
CHARLES UNIVERSITY
FACULTY OF SOCIAL SCIENCES

Institute of Economic Studies

Predictability of financial returns across
horizons using Deep Learning

Master’s thesis

Author: Martin Nedvěd
Study program: Economics and Finance
Supervisor: doc. PhDr. Jozef Baruník, Ph.D.
Year of defense: 2024

http://www.cuni.cz/UKEN-1.html
https://fsv.cuni.cz/en
ies.fsv.cuni.cz
https://is.cuni.cz/studium/eng/dipl_st/index.php?KEY=Az1
https://is.cuni.cz/studium/eng/dipl_st/index.php?KEY=Az1
mailto:
mailto:

Declaration of Authorship
The author hereby declares that he or she compiled this thesis independently,
using only the listed resources and literature, and the thesis has not been used
to obtain any other academic title.

The author grants to Charles University permission to reproduce and to dis-
tribute copies of this thesis in whole or in part and agrees with the thesis being
used for study and scientific purposes.

Prague, July 30, 2024
Martin Nedved

Abstract
This thesis explores the predictability of financial returns across hourly, daily,
weekly, and monthly horizons using Long Short-Term Memory (LSTM) net-
works. Despite advancements in machine learning, its application in finance
faces unique challenges, such as small datasets and low signal-to-noise ratios.
Our research aims to address the limitations of existing studies, which predom-
inantly focus on the daily horizon and although some studies analyze different
horizons, direct comparisons are challenging due to the varied methodologies
and datasets employed. By utilizing a consistent dataset and methodology,
we enable a direct comparison of models’ performance across various horizons.
We enhance predictive models by incorporating fractionally differentiated series
to retain memory in financial data and realized volatility from high-frequency
data to capture market fluctuations. Our study also extends beyond equities
to include futures markets. The key takeaway of our research is that LSTM
networks are particularly effective for short-term financial return predictions
at hourly and daily horizons. Their performance decreases for longer hori-
zons, such as weekly and monthly, possibly due to fewer market inefficiencies
to exploit. Furthermore, the inclusion of futures data does not enhance model
performance but reveals interesting trends in feature selection.

JEL Classification C52, C45, C53, G17, C22
Keywords Deep Learning, Financial Returns, Fractionally

Differentiated Series, Time Horizons

Title Predictability of financial returns across hori-
zons using Deep Learning

Abstrakt
Tato práce zkoumá předvídatelnost finančních výnosů na hodinovém, denním,
týdenním a měsíčním horizontu pomocí Long Short-Term Memory (LSTM)
sítí. Navzdory pokrokům ve strojovém učení se jeho aplikace ve finančním sek-
toru potýká s problémy, jako jsou malé datasety a nízký poměr signálu k šumu.
Naším cílem je překonat omezení stávajících studií, které se převážně zaměřují
na denní horizont. I když některé studie analyzují různé časové horizonty, přímé
srovnání je komplikované kvůli různým metodikám a datasetům. Použitím jed-
notného datasetu a metodiky umožňujeme přímé srovnání úspěšnosti modelů

http://ideas.repec.org/j/C52.html
http://ideas.repec.org/j/C45.html
http://ideas.repec.org/j/C53.html
http://ideas.repec.org/j/G17.html
http://ideas.repec.org/j/C22.html

napříč různými horizonty. Modely navíc rozšiřujeme integrací frakčně diferen-
covaných řad pro zachování paměti a dále realizované volatility vypočítané z
vysokofrekvenčních dat, aby bylo možné zachytit tržní fluktuace. Naše studie
také překračuje rámec akcií a zahrnuje i trhy s futures. Klíčovým zjištěním je,
že LSTM sítě jsou nejefektivnější pro krátkodobé předpovědi finančních výnosů
na hodinovém a denním horizontu. Jejich výkonnost se snižuje pro delší hori-
zonty, jako jsou týdenní a měsíční, pravděpodobně kvůli menšímu počtu tržních
neefektivit, které lze využít. Rozšíření datového souboru o futures nezvyšuje
účinnost modelu, ale odhaluje zajímavé trendy ve výběru vstupních parametrů.

Klasifikace JEL C52, C45, C53, G17, C22
Klíčová slova Hluboké učení, Finanční výnosy, Frakčně

diferencované řady, Časové horizonty

Název práce Predikovatelnost finančních výnosů na
různých horizontech pomocí hlubokého
učení

http://ideas.repec.org/j/C52.html
http://ideas.repec.org/j/C45.html
http://ideas.repec.org/j/C53.html
http://ideas.repec.org/j/G17.html
http://ideas.repec.org/j/C22.html

Acknowledgments
I would like to express my appreciation and gratitude to the supervisor doc.
PhDr. Jozef Baruník, Ph.D. for his invaluable suggestions, guidance, and useful
comments. I am deeply thankful to my supportive girlfriend, my family, and
all those close to me for their support during the process of writing and during
my whole studies. A special thanks to my mum for her delicious pancakes.

Typeset in FSV LATEX template with great thanks to prof. Zuzana Havrankova
and prof. Tomas Havranek of Institute of Economic Studies, Faculty of Social
Sciences, Charles University.

Bibliographic Record
Nedvěd, Martin: Predictability of financial returns across horizons using Deep
Learning. Master’s thesis. Charles University, Faculty of Social Sciences, Insti-
tute of Economic Studies, Prague. 2024, pages 75. Advisor: doc. PhDr. Jozef
Baruník, Ph.D.

Contents

List of Tables viii

List of Figures ix

Acronyms x

Thesis Proposal xi

1 Introduction 1

2 Literature Review 3
2.1 Fundamentals of Machine Learning 3
2.2 Machine Learning in Finance 5
2.3 Predicting financial returns . 6
2.4 Challenges . 6
2.5 Key studies . 7
2.6 Various horizons . 9

3 Methodology 12
3.1 Feature engineering and target selection 12
3.2 Generation of training, validation, and test data 14
3.3 Models . 15

3.3.1 Feedforward neural networks 16
3.3.2 Recurrent Neural Networks 23

3.4 Evaluation metrics and portfolio construction 24
3.5 Software implementation . 25

4 Data 26

5 Results 31
5.1 Daily horizon . 31

Contents vii

5.2 Hourly horizon . 38
5.3 Weekly horizon . 43
5.4 Monthly horizon . 47
5.5 Comparing horizons . 51

6 Conclusion 55

Bibliography 61

List of Tables

4.1 Number of available stocks (futures) 27

5.1 Daily accuracy . 33
5.2 Mean daily returns . 35
5.3 Financial performance . 36
5.4 Futures and stocks performance comparison 38
5.5 Hourly accuracy and mean hourly returns 40
5.6 Financial performance hourly horizon 41
5.7 Futures and stocks performance comparison for hourly horizon . 42
5.8 Weekly accuracy . 43
5.9 Mean weekly returns . 44
5.10 Financial performance weekly horizon 45
5.11 Futures and stocks performance comparison for weekly horizon . 46
5.12 Monthly accuracy and mean monthly returns 48
5.13 Financial performance monthly horizon 50
5.14 Futures and stocks performance comparison for monthly horizon 51
5.15 Accuracy . 53
5.16 Annualized returns before transaction costs (annualized stadard

devation) . 54

List of Figures

3.1 Relationship between capacity and error 16
3.2 Example of a fully connected feedforward neural network 17
3.3 RNN, LSTM, and GRU cells . 24

4.1 Logarithmic returns and Fractional differentiated series - Microsoft 29
4.2 Realized volatility - Microsoft 29

Acronyms

ML Machine learning

LSTM Long Short-Term Memory

ARIMA Autoregressive integrated moving average

SVM Support vector machine

RNN Recurrent neural network

FNN Feedforward neural network

GRU Gated Recurrent Unit

PT Pesaran-Timmermann

Master’s Thesis Proposal

Author Martin Nedvěd
Supervisor doc. PhDr. Jozef Baruník, Ph.D.
Proposed topic Predictability of financial returns across horizons using

Deep Learning

Motivation Predicting financial time series returns is a classical and highly chal-
lenging problem due to the presence of complex relationships, a low signal-to-noise
ratio, and the continuous evolution of markets. Despite these difficulties, researchers
are motivated by the potential rewards of identifying investment opportunities, im-
proving risk management, and gaining deeper insights into the workings of the mar-
ket.

While traditional approaches, such as ARIMA and GARCH models, have been
widely used for modeling financial time series, recent years have witnessed signifi-
cant advancements in machine learning methods across various domains. Notably,
generative models and large language models like ChatGPT have gained substantial
attention. Researchers have increasingly employed these methods in the context of
financial time series due to their ability to capture non-linear relationships, uncover
complex patterns, and adapt to the dynamic nature of financial markets. One no-
table advantage of machine learning techniques is their flexibility in handling different
prediction horizons. Financial markets show different characteristics at various time
horizons, while short-term returns may be influenced by high-frequency market noise,
longer-term returns might, on the other hand, be influenced by macroeconomic or
fundamental factors. The choice of prediction horizon is a crucial consideration that
depends on the specific application. For portfolio management, predicting daily or
even monthly returns might be more relevant, while for algorithmic trading, 1-minute
predictions could be of greater value. This thesis aims to investigate the ability of
machine learning models to predict returns at various horizons.

Furthermore, this thesis will compare the behavior of machine learning models
across different market types to assess their robustness and generalizability. Specifi-
cally, we will examine how these models perform in international stock markets and

mailto:
mailto:

Master’s Thesis Proposal xii

determine whether their predictive capabilities extend to commodity markets and
cryptocurrency markets. By conducting such comparisons, we can gain insights into
the applicability and limitations of the machine learning models in different market
contexts.

Overall, this thesis seeks to contribute to the field of financial time series pre-
diction by evaluating the effectiveness of machine learning models across different
horizons and diverse market types. The findings from this study will provide valu-
able insights for investors, risk managers, and algorithmic traders, aiding them in
making informed decisions and developing effective strategies in various financial
market scenarios.

Hypotheses Our main hypothesis that we want to address in the thesis: 1. Can
deep learning explain the horizon predictability? 2. Does the horizon predictability
differ across different markets (e.g. international stock markets, commodity markets,
and cryptocurrency markets)?

Methodology For this thesis, we will use historical financial data from stocks,
Bitcoin, and commodities. Using 1-minute, 10-minute, hourly, daily, and monthly
data allows us to measure the performance of the models across various prediction
horizons. In order to predict returns in the next period(s) we could use only his-
torical prices as input features, Jiang (2021) analyze 124 papers and reports that
almost 36% choose this approach. Further, another 25% of analyzed studies utilize
historical prices as well as technical indicators. Other input features could be for
example macroeconomics data, fundamental data, or text data such as news and
social media. Selecting the appropriate features and determining the optimal data
length for different horizons will be a demanding yet crucial task in our research.

There are many different deep learning architectures available, we will primar-
ily consider the family of Recurrent neural networks (RNN) models which excel in
managing the sequence of input data. Jiang (2021) found that Long Short-Term
Memory (LSTM) models were the most frequently utilized in the analyzed papers.
Hence, following this direction by incorporating LSTM models in our research seems
justified. By employing LSTM models and considering various input features, includ-
ing historical prices and potentially other relevant data sources, we aim to evaluate
their performance in predicting financial time series returns across different horizons.
These models have shown promise in capturing complex patterns and relationships
in financial data, making them well-suited for our research objectives.

Expected Contribution The main goal of the thesis is to contribute to the field
of financial time series prediction by exploring the predictive capabilities of deep

Master’s Thesis Proposal xiii

learning models for various financial time series across different horizons. In general,
predicting returns is very challenging, yet the rewards are significant The findings
from this research will have practical implications for market participants, providing
guidance in selecting suitable models based on the needed prediction horizon.

The better the model the higher the potential to enhance risk management and
the overall profitability. Further, the comparison across different markets could pro-
vide valuable insights into market-specific patterns. This analysis can also identify
the model’s strengths and weaknesses in different market scenarios, highlighting their
ability to adapt to varying data characteristics and underlying market dynamics. Fi-
nally, the recent macroeconomic events such as the Covid-19 pandemic, the war in
Ukraine, and high inflation offer great challenges that our models will have to account
for. By incorporating these real-world events into the analysis, we can evaluate the
models’ ability to capture and adapt to sudden changes in market conditions.

Outline

1. Introduction

2. Literature review

3. Methodology

4. Data

5. Results

6. Conclusion

Bibliography

Lezmi, E., & Xu, J. (2023). Time Series Forecasting with Transformer Models
and Application to Asset Management. Available at SSRN 4375798.

Jiang, W. (2021). Applications of deep learning in stock market prediction:
recent progress. Expert Systems with Applications, 184, 115537.

Thakkar, A., & Chaudhari, K. (2021). A comprehensive survey on deep neural
networks for stock market: The need, challenges, and future directions. Expert
Systems with Applications, 177, 114800.

Rezaei, H., Faaljou, H., & Mansourfar, G. (2021). Stock price prediction using
deep learning and frequency decomposition. Expert Systems with Applica-
tions, 169, 114332.

Yu, P., & Yan, X. (2020). Stock price prediction based on deep neural networks.
Neural Computing and Applications, 32, 1609-1628.

Master’s Thesis Proposal xiv

Author Supervisor

Chapter 1

Introduction

Machine learning techniques have significantly advanced various fields, includ-
ing image recognition, natural language processing, and game playing (Krizhevsky
et al. 2012; Mnih et al. 2015; Brown et al. 2020). These techniques excel at
uncovering hidden patterns and interpreting high-dimensional data. However,
their application in finance presents unique challenges, such as small dataset
issues, a low signal-to-noise ratio, and the necessity for model interpretability
(Israel et al. 2020).

Most studies in financial return prediction focus on the daily horizon, with
only a few exceptions exploring longer horizons, such as five or ten days (Jiang
2021). This focus on a single timescale limits the demonstration of the gen-
eralizability of machine learning algorithms across various market conditions
(Akyildirim et al. 2021). Different prediction horizons capture distinct as-
pects of market behavior. Short-term predictions, such as hourly forecasts,
are influenced by intraday trading activities and market microstructure, while
longer-term predictions, like weekly or monthly forecasts, reflect broader eco-
nomic trends. Although there are studies that examine each horizon separately,
comparing the results is challenging due to differences in methodologies and
datasets. This thesis aims to bridge this gap by using a consistent method-
ology and dataset to compare the predictive ability of deep learning models
across four different horizons: hourly, daily, weekly, and monthly.

This thesis builds on the foundation laid by previous studies in financial
forecasting using machine learning. Specifically, we are following the method-
ologies of Krauss et al. (2017) and the subsequent study by Fischer & Krauss
(2018), who extend the original work. These studies compare various model
architectures and find recurrent neural networks to perform the best, which is

1. Introduction 2

why we are employing this family of models as well. Additionally, these stud-
ies analyze different study periods (years), allowing us to test how the models
behave over time and across different market conditions. This temporal anal-
ysis is crucial for evaluating the robustness and adaptability of the models in
varying financial environments.

Moreover, this thesis introduces several methodological advancements over
previous studies. First, it incorporates fractionally differentiated series as fea-
tures, following the insights of Prado (2018), to better handle the memory
removal from price data to achieve stationarity. Second, it includes realized
volatility, calculated from high-frequency 5-minute data, as an additional fea-
ture to capture market fluctuations more accurately. Third, the analysis ex-
tends beyond traditional equity markets to include futures, offering a broader
perspective on different markets.

Following this introduction, the thesis is further divided into the following
chapters. Chapter 2 presents a literature review that provides an overview of
the fundamental concepts of machine learning and its applications in finance.
This chapter also reviews key studies in the field and discusses the challenges
associated with financial return prediction. Chapter 3 outlines the research
methodology, including feature engineering, data preparation, model selection,
and evaluation metrics. It details the deep learning architectures used in the
study and describes the software implementation. Chapter 4 describes the data
sources, preprocessing steps, and criteria for selecting stocks and futures for
analysis. It also presents the characteristics of the dataset used in the empirical
analysis. Chapter 5 presents the study’s findings, comparing the performance
of different models and features across various time horizons. Finally, Chapter 6
summarizes the key findings, discusses the implications of the results, and
suggests directions for future research.

Chapter 2

Literature Review

Machine learning (ML) systems have shown remarkable achievements in a vari-
ety of fields. Notable accomplishments include breakthroughs in image classi-
fication, as demonstrated by the work of Krizhevsky et al. (2012). In the area
of natural language processing, large language models like those developed by
Brown et al. (2020) have achieved exceptional performance across a spectrum
of tasks without needing specific training for each. Additionally, the field of
video gaming has seen ML reach human-competitive levels, a milestone marked
by Mnih et al. (2015).

