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Preface to the Dover Edition

THE REPUBLICATION OF THIS BOOK gave me an opportunity to
correct and bring up to date Symbols, Signals and Noise,! which I
wrote almost twenty years ago. Because the book deals largely
with Shannon’s work, which remains eternally valid, I found that
there were not many changes to be made. In a few places I altered
tense in referring to men who have died. I did not try to replace
cycles per second (cps) by the more modern term, hertz (hz) nor
did I change everywhere communication theory (Shannon’s term)
to information theory, the term 1 would use today.

Some things I did alter, rewriting a few paragraphs and about
twenty pages without changing the pagination.

In Chapter X, Information Theory and Physics, I replaced a
background radiation temperature of space of “2° to 4°K” (Heaven
knows where I got that) by the correct value of 3.5°K, as deter-
mined by Penzias and Wilson. To the fact that in the absence of
noise we can in principle transmit an unlimited number of bits per
quantum, I added new material on quantum effects in communica-
tion.2 I also replaced an obsolete thought-up example of space
communication by a brief analysis of the microwave transmission
of picture signals from the Voyager near Jupiter, and by an exposi-
tion of new possibilities.

1 Harper Modern Science Series, Harper and Brothers, New York, 1961.
2 See Introduction to Communication Science and Systems, John R. Pierce
and Edward C. Posner, Plenum Publishing Corporation, New York, 1980.

vii
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In Chapter VII, Efficient Encoding, I rewrote a few pages con-
cerning efficient source encoding of TV and changed a few sen-
tences about pulse code modulation and about vocoders. I also
changed the material on error correcting codes.

In Chapter XI, Cybernetics, I rewrote four pages on computers
and programming, which have advanced incredibly during the last
twenty years.

Finally, I made a few changes in the last short Chapter XIV,
Back to Communication Theory.

Beyond these revisions, I call to the reader’s attention a series
of papers on the history of information theory that were published
in 1973 in the IEEE Transactions on Information Theory? and
two up-to-date books as telling in more detail the present state
of information theory and the mathematical aspects of com-
munication, 25

Several chapters in the original book deal with areas relevant
only through application or attempted application of information
theory.

I think that Chapter XII, Information Theory and Psychology,
gives a fair idea of the sort of applications attempted in that area.
Today psychologists are less concerned with information theory
than with cognitive science, a heady association of truly startling
progress in the understanding of the nervous system, with ideas
drawn from anthropology, linguistics and a belief that some power-
ful and simple mathematical order must underly human function.
Cognitive science of today reminds me of cybernetics of twenty
years ago.

As to Information Theory and Art, today the computer has re-
placed information theory in casual discussions. But, the ideas
explored in Chapter XIII have been pursued further. I will mention
some attractive poems produced by Marie Borroff®?, and, es-

3 [EEE Transactions on Information Theory, Vol. IT-19, pp. 3-8, 145-
148, 257-262, 381-389 (1973).

4 The Theory of Information and Coding, Robert J. McEliece, Addison-
Wesley, Reading, MA, 1977.

5 Principles of Digital Communication and Coding, Andrew J. Viterbi and
Jim K. Omura, McGraw Hill, New York, 1979.

6 “Computer as Poet,” Marie Borroff, Yale Alumni Magazine, Jan. 1971.

7 Computer Poems, gathered by Richard Bailey, Potagannissing Press,
1973.
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pecially a grammar of Swedish folksongs by means of which Johan
Sundberg produced a number of authentic sounding tunes.?

This brings us back to language and Chapter VI, Language and
Meaning. The problems raised in that chapter have not been re-
solved during the last twenty years. We do not have a complete
grammar of any natural language. Indeed, formal grammar has
proved most powerful in the area of computer languages. It is my
reading that attention in linguistics has shifted somewhat to the
phonological aspects of spoken language, to understanding what
its building blocks are and how they interact—matters of great
interest in the computer generation of speech from text. Chomsky
and Halle have written a large book on stress,® and Liberman and
Prince a smaller and very powerful account.®

So much for changes from the original Signals, Symbols and
Noise. Beyond this, I can only reiterate some of the things I said
in the preface to that book.

When James R. Newman suggested to me that I write a book
about communication I was delighted. All my technical work has
been inspired by one aspect or another of communication. Of
course I would like to tell others what seems to me to be interest-
ing and challenging in this important field.

It would have been difficult to do this and to give any sense of
unity to the account before 1948 when Claude E. Shannon pub-
lished “A Mathematical Theory of Communication.”'! Shannon’s
communication theory, which is also called information theory,
has brought into a reasonable relation the many problems that have
been troubling communication engineers for years. It has created a
broad but clearly defined and limited field where before there were
many special problems and ideas whose interrelations were not well

8 “Generative Theories in Language and Musical Descriptions,” Johan
Sundberg and Bjorn Lindblom, Cognition, Vol. 4, pp. 99-122, 1976.

