent variable:
flag_default

(1) (2) (3) (4)
Operating_CF_margin −4.485∗∗∗ −2.920∗∗ −7.620∗∗∗ −6.783∗∗∗

(1.177) (1.137) (1.434) (1.387)
Operating_CF_ratio −1.403∗∗∗ −1.673∗∗∗ −1.176∗∗∗ −1.188∗∗∗

(0.251) (0.255) (0.274) (0.264)
Equity_ratio −2.774∗∗∗ −2.607∗∗∗ −3.363∗∗∗ −2.876∗∗∗

(0.365) (0.367) (0.399) (0.385)
Current_liabilities −0.811∗∗∗ −0.820∗∗∗ −1.303∗∗∗ −0.973∗∗∗

(0.149) (0.148) (0.211) (0.175)
carbon_intensity_scope1_sales −0.090∗∗∗

(0.021)
carbon_intensity_scope2_sales 0.846∗∗∗

(0.089)
carbon_intensity_scope3_sales 0.107∗∗∗

(0.012)
Constant 1.379∗∗∗ 1.580∗∗∗ 0.900∗∗∗ 0.146

(0.132) (0.141) (0.152) (0.189)
Observations 1,437 1,437 1,437 1,437
Log Likelihood −740.828 −724.230 −681.648 −691.026
Akaike Inf. Crit. 1,491.656 1,460.459 1,375.296 1,394.052

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 7.14: Variance inflation factors (H5)

Model CF margin CF ratio Equity ratio Current liab Emission var
(1) 2.429 2.478 1.046 1.022
(2) 2.600 2.636 1.044 1.029 1.009
(3) 2.485 2.515 1.099 1.041 1.085
(4) 2.402 2.485 1.062 1.020 1.021

7.5.1 Robustness check

Table 7.16 features the summary of the logistic regression models applied to
alternative data. There are no major changes in standard predictor estimators
and their significance. Scope 2 and 3 carbon intensity estimators are both
positive and statistically significant. These estimators narrowly correspond
with the baseline results. There is no multicollinearity suggested as shown in
Table 7.15.

Table 7.15: Variance inflation factors (Robustness check H5)

Model CF margin CF ratio Equity ratio Current liab Emission var
(1) 1.572 1.704 1.066 1.046
(2) 1.627 1.729 1.067 1.046 1.028
(3) 1.649 1.761 1.061 1.049 1.033
(4) 1.586 1.696 1.057 1.048 1.013
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Table 7.16: Robustness check (H5)

Dependent variable:
flag_default

(1) (2) (3) (4)
Operating_CF_margin −0.508 −0.352 −0.821 −0.348

(0.580) (0.588) (0.631) (0.636)
Operating_CF_ratio −0.483∗∗∗ −0.512∗∗∗ −0.442∗∗∗ −0.488∗∗∗

(0.117) (0.120) (0.125) (0.127)
Current_liabilities −1.879∗∗∗ −1.903∗∗∗ −1.963∗∗∗ −1.752∗∗∗

(0.212) (0.215) (0.226) (0.212)
Equity_ratio −3.098∗∗∗ −3.102∗∗∗ −3.301∗∗∗ −2.725∗∗∗

(0.313) (0.316) (0.326) (0.318)
carbon_intensity_scope1_sales −0.019∗∗∗

(0.007)
carbon_intensity_scope2_sales 0.967∗∗∗

(0.096)
carbon_intensity_scope3_sales 0.095∗∗∗

(0.010)
Constant 0.860∗∗∗ 0.946∗∗∗ 0.159 −0.421∗∗

(0.130) (0.134) (0.149) (0.183)
Observations 1,585 1,585 1,585 1,585
Log Likelihood −934.029 −926.096 −873.413 −880.906
Akaike Inf. Crit. 1,878.058 1,864.192 1,758.826 1,773.812

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Two out of three variables on carbon intensity per unit of sales proved
to have positive and statistically significant estimators in the climate-stressed
models. The baseline results corresponded with the results from the robustness
check analysis. Therefore, Hypothesis 5 could not be rejected.