These examples not only showcase the versatility of machine learning, cov-
ering supervised, unsupervised, and reinforcement learning but also illustrate
its effectiveness in big data environments characterized by high signal-to-noise
ratios, a measure of how much predictability is present in a system, as Israel
et al. (2020) explain. However, within the finance sector, these features often
present challenges.

In this chapter, we explain the fundamentals of machine learning. Then we
present the most important applications in finance. Finally, review in depth
the literature regarding returns predictions and its limitations.

2.1 Fundamentals of Machine Learning
Mitchell (1997) in his book famously defines machine learning as the process
through which computer programs can independently enhance their perfor-
mance by gaining experience. What sets machine learning apart is its inherent
flexibility. Dixon et al. (2020) contrast machine learning with many conven-
tional statistical methods, emphasizing its unique capability to discern patterns

2. Literature Review 4

from data without relying on predefined assumptions about the data’s under-
lying structure. Gu et al. (2020) propose an even more detailed definition:

“The definition of “machine learning” is inchoate and is often context spe-
cific. We use the term to describe (a) a diverse collection of high-dimensional
models for statistical prediction, combined with (b) so-called ‘regularization’
methods for model selection and mitigation of overfit, and (c) efficient algo-
rithms for searching among a vast number of potential model specifications.”

The authors further elaborate that these high-dimensional models provide
more flexibility than traditional econometric prediction methods, enhancing
the ability to approximate complex data processes, such as those underlying
equity risk premiums. However, they also note that this increased flexibility
raises the risk of overfitting. To address this, machine learning integrates spe-
cific strategies aimed at ensuring stable performance in unseen data, thereby
actively preventing overfit. Moreover, considering the sheer number of pre-
dictors and potential model combinations, machine learning utilizes advanced
tools to effectively and efficiently approximate the optimal model specification
without exhaustive computational efforts.

In the introduction of this chapter, we mentioned three examples of suc-
cessful machine learning applications, on these examples we will explain the
types of machine learning.

Image classification represents a classic example of supervised learning,
where the algorithm is trained on a dataset that contains labeled images. Each
label indicates the class or category of the image, and the algorithm’s task is
to learn to predict these categories for new, unseen images. The breakthrough
achievement by Krizhevsky et al. (2012) in image classification, specifically with
their development of the AlexNet model, revolutionized this field. They utilized
a deep convolutional neural network that could automatically and accurately
identify and categorize images, a task that was previously challenging for ma-
chines. This success marked a significant advancement in computer vision and
highlighted the potential of deep learning, a subset of machine learning.

In contrast, the large language models developed by Brown et al. (2020),
such as GPT-3, are examples of unsupervised learning, particularly in the realm
of natural language processing. These models learn to generate coherent and
contextually relevant text by being exposed to a vast corpus of text data with-
out specific task-oriented labeling. They are trained to predict the next word in
a sentence, learning the structure and nuances of language in the process. This
approach enables the model to perform a variety of language-related tasks with-

2. Literature Review 5

out being explicitly trained for each one, showcasing the versatility and power
of unsupervised learning in handling complex and unstructured data.

The domain of video gaming, particularly the achievement of Mnih et al.
(2015) in training algorithms to play Atari 2600 video games, is an exemplar
of reinforcement learning. In this type of learning, an agent learns to make
decisions by performing actions within an environment to achieve a goal, re-
ceiving feedback in the form of rewards or penalties. The agent learns the
best actions to take in various situations to maximize its rewards, effectively
learning a strategy for the game. This method, which mimics the way humans
and animals learn through interaction with their environment, has broad ap-
plications beyond gaming, including robotics, autonomous vehicles, and more
complex decision-making tasks in finance.

These examples illustrate the broad applicability of machine learning in
various fields. In the context of this thesis, our focus is directed toward struc-
tured and labeled data, positioning our study within the domain of supervised
learning.

Brief history of feedforward neural networks

The origins of feedforward neural networks can be traced back to 1958 with
the introduction of the perceptron model by Rosenblatt (1958). This early
model was an attempt to simulate the functioning of biological neurons, giving
rise to the term neural networks. However, the perceptron had its limitations,
which were not fully addressed until the mid-1980s. It was during this period
that Rumelhart et al. (1986) introduced the backpropagation algorithm, a piv-
otal development that allowed for the effective training of multi-layer neural
networks, thereby overcoming some of the perceptron’s initial constraints.

This historical context demonstrates that while machine learning concepts
have existed for some time, it is the advent of new algorithms and the significant
increase in computational power that have truly unlocked the potential of these
techniques. These advancements have enabled the widespread application and
rapid progress in machine learning that we witness today.

2.2 Machine Learning in Finance
Machine learning’s application in the financial sector is diverse, encompassing
areas such as fraud detection, risk evaluation, financial text mining, and sen-

2. Literature Review 6

timent analysis. Studies covering this diverse range of topics are thoroughly
explored by Ozbayoglu et al. (2020). The potential of machine learning to en-
hance credit card fraud detection is exemplified in the work of Jurgovsky et al.
(2018). Additionally, Luo et al. (2017) study the effectiveness of deep belief
networks in credit risk scoring models, particularly for credit default swaps
datasets, showcasing their superiority over traditional models like logistic re-
gression. The use of financial news information in improving bank distress
classifiers is discussed by Cerchiello et al. (2018). Li et al. (2017) incorporate
investor sentiment from forum posts to analyze the irrational component of
stock price to further improve stock prediction performance. These examples
illustrate the extensive range of financial issues to which machine learning tech-
niques have been applied. The final topic, focusing on predicting stock returns,
directly relates to our research area. We will explore this area in more depth
in the following section.

2.3 Predicting financial returns
By some authors return prediction is the most important task for portfolio
construction problems (Israel et al. 2020). The interest in applying machine
learning to this problem is driven by the increasing availability of data and the
advancement of computational techniques among others (Dixon et al. 2020).
Given the vast number of new studies emerging annually (Sezer et al. 2020),
this thesis concentrates on those most relevant to our specific research question.
We begin by addressing the challenges inherent in predicting financial returns.
Subsequently, we examine some significant papers in the field, followed by an
exploration of studies that forecast returns over various time horizons.

2.4 Challenges
As we discussed at the beginning of this chapter, a high signal-to-noise ra-
tio is key to the success of machine learning in areas like image recognition,
language models, and video games. But finance is unfortunately much more
difficult. Israel et al. (2020) explain that when it comes to return prediction
task we deal with small data problem. This problem doesn’t come from a
lack of regressors. Prado (2018) categorizes data into four categories. First
is fundamental data, encompassing sales, costs, earnings, and macroeconomic

2. Literature Review 7

variables. Second, market data includes prices, volumes, and dividends. Third,
analytics data involves news sentiment, credit ratings, and analysts’ recom-
mendations. The final category, alternative data, taps into satellite imagery,
Google searches, social media feeds, and more. However, the core problem
is the number of observations, for example, working with daily data we have
only approximately 220-240 observations every year. In comparison with other
machine learning tasks such as image recognition with datasets in hundreds of
thousands of images, this is a really small dataset. Another problem mentioned
by Israel et al. (2020) is the low signal-to-noise ratio, this is not a coincidence
and is in check with the efficient market hypothesis proposed by Fama (1970).
It makes returns prediction however extremely challenging. We already men-
tioned various categories of data, some mainly alternative and high-frequency
data that are challenging to process on the other hand as Prado (2018) argues
the more challenging the dataset the less chance someone already exploited
the information. Other limitations of machine learning in finance mentioned
by Israel et al. (2020) are for instance need for interpretability and evolving
markets, the first is more important for regulated asset managers who prefer
interpretability of the model so they can explain their investment decisions.
Evolving markets lead to the need for constant rolling of new models and al-
gorithms to beat the market, Prado (2018) explains in detail how this is done
in practice. Prado (2018) further emphasizes the need for proper backtesting
of proposed strategies which many studies lack.

2.5 Key studies
Krauss et al. (2017) analyze the application of deep neural networks, gradient-
boosted trees, and random forests in financial statistical arbitrage. They de-
veloped a model to generate daily trading signals for stocks in the S&P 500
Index, aiming to outperform the market. Specifically, these models are used to
predict the directional movements of S&P 500 stocks. Stocks are ranked daily
by their likelihood of upward movement, the top k are bought and the bottom k
sold short, forming portfolios of varying sizes based on these predictions. Their
findings suggest that an ensemble of these methods achieved higher average
raw returns compared to individual models. The importance of this study for
our research is twofold, first, it highlights the importance of the ensemble tech-
nique, and second, it provides a benchmark that can be used for comparison
with our results. Fischer & Krauss (2018) build upon the work of Krauss et al.

2. Literature Review 8

(2017) and deploy Long Short-Term Memory (LSTM) networks. The authors
demonstrate that these models outperform memory-free classification methods
such as logistic regression, random forests, and even deep neural networks.
These findings are important for our study as LSTM shows promising results in
comparison with other models. Ghosh et al. (2022) extend the work of Krauss
et al. (2017) and Fischer & Krauss (2018) by employing both random forests
and LSTM networks to forecast directional movements of S&P 500 stocks. They
introduce a multi-feature setting, including returns related to closing, opening
prices, and intraday returns. Their methodology enhances the predictive accu-
racy beyond the single-feature methods used in the earlier studies. Again, for
our research, these discoveries demonstrate that potential improvements can be
achieved with more complex input features rather than only closing prices. We
reviewed these papers in detail because they provide reasonable benchmarks
that later studies try to overcome. This illustrates which methods and features
can enhance the overall performance.

The importance of benchmarking is stressed by Lago et al. (2021), in this
case for the electricity markets but the message applies to the field of our
research as well. The authors highlight that the use of non-public datasets, and
short and market-limited test samples leads to difficulties in benchmarking new
methods against established models. Hence without proper benchmarks, it is
complicated or even impossible to compare the performance of various models.

In machine learning, the value of benchmarking is for example illustrated
by the achievements of AlexNet, developed by Krizhevsky et al. (2012) which
we already explained at the beginning of this chapter. This model emerged
from the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), where
researchers compete on standardized datasets to deliver the best performance.
Popular datasets such as CIFAR-10, CIFAR-100, or MNIST are commonly
utilized for computer vision problems.

In finance, the use of standardized datasets is not as straightforward due
to the sector’s distinctive challenges. One good example of a standardized
challenge is the M6 Financial Forecasting Competition, where the objective
was to explain above-average financial returns. Its structure, spanning a year
and utilizing live data for evaluation, was specifically designed to counter the
look-ahead bias, a frequent obstacle in financial forecasting. Staněk (2023)
explains briefly the rules of the competition but more importantly his winning
forecasting methods. For our research, this highlights the importance of not
using data that were not seen at the time which is also strongly stressed by

2. Literature Review 9

Prado (2018).
Until now we only briefly reviewed that machine learning delivers better

performance than classical methods. Gu et al. (2020) highlight that machine
learning forecasts in some cases double the performance of leading regression-
based strategies. The authors find that allowing for nonlinearities and inter-
actions among predictors is crucial for improving accuracy which is missed by
linear methods. They further stress the importance of momentum, liquidity,
and volatility as dominant predictive signals. Li et al. (2020) acknowledge the
limitations of traditional models like Autoregressive integrated moving aver-
age (ARIMA) when handling high-frequency data. To account for this the au-
thors extend ARIMA with ML models, in this case Support vector machine (SVM)
and LSTM. They argue that by this extension the model retains the theoret-
ical basis of ARIMA but at the same time leverages machine learning in han-
dling non-linear relationships. They conclude the superior performance of the
ARIMA-LSTM model compared with both standalone ARIMA and SVM-ARIMA.

Sezer et al. (2020) systematically review literature focused on the appli-
cation of deep learning, a branch of machine learning. Their findings suggest
that LSTM models and their variations are predominantly used in financial time
series forecasting out of various other deep learning models. Furthermore, they
highlight Python and its libraries as the preferred tools for modeling in this do-
main. In a similar vein, Thakkar & Chaudhari (2021) also observe the extensive
use of LSTM in various financial forecasting studies, though they abstain from
concluding which method is the most utilized. Jiang (2021) provides another
detailed survey on the application of deep learning in stock market predictions,
highlighting Recurrent neural network (RNN) as the most frequently used mod-
els. The author also notes that historical prices and technical indicators are
the most common input features, with daily prediction horizons being the most
favored. This finding aligns with Sezer et al. (2020), who also observe daily
prediction horizons as a common approach in the studies they analyzed. Mov-
ing forward, the next and final section will explore research papers that focus
on predicting returns over various horizons.

2.6 Various horizons
Most of the studies reviewed in the previous section consider only a single
timescale. This is also noted by Akyildirim et al. (2021) in the context of
cryptocurrencies. They argue that focusing solely on a single timescale misses

2. Literature Review 10

the opportunity to demonstrate the generalizability of machine learning algo-
rithms across various market conditions. In their research, Akyildirim et al.
(2021) examine the predictability of major cryptocurrencies over four differ-
ent horizons, specifically 15min, 30min, 60min, and daily. This multi-timescale
analysis is significant as it provides a more comprehensive understanding of the
predictive capabilities of these algorithms under different trading frequencies
and conditions. The study employs a combination of market data and technical
indicators constructed from these data as input features for a binary classifica-
tion problem, centered on predicting price movement. Zhu et al. (2008) further
elaborate on the concept of multi-timescale analysis in their investigation of
stock index increments. They emphasize the importance of incorporating trad-
ing volume as an additional input feature in neural network models, thereby
enhancing the prediction accuracy across various time horizons. Their research
encompasses daily, weekly, and monthly financial data from major stock indices
which allows them to assess the generalizability and robustness of their neural
network models. The results suggest short-term horizon performance does not
improve by adding additional information, in this case, trading volume. The
authors argue that this might be due to higher noise levels and high volatility
of the daily data, for longer horizons, however, trading volume improves the
performance. Orimoloye et al. (2020) compare the effectiveness of deep learn-
ing against shallow architectures, such as SVM or one-layer neural networks,
across different time horizons for predicting stock price indices. The authors
utilize data from 34 financial indices across 32 countries over daily, hourly,
minute, and tick-level horizons. Their findings reveal that while more complex
architectures show an advantage over shallow architectures in some contexts,
such as with minute-level data, this superiority is not consistently observed
across all time horizons. Particularly, at the tick level, the performance edge
of deep neural networks diminishes, suggesting that the complexity and noise
inherent in highly granular data can challenge even advanced models. The
review of literature on varying time horizons in financial market prediction re-
veals a consensus on the importance of multi-timescale analysis. These studies
highlight the varied performance of machine learning and deep learning models
across different time frames. These insights suggest that while deep learning
offers advantages in certain contexts, its efficacy is not uniform across all time
horizons, particularly in highly granular and noisy data environments.

This concluding section wraps up the literature review chapter. Initially,
we broadly explored machine learning, using three exemplary cases of machine

2. Literature Review 11

learning applications beyond the financial sector to illustrate the concepts of
supervised, unsupervised, and reinforcement learning. Subsequently, our focus
shifted to the domain of finance, where we showcased practical uses ranging
from fraud detection to sentiment analysis. In the final part, we examined
research related to predicting financial returns, investigating the challenges
in this area and highlighting the importance of proper benchmarking. The
studies indicate a preference for LSTM models in this field, however, multi-
horizon analysis reveals that more complex models do not always yield superior
performance.

Chapter 3

Methodology

Our research is based on the study of Krauss et al. (2017). We focus on forecast-
ing the next horizon directional movements of financial instruments, framing
this as a classification problem where we predict probabilities of whether the
instrument will go up or down. We analyze four different prediction horizons,
hourly, daily, weekly, and monthly. Based on these forecasts, we then construct
our trading strategy.

In this chapter, we outline our research methodology. The first step involves
feature engineering and determining the target variables. This is followed by
the creation of distinct datasets for training, validation, and testing purposes.
Subsequently, we explore basic machine learning models and then advance to a
detailed examination of recurrent neural networks. We also cover the details of
regularization and optimization processes. In the final sections, we outline the
evaluation metrics and portfolio construction strategies, and provide a brief
overview of the software implementation aspects. This chapter’s theoretical
basis draws from the books by Prado (2018) and Dixon et al. (2020), which
provide key insights into the application of machine learning in finance. To
complement these financial perspectives with a foundational understanding of
machine learning methodologies, we also reference the work of Goodfellow et al.
(2016).

