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Abstract: Compounding is a word-formation process wherein several words, roots,
or stems are combined to create novel words. It has been observed in many
languages, and often stands on the boundary between word formation and syntax.
As such, a multilingual perspective on this process can be valuable for several fields
of study, namely morphology, syntax, and typology. In this thesis, we focus on
Czech, English, German, Dutch, Russian, French, and Spanish.

We first model compounds in terms of the words that they can be traced back to,
calling the task compound splitting, and also in terms of identifying them fromother
words, calling the task compound identification. We begin by demonstrating this
on Czech using deep learning and string matching. Then, on the same language,
we generalize compound splitting task into parent retrieval, by building a tool
called Word Formation Analyzer for Czech. It also covers derivation, meaning that
we can trace an input word back to only a single word, and unmotivated words
(recognizing that the input word has no ancestors) in addition to compounding.
Finally, we present a multilingual parent retrieval and word formation classification
tool called PaReNT, based around a custom-architecture deep model combining
character-based and semantic representations, and show how the tool has been
used in linguistic research.

We continue by applying this tool in combination with manual annotation to the
Czechword-formation DeriNet, releasing version 2.2. We enrich this thus-far almost
exclusively derivation-oriented data resource with information on compounding,
and discuss the many considerations and decisions that were made along the way.

Finally, we survey the current coverage of compounds in Universal Dependencies
in five languages (English, Czech, German, Dutch, Russian, Latin), and propose a
way of modeling compounds by endowing them with a dependency structure and
embedding them into the syntactic structure found therein.
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1. Introduction

Compounds, such as waterfall, are words immediately motivated by at least two
words. Compounding is by extension the word-formation process by which com-
pounds are coined. This by definition involves combining two or more words, which
we dub parents (or parent words), into a single one, but the way that this is done
varies. Sometimes, two words are simply concatenated, e.g. the aforementioned
waterfall ← water + fall, but other times an interfix, such as -s-, is added as in
statesman← state + man) or an inflected word enters the compounding process
like in womenfolk← women (plural) + folk. Compounding also borders and interacts
with other word-formation processes, such as derivation, conversion, blending,
and others. For example, derivation and compounding can apply in a single step in
blue-eyed← blue + eye, and it is debatable if undershoot is shoot with a prefix or a
compound of under and shoot.

To add to that, some compounds are composed of one or more so-called neo-
classical constituents. These are elements typically borrowed from Latin and Greek,
which do not occur as separate words, but can be used when combined with one
another to form standalone words. An example of this is biology, where neither
*bio nor *logy exist on their own. This means these two elements are not words,
but their ability to combine together to form free words disqualifies them from
being affixes. We call products of this process neoclassical compounds, and they fall
into the scope of this thesis.

We use Czech as a starting point of our efforts, because we happen to have the
most insight into the language, coupled with access to high-quality data. However,
we aim for a multilingual setting, so we branch off into other languages from
there. In the thesis, we have been able to cover Czech, English, German, Dutch,
Russian, French, Spanish, and (partially) Latin, which represent three genera (Slavic,
Romance, Germanic) of the Indo-European language family. As a result, some of
the assumptions, approaches, or results may not carry over to languages from
other branches or other families.

The way we model compounds is static. This means that we develop methods
to take already-existing compounds and determine their compoundhood, find
their parents, and additionally propose a framework under which their morpho-
logical structure can be analyzed in a way parallel to how syntactic phrases are
analyzed. This is in contrast with a dynamic perspective, in which the procedure
of compounding as human language ability would be simulated. To reflect this
decision, the examples in this dissertation are formatted with the compound on
the left, followed by a left arrow, with the parents on the right, alongside their
translations and part-of-speech (POS) (cf. ex. 1, 2):

(1) Compound
translation.POS

← Parent1
translation.POS

+ Parent2
translation.POS

(LANG)

(2) clairsemé
thinly scattered.A

← clair
clear.A

+ semé
spread.A

(FR)

We call the task of automatically finding the parent words of compounds com-
pound splitting, and the more general task of finding the parent or parents of
any given word parent retrieval. The task of distinguishing compounds from non-
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compounds we call compound identification, and the task of distinguishing com-
pounds, derivatives and unmotivated words word formation classification. Coverage
of this word-formation process in computational data resources has varied widely
in quality and quantity. This is at least in part because there is a lack of computa-
tional tools applicable to the purpose of building and harmonizing multilingual
data resources that map compound words. This is the niche we intend to fill.