7.6 Hypothesis 6 testing
Standard and climate-stressed models perform moderately well in terms of
ranking instances, as presented in Figure 7.5. The models climate-stressed by
Scope 2 and Scope 3 carbon intensity per sales unit exceeded the standard
model in terms of the AUC score. Given a threshold equal to 0.5, no model
could exceed the standard model in terms of sensitivity, but models (2) and (3)
were more specific as shown in 7.17.
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Table 7.17: Performance evaluation (H6)

Model TN FN TP FP Specificity Sensitivity
Standard Model 456 6 8 162 0.738 0.571
Model (2) 463 8 6 155 0.749 0.429
Model (3) 471 6 8 147 0.762 0.571
Model (4) 471 6 8 147 0.762 0.571

Figure 7.5: ROC curve (H6)

7.6.1 Robustness check

When assessing the performance of the climate-stressed models on the alter-
native data, all three models perform better than the standard model in terms
of the magnitude of the AUC as presented in 7.6. Table 7.17 shows all models
managed to correctly predict the same or higher number of defaults than the
standard model given the threshold of 0.5. Models (3) and (4) achieved higher
specificity than the standard model.
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Table 7.18: Performance evaluation (Robustness check H6)

Model TN FN TP FP Specificity Sensitivity
Standard model 385 4 8 192 0.651 0.667
Model (2) 357 3 9 193 0.649 0.750
Model (3) 384 3 9 166 0.698 0.750
Model (4) 383 4 8 167 0.696 0.667

Figure 7.6: ROC curve (Robustness check H6)

Both Scope 2 and 3 carbon intensity per sales unit-stressed models achieved
a higher magnitude of the AUC than the standard model in both analyses fea-
turing different data partitions. Even though none of the climate-stressed mod-
els could perform better in terms of default detection in both analyses, these
two models showed they are more specific while keeping the same sensitivity
rate. Therefore, Hypothesis 6 could not be rejected.

7.7 Hypothesis 7 testing
Table 7.19 features the summary of the standard and the climate-stressed mod-
els. Values of VIF are below the multicollinearity threshold for all models as
shown in Table 7.20. Transition risk variables used for the Hypothesis 1 test-
ing are Scope 1,2 and Scope 3 carbon intensities per asset. The signs and
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significance of the standard model estimators remained similar. Scope 1 car-
bon intensity estimator is statistically significant and negative suggesting its
increase results in a decrease in the probability of default by 17 %. Scope 2
carbon intensity increase by one unit results in an increase of 83 % in odds of
default. The estimator of Scope 3 carbon intensity per asset is not significant
when using imbalanced data. Using balanced data, the effect is significant, yet
its magnitude is only 1 %.

Table 7.19: Summary of the logistic regression (H7)

Dependent variable:
flag_default

(1) (2) (3) (4)
Operating_CF_margin −4.485∗∗∗ −4.674∗∗∗ −3.959∗∗∗ −3.840∗∗∗

(1.177) (1.221) (1.288) (1.177)
Operating_CF_ratio −1.403∗∗∗ −1.470∗∗∗ −1.803∗∗∗ −1.525∗∗∗

(0.251) (0.262) (0.283) (0.254)
Equity_ratio −2.774∗∗∗ −3.165∗∗∗ −2.509∗∗∗ −2.511∗∗∗

(0.365) (0.384) (0.381) (0.374)
Current_liabilities −0.811∗∗∗ −1.032∗∗∗ −0.946∗∗∗ −0.768∗∗∗

(0.149) (0.166) (0.170) (0.148)
carbon_intensity_scope1_assets −0.187∗∗∗

(0.028)
carbon_intensity_scope2_assets 0.609∗∗∗

(0.068)
carbon_intensity_scope3_assets 0.014∗∗∗

(0.005)
Constant 1.379∗∗∗ 2.229∗∗∗ 0.711∗∗∗ 1.029∗∗∗

(0.132) (0.187) (0.153) (0.174)
Observations 1,437 1,437 1,437 1,437
Log Likelihood −740.828 −702.053 −692.767 −736.127
Akaike Inf. Crit. 1,491.656 1,416.107 1,397.534 1,484.253

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 7.20: Variance inflation factors (H7)

Model CF margin CF ratio Equity ratio Current liab Emission var
(1) 2.429 2.478 1.046 1.022
(2) 2.532 2.561 1.104 1.062 1.096
(3) 2.485 2.566 1.051 1.027 1.030
(4) 2.450 2.500 1.068 1.044 1.051

7.7.1 Robustness check

Table 7.22 features the summary of the models applied to alternative data. All
three transition risk variables are statistically significant. An increase of one
unit of Scope 2 carbon intensity per asset results in an increase of 84 % in
the probability of default, which is similar to the baseline results. An increase
of Scope 3 emissions per asset translates to an increase of 1 % in the odds of
default. As presented in Table 7.21, the presence of multicollinearity is not
suggested by the variance inflation factors.