3.1 Feature engineering and target selection

Input Features

Based on the findings of Hsu et al. (2016), technical indicators do not pro-
vide substantial predictive value in forecasting financial returns, thus, we have

3. Methodology 13

chosen to exclude them from our analysis.
Our dataset includes 5-minute interval data (open, close, low, high, and

volume). Following established practices in the literature, we incorporate past
returns as features. This approach is supported by Fischer & Krauss (2018)
and Ghosh et al. (2022), who utilized a sequence of past returns spanning 240
days to predict next-day market movements. The primary rationale for using
returns is to deal with the nonstationarity inherent in price data. We have
previously discussed the low signal-to-noise ratio characteristic of financial time
series. Furthermore, as Prado (2018) notes, integer differentiation, commonly
used to transform the series, tends to diminish its memory, suggesting that
returns may not represent the optimal transformation of price data. The author
proposes using fractional differentiation as a more effective method. To extend
the existing literature, we employ fractionally differentiated series and compare
their performance with traditionally used logarithmic returns. In addition to
leveraging past returns, we introduce another extension over our benchmark
studies (Krauss et al. 2017; Fischer & Krauss 2018; Ghosh et al. 2022) by
incorporating realized volatility, calculated from 5-minute data. The third
extension we introduce is the inclusion of futures as potential additional data.

Now we have 3 potential features that can be used for training our models.
We first construct sequences of various lengths based on the prediction horizon.
For daily data, we follow Fischer & Krauss (2018) and create sequences using
the past 240 days, or approximately 1 year. For hourly we use the past 160
hours, or about 1 trading month. For weekly we opt for 100 weeks, or around
2 years, and finally, for monthly, we choose 60 months, or 5 years. During
training, we try combinations of using only returns (either logarithmic or frac-
tionally differentiated) and adding realized volatility based on data availability.
In other words we either have only 1 input feature or 2 input features.

Target

Following the approach of Krauss et al. (2017), we create a binary target vari-
able for each financial instrument. This target is assigned a value of 1 if the
next horizon return exceeds the median return calculated across the entire
dataset, and a value of 0 otherwise. This procedure is designed to predict if
an instrument’s performance in the next period will be above or below the
dataset’s median return. Further, this approach results in a balanced dataset.
For example, if we made our target equal to 1 if the returns are positive and 0

3. Methodology 14

otherwise then in the bull runs our dataset would contain more targets equal
to 1 than 0 targets which could lead to poorer performance of our model.

3.2 Generation of training, validation, and test
data

In machine learning, it is common practice to split the dataset into training,
validation, and test subsets. The training set is employed for fitting the model,
during this phase, the algorithm acquires patterns and establishes relationships
within the data. A challenge with complex models, particularly in deep learn-
ing, is their propensity to overfit. Overfitting occurs when a model learns the
training data too well, compromising its ability to generalize. To mitigate this,
the validation set is used. This subset aids in fine-tuning and hyperparam-
eter adjustments, ensuring the model performs optimally on an independent
dataset. The validation process is instrumental in selecting the most effec-
tive model. Lastly, the test set serves as the final benchmark for evaluating
the model’s performance. It comprises real-world data that has not been used
in training or tuning, thus providing an unbiased assessment of the model’s
efficacy in practical scenarios.

An important distinction between this application and other machine learn-
ing domains, like image classification, lies in the treatment of time-ordered data.
In financial modeling, particularly when predicting returns using deep learning,
the chronological sequence of the data is crucial. It is imperative to handle this
time ordering meticulously to avoid look-ahead bias. Look-ahead bias occurs
when a model uses information that would not have been available at the time
of prediction, leading to misleadingly optimistic performance. Ensuring that
the model is trained and validated without violating the temporal order of data
is essential for its reliability and accuracy in real-world scenarios.

In a similar manner to Krauss et al. (2017), we construct study periods
consisting of a training period, validation period, and testing, or trading, pe-
riod, chronologically ordered. Here we would like to note the difference between
our approach and Krauss et al. (2017) as the authors split the training period
randomly into training and validation, hence they do not keep chronological
order with training and validation data. For the reasons mentioned above, we
decided not to follow this approach.

The testing period is always 1 year long and is non-overlapping, in other

3. Methodology 15

words, we have a rolling window with 1-year step. This method allows us to
evaluate performance across different periods, thus enhancing the robustness
of our results compared to selecting a single period. Given the different hori-
zons we are dealing with, we have varying training periods for each horizon.
Specifically, for daily and hourly horizons, we use a 2-year training period, for
weekly horizons, we use a 3-year training period, and for monthly horizons, we
use a 5-year training period. The validation period is consistently 1 year for
all horizons, matching the duration of the testing period.

Additionally, unlike Krauss et al. (2017), who use only the study period
data for generating past returns, we do not limit ourselves in this manner and
we use returns before the start of the study period. This does not create any
issues as it only extends the length of our training period in comparison with
Krauss et al. (2017).

3.3 Models
This subsection describes the basic concepts behind machine learning (and deep
learning) models. Although reinforcement learning offers significant potential
in financial applications, including option pricing, market making, and portfolio
optimization (Hambly et al. 2023). Our study will focus on supervised learning
due to its direct applicability within financial return prediction.

It’s essential to highlight the distinction from traditional econometric mod-
els, which rely on metrics like t-statistics, R2, and statistical significance. In
machine learning, the absence of these conventional metrics raises the question
of model evaluation. The answer lies in out-of-sample forecasting, demon-
strating the model’s performance on unseen data. A critical consideration is
a balance between model complexity and the risk of overfitting. This con-
cept is visually depicted in Figure 3.1, illustrating the crucial equilibrium ma-
chine learning models must achieve. To find the balance we use regularization
techniques which serve as a protection against overfitting by penalizing model
complexity. We discuss these methods in greater detail later in the text. The
complexity of a model is significantly influenced by its architecture. We begin
by introducing Feedforward neural network (FNN) and then proceed to discuss
the more advanced RNN.

3. Methodology 16

Figure 3.1: Relationship between capacity and error

Source: Figure 5.3 of "Deep Learning" book, https://www.deeplearningbook.org

3.3.1 Feedforward neural networks

Feedforward neural networks, as the name suggests, are defined by a one-way
flow of data. Hence there are no cycles within the architecture. Although
this architecture is quite simple it is the cornerstone of many machine learning
structures.

Figure 3.2 displays a straightforward neural network consisting of an in-
put layer, a single hidden layer, and an output layer. The dimensionality of
the input layer corresponds to the number of features in the input data. To
illustrate, let’s consider a height prediction model using three features: age,
gender, and birth country. Consequently, the input layer will have three units,
one for each feature.

After the input layer, there are one or more hidden layers. Each hidden
layer has some number of units, this is then called a width. In this example,
we’ve selected one densely connected hidden layer with five units. A densely
connected layer in this context means that each unit is linked to every unit in
the preceding layer. It’s important to note that neural networks can contain
multiple hidden layers, contributing to the network’s depth. This capability
to increase depth by adding more layers is what gives rise to the term deep
learning. Each neuron in a hidden layer transforms the values from the previous
layer with a set of weights and adds a bias. This process is linear as it is a
basic linear combination of weights and input features. To introduce non-

https://www.deeplearningbook.org

3. Methodology 17

Figure 3.2: Example of a fully connected feedforward neural network

linearity in the network we apply a non-linear function which is called the
activation function. Without activation functions the number of layers would
not matter because it would still behave like a single-layer network since it
would be just a linear combination of linear functions. We describe different
activation functions later in the text.

The architecture completes with an output layer. Our example features a
single unit, tailored to our goal of forecasting a single quantity: the height of
an individual. For binary classification, we would also have a single neuron,
for multi-class classification we would have multiple neurons. Again activation
function can be applied depending on the task, in our example, we would
not apply any activation function as we are doing regression. However, for
classification tasks, it is crucial to apply the activation function.

In the simple example, we explained how forward propagation works. More
formally this process can written as:

hi = f

⎛⎝∑︂
j

xjw
(h)
j,i + b

(h)
i

⎞⎠ (3.1)

yi = a

⎛⎝∑︂
j

hjw
(y)
j,i + b

(y)
i

⎞⎠ (3.2)

Given that x1, x2, . . . , xn are input features, the model can be described
with the following components:

• f : the activation function of the hidden layer,

3. Methodology 18

• hi: the i-th node in the hidden layer,

• w
(h)
j,i : the weight from the j-th input node to the i-th hidden layer node,

• b
(h)
i : the bias of the i-th hidden layer node,

• yi: the i-th output node,

• w
(y)
j,i : the weight from the j-th hidden layer node to the i-th output node,

• b
(y)
i : the bias of the i-th output node,

• a: the activation function of the output layer.

When we train the neural network we want to learn the weights and biases.
First, we have to define a loss function that measures how far the networks’s
predictions are from the actual values. The goal of the network is to minimize
this loss. The loss function depends on the problem we are solving, we will get
back to this later in the text. The learning algorithm is called backpropagation
and it involves calculating the gradient of the loss function with respect to each
weight using the chain rule. It is called backpropagation because we are moving
backward from the output layer to the input layer. A simple interpretation of
this process is that we first calculate the loss in the forward propagation and
then by backpropagation, we are adjusting the weights to decrease the loss. We
can use various optimization algorithms which we discuss later.

Activation Functions

Activation functions are key for neural networks because they introduce non-
linearity to the system. This allows the neural network to capture more complex
patterns in the data. For output layers, we usually use the following activation
functions:

1. Linear: f(x) = x, used for regression tasks.

2. Sigmoid: f(x) = 1
1+e−x , used for binary classification.

3. Softmax: f(xi) = exi∑︁
j

exj , used for multiclass classification.

For hidden layers, the most popular activation functions are:

1. Sigmoid: f(x) = 1
1+e−x .

3. Methodology 19

2. Hyperbolic Tangent (tanh): f(x) = 2σ(2x) − 1 where σ(x) is the sigmoid
function.

3. Rectified Linear Unit (ReLU): f(x) = max(0, x).

but there are much more for example Gaussian Error Linear Unit (GELU),
Exponential linear unit (ELU), or Leaky rectified linear unit (Leaky ReLU).
Choosing the proper activation function for hidden layers has an important
effect on the model’s ability to learn the data. Selecting the output layer’s
activation function is a more straightforward process as it depends on the task.

Loss Function

The loss function allows the model to measure the distance between the actual
and predicted values. Usually, loss functions are derived using the maximum
likelihood framework and the selection of the loss function is related to the
task. For regression, we often use well-known mean squared error (MSE) or
mean absolute error (MAE). Our problem is however binary classification hence
we will use binary cross-entropy loss, also known as log loss. Log loss is a
fundamental loss function for binary classification tasks as it quantifies the
difference between two probability distributions. Formally we define log loss
as:

L = − 1
N

N∑︂
i=1

(yi log(pi) + (1 − yi) log(1 − pi)) (3.3)

where N is the total number of observations, yi, and pi are the actual
value and predicted probability for the i-th observation, respectively. The
interpretation of log loss is quite intuitive: when y = 1 (in our case, the return
is positive) then the loss is equal to − log(p), hence as p approaches 1 the loss
approaches 0. At the same time, as p approaches 0, then the loss increases,
thus penalizing the wrong prediction. The same holds when y = 0.

Optimization

Now that we defined the loss function we can finally describe the optimization
process. Put simply optimization algorithms are used to update weights and bi-
ases in a way that minimizes the loss function. The selection of an optimization
algorithm plays a crucial role in machine learning as it can significantly impact
both the speed and the quality of the training process. The backbone of most

3. Methodology 20

optimization algorithms is gradient descent. The core principle of gradient de-
scent is iteratively adjusting the weights and biases in the opposite direction
of the gradient. The algorithm starts with an initial set of weights and biases
(parameters). These are usually initialized randomly or set to 0. Then the
gradient of the loss function is calculated. We can interpret the gradient as a
slope of the loss function with respect to each parameter. Then parameters are
adjusted in the opposite direction of the gradient by some step. The size of
this step is controlled by a hyperparameter called learning rate. The learning
rate can of course change during optimization, usually, we want to decrease the
learning rate during training. Such a sequence of learning rates denoted as αi

should fulfill the following conditions in order to guarantee convergence to the
local optimum:

∀i : αi > 0,
∑︂

i

αi = ∞,
∑︂

i

α2
i < ∞.

The algorithm repeats the steps of calculating the gradient and updating the
parameters until a stopping criterion is met. This is another hyperparameter
that is chosen before training. It can be either a number of iterations, also
known as a number of epochs. Or a threshold below which improvements are
no longer significant, we will call this hyperparameter early stopping. There
are various variants of gradient descent, but the most notable are the following.

(Minibatch) Stochastic Gradient Descent (SGD): Using the whole
training data to compute the gradient can be in some cases very computa-
tionally demanding and slow. For this reason, minibatch SGD calculates the
gradient using smaller subsets of the training data. The size of these subsets
is called batch size and is another hyperparameter that needs to be set before
training.

SGD with Momentum: This variant of SGD not only considers the cur-
rent gradient in its updates but also incorporates a fraction of the previous
gradients. This approach helps in smoothing out the updates, reducing oscil-
lations and potentially speeding up convergence.

RMSProp: This method is particularly effective in dealing with the issue
of drastically different learning rates for different parameters, which can be a
problem in SGD. RMSProp modifies the learning rate for each parameter by
dividing it by an exponentially decaying average of the squared gradients. This
adaptive learning rate approach helps to stabilize the updates and prevents the
learning rate from diminishing too quickly.

3. Methodology 21

ADAM: This algorithm combines concepts from both Momentum and RM-
SProp. Essentially, it maintains an exponentially decaying average of past gra-
dients (similar to momentum) and uses squared gradients to scale the learning
rate (like RMSProp). ADAM is usually quite robust to the choice of hyper-
parameters due to its bias corrections to the first two moments to counteract
their initialization which helps in the early stages of training.

All of these algorithms are heavily used in machine learning, however, there
is no consensus on which algorithm is the best. For this reason, we have to try
different and select the best for our problem based on our results.

Batch Normalization

We conclude the Optimization subsection with Batch Normalization first in-
troduced by Ioffe & Szegedy (2015). The primary motivation for this method
is to counteract the internal covariate shift that happens during training when
the distribution of each layer’s inputs changes due to updates in the parame-
ters of preceding layers, thus complicating the training dynamics. To mitigate
this, Batch Normalization normalizes the inputs for each mini-batch to ensure
consistent mean and variance across the input layers. This technique not only
speeds up the training process but also brings stability to it, allowing for higher
learning rates and less strict requirements for initialization. Further, the au-
thors argue that in some cases it can act as a regularizer which brings us to
the next subsection.

Regularization

In machine learning, overfitting is a common challenge where models perform
well on training data but poorly on unseen data. To address this, regulariza-
tion techniques are employed to decrease the validation error, sometimes at
the cost of an increased training error. This subsection outlines several key
regularization strategies used in this thesis to enhance model generalization.

L1, L2 parameter regularization

L1 regularization, commonly referred to as Lasso regression, and L2 regular-
ization, known as Ridge regression, are foundational techniques in machine
learning that modify the loss function by adding a penalty proportional to the
magnitude of the model parameters. Lasso regression adds a penalty equiva-
lent to the absolute value of the coefficients’ magnitudes. One of the distinctive

3. Methodology 22

outcomes of L1 regularization is its tendency to produce sparse models. Spar-
sity occurs because the L1 penalty can force some of the weight coefficients
to become exactly zero, effectively performing feature selection. On the other
hand Ridge regression, adds a penalty equal to the square of the magnitude of
the coefficients. Unlike L1, the L2 approach does not zero out coefficients but
rather shrinks them uniformly. This helps in enhancing prediction accuracy by
maintaining smaller model weights, which prevents overfitting.

Early stopping

We have already briefly mentioned early stopping, however because of its im-
portance in the training process we want to explain it in greater detail. This
method is crucial not only for preventing overfitting but also for improving
computational efficiency. Early stopping works by continuously observing the
model’s performance on a validation set at each epoch during training. If the
performance, as measured by a chosen metric, such as validation loss or accu-
racy, fails to improve for a designated number of consecutive epochs, known
as the patience period, the training is stopped. This approach assumes that
the validation set offers an unbiased assessment of the model’s capability to
generalize to new, unseen data.

Dropout

Dropout is another widely utilized regularization technique that offers a compu-
tationally efficient way to mitigate overfitting in neural networks. This strategy
randomly deactivates a subset of neurons in the network during each training
iteration, reducing the network’s complexity temporarily. Such random de-
activation prevents neurons from becoming overly dependent on the specific
patterns of the training data. When a neuron is deactivated, it does not par-
ticipate in the forward pass nor is its weight updated during backpropagation.
This introduction of randomness acts as noise, adding robustness to the train-
ing process. The dropout rate hyperparameter is set beforehand and it is a
fraction of neurons in a layer that are set to zero at each training step.

Ensemble

According to Prado (2018), machine learning models typically exhibit three
types of errors: bias, variance, and noise. Noise, which is inherent and random,
cannot be mitigated by models. However, strategies exist to reduce bias and

3. Methodology 23

variance errors effectively. High bias occurs when a model overlooks significant
patterns in the data, resulting in underfitting. Conversely, high variance indi-
cates overfitting, where slight variations in the training data can cause drastic
changes in predictions.

