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Introduction
Porous media flow occurs in a wide range of natural and engineered systems, in-
cluding groundwater flow [88], snow and soil physics [97], nuclear waste manage-
ment [55], and filtration processes [6]. Modeling these flows helps to get insights
into how fluids move through porous materials and interact with the surrounding
environment. Porous media flow modeling also drives research and development
in various fields, such as materials science, geoscience [94], and medical science
[48].

To describe the flow in a variably-saturated porous media, it is common to use
Richards’ equation [78], which originates from the coupling of the mass conser-
vation law and the Darcy-Buckingham law [26, 15]. This equation is a nonlinear
parabolic partial differential equation (PDE) that can degenerate when the flow
occurs in the transition zone between unsaturated and saturated medium. This
transition region is also known as the wetting front. Moreover, in practice, it is of-
ten necessary to consider boundaries between the porous media and atmosphere;
therefore, a suitable model of such boundary conditions and their numerical treat-
ment is required. These boundary conditions are often referred to as seepage face
boundary conditions (or the atmospheric conditions or the outflow boundary con-
ditions). We also mention another porous media flow model, the two-phase flow,
which roughly represents a system of two Richards’ equations for two phases: a
wetting phase and a non-wetting phase (usually water and air). We may say that
Richards’ equation model approximates the two-phase flow model.

Methods to solve Richards’ equation numerically have been developing since
the 1970s [56]. Since then, many methods for its spatial discretization have
been proposed, namely, the finite difference method [19], conforming finite ele-
ment method [67, 37], mixed finite element method [3, 77, 96, 99], finite volume
method [39, 40, 63] and finite element-finite volume method [68]. We mention the
multipoint flux approximation [52], a heterogeneous multiscale method [47], the
relaxation scheme [50] and the lattice Boltzmann approach [45]. More recently,
the discontinuous Galerkin (DG) method was used for the spatial discretization
of Richards’ equation in the papers [98, 34, 21, 24]. Moreover, the DG method
was applied to the two-phase flow [8, 38]. Since the resulting system is stiff [34],
an implicit time discretization is recommended. The lowest-order Euler method
(see, e.g., [72]) and diagonally-implicit Runge-Kutta method of second or third
order (see, e.g., [8]) were employed to solve the semidiscrete system. We mention
the recent papers using the backward differential formula by Clément et al. [21]
and the dual-time stepping method by Xiao et al. [98]. Finally, Doleǰśı et al.
in [34] proposed a space-time DG (STDG) method, which discretizes both space
and time variables by the DG method, to solve Richards’ equation. For a more
extensive overview of numerical methods for Richards’ equation, we refer to [41]
and [100].

The space-time discretization results in a nonlinear algebraic system that
needs to be solved at each time step. The stability of a nonlinear solver that
preserves the accuracy of the wetting front has been studied in [23, 71, 61, 100].
The methods to solve nonlinear algebraic system can be roughly divided into
two categories: methods that uses the Jacobian matrix (e.g., Newton method)
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and fixed-point iteration methods that do not require the Jacobian matrix (e.g.,
Picard method). These two classes of methods and their modifications have been
applied to solve nonlinear systems arising from Richards’ equation and compared
with each other. Namely, Celia et al. in [19] applied the Picard method to
the mixed-form of Richards’ equation, while in [57], it was suggested that the
Picard method is not a suitable nonlinear solver for Richards’ equation. Moreover,
in [57] a hybrid method was proposed, which performs a few iterations of the
Picard method and then switches to the Newton scheme. Casulli and Zanolli
proposed a nested Newton method [18]. A quasi-Newton method, the L-scheme,
was developed in [86, 74, 75] and proven unconditionally linear convergent [60].
We mention the preconditioned Newton method [11] suggested by Brenner and
the parametrization technique that exploits the variable switch idea to improve
the Newton method developed by Brenner and Cancès [12]. Moreover, Anderson
acceleration was proposed to improve the convergence of the Picard method [95]
(see also [34]).

Moving wetting fronts gives rise to the development of spatial adaptation tech-
niques also known as h-adaptivity techniques. The enhancement of the methods
is documented in [9, 59]; see also [64] for the one-dimensional Richards’ equa-
tion. Moreover, high-order accuracy can be achieved using p-adaptivity, which
combined with p-adaptivity gives hp-adaptivity. The hp-adaptivity has been in-
corporated to various methods, namely, the hp-finite element method [87, 65],
the hp-local DG method [59] and the hp-adaptive STDG method [34].

The hp-adaptive STDG method discretizes space and time variables using dis-
continuous piecewise polynomial approximations, allowing higher-order approxi-
mation of the temporal variable, unlike the standard time integration low-order
methods mentioned earlier. This method chooses the time step adaptively, al-
lowing large time steps with sufficient accuracy. One of the most significant ad-
vantages of STDG methods is the use of unstructured grids (also nonconforming
and anisotropic ones), which support mesh refinement and hp-adaptivity, yielding
more accurate and efficient algorithms. Moreover, these methods are suitable for
parallel implementation. Unlike the finite element method, boundary conditions
are not incorporated into the definition of the approximate space, which simplifies
the analysis and implementation of the method.

The anisotropic adaptive hp-STDG method proposed in [34] for the numerical
solution of Richards’ equation shows an excellent computational performance in
terms of robustness, efficiency and accuracy. However, the supporting rigorous
mathematical theory is missing, such as a priori and a posteriori analysis, the ex-
istence of the approximate solution and the convergence of the nonlinear iterative
solver. In this thesis, we study a priori analysis on a class of DG methods applied
to Richards’ equation [24], which can be extended to the (hp-)STDG method. We
mention some works on a priori analysis for various methods, namely, mixed fi-
nite element method [96], conforming finite element method [2] and adaptive DG
method for two-phase flow [38]. Moreover, we study the anisotropic hp-STDG
method applied to different formulations of Richards’ equation.

The present work is devoted to the theoretical analysis of a local DG (LDG)
method applied to Richards’ equation and the numerical study of the hp-STDG
method on some practical examples arising in porous media flow modeling. In
particular, the organization of the thesis is the following.
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In Chapter 1, we introduce the main concepts of the porous media flow mod-
eling and Richards’ equation. We define constitutive relations that shall be used
later and discuss the possible degeneracies of Richards’ equation.

In Chapter 2, we formulate model problems referred to as Ψ-formulation and
ψ-formulation and introduce the spatial discretization by the interior penalty
variant of the DG method. Moreover, we define the discretization of the domain
and suitable functional spaces. Afterward, a semidiscrete solution of Richards’
equation using the DG method is defined.

Chapter 3 is devoted to the numerical analysis of the LDG method applied
to Richards’ equation. We define the expanded mixed formulation of Richards’
equation and derive the corresponding LDG method. Moreover, we derive a sta-
bility bound for the time continuous LDG scheme. Then, the a priori analysis
is presented using techniques in [24], namely, the continuous mathematical in-
duction which results in the implicit application of Gronwall’s lemma commonly
used in the method of lines analysis. We obtain error estimates in terms of the
spatial discretization parameter and the Hölder coefficient of the water content
function.

Chapter 4 contains numerical experiments supporting the previously obtained
error estimates in Chapter 3.

In Chapter 5, we introduce temporal discretization using the DG method
leading to a fully discrete scheme. We introduce the space-time partition and
space-time dependent polynomial spaces. Moreover, we define the approximate
solution using the hp-STDG method.

Finally, in Chapter 6, we describe the anisotropic hp-STDG method. We start
by interpreting the hp-STDG scheme as a nonlinear algebraic system and defin-
ing a Newton-like method and Anderson acceleration. We present a numerical
study of nonlinear solvers for Richards’ equation using a numerical experiment.
Moreover, we introduce the regularization of constitutive law. Lastly, we present
a numerical example comparing computational performances of the anisotropic
hp-STDG method applied to Ψ-formulation and ψ-formulation.
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1. Richards’ equation
In this chapter, we introduce Richards’ equation [78], one of the governing equa-
tions for modeling porous media flows. First, we formulate laws valid in porous
media flow modeling, from which Richards’ equation is derived. Then, we define
constitutive laws and draw attention to possible degeneracies that this equation
may exhibit. Lastly, we mention boundary conditions and the balance law.

1.1 Modelling of flows in porous media
Modeling of fluid flows in a porous medium is based on the mass conservation
law and the Darcy-Buckingham law [26, 15],

∂t(ρΦS) + ∇ · (ρq) = 0, (1.1)

q = −k(S)
µ

∇(p+ ρgz), (1.2)

where ρ is the density of the fluid, Φ is the porosity of the media, S is the satura-
tion, q is the volume flux density, k is the permeability tensor, µ is the dinamic
viscosity, p is the pressure, g is the gravity and z is the distance from the refer-
ence level. The Darcy-Buckingham law (1.2) is a common law for hydrodynamical
problems that relates flow velocity to the gradient of pressure.

Furthermore, by substitution of (1.2) in (1.1) and assuming that the fluid is
incompressible (∂tρ = 0), its density is homogenuous (∇ρ = 0) and the porous
media is nondeformable (∂tΦ = 0) [89], we obtain

∂t(ΦS) − ∇ ·
(︄
ρg

µ
k(S)∇

(︃
p

ρg
+ z

)︃)︄
= 0. (1.3)

Since the properties of the fluid and the porous medium are usually determined,
this equation has two unknowns: the pressure and the saturation.

We introduce quantities often met in porous media flow modeling; namely,
the water content θ, the hydraulic conductivity tensor K, the pressure head ψ
and the capillary capacity C defined as

θ(S) = ΦS,

K(S) = ρg

µ
k(S),

ψ = p

ρg
,

C(ψ) = dθ(ψ)
dψ .

Let us note that θ and K depend on S; however, the water retention curve
S = pc(p) = pc(ρgψ), where pc is an invertible function standing for the capillary
pressure, gives the relation between S and p. This allows (1.3) to be solved with
respect to p or with respect to S. Since we now have direct relations between θ
and ψ, and between K and ψ, we can give three main formulations of Richards’
equation. Namely, we define
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• the pressure-based formulation

C(ψ)∂tψ − ∇ · (K(ψ)∇(ψ + z)) = 0, (1.4)

• the saturation-based formulation

∂tθ − ∇ · (D(θ)∇θ + K(θ)∇z) = 0, (1.5)

• the mixed formulation

∂tθ(ψ) − ∇ · (K(ψ)∇(ψ + z)) = 0, (1.6)

of the Richards’ equation.
The quantity D (cf. (1.5)) represents the hydraulic diffusivity defined as

D = K(θ)
C(θ) .

We mention a modified capillary capacity

C(ψ) = dθ(ψ)
dψ + SS

θS
θ(ψ), (1.7)

where SS and θS are the specific aquifer storage and saturated water content,
respectively. Moreover, we define the active pore volume ϑ as

ϑ(ψ) = θ(ψ) + SS
θS

∫︂ ψ

−∞
θ(s)ds, (1.8)

such that it holds
∂tϑ(ψ) = C(ψ)∂tψ. (1.9)

The relation (1.9) enables us to rewrite (1.4) in a divergence form as

∂tϑ(ψ) − ∇ · (K(ψ)∇(ψ + z)) = 0. (1.10)

Furthermore, by introducing the new quantity, the hydraulic head

Ψ = ψ + z,

we may formulate (1.10) as in [34, 21]

∂tϑ(Ψ − z) − ∇ · (K(Ψ − z)∇Ψ) = 0, (1.11)

where Ψ is the primary unknown. In the rest of the work, we shall be concerned
with the formulations of Richards’ equations given by the relations (1.10)–(1.11).
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Table 1.1: Parameters for the van Genuchten-Mualem model.
α n m θS θr

0.8 1.2 0.167 0.55 0

1.2 Constitutive relations
In order to solve (1.4), we need to prescribe relations on θ and K. Namely, several
models have been developed depending on the hydraulic properties of the porous
medium. Here, we mention two of them, the Gardner constitutive relations [44]
and the van Genuchten-Mualem constitutive relations [92, 66].

The Gardener constitutive relations are given by

θ(ψ) =
⎧⎨⎩θS for ψ ≥ 0
θR + (θS − θR) exp(Aψ) for ψ < 0

, (1.12)

K(ψ) =
⎧⎨⎩KSI for ψ ≥ 0
KSI exp(Aψ) for ψ < 0

, (1.13)

where I is the identity matrix and A > 0, KS > 0, θS > θR > 0 are material
parameters. These relations are used in the Tracy problem [91] where the exact
solution is given analytically; see Chapter 4.

Furthermore, to define the van Genuchten-Mualem constitutive relation, we
start by rewriting the hydraulic conductivity K as

K(ψ) = Kr(ψ)KS,

where Kr and KS are the relative and saturated hydraulic conductivity, respec-
tively. Hence, the functions θ and Kr are given by the van Genuchten-Mualem
constitutive relations

θ(ψ) =
⎧⎨⎩

θS−θr

(1+(−αψ)n)m + θr, ψ < 0,
θS, ψ ≥ 0,

(1.14)

Kr(ψ) =
⎧⎨⎩

(1−(−αψ)mn(1+(−αψ)n)−m)2

(1+(−αψ)n)m/2 , ψ < 0,
1, ψ ≥ 0,

(1.15)

where θr is the residual water content, m and n are pore size distribution param-
eters and α is the inverse of the air entry value. These relations are illustrated in
Fig. 1.2 with parameters specified in Table 1.1.

1.3 Degeneracies
Richards’ equation is well-known due to its degeneracy. Namely, this nonlinear
parabolic PDE degenerates into the elliptic one when the porous media becomes
saturated, i.e., θ′(ψ) = 0, ψ ≥ 0. Also, in this case, it holds ϑ′(ψ) = 0 since
SS = 0. This type of degeneracy is also known as fast-diffusion. Moreover, when
ψ → −∞, the water content change becomes constant and K(ψ) → 0, which
results in slow-diffusion type of degeneracy. Thus, the numerical treatment of
this PDE is rather complicated.
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Figure 1.1: Water content and relative hydraulic conductivity curves for the van
Genuchten-Mualem model.

Remark 1. We use the notation ∂tϑ(ψ) := ∂ϑ(ψ(x,t))
∂t

for the partial derivative of
ϑ(ψ) with respect to t and ϑ′(ψ) = dϑ(ψ)

dψ for the derivative of ϑ with respect to
ψ.

If ψ is chosen to be the primary variable (cf. (1.4)) for solving of variably-
saturated porous media flows, then the Jacobian matrix is ill-conditioned around
ψ ≈ 0 since the nonlinear system contains θ′(ψ) and K′(ψ) (cf. Fig. 1.3). On the
other hand, θ can be used as a primary variable (cf. (1.5)) only in dry regions
because the saturated region cannot be described (cf. (1.14)). Several strategies
have been found to overcome this issue. The methods based on the variable
switch can be found in [29, 43]. More recently, this idea was extended to the
parametrization method developed by Brenner and Cancès [12]. This approach
seems to work successfully for the schemes where the Kirchhoff transformation
is used; however, for original pressure formulation, it meets difficulties caused by
vanishing diffusion, and therefore, some additional regularizations are required
[7].

The Kirchhoff transformation introduces a new quantity, the global pressure

U(ψ) :=
∫︂ ψ

0
K(χ)dχ,

which is more regular than ψ; however, it has no particular physical meaning [16].
Moreover, due to its definition, it is not always possible to derive it analytically,
e.g., for the van Genuchten-Mualem model [7]. Nevertheless, this transform is
advantageous for mathematical analysis [3, 96], as well as in computation since it
linearizes the higher order term (∇U = K(ψ)∇ψ) avoiding K ′

r to blow up around
ψ ≈ 0.

1.4 Boundary conditions
Besides Dirichlet and Neumann boundary conditions, in porous media flow mod-
eling, it is common to prescribe the seepage face boundary conditions. These
conditions model interface between a porous medium and the open space [83, 71].
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Figure 1.2: Derivatives of water content and relative hydraulic conductivity func-
tions for the van Genuchten-Mualem model.

Namely, if the porous media is saturated, then ψ = 0 (or Ψ = z); otherwise, there
is no flux.

Sometimes, they are called outflow boundary conditions [84], which assumes
that the pressure head cannot be positive, fluid cannot enter the medium, and
fluid exits only if the pressure is zero, or mathematically, it holds

ψ = Ψ − z ≤ 0,
−K(ψ)∇Ψ · n ≥ 0,

ψ(∇Ψ · n) = 0,

where n is a unit normal.
Alternatively, this type of boundary condition can be considered as nonlinear

Robin boundary conditions [84, 58, 73]

1E(Ψ)ψ = (1 − 1E(Ψ))K(ψ)∇Ψ · n,

where 1E is the indicator function taking value 1 if ψ ≥ 0 and −K(ψ)∇Ψ · n > 0
or 0 otherwise.

In [34, 85, 53], the seepage boundary conditions are treated numerically as a
switch between Dirichlet and Neumann boundary conditions

ψ = 0, if ψ ≥ 0 and − K(ψ)∇Ψ · n > 0, (1.16a)
−K(ψ)∇Ψ · n = 0, otherwise. (1.16b)

1.5 Balance of the water content
If we integrate (1.10) (or equivalently (1.11)) over a space-time domain Ω×(0, T ),
T > 0 and use Green’s theorem we obtain the balance of the water content given
by

∆Q(t) − F (t) = 0, (1.17)
where

∆Q(t) = Q(t) −Q(0), (1.18)
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and
Q(t) =

∫︂
Ω
ϑ(Ψ(x, t) − z)dx =

∫︂
Ω
ϑ(ψ(x, t))dx (1.19)

is the water content at time t ∈ [0, T ] and

F (t) =
∫︂ t

0

∫︂
∂Ω

K(Ψ(x, s) − z)∇Ψ(x, s) · n dSds (1.20)

=
∫︂ t

0

∫︂
∂Ω

K(ψ(x, s))∇(ψ(x, s) + z) · n dSds (1.21)

is the boundary flux on the interval (0, t) and ∂Ω is the boundary of Ω.
The violation of the balance of the water content (1.17) has been studied in

the literature; see, e.g., [19, 90]. In Chapter 6 we shall examine the violation of
this law on a numerical example.
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2. Spatial discretization
Within this chapter, we introduce the space semidiscretization of Richards’ equa-
tion using the DG method. We start by defining two formulations of the problem
depending on which primary variable is chosen: the hydraulic head or the pressure
head. Afterward, we define corresponding time-continuous numerical schemes for
both formulations.

2.1 Continuous problem
Let Ω ⊂ R2 be a bounded polygonal domain with Lipschitz-continuous boundary
∂Ω = ∂ΩD ∪ ∂ΩN , ∂ΩD ∩ ∂ΩN = ∅. Let T > 0 and denote QT := Ω × (0, T ).
We define two formulations of the Richards equation, the Ψ-formulation and the
ψ-formulation, i.e., the hydraulic head and the pressure head based formulations,
respectively, both already briefly mentioned in Chapter 1 (cf. (1.10)–(1.11)).
Namely, we shall consider the following nonlinear problems with initial and mixed
Dirichlet-Neumann boundary conditions:

• Ψ-formulation: Find Ψ : QT → R such that

∂tϑ(Ψ − z) − ∇ · (K(Ψ − z)∇Ψ) = g in QT , (2.1a)
Ψ
⃓⃓⃓
∂ΩD×(0,T )

= ΨD, (2.1b)

K(Ψ − z)∇Ψ · n
⃓⃓⃓
∂ΩN ×(0,T )

= gN , (2.1c)

Ψ(x, 0) = Ψ0(x), x ∈ Ω, (2.1d)

• ψ-formulation: Find ψ : QT → R such that

∂tϑ(ψ) − ∇ · (K(ψ)∇(ψ + z)) = g in QT , (2.2a)
ψ
⃓⃓⃓
∂ΩD×(0,T )

= ψD, (2.2b)

K(ψ)∇(ψ + z) · n
⃓⃓⃓
∂ΩN ×(0,T )

= gN , (2.2c)

ψ(x, 0) = ψ0(x), x ∈ Ω. (2.2d)

Here, we denote g : QT → R as the source or sink term, ΨD : ∂ΩD × (0, T ) → R,
gN : ∂ΩN × (0, T ) → R and Ψ0 : Ω → R are the boundary and initial conditions
functions, respectively. Similarly, we denote the corresponding boundary and
initial functions for the pressure head, ψD and ψ0. We use the notation n =
(n1, n2) for a unit outer normal to ∂Ω, and z is the vertical component such that
x = (x1, x2) = (x1, z). We recall the relation between the hydraulic and pressure
head Ψ = ψ + z. The nonlinear tensor K : R → R2×2 is the conductivity tensor,
and the nonlinear function ϑ : R → R+

0 (the active pore volume) represents the
nonlinear change of Ψ − z = ψ.

We assume the following [34, 77]; cf. Subsection 3.1.1.
(H1) The function ϑ : R → R, ϑ(ψ) = ϑ(Ψ − z) is Hölder continuous and

monotone nondecreasing, cf. the assumption (A4). Moreover, if SS = 0
and ψ > 0 then ϑ′(ψ) = ϑ′(Ψ − z) = 0, which implies the fast-diffusion
type of degeneracy of (2.1a) and (2.2a); cf. Section 1.3.
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(H2) The function K : R → R2×2 is a positive, nondecreasing and Lipschitz
continuous function that can vanish when ψ → −∞ producing the slow-
diffusion type of degeneracy.

(H3) The source function, and the initial and boundary data are L2-integrable
over their domain of definition.

2.1.1 Weak solution
We introduce the weak solution of (2.2); analogously, the weak solution of (2.1)
can be defined. For theory on its existence and uniqueness, we refer to [1, 69, 70].
Prior to it, we establish some notation and recall dual spaces.

We shall use the standard notation Lp(Ω), 1 ≤ p ≤ ∞ for the Lebesgue
space of p-integrable functions on Ω ⊂ R2. By W k,p(Ω) we denote the Sobolev
spaces of order k over Ω, which stand for the spaces of all functions from the
space Lp(Ω) whose distributional derivatives up to order k belong to Lp(Ω). For
p = 2, the Sobolev space W k,2(Ω) is a Hilbert space, which we denote by Hk(Ω).
Furthermore, we shall use the Bochner spaces L∞(0, T ;X) and L2(0, T ;X), where
X is a Banach space, standing for essentially bounded and square-integrable
functions over the interval [0, T ] with values in X, repectively. Also, we use the
spaces of continuous and continuously differentiable functions over [0, T ] with
values from X denoted by C([0, T ];X) and C1([0, T ];X), respectively. If B is a
Banach space, then its norm is denoted by ∥·∥B. Moreover, we use the notation
(· , ·) for the classical scalar product in L2(Ω), and by (· , ·)N the face integral
over the Neumann part of the boundary ∂ΩN . By v(t) we refer to the function
defined on Ω such that v(t)(x) = v(x, t), x ∈ Ω.

We assume that ψD is a trace of some ψ∗
D ∈ C([0, T ];H1(Ω)) ∩ L∞(QT ) on

∂ΩD × (0, T ). We define the space

H1
0D(Ω) = {v ∈ H1(Ω) : v|∂ΩD

= 0},

and denote its dual by H−1(Ω).

Definition 1. A function ψ such that

ψ − ψ∗
D ∈ L2(0, T ;H1

0D(Ω)),
ϑ(ψ) ∈ L∞(0, T ;L1(Ω)) ∩H1(0, T ;H−1(Ω)),

is called the weak solution of problem (2.2), if it satisfies the condition

(∂tϑ(ψ), v) + (K(θ(ψ))∇(ψ + z),∇v) = (g(t), v) + (gN(t), v)N ,

for all v ∈ H1
0D(Ω), a.e. in (0, T ) and ψ(0) = ψ0 in Ω.

2.2 Partition of the domain
Let Th, h > 0 be a partition of Ω such that

Ω =
⋃︂

K∈Th

K,
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with the spatial parameters

h = max
K∈Th

hK , hK = diam(K), K ∈ Th.

We denote by {Th}h∈(0,h̄), h̄ > 0 a family of triangulations of the domain Ω.
Moreover, by Fh we denote the set of all edges of all elements K ∈ Th, particularly,

Fh = F I
h ∪ FB

h , FB
h = FD

h ∪ FN
h and F ID

h = F I
h ∪ FD

h ,

where F I
h and FB

h are the inner and boundary edges, respectively; additionally,
FD
h and FN

h are edges on the boundary ∂ΩD and ∂ΩN , respectively.
Let Γ ∈ Fh, then we denote by K(L)

Γ and K(R)
Γ the neighboring elements such

that Γ ⊂ K
(L)
Γ ∩K

(R)
Γ . We define the orientation of a unit normal to the edge Γ,

nΓ, as the outer normal to ∂K(L)
Γ and the inner normal to ∂K(R)

Γ . If Γ ∈ FB
h , we

define K(L)
Γ as the adjacent element to Γ. Moreover, by v(L)

Γ and v
(R)
Γ , we denote

the trace of v|
K

(L)
Γ

and v|
K

(R)
Γ

on Γ, respectively. If Γ ∈ F I
h , then we define the

average and the jump on Γ as

⟨v⟩Γ = 1
2

(︃
v

(L)
Γ + v

(R)
Γ

)︃
, [v]Γ = v

(L)
Γ − v

(R)
Γ , (2.3)

respectively. Especially, if Γ ∈ FB
h and K

(L)
Γ is such that Γ ⊂ ∂K

(L)
Γ ∩ ∂Ω, then

we have
⟨v⟩Γ = [v]Γ = v

(L)
Γ .

In the sequel, we omit the subscript Γ when there is no chance of confusion.
We mention some important concepts on meshes. A family of triangulations

{Th}h∈(0,h̄), h̄ > 0
• is shape-regular if there exists a positive constant CR such that

hK ≤ CRρK ∀K ∈ Th ∀h ∈ (0, h̄), (2.4)

• is quasi-uniform if there exists a positive constant CU such that

h ≤ CUhK ∀K ∈ Th ∀h ∈ (0, h̄), (2.5)

• satisfies the equivalence condition if there exist CT , CG > 0 such that

CThK ≤ d(Γ) ≤ CGhK , ∀K ∈ Th ∀Γ ∈ Fh Γ ⊂ ∂K ∀h ∈ (0, h̄), (2.6)

where ρK denotes the radius of the maximal inscribed two-dimensional ball in the
elementK ∈ Th and d(Γ) = diam(Γ). We note that for a conforming triangulation
Th if the shape-regularity condition is satisfied then the equivalence condition
holds.

2.3 Function spaces
Over a triangulation Th, for each k ∈ N, we define the broken Sobolev space of
scalar functions

Hk(Ω, Th) = {v ∈ L2(Ω) : v|K ∈ Hk(K) ∀K ∈ Th},
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K1
K2

Figure 2.1: An illustration of Sh,p spaces.

equipped with the seminorm

|v|Hk(Ω,Th) =
(︄ ∑︂
K∈Th

|v|2Hk(K)

)︄1/2

,

where | · |Hk(K) denotes the seminorm in the space Hk(K).
The semidiscrete solution to the problem (3.1) is sought in the functional

space of discontinuous polynomials of degree p ≥ 1

Sh,p = {v ∈ L2(Ω) : v|K ∈ Pp(K) ∀K ∈ Th}, (2.7)

where Pp(K) refers to the space of all polynomials defined on element K of total
degree ≤ p (see Fig. 2.3).

For each element K ∈ Th we denote by πK,p the L2-projection of some v ∈
L2(K) to the space Pp(K),∫︂

K
(πK,pv − v)φ dx = 0 ∀φ ∈ Pp(K). (2.8)

Thus, for v ∈ L2(Ω) we introduce the Sh,p-interpolant Πh,p as

(Πh,pv)|K := πK,p(v|K) ∀K ∈ Th,

or equivalently,
(Πh,pv − v, φ) = 0 ∀φ ∈ Sh,p.