Table 7.21: Variance inflation factors (Robustness check H7)

Model CF margin CF ratio Equity ratio Current liab Emission var
(1) 1.572 1.704 1.066 1.046
(2) 1.642 1.776 1.076 1.056 1.025
(3) 1.641 1.708 1.071 1.046 1.062
(4) 1.631 1.650 1.084 1.063 1.138
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Table 7.22: Robustness check (H7)

Dependent variable:
flag_default

(1) (2) (3) (4)
Operating_CF_margin −0.508 −0.694 0.155 0.185

(0.580) (0.592) (0.623) (0.600)
Operating_CF_ratio −0.483∗∗∗ −0.476∗∗∗ −0.487∗∗∗ −0.554∗∗∗

(0.117) (0.120) (0.128) (0.123)
Current_liabilities −1.879∗∗∗ −2.040∗∗∗ −1.689∗∗∗ −1.692∗∗∗

(0.212) (0.225) (0.212) (0.206)
Equity_ratio −3.098∗∗∗ −3.282∗∗∗ −3.137∗∗∗ −2.715∗∗∗

(0.313) (0.322) (0.328) (0.317)
carbon_intensity_scope1_assets −0.045∗∗∗

(0.009)
carbon_intensity_scope2_assets 0.613∗∗∗

(0.054)
carbon_intensity_scope3_assets 0.018∗∗∗

(0.003)
Constant 0.860∗∗∗ 1.125∗∗∗ 0.118 0.372∗∗

(0.130) (0.141) (0.145) (0.153)
Observations 1,585 1,585 1,585 1,585
Log Likelihood −934.029 −909.396 −854.134 −917.661
Akaike Inf. Crit. 1,878.058 1,830.792 1,720.268 1,847.321

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Scope 1 and 2 carbon intensity per asset managed to remain statistically
significant on both balanced and imbalanced data using two different data
partitions. The estimators of the Scope 1 carbon intensity per asset were
negative but the Scope 2 estimators were positive. Overall, the Hypothesis 7
could not be rejected.

7.8 Hypothesis 8 testing
Standard and climate-stressed models perform moderately well, model (3)
stressed by Scope 2 carbon intensity per asset reached a higher AUC score
as shown in Figure 7.7. Moreover, model (3) reached higher specificity and
sensitivity than the standard model as shown in Table 7.23.
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Table 7.23: Performance evaluation (H8)

Model TN FN TP FP Specificity Sensitivity
Standard model 456 6 8 162 0.738 0.571
Model (2) 475 7 7 143 0.769 0.500
Model (3) 473 5 9 145 0.765 0.643
Model (4) 432 6 8 156 0.748 0.571

Figure 7.7: ROC curve (H8)

7.8.1 Robustness check

When assessing the performance of the climate-stressed models on the alterna-
tive data, only model (2), stressed by the Scope 1 carbon intensity per asset
gained a magnitude of the AUC higher than the standard model as presented in
Figure 7.8. Model (2) also gained distinctively higher sensitivity and specificity
rates as shown in Table 7.24.
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Table 7.24: Performance evaluation (Robustness check H8)

Model TN FN TP FP Specificity Sensitivity
Standard Model 358 4 8 192 0.651 0.667
Model (2) 350 1 11 200 0.917 0.917
Model (3) 387 4 8 163 0.667 0.667
Model (4) 362 4 8 188 0.667 0.667

Figure 7.8: ROC curve (Robustness check H8)

None of the climate-stressed models managed to gain a higher magnitude
of the AUC or predict more defaults correctly on both sets of data. Therefore,
Hypothesis 8 is rejected.