One common method to decrease variance is model averaging. This tech-
nique involves training multiple models independently and then averaging their
outputs. Even using the same model with different initial conditions can yield
more stable results, as these models are less likely to replicate identical errors
on a test set. Additionally, employing various models can further enhance this
effect.

Another technique, bootstrap aggregating, also known as bagging, involves
creating several datasets from the original by sampling with replacement. Each
model is then trained on a different dataset, which helps in reducing variance
by diversifying training data. These are methods that can effectively reduce
the variance in forecasts hence addressing overfitting (Prado 2018).

Boosting is another technique that has the power to reduce both bias and
variance in predictive models. But it also carries a heightened risk of over-
fitting. In finance, however, we usually have to deal with overfitting rather
than underfitting (Prado 2018) hence we will not use boosting. A well-known
example of a boosting algorithm is AdaBoost.

3.3.2 Recurrent Neural Networks

In previous sections, we explained the fundamentals of machine learning focus-
ing on feedforward neural networks and how they are trained including various
optimization and regularization techniques. Now we can move to more complex
architecture which became popular in the context of financial returns predic-
tions (Jiang 2021; Thakkar & Chaudhari 2021) and that are RNN. Unlike FNN

where the flow of information is one-directional, RNN have connections that
loop backward, effectively allowing these networks to maintain a form of mem-
ory that is well-suited for time series analysis (Dixon et al. 2020). Moreover,
RNN are flexible with respect to sequence length, which proves beneficial in
various applications, particularly in natural language processing.

The network combines the current input with the previously stored hidden
state, this stored information acts as the network’s memory. In mathematical
terms, we have:

Ht = f(WhhHt−1 + WhxXt + b),

3. Methodology 24

where Ht is the current hidden state, Whh and Whx are the weight matrices,
Ht−1 is the previous hidden state, Xt is the input, and b is the bias. This
recursive formula is central to the RNN’s ability to handle data where context
and order matter. Unfortunately, there are also challenges such as vanishing
or exploding gradients. These issues occur when gradients diminish or increase
exponentially across many layers, due to the repetitive application of the same
function through the network’s depth. To mitigate these problems, more so-
phisticated variants of RNNs, like LSTM units and Gated Recurrent Unit (GRU),
have been developed. LSTM use gates (input, forget, and output) to regulate
the information flow, helping to maintain stable gradients over time. GRU sim-
plify this design by combining gates and state updates, allowing for efficient
learning with fewer parameters. Figure 3.3 illustrates the differences between
simple RNN, LSTM, and GRU architecture.

Figure 3.3: RNN, LSTM, and GRU cells

Source: https://towardsdatascience.com/
a-brief-introduction-to-recurrent-neural-networks-638f64a61ff4

3.4 Evaluation metrics and portfolio construction
We already described that we are predicting stock price movements, that is
whether the price will go up or down in the next horizon. Hence binary clas-
sification problem. The literature suggests the following evaluation metrics
for this kind of problem: accuracy, precision, recall, F1 score, area under the
ROC curve, or confusion metrics. Accuracy is a simple metric representing
the proportion of correct predictions out of all predictions made, as we are not
working with an unbalanced dataset this metric is reasonable for our use case.
Our model is better than a random guess if the accuracy is larger than 50% at
a reasonable significance level.

https://towardsdatascience.com/a-brief-introduction-to-recurrent-neural-networks-638f64a61ff4
https://towardsdatascience.com/a-brief-introduction-to-recurrent-neural-networks-638f64a61ff4

3. Methodology 25

Further, we follow Krauss et al. (2017) approach to portfolio construction.
We buy k instruments with the highest probability of positive returns in the
next period and short-sell k instruments with the lowest probability of positive
results. We acknowledge the simplicity of this approach but following the
methodology of previous studies allows us to compare the results. We expect
the accuracy of this portfolio to be larger than that of the whole sample because
we are selecting only the instruments with the highest (lowest) probability.

3.5 Software implementation
We use Python and TensorFlow for data handling and modeling. Python’s ex-
tensive libraries and tools are well-suited for data analysis, machine learning,
and financial modeling. TensorFlow, as an open-source library, efficiently im-
plements neural network architectures. The literature further supports Python
as the preferred language for our research field (Sezer et al. 2020). Google Co-
lab is our primary environment for training models, offering access to powerful
GPUs and TPUs without requiring local computational resources.

Chapter 4

Data

In the empirical section of our thesis, we utilize 5-minute adjusted price data
for stock splits and dividends, obtained from Kibot. To ensure comparability
with our benchmark studies (Krauss et al. 2017; Fischer & Krauss 2018; Ghosh
et al. 2022), we focus on companies that were part of the S&P 500 index at the
beginning of each study period. We sourced the historical constituents of the
S&P 500 index annually from 1998 through 2022 using the Reuters Refinitiv
Data Platform API.

Additionally, we expand our analysis to include futures as potential instru-
ments in our trading strategy. We utilize continuous contracts to accommodate
various maturities and select 20 different futures, matching them to the trad-
ing hours of our stocks. Our dataset includes stock data starting from 1998
or from the company’s initial public offering date, while futures data begins
around 2009.

Further, we select only such stocks and futures that have at least 5 years
of available data. Although we have data back to 1998 we can not construct
a fractionally differentiated series for other than hourly data right from 1998
hence we start with the first study period in 2003 and the last one in 2020.
Thus, at most, we have 18 study periods in total, but for weekly and monthly
horizons, the number is lower due to data availability. For each study period,
we use all the stocks (and futures) that were part of the S&P 500 index at
the beginning of the study period. Using all the stocks together rather than
selecting a few stocks and training individual models on them brings undeniable
benefits. Most importantly, the models are trained on much larger datasets,
allowing for more robust and generalizable conclusions as this approach leads
to less biased results caused by outliers or overfitting.

4. Data 27

Table 4.1: Number of available stocks (futures)

Horizon type Hourly Daily Weekly Monthly
d 0.30 0.50 1.00 0.50 0.60 1.00 0.65 0.80 1.00 1.00
2003 232 (0) 323 (0) 326 (0) 259 (0) 290 (0) 321 (0) 0 (0) 0 (0) 312 (0) 0 (0)
2004 297 (0) 335 (0) 337 (0) 286 (0) 311 (0) 332 (0) 0 (0) 0 (0) 326 (0) 0 (0)
2005 303 (0) 344 (0) 347 (0) 302 (0) 324 (0) 341 (0) 0 (0) 276 (0) 333 (0) 292 (0)
2006 292 (0) 360 (0) 364 (0) 296 (0) 327 (0) 359 (0) 0 (0) 259 (0) 329 (0) 316 (0)
2007 213 (0) 380 (0) 383 (0) 236 (0) 314 (0) 379 (0) 0 (0) 289 (0) 355 (0) 343 (0)
2008 313 (0) 417 (0) 422 (0) 317 (0) 367 (0) 398 (0) 0 (0) 320 (0) 381 (0) 357 (0)
2009 345 (0) 428 (0) 432 (0) 307 (0) 371 (0) 426 (0) 261 (0) 343 (0) 394 (0) 364 (0)
2010 417 (0) 439 (0) 461 (20) 385 (0) 401 (0) 438 (0) 264 (0) 342 (0) 424 (0) 379 (0)
2011 416 (0) 460 (20) 463 (20) 391 (0) 427 (0) 461 (20) 328 (0) 382 (0) 437 (0) 389 (0)
2012 354 (17) 459 (20) 462 (20) 394 (0) 431 (0) 460 (20) 320 (0) 381 (0) 458 (20) 390 (0)
2013 424 (16) 468 (20) 468 (20) 411 (0) 433 (0) 466 (20) 328 (0) 389 (0) 460 (20) 423 (0)
2014 412 (13) 469 (20) 473 (20) 410 (0) 446 (19) 468 (20) 350 (0) 414 (0) 463 (20) 420 (0)
2015 446 (20) 479 (20) 479 (20) 444 (19) 457 (20) 477 (20) 347 (0) 425 (0) 470 (20) 441 (20)
2016 352 (16) 478 (20) 485 (20) 428 (18) 454 (19) 480 (20) 349 (0) 423 (0) 474 (20) 444 (20)
2017 440 (18) 489 (20) 492 (20) 456 (19) 475 (20) 489 (20) 373 (0) 455 (20) 484 (20) 460 (20)
2018 434 (17) 492 (20) 495 (20) 461 (17) 478 (18) 491 (20) 390 (0) 457 (20) 488 (20) 456 (19)
2019 438 (14) 501 (20) 502 (20) 476 (18) 489 (18) 501 (20) 409 (0) 467 (20) 497 (20) 477 (20)
2020 332 (13) 499 (20) 501 (20) 479 (19) 494 (20) 500 (20) 416 (0) 476 (20) 500 (20) 481 (19)

Note: The table shows a number of stationary stocks and futures (in parentheses) available
for each horizon and differentiation factor d. The year in the first column denotes the start
of the training period.

As outlined in Chapter 3, we extend the existing literature by incorporating
realized volatility data and fractionally differentiated time series as potential
input features, rather than relying solely on logarithmic returns. However, we
encounter certain limitations with different prediction horizons. For hourly
data, calculating realized volatility from only 12 points (since we are using 5-
min data) is insufficient, thus it is not used. Similarly, for monthly data, we face
constraints with fractional differentiation, as its calculation would significantly
reduce our sample size.

We calculate various fractionally differentiated series (differentiation factor
d) for each prediction horizon and test for the stationarity of these series as
well as for logarithmic returns (d = 1) for each training period. Note that we
do not test stationarity for validation and test periods, as this would involve
looking at data that we could not have seen during training, potentially leading
to look-ahead bias.

Table 4.1 shows the number of stationary stocks and futures for each study
period. We observe that the lower the d value, the fewer stocks (and futures)
remain stationary for each study period. Interestingly, the stationarity of the
majority of instruments is maintained even for relatively low d values. For
instance, with hourly data, a d as low as 0.3 still results in most instruments
being stationary. This suggests that logarithmic returns (d = 1) might not be

4. Data 28

optimal, as they may unnecessarily remove too much information.
For daily data, a d of 0.5 is sufficient for maintaining stationarity in most in-

struments. For weekly data, a higher d is required due to the loss of data when
calculating these series, but a d of 0.65 offers a good balance between stationar-
ity and the number of available instruments. For monthly data, we decided not
to use fractionally differentiated series due to data availability constraints, thus
we only report the number of stationary instruments for logarithmic returns
(d = 1).

During training, we always use the fractionally differentiated series with
the lowest d value and traditional logarithmic returns. Specifically, for hourly
horizons, we use d = 0.3 and d = 1, for daily horizons, d = 0.5 and d = 1, for
weekly horizons, d = 0.65 and d = 1, and for monthly horizons, only d = 1.

Figure 4.1 further contrasts fractionally differentiated series and logarith-
mic returns for Microsoft on hourly, daily, weekly, and monthly horizons. We
show the optimal d values that we described previously. We observe that frac-
tionally differentiated series exhibit more memory, especially for lower d values.
These series are somewhat similar to the actual price series, showing long-term
dependencies evident from an upward trend, but they remain stationary. At
higher d values, such as d = 0.65 displayed on the weekly horizon, most of the
memory seems to diminish.

Figure 4.2 then shows realized volatility for Microsoft over daily, weekly,
and monthly horizons. We observe periods of higher volatility, particularly
in the early 2000s during and after the dot-com bubble, followed by a rela-
tively calm period until the Great Financial Crisis in 2008, and then increased
volatility during the COVID-19 crisis. The aggregation of volatility data in the
weekly and monthly plots smooths the intensity and frequency of these spikes,
but the overall pattern remains consistent, capturing the broader impacts of
market events.

Finally, we construct sequences for various prediction horizons using realized
volatility and returns (or fractionally differentiated series). Before constructing
these sequences, we standardize our data to have a mean of 0 and a standard
deviation of 1, more formally:

Xscaled = X − µtrain

σtrain

Where X represents either realized volatility, returns, or fractionally dif-
ferentiated series for an individual stock or a futures contract for a specific

4. Data 29

Figure 4.1: Logarithmic returns and Fractional differentiated series -
Microsoft

2000 2004 2008 2012 2016 2020 2024

0.1

0.0

0.1

0.2

0.3

0.4

0.5
Hourly

Log returns
Frac diff, d=0.3

2000 2004 2008 2012 2016 2020 2024

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20
Daily

Log returns
Frac diff, d=0.5

2000 2004 2008 2012 2016 2020 2024

0.2

0.1

0.0

0.1

0.2

Weekly

Log returns
Frac diff, d=0.65

2000 2004 2008 2012 2016 2020 2024

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Monthly
Log returns

Figure 4.2: Realized volatility - Microsoft

2000 2004 2008 2012 2016 2020 2024
0.000

0.005

0.010

0.015

0.020

0.025

Daily

2000 2004 2008 2012 2016 2020 2024
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040
Weekly

2000 2004 2008 2012 2016 2020 2024
0.00

0.02

0.04

0.06

0.08

Monthly

4. Data 30

date and time. Further µtrain, σtrain denote the mean and standard deviation of
the series calculated on the training data, respectively. We use only training
data for calculating the mean and standard deviation to avoid look-ahead bias,
which could occur if we used the validation or test data for standardization.
However, as a result, the standardized validation and test data might not have
a mean and standard deviation exactly equal to 0 and 1.

Chapter 5

Results

In this chapter, we first describe the training process and comment on the re-
sults of individual prediction horizons. Specifically, we discuss metrics such as
accuracy, mean returns, financial performance, and the impact of incorporating
futures into our models. We then compare these metrics across multiple models
for each horizon, based on the number and type of input features. Comparing
various models serves two purposes. First, it allows us to evaluate the effect of
different input features on the final outcomes. Second, it helps ensure the ro-
bustness of our results. By testing multiple models, we reduce the risk that our
findings are merely a result of random chance or overfitting specific to a single
model, thereby strengthening the validity and reliability of our conclusions.

After analyzing individual horizons, we compare the results across all pre-
diction horizons, focusing on accuracy, annualized returns, and annualized stan-
dard deviation. Given that the daily horizon is the most commonly used in the
literature and our benchmark studies, we begin with a detailed examination of
the daily horizon.

5.1 Daily horizon

Training

In Chapter 4, we discussed various regularization techniques and model archi-
tectures. After hyperparameter tuning, we selected the following configuration:
an input layer with either 1 feature (returns or fractionally differentiated se-
ries) or 2 features (adding realized volatility), with an input length of 240. The
LSTM layer consists of 28 units, batch normalization, and a 10% dropout rate.
For the 2-feature setting, features are concatenated. This is followed by a fully

5. Results 32

connected layer with 8 units and ReLU activation function, and an output layer
with sigmoid activation for binary classification. We use the ADAM optimizer
with a learning rate of 0.001, a batch size of 1024, and 100 epochs. Early stop-
ping after 20 epochs based on validation loss restoring the best weights, with a
warm-up period of 10 epochs. We avoid L1 and L2 regularization as our other
techniques effectively prevent overfitting. After extensive testing of different
configurations and models, including LSTM, GRU, and simple RNN, we found
this architecture best suited to our data.

Similarly to our benchmark studies, we use the same architecture for all
the study periods. We could of course test different architectures for every
study period, but instead, we choose to study the feature importance also
highly stressed by Prado (2018). For each of the 18 study periods, we trained
up to 8 different models based on input features. These models were trained
using returns or fractionally differentiated series (we will denote fractionally
differentiated series as Returnsd), further with either a single feature or a two-
feature setting that included realized volatility. Additionally, starting in 2015,
we incorporated futures data, training models on both stock data alone and
combined stock and futures data. For every input specification, we trained 3
models with different random seeds and then ensembled these to reduce over-
fitting. In total, we trained 104 ensembled models, which took approximately
34 hours using Google Colab’s T4 GPU.

Evaluation

In this section we evaluate 4 different models based on their input features.
DM1 uses only Returns, hence it has only one input feature. DM2 uses
Returns and realized volatility (RV), thus incorporating two input features.
DM4 and DM5 use fractionally differentiated returns (Returns0.5) with either
one or two input features.

Additionally, we construct 5 ensembles. DM9 includes all four models.
DM3 and DM6 combine models with the same returns type (DM1 and DM2
for Returns, DM4 and DM5 for Returns0.5). DM7 and DM8 combine models
with the same number of input features: DM7 ensembles DM1 and DM4, and
DM8 ensembles DM2 and DM5.