Furthermore, we shall need the standard approximation property later in the
analysis.
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Lemma 1 (Approximation properties [33, Lemma 2.24, Eq. (4.100)]). Let the
assumption (2.4) be satisfied. Then, for any v ∈ Hs(K), K ∈ Th, h ∈ (0, h̄) there
exists a positive constant CA such that

|πK,pv − v|Hq(K) ≤ CAh
µ−q
K |v|Hµ(K), q = 0, 1, (2.9a)

∥∂t(πK,pv − v)∥L2(K) ≤ CAh
µ
K |∂tv|Hµ(K), (2.9b)

where CA > 0, πK,p is the orthogonal L2-projection defined by (2.8) and µ =
min(p+ 1, s).

2.4 Discretization of the problem
We multiply (2.1a) by v ∈ H1(Ω, Th), integrate over K ∈ Th and use Green’s
theorem. After summing over all elements K ∈ Th, we obtain the identity

∑︂
K∈Th

∫︂
K
∂tϑ(Ψ − z)v dx−

∑︂
K∈Th

∫︂
∂K

K(Ψ − z)∇Ψ · nvdS

+
∑︂
K∈Th

∫︂
K

K(Ψ − z)∇Ψ · ∇v dx

=
∑︂
K∈Th

∫︂
K
gv dx. (2.10)

We rewrite the sum of the edge integrals arising from the diffusive term as
∑︂
K∈Th

∫︂
∂K

K(Ψ − z)∇Ψ · nvdS

=
∑︂

Γ∈FD
h

∫︂
Γ

K(Ψ − z)∇Ψ · nvdS +
∑︂

Γ∈FN
h

∫︂
Γ

K(Ψ − z)∇Ψ · nvdS

+
∑︂

Γ∈FI
h

∫︂
Γ
[K(Ψ − z)∇Ψv] · ndS. (2.11)

Furthermore, we may replace the middle term on the right-hand side of (2.11)
with the Neumann boundary condition function

∑︂
Γ∈FN

h

∫︂
Γ

K(Ψ − z)∇Ψ · nvdS = (gN , v)N . (2.12)

Assuming Ψ(·, t) ∈ H2(Ω), we have that

[K(Ψ − z)∇Ψ] = 0,

and

K(Ψ(L) − z)∇Ψ(L) = K(Ψ(R) − z)∇Ψ(R) = ⟨K(Ψ − z)∇Ψ⟩ , Γ ∈ F I
h ,

which implies that

[K(Ψ − z)∇Ψv] · n = ⟨K(Ψ − z)∇Ψ⟩ · n[v], Γ ∈ F I
h . (2.13)
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Then, the relation (2.11) becomes
∑︂
K∈Th

∫︂
∂K

K(Ψ − z)∇Ψ · nvdS

=
∑︂

Γ∈FID
h

∫︂
Γ

⟨K(Ψ − z)∇Ψ)⟩ · n[v]dS + (gN , v)N . (2.14)

We introduce the interior and boundary penalty bilinear form

Jh(Ψ, v) =
∑︂

Γ∈FID
h

∫︂
Γ
κ[Ψ][v]dS, (2.15)

where κ is the penalty parameter given by

κ|Γ = CW
d(Γ) , Γ ∈ F ID

h , (2.16)

with penalization constant CW > 0.
Remark 2. In case of nonconforming triangulations with hanging nodes, it is
necessary to define differently d(Γ) in the penalty parameter given in (2.16); e.g.,
if Γ ⊂ K

(L)
Γ ∩K

(R)
Γ , Γ ∈ F ID

h , then [33]

d(Γ) =
⎧⎨⎩max(h

K
(L)
Γ
, h

K
(R)
Γ

), Γ ∈ F I
h ,

h
K

(L)
Γ
, Γ ∈ FD

h .

Finally, we define the forms as

ah(ψ; Ψ, v) = ãh(ψ; Ψ, v) + Jh(Ψ, v), (2.17)

ãh(ψ; Ψ, v) =
∑︂
K∈Th

∫︂
K

K(ψ)∇Ψ · ∇v dx

−
∑︂

Γ∈FID
h

∫︂
Γ

(︂
⟨K(ψ)∇Ψ⟩ · n[v]

+ Θ ⟨K(v)∇v⟩ · n[Ψ]
)︂
dS, (2.18)

ℓh(v) = (g, v) + (gN , v)N − Θ
∑︂

Γ∈FD
h

∫︂
Γ

n · ∇vΨDdS. (2.19)

Here, for Θ = −1, Θ = 0 and Θ = 1, the form ah represents the nonsymmet-
ric variant (NIPG), incomplete variant (IIPG), and symmetric variant (SIPG),
respectively, of the diffusive form.

Definition 2. We say that Ψh ∈ C([0, T ];Sh,p) is the semidiscrete approximate
solution to (2.1) obtained by the DG method if

(∂tϑ(Ψh − z), vh) + ah(Ψh − z; Ψh, vh) = ℓh(vh) ∀vh ∈ Sh,p ∀t ∈ (0, T ),
(2.20)

(Ψh(0), vh) = (Ψ0, vh) ∀vh ∈ Sh,p. (2.21)
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In a similar manner, the DG semidiscretization can be formulated for the ψ-
formulation of Richards’ equation. However, now in the diffusive part instead of
∇Ψ appears ∇(ψ + z) = ∇ψ + e2, where e2 = (0, 1) is a unit vector. Therefore,
we define the additional form bh

bh(ψ; v) =
∑︂
K∈Th

∫︂
K

K(ψ)e2 · ∇v dx−
∑︂

Γ∈FID
h

∫︂
Γ
H(ψ(L), ψ(R),n)vdS, (2.22)

where H : R × R × B → R, B = {n ∈ R2 : |n| = 1} is the numerical flux such
that ∫︂

Γ
K(θ(ψ))e2 · nvdS ≈

∫︂
Γ
H(ψ(L), ψ(R),n)v(L)dS, Γ ∈ Fh.

In particular, we shall use the central numerical flux given by

H(ψ(L), ψ(R),n) = K(ψ(L)) + K(ψ(R))
2 e2 · n. (2.23)

We mention that it is possible to prescribe other numerical fluxes, such as up-
winding numerical flux, Lax-Friedrichs numerical flux, etc. We refer to [42] for
more on this topic.

We are ready now to define the semidiscrete solution to ψ-formulation.

Definition 3. We say that ψh ∈ C([0, T ];Sh,p) is the semidiscrete approximate
solution to (2.2) obtained by the DG method if

(∂tϑ(ψh), vh) + ah(ψh;ψh, vh) + bh(ψh; vh) = ℓh(vh) ∀vh ∈ Sh,p ∀t ∈ (0, T ),
(2.24)

(ψh(0), vh) = (ψ0, vh) ∀vh ∈ Sh,p. (2.25)

In Chapter 5, we shall proceed with the discretization of the time variable
leading to fully discrete schemes for Definitions 2–3. Prior to it, in the next two
chapters, we present the error analysis for a semidiscrete scheme for Richards’
equation.
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3. Error analysis for a
semidiscrete scheme
In what follows, we shall be concerned with the numerical analysis of a variant of
the problem introduced in the previous chapters, which excludes the gravity term
of Richards’ equation. In particular, we define a local DG method to discretize
the spatial variable and derive error estimates for the obtained time-continuous
numerical scheme. The results from this chapter can be found in [24]. For the
sake of clarity, we introduce local constants denoted by C1, C2, . . . , valid only
within the specific proof.

3.1 Model problem
Let Ω ⊂ R2 be a polygon with Lipschitz continuous boundary ∂Ω = ∂ΩD ∪ ∂ΩN ,
∂ΩD ∩ ∂ΩN = ∅ as assumed in Chapter 2 and let T > 0. We study the following
initial-boundary value problem: Find u : QT → R such that

∂tϑ(u) − ∇ · (K(θ(u))∇u) = g in QT , (3.1a)
u
⃓⃓⃓
∂ΩD×(0,T )

= uD, (3.1b)

K(θ(u))∇u · n
⃓⃓⃓
∂ΩN ×(0,T )

= gN , (3.1c)

u(x, 0) = u0(x), x ∈ Ω, (3.1d)

where g : QT → R denotes the source or sink term, uD : ∂ΩD × (0, T ) → R,
gN : ∂ΩN × (0, T ) → R and u0 : Ω → R are the functions corresponding to initial
and boundary conditions, respectively, and n = (n1, n2) is a unit outer normal
to ∂Ω. The function ϑ : R → R+

0 describes the nonlinear change of the unknown
function u through time and is defined as (cf. (1.8))

0 ≤ θ(u) ≤ ϑ(u) := θ(u) + SS
θS

∫︂ u

−c
θ(s)ds, (3.2)

where c > 0, SS ≥ 0 and θS > 0 are constants, and θ : R → R+
0 is a nonlinear

function. The nonlinear tensor K : R → R2×2 denotes the diffusion flux.
Remark 3. The problem (3.1) corresponds to the problem (2.2) when the gravity
term is omitted and the diffusion coefficient K depends on θ(ψ) not only ψ. Thus,
in this chapter, we distinguish the notation u for the pressure head ψ, while the
rest of the quantities we keep denoted as before.
Remark 4. We point out that the problem formulation (3.1) is independent of
the choice of the parameter c > 0 in (3.2). Taking into account that ϑ appears
in (3.1) as a derivative, if we choose some other c′ > 0, we have that∫︂ u

−c′
θ(s)ds =

∫︂ u

−c
θ(s)ds+

∫︂ −c

−c′
θ(s)ds.

Here, the second term on the right-hand side is constant and therefore its deriva-
tive is vanishing. The values c > 0 in (3.2) have been prescribed in different ways;
e.g., c = 0 in [96], c = ∞ in [34], etc. In this chapter, we keep c fixed and finite.
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3.1.1 Assumptions
For the purpose of the analysis ahead, we set assumptions on the hydraulic func-
tions (θ, ϑ, K), and boundary and source/sink terms, which describe flow in
variably saturated porous media. Namely, we suppose (see [2, 96]):

(A1) The tensor K is uniformly bounded, uniformly symmetric positive definite
in u and Lipschitz continuous in θ; i.e., there exists constants k0, k1, kL > 0
such that

k0|ζ|2 ≤ ζ · K(θ(υ))ζ, ζ ∈ R2, υ ∈ R, (3.3)
|K(θ(υ))ζ| ≤ k1|ζ|, ζ ∈ R2, υ ∈ R, (3.4)

|K(θ(u1)) − K(θ(u2))| ≤ kL|θ(u1) − θ(u2)|, u1, u2 ∈ R. (3.5)

(A2) The component-wise derivative dK(θ(u))
du is bounded; i.e., there exists kd > 0

such that ⃓⃓⃓⃓
⃓dK(θ(u))

du

⃓⃓⃓⃓
⃓ ≤ kd.

(A3) The function θ is monotone nondecreasing, uniformly bounded from above,
and Lipschitz continuous; i.e., there exists a constant Lθ > 0 such that

|θ(u1) − θ(u2)| ≤ Lθ|u1 − u2| ∀u1, u2 ∈ R.

(A4) The composition ϑ′ ◦ ϑ−1 is Hölder continuous with order 1/3 < β ≤ 1;
i.e., there exists a constant Hϑ > 0 such that for any u1, u2 ∈ R

|ϑ′(u1) − ϑ′(u2)| ≤ Hϑ|ϑ(u1) − ϑ(u2)|β.

(A5) uD is the trace of some u∗
D ∈ C([0, T ];H1(Ω)) ∩L∞(QT ) on ∂ΩD × (0, T ).

(A6) gN ∈ L2(0, T ;L2(∂ΩN)).
(A7) g ∈ L2(0, T ;L2(Ω)).

Remark 5. Let u1, u2 ∈ R, u1 ≥ u2; then from (3.2) we have that

ϑ(u1) − ϑ(u2) = θ(u1) − θ(u2) + SS
θS

∫︂ u1

u2
θ(s)ds ≥ θ(u1) − θ(u2),

and thus,
|θ(u1) − θ(u2)| ≤ |ϑ(u1) − ϑ(u2)| ∀u1, u2 ∈ R. (3.6)

Furthermore, the assumption (A3) implies that ϑ is Lipschitz continuous too, with
the Lipschitz constant Lϑ := Lθ + SS

θS
sups∈R θ(s). Since the integral operator is

monotone, ϑ is a monotone nondecreasing function too.
Remark 6. We note that the assumptions (A3)–(A4) admit the case ϑ′ = 0, i.e.,
when the flow occurs in the saturated regime (hence, θ′ = 0 and SS = 0).
Remark 7. Richards’ equation with the van Genuchten-Mualem [92, 66] model
of constitutive relations yields θ(u) = (1 + (C|u|)1/(1−m))−m (cf. (1.14) and [77]),
where C > 0 and m ∈ (0, 1). Moreover, the Taylor expansion around u ≈ 0
implies θ(u) ∼ 1−m(C|u|)1/(1−m) with α = 1/(1−m). Therefore, the assumption
(A4) is satisfied with β = m (cf. [2, Remark 3]). However, due to the numerical
analysis we have to additionally restrict β > 1/3 (cf. Lemma 21).
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3.1.2 Some notation and remarks
In this chapter, we consider triangulations that are shape-regular and quasi-
uniform. In particular, we assume conforming triangulations {Th}h∈(0,h̄), h̄ > 0,
but this assumption can be relaxed (cf. Remark 2).

Since in this chapter we deal with vector-valued functions, we discuss the
corresponding notation. Namely, as in (2.3), we define trace and jump operators
of a vector-valued function w,

⟨w⟩Γ = 1
2

(︃
w

(L)
Γ + w

(R)
Γ

)︃
, [w]Γ = w

(L)
Γ − w

(R)
Γ , Γ ∈ F I

h ,

and

⟨w⟩Γ = [w]Γ = w
(L)
Γ , Γ ∈ FB

h .

In addition, we mention the broken Sobolev space of vector-valued functions

Hk(Ω, Th) = (Hk(Ω, Th))2,

and the two-dimensional space of discontinuous polynomial functions

Sh,p = {w ∈ (L2(Ω))2 : w|K ∈ (Pp(K))2,∀K ∈ Th}.

Analogously to (2.8), we denote the L2-projection of some w ∈ (L2(Ω))2,
which represents the L2-projection of scalar components of the vector w. We
shall consider triangulations that are shape-regular (2.4) and quasi-uniform (2.5).

3.1.3 Weak solution
As mentioned in Remark 6, we consider a nonlinear parabolic PDE that can
degenerate to elliptic one when ϑ′ → 0. Since the exact solution to (3.1) often
has low regularity, we introduce its weak solution.

Definition 4. A function u is called the weak solution to the problem (3.1) if

u− u∗
D ∈ L2(0, T ;H1

0D(Ω)), (3.7a)
ϑ(u) ∈ L∞(0, T ;L1(Ω)) ∩H1(0, T ;H−1(Ω)), (3.7b)

and the following identity is satisfied

(∂tϑ(u), v) + (K(θ(u))∇u,∇v) = (g(t), v) + (gN(t), v)N ,

for all v ∈ H1
0D(Ω) a.e. in (0, T ), and u(0) = u0 in Ω.

Remark 8. We mention that the condition (3.7b) from Definition 4 is equivalent
to (cf. [86])

ϑ(u) ∈ C([0, T ];H−1(Ω)) ∩ L∞(0, T ;L2(Ω)),
∂tϑ(u) ∈ L2(0, T ;H−1(Ω)).

More on its existence, uniqueness and regularity can be found in [1, 69] and
[70].
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3.2 A local discontinuous Galerkin method
In order to define the local discontinuous Galerkin (LDG) method [17, 22, 46],
we introduce the expanded mixed formulation of the problem (3.1) (cf. [96]).
Namely, we define two new auxiliary vector variables, q = ∇u and σ = K(θ(u))q,
and rewrite (3.1) as a system of three first order hyperbolic equations

∂tϑ(u) − ∇ · σ = g in QT , (3.8a)
σ = K(θ(u))q in QT , (3.8b)
q = ∇u in QT , (3.8c)

u
⃓⃓⃓
∂ΩD×(0,T )

= uD, (3.8d)

σ · n
⃓⃓⃓
∂ΩN ×(0,T )

= gN , (3.8e)

u(x, 0) = u0(x), x ∈ Ω. (3.8f)

Furthermore. we assume the exact solution (u, q,σ) to the problem (3.8) satisfies
the following regularity conditions for some s ≥ 2.

(B1) u ∈ L2(0, T ;Hs(Ω)), ∂tu ∈ L∞(QT )∩L2(0, T ;Hs(Ω)), ∥∂tu∥L2(QT ) ≤ CX .
(B2) q ∈ L2(0, T ; Hs(Ω)), ∥q∥L∞(Ω) ≤ CB for t ∈ (0, T ).
(B3) σ ∈ L2(0, T ; Hs(Ω)).
Now, we start with the derivation of the scheme. Namely, we multiply (3.8a),

(3.8b) and (3.8c) by v ∈ H1(Ω, Th), w ∈ H1(Ω, Th) and z ∈ H1(Ω, Th), respec-
tively. Then, integrate over K ∈ Th and use Green’s theorem so that∫︂

K
∂tϑ(u)v dx+

∫︂
K

σ · ∇v dx−
∫︂
∂K

σ · nv dS =
∫︂
K
gv dx, (3.9a)∫︂

K
K(θ(u))q · w dx−

∫︂
K

σ · w = 0, (3.9b)∫︂
K

q · z dx+
∫︂
K
u∇ · z dx−

∫︂
∂K
uz · n dS = 0. (3.9c)

At this point, we observe that the solution on integrals on edges should
be defined carefully. Therefore, in order to define the approximate solution
(uh, qh,σh) ∈ Sh,p × Sh,p × Sh,p, t ∈ [0, T ], we substitute vh ∈ Sh,p in (3.9a)
and wh, zh ∈ Sh,p in (3.9b)–(3.9c),∫︂

K
∂tϑ(uh)vh dx+

∫︂
K

σh · ∇vh dx−
∫︂
∂K

σ̂ · nvh dS =
∫︂
K
gvh dx, (3.10a)∫︂

K
K(θ(uh))qh · wh dx−

∫︂
K

σh · wh = 0, (3.10b)∫︂
K

qh · zh dx+
∫︂
K
uh∇ · zh dx−

∫︂
∂K
ûzh · n dS = 0, (3.10c)

where û and σ̂ denote the numerical fluxes, which approximate the solution across
the interfaces. Particularly, we choose the numerical fluxes such that the stability
of the resulting scheme is preserved [4], [46]

û(uh) =

⎧⎪⎪⎨⎪⎪⎩
⟨uh⟩ + λ · n[uh], Γ ∈ F I

h ,

uD, Γ ∈ FD
h ,

uh, Γ ∈ FN
h ,

21



σ̂(uh,σh) · n =

⎧⎪⎪⎨⎪⎪⎩
⟨σh⟩ · n + λ · n[σh · n] − κ[uh], Γ ∈ F I

h ,

σh · n − κ(uh − uD), Γ ∈ FD
h ,

gN , Γ ∈ FN
h ,

where λ : ∪Γ∈Fh
Γ → R2 is a constant vector independent of h, while κ : ∪Γ∈Fh

Γ →
R is the penalty parameter defined as in (2.16). Moreover, the numerical fluxes
are conservative

[û] = 0, [σ̂] = 0, Γ ∈ F I
h (3.11)

and consistent
û(u) = u, σ̂(u,σ) · n = σ · n. (3.12)

Furthermore, for v, r ∈ H1(Ω, Th), w, z ∈ H1(Ω, Th) we define the following
forms

Ah(w, v) = (w,∇v) −
∑︂

Γ∈FID
h

∫︂
Γ

(︂
⟨w⟩ · n − λ · n[w · n]

)︂
[v] dS, (3.13)

Bh(v; w, z) = ((K(θ(v))w, z), (3.14)

Jh(v, r) =
∑︂

Γ∈FID
h

κ
∫︂

Γ
[v][r] dS, (3.15)

JDh (v) =
∑︂

Γ∈FD
h

κ
∫︂

Γ
uDv dS, (3.16)

Fh(v) = (g, v) + JDh (v) + (gN , v)N , (3.17)

Gh(w) =
∑︂

Γ∈FD
h

∫︂
Γ

w · nuD dS, (3.18)

where the penalty parameter κ is given by (2.16). Let us note that the bilinear
form Jh is the same as in Chapter 2 (cf. (2.15))

Finally, we define the semidiscrete approximate solution obtained by the LDG
method. The existence and uniqueness of the approximate solution of the LDG
method for nonmonotone quasilinear equations has been studied in [46] (see also
[79]).

Definition 5. We say that the triplet

(uh, qh,σh) ∈ C1([0, T ];Sh,p) × C1([0, T ]; Sh,p) × C1([0, T ]; Sh,p)

is a semidiscrete approximate solution to (3.8) obtained by the LDG method, if it
satisfies

(∂tϑ(uh), vh) + Ah(σh, vh) + Jh(uh, vh) = Fh(vh) ∀vh ∈ Sh,p, (3.19a)
Bh(uh; qh,wh) − (σh,wh) = 0 ∀wh ∈ Sh,p, (3.19b)

(qh, zh) − Ah(zh, uh) = Gh(zh) ∀zh ∈ Sh,p, (3.19c)

with the initial condition uh(0) ≡ Πhpu0 for almost all t ∈ (0, T ).

It can be verified that the exact solution (u, q,σ) satisfies (3.19a)–(3.19c);
namely, from the consistency of numerical fluxes (3.12) implies the consistency
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of the LDG scheme
(∂tϑ(u), vh) + Ah(σ, vh) + Jh(u, vh) = Fh(vh) ∀vh ∈ Sh,p, (3.20a)

Bh(u; q,wh) − (σ,wh) = 0 ∀wh ∈ Sh,p, (3.20b)
(q, zh) − Ah(zh, u) = Gh(zh) ∀zh ∈ Sh,p, (3.20c)

for almost all t ∈ (0, T ).

3.3 Auxiliary results
In this section, we introduce some results from the theory of the finite element
method (see, e.g., [14]) and DG method (see, e.g., [33]). Furthermore, we derive
the coercivity bound of the nonlinear form Bh with respect to linear arguments
and its upper bound.

We use the multiplicative trace inequality (cf. [33, Lemma 2.19])

∥v∥2
L2(∂K) ≤ CM

(︂
∥v∥L2(K)|v|H1(K) + h−1

K ∥v∥2
L2(K)

)︂
,

where v ∈ H1(K), K ∈ Th, h ∈ (0, h̄), and the inverse estimates (cf. [14,
Lemma 4.5.3])

|vh|H1(K) ≤ CIh
−1
K ∥vh∥L2(K) ∀v ∈ P p(K) ∀K ∈ Th ∀h ∈ (0, h̄), (3.21a)

∥vh∥L∞(K) ≤ CIh
−1
K ∥vh∥L2(K) ∀v ∈ P p(K) ∀K ∈ Th ∀h ∈ (0, h̄). (3.21b)

Furthermore, if vh ∈ Shp, then the multiplicative trace inequality and the inverse
inequality (3.21a) imply that∑︂

K∈Th

hK∥vh∥2
L2(∂K) ≤ CM(CI + 1)∥vh∥2

L2(Ω). (3.22)

We shall use the elementary inequalities (see, e.g., [28])
|a− b|2 ≤ 2|a|2 + 2|b|2 and |ar − br| ≤ |a− b|r, 0 ≤ r ≤ 1, a, b ∈ R. (3.23)

We will use some relations for the form Jh (2.15), cf. [33, Lemma 2.32]

|Jh(v, w)| ≤ J
1/2
h (v, v)J1/2

h (w,w), v, w ∈ H1(Ω, Th), h ∈ (0, h̄), (3.24)

Jh(v, v) ≤ CWCM
CT

∑︂
K∈Th

(︂
3h−2

K ∥v∥2
L2(K) + |v|2H1(K)

)︂
, v ∈ H1(Ω, Th), h ∈ (0, h̄).

(3.25)
Furthermore, we define the norm on H1(Ω, Th)

|||v||| =
(︄ ∑︂
K∈Th

|v|2H1(K) + Jh(v, v)
)︄1/2

. (3.26)

We shall use the estimate that can be obtained by applying the inverse inequal-
ity to the general version of the multiplicative trace inequality proposed in [33,
Lemma 4.8]

∥vh∥2
L2(∂Ω) ≤ CN

(︃
|||vh|||∥vh∥L2(Ω) + ∥vh∥2

L2(Ω)

)︃
, vh ∈ Sh,p. (3.27)

We establish the relation between the L2-norm and ||| · |||-norm of a function
belonging to the Sh,p space with the aid of the broken Poincaré inequality [13]

∥vh∥L2(Ω) ≤ CP |||vh||| ∀vh ∈ Shp. (3.28)
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3.3.1 Bounds on the forms Ah and Bh

We propose an estimate on a term appearing in the form Ah defined by (3.13),
whose proof is analogous to [33, Lemma 2.27].

Lemma 2. Let κ be given by (2.16). Then, it holds that
∑︂

Γ∈FID
h

∫︂
Γ
κ−1

⃓⃓⃓
⟨w⟩ − λ · n[w]

⃓⃓⃓2
dS ≤ R(w), w ∈ H1(Ω, Th), (3.29)

∑︂
Γ∈FID

h

∫︂
Γ
κ−1

⃓⃓⃓
⟨wh⟩ − λ · n[wh]

⃓⃓⃓2
dS ≤ Ca∥wh∥2

L2(Ω), wh ∈ Sh,p, (3.30)

where Ca > 0 is a constant independent of h and

R(w) := Cr
∑︂
K∈Th

(︂
h2
K |w|2H1(K) + 3∥w∥2

L2(K)

)︂
, w ∈ H1(Ω, Th), (3.31)

with Cr := 3CMCG max(1, 2|λ|2)/CW .

In the next lemma, we show the coercivity of the form Bh with respect to the
linear terms, and its boundedness.

Lemma 3. Let Bh(· ; · , · ) be defined by (3.14). Then,

Bh(v; w,w) ≥ k0∥w∥2
L2(Ω), v ∈ H1(Ω, Th), w ∈ H1(Ω, Th), (3.32)

|Bh(v; w, z)| ≤ k1∥w∥L2(Ω)∥z∥L2(Ω), v ∈ H1(Ω, Th), w, z ∈ H1(Ω, Th). (3.33)

Proof. Using (A1) we get
∑︂
K∈Th

∫︂
K

K(θ(ζ))w · w dx ≥
∑︂
K∈Th

∫︂
K
k0|w|2 dx,

which yields the first part of the statement. For the other part, we simply combine
(A1) with the Cauchy-Schwarz inequality,

∑︂
K∈Th

∫︂
K

K(θ(ζ))w · z dx ≤
∑︂
K∈Th

∫︂
K
k1|w||z| dx.

3.3.2 Some integral identities and inequalities
We shall use a special case of the Hölder inequality
∫︂

Ω
fγ dx ≤ |Ω|1−γ

(︄∫︂
Ω
f dx

)︄γ
, 0 ≤ γ ≤ 1, f ∈ L1(Ω), f ≥ 0 a.e. on Ω, (3.34)

where the notation | · | stands for the Lebesgue measure of the corresponding set
in R2. This relation can be derived if we set w := 1, v := fγ and p = γ−1 in
the classical Hölder inequality, ∥vw∥L1(Ω) ≤ ∥v∥Lp(Ω)∥w∥Lq(Ω), where v ∈ Lp(Ω),
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w ∈ Lq(Ω), 1/p+1/q = 1 for p, q ≥ 1. Furthermore, we shall need the generalized
Hölder inequality∫︂

Ω
|f1f2f3| dx ≤ ∥f1∥L2(Ω)∥f2∥L2(Ω)∥f3∥L∞(Ω), f1, f2 ∈ L2(Ω), f3 ∈ L∞(Ω).