7.9 Summary of results
Overall, 8 hypotheses were tested, out of which two were rejected and six could
not be rejected. There were two types of hypotheses, on the nature of the
relationship between the transition risk variables and the probability of default
and on the contribution of transition variables to the model performance.
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Table 7.25: Overview of the results

Independent variable Results
Hypothesis 1: Not rejected

Scope 1 Rejected
Scope 2 Not rejected
Scope 3 Not rejected

Hypothesis 3: Not rejected
Scope 1,2 Not rejected
Scope 3 Not rejected

Hypothesis 5: Not rejected
Scope 1 Rejected
Scope 2 Not rejected
Scope 3 Not rejected

Hypothesis 7: Not rejected
Scope 1 Rejected
Scope 2 Not rejected
Scope 3 Rejected

Table 7.25 summarizes the partial hypotheses on each transition risk vari-
able for hypotheses 1,3,5 and 7. When Scope 1 emissions were studied sepa-
rately in climate-stressed models, the estimator was negative and statistically
significant in almost all cases. This means the firms, that are direct polluters
tend to default less in the Bank. This result leads us to the conclusion that
the most directly polluting firms are more stable given the Bank data.

An increase in Scope 2 and Scope 3 carbon footprint almost always resulted
in a significant upward shift in the odds of default given the data from the
Bank. The increase in odds tends to be higher for Scope 2 emissions when
studied separately in climate-stressed models. This leads us to the conclusion
that firms that are indirect polluters tend to be more prone to default on the
loan granted by the Bank. Moreover, firms that use indirect emissions in their
productions are more likely to default than the firms that only gain a carbon
footprint through their supply chain.

As financial and emission data from 2022 were used, these findings correspond
with the fact that the cost of electricity and gas sky-rocketed in the Czech
Republic in 2022, mainly due to post-covid demand and geopolitical situation.
Gas and electricity are the main sources of carbon emissions. Scope 1 polluters
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were not hit as hard by prices as they either sold these commodities or had the
prices fixed. Scope 2 polluters were hit the hardest as they were buying these
commodities at the market price. Scope 3 emitters might have been hit with
some time lag as the high energy prices did not reflected instantly to other
production inputs along their supply chain.

Although this situation may have been seen as a potential bias to the anal-
ysis, we rather interpreted it as an approximation of a climate policy shock on
the economy which is likely to see the energy prices rise even further. Results
are in line with the academic literature (Capasso et al. 2020; Carbone et al.
2021).

Table 7.26: Overview of the results

Independent variable Results
Hypothesis 2: Not rejected

Scope 1 Rejected
Scope 2 Not rejected
Scope 3 Rejected

Hypothesis 4: Rejected
Scope 1,2 Rejected
Scope 3 Rejected

Hypothesis 6: Not rejected
Scope 1 Rejected
Scope 2 Not rejected
Scope 3 Not rejected

Hypothesis 8: Rejected
Scope 1 Rejected
Scope 2 Rejected
Scope 3 Rejected

Table 7.25 summarizes the partial hypotheses on each transition risk vari-
able for hypotheses 2,4,6 and 8. Although these hypotheses are more of a com-
plementary character, there are several findings to be presented. All climate-
stressed models performed moderately well in terms of models’ discriminatory
power and reached a specificity rate higher than 0.5 meaning the majority of
defaults were predicted well by the model given a threshold of 0.5. Using two
different random data partitions, we were able to observe the inclusion of the
Scope 2 carbon footprint significantly improved the performance of the model
in terms of specificity, sensitivity, and the magnitude of the AUC-ROC curve.
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The inclusion of Scope 2 and Scope 3 carbon intensity per sale to the standard
model improved its specificity rate and the magnitude of the AUC-ROC curve.

7.10 Further research opportunities
We recognize three further research opportunities linked to the subject of the
thesis. First, using the same dataset as in this thesis, a climate-stress test of
the Bank could be done. This would consist of analyzing and quantifying dif-
ferent scenarios of the future European climate policies and their direct impact
on the level of capital requirements of the Bank.

Second, given the pressure on banks to foster more green finance, it is ex-
pected several other banks might start or already collecting similar emission
data on their clients. This would allow researchers to compare the results of
this thesis to a case study featuring the data of a different bank. Moreover, the
availability of time-series data on client carbon footprint might allow for more
complex analysis.

Finally, this thesis employs logistic regression which is a simple and widely used
method for credit risk estimation. However, more complex machine learning
models tend to yield more precise results, therefore employing different models
to answer similar questions might represent a research-worthy opportunity.
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Conclusion

The thesis builds on a unique opportunity to analyze internal data collected
by the Bank which, except for the standard financial information on the client,
contains the information on carbon footprint of all corporate clients belonging
to SME category.