9 The Sound Pattern of English, N. Chomsky and M. Halle, Harper and
Row, 1968.

10 “On Stress and Linguistic Rhythm,” Mark Liberman and Alan Prince,
Linguistic Inquiry, Vol. 8, No. 2, pp. 249-336, Spring, 1977.

11 The papers, originally published in the Bell System Technical Journal,
are reprinted in The Mathematical Theory of Communication, Shannon and
Weaver, University of Illinois Press, first printing 1949. Shannon presented
a somewhat different approach (used in Chapter IX of this book) in “Com-
munication in the Presence of Noise,” Proceedings of the Institute of Radio
Engineers, Vol. 37, pp. 10-21, 1949.
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understood. No one can accuse me of being a Shannon worshipex
and get away unrewarded.

Thus, 1 felt that my account of communication must be an
account of information theory as Shannon formulated it. The
account would have to be broader than Shannon’s in that it would
discuss the relation, or lack of relation, of information theory to
the many fields to which people have applied it. The account would
have to be broader than Shannon’s in that it would have to be less
mathematical.

Here came the rub. My account could be less mathematical than
Shannon’s, but it could not be nonmathematical. Information
theory is a mathematical theory. It starts from certain premises
that define the aspects of communication with which it will deal,
and it proceeds from these premises to various logical conclusions.
The glory of information theory lies in certain mathematical
theorems which are both surprising and important. To talk about
information theory without communicating its real mathematical
content would be like endlessly telling a man about a wonderful
composer yet never letting him hear an example of the composer’s
music.

How was I to proceed? It seemed to me that I had to make the
book self-contained, so that any mathematics in it could be under-
stood without referring to other books or without calling for the
particular content of early mathematical training, such as high
school algebra. Did this mean that I had to avoid mathematical
notation? Not necessarily, but any mathematical notation would
have to be explained in the most elementary terms. I have done
this both in the text and in an appendix; by going back and forth
between the two, the mathematically untutored reader should be
able to resolve any difficulties.

But just how difficult should the most difficult mathematical
arguments be? Although it meant sliding over some very important
points, I resolved to keep things easy compared with, say, the more
difficult parts of Newman’s The World of Mathematics. When the
going is very difficult, I have merely indicated the general nature of
the sort of mathematics used rather than trying to describe its con-
tent clearly.

Nonetheless, this book has sections which will be hard for the
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nonmathematical reader. I advise him merely to skim through
these, gathering what he can. When he has gone through the book
in this manner, he will see why the difficult sections are there. Then
he can turn back and restudy them if he wishes. But, had I not
put these difficult sections in, and had the reader wanted the sort
of understanding that takes real thought, he would have been stuck.
As far as I know, other available literature on information theory
is either too simple or too difficult to help the diligent but inexpert
reader beyond the easier parts of this book. I might note also that
some of the literature is confused and some of it is just plain wrong.

By this sort of talk I may have raised wonder in the reader’s
mind as to whether or not information theory is really worth so
much trouble, either on his part, for that matter, or on mine. I can
only say that to the degree that the whole world of science and
technology around us is important, information theory is important,
for it is an important part of that world. To the degree to which an
intelligent reader wants to know something both about that world
and about information theory, it is worth his while to try to get a
clear picture. Such a picture must show information theory neither
as something utterly alien and unintelligible nor as something that
can be epitomized in a few easy words and appreciated without
effort.

The process of writing this book was not easy. Of course it could
never have been written at all but for the work of Claude Shannon,
who, besides inspiring the book through his work, read the original
manuscript and suggested several valuable changes. David Slepian
jolted me out of the rut of error and confusion in an even more
vigorous way. E. N. Gilbert deflected me from error in several
instances. Milton Babbitt reassured me concerning the major
contents of the chapter on information theory and art and suggested
a few changes. P. D. Bricker, H. M. Jenkins, and R. N. Shepard
advised me in the field of psychology, but the views I finally ex-
pressed should not be attributed to them. The help of M. V.
Mathews was invaluable. Benoit Mandelbrot helped me with
Chapter XII. J. P. Runyon read the manuscript with care, and Eric
Wolman uncovered an appalling number of textual errors, and
made valuable suggestions as well. I am also indebted to Prof.
Martin Harwit, who persuaded me and Dover that the book was
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worth reissuing. The reader is indebted to James R. Newman for
the fact that I have provided a glossary, summaries at the ends of
some chapters, and for my final attempts to make some difficult
points a little clearer. To all of these I am indebted and not less to
Miss F. M. Costello, who triumphed over the chaos of preparing
and correcting the manuscript and figures. In preparing this new
edition, I owe much to my secretary, Mrs. Patricia J. Neill.

September, 1979 J. R. PIERCE



CHAPTER I The World and
Theories

IN 1948, CLAUDE E. SHANNON published a paper called “A
Mathematical Theory of Communication”; it appeared in book
form in 1949. Before that time, a few isolated workers had from
time to time taken steps toward a general theory of communication.
Now, thirty years later, communication theory, or information
theory as it is sometimes called, is an accepted field of research.
Many books on communication theory have been published, and
many international symposia and conferences have been held.
The Institute of Electrical and Electronic Engineers has a pro-
fessional group on information theory, whose Transactions appear
six times a year. Many other journals publish papers on informa-
tion theory.