(3.35)

We introduce the p-triangle inequality for the quasi-Banach Lp spaces defined
for 0 < p < 1 with the quasi-norm ∥·∥pLp(Ω) =

∫︁
Ω | · |p dx [25]

∥f1 + f2∥Lp(Ω) ≤ 2
1−p

p

(︂
∥f1∥Lp(Ω) + ∥f2∥Lp(Ω)

)︂
∀f1, f2 ∈ Lp(Ω). (3.36)

In the error analysis we shall use a simplified version of the Leibnitz integral
rule (see e.g., [51])

d

dt

∫︂ b(t)

a(t)
f(χ)dχ = f(b(t))b′(t) − f(a(t))a′(t), (3.37)

which can be proven by setting F (a(t), b(t)) :=
∫︁ b(t)
a(t) f(χ)dχ in (3.37) and applying

the chain rule to dF
dt . Specially, if a(t) = a(x, t) and b(t) = b(x, t) then (3.37)

holds but now with ∂t instead of d
dt

.
Lastly, we state a result proposed in [2, Proposition 1.], which can be shown

with aid of fundamental calculus.

Lemma 4. Let f : R → R be a monotone nondecreasing, uniformly Lipschitz
and uniformly bounded function. Then, for arbitrary v, w ∈ R the following
inequalities are fulfilled

Mf (f(w) − f(v))2 ≤
∫︂ w

v
(f(χ) − f(v))dχ, (3.38a)∫︂ w

v
(f(w) − f(χ))dχ ≤ (f(w) − f(v))(w − v), (3.38b)

where Mf > 0 is a constant that depends on the function f defined as Mf :=(︂
2 ess supu∈R|f ′(u)|

)︂−1
.

Proof. Without loss of generality, let us assume v ≤ w. For simplicity, we define
an auxiliary function

g(χ) := f(χ) − f(v). (3.39)
Note that the function g is nonnegative over the interval [v, w] and it holds g(v) =
0. Let us consider a linear function passing through the point g(w) with the slope
supu∈R |g′(u)| and intersecting the x-axis at some z ∈ (v, w) as depicted in Fig.
3.1. Since for any point r ∈ (v, w) it holds

f ′(r) = g′(r) ≤ sup
u∈R

|g′(u)| = sup
u∈R

|f ′(u)|, (3.40)

we have that the linear function is completely below the function g at all points.
In mathematical terms, it holds∫︂ w

v
g(χ)dχ ≥ 1

2g(w)(w − z),
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Figure 3.1: Geometrical proof of Lemma 3.38.

or using (3.39), we have that∫︂ w

v
(f(χ) − f(v))dχ ≥ 1

2(f(w) − f(v))(w − z). (3.41)

In other words, the area below the function g (depicted in blue) is greater or
equal to the area of the triangle (depicted in red) as illustrated in the Fig. 3.1.
Moreover, by the definition of the tangent line at the point (w, g(w)), we have
that

g(w) = sup
u∈R

|g′(u)|(w − z),

or equivivalently,
f(w) = sup

u∈R
|f ′(u)|(w − z) + f(v). (3.42)

Furthermore, we rewrite (3.42) (cf. (3.40)) obtaining the identity

w − z = (sup
u∈R

|f ′(u)|)−1(f(w) − f(v)). (3.43)

By substituting (3.43) into (3.41), we derive the first part of the lemma.
On the other hand, the proof of the second part is more simple. Namely, the

statement follows from the monotonicity of the function f∫︂ w

v
(f(w) − f(χ))dχ ≤

∫︂ w

v
(f(w) − f(v))dχ = (f(w) − f(v))(w − v).

3.4 Stability of the approximate solution
A bound on the semidiscrete approximate solution (uh, qh,σh) will play an impor-
tant role in the derivation of the main error estimate; therefore, we present some
results on the stability of the semidiscrete solution. We start with an auxiliary
lemma.
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Lemma 5. Let the triplet (uh, qh,σh) be the approximate solution given by Def-
inition 5 and let the assumptions (A1)–(A7) be satisfied. Then,

∥uh∥L2(Ω) ≤ Cu
(︂
J

1/2
h (uh, uh) + ∥qh∥L2(Ω) + (JDh (uD))1/2

)︂
, (3.44)

∥σh∥L2(Ω) ≤ Cσ∥qh∥L2(Ω), (3.45)

where the constants Cu, Cσ > 0 are independent of the exact solutions’ components
(u, q,σ) and the discretization parameter h.

Proof. We substitute zh := ∇uh ∈ Sh,p, defined as zh|K := ∇(uh|K) ∈
Pp(K), K ∈ Th, into (3.19c) and by use the definition of Ah (3.13) we rewrite
(3.19c) as

∥∇uh∥2
L2(Ω)

=
⃓⃓⃓⃓
⃓ ∑︂

Γ∈FID
h

∫︂
Γ

(︂
⟨∇uh · n⟩ − λ · n[∇uh · n]

)︂
[uh] dS + (qh,∇uh) −Gh(∇uh)

⃓⃓⃓⃓
⃓.

(3.46)

Then, we estimate each term on the right-hand side of (3.46). Namely, by the
Cauchy-Schwarz inequality and (3.30), we have that

∑︂
Γ∈FID

h

∫︂
Γ

(︂
⟨∇uh · n⟩ − λ · n[∇uh · n]

)︂
[uh] dS ≤ Ca∥∇uh∥L2(Ω)J

1/2
h (uh, uh).

(3.47)

Furthermore, the Cauchy-Schwarz inequality implies

|Gh(∇uh)| ≤
(︄ ∑︂

Γ∈FD
h

∫︂
Γ
κ−1|∇uh|2 dS

)︄1/2

(JDh (uD))1/2. (3.48)

From the equivalence condition (2.6) and (3.22) we have that

∑︂
Γ∈FD

h

∫︂
Γ
κ−1|∇uh|2 dS ≤ CW

CG

∑︂
K∈Th

hK

∫︂
∂K

|∇uh|2 dx

≤ CW
CG

CM(CI + 1)∥∇uh∥2
L2(Ω). (3.49)

We substitute the relations (3.47)–(3.49) into (3.46), use the Cauchy-Schwarz
inequality on the middle term on the right-hand side of (3.46), and then cancel
∥∇uh∥L2(Ω) on both sides of the inequality, so we get that

∥∇uh∥L2(Ω) ≤ CaJ
1/2
h (uh, uh) + ∥qh∥L2(Ω) + C1(JDh (uD))1/2, (3.50)

where we have denoted C1 := CWCM(CI + 1)/CG. Then, we add the term
J

1/2
h (uh, uh) to both sides of (3.50) aiming to use the definition of ||| · |||-norm

(3.26) as

|||uh||| ≤ (Ca + 1)J1/2
h (uh, uh) + ∥qh∥L2(Ω) + C1(JDh (uD))1/2. (3.51)

27



By application of the broken Poincaré inequality to (3.51), and by setting

Cu := CP max(Ca + 1, C1)

in (3.44), we complete the proof of the first part of the lemma.
In order to prove the second part of the lemma, we insert wh := σh in (3.19b)

∥σh∥2 = |Bh(uh; qh,σh)|,

and apply (3.33) to the form Bh; hence, we obtain (3.45) for Cσ := k1.

Theorem 6 (Stability of the semidiscrete approximate solution). Let the triplet
(uh, qh,σh) be the approximate solution given by Definition 5 and let the assump-
tions (A1)–(A7) be satisfied. Then,

∥ϑ(uh(T )) − ϑ(uh(0))∥2
L2(Ω) + ∥qh∥

2
L2(0,T ;L2(Ω)) +

∫︂ T

0
Jh(uh, uh) dt

≤ C

(︄
∥u0∥2

L2(Ω) + ∥g∥2
L2(0,T ;L2(Ω)) +

∫︂ T

0
JDh (uD) dt+ ∥gN∥2

L2(0,T ;L2(∂ΩN ))

)︄
,

(3.52)

where the constant C > 0 is independent of the exact solution (u, q,σ) and the
discretization parameter h.

Proof. We insert vh := uh, wh := qh, zh := σh in (3.19a)–(3.19c), sum the
equations, and integrate the resulting equation over the interval [0, T ] obtaining∫︂ T

0
(∂tϑ(uh), uh) dt+

∫︂ T

0
Bh(uh; qh, qh) dt+

∫︂ T

0
Jh(uh, uh) dt

=
∫︂ T

0

(︂
Fh(uh) +Gh(σh)

)︂
dt. (3.53)

To bound the first term in (3.53) from below, it is convenient to rewrite the term
∂tϑ(uh)uh into a conservation form. Namely, taking into account that uh(t) =
uh(x)(t) ∈ Sh,p, t ∈ [0, T ], using the Leibnitz integral rule (3.37) we get

∂t

∫︂ uh(0)

uh(t)
ϑ(χ)dχ = ϑ(uh(0))∂tuh(0)−ϑ(uh(t))∂tuh(t) = −ϑ(uh(t))∂tuh(t). (3.54)

Next, we note that by the product rule we have

∂t

∫︂ uh(0)

uh(t)
ϑ(uh(t))dχ = ∂t

(︄
ϑ(uh(t))

∫︂ uh(0)

uh(t)
dχ
)︄

= ∂tϑ(uh(t))(uh(0) − uh(t)) − ϑ(uh(t))∂tuh(t). (3.55)

We subtract (3.55) from (3.54) and rearrange the terms such that

∂tϑ(uh)uh = ∂t

(︄∫︂ uh(0)

uh

(ϑ(χ) − ϑ(uh))dχ+ ϑ(uh)uh(0)
)︄
. (3.56)
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Moreover, the relation (3.38a) from Lemma 4 implies the inequality∫︂
Ω

(︄∫︂ uh(0)

uh(T )

(︂
ϑ(χ) − ϑ(uh(T ))

)︂
dχ
)︄
dx ≥ Mϑ

∫︂
Ω

(︂
ϑ(uh(0)) − ϑ(uh(T ))

)︂2
dx,

(3.57)

where Mϑ =
(︂
2 ess supu∈R|ϑ′(u)|

)︂−1
. Finally, we combine (3.56)–(3.57) to get the

lower bound of the first term of (3.53)∫︂ T

0
(∂tϑ(uh), uh) dt

=
∫︂

Ω

(︄∫︂ uh(0)

uh(T )

(︂
ϑ(χ) − ϑ(uh(T ))

)︂
dχ+ ϑ(uh(T ))uh(0) − ϑ(uh(0))uh(0)

)︄
dx

≥ Mϑ∥ϑ(uh(T )) − ϑ(uh(0))∥2
L2(Ω) +

(︂
ϑ(uh(T )) − ϑ(uh(0)), uh(0)

)︂
. (3.58)

Furthermore, we use (3.32) to obtain the lower bound for the second term in
(3.53) ∫︂ T

0
Bh(uh; qh, qh) dt ≥ k0∥qh∥

2
L2(0,T ;L2(Ω)). (3.59)

At this moment, we apply the relations we obtained so far, i.e., (3.58)–(3.59),
to (3.53),

Mϑ∥ϑ(uh(T )) − ϑ(uh(0))∥2
L2(Ω) + k0∥qh∥

2
L2(0,T ;L2(Ω)) +

∫︂ T

0
Jh(uh, uh) dt

≤
⃓⃓⃓
(ϑ(uh(T )) − ϑ(uh(0)), uh(0))

⃓⃓⃓
+
∫︂ T

0

⃓⃓⃓
Fh(uh) +Gh(σh)

⃓⃓⃓
dt. (3.60)

In the rest of the proof, we aim to find upper bounds for the terms on the right-
hand side on (3.60). The Cauchy-Schwarz inequality and the Young inequality
imply ⃓⃓⃓

(ϑ(uh(T )) − ϑ(uh(0)), uh(0))
⃓⃓⃓

≤ Mϑ

2 ∥ϑ(uh(T )) − ϑ(uh(0))∥2
L2(Ω) + 1

2Mϑ

∥uh(0)∥2
L2(Ω). (3.61)

From Definition 5, the definition of the L2-projection (2.8) and the Cauchy-
Schwarz inequality we have that

∥uh(0)∥L2(Ω) ≤ ∥Πh,pu0∥L2(Ω) ≤ ∥u0∥L2(Ω). (3.62)

Furthermore, using the Cauchy-Schwarz inequality, the relation (3.44) and the
Young inequality we deduce that

|(g, uh)| ≤ ∥g∥L2(Ω)∥uh∥L2(Ω)

≤ 1
8Jh(uh, uh) + k0

8 ∥qh∥
2
L2(Ω) + 1

2J
D
h (uD) + C1∥g∥2

L2(Ω), (3.63)

where C1 := C2
u(5/2 + 2/k0). We estimate the jump term using (3.24)

|JDh (uh)| ≤ J
1/2
h (uh, uh)JDh (uD)1/2 ≤ 1

8Jh(uh, uh) + 2JDh (uD). (3.64)
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Then, we get an estimate on the Neumann term contained in Fh(uh) by using
the Cauchy-Schwarz inequality, the generalized trace inequality (3.27), and the
broken Poincaré inequality (3.28)

|(gN , uh)N | ≤ ∥gN∥L2(∂ΩN )∥uh∥L2(∂ΩN ) ≤
√︂

2CNCP∥gN∥L2(∂ΩN )|||uh|||. (3.65)

From Lemma 5 and the relation (3.65) in combination with the Young inequality,
it follows that

|(gN , uh)N | ≤ 1
4Jh(uh, uh) + k0

8 ∥qh∥
2
L2(Ω) + 1

2J
D
h (uD) + C2∥gN∥2

L2(∂ΩN ), (3.66)

where C2 := CNCPC
2
u(3/2 + 2/k0). Similarly as it was showed in the proof of

Lemma 5 (cf. (3.48)–(3.49), but now with σh instead of ∇uh) and (3.45), we
deduce

|Gh(σh)| ≤ C1∥σh∥L2(Ω)J
D
h (uD)1/2 ≤ k0

4 ∥qh∥
2
L2(Ω) + C2

3J
D
h (uD), (3.67)

where C3 := CWCM(CI + 1)/CG.
We combine (3.63), (3.64), (3.66), and (3.67) to get a bound for the integrand

in (3.60),

|Fh(uh) +Gh(σh)|

≤ 1
2Jh(uh, uh) + k0

2 ∥qh∥
2
L2(Ω) + C4J

D
h (uD) + C2∥gN∥2

L2(∂ΩN ) + C1∥g∥2
L2(Ω),

(3.68)

where C4 := 5/2 + C2
3 . Finally, we get the statement of the theorem by incorpo-

rating (3.68), (3.62) and (3.61) into (3.60), and setting C := 2C5/min(Mϑ, k0, 1),
where C5 := max(1/Mϑ, C4, C2, C1).

3.5 Error estimates
In what follows we derive the error estimate for the semidiscrete numerical scheme
(3.19). We start with forming the error equation. To do so, we subtract (3.20a)–
(3.20c) from (3.19a)–(3.19c),

(∂t(ϑ(uh) − ϑ(u)), vh) + Ah(σh − σ, vh) + Jh(uh − u, vh) = 0, (3.69a)
Bh(uh; qh,wh) −Bh(u; q,wh) − (σh − σ,wh) = 0, (3.69b)

(qh − q, zh) − Ah(zh, uh − u) = 0, (3.69c)

where vh ∈ Sh,p, wh, zh ∈ Sh,p and t ∈ [0, T ] is fixed. As in the finite element
analysis, we decompose the error (eu, eq, eσ) using the L2-projection (2.8) as

(eu, eq, eσ) = (ξu + ηu, ξq + ηq, ξσ + ησ),

where

ξu = uh − Πh,pu ∈ Sh,p, ηu = Πh,pu− u, (3.70a)
ξq = qh − Πh,pq ∈ Sh,p, ηq = Πh,pq − q, (3.70b)
ξσ = σh − Πh,pσ ∈ Sh,p, ησ = Πh,pσ − σ. (3.70c)
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Let us emphasize that the variables above depend on t; however, for simplicity,
we omit the time dependence. We substitute the error decomposition (3.70a)–
(3.70c) into (3.69a)–(3.69c), and use the definition of the L2-projection obtaining
the error equations which will be used in the further analysis

(∂t(ϑ(uh) − ϑ(u)), vh) + Ah(ξσ, vh) + Jh(ξu, vh) = −Ah(ησ, vh) − Jh(ηu, vh),
(3.71a)

Bh(uh; qh,wh) −Bh(u; q,wh) − (ξσ,wh) = 0 (3.71b)
(ξq, zh) − Ah(zh, ξu) = Ah(zh, ηu), (3.71c)

where vh ∈ Sh,p, wh, zh ∈ Sh,p.
Later in Subsection 3.5.4, it will be seen that the technique that uses the

standard test function (ξu, ξq, ξσ) in (3.69a)–(3.69c) gives an incomplete estimate
due to the nonlinear function ϑ. In order to get a complete error bound, in
Subsection 3.5.5 we introduce modified test functions based on ξu, ξq and ξσ

and derive a new incomplete bound for the problematic nonlinear term from
the previous estimate. Finally, in Subsection 3.5.6, we couple these estimates
by continuous mathematical induction and develop the final estimate. First, we
present some results that shall be used to obtain the partial estimates.

3.5.1 Properties of the form Ah

Lemma 7. Let Ah(· , ·) be defined by (3.13). Then,

|Ah(w, vh)| ≤ Ra(w)∥vh∥L2(Ω), w ∈ H1(Ω, Th), vh ∈ Sh,p, (3.72)
|Ah(wh, v)| ≤ Ca∥wh∥L2(Ω)|||v|||, wh ∈ Sh,p, v ∈ H1(Ω, Th), (3.73)

with
Ra(w) := CP

(︂
∥w∥L2(Ω) +R1/2(w)

)︂
, w ∈ H1(Ω, Th). (3.74)

where Ca and R(w) are the constant and the form (3.31) from Lemma 2, respec-
tively.

Proof. Let w ∈ H1(Ω, Th), v ∈ H1(Ω, Th), then, by the definition (3.13) we have
that

Ah(w, v) = (w,∇v) −
∑︂

Γ∈FID
h

∫︂
Γ

(︂
⟨w⟩ · n − λ · n[w · n]

)︂
[v] dS.

The Cauchy-Schwarz inequality implies

|Ah(w, v)| ≤ ∥w∥L2(Ω)∥∇v∥L2(Ω)

+
(︄ ∑︂

Γ∈FID
h

∫︂
Γ
κ−1

⃓⃓⃓
⟨w⟩ − λ · n[w]

⃓⃓⃓2
dS
)︄1/2

J
1/2
h (v, v). (3.75)

Hence, if w ∈ H1(Ω, Th) and v := vh ∈ Sh,p, then by (3.29), definition of the
||| · |||-norm (3.26), and the broken Poincaré inequality (3.28) we get (3.72). Con-
versely, if w := wh ∈ Sh,p and v ∈ H1(Ω, Th), then by (3.30) we obtain (3.73).
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3.5.2 Properties of the form Bh

We observe some identities related to the form Bh which can be shown by a simple
rearrangement.

Bh(uh; qh,wh) −Bh(u; q,wh)
= Bh(uh; ξq,wh) +Bh(uh; ηq,wh) +

(︂
Bh

(︂
uh; Πh,pq,wh) −Bh(u; Πh,pq,wh)

)︂
,

(3.76)
Bh(uh; qh,wh) −Bh(u; q,wh)
= Bh(u; ξq,wh) +Bh(u; ηq,wh) +

(︂
Bh(uh; ξq,wh) −Bh(u; ξq,wh)

)︂
+
(︂
Bh(uh; Πh,pq,wh) −Bh(u; Πh,pq,wh)

)︂
. (3.77)

Therefore, we propose some estimates concerning the above identities.

Lemma 8. Let Bh(· ; · , ·) be defined by (3.14) and ξq be given by (3.70b). Then,
for any wh ∈ Sh,p we have

|Bh(uh; ξq,wh) −Bh(u; ξq,wh)|
≤ Cbh

−1∥θ(uh) − θ(u)∥L2(Ω)

⃦⃦⃦
ξq

⃦⃦⃦
L2(Ω)

∥wh∥L2(Ω), (3.78)

|Bh(uh; Πh,pq,wh) −Bh(u; Πh,pq,wh)|

≤ Cc

(︃
∥θ(uh) − θ(u)∥L2(Ω) +

⃦⃦⃦
ηq

⃦⃦⃦
L2(Ω)

)︃
∥wh∥L2(Ω), (3.79)

where Cb, Cc > 0 are constants independent of the discretization parameter h.

Proof. To prove the first statement, we use the definition of Bh, the generalized
Hölder inequality, Lipschitz continuity of K in θ (cf. (A1)) and the Cauchy-
Schwarz inequality, so we have that⃓⃓⃓(︂

(K(θ(uh)) − K(θ(u)))ξq,wh

)︂⃓⃓⃓
≤
(︄
k2
L

∑︂
K∈Th

∥θ(uh) − θ(u)∥2
L2(K)

⃦⃦⃦
ξq

⃦⃦⃦2

L∞(K)

)︄1/2

∥wh∥2
L∞(K). (3.80)

Moreover, the inverse inequality (3.21b) and quasi-uniformity of the mesh Th (2.5)
imply that⃦⃦⃦

ξq

⃦⃦⃦2

L∞(K)
≤ C2

Ih
−2
K

⃦⃦⃦
ξq

⃦⃦⃦2

L2(K)
≤ C2

IC
2
Uh

−2
⃦⃦⃦
ξq

⃦⃦⃦2

L2(K)
∀K ∈ Th. (3.81)

The relation (3.81) and the identity for finite sums ∑︁i a
2
i b

2
i ≤ ∑︁

i a
2
i

∑︁
j b

2
j yield

∑︂
K∈Th

∥θ(uh) − θ(u)∥2
L2(K)

⃦⃦⃦
ξq

⃦⃦⃦2

L∞(K)
≤ C2

IC
2
Uh

−2∥θ(uh) − θ(u)∥2
L2(Ω)

⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
.

(3.82)

We complete the proof of the first part of the lemma by inserting (3.82) in (3.80)
and setting Cb := kLCICU .
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Conversely, to prove the second part, we rewrite

|Bh(uh; Πh,pqh,wh) −Bh(u; Πh,pqh,wh)|
≤ |Bh(uh; ηq,wh) −Bh(u; ηq,wh)| + |Bh(uh; q,wh) −Bh(u; q,wh)|, (3.83)

and then estimate each of the terms appearing on the right-hand side of (3.83).
Namely, the assumption (A1) and the Cauchy-Schwarz inequality yield

|Bh(uh; ηq,wh) −Bh(u; ηq,wh)| ≤ 2k1

⃦⃦⃦
ηq

⃦⃦⃦
L2(Ω)

∥wh∥L2(Ω). (3.84)

Furthermore, using the assumption (B2) and the generalized Hölder inequality,
we obtain

|Bh(uh; q,wh) −Bh(u; q,wh)| ≤ CB∥θ(uh) − θ(u)∥L2(Ω)∥wh∥L2(Ω). (3.85)

We get the final statement by combining the relations (3.83)–(3.85) and setting
Cc := max(2k1, CB) in (3.79).

3.5.3 Relation between ξu, ξq and ξσ

In the next lemma, we present a relation between ξu, ξq, and ξσ, which will
simplify the analysis.
Lemma 9. Let (ξu, ξq, ξσ) be given by (3.70). Then, there exist Cd, Ce > 0 such
that

∥ξσ∥L2(Ω) ≤ Cd
(︂⃦⃦⃦

ξq

⃦⃦⃦
L2(Ω)

+
⃦⃦⃦
ηq

⃦⃦⃦
L2(Ω)

+ ∥ϑ(uh) − ϑ(u)∥L2(Ω)

)︂
, (3.86)

∥ξu∥L2(Ω) ≤ Ce
(︂⃦⃦⃦

ξq

⃦⃦⃦
L2(Ω)

+ J
1/2
h (ξu, ξu) + |||ηu|||

)︂
. (3.87)

Proof. We set wh := ξσ in (3.71b) so that

∥ξσ∥2
L2(Ω) = |Bh(uh; qh, ξσ) −Bh(uh; q, ξσ)|. (3.88)

Then, we use the identity (3.76) and bound the individual terms on the right-hand
side. By the relations (3.33) and (3.79), we have that

|Bh(uh; ξq, ξσ)| + |Bh(uh; ηq, ξσ)| + |Bh(uh; Πh,pq, ξσ) −Bh(u; Πh,pq, ξσ)|

≤
(︃
k1
(︂⃦⃦⃦

ξq

⃦⃦⃦
L2(Ω)

+
⃦⃦⃦
ηq

⃦⃦⃦
L2(Ω)

)︂
+ Cd

(︂
∥θ(uh) − θ(u)∥L2(Ω) +

⃦⃦⃦
ηq

⃦⃦⃦
L2(Ω)

)︂)︃
∥ξσ∥L2(Ω).

(3.89)

To prove (3.86), we combine (3.88) with (3.89), use (3.6), cancel out ∥ξσ∥L2(Ω)
and set Cd := max(k1, Cc).

On the other hand, to show the other part of the lemma, we set zh := ∇ξu
in (3.71c) and perform a similar procedure as in the proof of Lemma 5 for the
relation (3.44),

∥∇ξu∥2
L2(Ω) =

⃓⃓⃓⃓
⃓ ∑︂

Γ∈FID
h

∫︂
Γ

(︂
⟨∇ξu⟩ · n − λ · n[∇ξu · n]

)︂
[ξu] dS

+ (ξq,∇ξu) − Ah(∇ξu, ηu)
⃓⃓⃓⃓
⃓. (3.90)
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By the Cauchy-Schwarz inequality and (3.30) we have⃓⃓⃓⃓
⃓ ∑︂

Γ∈FID
h

∫︂
Γ

(︂
⟨∇ξu⟩ · n − λ · n[∇ξu · n]

)︂
[ξu] dS

⃓⃓⃓⃓
⃓

≤
(︄ ∑︂

Γ∈FID
h

∫︂
Γ
κ−1

⃓⃓⃓
⟨∇ξu⟩ − λ · n[∇ξu]

⃓⃓⃓2
dS
)︄1/2

J
1/2
h (ξu, ξu)

≤ Ca∥∇ξu∥L2(Ω)J
1/2
h (ξu, ξu). (3.91)

Then, we apply (3.91), the Cauchy-Schwarz inequality, (3.73), and cancel out
∥∇ξu∥L2(Ω) so that

∥∇ξu∥L2(Ω) ≤ CaJ
1/2
h (ξu, ξu) +

⃦⃦⃦
ξq

⃦⃦⃦
L2(Ω)

+ Ca|||ηu|||. (3.92)

We complete the proof by adding J
1/2
h (ξu, ξu) to both sides of (3.92) in order

to use the ||| · |||-norm and the broken Poincaré inequality (3.28). Lastly, we set
Ce := CP (Ca + 1) in (3.87).

3.5.4 Partial error estimate in the L2(Ω)-norm
Since the unknown solution u in our problem (3.1) is the independent variable of
the nonlinear function ϑ, the numerical analysis of the time-continuous scheme
(3.71) is rather challenging. Therefore, to treat the problematic term ∂tϑ(u), we
use a nonstandard approach from [2] and [96]. In this way, we derive an incom-
plete error bound with respect to the Hölder coefficient β (cf. (A2)). Before
giving the first main result, we propose some lemmas. In order to later implicitly
use Gronwall’s lemma, the results in this subsection contain a monotone decreas-
ing exponential function. We recall that Gronwall’s lemma is a commonly used
tool in analysis of method of lines; see [3, 33, 80].