The main contribution of this thesis is the empirical evidence on the relationship
between climate transition risk and credit risk. The analysis was structured
as a stress test of a standard credit scoring model to which a set of transition
risk variables was added separately. Logistic regression was employed for the
climate-stress test. Transition risk variables consisted of three scopes of carbon
footprint, financed carbon footprint, and carbon intensity of the client. We un-
covered that Scope 1 emitters are generally less prone to credit default in the
Bank. Scope 2 and Scope 3 indirect emitters tend to default more. Given the
data provided by the Bank, the level of Scope 2 and Scope 3 carbon footprint
and carbon intensity was recognized as a potential driver of default.

The second contribution of this thesis is methodological since the performance
of the climate-stressed logistic regression models could be observed and com-
pared to the standard model. We found the inclusion of the Scope 2 carbon
footprint into the credit scoring model improved its discriminatory power and
ability to correctly predict a credit default. Integration of Scope 2 and Scope
3 carbon intensity per unit of sales improved discriminatory power and ability
to correctly predict non-defaults while correctly predicting the same number of
defaults.
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The third contribution of the thesis is the identification of 4 financial pre-
dictors that are drivers of credit default since these indicators proved to be
statistically significant forming a standard model capable of detecting the ma-
jority of defaults in testing data. The standard model predictors thus represent
an empirical cross-check on the data provided by the Bank. Finally, the thesis
provides a comprehensive summary of academic literature on climate transition
risk in financial markets, effectively identifying a wide literature gap for further
research opportunities.
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Appendix A

Figure A.1: Distribution of Scope 1 carbon footprint

Figure A.2: Distribution of Scope 2 carbon footprint

Figure A.3: Distribution of Scope 3 carbon footprint



A. II

Figure A.4: Distribution of Scope 1 carbon intensity per sales unit

Figure A.5: Distribution of Scope 1 carbon intensity per asset unit

Table A.1: Summary of logistic regression - Robustness check on im-
balanced data

Dependent variable:
flag_default

(1) (2)
Operating_CF_margin −0.913 −0.743

(1.304) (0.607)
Operating_CF_ratio −0.457∗ −0.697∗∗∗

(0.267) (0.129)
Current_liabilities −1.221∗∗∗ −1.756∗∗∗

(0.387) (0.217)
Equity_ratio −1.913∗∗∗ −1.141∗∗∗

(0.586) (0.389)
Debt_to_Assets 3.444∗∗∗

(0.448)
Constant −1.642∗∗∗ −0.912∗∗∗

(0.245) (0.257)
Observations 901 1,585
Log Likelihood −238.580 −903.462
Akaike Inf. Crit. 487.161 1,818.923

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.2: Summary of logistic regression (H1) - imblanced data

Dependent variable:
flag_default

(1) (2) (3) (4)
Operating_CF_margin −4.551∗ −4.562∗ −5.290∗ −3.381

(2.504) (2.510) (2.988) (2.702)
Operating_CF_ratio −1.561∗∗∗ −1.561∗∗∗ −1.847∗∗∗ −1.958∗∗∗

(0.561) (0.562) (0.650) (0.616)
Equity_ratio −2.225∗∗∗ −2.230∗∗∗ −3.332∗∗∗ −2.838∗∗∗

(0.621) (0.624) (0.692) (0.657)
Current_liabilities −0.630∗∗ −0.636∗∗ −1.686∗∗∗ −1.670∗∗∗

(0.271) (0.281) (0.403) (0.420)
Scope_1_TotEm 0.016

(0.199)
Scope_2_TotEm 0.891∗∗∗

(0.139)
Scope_3_TotEm 0.841∗∗∗

(0.172)
Constant −0.796∗∗∗ −0.792∗∗∗ −0.723∗∗∗ −0.758∗∗∗

(0.215) (0.219) (0.233) (0.230)
Observations 842 842 842 842
Log Likelihood −221.914 −221.911 −197.283 −210.058
Akaike Inf. Crit. 453.828 455.822 406.565 432.117

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.3: Robustness check (H1) - imbalanced data