These models predict whether the next day’s returns will be above or below
the median. Based on these probabilities, we select 10 stocks (or stocks and
futures) with the highest probability of exceeding the median returns and 10

5. Results 33

Table 5.1: Daily accuracy

Returns type Returns Returns0.5 Ensemble
of Features 1 2 Ensemble 1 2 Ensemble 1 2 Ensemble
Model DM1 DM2 DM3 DM4 DM5 DM6 DM7 DM8 DM9
2006 54.442*** 54.163*** 54.402*** 53.506*** 52.47*** 52.829*** 53.665*** 53.805*** 54.522***
2007 52.171*** 52.888*** 52.61*** 52.908*** 52.131*** 52.41*** 51.873*** 51.594** 51.673***
2008 52.391*** 53.162*** 53.083*** 52.569*** 52.846*** 52.569*** 52.885*** 52.846*** 53.498***
2009 51.508** 51.567** 52.262*** 52.52*** 51.31** 51.349** 51.627** 51.746*** 51.19**
2010 51.976*** 52.579*** 52.956*** 51.468** 51.548** 51.746*** 49.802 50.298 50.238
2011 51.825*** 51.19** 52.262*** 51.508** 52.164*** 51.925*** 51.369** 51.845*** 51.726***
2012 51.64** 50.56 51.82*** 52.0*** 52.78*** 52.28*** 50.76 51.58** 51.44**
2013 50.714 52.123*** 51.448** 51.389** 51.627** 52.004*** 51.25** 51.389** 51.885***
2014 52.103*** 51.19** 50.675 51.825*** 51.29** 50.774 51.587** 51.548** 51.27**
2015 51.012* 51.865*** 51.528** 51.25** 52.817*** 53.016*** 51.548** 51.746*** 52.738***
2016 49.107 52.163*** 50.496 50.417 51.171** 50.317 50.694 51.667*** 50.952*
2017 52.45*** 50.697 51.653*** 51.514** 51.315** 51.076* 51.574** 50.159 50.837
2018 49.183 49.303 49.92 51.554** 50.737 51.454** 50.757 49.641 49.442
2019 51.706*** 50.317 50.417 52.758*** 50.139 51.925*** 52.063*** 49.683 51.369**
2020 53.202*** 52.138*** 52.984*** 52.095*** 52.47*** 52.391*** 52.866*** 51.561** 52.609***
2021 50.437 51.071* 50.278 49.881 51.885*** 51.885*** 51.032* 51.27** 51.31**
2022 50.518 50.219 51.275** 50.797 50.876 50.916* 50.339 50.02 49.88
2023 51.991*** 52.345*** 52.146*** 52.367*** 51.151* 52.721*** 52.81*** 52.168*** 52.522***
Whole period 51.574*** 51.638*** 51.788*** 51.792*** 51.71*** 51.861*** 51.577*** 51.361*** 51.613***

Note: The table shows the daily accuracy in percentage (%) of the k = 10 portfolio for each
study period and for all model variants based on the number and type of input features. A
binomial test was used to compare the accuracy against a 50% random chance, with
statistical significance indicated as follows: *p < 0.1; **p < 0.05; ***p < 0.01. The year in
the first column denotes the study period.

with the lowest probability. This selection is referred to as the k portfolio, with
k = 10 chosen for comparability with our benchmark studies.

Accuracy

Table 5.1 presents the accuracy of the k portfolio for all test years, focusing on
models that predict only stocks. Accuracy is measured by the proportion of
correctly predicted directions, where 50% indicates random predictions. Higher
accuracy indicates better performance. To determine if the predictions are
better than random chance, we perform a binomial test. The null hypothesis for
this test is that the accuracy is 50%, meaning the predictions are no better than
random. If we reject the null hypothesis, we can conclude that the accuracy is
statistically significantly different from random chance.

Additionally, following Krauss et al. (2017), we also conducted the Pesaran-
Timmermann (PT) test, which evaluates whether the predictions and actual
outcomes are independently distributed. Since the results from the binomial
and PT tests indicate the same significance brackets, we only report the bino-
mial test for clarity.

Our findings suggest that, over the years, most models show statistically

5. Results 34

significant predictive accuracy. Each year, at least one model demonstrates sig-
nificant accuracy, although no single model consistently performs significantly
across all years. During periods of high market volatility, such as the Great
Financial Crisis in 2008 and the COVID-19 pandemic in 2020, the models ex-
hibited higher predictive accuracy. This shows the models’ ability to adapt
and perform well under turbulent market conditions, capturing extreme mar-
ket movements effectively. Conversely, certain years show weaker predictive
accuracy, suggesting that the models struggled to identify clear patterns or
trends. This trend is especially notable in 2016, 2018, and 2022. This lower
performance could be attributed to a relatively stable market with fewer dis-
tinct patterns for the models to capture.

When analyzing model performance across all years, several trends emerge.
Ensemble models generally outperform their components, often achieving higher
or comparable accuracy rates. The highest accuracy over the entire period from
2006 to 2023 of 51.86%, comes from an ensemble that combines fractionally dif-
ferentiated returns (Returns0.5) with both one and two input features (DM6).
Another strong performer over the same period, with an accuracy of 51.79%,
is an ensemble that combines models using Returns with both one and two
input features (DM3).

When comparing by year, the Returns ensemble (DM3) consistently out-
performs the Returns0.5 ensemble (DM6) before 2012. However, post-2012,
Returns0.5 models deliver higher predictive accuracy. Based on this observa-
tion our preferred ensemble is the combination of Returns0.5 with one input
feature model and Returns0.5 with two input features model (DM6).

Ensembles involving both Returns and Returns0.5 models (DM7-DM9)
perform worse than the aforementioned ensembles.When comparing one-input
feature models to two-input feature models, there is no clear advantage as the
Returns model benefits from two input features, whereas the Returns0.5 model
performs better with one feature.

It is important to note that while we compare different models, their pre-
dictions are often very similar. This means that, on average, the differences in
their predictive performance may not be statistically distinguishable.

Financial performance

Table 5.2 shows the mean daily returns before transaction costs along with
an indication of whether the returns are significantly greater than zero, with

5. Results 35

Table 5.2: Mean daily returns

Returns type Returns Returns0.5 Ensemble
of Features 1 2 Ensemble 1 2 Ensemble 1 2 Ensemble
Model DM1 DM2 DM3 DM4 DM5 DM6 DM7 DM8 DM9
2006 0.288*** 0.266*** 0.27*** 0.175*** 0.099* 0.11* 0.216*** 0.236*** 0.25***
2007 0.09 0.151* 0.138* 0.145** 0.148** 0.12* 0.068 0.108 0.089
2008 0.315 0.166 0.321* 0.271** 0.333* 0.241* 0.512** 0.285* 0.424**
2009 -0.058 0.092 0.098 0.107 -0.132 -0.011 -0.083 0.083 0.025
2010 -0.001 0.076 0.033 0.096* 0.045 0.106* 0.037 0.086 0.11*
2011 0.209** 0.164** 0.237*** 0.067 0.24*** 0.148** 0.128* 0.235*** 0.22***
2012 0.181*** 0.004 0.088 0.204*** 0.086 0.054 0.151** 0.039 0.058
2013 0.024 0.083* 0.064 0.093** 0.062 0.108** 0.072 0.07 0.106*
2014 0.099 0.053 0.037 0.11** 0.142*** 0.114** 0.054 0.118** 0.097**
2015 0.002 0.058 0.037 0.214** 0.269*** 0.329*** 0.227*** 0.207*** 0.318***
2016 -0.051 0.162 0.165 -0.16 0.074 -0.073 -0.041 0.106 0.118
2017 0.148** -0.044 0.012 0.108* 0.039 0.08 0.08 0.012 0.044
2018 -0.127* -0.169** -0.103 0.107* 0.005 0.038 0.012 -0.071 -0.079
2019 0.133 0.047 0.098 0.218*** 0.123 0.106 0.255*** 0.137 0.221**
2020 0.206* 0.024 0.09 0.249* 0.213* 0.218* 0.294** 0.091 0.266**
2021 0.023 0.033 -0.002 -0.055 0.137 0.135 0.018 0.015 0.021
2022 0.073 -0.024 0.084 0.042 -0.017 -0.027 -0.061 -0.03 -0.059
2023 0.242** 0.166** 0.213** 0.085 0.136 0.187* 0.358*** 0.182** 0.251**
Whole period 0.099*** 0.072*** 0.104*** 0.116*** 0.111*** 0.11*** 0.127*** 0.106*** 0.137***

Note: The table shows the mean daily returns in percentage (%) of the k = 10 portfolio for
each study period and for all model variants based on the number and type of input
features. Statistical significance is indicated as follows: *p < 0.1; **p < 0.05; ***p < 0.01.
These values are calculated using Newey-West standard errors with a one-lag correction.
The year in the first column denotes the study period.

critical values calculated using Newey-West standard errors with a one-lag cor-
rection.

The results are less robust compared to accuracy metrics, yet all models
deliver statistically significant returns over the entire period. The ensemble
model DM3 improves upon the Returns models (DM1 and DM2), whereas
DM6 does not enhance the Returns0.5 models (DM4, DM5). The clear winner
over the whole period is ensemble DM9, comprising all four core models, with a
mean daily return of 0.137%. DM7, an ensemble of DM1 and DM3, also shows
promising average returns of around 0.127%. Additionally, the Returns0.5
family models (DM4-DM6) outperformed the Returns family models (DM1-
DM3).

When examining individual years, most models achieve positive returns in
the majority of years, but these returns are generally insignificant, with some
exceptions.

Table 5.3 details financial performance before and after transaction costs
over the entire period. To ensure comparability with benchmark studies, we
apply a transaction cost of 0.05% for both buying and selling. This results in a
daily transaction fee of 0.2%, as four transactions are made each day: buying

5. Results 36

Table 5.3: Financial performance

Returns type Returns Returns0.5 Ensemble
of Features 1 2 Ensemble 1 2 Ensemble 1 2 Ensemble
Model DM1 DM2 DM3 DM4 DM5 DM6 DM7 DM8 DM9
Before transaction costs
Mean returns (%) 0.099*** 0.072*** 0.104*** 0.116*** 0.111*** 0.11*** 0.127*** 0.106*** 0.137***
Buy mean returns (%) 0.083*** 0.065** 0.081*** 0.086*** 0.074*** 0.074*** 0.103*** 0.08*** 0.092***
Sell mean returns (%) 0.016 0.007 0.023 0.03 0.037 0.036 0.024 0.026 0.045*
Minimum (%) -15.982 -17.369 -15.946 -12.697 -19.414 -12.578 -15.144 -13.777 -14.132
Quartile 1 (%) -0.840 -0.778 -0.836 -0.642 -0.732 -0.706 -0.736 -0.741 -0.720
Median (%) 0.078 0.075 0.097 0.107 0.093 0.115 0.109 0.107 0.126
Quartile 3 (%) 1.008 0.942 1.037 0.878 0.954 0.917 0.980 0.976 0.984
Maximum (%) 21.065 14.738 20.985 14.550 14.137 14.385 14.214 13.510 12.477
Standard dev. (%) 2.052 1.802 1.995 1.659 1.809 1.752 1.886 1.751 1.813
Skewness 0.462 -0.071 0.359 -0.040 -0.057 0.202 0.027 0.121 0.048
Excess Kurtosis 8.725 4.279 6.732 5.986 6.623 4.469 5.343 3.371 3.370
Annualized
Returns (%) 21.531 15.036 23.438 28.993 26.705 26.695 31.251 25.393 35.340
Standard dev. (%) 32.580 28.599 31.671 26.343 28.720 27.819 29.940 27.801 28.780
Sharpe Ratio 0.661 0.526 0.740 1.101 0.930 0.960 1.044 0.913 1.228
After transaction costs
Mean returns (%) -0.101 -0.128 -0.096 -0.084 -0.089 -0.090 -0.073 -0.094 -0.063
Buy mean returns (%) -0.017 -0.035 -0.019 -0.014 -0.026 -0.026 0.003 -0.020 -0.008
Sell mean returns (%) -0.084 -0.093 -0.077 -0.070 -0.063 -0.064 -0.076 -0.074 -0.055
Minimum (%) -16.182 -17.569 -16.146 -12.898 -19.614 -12.778 -15.344 -13.977 -14.332
Quartile 1 (%) -1.040 -0.978 -1.036 -0.842 -0.932 -0.906 -0.936 -0.941 -0.920
Median (%) -0.122 -0.125 -0.103 -0.093 -0.107 -0.085 -0.091 -0.093 -0.074
Quartile 3 (%) 0.808 0.742 0.837 0.678 0.754 0.717 0.780 0.776 0.784
Maximum (%) 20.865 14.538 20.785 14.350 13.937 14.185 14.014 13.310 12.277
Standard dev. (%) 2.052 1.802 1.995 1.659 1.809 1.752 1.886 1.751 1.813
Skewness 0.462 -0.071 0.359 -0.040 -0.057 0.202 0.027 0.121 0.048
Excess Kurtosis 8.725 4.279 6.732 5.986 6.623 4.469 5.343 3.371 3.370
Annualized
Returns (%) -26.344 -30.287 -25.186 -21.810 -23.201 -23.206 -20.440 -23.997 -17.956
Standard dev. (%) 32.580 28.599 31.671 26.343 28.720 27.819 29.940 27.801 28.780
Sharpe Ratio -1.059 -0.795 -0.828 -0.808 -0.834 -0.683 -0.863 -0.624

Note: The table details the financial performance of the k = 10 portfolio before and after
transaction costs for all model variants from 2006 to 2023. Transaction costs of 0.05% are
applied for both buying and selling. The statistical significance of mean returns is indicated
as follows: *p < 0.1; **p < 0.05; ***p < 0.01. These values are calculated using
Newey-West standard errors with a one-lag correction.

5. Results 37

and selling stocks for the long portfolio, and selling and buying for the short
portfolio.

Before accounting for transaction costs, both short and long portfolios’ re-
turns are positive. However, only the long portfolios exhibit significant returns,
while the short portfolios’ returns are not significantly different from zero at any
reasonable level. Models using Returns0.5 exhibit slightly lower standard devi-
ation compared to those using Returns. Ensemble models do not consistently
reduce standard deviation or maximum daily loss.

All models display positive excess kurtosis, indicating leptokurtic distribu-
tions with heavier tails and more outliers than a normal distribution. Most
models have positive skewness, except for three core models (DM2, DM4,
and DM5) which exhibit slight negative skewness. Positive skewness, although
small, suggests a distribution of returns skewed to the right.

Annualized returns are notably high, ranging from 15% to 35%, with an
annualized standard deviation between 26% and 33%. We also calculate the
Sharpe Ratio, assuming a risk-free rate of 0%. This assumption does not affect
our conclusions, as we use the Sharpe Ratio to compare model performance and,
in subsequent sections, to compare performance across different horizons. Thus,
assuming a 0% risk-free rate for all horizons does not impact the interpretation
of our results. We observe that Returns0.5 have higher Sharpe Ratio compared
to the Returns models. This indicates that these models not only deliver higher
returns but also achieve this without incurring much additional volatility.

After accounting for transaction costs, none of the models yield positive
returns. Consequently, this strategy does not generate any profit. This out-
come aligns with the findings of our benchmark studies, which also reported
unprofitable results post-2010.

Futures

Next, we analyze whether adding futures to our dataset can enhance the per-
formance of our models. Given that we have approximately 400-500 stocks for
each study period and we are adding only around 20 futures, we do not expect
significant changes. However, it is still worthwhile to investigate any potential
effects.

Table 5.4 displays the accuracy and mean daily returns of models that
include both stocks and futures. Since we have futures data for the Returns0.5

models starting in 2015, our analysis begins in 2018, allowing for a two-year

5. Results 38

Table 5.4: Futures and stocks performance comparison

Returns type Returns Returns0.5 Ensemble
of Features 1 2 Ensemble 1 2 Ensemble 1 2 Ensemble
Model DM1 DM2 DM3 DM4 DM5 DM6 DM7 DM8 DM9
Stocks and futures
Mean returns -0.044 0.062 0.019 0.106 0.071 0.085 0.052 0.106 0.083
Accuracy 50.906 51.216 51.397 51.906 51.253 51.943 51.202 51.296 51.424
Accuracy stocks 50.954 51.712 51.448 51.976 51.333 51.979 51.254 51.437 51.470
Accuracy futures 50.116 46.331 50.579 51.394 50.526 51.626 50.391 49.736 50.733
Futures share in dataset 4.323 4.323 4.323 4.241 4.241 4.241 4.241 4.241 4.241
Futures share in portfolio 5.791 9.223 5.818 12.074 9.923 10.148 6.020 8.286 6.205
Stocks only
Mean returns 0.089 0.010 0.061 0.108 0.099 0.108 0.143 0.052 0.101
Accuracy 51.162 50.876 51.155 51.562 51.212 51.869 51.626 50.700 51.168

Note: The table displays the accuracy and mean daily returns of the k = 10 portfolio for all
model variants that include both stocks and futures from 2018 to 2023. For comparison, the
performance of the original models, which use only stocks over the same period, are also
provided. Aditionally, the table includes the proportion of futures in the dataset and in the
k = 10 portfolio to assess whether the models favor the inclusion of futures in the portfolio.

training period and a one-year validation period. For comparison, we also
include the performance of the original models for the same period between
2018 and 2023.

