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Abstract

The thesis aims to investigate whether image-based convolutional neural

networks (CNN) can help predict volatility of financial markets. Unlike any

other academic work, it converts price and volume indicators of the index

E-Mini S&P 500 from 2010 to 2019 into pictures and strives to forecast one day

ahead level of realised volatility. The results suggest that this method can

produce reasonable outcomes, but lacks in accuracy compared to benchmark

standard models used in the literature, probably due to their autoregressive

feature. Apart from this finding, the best length of the input days in the CNN

specification appears to be one month, followed by a week and quarter, which

achieve similar results. These conclusions were also subject to a robustness

check, which, however, did not generate any contradictory evidence.
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Abstrakt

Cílem práce je zjistit, zda konvoluční neuronové sítě (KNS) mohou pomoci

predikovat volatilitu finančních trhů. Jako dosud první akademická práce

převádí cenové a objemové ukazatele indexu E-Mini S&P 500 z let 2010 až 2019

na obrázky a snaží se předpovědět úroveň realizované volatility na jeden den

dopředu. Výsledky naznačují, že tato metoda generuje rozumné predikce, ale ve

srovnání s referenčními standardními modely používanými v literatuře není tak

přesná, pravděpodobně kvůli jejich autoregresivní vlastnosti. Kromě tohoto

zjištění se jako nejlepší délka vstupních dnů ve specifikaci KNS jeví jeden měsíc,

následovaný týdnem a čtvrtletím, které dosahují podobných hodnot. Tyto

závěry byly rovněž podrobeny testu robustnosti, který však nepřinesl žádné

protichůdné důkazy.
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1 Introduction

Throughout the latest history, researchers have striven to describe and predict

characteristics of time-series in many possible ways. In finance, the most impor-

tant variables are return and volatility. The former can be directly observed from

the data and is self-explanatory, while the latter requires some implicit measures

to be applied. Thus, it has been the focal point of interest for decades. More

importantly, the key question has always been how to predict this variable. Al-

though the literature has brought a significant development over the years, the

predictability has not ceased to be a struggle. We have witnessed a major growth

in storing big data, followed by the computational availability of devices in recent

years. In turn, many algorithms, which were time-consuming in the past, have

become accessible. These include deep learning methods, encompassing the series

of neural networks family and most importantly convolutional neural networks

(CNN).

The science has broadly utilised them in other fields like facial and text-

recognition, autonomous vehicles etc. Their main advantage is the ability to un-

fold the deep non-linearities, which these independent and identically distributed

data exhibit. Nevertheless, the key question is whether this machine learning

(ML) approach can help predict volatility, which resembles a temporal depen-

dence. Since the CNN phenomenon is still at its very beginning, there do not

exist many papers using this method in finance at all.

One of the very few is an article from Jiang et al. (2020), who successfully

aimed to predict the future returns of a stock by training a CNN on images of

the price indicators. Managing images instead of direct price values might be

beneficial for the network since it may resemble the human brain, which operates

with graphs in a better way than with plain value vectors. Also, it effectively

captures structural dependence. This thesis strives to borrow this very recent

idea and unlike any other academic work aims to ask a question whether CNN

can help predict the volatility.

In the history academicians have first neglected the influence of volatility, then

assumed its invariability over the horizon and finally paid more and more attention
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to it. The crucial point was the inability to observe the behaviour on the market

directly. Thus, the initial proxy of taking the difference between the low and high

levels of daily price emerged. The pioneers in the attempt to predict the value

can be considered models of Parkinson (1980) or Garman and Klass (1980), who

aimed to forecast this indicator for the next day. These models had a few caveats,

like a potential bias by outliers. Therefore, academicians have come up with

estimating the volatility as a latent variable using i.e., generalized autoregressive

conditional heteroskedasticity models (GARCH). This setup enabled modelling

the persistence and dynamics over time.

Nevertheless, since the technological growth has facilitated storing big data, it

led to the emergence of high-frequency data, which contains denser information

because it includes the whole daily behaviour consisting of many (usually 1 to

10-minute) intervals. This data could be used by models like heterogenous au-

toregressive (HAR) or other conventional methods that the literature calls them

nowadays. Nonetheless, the evolution of highly functioning computers also en-

abled the use of the machine learning methods, which either connect the con-

ventional methods (ARIMA with ML) or simply build on ML only (LTSM). The

CNN, representing the ML group, thus provides us with an out of the box attitude

of predicting volatility.

The first hypothesis is that this method produces reasonable values in forecast-

ing volatility and shows relation patterns between the input and output data. The

second one claims that using more days on the input improves the forecast preci-

sion since volatility behaves in clusters. The last one states that the image-based

CNN does overperform the traditional methods in forecasting volatility.

The structure of the thesis is organised in the following way. First, some the-

oretical background with a bit of history to the topic is introduced. Then, the

main data are presented, followed by a detailed description of the CNN method-

ology. Later, we describe and discuss the results, evaluate the three hypotheses

mentioned above and perform a robustness check. Finally, conclusion with further

research suggestions are situated at the end of the thesis.

2



2 Current State of Knowledge

2.1 The Concept of Volatility

Volatility is a key concept in financial analysis and econometrics, which refers

to a price fluctuation of an asset in a specific time period. It is deemed to be

an indicator of uncertainty and risk on the market. Higher value suggests that

the price is expected to move both up and down to a greater extent. This makes

the asset more attractive to risk-lovers than to risk-averse individuals. There-

fore, volatility is essential for traders and investors to correctly assess the market

environment and choose the most appropriate investment strategies.

2.2 Brief History

William Sharpe is considered to be the pioneer of examining the role of volatil-

ity in financial markets. His work dates to 1960s and is mostly famous for introduc-

ing the Capital Asset Pricing Model (CAPM) to the public community. Volatility

was seen here as the ultimate level of uncertainty and risk, which gives a broader

context to the expected return. Sharpe claimed that investors require a higher

rate of return of an asset for a higher level of its volatility since they face a higher

risk. This behaviour should also hold for the possibility of short selling. Moreover,

Ross (1977) in this article even suggests that the restriction of short sale causes

the market to be inefficient and thereby distorts the concept of CAPM.

A few years later in the 1960s, Fama and Samuelson contributed to the existing

literature with a so-called Efficient Market Hypothesis (EMH). This concept comes

in three variations. The first one states that all historical prices are reflected in

the current market price of an asset. The second one believes that also the public

information is mirrored on the market, while the third one says that even the

private information is included. This makes the market highly efficient and thus

impossible for the investors to find undervalued stocks and make profit. In regard

to volatility, the EMH implies the same unattainability to predict its values in

the future. Its significance is thus viewed as a continuous reflection of speed and

volume of the new information in the price.
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Another usage of volatility was in option pricing. Price variability was sight

even in the beginning of the 20th century, but no model was introduced in that

time. The cornerstone, however, traces back to the year 1973, when a trio of

American economists came up with a Black-Scholes-Merton (BSM) model used for

option pricing. This was a milestone since they were the first to assume volatility

might explain the option price, together with several other factors. It was deemed

constant, which may seem a little odd nowadays, yet they still received a Nobel

Price for the model later. From this period ahead, practitioners have started to

pay attention to the crucial role of volatility and have striven to base on that

better and better techniques to outperform the market.

The subsequent epoch was characterised by the effort to improve the models

because a non-negligible amount of people saw the opportunity to monetise it.

This view of volatility changed in October 1987 when a big stock market crash

took place. Researchers see the roots among others in the rising volatility, mainly

dominant in the era right before the crisis. The effects on the stock market were

large scale, which made the academic community reconsider the assumption of

constant volatility.

Volatility was thus becoming broadly perceived as time varying. Moreover,

it was brought to the attention of the academic community that prices exhibited

larger continuous oscillation (e.g., before 1987) in some periods than in other time

intervals. This created the idea of volatility clustering. Researchers subsequently

developed stochastic models, which allowed volatility to be a dynamic process

with clustering characteristics and persistence over time. Most common examples

would be an ARCH model or Heston model, presented by R. Engle and L. He-

ston, respectively. These models later experienced their extensions, for instance

the inclusion of volatility jumps, as a reaction to the real-world events. Those

techniques are now considered traditional or conventional methods of estimating

volatility and will be deeply examined in the following sub-chapters.

Thanks to the rising computational power and desire to acquire money, uncon-

ventional models have been introduced to help predict volatility. These include

obtaining realised measures from high-frequency data on the one hand and ma-
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chine learning approaches like deep neural networks, random forests, and many

more on the other. These aim to capture latent data patterns by facilitating non-

linearities in the process. Again, this topic will be spoken about in detail later

on.

2.3 Volatility Measurement Methods

One of the reasons, volatility has been thoroughly studied is that it is an

implicit measure. This means that unlike prices, we are not able to directly observe

this variable on the market but can create various proxies based on the given data.

A very basic, yet accepted, definition of volatility is standard deviation, which is

a squared root of variance. Unfortunately, it was not possible to use this statistic

in the past when only a single value per day was captured.

Over time, data analysts started to gather more information about the market

behaviour. They also monitored the opening, closing, high and low levels of price

for each day. This enabled to create a better picture of the market environment.

