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Introduction: 
 
The Richards equation is a mathematical model for unsaturated flow in a porous medium. 
It models many real-life applications, like the flow in the vadose zone, through hygiene 
products, or fuel cells. From a mathematical point of view, Richards’ equation is nonlinear 
and parabolic, but also doubly degenerate, featuring both fast and slow diffusion. Its 
solution often lacks regularity, which makes the development of efficient discretization 
schemes, or of linear iterative approaches and their analysis a challenging task.  
 
Although the Richards equation has been studied for almost one century, the 
development of efficient numerical schemes is far from being established, which makes 
the topic of the thesis a very timely one. The thesis of Sunčica Sakić, which I studied with 
much interest, is a step forward in this direction. It proposes a discontinuous Galerkin 
(DG) approach, for which the convergence is proved rigorously by providing error 
estimates. Further, it addresses aspects like the adaptive discretization, or linearization, 
which makes this thesis relevant also from a practical point of view.  
 
Thesis:  
This thesis is addressing various aspects related to the numerical discretization for the 
Richards equation, written in the pressure-head formulation. The numerical scheme is 
involving a DG method. In my view, the following aspects constitute the main outcome of 
this research:  

- The development of a numerical discretization scheme (in both time and space); 
- The mathematically rigorous convergence analysis, and the error estimates; 
- The adaptive strategy in both time and space; 
- The convergence study of a Newton-like method, and the effect of the Anderson 

acceleration.  
The effectiveness of the algorithms developed here is proved not only theoretically, but 
also by applying it to problems involving realistic parameters.  
 
The thesis is well structured. After a brief introduction, it starts with a presentation of the 
Richards equation, which I find very useful. It includes the mathematical model, its 
various possible formulations, and different types of boundary conditions. Also, the main 
challenges and ideas are discussed in a few pages, providing a kind of guideline to the 
content. This helps to understand better the results obtained here.  
 
The original contribution is contained in the following chapters. The second states the 
mathematical framework, including the abstract spaces for the weak solution, as well as 
for the spatial discretization. Also, the spatial discretization is introduced, involving an 
interior penalty DG scheme. This scheme is analyzed in Chapter 3, for the semi-discrete 
case. Specifically, in the absence of gravity, the stability of the scheme is proved and a 
priori error estimates are obtained. These results are provided under certain assumptions 
on the parameter functions, some of them being restrictive from the application point of 
view. Particularly, the permeability is uniformly strictly positive definite, which rules out 
the slow diffusion case if induced by a vanishing relative permeability. Also, the pressure 



 
 

and the flux are assumed to have a high regularity in space (Hs) for some s ≥ 2, while the 
time derivative of the pressure is essentially bounded. For degenerate situations, these 
assumptions may only hold true locally but not globally, so extending the proofs for the 
error estimates so that such assumptions are avoided would be a further step forward.  
 
The theoretical estimates are verified practically in the numerical experiments given in 
Chapter 4. First, one academic example is discussed. Depending on the choice of the 
parameters, one either ends up with a fast diffusion problem, or with the porous medium 
equation. This test case is well chosen, since an exact solution is known, also for 
degenerate situations. The numerical tests show that the proposed scheme behaves at 
least as good as predicted theoretically in the fast diffusion case, in agreement with the 
order of the polynomials. For the slow diffusion case, the convergence is still good, but 
does not follow the order of the method. This can be explained by the fact that, in this case, 
the regularity assumptions are not fulfilled globally.  
 
Chapter 5 is discussing the discretization in time, starting from the spatial discretization 
introduced in Chapter 3. This extends the spatial DG scheme to a space-time one, STDG. 
The scheme is clearly formulated, and, in my view, extending the stability analysis and the 
error estimates from Chapter 4 to the fully discrete case would be a very good publication. 
This part is then continued in Chapter 6, where the fully discrete problems are considered 
as nonlinear algebraic systems, and for which a damped Newton iterative scheme is 
proposed. Since the Newton scheme may fail to converge if the initial guess is not close 
enough to the solution, and this in particular in degenerate cases, an Anderson 
acceleration technique is adopted. The iterative schemes with and without Anderson 
acceleration are tested, showing the superiority of the latter for the price of a very 
inexpensive postprocessing step. This approach is tested on a problem involving realistic 
parameters, namely a heterogeneous dam problem. This features all challenges presented 
until now, and, additionally, includes an outflow boundary condition describing seepage.  
This chapter ends with the presentation of an hp-adaptive strategy, tested again on a 
realistic example. In my view, this chapter can be the basis of another publication in a 
scientific computing journal.  
 
Evaluation:  
This contribution in this thesis is in the development and the analysis of efficient 
numerical schemes for the Richards equation. The key ingredient is an interior penalty 
DG approach, which is analyzed rigorously. Also, the adaptive discretization, as well as the 
linear iterative solution to the emerging nonlinear, fully discrete problems are studied. 
The results are relevant and correct, and have led to a publication in one of the leading 
journals in the numerical analysis, and one in the proceedings of an important conference 
in the field. I am convinced that this work can lead to other publications in journals 
focusing on scientific computing or porous media flows.  
 
This thesis, which is well written, leaves room for further discussion, which, in my view, 
is a good point. Specifically, I think the following aspects can be addressed in the defense: 
 

1. As a general observation, solutions to degenerate parabolic problems, and in 
particular to the Richards equation, lack regularity. On the other hand, at least from 
a theoretical point of view higher order methods are truly efficient when 
approximation solutions with sufficient regularity (in both, space and time). How 
can we see that the DG scheme used here (in space, resp. space-time) performs 
better than others, particularly when the solution features free boundaries?  



 
 

2. What are the advantages of the hydraulic head formulation used here, compared 
to the pressure-based one?  

3. How to deal with situations when the Kirchhoff transformation (or equivalent, see 
(1.8) – needed for the hydraulic head formulation) cannot be computed explicitly? 

4. What is the meaning of the first boundary condition in (1.16)? Is there any way to 
reduce it to a standard (e.g. Robin-type) boundary condition?  

5. Assuming that the pressure head is H2 in space, which allows rewriting (2.11) as 
(2.14), is quite strong, at least globally. For the Richards equation, this assumption 
may not hold true globally. Can the proposed DG scheme be adapted to deal with 
situations where the solution lacks regularity?  

6. Why was the arithmetic average of the permeability functions chosen in (2.23). 
Wouldn’t it be more suitable to use e.g. a weighted harmonic mean, as the 
permeability is not vanishing and, at the same time, this is the outcome of a mass-
conservative averaging?  

7. How does the analysis in Chapter 3 change when gravity effects are included?  
8. Can one extend the analysis in Chapter 3 to remove the strong assumptions (K – 

nondegenerate, regularity for u and the flux, in both space – Hs with s ≥ 2, and time 
– that ∂tu in L∞ and in L2 lies)? 

9. What time discretization is used in Chapter 4, and how is the time step chosen?  
10. Does the convergence behavior of the iterations in Chapter 6 change w.r.t. the 

regularization parameter, or with the spatial mesh? Are there any rigorous 
convergence proofs?  

 
To conclude, I think that the work of Sunčica Sakić demonstrates a good understanding of 
the numerical analysis for partial differential equations, particularly degenerate parabolic 
equations. Through this thesis, she has proved the ability to carry out creative scientific 
research of excellent quality. The cited literature shows an extensive documentation. The 
results are presented in a very clear manner. I have no doubt that this work has the 
expected level of a Ph.D. and, therefore, I recommend this thesis to be defended.  
 
Sorin Pop 
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