We observe that the accuracy of models incorporating both futures and
stocks is comparable to those using stocks only. However, the mean returns are
almost always higher for the stocks-only models. Interestingly, looking at the
futures and stocks models, the accuracy is consistently higher for stocks than for
futures, the Returns0.5 models exhibit higher accuracy for futures compared to
the Returns models. Additionally, in the Returns0.5 models, futures constitute
about 10% of the selected portfolio, despite representing only around 4% of the
entire dataset. This suggests that the fractionally differentiated series used in
the Returns0.5 models might be capturing patterns that the Returns models
are unable to detect. Finally, based on these findings, we prefer stocks-only
models over those extended by futures.

5.2 Hourly horizon
For the hourly horizon, we use a similar architecture to the daily horizon but
with only one input feature, as realized volatility cannot be calculated for
hourly data (see Chapter 4). The input length is 160. Due to computational
and memory constraints, we randomly select 50% of data points for training

5. Results 39

and validation while still using all stocks (or futures). For testing, we retain
100% of the data.

Since we cannot use realized volatility as an input feature and we can start
using both futures and stocks in our dataset from 2012 we have 54 models.
The total training time was approximately 40 hours without hyperparameter
tuning.

Evaluation

For the hourly horizon, we evaluate only two core models: HM1, which has a
single input feature Returns, and HM4, which also has a single input feature
Returns0.3. Given that we have only two models, we can perform only one
ensemble, HM7. The numbering of these models corresponds to their respective
daily models.

Accuracy and Financial performance

Table 5.5 presents the accuracy and mean hourly returns for all the study
periods individually as well as for the whole period. We can see that on average
over the entire period from 2006 to 2023 Returns (HM1) outperforms both the
Returns0.3 (HM4) and the Ensemble model (HM7) in terms of overall accuracy
and mean hourly returns.

There are interesting findings when comparing the hourly horizon with the
daily horizon. For the hourly horizon, the accuracy is consistently statistically
significant, and this significance also applies to mean returns for most periods.
One explanation for this is the larger dataset available for the hourly hori-
zon, which inherently enhances the statistical significance. Despite this, the
accuracy for the hourly horizon is still higher than that for the daily horizon,
indicating an actual improvement beyond just dataset size. This improvement
might be due to the presence of more market inefficiencies in the short horizon,
as the market does not have sufficient time to correctly price all the information.

However, directly comparing mean returns between hourly and daily hori-
zons is not feasible because hourly returns are naturally smaller due to the
shorter time frame. Therefore, to provide a more meaningful comparison, we
will evaluate annualized returns and other comparable metrics in the final sec-
tion of this chapter.

Table 5.6 shows the financial performance. As expected, the HM1 model
delivers the highest annualized returns, an impressive 131%. However, this

5. Results 40

Table 5.5: Hourly accuracy and mean hourly returns

Returns type Returns Returns0.3 Ensemble Returns Returns0.3 Ensemble
of Features 1 1 1 1 1 1
Model HM1 HM4 HM7 HM1 HM4 HM7

Accuracy Mean returns
2006 53.052*** 52.296*** 52.921*** 0.064*** 0.049*** 0.065***
2007 53.244*** 53.621*** 53.507*** 0.074*** 0.069*** 0.08***
2008 52.193*** 51.445*** 51.816*** -0.003 0.083*** 0.06**
2009 53.509*** 52.323*** 53.058*** 0.083*** -0.001 0.05**
2010 53.956*** 52.12*** 51.283*** 0.106*** 0.045*** 0.063***
2011 53.014*** 52.818*** 52.506*** 0.082*** 0.068*** 0.079***
2012 52.666*** 52.38*** 52.586*** 0.07*** 0.061*** 0.077***
2013 53.16*** 52.577*** 52.856*** 0.054*** 0.059*** 0.057***
2014 52.81*** 52.639*** 52.739*** 0.052*** 0.06*** 0.057***
2015 52.062*** 51.903*** 51.645*** 0.045*** 0.042*** 0.049***
2016 52.179*** 51.382*** 51.416*** 0.012 0.007 -0.009
2017 53.481*** 51.548*** 52.295*** 0.057*** 0.012* 0.04***
2018 51.538*** 51.909*** 51.438*** 0.018** 0.037*** 0.028***
2019 51.713*** 50.202 50.673*** 0.01 0.011 0.03**
2020 52.456*** 52.114*** 51.99*** 0.072*** 0.078*** 0.07***
2021 52.166*** 51.216*** 51.134*** 0.059*** 0.004 0.028**
2022 51.553*** 51.199*** 51.034*** 0.037** 0.017 0.039***
2023 50.671*** 50.598** 49.807 0.021* 0.002 0.009
Whole period 52.534*** 51.912*** 51.939*** 0.051*** 0.039*** 0.049***

Note: The table shows the hourly accuracy and mean hourly returns (%) of the k = 10
portfolio for each study period and for all model variants based on the number and type of
input features. Statistical significance is indicated as follows: *p < 0.1; **p < 0.05; ***p <
0.01. p-values for accuracy are based on the binomial test against a 50% random chance,
while p-values for mean returns are calculated using Newey-West standard errors with a
one-lag correction. The year in the first column denotes the study period.

5. Results 41

Table 5.6: Financial performance hourly horizon

Returns type Returns Returns0.3 Ensemble
of Features 1 1 1
Model HM1 HM4 HM7
Before transaction costs
Mean returns (%) 0.051*** 0.039*** 0.049***
Buy mean returns (%) 0.037*** 0.030*** 0.032***
Sell mean returns (%) 0.014*** 0.010** 0.017***
Minimum (%) -16.528 -11.793 -12.166
Quartile 1 (%) -0.225 -0.207 -0.212
Median (%) 0.048 0.037 0.048
Quartile 3 (%) 0.332 0.287 0.313
Maximum (%) 9.974 9.248 12.873
Standard dev. (%) 0.763 0.660 0.703
Skewness -1.192 -0.269 -0.622
Excess Kurtosis 31.199 24.365 27.071
Annualized
Returns (%) 130.966 91.034 124.301
Standard dev. (%) 32.033 27.726 29.526
Sharpe Ratio 4.088 3.283 4.210
After transaction costs
Mean returns (%) -0.149 -0.161 -0.151
Buy mean returns (%) -0.063 -0.070 -0.068
Sell mean returns (%) -0.086 -0.090 -0.083
Minimum (%) -16.728 -11.993 -12.366
Quartile 1 (%) -0.425 -0.407 -0.412
Median (%) -0.152 -0.163 -0.152
Quartile 3 (%) 0.132 0.087 0.113
Maximum (%) 9.774 9.048 12.673
Standard dev. (%) 0.763 0.660 0.703
Skewness -1.192 -0.269 -0.622
Excess Kurtosis 31.199 24.365 27.071
Annualized
Returns (%) -93.016 -94.226 -93.218
Standard dev. (%) 32.033 27.726 29.526
Sharpe Ratio -2.904 -3.398 -3.157

Note: The table details the financial performance of the k = 10 portfolio before and after
transaction costs for all model variants from 2006 to 2023. Transaction costs of 0.05% are
applied for both buying and selling. The statistical significance of mean returns is indicated
as follows: *p < 0.1; **p < 0.05; ***p < 0.01. These values are calculated using
Newey-West standard errors with a one-lag correction.

5. Results 42

Table 5.7: Futures and stocks performance comparison for hourly
horizon

Returns type Returns Returns0.3 Ensemble
of Features 1 1 1
Model HM1 HM4 HM7
Stocks and futures
Mean returns 0.025 0.021 0.031
Accuracy 51.698 51.366 51.320
Accuracy stocks 51.769 51.423 51.338
Accuracy futures 50.179 50.977 51.014
Futures share in dataset 4.308 4.100 4.100
Futures share in portfolio 4.450 12.667 5.588
Stocks only
Mean returns 0.037 0.023 0.032
Accuracy 51.995 51.350 51.287

Note: The table displays the accuracy and mean hourly returns of the k = 10 portfolio for
all model variants that include both stocks and futures from 2015 to 2023. For comparison,
the performance of the original models, which use only stocks over the same period, are also
provided. Aditionally, the table includes the proportion of futures in the dataset and in the
k = 10 portfolio to assess whether the models favor the inclusion of futures in the portfolio.

comes at the cost of the highest standard deviation, which is 32%. Despite
this high volatility, HM1 still achieves the highest Sharpe ratio, approximately
4.1, indicating a strong risk-adjusted return. The ensemble model (HM7) also
shows promising results with a Sharpe ratio of 4.2 the highest of all 3 models.
Due to high transaction costs no model delivered positive returns.

Futures

Finally, Table 5.7 shows the impact of adding futures to our dataset from
2015 onwards (due to data availability). For comparability, we also include
the performance of the original models over the same period. We observe that
stocks-only models consistently exhibit higher mean returns and higher or very
similar accuracy compared to models that use both stocks and futures. This
trend is consistent with the findings observed for the daily horizon.

Notably, the fractionally differentiated series, Returns0.3, selects around
12.7% of futures in its portfolio, significantly higher than the 4% that would be
expected by random selection. This strengthens the argument that these series
can capture patterns in futures data that standard logarithmic returns cannot.
However, based on the results, we once again prefer models using stocks only
over models using both stocks and futures.

5. Results 43

Table 5.8: Weekly accuracy

Returns type Returns Returns0.65 Ensemble
of Features 1 2 Ensemble 1 2 Ensemble 1 2 Ensemble
Model WM1 WM2 WM3 WM4 WM5 WM6 WM7 WM8 WM9
2007 50.577 51.349 51.827
2008 50.872 47.406 50.581
2009 50.769 50.887 51.154
2010 49.423 47.839 50.769
2011 54.135*** 53.173** 55.096***
2012 50.755 49.811 51.415
2013 49.231 49.038 48.846 50.0 50.288 50.577 48.269 48.173 50.481
2014 54.135*** 49.605 53.654*** 50.481 48.365 51.442 52.212* 48.462 53.558**
2015 55.192*** 50.355 55.481*** 49.423 51.877 49.904 52.692** 50.673 51.731
2016 48.269 48.173 47.788 52.019 52.309* 53.846*** 47.5 49.038 46.827
2017 51.509 51.038 52.453* 53.585** 50.094 53.302** 52.925** 53.962*** 54.811***
2018 50.865 51.737 51.538 52.885** 51.25 51.442 51.538 53.173** 52.885**
2019 52.788** 47.343 50.962 48.362 46.408 47.981 50.0 47.308 49.038
2020 47.093 48.615 47.977 51.731 49.18 52.212* 50.673 49.423 50.385
2021 51.923 52.019 50.962 51.154 49.135 51.346 51.25 49.808 49.808
2022 50.769 50.865 50.0 55.096*** 49.808 53.846*** 51.058 50.481 52.788**
2023 49.375 49.236 49.792 51.042 48.125 49.062 50.833 47.708 48.75
2013-2023 51.029** 49.846 50.87** 51.441*** 49.718 51.38*** 50.817** 49.859 51.028**

Note: The table shows the weekly accuracy in percentage (%) of the k = 10 portfolio for
each study period and for all model variants based on the number and type of input
features. A binomial test was used to compare the accuracy against a 50% random chance,
with statistical significance indicated as follows: *p < 0.1; **p < 0.05; ***p < 0.01. The
year in the first column denotes the study period.

5.3 Weekly horizon
For the weekly horizon, we follow the same procedure as with the daily horizon.
In this case, we set the input length to 100. We decrease the batch size to 512,
LSTM units to 20, and the fully connected layer to 4 units. Finally, we increase
the training period to 3 years, while other hyperparameters remain the same.

We use Returns0.65 as a fractionally differentiated series input feature. How-
ever, due to the data availability of futures, Returns0.8 is used for comparing
models using both stocks and futures with stocks-only models. In total, we
trained 74 models which took around 6 hours on a GPU.

Evaluation

For this horizon, we have the same four core models and the corresponding five
ensemble models as we do for the daily horizon. The naming convention is also
the same, with the prefix W replacing D, leading to the models being labeled
as WM1 through WM9. Models using Returns0.8 instead of Returns0.65 are
denoted as WM4*-WM9*.

5. Results 44

Table 5.9: Mean weekly returns

Returns type Returns Returns0.65 Ensemble
of Features 1 2 Ensemble 1 2 Ensemble 1 2 Ensemble
Model WM1 WM2 WM3 WM4 WM5 WM6 WM7 WM8 WM9
2007 -0.052 -0.057 0.012
2008 -0.102 -0.206 -0.321
2009 -1.493 -0.195 -1.174
2010 -0.232 -0.477 -0.172
2011 0.559** 0.431* 0.647**
2012 0.097 0.156 0.45**
2013 -0.111 -0.124 -0.077 0.126 -0.196 -0.12 0.01 -0.506 -0.165
2014 0.615** 0.125 0.742** 0.108 -0.12 0.229 0.361* 0.115 0.444*
2015 0.563* 0.146 0.591** -0.043 0.323* 0.096 0.181 0.346 0.384
2016 -1.257 -0.135 -1.205 0.759* 0.36* 0.53** -0.679 0.437** -0.648
2017 0.321 -0.165 -0.164 0.567* 0.223 0.614* 0.314 0.006 0.015
2018 0.148 0.117 0.084 0.503 0.316 0.189 0.272 0.546** 0.378
2019 0.117 -0.214 -0.026 -0.66 -0.338 -0.704 -0.322 -0.266 -0.252
2020 -0.717 -0.282 -0.688 0.323 -0.136 0.216 -0.306 -0.191 -0.736
2021 0.072 0.166 -0.026 0.14 -0.459 -0.013 0.108 -0.09 0.007
2022 0.283 0.176 0.267 0.917** -0.075 0.743** 0.512 -0.267 -0.177
2023 0.529 0.172 0.544* 0.108 -0.127 -0.116 0.033 -0.09 0.032
2013-2023 0.048 -0.003 -0.0 0.26* -0.02 0.154 0.045 0.004 -0.066

Note: The table shows the mean weekly returns in percentage (%) of the k = 10 portfolio
for each study period and for all model variants based on the number and type of input
features. Statistical significance is indicated as follows: *p < 0.1; **p < 0.05; ***p < 0.01.
These values are calculated using Newey-West standard errors with a one-lag correction.
The year in the first column denotes the study period.

Accuracy and Financial performance

Table 5.8 displays the accuracy across all study periods based on data avail-
ability, as well as the overall accuracy from 2013 to 2023, the period for which
data is available for all models. We observe the accuracy decreasing in com-
parison with previously discussed horizons and given the much smaller dataset
for the weekly horizon, the accuracy for most years is not statistically better
than a random guess. Notably, models using only one input feature tend to
outperform other configurations.

The mean weekly returns, as illustrated in Table 5.9, further emphasize the
disappointing outcomes. Among the models, only the WM4 model delivers
statistically significant positive returns of 0.26% over the 2013-2023 period.
Additionally, four out of the nine models report negative returns.