Lemma 10. Let t ∈ [0, T ] and δ, Q̄ > 0 be arbitrary. Then,∫︂ t

0

(︂
∂s(ϑ(uh) − ϑ(u)), uh − u

)︂
e−Q̄sds

≥ Mϑ∥ϑ(uh) − ϑ(u)∥2
L2(Ω)e

−Q̄t − Lϑ∥ηu(0)∥2
L2(Ω)

−
∫︂ t

0

∫︂
Ω

(︂
(ϑ(uh) − ϑ(u))∂su− ∂sϑ(u)(uh − u)

)︂
e−Q̄s dxds

+ Q̄Mϑ

∫︂ t

0
∥ϑ(uh) − ϑ(u)∥2

L2(Ω)e
−Q̄sds (3.93)

and⃓⃓⃓
(ϑ(uh) − ϑ(u))∂tu− ∂tϑ(u)(uh − u)

⃓⃓⃓
≤ HϑCX

⎛⎝1 + β

2δ
1−β
1+β

(︂
(ϑ(uh) − ϑ(u))(uh − u)

)︂ 2β
1+β + δ(1 − β)

(︂
|ξu|2 + |ηu|2

)︂⎞⎠.
(3.94)
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Proof. As in the proof of Theorem 6 (cf. (3.54)–(3.55)) but now with both
integral limits dependent on time (and space) variable, using the Leibnitz integral
rule (3.37), we obtain

∂t

∫︂ u

uh

ϑ(χ)dχ = ϑ(u)∂tu− ϑ(uh)∂tuh, (3.95)

∂t

∫︂ u

uh

ϑ(uh)dχ = ∂tϑ(uh)
∫︂ u

uh

dχ = ∂tϑ(uh)(u− uh) + ϑ(uh)(∂tu− ∂tuh). (3.96)

If we subtact (3.96) from (3.95) and use some manipulations, we get

∂t

(︄∫︂ u

uh

(ϑ(χ) − ϑ(uh))dχ
)︄

= (ϑ(u) − ϑ(uh))∂tu− ∂tϑ(uh)(u− uh)

= −(ϑ(uh) − ϑ(u))∂tu+ ∂t(ϑ(uh) − ϑ(u))(uh − u)
+ ∂tϑ(u)(uh − u).

Therefore, for arbitrary but fixed Q̄ > 0 and t ∈ [0, T ] by the product rule we
deduce

∂t(ϑ(uh) − ϑ(u))(uh − u)e−Q̄t

= ∂t

(︄∫︂ u

uh

(ϑ(χ) − ϑ(uh))dχe−Q̄t
)︄

+ Q̄
∫︂ u

uh

(ϑ(χ) − ϑ(uh))dχe−Q̄t

−
(︂
(ϑ(uh) − ϑ(u))∂tu− ∂tϑ(u)(uh − u)

)︂
e−Q̄t. (3.97)

Then, for an arbitrary fixed t ∈ [0, T ] we integrate (3.97) over Ω × (0, t)∫︂ t

0

(︂
∂s(ϑ(uh) − ϑ(u)), uh − u

)︂
e−Q̄sds

=
∫︂

Ω

∫︂ u(·,t)

uh(t)
(ϑ(χ) − ϑ(uh))dχe−Q̄t dx−

∫︂
Ω

∫︂ u(·,0)

uh(0)
(ϑ(χ) − ϑ(uh))dχ dx

−
∫︂ t

0

∫︂
Ω

(︂
(ϑ(uh) − ϑ(u))∂su− ∂sϑ(u)(uh − u)

)︂
e−Q̄s dxds

+ Q̄
∫︂ t

0

∫︂
Ω

∫︂ u

uh

(ϑ(χ) − ϑ(uh))dχe−Q̄s dxds. (3.98)

In what follows, we shall find upper bounds for the terms on the right hand side
of (3.98). Namely, by Lemma 4 we have that∫︂

Ω

∫︂ u(·,t)

uh(t)
(ϑ(χ) − ϑ(uh))dχe−Q̄t dx−

∫︂
Ω

∫︂ u(·,0)

uh(0)
(ϑ(χ) − ϑ(uh))dχ dx

≥ Mϑ∥ϑ(uh) − ϑ(u)∥2
L2(Ω)e

−Q̄t − (ϑ(uh(0)) − ϑ(u0), uh(0) − u0), (3.99)

and

Q̄
∫︂ t

0

∫︂
Ω

∫︂ u

uh

(ϑ(µ) − ϑ(uh))dµe−Q̄s dxds ≥ Q̄Mϑ

∫︂ t

0
∥ϑ(uh) − ϑ(u)∥2

L2(Ω)e
−Q̄sds.
(3.100)

Furthermore, Definition 5 implies that uh(0) − Πhpu0 = 0, so by virtue of the
Minkowski inequality we have that

∥uh(0) − u0∥L2(Ω) ≤ ∥ηu(0)∥L2(Ω). (3.101)
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Hence, the Cauchy-Schwarz inequality, Lipschitz continuity of ϑ (cf. Remark 5),
and (3.101) yield

(ϑ(uh(0)) − ϑ(u0), uh(0) − u0) ≤ Lϑ∥uh(0) − u0∥2
L2(Ω) ≤ Lϑ∥ηu(0)∥2

L2(Ω).

(3.102)

Finally, we substitute (3.99), (3.100) and (3.102) into (3.98), and prove the first
part of the statement.

Conversely, to prove the second part of the lemma, we use the mean value
theorem; namely, there exists some w ∈ [min(uh, u),max(uh, u)] such that ϑ(uh)−
ϑ(u) = ϑ′(w)(uh − u). Then, from monotonocity of ϑ (cf. Remark 5), and
assumptions (A4) and (B1), we have that⃓⃓⃓
(ϑ(uh) − ϑ(u))∂tu− ∂tϑ(u)(uh − u)

⃓⃓⃓
=
⃓⃓⃓
ϑ′(w)(uh − u)∂tu− ϑ′(u)∂tu(uh − u)

⃓⃓⃓
=
⃓⃓⃓(︂
ϑ′(w) − ϑ′(u)

)︂
(uh − u)∂tu

⃓⃓⃓
≤ HϑCX |ϑ(w) − ϑ(u)|β|uh − u|
≤ HϑCX |ϑ(uh) − ϑ(u)|β|uh − u|.

(3.103)

Moreover, we use the inequality

|A|β|B| ≤ 1 + β

2δ
1−β
1+β

|AB|
2β

1+β + δ
1 − β

2 |B|2, A,B ∈ R, δ > 0, 0 < β ≤ 1, (3.104)

which can be obtained by applying the standard Young inequality

ab ≤ δ

p
ap + 1

δq/pq
b2, a, b ∈ R,

1
p

+ 1
q

= 1, p, q ≥ 1,

to |A|β|B| = |AB|β|B|1−β by setting a = |AB|β, b = |B|1−β, p = 2/(1 + β), and
q = 2/(1 − β). Ultimately, we set A = ϑ(uh) − ϑ(u) and B = uh − u in (3.104),
and substitute into (3.103) using (3.23), which yields (3.94).

Lemma 11. Let t ∈ [0, T ] and Q̄ > 0 be arbitrary. Then,∫︂ t

0

(︂
∂s(ϑ(uh) − ϑ(u)), ηu

)︂
e−Q̄sds

≤ ∥ϑ(uh) − ϑ(u)∥L2(Ω)∥ηu∥L2(Ω)e
−Q̄t + Lϑ∥ηu(0)∥2

L2(Ω)

+
∫︂ t

0
∥ϑ(uh) − ϑ(u)∥L2(Ω)∥∂sηu∥L2(Ω)e

−Q̄sds

+ Q̄
∫︂ t

0
∥ϑ(uh) − ϑ(u)∥L2(Ω)∥ηu∥L2(Ω)e

−Q̄sds.

Proof. Using the partial integration we rewrite∫︂ t

0

(︂
∂s
(︂
ϑ(uh) − ϑ(u)), ηu

)︂
e−Q̄sds

= (ϑ(uh) − ϑ(u), ηu)e−Q̄t − (ϑ(uh(0)) − ϑ(u0), ηu(0))

−
∫︂ t

0
(ϑ(uh) − ϑ(u), ∂sηu)e−Q̄sds+ Q̄

∫︂ t

0
(ϑ(uh) − ϑ(u), ηu)e−Q̄sds. (3.105)
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By virtue of the Lipschitz continuity of ϑ and the relation (3.101), we get

∥ϑ(uh(0)) − ϑ(u0)∥L2(Ω)∥ηu(0)∥L2(Ω) ≤ Lϑ∥ηu(0)∥2
L2(Ω). (3.106)

We get the desired result by applying the Cauchy-Schwarz inequality to (3.105)
and (3.106).

Now we formulate the abstract error estimate; namely, the error estimate in terms
of the Sh,p and Sh,p interpolation error (ηu,ηq,ησ).

Theorem 12 (Abstract error estimate). Let the triangulation Th satisfy con-
ditions (2.4) and (2.5), (u, q,σ) be the exact solution of (3.8) satisfying the as-
sumptions (B1)–(B3), (uh, qh,σh) be the approximate solution given by Definition
5, and let the assumptions (A1)–(A7) be fulfilled. Then, there exists constants
CA
E1 > 0 and Q̄ > 0 independent of h and t such that

∥ϑ(uh) − ϑ(u)∥2
L2(Ω)e

−Q̄t +
∫︂ t

0

⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
e−Q̄sds+

∫︂ t

0
Jh(ξu, ξu)e−Q̄sds

≤ CA
E1

(︄
t

1−β
1+β

(︄∫︂ t

0

(︂
ϑ(uh) − ϑ(u), uh − u

)︂
e−Q̄s 1+β

2β ds
)︄ 2β

1+β

+Rb(ηu,ηq,ησ)
)︄
,

(3.107)

where t ∈ (0, T ), h ∈ (0, h̄) and

Rb(ηu,ηq,ησ)

= R̄b(ηu) +
∫︂ t

0

(︂⃦⃦⃦
ηq

⃦⃦⃦2

L2(Ω)
+ Jh(ηu, ηu) +R2

a(ησ) + |||ηu|||2
)︂
e−Q̄sds, (3.108a)

R̄b(ηu)

= ∥ηu(t)∥2
L2(Ω)e

−Q̄t + ∥ηu(0)∥2
L2(Ω) +

∫︂ t

0

(︂
∥ηu∥2

L2(Ω) + ∥∂sηu∥2
L2(Ω)

)︂
e−Q̄sds.

(3.108b)

Proof. We set the test function vh := ξu, wh := ξq, zh := ξσ in the error
equations (3.71a)–(3.71c) and combine them. Then, we multiply the resulting
equation by e−Q̄s, integrate over (0, t), and use (3.76) so that∫︂ t

0

(︂
∂s(ϑ(uh) − ϑ(u)), uh − u

)︂
e−Q̄sds

+
∫︂ t

0
Bh(uh; ξq, ξq)e−Q̄sds+

∫︂ t

0
Jh(ξu, ξu)e−Q̄sds

=
∫︂ t

0

(︂
∂s(ϑ(uh) − ϑ(u)), ηu

)︂
e−Q̄sds−

∫︂ t

0
Jh(ηu, ξu)e−Q̄sds

−
∫︂ t

0

(︂
Ah(ησ, ξu) − Ah(ξσ, ηu)

)︂
e−Q̄sds

−
∫︂ t

0

(︃
Bh(u; ηq, ξq) +

(︂
Bh(uh; Πh,pq, ξq) −Bh(u; Πh,pq, ξq)

)︂)︃
e−Q̄sds.

(3.109)
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In the rest of the proof, we shall estimate the terms in (3.109). First, we consider
the terms containing ϑ; namely, Lemma 10 implies∫︂ t

0

(︂
∂s(ϑ(uh) − ϑ(u)), uh − u

)︂
e−Q̄sds

≥ Mϑ∥ϑ(uh) − ϑ(u)∥2
L2(Ω)e

−Q̄t − Lϑ∥ηu(0)∥2
L2(Ω)

+ Q̄Mϑ

∫︂ t

0
∥ϑ(uh) − ϑ(u)∥2

L2(Ω)e
−Q̄sds

−
∫︂ t

0

∫︂
Ω

(︂
(ϑ(uh) − ϑ(u))∂su− ∂sϑ(u)(uh − u)

)︂
e−Q̄s dxds.

Using the same lemma, for some δ > 0 it holds∫︂ t

0

∫︂
Ω

⃓⃓⃓(︂
(ϑ(uh) − ϑ(u))∂su− ∂sϑ(u)(uh − u)

)︂
e−Q̄s

⃓⃓⃓
dxds

≤ HϑCX
1 + β

2δ
1−β
1+β

∫︂ t

0

∫︂
Ω

(︂
(ϑ(uh) − ϑ(u))(uh − u)

)︂ 2β
1+β e−Q̄sds dx

+HϑCXδ(1 − β)
(︄∫︂ t

0
∥ξu∥2

L2(Ω)e
−Q̄sds+

∫︂ t

0
∥ηu∥2

L2(Ω)e
−Q̄sds

)︄
.

By applying the Hölder inequality (3.34) to the space-time cylinder QT for γ :=
2β

1+β ≤ 1 and using 1 − γ = 1−β
1+β and

⃓⃓⃓
[0, t]

⃓⃓⃓
= t, we obtain

∫︂
Ω

∫︂ t

0

(︂
(ϑ(uh) − ϑ(u))(uh − u)

)︂ 2β
1+β e−Q̄sds dx

≤ (t|Ω|)
1−β
1+β

(︄∫︂ t

0

(︂
ϑ(uh) − ϑ(u), uh − u

)︂
e−Q̄s 1+β

2β ds
)︄ 2β

1+β

.

The Young inequality applied on Lemma 11 gives∫︂ t

0

(︂
∂s(ϑ(uh) − ϑ(u)), ηu

)︂
e−Q̄sds

≤ Mϑ

2 ∥ϑ(uh) − ϑ(u)∥2
L2(Ω)e

−Q̄t + 1
2Mϑ

∥ηu∥2
L2(Ω)e

−Q̄t + Lϑ∥ηu(0)∥2
L2(Ω)

+ Q̄
Mϑ

4

∫︂ t

0
∥ϑ(uh) − ϑ(u)∥2

L2(Ω)e
−Q̄sds+ 1

Q̄Mϑ

∫︂ t

0
∥∂sηu∥2

L2(Ω)e
−Q̄sds

+ Q̄
Mϑ

4

∫︂ t

0
∥ϑ(uh) − ϑ(u)∥2

L2(Ω)e
−Q̄sds+ Q̄

1
Mϑ

∫︂ t

0
∥ηu∥2

L2(Ω)e
−Q̄sds. (3.110)

We summarize the analysis done so far; i.e., we replace the obtained relations
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into (3.109)

Mϑ

2 ∥ϑ(uh) − ϑ(u)∥2
L2(Ω)e

−Q̄t + Q̄
Mϑ

2

∫︂ t

0
∥ϑ(uh) − ϑ(u)∥2

L2(Ω)e
−Q̄sds

+
∫︂ t

0
Bh(uh; ξq, ξq)e−Q̄sds+

∫︂ t

0
Jh(ξu, ξu)e−Q̄sds

≤
∫︂ t

0

(︃⃓⃓⃓
Bh(u; ηq, ξq)

⃓⃓⃓
+
⃓⃓⃓
Bh(uh; Πh,pq, ξq) −Bh(u; Πh,pq, ξq)

⃓⃓⃓)︃
e−Q̄sds

+
∫︂ t

0

⃓⃓⃓
Jh(ηu, ξu)

⃓⃓⃓
e−Q̄sds+

∫︂ t

0

(︃⃓⃓⃓
Ah(ησ, ξu)| +

⃓⃓⃓
Ah(ξσ, ηu)

⃓⃓⃓)︃
e−Q̄sds

+HϑCX(1 − β)δ
∫︂ t

0
∥ξu∥2

L2(Ω)e
−Q̄sds+ R̃b(ηu)

+ C1t
1−β
1+β

(︄∫︂ t

0

(︂
ϑ(uh) − ϑ(u), uh − u

)︂
e−Q̄s 1+β

2β ds
)︄ 2β

1+β

, (3.111)

where C1 := HϑCX(1 + β)|Ω|
1−β
1+β /(2δ

1−β
1+β ) and R̃b(ηu) := C2R̄b(ηu) (cf. (3.108b))

with
C2 := max

(︄
1

2Mϑ

, Lϑ,
Q̄

Mϑ

+HϑCX(1 − β)δ, 1
Q̄Mϑ

)︄
.

Next we estimate the terms containing the form Bh; namely, by (3.32), (3.33),
and the Young inequality

Bh(uh; ξq, ξq) ≥ k0

⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
, (3.112)⃓⃓⃓

Bh(u; ηq, ξq)
⃓⃓⃓
≤ 4k2

1
k0

⃦⃦⃦
ηq

⃦⃦⃦2

L2(Ω)
+ k0

16
⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
, (3.113)

and the relations (3.78), (3.6), (3.23), and the Young inequality give that⃓⃓⃓
Bh(uh; Πh,pq, ξq) −Bh(u; Πh,pq, ξq)

⃓⃓⃓
≤ 8C2

c

k0

(︂
∥ϑ(uh) − ϑ(u)∥2

L2(Ω) +
⃦⃦⃦
ηq

⃦⃦⃦2

L2(Ω)

)︂
+ k0

16
⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
. (3.114)

Moreover, we bound the jump term using the relation (3.24) and the Young
inequality⃓⃓⃓

Jh(ηu, ξu)
⃓⃓⃓
≤ J

1/2
h (ηu, ηu)J1/2

h (ξu, ξu) ≤ Jh(ηu, ηu) + 1
4Jh(ξu, ξu). (3.115)

Then we estimate the terms containing the form Ah; namely, we use the inequality
(3.72) from Lemma 7 and (3.87) from Lemma 9, define Cm := min(k0, 1) (note
Cm ≤ 1 and Cm ≤ k0), and apply the Young inequality so that

|Ah(ησ, ξu)| ≤ Ra(ησ)∥ξu∥L2(Ω)

≤ CeRa(ησ)
(︂⃦⃦⃦

ξq

⃦⃦⃦
L2(Ω)

+ J
1/2
h (ξu, ξu) + |||ηu|||

)︂
≤ C3R

2
a(ησ) + Cm

8
⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
+ Cm

8 Jh(ξu, ξu) + |||ηu|||2

≤ C3R
2
a(ησ) + k0

8
⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
+ 1

8Jh(ξu, ξu) + |||ηu|||2, (3.116)
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where C3 := C2
e (4/Cm + 1/4). Using again the same lemmas (cf. (3.73) and

(3.86)) and the Young inequality we obtain
|Ah(ξσ, ηu)| ≤ Ca∥ξσ∥L2(Ω)|||ηu|||

≤ CdCa
(︂⃦⃦⃦

ξq

⃦⃦⃦
L2(Ω)

+
⃦⃦⃦
ηq

⃦⃦⃦
L2(Ω)

+ ∥ϑ(uh) − ϑ(u)∥L2(Ω)

)︂
|||ηu|||

≤ k0

8

(︃⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
+
⃦⃦⃦
ηq

⃦⃦⃦2

L2(Ω)
+ ∥ϑ(uh) − ϑ(u)∥2

L2(Ω)

)︃
+ 6C2

dC
2
a

k0
|||ηu|||2.

(3.117)
Moreover, we choose δ := Cm(8HϑCX(1 − β)C1

f )−1 and use (3.87), so that

HϑCXδ(1 − β)
∫︂ t

0
∥ξu∥2

L2(Ω)e
−Q̄sds ≤ Cm

8
⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
+ Cm

8 Jh(ξu, ξu) + Cm
8 |||ηu|||2

≤ k0

8
⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
+ 1

8Jh(ξu, ξu) + 1
8 |||ηu|||2.

(3.118)
Now we update (3.111) with the relations (3.112)–(3.118) deducing

Mϑ

2 ∥ϑ(uh) − ϑ(u)∥2
L2(Ω)e

−Q̄t + Q̄
Mϑ

2

∫︂ t

0
∥ϑ(uh) − ϑ(u)∥2

L2(Ω)e
−Q̄sds

+ k0

2

∫︂ t

0

⃦⃦⃦
ξq

⃦⃦⃦
L2(Ω)

e−Q̄sds+ 1
2

∫︂ t

0
Jh(ξu, ξu)e−Q̄sds

≤
(︄

8C2
c

Mϑk0
+ k0

4Mϑ

)︄∫︂ t

0
∥ϑ(uh) − ϑ(u)∥2

L2(Ω)e
−Q̄sds+ R̂b(ηu,ηq,ησ)

+ C1t
1−β
1+β

(︄∫︂ t

0

(︂
ϑ(uh) − ϑ(u), uh − u

)︂
e−Qs̄ 1+β

2β ds
)︄ 2β

1+β

,

where R̂b(ηu,ηq,ησ) := C4Rb(ηu,ηq,ησ) (cf. (3.108a)) and

C4 := max
(︄

1 + 1
8 + 6C2

dC
2
a

k0
,
4k2

1
k0

+ 8C2
d

k0

k0

8 , C3

)︄
.

Finally, we choose Q̄ := 16C2
c (Mϑk0)−1 +k0(4Mϑk0)−1 so that the second term

on the left-hand side cancels with the first term on the right-hand side. We finish
the proof of the theorem by defining CA

E1 := 2 max(1, C1)/min(Mϑ, k0, 1).

We present the main result of this subsection, namely, we apply approximation
properties to the abstract error estimate derived in Theorem 12.
Theorem 13. Let the triangulation Th satisfy conditions (2.4) and (2.5), (u, q,σ)
be the exact solution of (3.8) satisfying the assumptions (B1)–(B3), (uh, qh,σh)
be the approximate solution given by Definition 5, µ := min(p+ 1, s), and let the
assumptions (A1)–(A7) be fulfilled. Then, there exists constants CE1 > 0 and
Q̄ > 0 independent of h such that

∥ϑ(uh) − ϑ(u)∥2
L2(Ω)e

−Q̄t +
∫︂ t

0

⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
e−Q̄sds+

∫︂ t

0
Jh(ξu, ξu)e−Q̄sds

≤ CE1

⎛⎝h2(µ−1) + t
1−β
1+β

(︄∫︂ t

0

(︂
ϑ(uh) − ϑ(u), uh − u

)︂
e−Q̄s 1+β

2β ds
)︄ 2β

1+β

⎞⎠, t ∈ (0, T ).

(3.119)
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Proof. In this proof we shall estimate the term Rb(ηu,ηq,ησ) given by (3.108a)–
(3.108b) on the right-hand side of (3.107) in Theorem 12. Using the standard
approximation properties from Lemma 1

|ηu|Hq(Ω) ≤ CAh
µ−q|u|Hµ(Ω), q = 0, 1, (3.120a)

∥∂tηu∥L2(Ω) ≤ CAh
µ|∂tu|Hµ(Ω), (3.120b)

for t ∈ (0, T ) and µ = min(p+ 1, s), while for vector valued functions it holds⃦⃦⃦
ηq

⃦⃦⃦
L2(Ω)

≤ CAh
µ|q|Hµ(Ω), (3.121a)

|ησ|Hq(Ω) ≤ CAh
µ−q|σ|Hµ(Ω), q = 0, 1. (3.121b)

Thus, (3.120a) for q = 0 yields

∥ηu(t)∥2
L2(Ω)e

−Q̄t ≤ C2
Ah

2µ|u(t)|2Hµ(Ω), t ∈ (0, T ), (3.122)
∥ηu(0)∥2

L2(Ω) ≤ C2
Ah

2µ|u(0)|2Hµ(Ω). (3.123)

We estimate the form R̄b(ηu) given by (3.108b) by virtue of (3.122)–(3.123),
(3.120a)–(3.120b) as

R̄b(ηu) ≤ C1h
2µ,

where C1 := C2
A

(︂
|u(0)|2Hµ(Ω) + |u(t)|2Hµ(Ω) + |∂tu|2L2(0,t;Hµ(Ω)) + |u|2L2(0,t;Hµ(Ω))

)︂
, t ∈

(0, T ). Moreover, (3.25) and (3.120a) give∫︂ t

0
Jh(ηu, ηu)e−Q̄sds

≤
∫︂ t

0

CWCM
CT

∑︂
K∈Th

(︂
3h−2

K ∥ηu∥2
L2(K) + |ηu|2H1(K)

)︂
e−Q̄sds ≤ C2h

2(µ−1), (3.124)

where C2 := CWCMC
−1
T 4C2

A|u|2L2(0,t;Hµ(Ω)), t ∈ (0, T ). Therefore, the previous
relation (3.124) combined (3.120a) yield∫︂ t

0
|||ηu|||2e−Q̄sds ≤ C3h

2(µ−1), (3.125)

where C3 := C2
A(1+4CWCMC−1

T )|u|2L2(0,t;Hµ(Ω)), t ∈ (0, T ). It remains to estimate
Ra(ησ) defined by (3.74) and (3.31); namely, from (3.23) and (3.121b) we have
that∫︂ t

0
R2
a(ησ)ds ≤

∫︂ t

0
2C2

P

(︃
∥ησ∥2

L2(Ω) + Cr
∑︂
K∈Th

(︂
h2
K |ησ|2H1(K) + 3∥ησ∥2

L2(K)

)︂)︃
ds

≤ C4h
2(µ−1), (3.126)

where C4 := 2C2
PC

2
A(1 + 4Cr)|σ|2L2(0,t;Hµ(Ω)), t ∈ (0, T ). Finally, we combine the

relations above and get the statement for

CE1 := CA
E1 max(hC1, hC

2
A|q|2L2(0,t;Hµ(Ω)), C2, C4, C3).
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Remark 9. For the limit case β = 1, i.e., when ϑ′ ◦ ϑ−1 is Lipschitz continuous
(cf. (A4)), previous analysis simplifies. Namely, the relation (3.94) from Lemma
10 becomes⃓⃓⃓

(ϑ(uh) − ϑ(u))∂tu− ∂tϑ(u)(uh − u)
⃓⃓⃓
≤ HϑCX |ϑ(uh) − ϑ(u)||uh − u|

which means that the term
∫︁ t

0

(︂
ϑ(uh) − ϑ(u), uh − u

)︂
e−Q̄s 1+β

2β ds in the proof of
Theorem 12 is omitted. In particular, we can avoid the steps between (3.109)
and (3.110) and use the Cauchy-Schwarz and Young inequalities only. The final
estimate in this case is

∥ϑ(uh) − ϑ(u)∥2
L∞(0,T ;L2(Ω)) +

∫︂ T

0

⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
dt+

∫︂ T

0
Jh(ξu, ξu)dt ≤ CESh

2(µ−1).

(3.127)

Hence, the analysis in Subsections 3.5.5 and 3.5.6 is not necessary. Nevertheless,
the constant CES > 0 grows exponentially with respect to the final time T due to
the factor eQ̄T (cf. Remark 13). Therefore, the estimate (3.127) corresponds to
the assertion of Theorem 24 without the assumption µ−1 > (1+β)/(3β−1) = 1.

3.5.5 Error estimates in the nonlinear form
Within this subsection we derive a bound for the nonlinear term∫︂ t

0

(︂
ϑ(uh) − ϑ(u), uh − u

)︂
e−Q̄s 1+β

2β ds,

aiming to complete the bound from Theorem 12. To do so, we shall need a
different test function than the one used in the previous subsections. First, we
introduce the test functions and some technical results.

Let Q be a positive real number that shall be specified later, and let t̄ ∈ [0, T ]
be an arbitrary constant. For vh = vh(t) ∈ Sh,p, and wh = wh(t) ∈ Sh,p, t ∈ [0, t̄],
we define Υ(·; t) as

Υ(vh; t) ≡ Υ(vh; t, t̄) =
∫︂ t̄

t
vh(s)e−Qsds ∈ Sh,p, (3.128a)

Υ(wh; t) ≡ Υ(wh; t, t̄) :=
∫︂ t̄

t
wh(s)e−Qsds ∈ Sh,p. (3.128b)

We list some properties of the functions defined above.