All of us use the words communication and information, and
we are unlikely to underestimate their importance. A modern
philosopher, A. J. Ayer, has commented on the wide meaning and
importance of communication in our lives. We communicate, he
observes, not only information, but also knowledge, error, opinions,
ideas, experiences, wishes, orders, emotions, feelings, moods. Heat
and motion can be communicated. So can strength and weakness
and disease. He cites other examples and comments on the mani-
fold manifestations and puzzling features of communication in
man’s world.

Surely, communication being so various and so important, a

1
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theory of communication, a theory of generally accepted soundness
and usefulness, must be of incomparable importance to all of us.
When we add to theory the word mathematical, with all its impli-
cations of rigor and magic, the attraction becomes almost irre-
sistible. Perhaps if we learn a few formulae our problems of
communication will be solved, and we shall become the masters
of information rather than the slaves of misinformation.

Unbhappily, this is not the course of science. Some 2,300 years
ago, another philosopher, Aristotle, discussed in his Physics a
notion as universal as that of communication, that is, motion.

Aristotle defined motion as the fulfillment, insofar as it exists
potentially, of that which exists potentially. He included in the
concept of motion the increase and decrease of that which can be
increased or decreased, coming to and passing away, and also being
built. He spoke of three categories of motion, with respect to
magnitude, affection, and place. He found, indeed, as he said, as
many types of motion as there are meanings of the word is.

Here we see motion in all its manifest complexity. The com-
plexity is perhaps a little bewildering to us, for the associations of
words differ in different languages, and we would not necessarily
associate motion with all the changes of which Aristotle speaks.

How puzzling this universal matter of motion must have been
to the followers of Aristotle. It remained puzzling for over two
millennia, until Newton enunciated the laws which engineers still
use in designing machines and astronomers in studying the motions
of stars, planets, and satellites. While later physicists have found
that Newton’s laws are only the special forms which more general
laws assume when velocities are small compared with that of light
and when the scale of the phenomena is large compared with the
atom, they are a living part of our physics rather than a historical
monument. Surely, when motion is so important a part of our
world, we should study Newton’s laws of motion. They say:

1. A body continues at rest or in motion with a constant velocity
in a straight line unless acted upon by a force.

2. The change in velocity of a body is in the direction of the force
acting on it, and the magnitude of the change is proportional to
the force acting on the body times the time during which the force
acts, and is inversely proportional to the mass of the body.
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3. Whenever a first body exerts a force on a second body, the
second body exerts an equal and oppositely directed force on the
first body.

To these laws Newton added the universal law of gravitation:

4. Two particles of matter attract one another with a force act-
ing along the line connecting them, a force which is proportional
to the product of the masses of the particles and inversely propor-
tional to the square of the distance separating them.

Newton’s laws brought about a scientific and a philosophical
revolution. Using them, Laplace reduced the solar system to an
explicable machine. They have formed the basis of aviation and
rocketry, as well as of astronomy. Yet, they do little to answer many
of the questions about motion which Aristotle considered. New-
ton’s laws solved the problem of motion as Newton defined it,
not of motion in all the senses in which the word could be used in
the Greek of the fourth century before our Lord or in the English
of the twentieth century after.

Our speech is adapted to our daily needs or, perhaps, to the needs
of our ancestors. We cannot have a separate word for every distinct
object and for every distinct event; if we did we should be forever
coining words, and communication would be impossible. In order
to have language at all, many things or many events must be
referred to by one word. It is natural to say that both men and
horses run (though we may prefer to say that horses gallop) and
convenient to say that a motor runs and to speak of a run in a
stocking or a run on a bank.

The unity among these concepts lies far more in our human
language than in any physical similarity with which we can expect
science to deal easily and exactly. It would be foolish to seek some
elegant, simple, and useful scientific theory of running which would
embrace runs of salmon and runs in hose. It would be equally
foolish to try to embrace in one theory all the motions discussed
by Aristotle or all the sorts of communication and information
which later philosophers have discovered.

In our everyday language, we use words in a way which is con-
venient in our everyday business. Except in the study of language
itself, science does not seek understanding by studying words and
their relations. Rather, science looks for things in nature, including
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our human nature and activities, which can be grouped together
and understood. Such understanding is an ability to see what
complicated or diverse events really do have in common (the
planets in the heavens and the motions of a whirling skater on ice,
for instance) and to describe the behavior accurately and simply.

The words used in such scientific descriptions are often drawn
from our everyday vocabulary. Newton used force, mass, velocity,
and attraction. When used in science, however, a particular mean-
ing is given to such words, a meaning narrow and often new. We
cannot discuss in Newton’s terms force of circumstance, mass
media, or the attraction of Brigitte Bardot. Neither should we"
expect that communication theory will have something sensible to
say about every question we can phrase using the words communi-
cation or information.