The issue with not enough data points, however, was still prevailing. Four points

may already seem to be a satisfactory number, but it may still provide a very

biased estimate of the true standard deviation (Figlewski (1997)). Therefore,

researchers began presenting their own proxies.

One of them was Parkinson (1980), who described the extreme value method

in his work. He claimed that these outliers convey significant information about

the variance of the rate of return and thus concentrated on the frequency of

their occurrence and their magnitude. Moreover, he pointed out this approach is

suitable for capturing heteroscedasticity and clustering of volatility.

With a brisk reaction to this article came Garman and Klass (1980), who

extended his work by allowing more variables in the estimation. Unlike Parkinson

(1980), their method incorporates the whole price path and better addresses the

process dynamics. This technique was, however, also subject to criticism. Firstly,

some scientists claim that it is very sensitive to significant price gaps, usually

occurring between the end of the trading period and the beginning of the upcoming

one. These unbalances are prone to distort the estimating process.
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Secondly, the new Garman-Klass method assumes prices follow log-normal dis-

tribution. Such an assumption is not valid all the time and thus opens the discus-

sion of the estimation’s reliability. Overall, the Garman-Klass procedure brought

valuable insights into better understanding the meaning of volatility. They also

introduced another method purely based on the closing price called CTC, which

has a much higher noise but may be useful for long-term estimation.

All the approaches presented so-far supposed the mean value was held con-

stant. Once it changed, the volatility level was under or over-estimated. There-

fore, Rogers and Satchell (1991) decided to propose a model that would capture

this hurdle. It does not substantially differ from the Garman-Klass strategy, but

it involves the non-zero drift to be present. The other issues, like log-normal

distribution assumption and discrete sampling have remained untouched.

Nonetheless, the mostly spread measure before high-frequency data were stored,

was a simple squared return for each assumed interval. This could be a day, week,

or even larger period. The main advantages lie in quick data manipulation and

putting emphasis on significant price movements. On the contrary, there exist

several drawbacks. Patton (2006), for example, finds that squaring the returns

does not capture the asymmetric effect of positive and negative changes enough.

Further, Barndorff-Nielsen and Shephard (2006) arrive at a conclusion that sharp

jumps are not factored in either.

To address the former problem, we may lean on using absolute returns. As

Davidian and Carroll (1987) conclude, this procedure better accounts for asymme-

try. Regarding accuracy, the academia remains rather inconclusive. For instance,

McKenzie (1999) finalises her work in favour of absolute returns, while Bandi and

Russell (2006) infer that squaring appears to be more efficient.

These definitions were put in the shadow when computers experienced huge im-

provement of their performance. Practitioners were able to collect more informa-

tion about assets, which led to the emergence of what we call now high-frequency

data. Andersen et al. (2001) published an article where they introduced the con-

cept of realised variance. This method consists in summing up all the squared

returns based on sampling frequency per one trading session. Realised volatility
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would then be a squared root of this number.

Of course, many questions arise as well. Firstly, what is the optimal sampling

frequency? Corsi (2009) states that increasing the number of observations reduces

bias and levels up precision. On the other hand, Ait-Sahalia et al. (2005) find out

in their paper that enlarging the frequency, amplifies a so-called microstructure

noise. Hence, there appears to be a trade-off between bias and noise lessening.

Hautsch and Podolskij (2013) come to conclusion that every market is different

and requires a specific choice of the sampling frequency, which means there is no

universal correct decision. The academia, however, mostly operates with 1-minute

or 5-minute intervals for stocks.

Secondly, there is a possibility to operate with realised variance, volatility, or

log-volatility. Researchers mostly incline to prefer realised volatility over variance

for its simplicity and mainly interpretability. But we can see an increasing number

of articles in recent years studying realised log-volatility. This is because it features

great statistical advantages like symmetry of distribution or additive properties

(Barndorff-Nielsen and Shephard (2004)). Again, there is no ultimate rule, which

one to use, and every academic work is free to choose its preferred candidate in

line with the scope of their work.

In this thesis, we base our hypotheses on realised volatility since the goal is

to compare the performance of the CNN method against the literature, which

heavily prioritises this method. The objective is to compare the forecast models

and using the widely utilised definition facilitates us a more reliable comparison.

In the robustness check, we are operating with simple squared returns, which

are also substantially employed in academia and provide us with comparable, yet

distinct values to their high-frequency neighbours.

2.4 Traditional Models for Forecasting Volatility

So-far we have covered the role and measurement of volatility. In this sub-

chapter, we delve into forecasting. There are theoretically endless possibilities of

how far from now one can forecast. Nevertheless, it may be very challenging to

use long horizons especially in financial markets since there is plethora of factors,
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which influence the outcome (Campbell et al. (1998)). Researchers for this reason

incline to forecast up to one or a few periods ahead.

Generally, increasing the sampling frequency is said to enhance the forecast

quality (Andersen et al. (2001)), but having too many observations can lead to

facing substantive microstructure noise (Ait-Sahalia et al. (2005)). In contrast, if

one aims to concentrate on long horizon forecasts (months, years), lower sampling

frequency may prove useful (Alford and Boatsman (1995)). A paper from Med-

dahi and Renault (2004) then concludes that every asset might exhibit distinct

volatility patterns, which may even vary in time. In this thesis, we focus on one

day ahead forecasting, which means we engage with rather high-frequency data.

Namely, we use a 5-minute frequency.

Throughout the history, scientists have created many models, which strive to

forecast volatility. We first pay attention to the traditional ones and then move to

their younger counterparts. In this subset, we can further distinguish those into

multivariate and univariate methods. The literature provides mixed findings on

the accuracy comparison of those two. Having more independent variables may

cover specific spillover effects (Bollerslev (2008)), but the results appear to be too

sensitive to the modelling assumptions (Patton (2011)).

This thesis, however, only operates with historical stock prices, which means

we will mainly focus on univariate analysis. Poon and Granger (2003) classify this

set into five categories:

• Historical Volatility Models – Here can be found Simple Moving Average

(SMA), Exponentially Weighted Moving Average (EWMA) or AR(F)IMA.

• Generalised Autoregressive Conditional Heteroskedasticity (GARCH) Mod-

els - This group includes the whole ARCH & GARCH zoo: EGARCH,

GJR-GARCH, IGARCH, TGARCH, etc.

• Realised Volatility (RV) Models – This set involves Heterogeneous Autore-

gressive (HAR) model and Realised GARCH (RGARCH).

• Stochastic Volatility (SV) Models – There are two major examples: Heston

Model, Autoregressive Stochastic Volatility (ARSV).
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• Implied Volatility Models – To this collection, we would place Option Pricing

Models (e.g., Black-Scholes model).

The modern literature mainly utilises techniques from the first three groups.

Therefore, we will primarily pay attention to them. Poon and Granger (2003)

themselves conducted a study comparing the ARIMA and GARCH methods.

They found out that the former outperformed the latter in 22 cases, while the

opposite outcome occurred 17 times. Overall, they do not make any inference in

favour of either of those and stress out the dependency on the data and objective.

Another research was done by Bollerslev et al. (1992), who arrived at conclusion

that GARCH models yield slightly better results than ARIMA because of the

ability to capture volatility clustering.

The paper from McMillan et al. (2000) points out that the moving average

models provide more accurate values for long-term forecasting windows, while

GARCH models appear to be more suitable for 1-day ahead forecasts, especially

using high-frequency data. Generally, it seems that the definite answer is not yet

resolved.

If we look into the GARCH family models, we find out there is a myriad of mod-

ifications. Frimpong and Oteng-Abayie (2006) together with Brooks and Burke

(2003) reach a conclusion that the superior specification seems to be GARCH(1,1).

According to them, it best fits the data and estimates volatility.

Further, Miron and Tudor (2010) discover that exponential GARCH (EGARCH)

yields most precise results within the family of models relying on asymmetric

shocks. On the other hand, Rastogi et al. (2018) determine that any deviation

from the process can be sustained in the future, Therefore, they infer that inte-

grated GARCH (IGARCH) is the optimal choice.

The third (and last) subset in this chapter encompasses realised volatility

models. This concept of realised GARCH was introduced by Hansen et al. (2012)

and consisted in using the realised measures help explain the conditional vari-

ance of returns. The authors themselves compared the accuracy of their newly

presented model, which showed it can outperform standard GARCH methods.

Kambouroudis et al. (2016) in their paper on major stock markets upheld that
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realised volatility contain additional information and is proved useful. In contrast,

Huang et al. (2016) demonstrate a single realised-GARCH model is not sufficient

for long-term volatility forecasting. They show that adding HAR-specification,

presented by Corsi (2009), into the model catches the long-memory dynamics in

a much better way.

Another extension of realised GARCH was done by Maciel et al. (2016), who

added jumps to the equation. This change is responsible for enhancing robustness

to noise and outliers. They use the idea of Andersen et al. (2009), who proclaimed

that the return variation comprises jump and non-jump components with the

latter having the biggest effect.