Further motivation for modeling compounds in the described way is two-fold.
From a linguistic perspective, multilingual compound identification can allow re-
searchers to find compound words in lexicons and corpora. Furthermore, com-
pound splitting can be of use in corpus linguistics dealing with inconsistent com-
pound spelling (flowerpot vs. flower pot vs. flower-pot), which may hamper tok-
enization and by extension word frequencies. Such a model can be used to gauge
which formation processes are preferred in a given language compared to another,
which can find applications in linguistic typology and perhaps historical linguistics.
In data sources such as word-formation networks (data sources mapping which
words are created from which), compound identification can be used to help find
compounds and propose links to all their parents, allowing morphologists to study
which words combine with which across languages, and study how compounding
behaves in conjunction with other word-formation processes such as derivation.
With parent retrieval, the ability to also find derivative parents can be useful in the
creation of new word-formation networks.

From the perspective of computer science, specifically natural language pro-
cessing, a solution to these tasks can also be useful. Compounds are common
out-of-vocabulary (OOV) elements, because especially in German and Dutch (but
also in the other languages in scope) they are often spontaneously coined for
an immediate purpose. This is especially the case in the domain of medicine,
where spontaneous neoclassical coinages are common. Being able to dynamically
map such words to their parents may help with tasks and algorithms that may be
sensitive to OOV, such as topic modelling or POS tagging.

Even though the language set we are working with does not venture beyond the
confines of the Indo-European language family, we nevertheless encounter a wide
range of variation. As a result, the approach we take for a multilingual solution for
these tasks leans heavily into deep learning. The popularity of this technique has
exploded over recent years and decades, especially in computational linguistics
and natural language processing, and has opened the door for the usage of this
highly adaptable technique for our purposes. In order to help readers who may
not be familiar with the concepts and terminology, explanations of deep learning
concepts will be interspersed throughout the text whenever relevant.

In spite of this dissertation’s focus is on compounding, some of the research
conducted as part of it has expanded in scope into other areas. This is an expected
development, because as previously mentioned, compounding borders and inter-
faces with other areas of language. Thus, PaReNT, one of the tools developed as
part of this thesis, handles derivatives in addition to compounds, broadening the
scope into the area of word formation in general.

We observe that compounds are not only composed of more than one word,1

but that they also carry an implicit syntactic relation within them. As a result, we

1Or word, or stem, or lexeme – for a discussion on the exact definition, please refer to Chapter 2
–Compounds in the linguistic and computational context.
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pave away for a data-based analysis of compounds in a syntactic context. As a result,
the last content chapter of the thesis is about a proposal tomodel compounds using
existing dependency relations as part of Universal Dependencies, which would
pave the way to study compounding not only in the context of word formation, but
also in the context of syntax.

The thesis is structured as follows:
In Chapter 2 – Compounds in the linguistic and computational context, we in-

troduce an overview of previous relevant work. This includes listing and comparing
the various ways how compounds have been defined in the linguistic literature
and offering our own definition tailored for this dissertation, as well as delimiting
compounding from syntactic constructions on one side and derivatives on the other
in Section 2.1 – Definitions of compounds. We then go over various propositions
presented in the literature to classify compounds from a theoretical point of view
in Section 2.2 – Classification of compounds. We then list data sources that cover
compounding, focusing on the languages in scope (Section 2.3 – Compounds in
language data resources), and finally go over some already-existing computational
tools, algorithms, and programming languages dealing with compounds in one
way or another (Section 2.4 – Compounds in procedural tools).