A valid scientific theory seldom if ever offers the solution to the
pressing problems which we repeatedly state. It seldom supplies
a sensible answer to our multitudinous questions. Rather than
rationalizing our ideas, it discards them entirely, or, rather, it
leaves them as they were. It tells us in a fresh and new way what
aspects of our experience can profitably be related and simply
understood. In this book, it will be our endeavor to seek out the
ideas concerning communication which can be so related and
understood.

When the portions of our experience which can be related have
been singled out, and when they have been related and understood,
we have a theory concerning these matters. Newton’s laws of
motion form an important part of theoretical physics, a field called
mechanics. The laws themselves are not the whole of the theory;
they are merely the basis of it, as the axioms or postulates of
geometry are the basis of geometry. The theory embraces both the
assumptions themselves and the mathematical working out of the
logical consequences which must necessarily follow from the
assumptions. Of course, these consequences must be in accord
with the complex phenomena of the world about us if the theory
is to be a valid theory, and an invalid theory is useless.

The ideas and assumptions of a theory determine the generality
of the theory, that is, to how wide a range of phenomena the
theory applies. Thus, Newton’s laws of motion and of gravitation
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are very general; they explain the motion of the planets, the time-
keeping properties of a pendulum, and the behavior of all sorts of
machines and mechanisms. They do not, however, explain radio
waves.

Maxwell’s equations! explain all (non-quantum) electrical phe-
nomena, they are very general. A branch of electrical theory called
network theory deals with the electrical properties of electrical
circuits, or networks, made by interconnecting three sorts of ideal-
ized electrical structures: resistors (devices such as coils of thin,
poorly conducting wire or films of metal or carbon, which impede
the flow of current), inductors (coils of copper wire, sometimes
wound on magnetic cores), and capacitors (thin sheets of metal
separated by an insulator or dielectric such as mica or plastic; the
Leyden jar was an early form of capacitor). Because network
theory deals only with the electrical behavior of certain specialized
and idealized physical structures, while Maxwell’s equations de-
scribe the electrical behavior of any physical structure, a physicist
would say that network theory is less general than are Maxwell’s
equations, for Maxwell’s equations cover the behavior not only of
idealized electrical networks but of all physical structures and
include the behavior of radio waves, which lies outside of the scope
of network theory.

Certainly, the most general theory, which explains the greatest
range of phenomena, is the most powerful and the best; it can
always be specialized to deal with simple cases. That is why physi-
cists have sought a unified field theory to embrace mechanical
laws and gravitation and all electrical phenomena. It might, indeed,
seem that all theories could be ranked in order of generality, and,
if this is possible, we should certainly like to know the place of
communication theory in such a hierarchy.

Unfortunately, life isn’t as simple as this. In one sense, network
theory is less general than Maxwell’s equations. In another sense,

11In 1873, in his treatise Electrictity and Magnetism, James Clerk Maxwell pre-
sented and fully explained for the first time the natural laws relating electric and
magnetic fields and electric currents. He showed that there should be electromagnetic
waves (radio waves) which travel with the speed of light. Hertz later demonstrated
these experimentally, and we now know that light is electromagnetic waves. Max-
well’s equations are the mathematical statement of Maxwell’s theory of electricity
and magnetism. They are the foundation of all electric art.
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however, it is more general, for all the mathematical results of
network theory hold for vibrating mechanical systems made up of
idealized mechanical components as well as for the behavior of
interconnections of idealized electrical components. In mechanical
applications, a spring corresponds to a capacitor, a mass to an
inductor, and a dashpot or damper, such as that used in a door
closer to keep the door from slamming, corresponds to a resistor.
In fact, network theory might have been developed to explain the
behavior of mechanical systems, and it is so used in the field of
acoustics. The fact that network theory evolved from the study of
idealized electrical systems rather than from the study of idealized
mechanical systems is a matter of history, not of necessity.

Because all of the mathematical results of network theory apply
to certain specialized and idealized mechanical systems, as well as
to certain specialized and idealized electrical systems, we can say
that in a sense network theory is more general than Maxwell’s
equations, which do not apply to mechanical systems at all. In
another sense, of course, Maxwell’s equations are more general
than network theory, for Maxwell’s equations apply to all electrical
systems, not merely to a specialized and idealized class of electrical
circuits.

To some degree we must simply admit that this is so, without
being able to explain the fact fully. Yet, we can say this much.
Some theories are very strongly physical theories. Newton’s laws
and Maxwell’s equations are such theories. Newton’s laws deal
with mechanical phenomena; Maxwell’s equations deal with elec-
trical phenomena. Network theory is essentially a mathematical
theory. The terms used in it can be given various physical mean-
ings. The theory has interesting things to say about different physi-
cal phenomena, about mechanical as well as electrical vibrations.