In conclusion, we may find dozens or maybe hundreds of traditional volatility

models, but the literature showed us there are no clear winners or losers. The per-

formance is rather sensitive to the data (different markets → different patterns),

specification (daily/minute frequency) and forecasting window (days, months).

2.5 Unconventional Models for Forecasting Volatility

In the recent years, computers have experienced significant improvements,

which made people think about the usage in investing and trading. Models re-

lying on thousands or millions of calculations were becoming feasible since the

operational power could finally handle it. This led to the rise of previously in-

troduced data science techniques like artificial neural networks (ANN), random

forests, support vector machines (SVM) in practice. The application of these

methods varies across many fields in the world starting from image recognition to

self-driving cars. We now call them deep learning (DL), machine learning (ML),

or in general artificial intelligence (AI).

The reason they are becoming more popular is that they can uncover non-

linearities, asymmetry and very complex structure of financial data. One of the

first types of these techniques used were support vector machines (SVM). Apart

from the features mentioned in the previous article, researchers would use them

because of their ability to handle polynomial inputs (e.g., lagged returns) or even

incomplete data (Cortes and Vapnik (1995)). For instance, Gavrishchaka and
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Banerjee (2006) ran a study on a four-year S&P 500 data and found that SVMs

can efficiently compare to traditional and extended GARCH models and in some

cases even outperform them. In comparison to the artificial neural networks,

Sheta et al. (2015) point out in their study the advantage of SVM to choose

various kernels, which best fit particular situations.

On the contrary, there exist several aspects in which SVM lacks when com-

pared to ANN. As Liu (2019) puts it, ANN are able to handle large amount of

(raw) data (more than 10Gbs) and can produce long sequence data prediction.

Liu (2019) himself bases his research paper on a long short term memory recur-

rent neural networks also known as LSTM RNN. This is a special type of ANN,

introduced by Hochreiter and Schmidhuber (1997), that overcomes the problem

of vanishing/exploding gradient, which is typical for recurrent NNs. Liu (2019)

draws a conclusion that both LSTM RNN and SVM provide measurably better

forecasts than traditional GARCH models in the field of financial indices S&P 500

and AAPL. Further, Petrozziello et al. (2022) took a close look at the performance

of LSTM RNN against benchmark models including G-GARCH or GJR-GARCH.

Using time series of the most common indices, they found out that neural net-

works behaved better than benchmark when high-volatility was present. Once the

market was more stable, no significant differences took place.

Christensen et al. (2021) decided to compare machine learning (ML) methods

including ANN, tree-based specifications and regularisation to a relatively tradi-

tional, yet high-quality HAR model. They showed that ML models beat the HAR

even when simple lags are taken into account. Moreover, Tyuleubekov (2019)

contributed to the literature by analysing traditional and non-traditional models

in relation to the volatility forecasting. He made inference that ML proved better

than the former group.

Overall, machine learning models seem to be a very perspective tool to forecast

volatility. The academia in the last decade has shown their slightly superior per-

formance compared to more traditional methods like GARCH or ARIMA, mostly

because of the ability to handle big data and capture non-linearities in the estima-

tion process. Nevertheless, conventional methods are in many cases, especially in
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stable market environments, equivalent to their more recent counterparts. Hence,

the literature should not disregard them at all. We see, however, a potential in

delving deeper in the machine learning approaches since the research is still very

young in the world of financial data. As artificial intelligence is growing, so is the

opportunity to use new or extended models, introduced in vastly unrelated fields,

directly in financial time-series data. One of those is a special type of ANN called

convolutional neural network (CNN).

2.6 Convolutional Neural Network

In this sub-chapter, we aim to briefly discuss the concept of convolutional

neural networks in the literature. Detailed description of the method will be

displayed in section 4 Methodology. Zhang (2018) states in his work that the

history of CNN can be divided into 3 periods: theoretical proposition (1), model

realization (2) and extensive research (3).

The first one dates back to the 1960s, when an American Canadian neuro-

physiologist Hubel showed that multiple layers of certain receptive field stimulate

biological information from retina1 to the brain. This finding brought the atten-

tion of Fukushima (1980), who utilised this concept in his work, which he called

Neocognitron. This was a self-organising neural network able to capture patterns

based on geometrical similarity. This property facilitates robustness of the model

to the changes in position, shape and scale. Something that other types of neural

network are very sensitive to.

In year 1998, when the second stage emerged, LeCun et al. (1998) proposed

an algorithm using a gradient backpropagation to train the model, which they

called LeNet-5. It featured characteristics, which are standard in CNN nowadays,

like max-pooling, sigmoid activation function or weight-sharing. The network was

able to read millions of bank cheques per day and is considered a milestone in the

history of convolutional neural networks. It set a starting point in the application

of this method in other fields like speech or face recognition.
1"Retina is a layer of photoreceptors cells and glial cells within the eye that captures incoming

photons and transmits them along neuronal pathways as both electrical and chemical signals for
the brain to perceive a visual picture." (Nguyen (2022))
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The last epoch was in the name of AlexNet, presented by Krizhevsky in 2012.

This CNN model took by far the first place in an image classification contest of

ImageNet. Winning the event by a huge margin raised awareness among many

researchers and practitioners, who subsequently started to pay attention to con-

volutional neural networks in greater detail. Therefore, updated version including

Visual Geometry Group or Microsoft’s ResNet were proposed. Along the time,

CNN has been achieving substantial accuracy primarily in tasks related to image

and video recognition, where its advantages played crucial role.

Regarding the literature on the application of this phenomenon in financial

data, we may find several studies using the CNN. One of them was carried out by

Di Persio and Honchar (2016), who examined the precision of one-day ahead stock

market indices’ price movements. The object of comparison was CNN and mul-

tilayer perceptron (MLP) & recurrent neural networks (RNN). In the end, CNN

showed it can model the forecasts better than those other two architectures. In-

teresting enough was mainly the approach chosen by the authors, who considered

1D vector of closing prices, while disregarding further variables.

Another paper taking into account CNN was published by Gunduz et al.

(2017). The scope of their work was to compare the performance of this net-

work to logistic regression (LR) on predicting prices on data from 100 stocks in

Borsa Istanbul. Unlike, Di Persio and Honchar (2016), they manipulated the in-

formation from the current and previous trading hours into 2D tensors. The CNN

was shown to outperform the LR even when tested for robustness.

Ding et al. (2015) focused on S&P 500 price prediction using events like news

titles as inputs. Once this was pre-processed, it was used in CNN and showed non-

negligible improvements in comparison to baseline models. One of their principal

conclusions was that deep CNN is able to capture long-term effects (up to 1

month) with better accuracy than any other feed-forward neural network.

Hoseinzade and Haratizadeh (2019) decided to go even further and managed

a 3D input tensor beside the 2D ones. These 3D cubes enabled containing data

from several markets at once, while the latter would store information about single

features only. The highlights of their work are mainly two-fold. Firstly, CNN

13



can handle input data from various sources. And secondly, deep CNN provide

significantly enhanced results than shallow ANN.

All of these papers assume the input data in classical way as sort of features,

possibly explaining the outcome variable. Jiang et al. (2020), however, have come

up with an interesting, highly technical-analysis, idea to look at the stock re-

turns as pictures and have sought to explain the future returns. This thought is

based on the observed pattern of humans, for which a graphical representation is

mostly more favourable than a matrix of raw numbers. The whole idea consists in

training the model on images containing the opening, closing, low and high price,

volume and moving average price. The authors thus converted this matrix-wise

information into a visual one and adequately scaled it down. The final pictures

resemble a simple black&white candlestick charts. In the end, they infer that the

CNN is able to outperform conventional models and moreover, it appears to be

robust to the context. This means that the predictability does not measurably

vary when the input data is short or long-time scaled. Image recognition is heavily

used for detecting patterns for classification in AI. But its usage in the field of

financial data has been largely omitted. In fact, this exclusive approach seems to

be unique in the pool of stock market. In addition, it has been only applied to

stock returns, while the world of volatility has remained untouched.

This thesis, therefore, seeks to explore the forecasting power of stock market

volatility, where the input data is a set of past price information of S&P 500,

converted into images. Later, the forecast precision is compared to baseline mod-

els’ architectures, described in the previous parts of this chapter. With respect

to the reviewed literature, we operate with realised volatility based on 5-minute

high-frequency data, as the most utilised proxy of volatility nowadays. To the

best of our knowledge, this is the pioneering work to convert prices into images

and using it as an input to convolutional neural network while forecasting stock

market volatility.
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3 Data

In this chapter, we introduce the data used to address the research hypotheses

presented at the beginning part of this thesis. The focal point are the prices

of S&P 500, which is a broadly recognised index tracking the performance of

500 large-scale companies listed on the US stock markets. It has been widely

used in academia as a benchmark model for investment and trading funds and

a great number of research papers base their studies on data coming from this

index. The reason is that the S&P 500 encompasses roughly 76% of the US market

capitalisation and 33% of the whole world’s market capitalisation (Neufeld (2023)).

Therefore, it can be considered a good proxy for the stock market. In line with

the current literature, we concentrate our work on S&P 500 as well, to have the

best comparison opportunity.