Lemma 14. Let vh = vh(t) ∈ Sh,p, wh = wh(t) ∈ Sh,p, t ∈ [0, t̄], and let Υ be
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defined by (3.128). Then,

∇Υ(vh; t) = Υ(∇vh; t) in K ∈ Th, (3.129a)

∂t
(︂⃓⃓⃓

Υ(wh; t)
⃓⃓⃓2)︂

= −2wh · Υ(wh; t)e−Qt in K ∈ Th, (3.129b)[︂
Υ(vh; t)

]︂
= Υ([vh]; t) on Γ ∈ Fh, (3.129c)

[vh]Υ([vh]; t) = −1
2∂t

(︂
Υ2([vh]; t)

)︂
eQt on Γ ∈ Fh, (3.129d)

[vh]Υ([vh]; t) = −1
2∂t

(︂
Υ2([vh]; t)eQt

)︂
+ 1

2Q
(︂
Υ([vh]; t)

)︂2
eQt on Γ ∈ Fh, (3.129e)∫︂ t̄

0
Jh(vh,Υ(vh; t))dt = 1

2Jh(Υ(vh; 0),Υ(vh; 0))

+ 1
2Q

∫︂ t̄

0
Jh(Υ(vh; t),Υ(vh; t))eQtdt. (3.129f)

Proof. The relations (3.129a), (3.129c), and (3.129d) follows from the properties
of the approximation spaces Sh,p and Sh,p, and the definition of Υ. We prove
(3.129b) using (3.129a) and the chain rule

∂t
(︂⃓⃓⃓

Υ(wh; t)
⃓⃓⃓2)︂

= ∂t

(︄⃓⃓⃓⃓
⃓
∫︂ t̄

t
whe

−Qsds
⃓⃓⃓⃓
⃓
2)︄

= −2
(︄∫︂ t̄

t
whe

−Qsds
)︄

· whe
−Qt.

Moreover, by the product rule we have

−1
2∂t

(︄∫︂ t̄

t
[vh]e−Qsds

)︄2

eQt = −1
2

⎛⎝∂t
(︄(︄∫︂ t̄

t
[vh]e−Qsds

)︄2

eQt
)︄

−Q

(︄∫︂ t̄

t
[vh]e−Qsds

)︄2

eQt

⎞⎠, (3.130)

and therefore, using (3.129d) we deduce (3.129e).
Finally, let us note the identity∫︂ t̄

0
∂t

(︄(︄∫︂ t̄

t
[vh]e−Qsds

)︄2

eQt
)︄

dt = −
(︄∫︂ t̄

0
[vh]e−Qt dt

)︄2

,

which together with the definition of Jh, (3.129c), (3.129d), and (3.130) imply∫︂ t̄

0
Jh(vh,Υ(vh; t))dt =

∫︂ t̄

0

∑︂
Γ∈FID

h

∫︂
Γ
κ[vh]

∫︂ t̄

t
[vh]e−QsdsdSdt

= −1
2

∑︂
Γ∈FID

h

∫︂
Γ
κ
∫︂ t̄

0
∂t

(︄∫︂ t̄

t
[vh]e−Qsds

)︄2

eQt dtdS

= 1
2

∑︂
Γ∈FID

h

∫︂
Γ
κ

(︄∫︂ t̄

0
[vh]e−Qt dt

)︄2

dS

+ Q

2

∫︂ t̄

0

∑︂
Γ∈FID

h

∫︂
Γ
κ

[︄ ∫︂ t̄

t
vhe

−Qsds
]︄2

dSdt.
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Applying the definition of the form Jh to the right-hand side of (3.131), we have
completed the proof of the lemma.

Furthermore, in the next lemma we establish the relation between Υ(ξu; ·) and
Υ(ξq; ·), analogously as in Lemma 9.

Lemma 15. Let Υ be given by (3.128). Then,

∥Υ(ξu; t)∥L2(Ω)

≤ Ce
(︂⃦⃦⃦

Υ(ξq; t)
⃦⃦⃦
L2(Ω)

+ J
1/2
h (Υ(ξu; t),Υ(ξu; t)) + |||Υ(ηu; t)|||

)︂
, t ∈ (0, T ),

(3.131)

where Ce > 0 is the constant from Lemma 9.

Proof. We multiply (3.71c) by e−Qs and integrate over (t, t̄) while keeping
zh ∈ Sh,p fixed, so that the equation (3.71c) becomes

(Υ(ξq; t), zh) − Ah(zh,Υ(ξu; t)) = Ah(zh,Υ(ηu; t)).

We set zh := ∇Υ(ξu; t) ∈ Sh,p since ξu ∈ Sh,p and ∇Υ(ξu; t) = Υ(∇ξu; t); cf.
(3.129a). From this point, the proof is completely analogous to the proof of
(3.87) in Lemma 9.

The following lemma provides a relationship between Υ(ηu; ·) and ηu in the ||| · |||-
norm.

Lemma 16. Let Υ be given by (3.128). Then,

|||Υ(ηu; 0)|||2 ≤ Ct̄

∫︂ t̄

0
|||ηu|||2 dt, (3.132)∫︂ t̄

0
|||Υ(ηu; t)|||2 dt ≤ t̄Ct̄

∫︂ t̄

0
|||ηu|||2 dt, (3.133)

where Ct̄ := (1 − e−2Qt̄)/(2Q).

Proof. The definition of the ||| · |||-norm reads

|||Υ(ηu; 0)|||2 = |Υ(ηu; 0)|2H1(Ω,Th) + Jh(Υ(ηu; 0),Υ(ηu; 0)); (3.134)

thus, we consider these terms individually. From the property of the function Υ
(3.129a) we have

|Υ(ηu; 0)|2H1(Ω,Th) = ∥∇Υ(ηu; 0)∥2
L2(Ω) = ∥Υ(∇ηu; 0)∥2

L2(Ω)

=
∫︂

Ω

⃓⃓⃓⃓
⃓
∫︂ t̄

0
∇ηue−Qsds

⃓⃓⃓⃓
⃓
2

dx. (3.135)

The Cauchy-Schwarz inequality applied to the integral over time implies⃓⃓⃓⃓
⃓
∫︂ t̄

0
∇ηue−Qsds

⃓⃓⃓⃓
⃓
2

≤
⃓⃓⃓⃓
⃓
(︄ ∫︂ t̄

0
|∇ηu|2ds

)︄1/2(︄∫︂ t̄

0
e−2Qsds

)︄1/2 ⃓⃓⃓⃓
⃓
2

≤ Ct̄

∫︂ t̄

0
|∇ηu|2ds.

(3.136)

44



Furthermore, the property on jumps (3.129c) from Lemma 14 yields

Jh(Υ(ηu; 0),Υ(ηu; 0)) =
∑︂

Γ∈FID
h

∫︂
Γ
κ[Υ(ηu; 0)]2 dS =

∑︂
Γ∈FID

h

∫︂
Γ
κΥ2([ηu]; 0) dS,

(3.137)

and in the same way as in (3.136) we have
∑︂

Γ∈FID
h

∫︂
Γ
κ

(︄∫︂ t̄

0
[ηu]e−Qsds

)︄2

dS ≤ Ct̄
∑︂

Γ∈FID
h

∫︂
Γ
κ
∫︂ t̄

0
[ηu]2ds dS. (3.138)

We get the relation (3.132) if we insert (3.138) into (3.135) and (3.136) into
(3.137).

We show the second part similarly as the first one; namely, we consider∫︂ t̄

0
|||Υ(ηu; t)|||2 dt =

∫︂ t̄

0
|Υ(ηu; t)|2H1(Ω,Th) dt+

∫︂ t̄

0
Jh(Υ(ηu; t),Υ(ηu; t)) dt. (3.139)

Analogously to (3.135), we use a property of the integral of a nonnegative function
(i.e., the exponential function) over a finite set, since (t, t̄) ⊂ (0, t̄), t ∈ (0, t̄), such
that ∫︂ t̄

0

∫︂
Ω

⃓⃓⃓⃓
⃓
∫︂ t̄

t
∇ηue−Qsds

⃓⃓⃓⃓
⃓
2

dx dt ≤ Ct̄

∫︂ t̄

0

∫︂
Ω

∫︂ t̄

0
|∇ηu|2ds dx dt

≤ Ct̄

∫︂ t̄

0

∫︂ t̄

0
|ηu|2H1(Ω,Th)ds dt.

Finally, by applying the same argument to the second term on the right-hand
side of (3.139) we get the desired result.

Next we propose some lower bounds for the nonlinear forms.
Lemma 17. Let Υ be given by (3.128). Then,∫︂ t̄

0

(︂
∂t(ϑ(uh) − ϑ(u)),Υ(ξu; t)

)︂
dt

≥
∫︂ t̄

0

(︃(︂
ϑ(uh) − ϑ(u), uh − u

)︂
−
(︂
ϑ(uh) − ϑ(u), ηu

)︂)︃
e−Qt dt

− Lϑ∥uh(0)∥L2(Ω)∥Υ(ξu; 0)∥L2(Ω).

Proof. We use the integration by parts, the Leibnitz integral rule (3.37) on the
integral

∫︁ t̄
t ξue

−Qsds, and the Cauchy-Schwarz inequality such that∫︂ t̄

0

(︃
∂t(ϑ(uh) − ϑ(u)),

∫︂ t̄

t
ξue

−Qsds
)︃

dt

= −
(︃
ϑ(uh(0)) − ϑ(u0),

∫︂ t̄

0
ξue

−Qsds
)︃

−
∫︂ t̄

0

(︃
ϑ(uh) − ϑ(u), ∂t

∫︂ t̄

t
ξue

−Qsds
)︃

dt

= −
(︃
ϑ(uh(0)) − ϑ(u0),

∫︂ t̄

0
ξue

−Qsds
)︃

+
∫︂ t̄

0

(︂
ϑ(uh) − ϑ(u), ξu

)︂
e−Qt dt

≥ −∥ϑ(uh(0)) − ϑ(u0)∥L2(Ω)

⃦⃦⃦⃦
⃦
∫︂ t̄

0
ξue

−Qsds
⃦⃦⃦⃦
⃦
L2(Ω)

+
∫︂ t̄

0

(︃(︂
ϑ(uh) − ϑ(u), uh − u

)︂
−
(︂
ϑ(uh) − ϑ(u), ηu

)︂)︃
e−Qt dt. (3.140)

45



To prove the statement, it only remains to apply Lipschitz continuity of ϑ and
(3.101) to (3.140).

Lemma 18. Let Υ be given by (3.128). Then∫︂ t̄

0
Bh(u; ξq,Υ(ξq; t)) dt ≥ k0

2
⃦⃦⃦
Υ(ξq; 0)

⃦⃦⃦2

L2(Ω)
+Q

k0

2

∫︂ t̄

0

⃦⃦⃦
Υ(ξq; t)

⃦⃦⃦2

L2(Ω)
eQt dt

+ 1
2

∫︂ t̄

0

∑︂
K∈Th

∫︂
K
∂tK(θ(u))

)︂⃓⃓⃓
Υ(ξq; t)

⃓⃓⃓2
eQt dx dt.

Proof. We deduce from the product rule and (3.129b) the following identity

K(θ(u))ξq · Υ(ξq; t) = − 1
2∂t

(︃
K(θ(u))

⃓⃓⃓
Υ(ξq; t)

⃓⃓⃓2
eQt
)︃

+ 1
2
(︂
QK(θ(u)) + ∂tK(θ(u))

)︂⃓⃓⃓
Υ(ξq; t)

⃓⃓⃓2
eQt.

Moreover, from the assumption (A1) we have that

− 1
2

∫︂ t̄

0

∑︂
K∈Th

∫︂
K
∂t

(︃
K(θ(u))

⃓⃓⃓
Υ(ξq; t)

⃓⃓⃓2
eQt
)︃

dx dt

= −1
2

∫︂ t̄

0
∂t

∑︂
K∈Th

∫︂
K

(︄
K(θ(u))

⃓⃓⃓⃓
⃓
∫︂ t̄

t
ξqe

−Qsds
⃓⃓⃓⃓
⃓
2

eQt
)︄

dx dt

= 1
2
∑︂
K∈Th

∫︂
K

K(θ(u0))
⃓⃓⃓⃓
⃓
∫︂ t̄

0
ξqe

−Qsds
⃓⃓⃓⃓
⃓
2

dx

≥ k0

2
∑︂
K∈Th

∫︂
K

⃓⃓⃓⃓
⃓
∫︂ t̄

0
ξqe

−Qsds
⃓⃓⃓⃓
⃓
2

dx = k0

2
⃦⃦⃦
Υ(ξq; 0)

⃦⃦⃦2

L2(Ω)
,

and

1
2Q

∫︂ t̄

0

∑︂
K∈Th

∫︂
K

K(θ(u))
(︂
Υ(ξq; t)

)︂2
eQt dxdt

= 1
2Q

∫︂ t̄

0

∑︂
K∈Th

∫︂
K

K(θ(u))
⃓⃓⃓⃓
⃓
∫︂ t̄

t
ξqe

−Qsds
⃓⃓⃓⃓
⃓
2

dxeQtdt

≥ Q
k0

2

∫︂ t̄

0

⃦⃦⃦
Υ(ξq; t)

⃦⃦⃦2

L2(Ω)
eQtdt.

We combine the relations above with (3.14), which completes the proof of the
lemma.

In what follows, we shall state the main auxiliary result; i.e., a partial estimate of
the error in the nonlinear form that shall be later used to prove the final result.
However, before it, we present its abstract formulation.

Lemma 19 (Abstract error estimate in the nonlinear form). Let the triangulation
Th satisfy (2.4)–(2.5), (u, q,σ) be the exact classical solution of (3.8) satisfying
(B1)–(B3), (uh, qh,σh) be the approximate solution given by Definition 5, and
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µ := min(p+ 1, s). Let the assumptions (A1)–(A7) be fulfilled and Υ be given by
(3.128). Then, for arbitrary ε > 0, there exists a constant CA

E2(ε̄) > 0 independent
of h and t but depending on some ε̄ > 0 such that∫︂ t̄

0

(︂
ϑ(uh) − ϑ(u), uh − u

)︂
e−Qt dt

≤ CA
E2(ε̄)Rc(ηu,ηq,ησ) + εh−2

∫︂ t̄

0

⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
∥θ(uh) − θ(u)∥2

L2(Ω)e
−Qt dt,

(3.141)

where

Rc(ηu,ηq,ησ) = ∥ηu(0)∥2
L2(Ω) + |||Υ(ηu; 0)|||2 +

∫︂ t̄

0

(︂
R2
a(ησ) + |||Υ(ηu; t)|||2

)︂
dt

+
∫︂ t̄

0

(︂
∥ηu∥2

L2(Ω) + Jh(ηu, ηu) +R2
a(ησ) +

⃦⃦⃦
ηq

⃦⃦⃦2

L2(Ω)

)︂
e−Qt dt.

(3.142)

Proof. We insert the test function vh := Υ(ξu; t) in the error equation (3.71a)

(∂t(ϑ(uh) − ϑ(u)),Υ(ξu; t)) + Ah(ξσ,Υ(ξu; t)) + Jh(ξu,Υ(ξu; t))
= −Ah(ησ,Υ(ξu; t)) − Jh(ηu,Υ(ξu; t)), (3.143)

and wh := Υ(ξq; t) in (3.71b), and then apply the identity (3.77) such that

Bh(u; ξq,Υ(ξq; t))
= −Bh(u; ηq,Υ(ξq; t)) −

(︂
Bh(uh; ξq,Υ(ξq; t)) −Bh(u; ξq,Υ(ξq; t))

)︂
−
(︂
Bh(uh; Πh,pq,Υ(ξq; t)) −Bh(u; Πh,pq,Υ(ξq; t))

)︂
− (ξσ,Υ(ξq; t)). (3.144)

We multiply (3.71c) by e−Qs and integrate over (t, t̄) while keeping zh fixed such
that

(Υ(ξq; t), zh) − Ah(zh,Υ(ξu; t)) = Ah(zh,Υ(ηu; t)). (3.145)

Then, we set zh := ξσ in (3.145), sum the three equations (3.143)–(3.145), and
integrate the resulting equation over (0, t̄) deducing

∫︂ t̄

0

(︃
(∂t(ϑ(uh) − ϑ(u)),Υ(ξu; t)) + Jh(ξu,Υ(ξu; t)) +Bh(u; ξq,Υ(ξq; t))

)︃
dt

= −
∫︂ t̄

0

(︃
Ah(ησ,Υ(ξu; t)) + Ah(ξσ,Υ(ηu; t))

)︃
dt

−
∫︂ t̄

0

(︃
Jh(ηu,Υ(ξu; t)) +Bh(u; ηq,Υ(ξq; t))

)︃
dt

−
∫︂ t̄

0

(︂
Bh(uh; ξq,Υ(ξq; t)) −Bh(u; ξq,Υ(ξq; t))

)︂
dt

−
∫︂ t̄

0

(︂
Bh(uh; Πh,pq,Υ(ξq; t)) −Bh(u; Πh,pq,Υ(ξq; t))

)︂
dt. (3.146)

47



In what follows, we analyze this equation; namely, by Lemma 17 bound the first
term on the left-hand side of (3.146) as

∫︂ t̄

0

(︂
∂t(ϑ(uh) − ϑ(u)),Υ(ξu; t)

)︂
dt

≥
∫︂ t̄

0

(︃(︂
ϑ(uh) − ϑ(u), uh − u

)︂
−
(︂
ϑ(uh) − ϑ(u), ηu

)︂)︃
e−Qt dt

− Lϑ∥ηu(0)∥L2(Ω)∥Υ(ξu; 0)∥L2(Ω). (3.147)

The last term on the right-hand side of (3.147) can be bounded using Lemma 15
and the Young inequality for δ := Cm, Cm := min(1, k0) as

Lϑ∥ηu(0)∥L2(Ω)∥Υ(ξu; 0)∥L2(Ω)

≤ 3L2
ϑC

2
e

2Cm
∥ηu(0)∥2

L2(Ω)

+ Cm
2

(︃⃦⃦⃦
Υ(ξq; 0)

⃦⃦⃦2

L2(Ω)
+ Jh(Υ(ξu; 0),Υ(ξu; 0)) + |||Υ(ηu; 0)|||2

)︃
≤ 3L2

ϑC
2
e

2Cm
∥ηu(0)∥2

L2(Ω)

+ k0

2
⃦⃦⃦
Υ(ξq; 0)

⃦⃦⃦2

L2(Ω)
+ 1

2Jh(Υ(ξu; 0),Υ(ξu; 0)) + 1
2 |||Υ(ηu; 0)|||2. (3.148)

Furthermore, the relation (3.129f) from Lemma 14 yields
∫︂ t̄

0
Jh(ξu,Υ(ξu; t))dt = 1

2Jh(Υ(ξu; 0),Υ(ξu; 0)) + 1
2Q

∫︂ t̄

0
Jh(Υ(ξu; t),Υ(ξu; t))eQtdt.

(3.149)
By Lemma 18, we estimate∫︂ t̄

0
Bh(u; ξq,Υ(ξq; t)) dt ≥ k0

2
⃦⃦⃦
Υ(ξq; 0)

⃦⃦⃦2

L2(Ω)
+Q

k0

2

∫︂ t̄

0

⃦⃦⃦
Υ(ξq; t)

⃦⃦⃦2

L2(Ω)
eQt dt

+ 1
2

∫︂ t̄

0

∑︂
K∈Th

∫︂
K
∂tK(θ(u))

⃓⃓⃓
Υ(ξq; t)

⃓⃓⃓2
eQt dx dt. (3.150)

The last term in (3.150) can be estimated using the assumptions (A2) and (B1)

1
2

∫︂ t̄

0

∑︂
K∈Th

∫︂
K
∂tK(θ(u))

⃓⃓⃓
Υ(ξq; t)

⃓⃓⃓2
eQt dx dt ≤ kdCX

2

∫︂ t̄

0

⃦⃦⃦
Υ(ξq; t)

⃦⃦⃦2

L2(Ω)
eQt dt.

(3.151)

Now we combine the relations above, while the terms Jh(Υ(ξu; 0),Υ(ξu; 0)) and
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⃦⃦⃦
Υ(ξq; 0)

⃦⃦⃦2

L2(Ω)
terms cancel,

∫︂ t̄

0

(︂
ϑ(uh) − ϑ(u), uh − u

)︂
e−Qt dt+Q

k0

2

∫︂ t̄

0

⃦⃦⃦
Υ(ξq; t)

⃦⃦⃦2

L2(Ω)
eQt dt

+ 1
2Q

∫︂ t̄

0
Jh(Υ(ξu; t),Υ(ξu; t))eQt dt

≤
∫︂ t̄

0
|(ϑ(uh) − ϑ(u), ηu)|e−Qt dt+ kdCX

2

∫︂ t̄

0

⃦⃦⃦
Υ(ξq; t)

⃦⃦⃦2

L2(Ω)
eQt

+
∫︂ t̄

0

(︃⃓⃓⃓
Ah(ησ,Υ(ξu; t))

⃓⃓⃓
+
⃓⃓⃓
Ah(ξσ,Υ(ηu; t))

⃓⃓⃓
+
⃓⃓⃓
Jh(ηu,Υ(ξu; t))

⃓⃓⃓)︃
dt

+
∫︂ t̄

0

(︃⃓⃓⃓
Bh(u; ηq,Υ(ξq; t))

⃓⃓⃓
+
⃓⃓⃓
Bh(uh; ξq,Υ(ξq; t)) −Bh(u; ξq,Υ(ξq; t))

⃓⃓⃓)︃
dt

+
∫︂ t̄

0

⃓⃓⃓
Bh(uh; Πh,pq,Υ(ξq; t)) −Bh(u; Πh,pq,Υ(ξq; t))

⃓⃓⃓
dt

+
3L2

ϑC
2
f

2Cm
∥ηu(0)∥2

L2(Ω). (3.152)

First, we consider the form Ah in (3.152); namely, by (3.72)⃓⃓⃓
Ah(ησ,Υ(ξu; t))

⃓⃓⃓
≤ Ra(ησ)∥Υ(ξu; t)∥L2(Ω), (3.153)

where Ra is defined by (3.74). We further estimate (3.153) using Lemma 15 and
the Young inequality as⃓⃓⃓

Ah(ησ,Υ(ξu; t))
⃓⃓⃓

≤ 2C2
e

QCm
R2
a(ησ)e−Qt

+Q
Cm
4

(︃⃦⃦⃦
Υ(ξq; t)

⃦⃦⃦2

L2(Ω)
+ Jh(Υ(ξu; t),Υ(ξu; t))

)︃
eQt +R1(ηu,ησ)

≤ 2C2
e

QCm
R2
a(ησ)e−Qt

+Q

(︄
k0

4
⃦⃦⃦
Υ(ξq; t)

⃦⃦⃦2

L2(Ω)
+ 1

4Jh(Υ(ξu; t),Υ(ξu; t))
)︄
eQt +R1(ηu,ησ), (3.154)

where R1(ηu,ησ) := CeRa(ησ)|||Υ(ηu; t)|||. Moreover, the relation (3.73) and the
Young inequality for some ε̄ > 0 imply⃓⃓⃓

Ah(ξσ,Υ(ηu; t))
⃓⃓⃓
≤ Ca∥ξσ∥L2(Ω)|||Υ(ηu; t)||| ≤ ε̄∥ξσ∥2

L2(Ω) + 1
4ε̄ |||Υ(ηu; t)|||2.

(3.155)

On the other hand, by (3.33) and the Young inequality we have⃓⃓⃓
Bh(u; ηq,Υ(ξq; t))

⃓⃓⃓
≤ 1

2
⃦⃦⃦
ηq

⃦⃦⃦2

L2(Ω)
e−Qt + k2

1
2
⃦⃦⃦
Υ(ξq; t)

⃦⃦⃦2

L2(Ω)
eQt. (3.156)

Utilizing (3.78) and the Young inequality for some ε > 0, we estimate the differ-
ences of the form Bh⃓⃓⃓

Bh(uh; ξq,Υ(ξq; t)) −Bh(u; ξq,Υ(ξq; t))
⃓⃓⃓

≤ εh−2∥θ(uh) − θ(u)∥2
L2(Ω)

⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
e−Qt + C2

b

4ε
⃦⃦⃦
Υ(ξq; t)

⃦⃦⃦2

L2(Ω)
eQt, (3.157)

49



while by using (3.79) and (3.6), we obtain⃓⃓⃓
Bh(uh; Πh,pq,Υ(ξq; t)) −Bh(u; Πh,pq,Υ(ξq; t))

⃓⃓⃓
≤ 1

4Lϑ
∥ϑ(uh) − ϑ(u)∥2

L2(Ω)e
−Qt

+ 1
2
⃦⃦⃦
ηq

⃦⃦⃦2

L2(Ω)
e−Qt +

(︄
LϑC

2
c + 1

2

)︄⃦⃦⃦
Υ(ξq; t)

⃦⃦⃦2

L2(Ω)
eQt. (3.158)

The Cauchy-Schwarz and Young inequalities imply

|(ϑ(uh) − ϑ(u), ηu)| ≤ 1
4Lϑ

∥ϑ(uh) − ϑ(u)∥2
L2(Ω) + Lϑ∥ηu∥2

L2(Ω). (3.159)

Lastly, we bound the jump term Jh using the relation(3.24) and the Young in-
equality as⃓⃓⃓

Jh(ηu,Υ(ξu; t))
⃓⃓⃓
≤ 1
Q
Jh(ηu, ηu)e−Qt +Q

1
4Jh(Υ(ξu; t),Υ(ξu; t))eQt. (3.160)

We substitute (3.154)–(3.160) into (3.152), where that the jump term on the
left-hand side is canceled (cf. (3.160) and (3.152)), so that we have∫︂ t̄

0

(︂
ϑ(uh) − ϑ(u), uh − u

)︂
e−Qt dt+Q

k0

4

∫︂ t̄

0

⃦⃦⃦
Υ(ξq; t)

⃦⃦⃦2

L2(Ω)
eQt dt

≤ C1

∫︂ t̄

0

⃦⃦⃦
Υ(ξq; t)

⃦⃦⃦2

L2(Ω)
eQt + εh−2

∫︂ t̄

0

⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
∥θ(uh) − θ(u)∥2

L2(Ω)e
−Qt dt

+ 1
2Lϑ

∫︂ t̄

0
∥ϑ(uh) − ϑ(u)∥2

L2(Ω)e
−Qt + ε̄

∫︂ t̄

0
∥ξσ∥2

L2(Ω) dt dt

+ C2Rc(ηu,ηq,ησ), (3.161)

where Rc is given by (3.142) and

C1 = C1(ε) := kdCX
2 + k2

1
2 + C2

b

4ε + LϑC
2
c + 1

2 ,

C2 = C2(ε̄) := max
(︄

3L2
ϑC

2
e

2Cm
,
1
2 ,

2C2
e

QCm
,
Ce
2 ,

1
4ε̄ + 3

2 , Lϑ,
1
Q

)︄
.

Finally, by virtue of properties of ϑ, (its nonnegativity and monotonicity), we
observe the identity |ϑ(uh) − ϑ(u)||uh − u| = (ϑ(uh) − ϑ(u))(uh − u), and thus
using the Lipschitz continuity of ϑ we have

∥ϑ(uh) − ϑ(u)∥2
L2(Ω) ≤ Lϑ

(︂
ϑ(uh) − ϑ(u), uh − u

)︂
.

We choose sufficiently small ε̄, and set Q := 4C1/k0 and CA
E2 = CA

E2(ε̄) :=
2 max(1, C2(ε̄)) to prove the required statement.