Often a mathematical theory is the offshoot of a physical theory
or of physical theories. It can be an elegant mathematical formula-
tion and treatment of certain aspects of a general physical theory.
Network theory is such a treatment of certain physical behavior
common to electrical and mechanical devices. A branch of mathe-
matics called potential theory treats problems common to electric,
magnetic, and gravitational fields and, indeed, in a degree to aero-
dynamics. Some theories seem, however, to be more mathematical
than physical in their very inception.
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We use many such mathematical theories in dealing with the
physical world. Arithmetic is one of these. If we label one of a
group of apples, dogs, or men 1, another 2, and so on, and if we
have used up just the first 16 numbers when we have labeled all
members of the group, we feel confident that the group of objects
can be divided into two equal groups each containing 8 objects
(16 +~ 2 = 8) or that the objects can be arranged in a square
array of four parallel rows of four objects each (because 16 is a
perfect square; 16 = 4 X 4). Further, if we line the apples, dogs,
or men up in a row, there are 2,092,278,988,800 possible sequences
in which they can be arranged, corresponding to the 2,092,278 -
988,800 different sequences of the integers 1 through 16. If we used
up 13 rather than 16 numbers in labeling the complete collection
of objects, we feel equally certain that the collection could not be
divided into any number of equal heaps, because 13 is a prime
number and cannot be expressed as a product of factors.

This seems not to depend at all on the nature of the objects.
Insofar as we can assign numbers to the members of any collection
of objects, the results we get by adding, subtracting, multiplying,
and dividing numbers or by arranging the numbers in sequence
hold true. The connection between numbers and collections of
objects seems so natural to us that we may overlook the fact that
arithmetic is itself a mathematical theory which can be applied to
nature only to the degree that the properties of numbers correspond
to properties of the physical world.

Physicists tell us that we can talk sense about the total number
of a group of elementary particles, such as electrons, but we can’t
assign particular numbers to particular particles because the par-
ticles are in a very real sense indistinguishable. Thus, we can’t talk
about arranging such particles in different orders, as numbers can
be arranged in different sequences. This has important conse-
quences in a part of physics called statistical mechanics. We may
also note that while Euclidean geometry is a mathematical theory
which serves surveyors and navigators admirably in their practical
concerns, there is reason to believe that Euclidean geometry is not
quite accurate in describing astronomical phenomena.

How can we describe or classify theories? We can say that a
theory is very narrow or very general in its scope. We can also
distinguish theories as to whether they are strongly physical or
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strongly mathematical. Theories are strongly physical when they
describe very completely some range of physical phenomena,
which in practice is always limited. Theories become more mathe-
matical or abstract when they deal with an idealized class of
phenomena or with only certain aspects of phenomena. Newton’s
laws are strongly physical in that they afford a complete description
of mechanical phenomena such as the motions of the planets or
the behavior of a pendulum. Network theory is more toward the
mathematical or abstract side in that it is useful in dealing with a
variety of idealized physical phenomena. Arithmetic is very mathe-
matical and abstract; it is equally at home with one particular
property of many sorts of physical entities, with numbers of dogs,
numbers of men, and (if we remember that electrons are indistin-
guishable) with numbers of electrons. It is even useful in reckoning
numbers of days.

In these terms, communication theory is both very strongly
mathematical and quite general. Although communication theory
grew out of the study of electrical communication, it attacks prob-
lems in a very abstract and general way. It provides, in the biz, a
universal measure of amount of information in terms of choice or
uncertainty. Specifying or learning the choice between two equally
probable alternatives, which might be messages or numbers to be
transmitted, involves one bit of information. Communication
theory tells us how many bits of information can be sent per second
over perfect and imperfect communication channels in terms of
rather abstract descriptions of the properties of these channels.
Communication theory tells us how to measure the rate at which
a message source, such as a speaker or a writer, generates informa-
tion. Communication theory tells us how to represent, or encode,
messages from a particular message source efficiently for trans-
mission over a particular sort of channel, such as an electrical
circuit, and it tells us when we can avoid errors in transmission.

Because communication theory discusses such matters in very
general and abstract terms, it is sometimes difficult to use the
understanding it gives us in connection with particular, practical
problems. However, because communication theory has such an
abstract and general mathematical form, it has a very broad field
of application. Communication theory is useful in connection with



The World and Theories 9

written and spoken language, the electrical and mechanical trans-
mission of messages, the behavior of machines, and, perhaps, the
behavior of people. Some feel that it has great relevance and
importance to physics in a way that we shall discuss much later
in this book.

Primarily, however, communication theory is, as Shannon de-
scribed it, a mathematical theory of communication. The concepts
are formulated in mathematical terms, of which widely different
physical examples can be given. Engineers, psychologists, and
physicists may use communication theory, but it remains a mathe-
matical theory rather than a physical or psychological theory or
an engineering art.