Our data come from one source only, which is the IES e-library. Thanks to my

supervisor, doc. PhDr. Jozef Baruník, Ph.D., I was provided with high-frequency

data measured at 5-minute intervals for E-Mini S&P 500.

This is a futures contract traded on the Chicago Mercantile Exchange market-

place. Its main advantages lay in giving us a continuous and highly liquid asset

to analyse, while it still tracks the performance of the S&P 500.

This thesis is using a 10-year time period starting from January, 2010 and end-

ing in December, 2019. The goal is to test how the method stands in relatively

normal market conditions since our prime objective is comparing the performance

to other broadly utilised techniques and this facilitates us an unbiased examina-

tion. This period should thus satisfy both sufficient length and no affection of any

major stock market crisis like the global financial crisis or the Covid pandemic.

3.1 Data Introduction

Table 1 tells us we deal with 704 073 observations, for which we have accessed

the following variables. Those include open, close, low and high price, followed

by the volume. Every point relates to a 5-minute time period. Note that there

are only minor differences across the four price indicators. This is due to the fact

that the 5-minute period is very short and if there is a substantial jump within
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Table 1: Raw High-Frequency Data Statistics

Statistic N Mean St. Dev. Min Max
open 704,073 1,955.941 590.243 1,004.000 3,253.750
close 704,073 1,955.943 590.243 1,004.000 3,253.750
low 704,073 1,955.303 590.151 1,002.750 3,253.000
high 704,073 1,956.573 590.333 1,004.500 3,254.000
volume 704,073 5,929.859 10,955.160 1 276,094
Source: Author’s computations

a day, all the four indicators will be affected relatively the same in the following

5-minute periods. Volume is, on the other hand, extremely dispersed, as its values

range from 1 to 276 000. The average value is approximately 6 000, which means

the number of trading positions can skyrocket to more than 40x of its value.

3.2 Transformation to Daily Data

In this subsection, we introduce the calculations taken to transform the data

from high-frequency to daily. This involves choosing the appropriate represen-

tative for each price indicator, summing up all the volumes within a day and

calculating daily realised variance and volatility.

We will first pay attention to the prices. An ideal candidate for a daily open

price is the open price in the first 5-minute period since it best matches the

definition. Regarding the close price, we analogically chose the one in the last

period of the considered day. The low price was chosen as the minimum of the

low prices within a day, while the high was the maximum across the high prices.

One might argue that this method might overestimate the variation. In re-

lation to Figure 1, imagine an arbitrary scenario with stable market prices over

24 hours, but two opposite sharp jumps occur. Then the low and high prices are

extremely far from the rest, which suggests the market was very volatile. Some

could argue it was in deed, while others could point out that these were just quick

outliers, which do not represent the overall daily behaviour.

A solution would be to calculate the mean values across the day for all the

four indicators separately to weight these jumps by duration. The issue with
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Figure 1: Arbitrary Daily Mid-Market Price over 24 Hours
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this method is that the indicators will be of little variation, as described at the

beginning of this chapter. This would cause problems when used as inputs in

the model. Therefore, we will stick to the first technique in spite of its possible

inefficiency in rare situations.

Let us follow with the volume. This time we only calculate the sum of all the

5-minute volumes within a day and divide it by the number of trading sessions on

the same day. The reason behind this is that the market operates in different hours

for some days and, for example, Fridays and Sundays would bias this variable.

The last part of data transformation involves volatility and variance. The

discussion of all proxies is described in the literature review, but we will only

focus on the realised measures further on. This manipulation involves applying

the following formula 1. For given stock i on day t, we calculate realised variance

as a sum of squared returns within that day. To adjust it for different trading

hours on different days, this sum is then divided by the number of trading sessions

m on day t. In case of 5-minute data, we can have up to 288 sessions, but some

days only feature a maximum of 72. For returns, logarithmic transformation was
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applied and realised volatility is just a square root of realised variance.

RV i,t = 1
m

m∑︂
j=1

r2
i,t,j (1)

For given asset and day, rj is defined as:

rj = log

(︄
closing pricej

closing pricej−1

)︄
= log(closing pricej)− log(closing pricej−1) (2)

Realised volatility is then defined as:

RV oli,t =
√︂

RVi,t (3)

3.3 Data Inspection

This subsection presents and visualises the daily data obtained by applying

the previous calculations. Let us first look at closing prices.

Figure 2: Closing Price from 2010 to 2019
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As mentioned at the beginning of this chapter, the data range from 2010 to

2019, which should be a relatively less volatile growing period. The price has

approximately tripled over the interval with a substantial annual return of 11%.

There is one jump at the beginning of 2019, but the overall mood is rather less

volatile.

The following figure 3 represents calculated realised volatility. The values seem

to be centred around zero with several peaks.

Figure 3: Realised Volatility

Source: Author’s computations

There are also some apparent volatility clusters, each lasting for a couple of

months. The first one occurs at the beginning, where volatility remained relatively

high. Later, we have a visible period of stable average volatility for 5 consecutive

years. This epoch is followed by constantly low values in the whole year 2017,

while we can spot volatility to return to previous levels in the final period.

It can be noted that there are a few points, where the returns sharply oscillate.

These peaks correspond to the few deviations of the linear trend of the market.
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3.3.1 Transformation to Images

This section describes how the data is transformed so that it can be used in

the models. All explanatory variables including the opening, closing, open, high

price and volume are converted into images, while the explained variable realised

volatility is standardised into the 0-1 range.

Let us first focus on the former part. It is interesting to study the effect of

the last week, month and quarter in forecasting the future value of volatility since

these are easy to understand intervals, which may exhibit certain market patterns.

Therefore, we first need to split the input data into these bins of respective number

of days. The analysis will be introduced on five days for simplicity, but the

procedure holds for the other two types as well unless specified otherwise.

Let us consider five observations from the dataset. Their matrix specification

is displayed in the following table 2 and the transformed version is in table 25.

Table 2: Input Data 5 Days - Example Bin

Date Open High Low Close Volume
2010-03-22 1149.75 1163.75 1146.75 1162.00 6806.77
2010-03-23 1161.75 1170.50 1159.00 1168.50 6624.35
2010-03-24 1168.25 1169.50 1161.00 1164.00 7062.56
2010-03-25 1164.25 1176.50 1158.25 1163.00 8539.46
2010-03-26 1163.25 1169.75 1156.50 1163.25 10809.91
Source: Author’s computations

The bins are joint; therefore, the following input contains 4 common data

points and adds one new. The rationale behind this approach is to ensure a

continuous dataset, facilitating the ability to forecast each subsequent day. As

displayed in table 25, the price indicators were transformed in such a way that

there are three columns for each day. The first one stands for the opening value,

the second one is the low-high difference and the third one represents the closing

level, at which the price settled. The values for price indicators start at the 16th

pixel and range up to pixel 35, potentially covering 20 price intervals. The volumes

are located at the bottom of the image and can achieve pixels from 0 to 10.

The most important part was to adequately scale the values into the respective

pixels. For every data input, i.e., one image of n days, the price indicators were
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Figure 4: Input Data 5 Days - Transformed Matrix

Source: Author’s computations

standardised by using the maximum and minimum values of the last (smp + 1) ·n

values including the current input n. 2 The smp is a smoothing parameter, which

was set to 3. For n = 5, this would give us 15 days back plus 5 days in the current

data input for every input. For 20 and 60 days, the total number of days used in

standardisation of one input is equal 80 and 240. The number of 3 for smoothing

was chosen in order to have the data scaled adequately by the encompassing days.

If the scaling was conducted on each data input separately, it might happen that

the days, which are common for two following data inputs, could have totally

different pixel representations. This would result in high fluctuation and low

consistency.

On the contrary, if the standardisation was done based on the whole training

dataset, there would be little to no variation in all data inputs since the price

differences are extremely high in the period of 10 years. Hence, the universal value
2Fewer observations were taken for the first 15 data inputs, as there was not enough data by

definition. Similarly to 60 and 180 for the other two types of input
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of 3, which was chosen semi-arbitrary and is, of course subject to improvement in

later studies.

The other data inputs featuring 20 and 60 days contain 60 and 180 number of

columns, respectively. The number of rows is also subject to discussion. Due to

a more likely enhanced variation when more days are used, it was decided to use

40 and 80 price intervals, respectively, to capture the differences. Sample images

are illustrated in the appendix.
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4 Methodology

In this section, we introduce the concept of convolutional neural networks,

which is the type of NN used for volatility forecasting in this thesis. Firstly,

we present the theoretical background of artificial neural networks and then pay

attention to its special type called convolutional neural networks (CNN).

4.1 Artificial Neural Networks

Artificial neural networks is a complex mathematical model based on biological

structure of human brain (Nagyfi (2018)). The key component of human brain is

a cell called neuron. We can find billions of those within the neural network and

each is responsible for receiving, processing and transmitting information. Firstly,

there are dendrites through which the information is delivered to the main cell.

Then, this new piece of data is processed within the neuron’s body before it is

sent forwards via axon to synaptic terminals.

Artificial neural networks aim to resemble this behaviour, although in a very

simplified way. At the beginning, there are a number of inputs, usually variables.