Remark 10. We emphasize that we have been allowed to hide
∫︁ t̄

0 ∥ξσ∥2
L2(Ω) dt in the

line (3.161) due to the stability result presented in Theorem 6 and the assumption
(B3) since

∫︁ t̄
0 ∥ξσ∥2

L2(Ω) dt ≤ 2
∫︁ t̄

0 ∥σh∥2
L2(Ω) dt + 2

∫︁ t̄
0 ∥σ∥2

L2(Ω) dt. However, the
obtained bound (cf. (3.141)) still contains a term that is not estimated (e.g.,
h−2 → ∞ when h → 0; thus, we cannot apply the same procedure). This issue
will be addressed in the following subsection.
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Remark 11. Note that the constant in (3.141) CA
E2(ε̄) → ∞ when ε̄ → 0. This

is a consequence of the application of the Young inequality and the extended
mixed formulation. Nevertheless, their usage was essential to overcome analysis
of nonlinearities.

In the next lemma, we interpret the previous abstract error estimate in terms
of the dependency on the mesh size h.
Lemma 20 (Error estimate in the nonlinear form). Let the triangulation Th
satisfy (2.4)–(2.5), (u, q,σ) be the exact solution of (3.8) satisfying (B1)–(B3),
(uh, qh,σh) be the approximate solution given by Definition 5, µ := min(p+ 1, s),
and let the assumptions (A1)–(A7) be fulfilled. Then, for arbitrary ε > 0 there
exists a constant CE2(ε̄) > 0 independent of h but depending on some ε̄ > 0 such
that ∫︂ t̄

0

(︂
ϑ(uh) − ϑ(u), uh − u

)︂
e−Qt dt

≤ CE2(ε̄)h2(µ−1) + εh−2
∫︂ t̄

0

⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
∥θ(uh) − θ(u)∥2

L2(Ω)e
−Qt dt.

Proof. We proceed similarly as in the proof of Theorem 13; i.e., we bound the
term Rc (3.142) in (3.141) in Lemma 19. From Lemma 16 ,(3.132), and (3.125)
we get

|||Υ(ηu; 0)|||2 ≤ Ct̄

∫︂ t̄

0
|||ηu|||2 dt ≤ C1h

2(µ−1), (3.162)

where C1 := Ct̄C
2
A(1 + 4CWCMC−1

T )|u|2L2(0,t̄;Hµ(Ω)). Using the second part of the
Lemma 16, (3.133), and again (3.125) we get∫︂ t̄

0
|||Υ(ηu; t)|||2 dt ≤ t̄Ct̄

∫︂ t̄

0
|||ηu|||2 dt ≤ C2h

2(µ−1), (3.163)

where C2 := t̄C1. Using these inequalities and ones already shown in the proof of
Theorem 13, in the following fashion (3.123), (3.162), (3.126), (3.163), (3.120a),
(3.124), and (3.121a), we obtain the statement for

CE2(ε̄) := CA
E2(ε̄) max

(︄
C2
Ah|u(0)|2Hµ(Ω), C1, 2C2

PC
2
A(1 + 4Cr)|σ|2L2(0,t̄;Hµ(Ω)),

C2, C
2
Ah|u|L2(0,t̄;Hµ(Ω)),

CWCMC
−1
T 4C2

A|u|2L2(0,t̄;Hµ(Ω)), C
2
Ah|q|L2(0,t̄;Hµ(Ω)

)︄
.

3.5.6 Main result
In this subsection, we combine the results from previous subsections to derive a
priori error bounds. Since our numerical scheme is continuous in time, it comes
natural to use the continuous induction originally developed in [20]. In fact, we
may say that the classical mathematical induction is a discrete variant of the
continuous one. First, we formulate a lemma that we named the ‘induction step’
since it will serve as the one to prove the main theorem.

51



Lemma 21 (Induction step). Let Th be a triangulation such that conditions (2.4)
and (2.5) are fulfilled, (u, q,σ) be the exact solution of (3.8) satisfying (B1)–(B3),
(uh, qh,σh) be its approximate solution given by Definition 5, µ := min(p+ 1, s),
and let the assumptions (A1)–(A7) be valid. Furthermore, let t ∈ [0, T ] be the
largest time for which ∫︂ t

0

⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
ds ≤ h

4β
3β−1 , h ∈ (0, h̄], (3.164)

for some 0 < h̄ ≤ 1. Then, there exists a constant CEI > 0 independent of h such
that

∥ϑ(uh) − ϑ(u)∥2
L∞(0,t;L2(Ω)) +

∫︂ t

0

⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
ds+

∫︂ t

0
Jh(ξu, ξu)ds ≤ CEIh

2(µ−1) 2β
1+β .

(3.165)
Remark 12. We point out that in Lemma 21 t ̸= 0 due to Theorem 6. Further-
more, for β → 1/3+, the exponent on the right-hand side of (3.164) blows up
making the right-hand side vanish. Thus, we emphasize that the presented result
is valid for β strictly larger than 1/3 and cannot be used in a limit.

Proof. The main idea of the proof relies on a careful application of Lemma 20 to
Theorem 13. First, we rewrite these statements; namely, let us assume that there
exists some t̄ ∈ (0, t] at which the essential supremum of ∥θ(uh) − θ(u)∥L2(Ω) is
attained. Note that this statement is valid due to the assumption (A3) on θ.
Moreover, by virtue of the monotonicity of ϑ (cf. Remark 5) and properties of
the exponential function (eQ̄(t̄−s) ≥ 1, s ≤ t̄), from (3.119) (for t = t̄), we have
that

∥ϑ(uh) − ϑ(u)∥2
L∞(0,t;L2(Ω)) +

∫︂ t̄

0

⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
ds+

∫︂ t̄

0
Jh(ξu, ξu)ds

≤ eQ̄t̄

⎛⎝CE1h
2(µ−1) + t̄

1−β
1+β

(︄∫︂ t̄

0

(︂
ϑ(uh) − ϑ(u), uh − u

)︂
e−Q̄s 1+β

2β ds
)︄ 2β

1+β

⎞⎠, (3.166)

Conversely, using similar arguments, from Lemma 20 we deduce∫︂ t̄

0

(︂
ϑ(uh) − ϑ(u), uh − u

)︂
e−Q̄s 1+β

2β ds

≤ CE2(ε̄)h2(µ−1) + εh−2
∫︂ t̄

0

⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
∥θ(uh) − θ(u)∥2

L2(Ω)e
−Q̄s 1+β

2β ds

≤ CE2(ε̄)h2(µ−1) + εh−2
∫︂ t̄

0

⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
ds∥ϑ(uh) − ϑ(u)∥2

L∞(0,t;L2(Ω)), (3.167)

The p-triangle inequality (3.36) for p := 2β
1+β ≤ 1 applied on constant functions

f1 := CE2(ε̄)h2(µ−1) and f2 := εh−2 ∫︁ t̄
0

⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
ds∥ϑ(uh) − ϑ(u)∥2

L∞(0,t;L2(Ω)) gives

(︄
CE2(ε̄)h2(µ−1) + εh−2

∫︂ t̄

0

⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
ds∥ϑ(uh) − ϑ(u)∥2

L∞(0,t;L2(Ω))

)︄ 2β
1+β

≤ C1(ε̄)h2(µ−1) 2β
1+β

+ 2
β−1
2β ε

2β
1+β

(︄
h−2

∫︂ t̄

0

⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
ds∥ϑ(uh) − ϑ(u)∥2

L∞(0,t;L2(Ω))

)︄ 2β
1+β

, (3.168)
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where C1(ε̄) := 2
β−1
2β

(︂
CE2(ε̄)

)︂ 2β
1+β . We use the inequality [2, p. 14]

|abc|ω ≤ |b| + (|a|
ω

2ω−1 |b|) 2ω−1
ω |c|, 1

2 < ω ≤ 1, (3.169)

with settings a = h−2, b =
∫︁ t̄

0

⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
ds, c = ∥ϑ(uh) − ϑ(u)∥2

L∞(0,t;L2(Ω)) and
ω = 2β/(1 + β) (cf. (A4)), (implying (2ω − 1)/ω = (3β − 1)/2β), and the
assumption (3.164) of this lemma, so that
(︄
h−2

∫︂ t̄

0

⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
ds∥ϑ(uh) − ϑ(u)∥2

L∞(0,t;L2(Ω))

)︄ 2β
1+β

≤
∫︂ t̄

0

⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
ds+

(︄
h− 4β

3β−1

∫︂ t̄

0

⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
ds
)︄ 3β−1

2β

∥ϑ(uh) − ϑ(u)∥2
L∞(0,t;L2(Ω))

≤
∫︂ t̄

0

⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
ds+ ∥ϑ(uh) − ϑ(u)∥2

L∞(0,t;L2(Ω)). (3.170)

Now we combine Lemma 20 with Theorem 13 (cf. (3.166)) and apply the
relations above (3.167), (3.168), and (3.170). Additionally, bearing in mind that
2(µ− 1)2β/(1 + β) < 2(µ− 1) for β ≤ 1 and h̄ < 1, we obtain

∥ϑ(uh) − ϑ(u)∥2
L∞(0,t;L2(Ω)) +

∫︂ t̄

0

⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
ds+

∫︂ t̄

0
Jh(ξu, ξu)ds

≤ C̄E(t̄)h2(µ−1) 2β
1+β

+ ε
2β

1+β C̃E(t̄)
⎛⎝∫︂ t̄

0

⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
ds+ ∥ϑ(uh) − ϑ(u)∥2

L∞(0,t;L2(Ω))

⎞⎠, (3.171)

where

C̄E(t̄) := eQ̄t̄
(︃
CE1 + C1(ε̄)t̄

1−β
1+β

)︃
and C̃E(t̄) := 2

β−1
2β eQ̄t̄t̄

1−β
1+β . (3.172)

The last term on the right-hand side of (3.171) is bounded due to t̄ ≤ t, (3.164)
and Remark 8, so we may choose ε sufficiently small such that

1
2∥ϑ(uh) − ϑ(u)∥2

L∞(0,t;L2(Ω)) + 1
2

∫︂ t̄

0

⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
ds+

∫︂ t̄

0
Jh(ξu, ξu)ds

≤ C̄E(t̄)h2(µ−1) 2β
1+β ; (3.173)

more precisely, we have chosen ε
2β

1+β C̃E(t̄) = 1/2, i.e., ε := exp − ln 2C̃E(t̄)(1+β)
2β .

Now we extend the statement (3.173) to the interval (0, t). Thus, let t ∈ [0, T ].
We couple again (3.119) with Lemma 20 using similar arguments as before

∥ϑ(uh) − ϑ(u)∥2
L∞(0,t;L2(Ω)) +

∫︂ t

0

⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
ds+

∫︂ t

0
Jh(ξu, ξu)ds

≤ C̄E(t)h2(µ−1) 2β
1+β

+ C̃E(t)ε
2β

1+β

(︄
h−2

∫︂ t

0

⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
ds∥ϑ(uh) − ϑ(u)∥2

L∞(0,t;L2(Ω))

)︄ 2β
1+β

.
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Similarly, we use the inequality (3.169) for the same parameters, only differing in
b =

∫︁ t
0

⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
ds, such that

∥ϑ(uh) − ϑ(u)∥2
L∞(0,t;L2(Ω)) +

∫︂ t

0

⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
ds+

∫︂ t

0
Jh(ξu, ξu)ds

≤ C̄E(t)h2(µ−1) 2β
1+β

+ C̃E(t)ε
2β

1+β

(︄∫︂ t

0

⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
ds+ ∥ϑ(uh) − ϑ(u)∥2

L∞(0,t;L2(Ω))

)︄
.

Ultimately, we hide the last two terms similarly as in (3.171), but now for
ε := exp − ln 2C̃E(t)(1+β)

2β . The final result follows if we set CEI := 2C̄E(T ), where
T is the final time.

Remark 13. Let us note that the constant CEI from the previous lemma grows
exponentially with respect to the final time T .

The next step is to remove the a priori assumption (3.164) from Lemma 21.
To do so, in the next lemma we define the continuous induction.
Lemma 22 (Continuous mathematical induction [54, Lemma 7.2]). Let P (t),
t ∈ [0, T ] be a propositional function such that

(i) Induction basis: P (0) is true;
(ii) Induction step: ∃δ0 > 0 ∀δ ∈ [0, δ0] : t + δ ≤ T P (t) =⇒ P (t + δ),

∀t ∈ [0, T ].
Then, P (t) holds for all t ∈ [0, T ].

In fact, a propositional function (or, in logic, a predicate) P : [0, T ] →
[True,False] represents a statement that takes either a value of True or a value of
False on the given domain of definition. In the following theorem, we shall define
a propositional function and prove that it satisfies the conditions (i) and (ii) of
Lemma 22, meaning that the statement is valid on the interval [0, T ].
Theorem 23. Let the triangulation Th satisfy conditions (2.4) and (2.5), (u, q,σ)
be the exact solution of (3.8) that satisfies the regularity conditions (B1)–(B3),
(u, q,σ) be the approximate solution given by Definition 5, and µ := min(p+1, s).
Let the assumptions (A1)–(A7) be fulfilled, µ−1 > (1+β)/(3β−1), and 1 ≥ h̄ > 0
be such that CEI h̄

2(µ−1)2β/(1+β) = h̄
4β/(3β−1)

/2, where CEI is the constant from
Lemma 21. Then, for all h ∈ (0, h̄], the following estimate is satisfied

∥ϑ(uh) − ϑ(u)∥2
L∞(0,T ;L2(Ω)) +

∫︂ T

0

⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
dt+

∫︂ T

0
Jh(ξu, ξu) dt ≤ CEh

2(µ−1) 2β
1+β ,

(3.174)
where CE > 0 is a constant independent of h.

Proof. We define the following propositional function

P (t) =
{︄

∥ϑ(uh) − ϑ(u)∥2
L∞(0,t;L2(Ω)) +

∫︂ t

0

⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
ds

+
∫︂ t

0
Jh(ξu, ξu)ds ≤ CEh

2(µ−1) 2β
1+β

}︄
.
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Induction basis. The statement P (0) is true because of the Lipschitz continuity
of ϑ, (3.101), and (3.123),

∥ϑ(uh(0)) − ϑ(u0)∥2
L2(Ω) ≤ L2

ϑ∥ηu(0)∥2
L2(Ω) ≤ L2

ϑC
2
A|u(0)|2Hµ(Ω)h

2µ

≤ CEh
2(µ−1) 2β

1+β ,

where CE := L2
ϑC

2
A|u(0)|2Hµ(Ω). Here we also have used the relation 2(µ−1)2β/(1+

β) < 2µ, which holds for β ≤ 1.
Induction step. Now let the inductive hypothesis P (t) be satisfied for some

t ∈ (0, T ]. By the assumption of the theorem, for a fixed h ∈ (0, h̄] we have that
CEh

2(µ−1)2β/(1+β) ≤ h4β/(3β−1)/2, thus,

∥ϑ(uh) − ϑ(u)∥2
L∞(0,t;L2(Ω)) +

∫︂ t

0

⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
ds+

∫︂ t

0
Jh(ξu, ξu)ds

≤ CEh
2(µ−1) 2β

1+β ≤ 1
2h

4β
3β−1 . (3.175)

Since the interval [0, T ] is a compact set, we have that ξ : [0, T ] → L2(Ω) is a uni-
formly continuous mapping, and therefore the function ϕ(t) :=

∫︁ t
0

⃦⃦⃦
ξq(s)

⃦⃦⃦2

L2(Ω)
ds

is uniformly continuous on [0, T ]; namely, it holds
∀ε > 0 ∃δ0 > 0 ∀t1, t2 ∈ [0, T ] |t1 − t2| ≤ δ0 =⇒ |ϕ(t1) − ϕ(t2)| ≤ ε.

For ε = 1
2h

4β
3β−1 there exists δ0 > 0 such that if t ∈ (0, T ) and δ ∈ [0, δ0], then∫︂ t+δ

t

⃦⃦⃦
ξq(s)

⃦⃦⃦2

L2(Ω)
ds =

⃓⃓⃓⃓
⃓
∫︂ t+δ

0

⃦⃦⃦
ξq(s)

⃦⃦⃦2

L2(Ω)
ds−

∫︂ t

0

⃦⃦⃦
ξq(s)

⃦⃦⃦2

L2(Ω)
ds
⃓⃓⃓⃓
⃓ ≤ 1

2h
4β

3β−1 .

(3.176)
Then, for δ ∈ [0, δ0] from the validity of P (t), i.e., (3.175), and (3.176), we have∫︂ t+δ

0

⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
ds =

∫︂ t

0

⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
ds+

∫︂ t+δ

t

⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
ds ≤ 1

2h
4β

3β−1 +1
2h

4β
3β−1 = h

4β
3β−1 ,

which is the assumption of Lemma 21. Consequently, we get the relation

∥ϑ(uh) − ϑ(u)∥2
L∞(0,t+δ;L2(Ω)) +

∫︂ t+δ

0

⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
ds+

∫︂ t+δ

0
Jh(ξu, ξu)ds

≤ CEIh
2(µ−1) 2β

1+β .

In this way we have shown the induction step defined in Lemma 22 (ii); if we set
CE := max(L2

ϑC
2
A|u(0)|2Hµ(Ω), CEI) the proof is done.

We reformulate the theorem in terms of eu and eq.
Theorem 24. Let the triangulation Th satisfy conditions (2.4) and (2.5), (u, q,σ)
be the exact solution of (3.8) satisfying (B1)–(B3), (uh, qh,σh) be the approximate
solution given by Definition 5, and µ := min(p + 1, s). Let the assumptions
(A1)–(A7) be fulfilled, µ − 1 > (1 + β)/(3β − 1), and 1 ≥ h̄ > 0 be such that
CEI h̄

2(µ−1)2β/(1+β) = h̄
4β/(3β−1)

/2, where CEI is the constant from Lemma 21.
Then, for all h ∈ (0, h̄] the following estimate is satisfied

∥ϑ(uh) − ϑ(u)∥2
L∞(0,T ;L2(Ω)) +

∫︂ T

0
∥eq∥2

L2(Ω) dt+
∫︂ T

0
Jh(eu, eu) dt ≤ CEh

2(µ−1) 2β
1+β .

(3.177)
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Proof. We add
∫︁ T

0

(︂⃦⃦⃦
ηq

⃦⃦⃦2

L2(Ω)
+Jh(ηu, ηu)+2Jh(ξu, ηu)

)︂
dt to both sides of (3.174),

and use (3.23) and (3.124).

Corollary 25. Let the conditions from Theorem 24 be satisfied. Then, there
exists C̃E2(ε̄) such that∫︂ T

0
(ϑ(uh) − ϑ(u), uh − u) dt ≤ C̃E2(ε̄)h2(µ−1).

Proof. As in the proof of the induction step (3.167), by Lemma 20 for t = T we
have that∫︂ T

0

(︂
ϑ(uh) − ϑ(u), uh − u

)︂
dt

≤ CE2(ε̄)h2(µ−1) + εh−2
∫︂ T

0

⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
dt∥ϑ(uh) − ϑ(u)∥2

L∞(0,T ;L2(Ω)).

We apply the result from Theorem 23 as follows∫︂ T

0

⃦⃦⃦
ξq

⃦⃦⃦2

L2(Ω)
dt∥ϑ(uh) − ϑ(u)∥2

L∞(0,T ;L2(Ω)) ≤ C2
Eh

2(µ−1) 4β
1+β .

It remains to combine the relations above and use h−2 ≤ h2(µ−1)(1−3β)/(1+β), so
that the statement implies for CE2(ε̄) := CE2(ε̄) + εC2

E.

In the next chapter, we study the estimate (3.177) and the convergence of the
DG method on numerical examples.

56



4. Numerical experiments
In this chapter, we accompany the theory presented in Chapter 3 with several
numerical experiments, which can be found in [24, 82]. The first example is the
well-known Barenblatt problem [5], which for particular parameters fulfills the
problem assumptions (cf. Subsection 3.1.1). The second example is the Tracy
problem with the exact analytical solution, which represents Richards’ equation
with the Gardner constitutive relations introduced in Section 1.2.

4.1 Barenblatt problem
In (3.1) we set ϑ(u) = θ(u) = u1/m, m > 0 and K to be the identity tensor so
that we consider

∂tu
1/m − ∆u = 0 in QT , (4.1)

with the analytical solution (cf. [5])

u(x, t) = 1
t+ 1

[︄
1 − m− 1

4m2
|x|2

(t+ 1)1/m

]︄ m
m−1

+
, (4.2)

where [a]+ = max(a, 0), a ∈ R and |x|2 denotes the magnitude of x ∈ R2.

Figure 4.1: Profiles of the Barenblatt solution for m < 1 (left) and m > 1 (right)
[93].

Remark 14. If we define the transformation v := u1/m then the equation (4.1)
becomes

∂tv − ∆(vm) = 0,
which is known as a fast-diffusion equation for m < 1 or a porous media equation
for m > 1. Moreover, solutions to this equation are known as the Barenblatt
solutions [5] and are given by

v(x, t) =
(︄

1
t+ 1

[︄
1 − m− 1

4m2
|x|2

(t+ 1)1/m

]︄ m
m−1

+

)︄ 1
m

.
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In Fig. 4.1 are illustrated profiles of the Barenblatt solution in case of the fast-
diffusion equation and the porous media equation.

4.1.1 Barenblatt problem for m < 1
Let us consider (4.1) for m ∈ (0, 1), then ϑ(u) = u1/m, 1/m > 1 fulfills the
assumption (A4). Moreover, from the inequality (3.23) we have that the function

(ϑ′ ◦ ϑ−1)(u) = ϑ′(ϑ−1(u)) = 1
m
u1−m

is Hölder continuous with the exponent β := 1 − m ≤ 1. In order to fulfill the
assumption (A4) (1/3 < β), we shall consider m ∈ (0, 2/3), i.e., 1/m ∈ (3/2,∞).

The symmetric interior penalty Galerkin method [33] earlier introduced in
Section 2.4 is used for the spatial discretization of the problem (4.1). We refer to
[4] for its equivalency with the LDG method used for the analysis. Furthermore,
for temporal discretization we used the time discontinuous Galerkin discretization
(see Chapter 5), namely, the piecewise quadratic approximation which provide
sufficiently accurate approximation of the temporal variable. This space-time
discretization method will be formally defined later in Chapter 5 (cf. Definition
6).

We consider the problem (4.1) in the computational domain Ω = (−6, 6) ×
(−6, 6) and prescribe Dirichlet boundary condition on the boundary ∂Ω. The
domain Ω is discretized using uniform grids having 288, 1152, 4608 and 18432
elements with the corresponding mesh steps h = 1.4142, 0.7071, 0.3536 and
0.1768, respectively. The final time is set to be T = 1. In Tables 4.1–4.2 are
presented the results for different values of m (see also Fig. 4.2–4.3 and Table
4.3 summarizing Tables 4.1–4.2); namely, we show the errors ϑ(uh) − ϑ(u) in the
L∞(0, T ;L2(Ω))-norm, eq := ∇eu in the L2(0, T ;L2(Ω))-norm, and eu in ∥·∥J :=
(
∫︁ T

0 Jh(·, ·) dt)1/2, denoted by ∥eu∥ϑ, ∥eq∥L2 , and ∥eu∥J , respectively. These terms
correspond to the ones appearing on the left-hand side of the estimate (3.177)
from Theorem 24. In addition, we include the corresponding experimental order
of convergence (EOC) calculated as log(eh/eh′)/ log(h/h′) for each consecutive
pair of meshes with mesh steps h and h′.
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Figure 4.2: Barenblatt problem: errors versus h, for m = 0.2 and m = 0.33.
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Table 4.1: Barenblatt problem: errors and EOC, for m = 0.2 (left) and m = 0.33
(right).

p = 2
h ∥eu∥ϑ ∥eq∥L2 ∥eu∥J

1.4142 3.874E-02 6.953E-02 7.671E-03
0.7071 1.166E-02 2.446E-02 2.842E-03

1.73 1.51 1.43
0.3536 1.852E-03 6.361E-03 8.202E-04

2.65 1.94 1.79
0.1768 2.823E-04 1.635E-03 2.219E-04

2.71 1.96 1.89

p = 2
h ∥eu∥ϑ ∥eq∥L2 ∥eu∥J

1.4142 3.188E-02 7.238E-02 8.477E-03
0.7071 5.617E-03 1.962E-02 2.489E-03

2.50 1.88 1.77
0.3536 8.660E-04 5.061E-03 6.821E-04

2.70 1.95 1.87
0.1768 1.204E-04 1.283E-03 1.766E-04

2.85 1.98 1.95
p = 3

h ∥eu∥ϑ ∥eq∥L2 ∥eu∥J
1.4142 1.636E-02 2.710E-02 2.785E-03
0.7071 2.276E-03 4.951E-03 6.097E-04

2.85 2.45 2.19
0.3536 2.354E-04 7.330E-04 9.896E-05

3.27 2.76 2.62
0.1768 1.717E-05 9.649E-05 1.164E-05

3.78 2.93 3.09

p = 3
h ∥eu∥L2 ∥eq∥L2 ∥eu∥J

1.4142 7.706E-03 1.823E-02 2.154E-03
0.7071 7.922E-04 2.702E-03 3.755E-04

3.28 2.75 2.52
0.3536 6.561E-05 3.692E-04 4.587E-05

3.59 2.87 3.03
0.1768 4.141E-06 4.654E-05 5.328E-06

3.99 2.99 3.11
p = 4

h ∥eu∥ϑ ∥eq∥L2 ∥eu∥J
1.4142 4.814E-03 8.276E-03 1.040E-03
0.7071 4.261E-04 1.022E-03 1.445E-04

3.50 3.02 2.85
0.3536 3.370E-05 1.021E-04 1.316E-05

3.66 3.32 3.46
0.1768 1.175E-06 6.614E-06 9.816E-07

4.84 3.95 3.74

p = 4
h ∥eu∥L2 ∥eq∥L2 ∥eu∥J

1.4142 1.444E-03 3.898E-03 5.769E-04
0.7071 1.326E-04 4.524E-04 5.745E-05

3.45 3.11 3.33
0.3536 5.215E-06 3.006E-05 4.334E-06

4.67 3.91 3.73
0.1768 2.187E-07 1.925E-06 3.034E-07

4.58 3.97 3.84
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First, we study the cases m = 0.2 and m = 0.33. The results in Table 4.1
show higher EOC than one proposed by theory; namely, the values EOC are close
to p which is the rate of the convergence for regular problems. We suppose that
the superiority of the numerical experiments is not caused by the suboptimality
of the theoretical estimates but due to the fact that the lower regularity of the
solution appears only locally in this case. We remark that for m = 0.2, 0.33, the
assumption µ− 1 > (1 + β)/(3β − 1) from Theorem 24 holds for p ≥ 2.

Table 4.2: Barenblatt problem: errors and EOC, for m = 0.6.
p = 3

h ∥eu∥ϑ ∥eq∥L2 ∥eu∥J
1.4142 3.749E-03 1.469E-02 1.220E-03
0.7071 3.096E-04 2.011E-03 1.362E-04

3.60 2.87 3.16
0.3536 2.016E-05 2.531E-04 1.595E-05

3.94 2.99 3.09
0.1768 1.243E-06 3.167E-05 1.953E-06

4.02 3.00 3.03

p = 4
h ∥eu∥ϑ ∥eq∥L2 ∥eu∥J

1.4142 6.825E-04 2.849E-03 1.093E-04
0.7071 2.817E-05 1.955E-04 7.525E-06

4.60 3.86 3.86
0.3536 9.811E-07 1.256E-05 5.089E-07

4.84 3.96 3.89
0.1768 1.941E-07 7.929E-07 3.389E-08

2.34 3.99 3.91
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Figure 4.3: Barenblatt problem: errors versus h, for m = 0.2, m = 0.33 and
m = 0.6.