Dependent variable:
flag_default

(1) (2) (3) (4)
Operating_CF_margin −0.913 −0.891 −0.384 0.116

(1.304) (1.289) (1.329) (1.319)
Operating_CF_ratio −0.457∗ −0.438∗ −0.515∗ −0.656∗∗

(0.267) (0.265) (0.280) (0.289)
Current_liabilities −1.221∗∗∗ −1.085∗∗∗ −2.135∗∗∗ −2.728∗∗∗

(0.387) (0.394) (0.497) (0.632)
Equity_ratio −1.913∗∗∗ −1.848∗∗∗ −2.452∗∗∗ −2.331∗∗∗

(0.586) (0.587) (0.616) (0.609)
Scope_1_TotEm −0.309

(0.312)
Scope_2_TotEm 0.719∗∗∗

(0.143)
Scope_3_TotEm 0.908∗∗∗

(0.202)
Constant −1.642∗∗∗ −1.697∗∗∗ −1.743∗∗∗ −1.825∗∗∗

(0.245) (0.252) (0.267) (0.281)
Observations 901 901 901 901
Log Likelihood −238.580 −237.875 −225.556 −229.199
Akaike Inf. Crit. 487.161 487.749 463.113 470.398

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.4: Summary of logistic regression (H3) - imbalanced data

Dependent variable:
flag_default

(1) (2) (3)
Operating_CF_margin −4.551∗ −4.367∗ −1.972

(2.504) (2.444) (2.474)
Operating_CF_ratio −1.561∗∗∗ −1.679∗∗∗ −2.367∗∗∗

(0.561) (0.556) (0.609)
Equity_ratio −2.225∗∗∗ −2.230∗∗∗ −2.389∗∗∗

(0.621) (0.632) (0.687)
Current_liabilities −0.630∗∗ −0.882∗∗∗ −1.569∗∗∗

(0.271) (0.320) (0.398)
Fin_Scope12 0.400∗∗∗

(0.133)
Fin_Scope3 0.860∗∗∗

(0.124)
Constant −0.796∗∗∗ −0.823∗∗∗ −1.094∗∗∗

(0.215) (0.222) (0.250)
Observations 842 842 842
Log Likelihood −221.914 −218.041 −195.454
Akaike Inf. Crit. 453.828 448.081 402.907

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.5: Robustness check (H3) - imbalanced data

Dependent variable:
flag_default

(1) (2) (3)
Operating_CF_margin −0.913 −0.819 −0.270

(1.304) (1.303) (1.322)
Operating_CF_ratio −0.457∗ −0.511∗ −0.631∗∗

(0.267) (0.272) (0.291)
Current_liabilities −1.221∗∗∗ −1.445∗∗∗ −2.084∗∗∗

(0.387) (0.432) (0.523)
Equity_ratio −1.913∗∗∗ −1.879∗∗∗ −1.663∗∗∗

(0.586) (0.591) (0.612)
Fin_Scope12 0.244∗

(0.129)
Fin_Scope3 0.530∗∗∗

(0.114)
Constant −1.642∗∗∗ −1.688∗∗∗ −1.998∗∗∗

(0.245) (0.252) (0.290)
Observations 901 901 901
Log Likelihood −238.580 −237.133 −228.526
Akaike Inf. Crit. 487.161 486.266 469.052

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.6: Summary of logistic regression (H5) - imbalanced data

Dependent variable:
flag_default

(1) (2) (3) (4)
Operating_CF_margin −4.551∗ −3.919 −5.249∗∗ −4.823∗

(2.504) (2.744) (2.559) (2.530)
Operating_CF_ratio −1.561∗∗∗ −1.718∗∗∗ −1.387∗∗ −1.380∗∗

(0.561) (0.594) (0.566) (0.561)
Equity_ratio −2.225∗∗∗ −2.267∗∗∗ −2.580∗∗∗ −2.364∗∗∗

(0.621) (0.628) (0.642) (0.631)
Current_liabilities −0.630∗∗ −0.643∗∗ −0.706∗∗ −0.615∗∗