These are all weighted by particular weights, a bias term is added, and everything

is then summed to a scalar. This whole initial step corresponds to the dendrites.

Further, we move to what happens in the main cell. The obtained scalar serves as

an input for a so called activation function, which transforms the data and passes

it along.

What happens next depends on the deepness of the network. It can either

serve as an input to other neuron in the following layer or directly represent the

output value(s). Note that there might be more neurons in one layer as well as

more hidden layers than one in the process. Figure 5 shows how the mathematical

model is based on the real world observation.
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Figure 5: Biological and Artificial Neuron

Source: https://towardsdatascience.com/the-differences-between-artificial-and-
biological-neural-networks-a8b46db828b7

4.1.1 ANN in detail

In this subsection, we dive into artificial neural networks in greater detail.

Let us consider a very simple scenario, where we have several input variables n

for estimating the output value. These inputs can be denoted as xi with i ∈

[1, 2, ..., n]. Each input can be understood as a variable affecting the output,

generally in a different way.

The next step is situated in a hidden layer, which is a layer consisting of one or

more neurons, depending on the complexity of the network. Each of the neurons

j ∈ [1, 2, ..., J ] is connected to the input variables by its specific weights wji with

i ∈ [1, 2, ..., n]. At this moment, the weights are generated randomly from a chosen

distribution. For each neuron, we perform sumproduct of these two variables and

add a bias term θ, initially generated as 0 (LeCun et al. (1998)). This yields

a scalar value, which is denoted as aj. Graphical representation can be seen in

Figure 6.
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Figure 6: Neuron Calculation

Source: Lek and Park (2008)

After the process is conducted, the value ai enters as an input into an activation

function within the particular neuron. This function can theoretically be of any

kind, but there are certain features, which are advantageous. One of them is

monotonicity, which allows the function to be consistent both on input and output.

Second is differentiability, which is important for backpropagation, discussed later

on. Nevertheless, there are more characteristics, but their usage hinges on the

concrete type of neural network (Zupan (1994)).

For a hidden layer, there are two most utilised functions. The first one is

called Rectified Linear activation function, shortly ReLU. It is calculated in the

following way.

max(0, x) (4)

Therefore, the output value is always non-negative. One of the reasons this

function is popular is its simplicity, which enhances the calculation speed. More-

over, it helps prevent vanishing gradients issues, which will be discussed in section

backpropagation together with some drawbacks. Nowadays, this function is being

used mostly for convolutional neural networks, which is the technique used in this
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thesis. The following figure 7 shows its input-output relation in a graph.

Figure 7: ReLU Activation Function

Source:
https://machinelearningmastery.com/choose-an-activation-function-for-deep-learning

Second one is a sigmoid function, also referred to as a logistic function. It is

defined as

1
1 + e−x

(5)

Contrary to ReLU, it is non-linear and has a smoother gradient, which is

preferable in backpropagation. Nevertheless, it may suffer from vanishing gradient

issue. The graph is in figure 8.
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Figure 8: Sigmoid Activation Function

Source:
https://machinelearningmastery.com/choose-an-activation-function-for-deep-learning

After the value is processed through the activation function, it may either

continue to another hidden layer if the network is deep, or directly reach the

output layer. Let us discuss the latter procedure, which is also analogical to the

previous step, meaning there exists one weight for each connection and one bias

for each neuron (Zupan (1994)).

There are two main activation functions for an output layer. Again, we may

use the advantages of the sigmoid function. It is efficient if the decision is binary,

whether the output belongs to one class or the other. The resulting value can be

thus deemed as a probability of the observation to be type 1. Nonetheless, it can

also be useful when the output is continuous and ranges between 0 and 1, which

will be our case

The other heavily utilised function is softmax. It is defined in the following

way.

ex∑︁
ex

(6)
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For every output value x, it calculates ex and divides by the sum of these expo-

nential values. Therefore, it is proven useful for multiclass classification (Pratiwi

et al. (2020)).

Let us wrap up the forward feed on the example in figure 9. There are two

variables on the input, one hidden layer with two neurons and one output layer

with one neuron. The input variables are scaled by w1 to w4 and two sumproducts

z1, z2 are formed. Then, bias terms b1 and b2 are added to them and the activation

functions return the output values. These are then multiplied by w5 and w6 and

summed up. This scalar together with bias b3 serves as input z3 for the output

activation function, which yields a value between 0 and 1 in the case of sigmoid.

Therefore, we are left with 6 weights and 3 biases that make our 9 trainable

parameters in total. The most important part takes place in the middle layer,

which processes the data through the activation functions. If those functions were

just linear, the method would not be much distinguishable from conventional linear

regressions. Nonlinear transformations, on the other hand, facilitate complex

causalities, but may not be efficient in basic data structures. One must always

use the advantages of appropriate tools and choose adequate number of hidden

layers and neurons. Opposite to our example, there can be deep models that have

thousands or millions of parameters to estimate.

Figure 9: Simple Neural Network

Source: https://victorzhou.com/blog/intro-to-neural-networks/
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4.2 Convolutional Neural Networks

Throughout the latest evolution of computers, there have been a plethora of

neural networks’ derivatives. One of them is called convolutional neural networks.

This is a process, which starts by performing a so-called convolution that is fol-

lowed by regular neural network’s operations described in the previous chapter.

What happens in the first part will be discussed in this subsection.

The word convolution stems from a mathematical operation involving a prod-

uct of two functions or in our case two sets (Jeong (2019)). For clarity, imagine

a matrix of 10x10, which contains only black or white pixels. In programming

terminology, these pixels are viewed as 0 for black and 255 for white units. Rep-

resentations of both of these is located in figure 10 and table 3, respectively.

Note that we used a division of 2 in the table to make the process simple, while

maintaining generality.

Figure 10: Sample Matrix

Source: Author’s computations

To convolute this object, we need another matrix called kernel. This is an NxN
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Table 3: Sample Matrix as Numbers

0 0 0 0 0 0 0 0 0 0
0 0 122.5 122.5 122.5 122.5 122.5 0 0 0
0 122.5 122.5 122.5 122.5 122.5 122.5 122.5 0 0
0 122.5 122.5 122.5 122.5 122.5 122.5 122.5 0 0

122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5 122.5
122.5 122.5 0 0 122.5 122.5 0 0 122.5 122.5
122.5 122.5 0 0 122.5 122.5 0 0 122.5 122.5

0 122.5 122.5 122.5 122.5 122.5 122.5 122.5 0 0
0 122.5 122.5 122.5 122.5 122.5 122.5 122.5 0 0
0 0 0 0 0 0 0 0 0 0

Source: Author’s computations

dimensional object, whose values are first randomly generated and then continu-

ously modified in the training phase. Let us assume that the matrix looks like in

table 4. This way the sample matrix 10x10 should transform into a blurred ver-

sion of itself since the emphasis is gradually diminishing farther from the adjacent

values. It should be noted that this is just a single kernel for one convolution.

There can exist multiple kernels independent to each other, which introduce higher

complexity into the process by increasing the number of channels, i.e., depth di-

mension. This means that the height and width of the image usually decrease,

while the depth grows. The reason is capturing more complexity to the model.

The process description will, however, work with a single channel procedure for

brevity.

Table 4: Sample Kernel

1
16×

1 2 1
2 4 2
1 2 1

Now since we have these two matrices, the next step is to choose the appro-

priate padding. This defines the level of overlapping of the two objects when

calculating the product and thus the dimension of the output matrix. Standard

approaches are valid and same (Jeong (2019)). The former uses only the actual

matrix 10x10 and in turn reduces the dimension, which may help make the com-

30



putation faster. The latter introduces helping cells around the matrix to maintain

the same dimensions on the output. This can be beneficial because the informa-

tion from the edges is used on the output but on the other hand, it causes the

calculations to be more demanding. Clearer explanation is in figure 11, where

valid padding is the most left image and same is the third from left.

Figure 11: Different Types of Padding

Source: Jeong (2019)

The interconnected step to the padding parameter is stride. This defines the

number of columns and rows, by which the kernel moves to the right (and down)

in one step (O’shea and Nash (2015)). Usually its value is equal to one to use the

advantages of the whole dataset at maximum. Nevertheless, strides of more than

one can be used as well in order to make the calculations faster.

The actual convolutional process consists in performing a sumproduct of the

kernel matrix and each area of the convoluted matrix, which is relevant. Exact

definition is in equation 7 below.

I = Input matrix mxn

K = Kernel matrix pxq

O = Output matrix

Oi,j =
p−1∑︂
u=0

q−1∑︂
v=0

Ii+u,j+v ·Ku,v (7)
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The dimension of the output matrix can be calculated as:

mout =
⌊︃

m− ppad + 1
s

⌋︃
nout =

⌊︃
n− qpad + 1

s

⌋︃

After the convolution is performed, we use the ReLU activation function, which

makes sure the output values are within the 0 to 255 range (O’shea and Nash

(2015)). The resulting matrix is in figure 12.