Table 4.3: Barenblatt problem: expected rates according to Theorem 24 and
EOC for cases m = 0.2, 0.33, 0.6.

m
p = 2 p = 3 p = 4

p 2β
1+β ∥eq∥L2 ∥eu∥ϑ p 2β

1+β ∥eq∥L2 ∥eu∥ϑ p 2β
1+β ∥eq∥L2 ∥eu∥ϑ

0.2 1.78 1.80 2.36 2.67 2.71 3.30 3.56 3.43 4.00
0.33 1.60 1.94 2.68 2.40 2.87 3.62 3.20 3.66 4.23
0.6 – – – – 2.95 3.85 – 3.94 3.93

In addition, we consider the case m = 0.6 where the assumption from Theorem
23 is fulfilled starting from p ≥ 7. Nevertheless, we have included the results for
p = 3 and p = 4 (cf. Tables 4.2–4.3 and Fig. 4.3) showing a higher EOC similarly
to the cases satisfying the assumption of the theorem.
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4.1.2 Barenblatt problem for m > 1
In Table 4.4 and Figs. 4.4–4.5 we demonstrate some experiments for m > 1 where
the regularity of the Barenblatt solution is lower and ϑ is only Hölder continuous,
which does not meet our assumptions (cf. (A4)). Moreover, no evidence on
convergence of the DG method has been found in the literature.

Here, we note a significant decrease of the EOC in comparison to the previous
case. Namely, for m = 1.5 we observe that the convergence is limited by the rate
2.5 starting from the polynomial approximation p = 3 (cf. Fig. 4.4). Moreover,
for m = 2 we notice the rate around (m + 1)/m as obtained in [77] for mixed
finite element method. In the last two columns of Table 4.4, we indicated our
observations on rates of convergence for several values of m > 1, where EOC
gradually drops (see Fig. 4.5).

Table 4.4: Barenblatt problem: EOC for cases m = 1.5, 2, 3, 4, 6 with proposed
rates of convergence.

m
p = 1 p = 2 p = 3 ∥eq∥L2 rate ∥eu∥ϑ rate

∥eq∥L2 ∥eu∥ϑ ∥eq∥L2 ∥eu∥ϑ ∥eq∥L2 ∥eu∥ϑ
1.5 1.00 1.97 2.01 2.43 2.52 2.46 min(p,m+ 1) min(p+ 1,m+ 1)
2 1.02 1.47 1.50 1.44 1.50 1.45 min(p, m+1

m
) min(p+ 1, m+1

m
)

3 0.91 1.00 1.00 0.99 0.99 0.97 min(p, 1) min(p+ 1, 1)
4 0.81 0.78 0.84 0.88 0.83 0.86 min(p, m

m+1) min(p+ 1, m
m+1)

6 0.70 0.68 0.69 0.72 0.70 0.74 min(p, 0.70) min(p+ 1, 0.70)
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Figure 4.4: Barenblatt problem: errors versus h, for m = 1.5.

4.2 Tracy problem
We consider the Richards’ equation (3.1) with g = 0 and with the Gardner consti-
tutive relations [44] where θ and K are defined by (1.12) and (1.13), respectively,
with parameters given in Table 4.5. We remark that it is not clear if this prob-
lem fulfills the assumptions (A1)–(A7); however we study it since it is a more
practical example than the previous ones.
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Figure 4.5: Barenblatt problem: errors versus h, for m > 1 and p = 3.

Table 4.5: Parameters for the Gardner model.
A KS θS θR SS

0.1 1.1 0.5 0 0

Let Ω be a rectangular domain (0, 1)×(0, 2). We prescribe the initial condition
u0 = −10 and the same value for the boundary conditions with an exception for
the edge (0, 1) × {2} denoted by Γ3 in Fig. 4.6 where we set

u = log(exp(Au0) + (1 − exp(Au0)) sin(π/A)).

Since there is an inconsistency between the initial and boundary conditions we
set the final time to be sufficiently small T = 10−4. We refer to [91, 87] for the
exact solution to the Tracy problem obtained by the Fourier method.

The computations are carried out on a sequence of uniform triangular mesh
with 100, 400, 1600 and 6400 elements with the mesh parameters h = 0.2828,
0.1414, 0.0707 and 0.0353, respectively. Exceptionally, for p = 3 the finest mesh
is omitted. The time variable is approximated by use of cubic polynomials and
the time-step is selected using adaptation. In Table 4.6 and Fig. 4.7, we present
errors in the L∞(0, T ;L2(Ω))-norm and the L2(0, T ;L2(Ω))-norm. We emphasize
that the error in the L∞(0, T ;L2(Ω))-norm is calculated as the maximum over the
time integration nodes, which may not be sufficiently accurate in this example
with inconsistent initial and boundary conditions. Thus, the errors calculated in
the L2(0, T ;L2(Ω))-norm are more reliable for the numerical study. We observe
a lower order of convergence comparing with sufficiently regular problems.
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Figure 4.6: Tracy problem: geometry of the domain [87].

Table 4.6: Tracy problem: errors and EOC.
h p ∥eu∥L2(L2) EOC ∥eu∥L∞(L2) EOC

0.2828 1 1.0535E-02 – 6.2586E-03 –
0.1414 1 4.2024E-03 1.32 3.4608E-03 0.85
0.0707 1 1.5476E-03 1.44 1.4368E-03 1.26
0.0353 1 5.3082E-04 1.54 5.0843E-04 1.49
0.2828 2 3.4108E-03 – 2.8445E-03 –
0.1414 2 1.2480E-03 1.45 1.1796E-03 1.27
0.0707 2 4.0830E-04 1.61 3.9637E-04 1.57
0.0353 2 8.9429E-05 2.20 8.4325E-05 2.23
0.2828 3 1.5227E-03 – 1.3411E-03 –
0.1414 3 5.2839E-04 1.53 4.9602E-04 1.43
0.0707 3 1.3576E-04 1.96 1.3262E-04 1.90
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Figure 4.7: Tracy problem, errors versus h.
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5. Temporal discretization
Within this chapter, we derive fully discrete numerical schemes for the problems
introduced in Chapter 2. Namely, we discretize the temporal variable using the
DG method, obtaining the space-time discontinuous Galerkin (STDG) method.
To do so, we first define the suitable space-time partition and functional spaces.
Moreover, we define the space of polynomial functions that have a varying poly-
nomial degree on different elements, by virtue of which we define the higher-order
STDG.

5.1 Space-time partition and function spaces
For r > 1, r ∈ N we define a partition

0 = t0 < t1 < · · · < tr = T

and divide the time interval [0, T ] into subintervals

Im = (tm−1, tm).

Additionally, we denote the closure of a subintermal Im as

Īm = [tm−1, tm],

and we introduce temporal parameters

τm = tm − tm−1, τ = max
m=1,...,r

τm.

Therefore, the partition of the time interval is given by

[0, T ] = ∪r
m=1Īm,

where Im ∩ In = ∅ for m ̸= n, m,n = 1, . . . , r.
For a function v defined in [0, T ], we introduce the notation of the jump with

respect to the time variable as

{v}m = v+
m − v−

m,

where
v±
m = v(t±m) = lim

t→t±m

v(t).

For each time instant tm, m = 0, 1, . . . , r and interval Im, m = 1, . . . , r, we
define a triangulation Th,m of the domain Ω as described in Section 2.2. We
may notice that the triangulations Th,m may differ for different time levels; a
one-dimensional example is depicted in Fig. 5.1.

In the sequel, we update the notation from Section 2.2 by adding a subscript
m as we have denoted the time dependent grids Th,m (previously Th). Namely,
we denote by Fh,m the system of all faces of all elements K ∈ Th,m; in particular,

Fh,m = F I
h,m ∪ FB

h,m, FB
h,m = FD

h,m ∪ FN
h,m and F ID

h,m = F I
h,m ∪ FD

h,m,
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Th,0t0 = 0
I1

Th,1t1

......

Th,r−1tr−1

Ir

Th,rtr = T

Ω

K × I1

K × Ir

Figure 5.1: An illustration of the space-time partition in 1D.

where F I
h,m and FB

h,m are the inner and boundary edges, respectively. Moreover,
FD
h,m and FN

h,m are edges on the boundary ∂ΩD and ∂ΩN , respectively. Further-
more, we define the spatial parameters

h = max
m=1,...,r

hm, hm = max
K∈Th,m

hK , hK = diam(K) for K ∈ Th,m.

Now, we may proceed with defining the functional space over the space-time
partitions. Over a triangulation Th,m, for each k ∈ N, we define the broken
Sobolev space of scalar functions

Hk(Ω, Th,m) = {v ∈ L2(Ω) : v|K ∈ Hk(K) ∀K ∈ Th,m},

equipped with the seminorm

|v|Hk(Ω,Th,m) =
(︄ ∑︂
K∈Th,m

|v|2Hk(K)

)︄1/2

.

We keep the notation of jump and average value (cf. (2.3)) of v ∈ Hk(Ω, Th,m)
Analogously to (2.7), for p ≥ 1 we define the finite-dimensional space at each

time level tm

Sh,p,m = {v ∈ L2(Ω) : v|K ∈ Pp(K) ∀K ∈ Th,m}.

For each element K ∈ Th,m we denote by πK,p,m the L2-projection of some
v ∈ L2(K) to the space Pp(K),∫︂

K
(πK,p,mv − v)φ dx = 0 ∀φ ∈ Pp(K). (5.1)

Thus, for v ∈ L2(Ω) we have that

(Πh,p,mv)|K := πK,p(v|K) ∀K ∈ Th,m.
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We may define the space of space-time dependent discontinious polynomials
on Ω × (0, T )

Sτ,qh,p = {v ∈ L2(QT ) : v(x, t)|Im =
q∑︂
i=0

tivm,i(x),

vm,i ∈ Sh,p,m, i = 0, . . . , q, m = 1, . . . , r},

and the space of piecewise polynomial functions on a time layer

Sτ,qh,p,m = {v ∈ L2(Ω × Im) : v(x, t) =
q∑︂
i=0

tivm,i(x),

vm,i ∈ Sh,p,m, i = 0, . . . , q}, m = 1, . . . , r.

Moreover, to define an adaptive algorithm that allows polynomial approxima-
tion degrees to vary on different elements, we shall need to modify the polynomial
spaces above; namely, let us denote the set of local polynomial degrees as

p = {pK , K ∈ Th,m}.

Thus, we define the space of space dependent polynomials

Sh,p,m = {v ∈ L2(Ω) : v|K ∈ PpK
(K) ∀K ∈ Th,m},

and the space of piecewise polynomial functions on Ω × (0, T )

Sτ,qh,p = {v ∈ L2(QT ) : v(x, t)|Im =
q∑︂
i=0

tivm,i(x),

vm,i ∈ Sh,p,m, i = 0, . . . , q, m = 1, . . . , r}.

Additionally, we define the space of piecewise polynomial functions on a time
layer

Sτ,qh,p,m = {v ∈ L2(Ω × Im) : v(x, t) =
q∑︂
i=0

tivm,i(x),

vm,i ∈ Sh,p,m, i = 0, . . . , q}, m = 1, . . . , r. (5.2)

Clearly, it holds

v|Ω×Im ∈ Sτ,qh,p,m ∀v ∈ Sτ,qh,p, m = 1, . . . , r.

5.2 STDG discretization
First, we shall derive the fully discrete scheme of the Ψ-formulation of Richards’
equation (2.1), i.e., we complete the discretization of the scheme given by Defini-
tion 2. Prior to it, we need to interpret the forms given by (2.17)–(2.19), (2.15)
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in terms of the triangulations Th,m, namely,

ah,m(ψ; Ψ, v) = ãh,m(ψ; Ψ, v) + Jh,m(Ψ, v), (5.3)

ãh,m(ψ; Ψ, v) =
∑︂

K∈Th,m

∫︂
K

K(ψ)∇Ψ · ∇v dx

−
∑︂

Γ∈FID
h,m

∫︂
Γ

(︂
⟨K(ψ)∇Ψ⟩ · n[v]

+ Θ ⟨K(v)∇v⟩ · n[Ψ]
)︂
dS, (5.4)

Jh,m(Ψ, v) =
∑︂

Γ∈FID
h,m

∫︂
Γ
κ[Ψ][v]dS (5.5)

ℓh,m(v) = (g, v) + (gN , v)N − Θ
∑︂

Γ∈FD
h,m

∫︂
Γ

n · ∇vΨDdS, (5.6)

where κ is defined by (2.16), and for Θ = −1, Θ = 0 and Θ = 1, the form
ah,m is the nonsymmetric (NIPG), incomplete (IIPG), and symmetric (SIPG)
approximation of the diffusive form.

Due to the consistency of the semidiscrete DG scheme (cf. Definition 2), for
the exact solution Ψ (where ψ = Ψ − z) and some v ∈ Sτ,qh,p it holds

(∂tϑ(ψ), v) + ah,m(ψ; Ψ, v) = ℓh,m(v).

We integrate the equation above over a time interval Im, m = 1, . . . , r, so that∫︂
Im

(∂tϑ(ψ), v) dt+
∫︂
Im

ah,m(ψ; Ψ, v) dt =
∫︂
Im

ℓh,m(v) dt.

Then, we apply the integration by parts to the first integral above∫︂
Im

(∂tϑ(ψ), v) dt = −
∫︂
Im

(ϑ(ψ), ∂tv) dt

+ (ϑ(ψ)|−m, v|−m) − (ϑ(ψ)|+m−1, v|+m−1). (5.7)

Due to continuity of ϑ (cf. the assumption (H1)), and assuming Ψ ∈ H2(Ω; Th,m)
(hence, ψ ∈ H2(Ω; Th,m)), m = 0, . . . , r, we have that

ϑ(ψ)|+m−1 = ϑ(ψ)|−m−1, m = 1, . . . , r.

Thus, (5.7) can be rewritten as∫︂
Im

(∂tϑ(ψ), v) dt = −
∫︂
Im

(ϑ(ψ), ∂tv) dt (5.8)

+ (ϑ(ψ)|−m, v|−m) − (ϑ(ψ)|−m−1, v|+m−1). (5.9)

We define the form

Ah,m(ψ; Ψ, v) =
∫︂
Im

(︂
− (ϑ(ψ), ∂tv) + ah,m(ψ; Ψ, v) − ℓh,m(v)

)︂
dt

+ (ϑ(ψ)|−m, v|−m) − (ϑ(ψ)|−m−1, v|+m−1). (5.10)
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Definition 6. We say that a function Ψhτ ∈ Sτ,qh,p is a STDG approximate solution
of problem (2.1), if

Ah,m(Ψhτ − z; Ψhτ , v) = 0 ∀v ∈ Sτ,qh,p,m, m = 1, . . . , r (5.11)

with Ψhτ |−0 = Πh,p,0Ψ0.

Furthermore, if we choose different polynomial space, we get an hp-STDG
method.

Definition 7. We say that a function Ψhτ ∈ Sτ,qh,p is an hp-STDG approximate
solution of problem (2.1), if

Ah,m(Ψhτ − z; Ψhτ , v) = 0 ∀v ∈ Sτ,qh,p,m, m = 1, . . . , r (5.12)

with Ψhτ |−0 = Πh,p,0Ψ0.

In the similar manner, we discretize the ψ-formulation of Richards’ equation
(2.2). Namely, we introduce the forms (cf. (2.22))

Āh,m(ψ; Ψ, v) = Ah,m(ψ; Ψ, v) +
∫︂
Im

bh,m(ψ; v) dt, (5.13)

bh,m(ψ; v) =
∑︂

K∈Th,m

∫︂
K

K(ψ)e2 · ∇v dx−
∑︂

Γ∈FID
h,m

∫︂
Γ
H(ψ(L), ψ(R),n)vdS.

(5.14)

Definition 8. We say that a function ψhτ ∈ Sτ,qh,p is an hp-STDG approximate
solution of problem (2.2), if

Āh,m(ψhτ ;ψhτ , v) = 0 ∀v ∈ Sτ,qh,p,m, m = 1, . . . , r (5.15)

with ψhτ |−0 = Πh,p,0ψ0.

Now, when we have discretized the problems (2.1) and (2.2), we may proceed
with finding their solutions. Namely, in the next chapter, we propose a suitable
solution strategy.
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6. Solution strategy
In this chapter, we proceed with finding the solution of the discrete schemes
given by Definitions 7–8. We give their algebraic interpretations and then define
a Newton-like method and the Anderson acceleration. In addition, we provide
a numerical study of these methods on a hydraulic dam example. Moreover,
we introduce the concept of mesh adaptation and define the anisotropic hp-
STDG method. Finally, we make a comparison between the Ψ-formulation and
ψ-formulation of Richards’ equation using a single ring infiltration experiment.

6.1 Algebraic system
The equations (5.12) and (5.15) represent r-systems of nonlinear algebraic equa-
tions, i.e., on each time subinterval Im, m = 1, . . . , r there is a system of nonlinear
algebraic equations. Each of the algebraic systems has Nm equations, where

Nm = dim(Sτ,qh,p,m) = (q + 1)
∑︂

K∈Th,m

(pK + 1)(pK + 2)
2 .

Furthermore, we denote

Ψm
hτ = Ψhτ |Ω×Im ∈ Sτ,qh,p,m, m = 1, . . . , r.

Let Bh,m = {φi(x, t)}Nm
i=1 be a basis of the space Sτ,qh,p,m, m = 1, . . . , r. Then

we may express the solution Ψm
hτ ∈ Sτ,qh,p,m in terms of the basis Bh,m as

Ψm
hτ =

Nm∑︂
j=1

ξm,jφj(x, t),

where ξm,j, j = 1, . . . , Nm are the basis coefficients of Ψm
hτ with respect to the

basis Bh,m. We define a vector valued mapping F h,m : RNm → RNm as

F h,m(ξm) = {Ah,m(Ψm
hτ − z; Ψm

hτ , φi)}Nm
i=1, ξm = {ξm,j}Nm

j=1, m = 1, . . . , r.

Hence, the system (5.12) from Definition 7 is equivalent to the problem: Find ξm
such that

F h,m(ξm) = 0, m = 1, . . . , r. (6.1)
On the other hand, let us denote

ψmhτ = ψhτ |Ω×Im ∈ Sτ,qh,p,m, m = 1, . . . , r,

where ψhτ is the solution to (5.15), and let ξ̄m be the algebraic representation of
it. Thus, we define

F̄ h,m(ξ̄m) = {Āh,m(ψmhτ ;ψmhτ , φi)}Nm
i=1, ξ̄m = {ξ̄m,j}Nm

j=1, m = 1, . . . , r.

Therefore, instead of (5.15), we may consider: Find ξ̄m such that

F̄ h,m(ξ̄m) = 0, m = 1, . . . , r. (6.2)
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The systems (6.1)–(6.2) are strongly nonlinear, and thus, it is often challenging
to solve them numerically. Namely, for the considered degenerate parabolic prob-
lems, the Newton method fails due to singularity of the Jacobian matrix caused
by vanishing dK(ψ)/dψ and ϑ′(ψ). A study on iterative methods for Richards’
equation is done in [60]. Other methods were proposed to deal with the nonlin-
ear algebraic system, e.g., modified Picard method [60], L-scheme [86, 74, 75],
parametrization techniques [12, 7], etc. We follow the approach from [34] that
uses a Newton-like method and the Anderson acceleration originally designed to
improve the convergence of the Picard method [95].

6.1.1 Formal linearization
In what follows we formally linearize the nonlinear system F h,m given by (6.1)
(also (6.2)). If we apply again the partial integration on the first term on the
right-hand side of (5.7), we obtain the identity∫︂

Im

(∂tϑ(ψ), v) dt =
∫︂
Im

(∂tϑ(ψ), v) dt+ ({ϑ(ψ)}m−1, v|+m−1). (6.3)

Moreover, we approximate the last term from above as

{ϑ(ψ)}m−1 =
∫︂ ψ|+m−1

ψ|−m−1

ϑ(s)ds ≈ ϑ′(ψ)(ψ|+m−1 − ψ|−m−1) = ϑ′(ψ){ψ}m−1. (6.4)

Therefore, by virtue of (6.3), (5.8), (6.4), and noting that ∂tψ = ∂t(Ψ−z) = ∂tΨ,
and {ψ}m−1 = {Ψ}m−1, we obtain

−
∫︂
Im

(ϑ(ψ), ∂tv) dt+ (ϑ(ψ)|−m, v|−m) − (ϑ(ψ)|−m−1, v|+m−1)

=
∫︂
Im

(∂tϑ(ψ), v) dt+ ({ϑ(ψ)}m−1, v|+m−1)

=
∫︂
Im

(ϑ′(ψ)∂tψ, v) dt+ ({ϑ(ψ)}m−1, v|+m−1)

=
∫︂
Im

(ϑ′(ψ)∂tψ, v) dt+ (ϑ′(ψ){ψ}m−1, v|+m−1) (6.5)

=
∫︂
Im

(ϑ′(ψ)∂tΨ, v) dt+ (ϑ′(ψ){Ψ}m−1, v|+m−1). (6.6)

We define the forms

ALh,m(ψ; Ψ, v) =
∫︂
Im

(︂
(ϑ′(ψ)∂tΨ, v) + ah,m(ψ; Ψ, v)

)︂
dt+ (ϑ′(ψ)Ψ|+m−1, v|+m−1)

(6.7)

Lh,m(ψ; Ψ, v) =
∫︂
Im

lh,m(v) dt− (ϑ′(ψ)Ψ|−m−1, v|+m−1). (6.8)

We have an approximation of the form Ah,m

Ah,m(ψ; Ψ, v) ≈ ALh,m(ψ; Ψ, v) − Lh,m(ψ; Ψ, v). (6.9)

Furthermore, we define the flux matrix Ch,m and the vector qh,m as

Ch,m(ξ̄) = {ALh,m(ψ;φi, φj)}Nm
i,j=1, (6.10)

qh,m(ξ̄) = {Lh,m(ψ;ψ, φi)}Nm
i=1, (6.11)
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where φi, i = 1, . . . , Nm are the basis functions from Bh,m and ξ̄ ∈ RNm is the
algebraic representation of ψ ∈ Sτ,qh,p,m using the basis Bh,m. Hence, we have that

F h,m(ξm) ≈ Ch,m(ξm)ξm − qh,m(ξm), m = 1, . . . , r. (6.12)

The flux matrix Ch,m is sparse and has a block structure; namely, each block-row
of Ch,m corresponds to an element K ∈ Th,m. Moreover, the sparsity of Ch,m is
equal to sparsity of the Jacobian matrix DF h,m(ξ)/Dξ. Therefore, we shall use
the approximation following from (6.12)

Ch,m(ξ) ≈ DF h,m(ξ)
Dξ

. (6.13)

In the similar way, we linearize the nonlinear system (6.2). Namely, we define

Ā
L

h,m(ψ; Ψ, v) =
∫︂
Im

(︂
(ϑ′(ψ)∂tΨ, v) + ah,m(ψ; Ψ, v) + bh,m(ψ; Ψ, v)

)︂
dt

+ (ϑ′(ψ)Ψ|+m−1, v|+m−1) (6.14)

C̄h,m(ξ̄) = {ĀLh,m(ψ;φi, φj)}Nm
i,j=1, (6.15)

so that the resulting approximation of the problem (6.2) is

F̄ h,m(ξ̄m) ≈ C̄h,m(ξ̄m)ξ̄m − qh,m(ξ̄m), m = 1, . . . , r. (6.16)

6.1.2 Damped Newton-like method
We define a damped Newton-like method [27] which generates a sequence of
approximations {ξlm}l to the solution ξm of the nonlinear system (6.1) using
Algorithm 1. Analogously, the algorithm is defined for the system (6.2).

Algorithm 1 Newton-like method
Let ξ0

m ∈ RNm be given.
for l = 0, 1, . . . do

(a) Find dl ∈ RNm such that

Ch,m(ξlm)dl = −F h,m(ξlm). (6.17)

(b) Set
ξl+1
m = ξlm + λldl, (6.18)

where λl ∈ (0, 1] is a damping parameter such that

δl :=

⃦⃦⃦
F h,m(ξl+1

m )
⃦⃦⃦

⃦⃦⃦
F h,m(ξlm)

⃦⃦⃦ < 1. (6.19)

(c) If the stopping criterion is met, then STOP.

The role of the damping parameter is to improve the convergence of the New-
ton method when the initial guess is far from the solution ξm. At each iteration,
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we set λl = 1, and if needed we multiply it by 0.75 until the criterion (6.19) is ful-
filled. Hence, to obtain the next iteration ξl+1

m it is usually necessary to evaluate
the matrix F h,m several times.

Furthermore, if we set λ = 1 in (6.18) and combine (6.18) with (6.17), we get

ξl+1
m = ξlm − Ch,m(ξlm)F h,m(ξlm) =: G(ξlm). (6.20)

Especially, if the mapping G is contractive, the relation (6.20) is a Picard iter-
ation. As mentioned earlier, the Anderson acceleration has been developed to
improve the convergence of this method. We present this technique in Algorithm
2.

Algorithm 2 Anderson acceleration
Let n ∈ N and ξ0

m ∈ RNm be given.
Set ξ1

m := G(ξ0
m).

for l = 0, 1, . . . do
(a) Set nl := min(l, n).
(b) Set gi := G(ξim) − ξim, i = l − nl, . . . , l.
(c) Find αi, i = 0, . . . , nl such that ∑︁nl

i=0 αi = 1 and

(α0, . . . , αnl
) = arg min(β0,...,βnl

)

⃦⃦⃦⃦
⃦
nl∑︂
i=0

βigl−i

⃦⃦⃦⃦
⃦.

(d) Set ξl+1
m = ∑︁nl

i=0 αigl−i.
(e) If the stopping criterion is met, then STOP.

Clearly, Algorithm 1 with λl = 1, l = 0, 1, . . . is equivalent to Algorithm 2
with n = 1. In Subsection 6.1.4, we study the Newton method with and without
Anderson acceleration on a numerical example.

We discuss the stopping criterion mentioned in Algorithms 1–2 in the sub-
sequent subsection. Finally, we mention that the linear system (6.17) is solved
using GMRES method with the block ILU(0) preconditioner [81].

6.1.3 Stopping criteria
We specify the stopping criterion in Algorithms 1–2 and determine the length of
the time step τm, m = 1, . . . , r in (5.12)–(5.15). To preserve the accuracy and
efficiency of the computations we should avoid too large or too small time steps
and too strong or too weak stopping criteria in Algorithms 1–2. In particular, we
balance three types of error, namely, errors arising from

• space discretization,

• time discretization,

• nonlinear algebraic system computation.

We use a technique from [35] that uses approximation of the mentioned errors in
a dual norm.
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Let ξlm be the output of Algorithm 1 (or Algorithm 2) and Ψ̃hτ ∈ Sτ,qh,p be the
solution of (5.12) that corresponds to ξlm. Moreover, we denote

Ψ̃hτ |Im =: Ψ̃m

hτ ∈ Sτ,qh,p,m, m = 1, . . . , r. (6.21)

Let us note that the solution above does not fulfill the relation (5.12). Hence, we
define

• algebraic estimator

ηmA (Ψ̃m

hτ , v) = max
v∈Sτ,q

h,p,m

v ̸=0

Ah,m(Ψ̃m

hτ − z; Ψ̃m

hτ , v)
∥v∥X

, (6.22)

• space-algebraic estimator

ηmSA(Ψ̃m

hτ , v) = max
v∈Sτ,q

h,p+1,m

v ̸=0

Ah,m(Ψ̃m

hτ − z; Ψ̃m

hτ , v)
∥v∥X

, (6.23)

• time-algebraic estimator

ηmTA(Ψ̃m

hτ , v) = max
v∈Sτ,q+1

h,p,m

v ̸=0

Ah,m(Ψ̃m

hτ − z; Ψ̃m

hτ , v)
∥v∥X

, (6.24)

where

∥v∥X :=
(︄∫︂

Im

∑︂
K∈Th,m

(︂
∥v∥2

L2(K) + ∥∇v∥2
L2(K) + ∥∂tv∥2

L2(K)

)︂
dt
)︄1/2

,

and the spaces Sτ,qh,p+1,m and Sτ,q+1
h,p,m are defined analogously to (5.2). The maxima

in (6.22)–(6.24) can be obtained using the Lagrange multipliers (see [32]).
The estimators (6.22)–(6.24) are used to define the stopping criterion in Al-

gorithms 1–2 and to set the length of the time step. Namely, at each time level,

• we solve (5.12) using either Algorithm 1 or Algorithm 2 until satisfying the
following condition

ηmA ≤ cA min(ηmSA, ηmTA), m = 1, . . . , r, (6.25)

where cA > 0 is a constant,

• we set the condition

ηmTA ≤ cTη
m
SA, m = 1, . . . , r, (6.26)

where cT ∈ [0.1, 1). If this condition is not fulfilled then the computation
is repeated for a smaller time step, otherwise, we set

τ optm := τm

(︄
cT
ηmSA
ηmTA

)︄ 1
q+1

. (6.27)
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Table 6.1: Landfill dam: Parameters for the van Genuchten-Mualem model cor-
responding to different materials.