Table 5.10 shows that annualized returns are positive only for the WM4
and WM6 models before accounting for transaction costs. However, with an
annualized standard deviation of approximately 30%, we cannot consider this
as a good performance. This poor performance can be attributed to the impact
of short selling. When analyzing mean weekly returns exclusively from a buying

5. Results 45

Table 5.10: Financial performance weekly horizon

Returns type Returns Returns0.65 Ensemble
of Features 1 2 Ensemble 1 2 Ensemble 1 2 Ensemble
Model WM1 WM2 WM3 WM4 WM5 WM6 WM7 WM8 WM9
Before transaction costs
Mean returns (%) 0.048 -0.003 -0.000 0.260* -0.020 0.154 0.045 0.004 -0.066
Buy mean returns (%) 0.300*** 0.223** 0.244** 0.471*** 0.279*** 0.420*** 0.357*** 0.237** 0.320***
Sell mean returns (%) -0.252 -0.226 -0.244 -0.210 -0.298 -0.266 -0.313 -0.232 -0.385
Minimum (%) -21.696 -11.210 -21.902 -40.025 -9.349 -40.025 -35.535 -10.969 -36.839
Quartile 1 (%) -1.802 -1.014 -1.770 -1.442 -1.167 -1.266 -1.689 -1.251 -1.684
Median (%) 0.341 -0.013 0.356 0.232 -0.091 0.150 0.287 -0.034 0.190
Quartile 3 (%) 2.123 1.080 2.056 2.006 0.968 1.718 2.162 1.294 1.887
Maximum (%) 16.385 11.645 15.677 29.169 12.455 27.662 23.634 7.609 24.668
Standard dev. (%) 3.866 2.101 3.910 4.347 2.098 4.139 4.482 2.275 4.403
Skewness -0.598 -0.113 -0.479 -0.828 0.398 -1.028 -1.373 -0.201 -1.498
Excess Kurtosis 0.597 1.152 0.837 17.694 0.656 21.165 11.104 -1.121 14.334
Annualized
Returns (%) -1.426 -1.294 -3.951 8.713 -2.126 3.354 -3.148 -1.114 -8.388
Standard dev. (%) 27.877 15.149 28.196 31.349 15.126 29.848 32.323 16.403 31.749
Sharpe Ratio -0.051 -0.085 -0.140 0.278 -0.141 0.112 -0.097 -0.068 -0.264
After transaction costs
Mean returns (%) -0.152 -0.203 -0.200 0.060 -0.220 -0.046 -0.155 -0.196 -0.266
Buy mean returns (%) 0.200** 0.123 0.144* 0.371*** 0.179** 0.320*** 0.257** 0.137* 0.220**
Sell mean returns (%) -0.352 -0.326 -0.344 -0.310 -0.398 -0.366 -0.413 -0.332 -0.485
Minimum (%) -21.896 -11.410 -22.102 -40.225 -9.549 -40.225 -35.735 -11.169 -37.039
Quartile 1 (%) -2.002 -1.214 -1.970 -1.642 -1.367 -1.466 -1.889 -1.451 -1.884
Median (%) 0.141 -0.213 0.156 0.032 -0.291 -0.050 0.087 -0.234 -0.010
Quartile 3 (%) 1.923 0.880 1.856 1.806 0.768 1.518 1.962 1.094 1.687
Maximum (%) 16.185 11.445 15.477 28.969 12.255 27.462 23.434 7.409 24.468
Standard dev. (%) 3.866 2.101 3.910 4.347 2.098 4.139 4.482 2.275 4.403
Skewness -0.598 -0.113 -0.479 -0.828 0.398 -1.028 -1.373 -0.201 -1.498
Excess Kurtosis 0.597 1.152 0.837 17.694 0.656 21.165 11.104 -1.121 14.334
Annualized
Returns (%) -11.133 -11.008 -13.414 -1.977 -11.761 -6.817 -12.692 -10.846 -17.425
Standard dev. (%) 27.877 15.149 28.196 31.349 15.126 29.848 32.323 16.403 31.749
Sharpe Ratio -0.399 -0.727 -0.476 -0.063 -0.778 -0.228 -0.393 -0.661 -0.549

Note: The table details the financial performance of the k = 10 portfolio before and after
transaction costs for all model variants from 2013 to 2023. Transaction costs of 0.05% are
applied for both buying and selling. The statistical significance of mean returns is indicated
as follows: *p < 0.1; **p < 0.05; ***p < 0.01. These values are calculated using
Newey-West standard errors with a one-lag correction.

5. Results 46

Table 5.11: Futures and stocks performance comparison for weekly
horizon

Returns type Returns Returns0.8 Ensemble
of Features 1 2 Ensemble 1 2 Ensemble 1 2 Ensemble
Model WM1 WM2 WM3 WM4∗ WM5∗ WM6∗ WM7∗ WM8∗ WM9∗

Stocks and futures
Mean returns 0.063 -0.206 -0.213 0.106 0.172 0.122 0.056 -0.096 -0.182
Accuracy 50.230 47.462 47.961 51.414 51.118 51.250 50.296 49.112 48.783
Accuracy stocks 50.137 48.335 48.631 51.000 50.729 51.300 49.816 49.487 49.162
Accuracy futures 52.381 37.603 38.021 53.579 53.973 50.904 54.348 44.186 42.614
Futures share in dataset 4.363 4.363 4.363 4.640 4.640 4.640 4.640 4.640 4.640
Futures share in portfolio 4.145 8.134 6.316 16.086 12.007 12.730 10.592 7.072 5.789
Stocks only
Mean returns 0.288 0.171 0.254 0.358 -0.225 0.038 0.477 -0.027 0.220
Accuracy 50.724 50.955 50.263 50.296 50.066 49.507 51.480 50.329 50.033

Note: The table displays the accuracy and mean weekly returns of the k = 10 portfolio for
all model variants that include both stocks and futures from 2021 to 2023. For comparison,
the performance of the original models, which use only stocks over the same period, are also
provided. Aditionally, the table includes the proportion of futures in the dataset and in the
k = 10 portfolio to assess whether the models favor the inclusion of futures in the portfolio.

perspective, the returns are statistically positive. This could be because stocks,
on average, tend to grow more frequently than they decline, making short
selling less effective overall. Due to the lower turnover, the buy-only side of
the portfolio results in positive and even significant mean weekly returns, even
after accounting for transaction costs. Based on these results, we would prefer
the WM4 model over other models.

These results are not very surprising, the results of Fischer & Krauss (2018)
also show significantly poorer performance of weekly models over daily models.
Another similarity of our study with that of Fischer & Krauss (2018) is the
much better performance of the buy-only side. However, our results are still
worse than that of Fischer & Krauss (2018). One possible explanation could be
that since 2010, markets may have become more efficient in relation to machine
learning methods as the authors argue and in the original study the authors
analyzed a longer period prior to 2010, which is not covered in our study.

Futures

Table 5.11 compares the performance of models that use both futures and
stocks against models that use only stocks. Because the analysis is based on
a limited timeframe of just three years, from 2021 to 2023, the results should
be interpreted with caution. Nonetheless, similar trends to those observed in
previously described time horizons can be identified. Notably, models using

5. Results 47

fractionally differentiated series show a higher tendency to include futures in
their portfolios compared to other models. This strengthens our finding that
these series can detect patterns that traditional logarithmic returns cannot.

Additionally, the accuracy of stocks-only models is higher for Returns mod-
els, while for Returns0.8, the accuracy is higher for models incorporating both
stocks and futures. Based on these results, we would likely prefer models ex-
tended with futures. However, due to the limited three-year analysis period,
we cannot definitively conclude that futures provide a significant benefit.

5.4 Monthly horizon
Finally, we train monthly horizon. We decrease LSTM units to 16. The fully
connected layer to 4 units and the batch size to 512. Other hyperparamters
are the same as for the weekly horizon. For the monthly horizon, we do not
have a fractionally differentiated series since it would significantly reduce our
training sample as we already explained in Chapter 4. The input length is 60
for realized volatility and logarithmic returns. In total, we trained 32 models
which took around 1 hour.

Evaluation

For the monthly horizon, we once again evaluate only two core models: MM1,
which has a single input feature, Returns, and MM2, which includes RV as an
additional input feature. This allows us to perform only one ensemble, MM3.
Again, the numbering of these models corresponds to their respective daily
models.

Accuracy and Financial performance

Table 5.12 exhibits both monthly accuracy as well as mean monthly returns.
Notably, only the ensemble model (MM3) achieved an accuracy significantly
higher than the 50% random threshold throughout the entire period. This
high average accuracy is primarily due to a few exceptional years, such as
2014, which had an accuracy exceeding 58%, and 2015 and 2017, both with ac-
curacies over 57%. These outlier years contributed to the overall high average
accuracy from 2011 to 2023. While this performance is comparable to previ-
ously analyzed horizons, caution is warranted because the high accuracy holds

5. Results 48

Table 5.12: Monthly accuracy and mean monthly returns

Returns type Returns Returns
of Features 1 2 Ensemble 1 2 Ensemble
Model MM1 MM2 MM3 MM1 MM2 MM3

Accuracy Mean returns
2011 47.917 50.22 48.333 -1.773 0.512 -1.605
2012 49.167 53.333 48.333 -0.053 0.576 -0.591
2013 49.167 42.917 49.167 -1.131 -1.203 -1.104
2014 49.583 57.083** 58.75*** 0.028 -0.699 0.28
2015 53.333 52.083 57.5** 0.791 1.434 1.932
2016 45.833 47.917 46.25 -1.592 -2.174 -3.07
2017 54.167 52.917 57.5** 2.139** 1.866** 2.67**
2018 47.083 55.833** 52.083 -0.794 0.468 0.353
2019 50.417 41.25 45.833 0.427 -3.571 -2.072
2020 55.0* 44.828 51.667 0.458 -2.751 -1.08
2021 52.917 49.583 52.083 1.365 -0.08 1.379
2022 44.167 53.333 51.667 -4.516 -0.995 -1.371
2023 53.636 49.545 50.455 -0.435 0.388 -1.203
Whole period 50.161 50.081 51.516** -0.391 -0.485 -0.417

Note: The table shows the monthly accuracy and mean monthly returns (%) of the k = 10
portfolio for each study period and for all model variants based on the number and type of
input features. Statistical significance is indicated as follows: *p < 0.1; **p < 0.05; ***p <
0.01. p-values for accuracy are based on the binomial test against a 50% random chance,
while p-values for mean returns are calculated using Newey-West standard errors with a
one-lag correction. The year in the first column denotes the study period.

5. Results 49

true only for this one model, and the small dataset might mean the model’s
success is due to chance.

While the other models also exceeded the 50% accuracy mark, their per-
formance was not statistically significant at any reasonable level. This lack
of significance can be attributed to both their lower accuracy and the smaller
dataset used for these monthly horizons compared to previously discussed hori-
zons.

The mean monthly returns are also relatively weak, with only the year 2017
showing positive and significant returns. Interestingly, all models delivered
positive and significant results in that year. However, when looking at the
average returns over the entire period, none of the models generated positive
returns.

Table 5.13 provides a more detailed breakdown of the financial performance
of our models. Similar to the weekly horizon results, we observe that the buy-
only side of the portfolio produced positive returns. For MM2, these returns
were even statistically significant. Another notable observation is that the
standard deviation of the portfolio with monthly turnover is much lower, around
21% annualized, compared to other horizons. This is expected as fewer buy
and sell orders are executed on a monthly basis, reducing overall volatility.

Once again, these results are not surprising. As previously explained, mar-
kets have become more efficient in regard to machine learning models after 2010
(Fischer & Krauss 2018). Additionally, on a monthly horizon, we expect fewer
inefficiencies for the models to uncover, as these inefficiencies are likely to be
priced in due to the longer reaction period of market participants.

Futures

Table 5.14 compares the performance of models using both stocks and futures as
input data to models using stocks only. Due to data availability, we can only
analyze the period between 2021 and 2023. Therefore, these results should
be interpreted with caution due to the short test span. We observe that in-
corporating futures into the dataset significantly reduces accuracy. None of
the models achieved an accuracy higher than 50% with the combined dataset.
This contrasts with the stocks-only models, which all achieved accuracies above
50% over the same period. Specifically, the accuracy of predicting futures
movements alone for the core models is around 44-46%. The ensemble model,
however, shows a slightly better performance with an accuracy of approxi-

5. Results 50

Table 5.13: Financial performance monthly horizon

Returns type Returns
of Features 1 2 Ensemble
Model MM1 MM2 MM3
Before transaction costs
Mean returns (%) -0.391 -0.485 -0.417
Buy mean returns (%) 0.295 0.882** 0.25
Sell mean returns (%) -0.687 -1.367 -0.667
Minimum (%) -22.173 -21.564 -22.124
Quartile 1 (%) -3.553 -3.502 -3.478
Median (%) 0.372 -0.078 0.370
Quartile 3 (%) 3.034 3.060 2.875
Maximum (%) 12.641 13.121 13.767
Standard dev. (%) 6.120 5.676 6.078
Skewness -0.805 -0.660 -0.747
Excess Kurtosis -1.377 -1.534 -1.408
Annualized
Returns (%) -6.762 -7.490 -7.012
Standard dev. (%) 21.202 19.664 21.055
Sharpe Ratio -0.319 -0.381 -0.333
After transaction costs
Mean returns (%) -0.591 -0.685 -0.617
Buy mean returns (%) 0.195 0.782** 0.150
Sell mean returns (%) -0.787 -1.467 -0.767
Minimum (%) -22.373 -21.764 -22.324
Quartile 1 (%) -3.753 -3.702 -3.678
Median (%) 0.172 -0.278 0.170
Quartile 3 (%) 2.834 2.860 2.675
Maximum (%) 12.441 12.921 13.567
Standard dev. (%) 6.120 5.676 6.078
Skewness -0.805 -0.660 -0.747
Excess Kurtosis -1.377 -1.534 -1.408
Annualized
Returns (%) -8.979 -9.690 -9.223
Standard dev. (%) 21.202 19.664 21.055
Sharpe Ratio -0.423 -0.493 -0.438

Note: The table details the financial performance of the k = 10 portfolio before and after
transaction costs for all model variants from 2011 to 2023. Transaction costs of 0.05% are
applied for both buying and selling. The statistical significance of mean returns is indicated
as follows: *p < 0.1; **p < 0.05; ***p < 0.01. These values are calculated using
Newey-West standard errors with a one-lag correction.

5. Results 51

Table 5.14: Futures and stocks performance comparison for monthly
horizon

Returns type Returns
of Features 1 2 Ensemble
Model MM1 MM2 MM3
Stocks and futures
Mean returns -1.405 0.092 -0.766
Accuracy 48.143 48.143 49.286
Accuracy stocks 48.826 48.952 48.944
Accuracy futures 44.231 45.714 50.758
Futures share in dataset 4.989 4.989 4.989
Futures share in portfolio 14.857 25.000 18.857
Stocks only
Mean returns -1.217 -0.247 -0.375
Accuracy 50.143 50.857 51.429

Note: The table displays the accuracy and mean monthly returns of the k = 10 portfolio for
all model variants that include both stocks and futures from 2021 to 2023. For comparison,
the performance of the original models, which use only stocks over the same period, are also
provided. Aditionally, the table includes the proportion of futures in the dataset and in the
k = 10 portfolio to assess whether the models favor the inclusion of futures in the portfolio.

mately 50.8% for the futures. Despite the poor accuracy in predicting futures
movements, all models showed a preference for selecting futures over stocks in
the portfolio. This is interesting because, for previous horizons, we observed
this tendency only for the fractionally differentiated series. However, for the
monthly data analyzed here, fractionally differentiated series were not available
due to data constraints. Given the very short test period and the small data
sample, we should be cautious in drawing strong conclusions from these results.

5.5 Comparing horizons
To conclude this chapter, we evaluate the performance of our models across var-
ious prediction horizons. Our analysis indicates that incorporating futures into
our dataset does not result in significant performance improvements. There-
fore, we focus our evaluation on models using stock data exclusively. For each
horizon, we select the model with the highest accuracy. Specifically, we choose
DM6 for the daily horizon, HM1 for the hourly horizon, WM4 for the weekly
horizon, and MM3 for the monthly horizon. This selection indicates that there
is no single model specification that consistently performs best across all hori-
zons.

Additionally, we consider ensemble models that combine all core models.
For the different prediction horizons, the selected ensemble models are DM9 for

5. Results 52

the daily horizon, HM7 for the hourly horizon, WM9 for the weekly horizon, and
MM3 for the monthly horizon. These ensemble models are chosen because they
aggregate the predictions of all core models, potentially leading to enhanced
robustness and improved generalization.

Table 5.15 presents the annual accuracies for all horizons. On average,
the hourly horizon model predicts future price movements with the highest
accuracy, followed by the monthly, daily, and weekly horizons. Additionally,
we observe that the accuracy for all horizons is significantly higher than 50%
over the entire period from 2013 to 2023. This pattern holds true for both the
models selected by the highest accuracy and the ensemble models.

The high accuracy observed for the monthly horizon is quite surprising. But
as we explained earlier this appears to be driven by a few exceptionally high-
performing years. For instance, the accuracy for 2014 was as high as 58.75%,
and both 2015 and 2017 had accuracies of 57.5%. Given the relatively small
testing sample due to the monthly nature of the data, it is possible that the
model’s high performance in these years may be due to chance, leading to an
overall high accuracy.

When comparing the annualized returns before transaction costs and the
annualized standard deviation in Table 5.16, we observe that the highest returns
are achieved with an hourly horizon, followed by daily, weekly, and monthly
horizons. Notably, the monthly horizon fails to produce positive returns. The
standard deviation is approximately 30% for the hourly, daily, and weekly
horizons, whereas it decreases to 22% for the monthly horizon. For the weekly
horizon, much of the high standard deviation can be attributed to the year
2020, when the standard deviation was 76%, excluding this year, the standard
deviation would also be lower. Consequently, the risk-return ratio is most
favorable for the hourly horizon. However, as discussed in previous sections, no
model yielded positive returns after accounting for transaction costs. Therefore,
a trading strategy based solely on a simple k portfolio is impractical when
transaction costs are 0.05%. This is unfortunate but as we already explained
it is in check with our benchmark.