Figure 12: Sample Matrix Convoluted

Source: Author’s computations

The next step involves pooling, which is, similarly to convolution, applying a

filter to the input map. Nevertheless, this time there is no kernel and we only

need to set the dimensions and method of the filter (Wu (2017)). The former

is usually 2x2, but larger space can be used for bigger images. In regard to the

method, the literature most frequently uses max pooling and average pooling. As

the titles suggest, we either take the maximum value or the average of the sample.

The stride is usually equal to 2 in order to have non-overlapping data and

reduce more dimensions. Again, we start in the top-left corner and move towards

bottom-right. The reason for this operation lies in heavily reducing the number

of parameters, while still carrying the information further on.

The final matrix after applying the max pooling is visible in figure 13.
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Figure 13: Sample Matrix after Max Pooling

Source: Author’s computations

As we can see, the final matrix contains a very narrowed information compared

to the original one. Yet, it is in deed sensitive to the input matrix. Depending

on the deepness of the network, one might repeat the convolution and pooling

n-times to effectively decrease the dimension of the network.

Nevertheless, the last step is always flattening the final output matrix into a

single column and use it as an input into a fully connected neural network, which

was described at the beginning of this chapter. An image representation of the

previous process is illustrated in the following picture 14

We have an input image, on which we perform convolution with kernel(s).

Then, ReLU activation function is applied and the image proceeds to max pooling,

which cuts the dimensions even lower. This may repeat until the complexity is

exploited. Finally, the signal converges into a fully-connected layer, in which

standard NN operations come to play. This was just a narrow explanation of how

the signal actually goes forward in a CNN. Throughout the quick evolution, data

scientists have come up with a plethora of modifications that occur within the

process, but these introduce too much complexity for our rather simple models.
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Figure 14: CNN Architecture

Source: Udacity (2024)

4.2.1 Training of NN

So far we have assumed the parameters like the kernels, weights, biases some-

how exist and we only need to plug in the input image. This section will introduce

how to optimise those parameters.

After each input flows through the network until the very end, it needs to

be evaluated how close it is to the value to compare with. As mentioned in

the previous chapter, realised volatility was standardised to range from 0 to 1.

Therefore, we can use the advantage of a sigmoid function in the output layer to

return values within this interval as well.

There exist many alternations of the so-called loss function, which quantifies

the prediction efficiency. The criteria, which must or should be met by this func-

tion include monotonicity, so that the loss always grows when predictions are

poorer. Another one is non-negativity that causes the error to be either positive

or 0, in case of perfect prediction. Further, the loss function should be convex

in order to have all the local minima global as well. This is a crucial feature for

gradient optimisation described later on (Ramachandran et al. (2017)).

One of the ways to evaluate the outcomes is to use the mean squared error
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(MSE), which is calculated in the following way. Assuming x is a matrix of input

variables, θ is the set of trainable parameters and y is the real outcome values, our

loss function is defined as in equation 8. We want to find such θ, which minimise

this function L (Koyuncu (2020)).

L(θ) = 1
N

N∑︂
i=1

(y(i) − f(x(i); θ))2 (8)

Let us go back and use the already defined simple NN in figure 9 with two

neurons on the input, two in the hidden layer and one on the output. After passing

one observation to the network, we can calculate the loss function (LF) for the

first value with respect to the predicted value. Further, we can prolong it and

calculate it with respect to the bias term in the output neuron. Such a graph

might look similarly to the one in figure 15. If, for instance, the LF value would

be equal to 1, as in the plot, the best way to diminish the error is to move to the

right towards the minimum. But since it is not straightforward to tell where the

minimum is, it is necessary to calculate the derivative of MSE with respect to b3

at this point and go in the opposite direction. That is to go to the left if positive

and to the right if negative (Wythoff (1993)).

Figure 15: Loss Function wrt to b3

Source: Author’s computations
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To calculate the derivative, we can simplify the MSE expression to facilitate

the process by multiplying it by 0.5, while maintaining generality, and use the

chain rule to compute it (Wythoff (1993)).

The MSE equation is given by:

MSE = (y − f(x; θ))2 = (y − ŷ)2 =⇒ −1
2(y − ŷ)2

The partial derivative of MSE with respect to ŷ is:

∂MSE

∂ŷ
= y − ŷ

Then, the output function is sigmoid defined as σ(z3) = 1
1+e−z3 . With z3 being

the inputted weighted sum in the output neuron, the first derivative is equal to:

∂σ

∂z3
= σ(z3) · (1− σ(z3))

Last, we use the fact that our output function ŷ is sigmoid. The partial

derivative of MSE with respect to z3 is thus computed as:

∂MSE

∂z3
= ∂MSE

∂ŷ
· ∂ŷ

∂z3
= (y − ŷ) · σ(z3) · (1− σ(z3))

To finally fetch the derivative of MSE with respect to b3, we use the fact that

the derivative of the weighted sum z3 with respect to b3 is equal to 1:

∂MSE

∂b3
= ∂MSE

∂z3
· ∂z3

∂b3
= (y − ŷ) · σ(z3) · (1− σ(z3)) · 1

All other parameters, including the kernels during convolution, can be com-

puted analogically using the chain rule (Wythoff (1993)). For example, derivatives

of w5 and w6 would be of the following expressions:

∂MSE

∂w5
= (y − ŷ) · σ(z3) · (1− σ(z3)) · h1

∂MSE

∂w6
= (y − ŷ) · σ(z3) · (1− σ(z3)) · h2
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Before, we deep dive into the θ updates, we need to introduce learning rate α,

which is positive and determines the magnitude of the jump. Small values might

make the updates too slow, while big ones may cause the parameter to oscillate

around the minimum and stay too far from it (Moreira and Fiesler (1995)). There

is, however, a possibility to change the α in later stages of the training. Regular

values in the literature often vary from 0.01 to 0.001.

4.2.2 Stochastic Gradient Descent

The process of effectively approaching the minimum value can be performed by

multiple techniques nowadays. Most of them, however, rely on stochastic gradient

descent, also known as SGD. This method has the following characteristics.

Input : Learning rate α and initial values of parameters θ

Output : Updated θ

The training procedure is run until the predefined condition is met, which is

usually the number of epochs (Amari (1993)). And an epoch is usually a complete

pass of the training data through the network. Now, there is a trade-off how

frequently to update the θ. On the one hand, the literature works with updating

the parameters directly after each observation is processed. This can make the

gradients subject to noise and prolong the calculations. On the other, the update

can occur after all the considered data are processed. Having many observations

reduces noise but is not very efficient since not many updates actually happen.

Thus, it would take many epochs to find the global minima for the network.

Hence, probably the best way to deal with this trade off is to compromise and

set a number of examples, after which the parameters θ update. These examples

are sampled from the data usually without replacement and are referred to as

batches. The number of examples is preset as a hyperparameter. We can find the

detailed method below.

1. Sample a batch of m examples without replacement from the training set

(x(i), y(i))

2. Run these examples through the NN, calculate the loss function and subse-

quently the parameters’ gradients for each of them
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3. Average the gradients over the examples g← 1
m

∑︁m
i=1∇θL(f(x(i),θ), y(i))

4. Update the parameters θ by the product of gradients g and learning rate α

5. θt+1 ← θt − αg

As a result, parameters θ update after each batch and theoretically do so

Nbatches×Nepochs times. Nevertheless, the practitioners have come up with several

alternations to the simple SGD method. One of the most discussed ones is called

adaptive moment estimation with weight decay or AdamW in short. Its advan-

tages consist in that it more effectively updates the parameters by incorporating a

weight decay and momentum. The former is a way to avoid overfitting the model

by introducing a so called penalty to the loss function (Krogh and Hertz (1991)).

Momentum is a feature, which accelerates convergence to the global minima by

maintaining the overall direction of the convergence path (Moreira and Fiesler

(1995)). This may come in hand when an outlier appears in the batch. On the

other hand, this algorithm is more complex and computationally expensive than

SGD.

This thesis uses AdamW in the CNN architectures because it has shown im-

proved results in the literature (Tran and Cutkosky (2022)), despite its potentially

higher computational costs.

4.2.3 Hyperparameters Choice

This section presents the choice of hyperparameters used to train the models.

Since this method was omitted in the world of predicting volatility, it is not

straightforward to know how to set those optimally. We, however, followed basic

CNN architectures, stemming from the pieces of work of Jiang et al. (2020) and

Zeiler and Fergus (2014) and made several versions of the architectures with many

alternations. While still facing the uncertainty of the ideal specification, this

procedure should decrease the probability of omitting it.

Overall, 96 different types of CNN were chosen for the input bins of five days.

The 20-day input had 36 distinct specifications and the 60-day input were trained

on 16 models. None of the models can be repeated in the whole pool of 148
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combinations since the initial convolution layer is different for the three bin groups.

Further, the inverse relationship of the input days and number of models is due to

the computation power, which is sharply increasing with introducing complexity

by higher number of input days. Therefore, reducing the models’ versions was

chosen in order to enhance the required deepness. Particular architectures are

listed in the appendix.
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5 Results

5.1 CNN Performance

In this section, we introduce the main results of the thesis, which is the perfor-

mance of the image-based method of predicting volatility against the conventional

counterparts. The models were evaluated based on both root mean squared error

(RMSE) and mean absolute error (MAE). Within the 3 sorts of bins, the top five

performing models based on RMSE on testing data were used and average values

of these statistics were taken. All models were initially trained on the training set,

comprising the first 70% of all observations. Hyperparameters were tuned on the

validation set and the results shown here are based on the testing set, featuring

the last 15% of available data.