(0.271) (0.272) (0.289) (0.273)
carbon_intensity_S1_sales −0.084∗

(0.045)
carbon_intensity_S2_sales 0.449∗∗∗

(0.127)
carbon_in tensity_S3_sales 0.045∗∗∗

(0.015)
Constant −0.796∗∗∗ −0.542∗∗ −1.033∗∗∗ −1.314∗∗∗

(0.215) (0.244) (0.229) (0.278)
Observations 842 842 842 842
Log Likelihood −221.914 −217.985 −216.129 −217.442
Akaike Inf. Crit. 453.828 447.970 444.257 446.883

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.7: Robustness check (H5) - imbalanced data

Dependent variable:
flag_default

(1) (2) (3) (4)
Operating_CF_margin −0.913 −0.698 −1.254 −0.663

(1.304) (1.300) (1.304) (1.315)
Operating_CF_ratio −0.457∗ −0.477∗ −0.346 −0.405

(0.267) (0.272) (0.247) (0.256)
Current_liabilities −1.221∗∗∗ −1.229∗∗∗ −1.244∗∗∗ −1.145∗∗∗

(0.387) (0.389) (0.388) (0.381)
Equity_ratio −1.913∗∗∗ −1.895∗∗∗ −2.139∗∗∗ −2.022∗∗∗

(0.586) (0.588) (0.588) (0.594)
carbon_intensity_S1_sales −0.014

(0.017)
carbon_intensity_S2_sales 0.474∗∗∗

(0.124)
carbon_intensity_S3_sales 0.059∗∗∗

(0.014)
Constant −1.642∗∗∗ −1.590∗∗∗ −1.950∗∗∗ −2.368∗∗∗

(0.245) (0.251) (0.263) (0.306)
Observations 901 901 901 901
Log Likelihood −238.580 −237.712 −231.810 −229.780
Akaike Inf. Crit. 487.161 487.423 475.620 471.559

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.8: Summary of logistic regression (H7) - imbalanced data

Dependent variable:
flag_default

(1) (2) (3) (4)
Operating_CF_margin −4.551∗ −4.624∗ −4.300 −4.174

(2.504) (2.518) (2.644) (2.561)
Operating_CF_ratio −1.561∗∗∗ −1.477∗∗∗ −1.672∗∗∗ −1.627∗∗∗

(0.561) (0.563) (0.581) (0.569)
Equity_ratio −2.225∗∗∗ −2.616∗∗∗ −2.279∗∗∗ −2.080∗∗∗

(0.621) (0.651) (0.632) (0.628)
Current_liabilities −0.630∗∗ −0.779∗∗∗ −0.566∗∗ −0.571∗∗

(0.271) (0.291) (0.268) (0.268)
carbon_intensity_S1_assets −0.118∗∗∗

(0.046)
carbon_intensity_S2_assets 0.393∗∗∗

(0.095)
carbon_intensity_S3_assets 0.012

(0.007)
Constant −0.796∗∗∗ −0.224 −1.176∗∗∗ −1.074∗∗∗

(0.215) (0.297) (0.239) (0.279)
Observations 842 842 842 842
Log Likelihood −221.914 −216.097 −213.920 −220.680
Akaike Inf. Crit. 453.828 444.193 439.840 453.360

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.9: Robustness check (H7) - imbalanced data

Dependent variable:
flag_default

(1) (2) (3) (4)
Operating_CF_margin −0.913 −1.179 0.100 0.132

(1.304) (1.313) (1.302) (1.283)
Operating_CF_ratio −0.457∗ −0.424 −0.449∗ −0.549∗∗

(0.267) (0.271) (0.273) (0.269)
Current_liabilities −1.221∗∗∗ −1.306∗∗∗ −1.098∗∗∗ −1.080∗∗∗

(0.387) (0.399) (0.384) (0.378)
Equity_ratio −1.913∗∗∗ −2.038∗∗∗ −2.126∗∗∗ −1.713∗∗∗

(0.586) (0.593) (0.616) (0.604)
carbon_intensity_S1_assets −0.051∗

(0.027)
carbon_intensity_S2_assets 0.435∗∗∗

(0.081)
carbon_intensity_S3_assets 0.017∗∗∗

(0.006)
Constant −1.642∗∗∗ −1.354∗∗∗ −2.154∗∗∗ −2.102∗∗∗

(0.245) (0.278) (0.274) (0.292)
Observations 901 901 901 901
Log Likelihood −238.580 −234.644 −224.886 −233.955
Akaike Inf. Crit. 487.161 481.287 461.771 479.909

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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