It is not easy to present a mathematical theory to a general
audience, yet communication theory is a mathematical theory,
and to pretend that one can discuss it while avoiding mathematics
entirely would be ridiculous. Indeed, the reader may be startled
to find equations and formulae in these pages; these state accur-
ately ideas which are also described in words, and I have included
an appendix on mathematical notation to help the nonmathe-
matical reader who wants to read the equations aright.

I am aware, however, that mathematics calls up chiefly unpleas-
ant pictures of multiplication, division, and perhaps square roots,
as well as the possibly traumatic experiences of high-school class-
rooms. This view of mathematics is very misleading, for it places
empbhasis on special notation and on tricks of manipulation, rather
than on the aspect of mathematics that is most important to mathe-
maticians. Perhaps the reader has encountered theorems and
proofs in geometry; perhaps he has not encountered them at all,
yet theorems and proofs are of primary importance in all mathe-
matics, pure and applied. The important results of information
theory are stated in the form of mathematical theorems, and these
are theorems only because it is possible to prove that they are true
statements.

Mathematicians start out with certain assumptions and defini-
tions, and then by means of mathematical arguments or proofs they
are able to show that certain statements or theorems are true. This
is what Shannon accomplished in his “Mathematical Theory of
Communication.” The truth of a theorem depends on the validity
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of the assumptions made and on the validity of the argument or
proof which is used to establish it.

All of this is pretty abstract. The best way to give some idea of
the meaning of theorem and proof is certainly by means of ex-
amples. I cannot do this by asking the general reader to grapple,
one by one and in all their gory detail, with the difficult theorems
of communication theory. Really to understand thoroughly the
proofs of such theorems takes time and concentration even for one
with some mathematical background. At best, we can try to get
at the content, meaning, and importance of the theorems.

The expedient I propose to resort to is to give some examples
of simpler mathematical theorems and their proof. The first
example concerns a game called hex, or Nash. The theorem which
will be proved is that the player with first move can win.

Hex is played on a board which is an array of forty-nine hexa-
gonal cells or spaces, as shown in Figure I-1, into which markers
may be put. One player uses black markers and tries to place them
so as to form a continuous, if wandering, path between the black
area at the left and the black area at the right. The other player uses
white markers and tries to place them so as to form a continuous,
if wandering, path between the white area at the top and the white
area at the bottom. The players play alternately, each placing one
marker per play. Of course, one player has to start first.
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In order to prove that the first player can win, it is necessary
first to prove that when the game is played out, so that there is
either a black or a white marker in each cell, one of the players
must have won.

Theorem I: Either one player or the other wins.

Discussion: In playing some games, such as chess and ticktack-
toe, it may be that neither player will win, that is, that the game
will end in a draw. In matching heads or tails, one or the other
necessarily wins. What one must show to prove this theorem is
that, when each cell of the hex board is covered by either a black
or a white marker, either there must be a black path between the
black areas which will interrupt any possible white path between
the white areas or there must be a white path between the white
areas which will interrupt any possible black path between the
black areas, so that either white or black must have won.

Proof: Assume that each hexagon has been filled in with either
a black or a white marker. Let us start from the left-hand corner
of the upper white border, point I of Figure I-2, and trace out the
boundary between white and black hexagons or borders. We will
proceed always along a side with black on our right and white on
our left. The boundary so traced out will turn at the successive
corners, or vertices, at which the sides of hexagons meet. At a
corner, or vertex, we can have only two essentially different con-
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ditions. Either there will be two touching black hexagons on the
right and one white hexagon on the left, as in a of Figure I-3, or
two touching white hexagons on the left and one black hexagon
on the right, as shown in b of Figure I-3. We note that in either
case there will be a continuous black path to the right of the
boundary and a continuous white path to the left of the boundary.
We also note that in neither a nor b of Figure I-3 can the boundary
cross or join itself, because only one path through the vertex has
black on the right and white on the left. We can see that these two
facts are true for boundaries between the black and white borders
and hexagons as well as for boundaries between black and white
hexagons. Thus, along the left side of the boundary there must be
a continuous path of white hexagons to the upper white border,
and along the right side of the boundary there must be a continu-
ous path of black hexagons to the left black border. As the
boundary cannot cross itself, it cannot circle indefinitely, but must
eventually reach a black border or a white border. If the boundary
reaches a black border or white border with black on its right and
white on its left, as we have prescribed, at any place except corner
IT or corner III, we can extend the boundary further with black on
its right and white on its left. Hence, the boundary will reach either
point II or point III. If it reaches point II, as shown in Figure I-2,
the black hexagons on the right, which are connected to the left
black border, will also be connected to the right black border,
while the white hexagons to the left will be connected to the upper
white border only, and black will have won. It is clearly impossible
for white to have won also, for the continuous band of adjacent

(a) (b)
Fig I-3
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black cells from the left border to the right precludes a continuous
band of white cells to the bottom border. We see by similar argu-
ment that, if the boundary reaches point III, white will have won.

Theorem II: The player with the first move can win.