Table 5: Comparison of Forecast Performance

MAE RMSE
CNN_5d 0.162 0.216
CNN_20d 0.142 0.200
CNN_60d 0.156 0.214
Note: Values are multiplied by 1000
Source: Author’s computations

The table 5 shows average RMSE and MAE of the best five models within

each type of the input. Both measures showed consistent outcomes. The high-

est precision was obtained by 20 days, followed by 60 and 5 days, respectively.

Further, the winner was significantly better in both aspects, while the two other

types always received similar values.

Firstly, this finding suggests that the last month approximation of 20 days

might be the best predictor of the next day volatility. The trade-off between

volatility clustering feature and introducing noise appear to be best resolved for

20 days, among the three types. This result is in line with the literature where

the information from the last 20 days appear to be the best predictor of volatility

(Ghysels et al. (2006)).

Secondly, using a longer period of time, like a quarter, on the input might yield
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slightly more precise forecasts than shorter interval like a week, The clustering

phenomenon seems to be more dominant than the presence of noise, although this

conclusion is too strong to make.

Figure 16: Comparison of 5-day Input CNN Forecast and Real data

Source: Author’s computations

Let us look at the results from the visual perspective. The averaged forecast

values within the top five specifications for 5-day input are presented in figure 16.

First of all, the values seem to be centred around the mean value and tend not to

capture for the several peaks. This is a common feature of volatility forecasting

for most of the models. Secondly, the one day-ahead forecasts appear to copy

the real values from the overall perspective, but noticeable differences are present

as well. The most apparent ones are situated at the beginning and the very end

of the series when volatility remained low. On the other hand, mid-high level of

volatility experienced a better matching.

Plot 17 shows the same comparison for the 20-day input. Some could argue

that the results are in deed more favourable in this scenario, but the improvement

does not seem to be strong. Overall, the forecast mood is very similar to the

previous graph with better matching spikes.

The 60-day input should represent a quarter period beforehand. The figure

18 tells us there was no significant improvement from the previous two methods.

The precision was interestingly low at the beginning but experienced an advance
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Figure 17: Comparison of 20-day Input CNN Forecast and Real data

Source: Author’s computations

in the period of high volatility right afterwards. The rest is in similar manner to

the forecasts discussed before.

In regard to the data science perspective, reasonable pieces of inference can

be made about the hyperparameters. Table 6 shows the settings, in which the

best five models within the three sorts differed. One can spot a pattern that more

days, featuring more complex input images, required more complex models. The

most apparent difference is between five days and the rest. 20 and 60 days did not

show drastically distinguishable results. All other hyperparameters were identical

for the models.

Table 6: Models’ Specification

5 days 20 days 60 days
Convolution Layers 1 2 2
Number of Filters 64 128 128

Batches 40 50 50
Hidden Layers 1 2 2-3
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Figure 18: Comparison of 60-day Input CNN Forecast and Real data

Source: Author’s computations

5.2 Comparison to Conventional Models

To put the main results into a broader perspective, we decided to fit two

conventional models for forecasting volatility on the testing set and compare the

results. The former is Heterogeneous Autoregressive (HAR) model. It uses three

explanatory variables consisting of 1-period lag and averages of last 5 and 22 days

of realised volatility.

The latter is an Autoregressive-realised volatility model (ARVol) of order

(1,0,0). Both of the models’ specifications are standard in the literature. We

know there might exist better fitting hyperparameters, but these should align

with the scope of the thesis, which is to have a regular benchmark.

The setup of the two models is identical to the CNNs. That means that we

estimate the parameters using the training data and compare the accuracy on the

testing set (out-of-sample). Further, the forecast values from these models are

one-day ahead predictions, which is the same interval as in the case of CNN. This

makes all the approaches directly comparable.

Table 7 shows how the best CNN method, which is the 20-day input, stands

in comparison to HAR and ARVol. First of all, conventional methods used as

the benchmark had the main difference of directly using the explained variable in

43



Table 7: Comparison of Forecast Accuracy

MAE RMSE
CNN_20d 0.142 0.200

HAR 0.111 0.138
ARVol 0.136 0.156

Note: Values are multiplied by 1000
Source: Author’s computations

some modifications on the input as well. This means the use of the autoregressive

function, which CNN did not have. It rather used plain price indicators with

volume to forecast the values. The results in the table suggest that conventional

models attained significantly favourable values than the best CNN predictor. Both

MAE and RMSE were measurably lower in the case of HAR and ARVol than the

20-day CNN.

If we take a look at the forecast comparison in figure 19 of the HAR model and

real data, it is apparent that it better predicts the one day forecast. The median

values for each epochs are fitted nicely, but the peaks tend to be underestimated.

Figure 19: Differences between HAR Forecast and Real data

Source: Author’s computations

Figure 20 presents a comparison of the HAR (green), CNN (orange) fits to
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the real values (blue). The orange colour seems to be indeed a little bit farther

from the blue than the green one. Nevertheless, the period of high values at the

beginning seems to be captured similarly or even better by the CNN.

Figure 20: Differences CNN - HAR - Real data

Source: Author’s computations

Last, figure 21 presents differences of both 20-day CNN and HAR to the real

values. At first glance, the time series do not appear to be significantly better or

worse than the other. Both contain some peaks, but remain calmly close to the

zero line. Nonetheless, the end of the epoch seems to be a bit more in favour of

the orange colour, representing the HAR model.

45



Figure 21: Differences of CNN & HAR to Real Data

Source: Author’s computations

5.2.1 Rolling Window Setup of the Benchmark Models

This subsection compares the results to a more frequently used setup in volatil-

ity predicting, which is the rolling window. Analysing this method of estimation

makes our CNN results directly comparable to the practical volatility forecasting

models. The rolling window specification works with a 500-day interval on the

input that shifts one day ahead and re-estimates itself every following step. Since

HAR, ARVol and other conventional methods do not require such a long time

to be fitted, this approach is indeed attainable. Unfortunately, the calculation

power of current computers does not yet enable us to fit the CNN models in a

similar way. Therefore, we just present the results for the purposes of practical

comparison. The information is presented in table 8.

We can see that both of the errors dropped for HAR and AVOL compared

to the main results. This is not illogical since the model’s parameters update

for the newest information available with every following step. As mentioned in

the previous text, the rolling window for the CNN architecture is not feasible so

far due to the extreme estimation requirements. Therefore, we cannot put the

method into a face-to-face comparison, which makes us unaware of how precisely

they would predict.
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Table 8: Comparison of Forecast Accuracy - Rolling Window

MAE RMSE
CNN_20d 0.142 0.200

HAR 0.111 0.138
ARVol 0.136 0.156

HAR_roll 0.097 0.113
ARVol_roll 0.112 0.128
Note: Values are multiplied by 1000
Source: Author’s computations

It can be just theoretised how would the convolutional neural networks stand to

the rolling window setup of HAR and ARVol if it was more reachable. The rolling

window for the traditional methods has shown some significant improvement to

the main method of out-of-sample testing. But since the CNN did perform more

poorly before, they would need to enhance by a greater margin. The key question

whether that is possible thus remains unsolved until further advancements in

technology take place. Graphs of the accuracy comparison are in the appendix.

5.3 Training on High vs Low-volatility Data

Further, we aimed to focus on the sensitivity of the forecast performance to

the training data. All models utilise 20 day input bins because it proved best and

most consistent among the three types.

As it was introduced in the data chapter, our volatility ranges from 2010 to

2019. Since the training data capture for 70% of the interval, it corresponds to

approximately 7 years. Volatility experienced different phases within this epoch

and thus we decided to split it into 2 intervals. The former half encompasses

higher fluctuation of volatility and the latter is in the name of constant and low

trend.

Due to the fact that this low trend ended after five years, the training data

reach up this point. Further on, there is the validation set, which is thus longer

than before. The testing interval remained the same for comparison purposes with

the initial analysis.
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Since the testing data resemble a rather high-volatility behaviour, we expect

the high-volatility training set to yield more favourable results. This is based on

training the data on a similar set to the testing one, which might use the presence

of volatility clustering.

On the contrary, low-volatility epoch is more recent to the testing data and

the parameters might be of lower variance since the interval is more stable, thus

uninfluenced of the up and down peaks.

Figure 22: Effect of High & Low-volatility Training Data on Test Accuracy

Source: Author’s computations

Figure 22 shows average values of the top five performing models for each

training set. Orange colour, representing high-volatility training data, appears to

be better capturing the spikes than the regular values compared to the green line.

This is something that is anticipated based on the preset conditions.

What can be deemed a bit surprising is the overall comparison of the accuracy.

Table 9 presents the results with a clear difference. Low volatility training seems

to overshadow the latter in both measures RMSE and MAE by a great margin.