Parameters Gravel Clay Silt clay
α 250.0 0.8 2.0
n 1.41 1.20 1.41
m 0.291 0.167 0.291
KS 4.630 × 10−7 5.556 × 10−9 1.238 × 10−8

θS 0.60 0.38 0.45
θr 0.0000 0.0600 0.0067
SS 0.01 0.01 0.01

6.1.4 Numerical study of nonlinear solvers
In what follows, we compare Algorithms 1–2 for the solution of the nonlinear
algebraic system (6.1) on a practical example. Namely, we consider a simulation
of a nonhomogeneous landfill dam, which is consisted of three materials: gravel,
clay and silt clay (see Fig. 6.1). For the closure law, we choose the van Genuchten-
Mualem model [92, 66] defined by (1.14)–(1.15) with parameters specified in Table
6.1. The computations within this example are performed on the Karlin cluster
[101] using the in-house code ADGFEM [31].

The computational domain Ω with the boundary ∂Ω = ∂ΩD ∪ ∂ΩN ∪ ∂ΩE,
where by ∂ΩE is denoted the seepage face boundary (cf. Section 1.4), is depicted
in Fig. 6.1. In particular, on ∂ΩD we prescribe the Dirichlet boundary condition
ΨD = 15, while on ∂ΩN we have the homogeneous Neumann boundary condition.
As described in Chapter 1, the seepage boundary condition is approximated using
these two type of boundary conditions (cf. (1.16)). The domain Ω is discretized
using a quasi-uniform grid presented in Fig. 6.2. The initial condition is set to be
Ψ0 = 0. We remark that there is an inconsistency between boundary and initial
conditions, which may affect computations around t ≈ 0. We set the final time
to be T = 5 days.

We use the Ψ-formulation of Richards’ equation to model this experiment. In
particular, we use the STDG method (cf. Definition 6) to solve (2.1) with the
IIPG variant of the DG method and fixed polynomial degree p = 2. The time
variable is approximated using piecewise linear functions and the time step is
chosen adaptively. In Fig. 6.3, the evolution of the pressure head ψ at different
time instances is presented.

The arising nonlinear algebraic systems (6.1) are solved using either Algo-
rithm 1 or Algorithm 2. Table 6.2 (see also Figs. 6.4–6.5) shows the number
of nonlinear iterations produced by these two algorithms, where the constant cA
from the stopping criterion (6.25) is set to be 5 · 10−3. In this example, we note
the superiority of the Anderson acceleration applied to the Newton method, i.e.,
Algorithm 2. Moreover, in Figs. 6.4–6.5, the error estimators, namely, the alge-
braic estimator ηmA , space-algebraic estimator ηmSA, and time-algebraic estimator
ηmTA (cf. (6.22)–(6.24)), together with the size of the time step τm, are plotted
with respect to iterations in time. In particular, Fig. 6.4 shows the mentioned
quantities for Algorithm 1 with respect to time steps, where each dot corresponds
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Figure 6.1: Landfill dam: domain geometry [34].

Figure 6.2: Landfill dam: the quasi-uniform mesh used in computations.
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Table 6.2: Landfill dam: Computational data obtained using different nonlinear
solvers.

Method #τm #refused τm #nonlinear it. CPU[s]
Algorithm 1 434 222 9 649 28757.60
Algorithm 2 179 11 2 405 6102.40

to one nonlinear iteration. In the first third of time iterations, we note the in-
crease of the size of time step at each iteration. After this, the convergence of
Algorithm 1 is not always achieved; therefore the evaluations are repeated with
a smaller size of time step. On contrary, Fig. 6.5 shows that Algorithm 2 is
more efficient in this case, since almost at each time step the condition (6.25) is
fulfilled.

On the other hand, if we decrease the constant cA from (6.25), then these
two algorithms exhibit different behavior. Namely, in our second test case (see
Figs. 6.6–6.7), we set cA = 10−3 and consider the same settings. Algorithm 2
seems to fail since after several iterations the condition for the convergence is
not satisfied and the time step is set to be minimal (around 10−6) in the rest of
computations leading to an incomplete simulation. However, using Algorithm 1
(the Newton method without the Anderson acceleration) the simulation is suc-
cessfully completed in 65 040 seconds using 422 iterations in time and 327 384
total accumulated nonlinear iterations, which is computationally more expensive
comparing to Table 6.2.

By this example, we show that the technique presented in Subsection 6.1.3,
originally developed for numerical simulation of time dependent compressible
flow, does not always work for the porous media flow application. Namely, the
key difference is that in our example we have a nonlinearity in the time depen-
dent term ‘ϑ(ψ)’ instead of the linear term as in the mentioned compressible flow
model; therefore, the structure of the flux matrices Ch,m (6.10) for these two
problems are different, where the contribution of the nonlinear term is nonnegli-
gible.

6.2 Regularization of constitutive relations
As mentioned in Section 1.3, Richards’ equation degenerates when the flow is
transiting from unsaturated to saturated regions, which makes derivatives of the
constitutive laws vanish. In this section, we recall the van Genuchten-Mualem
model (1.14)–(1.15) from Section 1.2 and define a modification of these constitu-
tive relations in critical regions, particularly, when ψ → 0.

In the case of fast diffusion type of degeneracy, we have that SS = 0 and ψ ≥ 0,
which yields C(ψ) = ϑ′(ψ) = 0 and the resulting equation becomes elliptic. To
avoid this, we set SS > 0. Another approach [76] suggests redefining θ(ψ) as
θ(ψ) + ϵψ, where ϵ > 0 is a small regularization parameter. Conversely, in the
case of the slow diffusion type of degeneracy, higher values of α and n produce
steep gradients in (1.14) when ψ → 0 (cf. Fig. 1.3). The point ψ = α−1 appears
as a numerical singularity and affects the convergence [10].

We follow the regularization proposed in [34]; on a interval (−ϵ, 0), for some
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Figure 6.3: Landfill dam: the pressure head at t = 0.04 day (1st row left), t = 1
day (1st row right), t = 3 days (2nd row left) and t = 5 days (2nd row right).
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Figure 6.4: Landfill dam: error estimators ηmA , ηmSA, ηmTA defined by (6.22)–(6.24)
and the size of the time step τm versus time steps for Algorithm 1 with cA =
5 · 10−3.
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Figure 6.5: Landfill dam: error estimators ηmA , ηmSA, ηmTA defined by (6.22)–(6.24)
and the size of the time step τm versus time steps for Algorithm 2 with cA =
5 · 10−3.
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Figure 6.6: Landfill dam: error estimators ηmA , ηmSA, ηmTA defined by (6.22)–(6.24)
and the size of the time step τm versus time steps for Algorithm 1 with cA = 10−3.
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Figure 6.7: Landfill dam: error estimators ηmA , ηmSA, ηmTA defined by (6.22)–(6.24)
and the size of the time step τm versus time steps for Algorithm 2 with cA = 10−3.
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Figure 6.8: The original retention water capacity C(ψ) for the van Genuchten
model (1.14) with their regularization for the parameter ϵ = 0.05 and with the
parameters given in Table 1.1 and SS = 0.

small ϵ > 0, we replace the capillary capacity function with a cubic polynomial
function which all together is a continuously differentiable function over whole
its domain. The cubic polynomial function is defined using values C(0), C(−ϵ),
C ′(0), and C ′(−ϵ). We set C ′(0) = 0, and approximate C ′(−ϵ) using central
difference formula. We define a modified ϑ such that (1.9) is fulfilled. An example
of such regularization for ϵ = 0.05 is illustrated in Fig. 6.2. Analogously, we
define a regularization for the constitutive law Kr(ψ). In the next chapter, we
investigate the influence of regularization using numerical experiments. In our
examples, we do not include the case ψ → −∞; we refer to [67, 50, 62] for the
regularization techniques in this case.

6.3 Mesh adaptation
Within this section we introduce an hp-adaptation technique developed in [30] and
formulate an algorithm that shall be used later in numerical examples. Namely,
the anisotropic hp-mesh adaptation technique uses a high order degree polynomial
approximation on anisotropic elements, which results in the reduction of degrees
of freedom without loss of accuracy.

This technique is based on minimizing degrees of freedom for the prescribed
tolerance ω > 0 for the interpolation error in the L∞(0, T ;L2(Ω))-norm. We
define the system of triangulations {Th,m}m=1,...,r and set of polynomial degrees
p (consequently, Sh,p,m) such that

∥Ψ(tm) − Πh,p,mΨ(tm)∥L2(Ω) ≤ ω, m = 1, . . . , r, (6.28)
N ′
m = dim(Sh,p,m) is minimal, m = 1, . . . , r, (6.29)

where Ψ is the exact solution. Clearly, the exact solution is not known, however,
it can be approximated from the approximate solution using a high order least-
square reconstruction [36].

We refer to [30] for the detailed definitions and construction of anisotropic
elements and meshes. Here, we mention the choice of the polynomial approxima-
tion degree p on an anisotropic element at node x̄ ∈ Ω is made. Namely, we first
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define the density of the number of degrees of freedom at x̄ as

ηx̄,p := 1
|Kx̄,p|

(p+ 1)(p+ 2)
2 ,

where Kx̄,p is the theoretical size of a mesh element with barycenter at x̄ such
that the interpolation error on the interpolant of degree p + 1 is equal to the
constant. This constant is set from the equidistribution principle such that

∥Ψ − Πh,p,mΨ∥L2(K) ≈ ω√︂
#Th,m

∀K ∈ Th,m.

Then, we set the polynomial degree such that the density of the number of degrees
of freedom is minimal, i.e., mathematically,

px̄ := arg min
p∈N

ηx̄,p.

The optimization technique of the shape and orientation of mesh elements is
carried out by a minimization of the interpolation error where the size of the
element is kept fixed.

Algorithm 3 Anisotropic hp-STDG method
Let ω > 0, Th,1, and τ1 be given.
Set t̄ = 0.
for m = 1, . . . do

(a) Perform one time step, i.e., solve (6.17) (or (5.12)) using Algorithm 2
until the condition (6.25) is fulfilled. Set Ψ̃m

hτ using (6.21).
(b) If the condition (6.26) is violated decrease τm and repeat (a).
(c) Set optimal value τm.
(d) From Ψ̃m

hτ (t−m) reconstruct Ψ̃m and verify⃦⃦⃦
Ψ̃(tm) − Πh,p,mΨ̃(tm)

⃦⃦⃦
L∞(Ω)

∈ [ω/2, 2ω]. (6.30)

(e) If (6.30) is violated, then create a new mesh Th,m with the corresponding
set p and repeat (a).

(f) Set
t̄ := t̄+ τm.

If t̄ ≥ T , then STOP.
(g) Set

Th,m+1 := Th,m,
τm+1 := τm.

In practice, the condition
⃦⃦⃦
Ψ̃(tm) − Πh,p,mΨ̃(tm)

⃦⃦⃦
L∞(Ω)

≈ ω (cf. (6.28)) is
unlikely to be fulfilled, therefore, the condition (6.30) is suggested in Algorithm
3. In addition, too small values of the interpolation error are not considered and
the re-meshing is performed in this case.
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Figure 6.9: Single ring infiltration: geometry of the domain.

6.4 Numerical example
In what follows, we investigate the performance of Algorithm 3 applied on Ψ-
formulation and ψ-formulation of Richards’ equation. The experiments are run
on the CPU architecture Intel(R) Core(TM) i7 using the in-house code ADGFEM
[31].

A common application of the flow through a variably saturated medium is a
single ring infiltration process. This process consists of the insertion of a solid
ring into the soil to a given depth and adding of water inside of the pipe.

We simulate this process on a rectangular domain Ω = (0, 1.3) × (0, 1). The
geometry of the domain is given in Fig. 6.9; namely, the Dirichlet boundary
condition ΨD = 1.05 is prescribed on the border colored in red mimicking con-
stant flow of the water through the soil, while homogeneous Neumann boundary
condition is imposed on the rest of the boundary (colored in blue) meaning that
fluid cannot enter through the region. The initial condition is set to be Ψ0 = −2.

We apply Algorithm 3 to Ψ-formulation and ψ-formulation of Richards’ equa-
tion. Particularly, for the spatial discretization we use the IIPG method (cf.
Definition 2); at the initial time step the polynomial degree is set to p = 2, while
in the rest of the computation varying polynomial degrees are obtained using
hp-adaptivity technique described in Section 6.3. We use the fixed polynomial
degree in time q = 1. The initial mesh used at the step (a) of Algorithm 3 is
plotted in Fig. 6.10; it is a priori refined around the boundary ΩD due to the
inconsistency between boundary and initial conditions. The final time is set to
be 2 hours. We complement Richards’ equation with the van Genuchten-Mualem
constitutive laws with parameters from Table 1.1.

In Fig. 6.11 and Fig. 6.12 the simulations of the single ring experiment using
Ψ-formulation and ψ-formulation are presented, respectively. In particular, we
presented the hydraulic head on the left-hand side of Figs. 6.11–6.12 and the
polynomial distribution on grids at time levels t = 0.5, t = 1 and t = 2 hours
is shown on the right-hand side. The resulting hydraulic head simulation using
both formulations seems to be identical; however, we note different polynomial
degree distribution and, obviously, different grids generated by Algorithm 3.

Tables 6.3–6.4 (cf. Fig. 6.13) demonstrate the computational performances of
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Figure 6.10: Single ring infiltration: the mesh used at t = 0.

Algorithm 3 applied to Ψ-formulation and ψ-formulation, respectively, for several
tolerances ω > 0 for the interpolation error (6.28). We observe that the adaptive
algorithm leads to reduction of the number of degrees of freedom as well as the
number of accumulated nonlinear and linear iterations. Moreover, in Figs. 6.14–
6.15 we show the values for the interpolation error with respect to the physical
time, noting similar pattern in the behavior of the interpolation error in both
formulations. We mention that the tolerance for the interpolation error (6.28) is
set to be ω = 10−2 in Figs. 6.13–6.15.

We recall the balance of the water content (1.17) introduced in Section 1.5,
and the corresponding quantities, the water content at time t denoted by ∆Q(t)
(cf. (1.18)) and the boundary flux on the interval (0, t) denoted by F (t) (cf.
(1.20) (or (1.21))). Let us note that in this example the boundary flux through
∂Ω is equal to the flux through ∂ΩD. In Fig. 6.16, we plotted the boundary
flux (1.20) for Ψ-formulation and the boundary flux for ψ-formulation (1.21) for
several tolerances ω > 0. The figures on the left-hand side correspond to Ψ-
formulation, while on the right-hand side to ψ-formulation; moreover, the first
row corresponds to F (t) on the whole interval [0, T ], while the second and third
rows correspond to detailed view near to t = 0 and t = T , respectively. We note
that Algorithm 3 with lower tolerances exhibits a small oscillation around t = 0,
which is less notable in the case of ψ-formulation.

Finally, in Tables 6.5– 6.6 (cf. Fig. 6.17) we studied the influence of using
regularization of the constitutive laws mentioned in Section 6.2. We introduce
the quantity

V (t) = |∆Q(t) − F (t)|
max(|∆Q(t)|, |F (t)|) ,

standing for the relative violation of the balance of the water content, which
measures the conservativity of the numerical method. Hence, Tables 6.5– 6.6
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show the quantities ∆Q(t), F (t) and V (t), number of time steps, number of
accumulated nonlinear iterations and the time consumed for the computations at
time t = tr = 0.1 for different values of the regularization parameter ϵ > 0. We
observe similar behaviours for both formulations. In Fig. 6.17 we may see the
increase in the water content ∆Q(t) and the boundary flux F (t) with respect to
the increase of the regularization parameter ϵ > 0. As before, on the left-hand
side are shown the results for Ψ-formulation, while on the right-hand side the
ψ-formulation; in the first row are shown mentioned quantities on [0, tr], in the
second and third row are presented details near t = 0 and t = 0.1, respectively.
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Figure 6.11: Single ring infiltration: the hydraulic head at t = 0.5 (1st row), t = 1
(2nd row) and t = 2 (3rd row) obtained by solving the Ψ-formulation.
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Figure 6.12: Single ring infiltration: the hydraulic head at t = 0.5 (1st row), t = 1
(2nd row) and t = 2 (3rd row) obtained by solving the ψ-formulation.
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Table 6.3: Single ring infiltration: Ψ-formulation.
ω DoF #∆t #refused ∆t #Newton it. #GMRES it. CPU[s]

4E-02 1723 422 10 9 745 1 080 282 2140.90
2E-02 1786 510 21 12 620 1 738 890 2719.13
1E-02 2078 723 46 15 774 1 987 535 4334.95
8E-03 3743 1575 327 21 622 1 980 462 22151.64

Table 6.4: Single ring infiltration: ψ-formulation.
ω DoF #∆t #refused ∆t #Newton it. #GMRES it. CPU[s]

4E-02 1598 308 16 8 426 927 338 1349.83
2E-02 1761 407 23 12 183 1 370 133 2175.34
1E-02 2181 464 42 12 868 1 641 220 3777.91
8E-03 2966 735 165 12 068 1 495 364 6473.43
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Figure 6.13: Single ring infiltration: comparison of computational performance
between the Ψ-formulation and ψ-formulation for ω = 10−2.
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Figure 6.14: Single ring infiltration: the dependence of the error estimates on
tm ∈ [0, T ] for the Ψ-formulation.

10−6 10−5 10−4 10−3 10−2 10−1 100

t

10−2

‖ψ
(t
m

)
−

Π
h
,p
,m
ψ

(t
m

)‖
L

∞
(Ω

)

‖ψ(tm) − Πh,p,mψ(tm)‖L∞(Ω)

ω

Figure 6.15: Single ring infiltration: the dependence of the error estimates on
tm ∈ [0, T ] for the ψ-formulation.
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Figure 6.16: Single ring infiltration: the dependence of the actual flux F (t),
t ∈ (0, T ) with respect to different tolerances for the Ψ-formulation (left) and the
ψ-formulation (right): total view (1st row), the details near t = 0 (2nd row) and
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Table 6.5: Single ring infiltration: the water content ∆Q, the boundary flux
F and the relative violation of the balance of the water content V at the time
tr = 0.01 for regularization parameters ϵ for Ψ-formulation.

ϵ F (tr) ∆Q(tr) V (tr) #τm #nonlinear it. CPU[s]
1E-02 1.23E-03 1.16E-03 0.06 73 1 094 209.50
1E-03 1.20E-03 1.14E-03 0.05 80 1 350 325.61
1E-04 1.18E-03 1.14E-03 0.03 81 1 865 238.78

Table 6.6: Single ring infiltration: the water content ∆Q, the boundary flux
F and the relative violation of the balance of the water content V at the time
tr = 0.01 for regularization parameters ϵ for ψ-formulation.

ϵ F (tr) ∆Q(tr) V (tr) #τm #nonlinear it. CPU[s]
1E-02 1.23E-03 1.15E-03 0.06 75 1 259 221.31
1E-03 1.19E-03 1.14E-03 0.04 76 1 548 280.50
1E-04 1.21E-03 1.14E-03 0.06 83 1 369 233.69
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Figure 6.17: Single ring infiltration: the dependence of the actual flux F (t) and
water content ∆Q(t), t ∈ (0, T ), with respect to different regularization parame-
ters ϵ for the Ψ-formulation (left) and the ψ-formulation (right): total view (1st
row), the details near t = 0 (2nd row) and t = T (3rd row).
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Conclusion
In this thesis, we studied theoretically and numerically the DG method applied
to a porous media flow model. Chapter 1 introduces the notion of the porous
media flow, providing its principle laws and formulating its governing equation —
Richards’ equation. This equation is a nonlinear degenerate parabolic PDE whose
possible degeneracies have been addressed. Moreover, we defined the closure laws
and the balance law.

Within Chapter 2, we defined two formulations of Richards’ equation: Ψ-
formulation and ψ-formulation, whose primary variable is the hydraulic head
Ψ and the pressure head ψ, respectively. Afterward, we discretized the spatial
variable using the DG method and defined the semidiscrete schemes for both
formulations.

Chapters 3–4 are devoted to error analysis of the semidiscrete solution of
Richards’ equation obtained by the LDG method. Here, we assumed that the
active pore volume function ϑ is Lipschitz continuous with ϑ′ ◦ ϑ−1 Hölder con-
tinuous, which is aligned with the fast-diffusion type of degeneracy of the consid-
ered PDE. Due to the presence of the nonlinearities, we considered the expanded
mixed formulation of Richards’ equation, by virtue of which we defined the LDG
method. Moreover, the results on the stability of the semidiscrete solution were
obtained. Then, the error analysis is performed in a rather nonstandard way.
Namely, the standard approach resulted in an incomplete error estimate, where
a bound for the arising nonlinear term was further obtained using Gronwall’s
lemma implicitly. Finally, these two results are combined using the continuous
mathematical induction technique. The final a priori error estimate in L2-norm
and the jump form depends on the spatial parameter h and the Hölder coefficient
of the composition ϑ′ ◦ ϑ−1 indicating a lower order of convergence comparing
with the regular problems. The theoretical results are obtained for the 2D case;
however, an extension to the 3D case can be done straightforwardly. In addition,
an extension of a fully discrete scheme, such as Euler scheme or STDG scheme,
can be derived analogously. Future work may include derivation of optimal error
estimates or considering some other assumptions, e.g., the case when ϑ is Hölder
continuous or slow diffusion case of degeneracy.

In Chapter 4, we studied the convergence of the numerical method using
numerical examples, which showed a higher experimental order of convergence.
We suppose that the suboptimality of the theoretical rates is caused by the fact
that the low regularity of the solution appears locally in the given example. In
addition, we provided some examples outside the scope of the theoretical results.
A future extension to this can be done by finding other numerical examples
matching the assumption of our analysis.

The rest of the thesis is devoted to a practical application of the porous me-
dia flow. First, in Chapter 5, we introduced temporal discretization using the
DG method and define the hp-STDG method that uses higher-order polynomial
approximations including varying polynomial degrees with respect to the spa-
tial variable. Then, we formulated the fully discrete scheme. In Chapter 6, the
numerical schemes are interpreted as nonlinear algebraic systems and a Newton-
like solver and the Anderson acceleration technique are defined. Moreover, we
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presented a numerical study of the Newton-like method with and without the
Anderson acceleration using a landfill dam simulation. Furthermore, we defined
the anisotropic hp-STDG method that performs mesh refinement by minimizing
degrees of freedom for the prescribed tolerance for the interpolation error. Fi-
nally, we consider this method applied to the Ψ-formulation and ψ-formulation
of Richards’ equation on a single ring infiltration experiment. The computational
performance of both formulations has been compared, where we noted slight su-
periority of the ψ-formulation.

The future work may focus on derivation of a posteriori error estimates. There
are several types of a posteriori error estimates, e.g., a posteriori error estimates
based on estimation of residual in dual norm; however, their use for practical
problems is questionable. It seems to be more relevant to develop the goal ori-
ented error estimates, which can provide practically useful information about the
accuracy. Moreover, the research can be focused on adaptation of domain decom-
position techniques or parallelization of the algorithm, leading to more efficient
computation.
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[16] C. Cances, I.S. Pop, M. Vohraĺık, An a posteriori error estimate for vertex-
centered finite volume discretizations of immiscible incompressible two-phase
flow, Math. Comput. 83 (285), 153–188, (2014)

[17] P. Castillo, A review of the Local Discontinuous Galerkin (LDG) method
applied to elliptic problems, Appl. Numer. Math., 56, 1307–1313, (2006)

[18] V. Casulli and P. Zanolli, A nested Newton-type algorithm for finite volume
methods solving Richards’ equation in mixed form, SIAM J. Sci. Comput.,
32, pp. 2255–2273, (2010)

[19] M. Celia, E. Bouloutas, R. Zarba, A general mass-conservative numerical-
solution for the unsaturated flow equation, Water Resour. Res. 26 (7), 1483–
1496, (1990)

[20] Y.R. Chao, A note on ’Continuous mathematical induction’, Bull. Amer.
Math. Soc., 46, 17–18, (1919)

[21] J.B. Clément, F. Golay, M. Ersoy, D. Sous, An adaptive strategy for discon-
tinuous Galerkin simulations of Richards’ equation: Application to multi-
materials dam wetting, Adv. Water Resour., 151, 661–668, (2021)

[22] B. Cockburn, C.-W. Shu, The local discontinuous Galerkin method for time-
dependent convection-diffusion systems, SIAM J. Numer. Anal. 35, 2440–
2463, (1998)

[23] R.L. Cooley, Some new procedures for numerical solution of variably satu-
rated flow problems, Water Resour. Res. 19 (5), 1271–1285, (1983)
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[54] V. Kučera, Finite element error estimates for nonlinear convective problems,
J. Numer. Math., 24(3), 143–165, (2016)

[55] M. Kuraz, P. Mayer, V. Havlicek, P. Pech, J. Pavlasek, Dual permeability
variably saturated flow and contaminant transport modeling of a nuclear
waste repository with capillary barrier protection, Appl. Math. Comput.
219 (13), 7127–7138, (2013)

[56] L. Lam, D.G. Fredlund, Saturated-unsaturated transient finite element seep-
age model for geotechnical engineering, Adv. Water Resour., 7(3), 132–136,
(1973)

[57] F. Lehmann, P. Ackerer, Comparison of iterative methods for improved solu-
tions of the fluid flow equation in partially saturated porous media, Transp.
Porous Media 31 (3), 275–292, (1998)

[58] M. Lenzinger, B. Schweizer, Two-phase flow equations with outflow bound-
ary conditions in the hydrophobic–hydrophilic case, Nonlinear Anal. Theory
Methods Appl. 73 (4), 840–853, (2010)

100



[59] H. Li, M.W. Farthing, C.T. Miller, Adaptive local discontinuous Galerkin
approximation to Richards’ equation, Adv. Water Resour., 30(9), 1883–
1901, (2007)

[60] F. List, F.A. Radu, A study on iterative methods for solving Richards’ equa-
tion, Comput. Geosci. 20 (2), 341–353, (2016)

[61] P. Lott, H. Walker, C. Woodward, U. Yang, An accelerated Picard method
for nonlinear systems related to variably saturated flow, Adv. Water Resour.
38, 92–101, (2012)

[62] E. Magenes, R. Nochetto, C. Verdi, Energy error-estimates for a linear
scheme to approximate nonlinear parabolic problems,

[63] G. Manzini, S. Ferraris, Mass-conservative finite volume methods on 2-D
unstructured grids for the Richards’ equation, Advances in Water Resources
27 (12) (2004) 1199–1215.

[64] C.T. Miller, C. Abhishek, M.W. Farthing, A spatially and temporally adap-
tive solution of Richards’ equation, Adv. Water Resour. 29 (4), 525–545,
(2006)
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