Discussion: By can is meant that there exists a way, if only the
player were wise enough to know it. The method for winning would
consist of a particular first move (more than one might be allow-
able but are not necessary) and a chart, formula, or other specifi-
cation or recipe giving a correct move following any possible move
made by his opponent at any subsequent stage of the game, such
that if, each time he plays, the first player makes the prescribed
move, he will win regardless of what moves his opponent may
make.

Proof: Either there must be some way of play which, if followed
by the first player, will insure that he wins or else, no matter how
the first player plays, the second player must be able to choose
moves which will preclude the first player from winning, so that he,
the second player, will win. Let us assume that the player with the
second move does have a sure recipe for winning. Let the player
with the first move make his first move in any way, and then, after
his opponent has made one move, let the player with the first
move apply the hypothetical recipe which is supposed to allow the
player with the second move to win. If at any time a move calls for
putting a piece on a hexagon occupied by a piece he has already
played, let him place his piece instead on any unoccupied space.
The designated space will thus be occupied. The fact that by
starting first he has an extra piece on the board may keep his
opponent from occupying a particular hexagon but not the player
with the extra piece. Hence, the first player can occupy the hexa-
gons designated by the recipe and must win. This is contrary to
the original assumption that the player with the second move can
win, and so this assumption must be false. Instead, it must be
possible for the player with the first move to win.

A mathematical purist would scarcely regard these proofs as
rigorous in the form given. The proof of theorem II has another
curious feature; it is not a constructive proof. That is, it does not
show the player with the first move, who can win in principle, how
to go about winning. We will come to an example of a constructive



14 Symbols, Signals and Noise

proof in a moment. First, however, it may be appropriate to phil-
osophize a little concerning the nature of theorems and the need
for proving them.

Mathematical theorems are inherent in the rigorous statement
of the general problem or field. That the player with the first move
can win at hex is necessarily so once the game and its rules of play
have been specified. The theorems of Euclidean geometry are
necessarily so because of the stated postulates.

With sufficient intelligence and insight, we could presumably see
the truth of theorems immediately. The young Newton is said to
have found Euclid’s theorems obvious and to have been impatient
with their proofs.

Ordinarily, while mathematicians may suspect or conjecture the
truth of certain statements, they have to prove theorems in order
to be certain. Newton himself came to see the importance of proof,
and he proved many new theorems by using the methods of Euclid.

By and large, mathematicians have to proceed step by step in
attaining sure knowledge of a problem. They laboriously prove one
theorem after another, rather than seeing through everything in a
flash. Too, they need to prove the theorems in order to convince
others.

Sometimes a mathematician needs to prove a theorem to con-
vince himself, for the theorem may seem contrary to common
sense. Let us take the following problem as an example: Consider
the square, | inch on a side, at the left of Figure I-4. We can specify
any point in the square by giving two numbers, y, the height of
the point above the base of the square, and x, the distance of the
point from the left-hand side of the square. Each of these numbers
will be less than one. For instance, the point shown will be repre-
sented by

x = 0.547000 . . . (ending in an endless sequence of zeros)
y = 0.312000 . . . (ending in an endless sequence of zeros)

Suppose we pair up points on the square with points on the line,
so that every point on the line is paired with just one point on the
square and every point on the square with just one point on the
line. If we do this, we are said to have mapped the square onto
the line in a one-to-one way, or to have achieved a one-to-one map-
ping of the square onto the line.
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Fig. I-4

Theorem: It is possible to map a square of unit area onto a line
of unit length in a one-to-one way.?

Proof: Take the successive digits of the height of the point in
the square and let them form the first, third, fifth, and so on digits
of a number x’. Take the digits of the distance of the point P from
the left side of the square, and let these be the second, fourth,
sixth, etc., of the digits of the number x’. Let x” be the distance of
the point P’ from the left-hand end of the line. Then the point P’
maps the point P of the square onto the line uniquely, in a one-
to-one way. We see that changing either x or y will change x’ to a
new and appropriate number, and changing x’ will change x and
y. To each point x,y in the square corresponds just one point x’
on the line, and to each point x” on the line corresponds just one
point x,y in the square, the requirement for one-to-one mapping.3

In the case of the example given before

x = 0.547000 . . .
y = 0.312000 . . .
X' = 0351427000 . . .

In the case of most points, including those specified by irrational
numbers, the endless string of digits representing the point will not
become a sequence of zeros nor will it ever repeat.

Here we have an example of a constructive proof. We show that
we can map each point of a square into a point on a line segment
in a one-to-one way by giving an explicit recipe for doing this.
Many mathematicians prefer constructive proofs to proofs which

2This has been restricted for convenience; the size doesn’t matter.
3 This proof runs into resolvable difficulties in the case of some numbers such as

%, which can be represented decimally .5 followed by an infinite sequence of zeros
or .4 followed by an infinite sequence of nines.
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are not constructive, and mathematicians of the intuitionist school
reject nonconstructive proofs in dealing with infinite sets, in which
it is impossible to examine all the members individually for the
property in question.