5. Results 53

Table 5.15: Accuracy

Highest accuracy models Ensemble models
Horizon Hourly Daily Weekly Monthly Hourly Daily Weekly Monthly

Returns type Returns Returns0.5 Returns0.65 Returns Ensemble Ensemble Ensemble Returns
of Features 1 Ensemble 1 Ensemble 1 Ensemble Ensemble Ensemble
Model HM1 DM6 WM4 MM3 HM7 DM9 WM9 MM3
2006 53.052*** 52.829*** 52.921*** 54.522***
2007 53.244*** 52.41*** 53.507*** 51.673***
2008 52.193*** 52.569*** 51.816*** 53.498***
2009 53.509*** 51.349** 53.058*** 51.19**
2010 53.956*** 51.746*** 51.283*** 50.238
2011 53.014*** 51.925*** 48.333 52.506*** 51.726*** 48.333
2012 52.666*** 52.28*** 48.333 52.586*** 51.44** 48.333
2013 53.16*** 52.004*** 50.0 49.167 52.856*** 51.885*** 50.481 49.167
2014 52.81*** 50.774 50.481 58.75*** 52.739*** 51.27** 53.558** 58.75***
2015 52.062*** 53.016*** 49.423 57.5** 51.645*** 52.738*** 51.731 57.5**
2016 52.179*** 50.317 52.019 46.25 51.416*** 50.952* 46.827 46.25
2017 53.481*** 51.076* 53.585** 57.5** 52.295*** 50.837 54.811*** 57.5**
2018 51.538*** 51.454** 52.885** 52.083 51.438*** 49.442 52.885** 52.083
2019 51.713*** 51.925*** 48.362 45.833 50.673*** 51.369** 49.038 45.833
2020 52.456*** 52.391*** 51.731 51.667 51.99*** 52.609*** 50.385 51.667
2021 52.166*** 51.885*** 51.154 52.083 51.134*** 51.31** 49.808 52.083
2022 51.553*** 50.916* 55.096*** 51.667 51.034*** 49.88 52.788** 51.667
2023 50.671*** 52.721*** 51.042 50.455 49.807 52.522*** 48.75 50.455
2013-2023 52.177*** 51.671*** 51.441*** 52.099*** 51.564*** 51.337*** 51.028** 52.099***

Note: The table shows the accuracy in percentage (%) of the k = 10 portfolio for each
study period and for selected models based on either the highest accuracy or the ensemble
for each horizon. A binomial test was used to compare the accuracy against a 50% random
chance, with statistical significance indicated as follows: *p < 0.1; **p < 0.05; ***p < 0.01.
The year in the first column denotes the study period.

5. Results 54

Table 5.16: Annualized returns before transaction costs (annualized
stadard devation)

Highest accuracy models Ensemble models
Horizon Hourly Daily Weekly Monthly Hourly Daily Weekly Monthly

Returns type Returns Returns0.5 Returns0.65 Returns Ensemble Ensemble Ensemble Returns
of Features 1 Ensemble 1 Ensemble Ensemble Ensemble Ensemble Ensemble
Model HM1 DM6 WM4 MM3 HM7 DM9 WM9 MM3
2006 201 (21) 30 (18) 209 (19) 85 (17)
2007 257 (22) 32 (20) 294 (22) 22 (22)
2008 -24 (64) 68 (42) 145 (57) 153 (53)
2009 278 (52) -14 (50) 113 (49) -5 (48)
2010 518 (30) 29 (16) 198 (19) 30 (17)
2011 315 (24) 42 (21) -18 (10) 293 (21) 70 (20) -18 (10)
2012 234 (20) 12 (19) -9 (24) 278 (20) 14 (19) -9 (24)
2013 152 (18) 30 (16) 6 (15) -13 (13) 169 (18) 29 (17) -9 (12) -13 (13)
2014 143 (21) 32 (14) 5 (14) 1 (23) 166 (19) 26 (15) 25 (14) 1 (23)
2015 112 (28) 120 (28) -3 (14) 22 (25) 129 (28) 117 (22) 20 (20) 22 (25)
2016 15 (37) -21 (31) 44 (26) -34 (28) -18 (32) 27 (34) -34 (36) -34 (28)
2017 165 (17) 20 (18) 32 (19) 36 (16) 101 (16) 10 (19) -1 (17) 36 (16)
2018 35 (19) 8 (21) 26 (23) 4 (12) 60 (19) -20 (22) 20 (18) 4 (12)
2019 16 (21) 25 (28) -32 (27) -23 (12) 63 (25) 67 (29) -16 (27) -23 (12)
2020 214 (50) 61 (39) -13 (76) -14 (22) 209 (46) 83 (38) -50 (74) -14 (22)
2021 171 (26) 34 (31) 2 (32) 15 (21) 58 (27) 0 (32) -5 (32) 15 (21)
2022 83 (29) -10 (29) 56 (25) -19 (28) 92 (29) -18 (31) -12 (26) -19 (28)
2023 35 (26) 47 (28) 3 (22) -16 (29) 13 (21) 71 (26) -1 (22) -16 (29)
2013-2023 92 (29) 27 (27) 9 (31) -6 (22) 82 (28) 29 (27) -8 (32) -6 (22)

Note: The table shows the annualized returns along with annualized standard deviation (in
parentheses), both expressed as percentages (%), for the k = 10 portfolio across each study
period. The models selected are based on either the highest accuracy or the ensemble for
each horizon. The first column of the table indicates the corresponding study period.

Chapter 6

Conclusion

In this thesis, we investigate the predictability of financial returns across four
distinct time horizons: hourly, daily, weekly, and monthly. Specifically, we ana-
lyze whether deep learning models utilizing LSTM units can accurately predict
the future movements of stocks and futures. While most existing literature
on financial return prediction focuses on the daily horizon, there are studies
examining both intraday and longer time horizons. However, these studies of-
ten employ different methodologies and datasets, making direct comparisons
challenging. Our research addresses this gap by using a consistent dataset and
methodology, enabling direct comparisons of model performance across various
time horizons.

Additionally, we enhance the existing literature by incorporating fraction-
ally differentiated series, as described by Prado (2018). Traditional logarithmic
or simple returns often remove excessive memory from the series. Fractionally
differentiated series mitigate this issue by using fractional differences instead
of first differences, retaining more memory while ensuring stationarity. For all
time horizons except the monthly data, we calculated such series that ensure
stationarity with a differentiation factor d less than 1, preserving some memory
in the process.

Our third contribution is examining whether the inclusion of futures data
improves the performance of our models when combined with stock data. Al-
though we did not observe a performance improvement from this inclusion, we
discovered other interesting findings.

Following the methodology of Krauss et al. (2017), we construct k portfolios
by purchasing k stocks (or futures) with the highest probability of outperform-
ing the median returns of the next horizon and short-selling k stocks (or futures)

6. Conclusion 56

with the lowest probability.
Our analysis of these portfolios indicates that the prediction accuracy con-

sistently exceeds the 50% threshold, which would be expected if the models
were making random predictions. This observation holds particularly true for
hourly and daily horizons across most years. For weekly and monthly horizons,
the significance of the results also suggests a meaningful predictive capability,
although it may vary in degree.

Two possible explanations account for the lower accuracy performance on
longer horizons. First, the smaller test sample for these horizons decreases the
significance. Second, over longer horizons, market inefficiencies are likely to be
fewer, as they tend to be priced in due to the longer reaction period of market
participants.

Examining the returns before accounting for transaction costs, the highest
annual returns are achieved on the hourly horizon, followed by the daily horizon.
However, the weekly and monthly horizons perform significantly worse.

Further inspection shows that the poor performance of weekly and monthly
horizons is largely due to the underperformance of short selling. This underper-
formance can be attributed to the fact that our models are trained to predict
whether the next horizon’s returns will be above or below the median returns,
which provides a balanced target variable. However, given the general long-
term growth trend of stocks, correctly predicting the next horizon movement
might still lead to short-selling stocks that ultimately grow. This effect is less
pronounced on shorter horizons, where stock price movements are more volatile
and less influenced by long-term trends.

The accuracy of models using fractionally differentiated series is slightly
better than those using standard logarithmic returns for the daily and weekly
horizons. However, for the hourly horizon, models using standard logarith-
mic returns perform better. Therefore, we are cautious about drawing strong
conclusions regarding the superiority of fractionally differentiated series over
standard logarithmic returns in improving model performance.

A more interesting finding is the trend of models using fractionally dif-
ferentiated series to select futures for inclusion in the k portfolio at a higher
rate than would be expected if the selection were uniform. This contrasts
with the almost uniform selection observed in most models using logarithmic
returns. This preference for futures in models utilizing fractionally differenti-
ated series is consistent across the hourly, daily, and weekly horizons. For the
monthly horizon, we do not calculate fractionally differentiated series due to

6. Conclusion 57

data availability. These findings suggest that fractionally differentiated series
might capture certain patterns that standard logarithmic returns are unable to
detect.

In conclusion, our findings provide practical implications for the ability of
deep learning models to predict financial returns. The most crucial takeaway
is that LSTM networks are particularly effective for short-term financial return
predictions at hourly and daily horizons. However, their performance decreases
for longer horizons, such as weekly and monthly possibly due to fewer market
inefficiencies to exploit. While we could not find a profitable strategy under
0.05% transaction costs, we demonstrated how the same model architecture
behaves across different horizons and markets, enhancing the robustness and
generalizability of the findings. Future research could expand the analysis to a
broader futures market using fractionally differentiated series to test our find-
ings. Additionally, testing different transaction costs and removing the short-
selling component of the portfolio could potentially deliver profitable returns
even for longer horizons.

Bibliography

Akyildirim, E., A. Goncu, & A. Sensoy (2021): “Prediction of cryp-
tocurrency returns using machine learning.” Annals of Operations Research
297(1): pp. 3–36.

Brown, T. B., B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhari-
wal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal,
A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,
M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish,
A. Radford, I. Sutskever, & D. Amodei (2020): “Language Models are
Few-Shot Learners.” ArXiv:2005.14165 [cs].

Cerchiello, P., G. Nicola, S. Ronnqvist, & P. Sarlin (2018):
“Deep learning bank distress from news and numerical financial data.”
ArXiv:1706.09627 [cs, stat].

Dixon, M. F., I. Halperin, & P. Bilokon (2020): Machine Learning in
Finance: From Theory to Practice. Cham: Springer International Publishing.

Fama, E. F. (1970): “Efficient Capital Markets: A Review of Theory and
Empirical Work.” The Journal of Finance 25(2): pp. 383–417. Publisher:
[American Finance Association, Wiley].

Fischer, T. & C. Krauss (2018): “Deep learning with long short-term mem-
ory networks for financial market predictions.” European Journal of Opera-
tional Research 270(2): pp. 654–669.

Ghosh, P., A. Neufeld, & J. K. Sahoo (2022): “Forecasting directional
movements of stock prices for intraday trading using LSTM and random
forests.” Finance Research Letters 46: p. 102280.

Bibliography 59

Goodfellow, I., Y. Bengio, & A. Courville (2016): Deep Learning. MIT
Press. http://www.deeplearningbook.org.

Gu, S., B. Kelly, & D. Xiu (2020): “Empirical Asset Pricing via Machine
Learning.” The Review of Financial Studies 33(5): pp. 2223–2273.

Hambly, B., R. Xu, & H. Yang (2023): “Recent Advances in Reinforcement
Learning in Finance.” ArXiv:2112.04553 [cs, q-fin].

Hsu, M.-W., S. Lessmann, M.-C. Sung, T. Ma, & J. E. Johnson (2016):
“Bridging the divide in financial market forecasting: machine learners vs.
financial economists.” Expert systems with Applications 61: pp. 215–234.

Ioffe, S. & C. Szegedy (2015): “Batch normalization: Accelerating deep
network training by reducing internal covariate shift.” In “International con-
ference on machine learning,” pp. 448–456. pmlr.

Israel, R., B. T. Kelly, & T. J. Moskowitz (2020): “Can machines’
learn’finance?” Journal of Investment Management .

Jiang, W. (2021): “Applications of deep learning in stock market prediction:
Recent progress.” Expert Systems with Applications 184: p. 115537.

Jurgovsky, J., M. Granitzer, K. Ziegler, S. Calabretto, P.-E.
Portier, L. He-Guelton, & O. Caelen (2018): “Sequence classification
for credit-card fraud detection.” Expert Systems with Applications 100: pp.
234–245.

Krauss, C., X. A. Do, & N. Huck (2017): “Deep neural networks, gradient-
boosted trees, random forests: Statistical arbitrage on the S&P 500.” Euro-
pean Journal of Operational Research 259(2): pp. 689–702.

Krizhevsky, A., I. Sutskever, & G. E. Hinton (2012): “ImageNet Classi-
fication with Deep Convolutional Neural Networks.” In “Advances in Neural
Information Processing Systems,” volume 25. Curran Associates, Inc.

Lago, J., G. Marcjasz, B. De Schutter, & R. Weron (2021): “Forecast-
ing day-ahead electricity prices: A review of state-of-the-art algorithms, best
practices and an open-access benchmark.” Applied Energy 293: p. 116983.

Li, J., H. Bu, & J. Wu (2017): “Sentiment-aware stock market prediction: A
deep learning method.” In “2017 International Conference on Service Systems
and Service Management,” pp. 1–6. ISSN: 2161-1904.

http://www.deeplearningbook.org

Bibliography 60

Li, Z., J. Han, & Y. Song (2020): “On the forecasting of high-
frequency financial time series based on ARIMA model improved by
deep learning.” Journal of Forecasting 39(7): pp. 1081–1097. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/for.2677.

Luo, C., D. Wu, & D. Wu (2017): “A deep learning approach for credit
scoring using credit default swaps.” Engineering Applications of Artificial
Intelligence 65: pp. 465–470.

Mitchell, T. M. (1997): Machine Learning. McGraw-Hill series in computer
science. New York: McGraw-Hill.

Mnih, V., K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostro-
vski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King,
D. Kumaran, D. Wierstra, S. Legg, & D. Hassabis (2015): “Human-
level control through deep reinforcement learning.” Nature 518(7540): pp.
529–533. Number: 7540 Publisher: Nature Publishing Group.

Orimoloye, L. O., M.-C. Sung, T. Ma, & J. E. Johnson (2020): “Compar-
ing the effectiveness of deep feedforward neural networks and shallow archi-
tectures for predicting stock price indices.” Expert Systems with Applications
139: p. 112828.

Ozbayoglu, A. M., M. U. Gudelek, & O. B. Sezer (2020): “Deep learning
for financial applications: A survey.” Applied soft computing 93: p. 106384.

Prado, M. L. d. (2018): Advances in Financial Machine Learning. John Wiley
& Sons. Google-Books-ID: oU9KDwAAQBAJ.

Rosenblatt, F. (1958): “The perceptron: a probabilistic model for informa-
tion storage and organization in the brain.” Psychological review 65(6): p.
386.

Rumelhart, D. E., G. E. Hinton, & R. J. Williams (1986): “Learning
representations by back-propagating errors.” nature 323(6088): pp. 533–
536.

Sezer, O. B., M. U. Gudelek, & A. M. Ozbayoglu (2020): “Financial
time series forecasting with deep learning : A systematic literature review:
2005–2019.” Applied Soft Computing 90: p. 106181.

Bibliography 61

Staněk, F. (2023): “A Note on the M6 Forecasting Competition: Rank Opti-
mization.” SSRN Electronic Journal .

Thakkar, A. & K. Chaudhari (2021): “A comprehensive survey on deep
neural networks for stock market: The need, challenges, and future direc-
tions.” Expert Systems with Applications 177: p. 114800.

Zhu, X., H. Wang, L. Xu, & H. Li (2008): “Predicting stock index increments
by neural networks: The role of trading volume under different horizons.”
Expert Systems with Applications 34(4): pp. 3043–3054.

	Abstract
	Contents
	List of Tables
	List of Figures
	Acronyms
	Thesis Proposal
	1 Introduction
	2 Literature Review
	2.1 Fundamentals of Machine Learning
	2.2 Machine Learning in Finance
	2.3 Predicting financial returns
	2.4 Challenges
	2.5 Key studies
	2.6 Various horizons

	3 Methodology
	3.1 Feature engineering and target selection
	3.2 Generation of training, validation, and test data
	3.3 Models
	3.3.1 Feedforward neural networks
	3.3.2 Recurrent Neural Networks

	3.4 Evaluation metrics and portfolio construction
	3.5 Software implementation

	4 Data
	5 Results
	5.1 Daily horizon
	5.2 Hourly horizon
	5.3 Weekly horizon
	5.4 Monthly horizon
	5.5 Comparing horizons

	6 Conclusion
	Bibliography