Nonetheless, it still lacks precision in comparison to the training data being the

whole seven years in the main results. Row three shows the average forecast

values of the low and high models. It supports the indication from the graph that

training in low volatility mood yields lower values than high-volatility.
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Table 9: High vs Low-Volatility Training

CNN-low CNN-high
RMSE 0.225 0.285
MAE 0.155 0.235

Average For. Value 0.466 0.647
Note: Values are multiplied by 1000
Source: Author’s computations

This whole finding suggests that CNN can provide reasonable forecasts, which

do not defy the logic. That is, high volatility data on training better matches high

volatility on the testing set and vice-versa. Unfortunately, splitting the training

dataset does not help fit the models when compared to the whole training interval

of seven years.

5.4 Hypotheses Evaluation

This section discusses the overall evaluation of the hypotheses presented in the

introduction.

First hypothesis states that the image-based CNN method is able to generate

reasonable volatility forecast performance. Even though the approach uses prices

and volume on the input, instead of the lags of the dependent variable, and does

not use a rolling window, it is able to generate meaningful forecast values. The

results suggest there is room for improvement in general, but the overall mood is

mostly in favour of supporting this hypothesis, hence failing to reject it.

Further, the second hypothesis claims that when the number of days on the

input increases, the forecast precision should rise. As the main results show, the

ideal candidate for the input is 20 days. Using a 60-day period does not lead to

the enhancement of the accuracy since the duration might be too long to contain

only useful information. Moreover, the one week only input experiences similar

results to 60 days. This suggests the optimum lies at 20 or at least close to it,

forming an inverse U-shape. This hypothesis is thus rejected.

Last, the final hypothesis was that the CNN method does overshadow the

traditional methods of forecasting volatility. The identical initial setup of these
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two types suggests the traditional methods are inclined to yield more favourable

results. Nevertheless, the more practical point of view, which is the rolling window,

shows the overall improvement for HAR and ARVol. Unfortunately, this cannot be

set side by side to CNN since the rolling window is not computationally attainable.

This hypothesis is thus rejected on the regular level of the initial setup. The rolling

or possibly expanding windows might, however, alter the conclusion. We leave this

topic as a motivation for subsequent studies.

5.5 Robustness Check

This chapter strives to replicate the main results while using realised variance

as the output variable. The data are fetched in the same way as in the case

of volatility, which results in taking simple squares of the initial values. The

input remains identical as in the main process. This exploration allows us to

validate the robustness of the models under different conditions, which ensures

that the findings are not susceptible to a specific setup but hold true across various

scenarios.

Figure 23 presents a plot of variance for the same period as volatility. Y-

axis is adjusted for readability by multiplying the values by 105. The definition

of variance makes the time-series more spread out in comparison to volatility.

This increased dispersion is evident in the plot, where the mean value remains

relatively stable and low, but the peaks appear more pronounced and significant.

The following section shows how this affects the overall forecasting performance

of CNN, HAR and ARVol.
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Figure 23: Realised Variance

Source: Author’s computations

5.5.1 Results

The same approach for fitting the models was conducted for variance as for

volatility. That is, we used the same three sets of models’ specifications to cal-

culate the results and the best five performing models were then fetched for each

type of the input bin. The average RMSE and MAE are introduced in table 10.

This schema also includes the same statistics for HAR and RVol as proxies for

conventional volatility/variance forecast models. The setup is managed in the

same way. That is, it estimates the parameters on the training set and calculates

accuracy on the testing one.

In regard to the intra-race of the three types of input, the results do not appear

to dramatically differ from the volatility. CNN with 20-day input is still at the

top for MAE, but experiences a slight decline in performance in RMSE compared

to the 5-day input. On the other hand, 60 days have worsened significantly in

both aspects. This could be explained by the amplified presence of sharp jumps

in variance time-series, which might influence the longer horizon data input. This
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Table 10: Comparison of Forecast Accuracy for Variance

MAE RMSE
CNN_5d 0.287 0.444
CNN_20d 0.250 0.474
CNN_60d 0.312 0.535
HAR 0.235 0.382
RVol 0.253 0.395
Note: Values are multiplied by 106

Source: Author’s computations

could give an explanation for the 5-day input scoring better than for the volatility

scenario.

Nonetheless, the overall performance for all CNN models has slightly dropped

compared to the traditional techniques like HAR and RVol. Both of those have

showed a measurably positive extended difference of precision to CNNs than in

the case of volatility. This suggests that the images as input might be a bit more

suitable for volatility predicting than for variance, where the data differences are

more pronounced.

Altogether, the robustness check’s results suggest that the traditional ap-

proaches have proven consistently better results in both of the output variables.

Regarding the three 5, 20 and 60-day inputs, the 20 days seems to be the best

choice for volatility and variance in general. The two other types showed mixed

results but did not seem overshadow the 20 days.
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6 Conclusion

This thesis investigates whether convolutional neural networks (CNN) featur-

ing images of past price and volume indicators on the input are able to help

predict one day-ahead volatility in financial time-series data. The idea is inspired

by a paper from Jiang et al. (2020), who managed to use this new technique

in predicting the future level of prices. The key question is then whether the

process can be applied to the old phenomenon of volatility. Since the answer

was never formulated, three distinct input setups were chosen to contain poten-

tial best framework. These include converted pictures of the last 5, 20 and 60

days, representing week, month and quarter of the year. Several specifications of

the networks were analysed for each of these setups and the top five performing

models were always selected. These were then compared to the benchmark tra-

ditional models of predicting volatility. The whole analysis was carried out on

high-frequency data sampled at 5-minute intervals of the index E-Mini S&P 500

from the CME.

Regarding the intra-CNN performance, the 20-day input appears to be the

best of the three. It has shown consistently dominant values both in MAE and

RMSE. This finding is in line with the literature, where a period of the last month

seems to best predict the volatility in conventional models. The other two types of

input experienced similar, but worse, results in both measures, although slightly

in favour of 60 days. Thus could suggest that the clustering feature of volatility

may be more meaningful for a longer period despite the potential inclusion of

noise.

The overall comparison to standard models of volatility showed that the CNN

were not able to beat them when tested on the out-of-sample set. The reason

might lie in the fact the conventional models operate with lagged values of volatil-

ity on the input, while the CNN work with prices and volume. Therefore, the

specification is a bit altered and thus the models are not directly comparable.

Nevertheless, the goal was to set the CNN, which is based on images representing

the index behaviour, side by side to the practical models used in the literature.

Thanks to the relative shallow level of complexity, some of these conventional

53



models can be fitted using the rolling or expanding window, which is the main

and mostly used technique. This yielded even lower values of MAE and RMSE

than when purely tested on the out-of-sample set. Unfortunately, the CNN are

too composite and require enhanced computation power to be fitted this way

as well. Thus, the direct comparison can be conducted when the technology

advances. The CNN method was then evaluated on different periods of the input

and subsequently on realised variance instead of realised volatility on the output.

Both of these checks confirmed that the CNN does in deed predict reasonable and

not illogical values of volatility. The CNN performance in the case of variance did

not suggest any contradiction in relation to the comparison to standard models

either.

By all counts the thesis discovered that using past prices and volume converted

into images as an input to CNN could produce reasonable volatility forecast. Nev-

ertheless, it does not overshadow the standard models used in the modern litera-

ture, which mostly hinge on the autoregressive specification. There are, however,

many possible extensions of this thesis since the topic is brand new. These include

different conversion of data to images or incorporating the dependent variable on

the input as well. The most interesting follow up would, however, be to use a

rolling or expanding window for the convolutional neural networks to update for

current information.
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Appendices

Appendix A Transformed Input Matrices - 20

& 60 Days

Figure 24: Input Data 20 Days - Transformed Matrix

Source: Author’s computations
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Figure 25: Input Data 60 Days - Transformed Matrix

Source: Author’s computations
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Appendix B Extended Configuration of CNNs

Table 11: CNN Configuration

Parameters 5 days 20 days 60 days
Conv. Layer with Relu Activation Function ✓ ✓ ✓
Max Pooling (2x2) ✓ ✓ ✓
Conv. Layer with Relu Activation Function ✓ ✓
Max Pooling (2x2) ✓ ✓
Flatten Layer ✓ ✓ ✓
# of Hidden Layers - ReLU Activation Function 1 2 2-3
Output Layer - Sigmoid Function ✓ ✓ ✓
# of Filters 64 128 128
Convolution Layers 1 2 2
Batches 40 50 50
Optimiser AdamW AdamW AdamW
Learning Rate 0.001 0.001 0.001
Loss Function MSE MSE MSE
Source: Author’s computations
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Appendix C Extended Results for CNN Perfor-

mance

Figure 26: Differences between 5-day Input CNN Forecast and Real data

Source: Author’s computations
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Figure 27: Differences between 20-day Input CNN Forecast and Real data

Source: Author’s computations

Figure 28: Differences between 60-day Input CNN Forecast and Real data

Source: Author’s computations
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Figure 29: Differences between HAR Forecast and Real data - Rolling Window

Source: Author’s computations

Figure 30: Differences CNN - HAR - Real Data - Rolling Window

Source: Author’s computations
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Figure 31: Differences of CNN & HAR to Real Data - Rolling Window

Source: Author’s computations
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