Let us now consider another matter concerning the mapping of
the points of a square on a line segment. Imagine that we move
a pointer along the line, and imagine a pointer simultaneously
moving over the face of the square so as to point out the points
in the square corresponding to the points that the first pointer
indicates on the line. We might imagine (contrary to what we shall
prove) the following: If we moved the first pointer slowly and
smoothly along the line, the second pointer would move slowly and
smoothly over the face of the square. All the points lying in a small
cluster on the line would be represented by points lying in a small
cluster on the face of the square. If we moved the pointer a short
distance along the line, the other pointer would move a short
distance over the face of the square, and if we moved the pointer
a shorter distance along the line, the other pointer would move a
shorter distance across the face of the square, and so on. If this
were true we could say that the one-to-one mapping of the points
of the square into points on the line was continuous.

However, it turns out that a one-to-one mapping of the points
in a square into the points on a line cannot be continuous. As we
move smoothly along a curve through the square, the points on
the line which represent the successive points on the square neces-
sarily jump around erratically, not only for the mapping described
above but for any one-to-one mapping whatever. Any one-to-one
mapping of the square onto the line is discontinuous.

Theorem: Any one-to-one mapping of a square onto a line must
be discontinuous.

Proof: Assume that the one-to-one mapping is continuous. If
this is to be so then all the points along some arbitrary curve AB
of Figure I-5 on the square must map into the points lying between
the corresponding points A" and B’. If they did not, in moving along
the curve in the square we would either jump from one end of the
line to the other (discontinuous mapping) or pass through one
point on the line twice (not one-to-one mapping). Let us now
choose a point C’ to the left of line segment A’B’ and D’ to the
right of A’B’ and locate the corresponding points C and D in the
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square. Draw a curve connecting C and D and crossing the curve
from A to B. Where the curve crosses the curve AB it will have a
point in common with 4B, hence, this one point of CD must map
into a point lying between A’ and B’, and all other points which
are not on AB must map to points lying outside of A’B’, either to
the left or the right of A’B’. This is contrary to our assumption that
the mapping was continuous, and so the mapping cannot be
continuous.

We shall find that these theorems, that the points of a square
can be mapped onto a line and that the mapping is necessarily
discontinuous, are both important in communication theory, so we
have proved one theorem which, unlike those concerning hex, will
be of some use to us.

Mathematics is a way of finding out, step by step, facts which
are inherent in the statement of the problem but which are not
immediately obvious. Usually, in applying mathematics one must
first hit on the facts and then verify them by proof. Here we come
upon a knotty problem, for the proofs which satisfied mathema-
ticians of an earlier day do not satisfy modern mathematicians.

In our own day, an irascible minor mathematician who reviewed
Shannon’s original paper on communication theory expressed
doubts as to whether or not the author’s mathematical intentions
were honorable. Shannon’s theorems are true, however, and proofs
have been given which satisfy even rigor-crazed mathematicians.
The simple proofs which I have given above as illustrations of
mathematics are open to criticism by purists.

What I have tried to do is to indicate the nature of mathematical
reasoning, to give some idea of what a theorem is and of how it
may be proved. With this in mind, we will go on to the mathe-
matical theory of communication, its theorems, which we shall not
really prove, and to some implications and associations which
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extend beyond anything that we can establish with mathematical
certainty.

As I have indicated earlier in this chapter, communication
theory as Shannon has given it to us deals in a very broad and
abstract way with certain important problems of communication
and information, but it cannot be applied to all problems which
we can phrase using the words communication and information
in their many popular senses. Communication theory deals with
certain aspects of communication which can be associated and
organized in a useful and fruitful way, just as Newton’s laws of
motion deal with mechanical motion only, rather than with all the
named and indeed different phenomena which Aristotle had in
mind when he used the word motion.

To succeed, science must attempt the possible. We have no
reason to believe that we can unify all the things and concepts for
which we use a common word. Rather we must seek that part of
experience which can be related. When we have succeeded in
relating certain aspects of experience we have a theory. Newton’s
laws of motion are a theory which we can use in dealing with
mechanical phenomena. Maxwell’s equations are a theory which
we can use in connection with electrical phenomena. Network
theory we can use in connection with certain simple sorts of elec-
trical or mechanical devices. We can use arithmetic very generally
in connection with numbers of men, stones, or stars, and geometry
in measuring land, sea, or galaxies.

Unlike Newton’s laws of motion and Maxwell’s equations, which
are strongly physical in that they deal with certain classes of
physical phenomena, communication theory is abstract in that it
applies to many sorts of communication, written, acoustical, or
electrical. Communication theory deals with certain important but
abstract aspects of communication. Communication theory pro-
ceeds from clear and definite assumptions to theorems concerning
information sources and communication channels. In this it is
essentially mathematical, and in order to understand it we must
understand the idea of a theorem as a statement which must be
proved, that is, which must be shown to be the necessary conse-
quence of a set of initial assumptions. This is an idea which is the
very heart of mathematics as mathematicians understand it.