In Chapter 3 – Developing tools for compound analysis, we present a series
of experiments in computational compound modeling. Using Czech as a starting
point and spreading out into other languages, we explain what challenges and
obstacles compounding has to offer, also touching upon other types of word for-
mation, and present deep learning, the general technique used to tackle the tasks
at hand (Section 3.1 – Problems and the solution). We then introduce our first
experiment with Czech Compound Splitter (CCS) in Section 3.2, the to our knowledge
first tool for automatically acquiring the motivating words for Czech compounds
and identifying compounds from non-compounds. We continue by describing
Word Formation Analyzer for Czech (WFA.ces), the successor to CCS, which generalizes
compound splitting into parent retrieval – the ability to also find the motivating
words for derivatives, and classifies words as compounds, derivatives, or unmotivated
words (Section 3.3). The Chapter wraps up with Section 3.4 – PaReNT (Parent Re-
trieval Neural Tool), a freely-available custom-architecture tool providing the same
functionality asWFA.ces, but for eight different languages.

In Chapter 4 – Annotating compounds in DeriNet, we show how we link com-
pounds in the DeriNet data source to their motivating words using a combination
PaReNT, existing raw data, and human annotation. We discussing the many de-
cisions that had to be made along the way in Section 4.1 – Annotation scheme,
and we showcase the result of our efforts, highlighting practical difficulties and
statistical observations in Section 4.2 – DeriNet 2.2.

In the final Chapter 5 – Incorporating compounds into Universal Dependencies,
we pave the way for the inclusion of compound annotation in a syntactic context,
namely Universal Derivations (UD). We survey how compounds are currently han-
dled in UD in Section 5.1 – Current annotation, highlighting the various intra- and
inter-linguistics differences and inconsistencies in the annotations. Then in Sec-
tion 5.2 – Syntax-based annotation of compounds, we propose how to annotate
compound words in an orthographically and cross-lingually consistent way while
demonstrating how this information can be useful to the in the field of typology.
We summarize the dissertation in Chapter 6 – Conclusion.
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2. Compounds in the linguistic and
computational context

This chapter is dedicated to delimiting our field of interest and presenting previous
work performed by others. In Section 2.1 wemap attempts to define compounding,
explain how they pertain to this thesis, and go over how compounds are delim-
ited from or related to other linguistic objects such as blends, syntactic phrases,
derivatives, and neoclassical compounds. A working definition of compounding
usable for the purposes of this dissertation is proposed. In the following section 2.2
attempts to classify compounds, covering both language-specific and multi-lingual
taxonomies from a wide range of authors, are mapped. In Section 2.3, we go over
a selection of data sources that contain compound words that are in one way or
another relevant to this thesis, and in the final Section 2.4 algorithms, tools, and
models that can analyze or handle compounds in one way or another are covered.

2.1 Definitions of compounds

A widely accepted definition of compounding has not been put forth – unsurpris-
ingly so, since many cross-lingual definitions of related or antithetical concepts
(e.g. word, root, phrase, stem, sentence, multi-word expression...) would be neces-
sary for such a delimitation to be put together (Scalise and Vogel, 2010). Indeed,
Haspelmath (2002) argues that multilingually, the fuzzy space ranging between
affixes through words right up to syntactic phrases is an unclustered continuum. If
we were to accept this view, we would be forced to concede that proposing any
definition of compoundhood is simply an act of drawing imaginary lines somewhere
into this fuzzy space.

Regardless of whether this particular view is true or not, Scalise and Vogel (2010,
5) non-exhaustively list no less than 8 definitions that have been proposed in the
literature to this date, which when sorted chronologically include:

a. When two or more words are combined into a morphological unit, we speak of a
compound (Marchand, 1960);

b. (...) a compound word contains at least two bases, which are both words, or at any
rate, root morphemes (Katamba, 1993);

c. Composition (...) denotes the combining of two free forms or stems (Olsen, 2000);

d. A lexical unit made up of two or more elements, each of which can function as
a lexeme independent of the other(s) in other contexts, and which shows some
phonological and/or grammatical isolation from normal syntactic usage (Bauer,
2001);

e. A complex lexeme that can be thought of as consisting of two or more lexemes
(Haspelmath, 2002);
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f. (...) root compounds consist of two stems combined as one, with the compounds as
a whole bearing the category and morphosyntactic features of the right-hand stem
(Lieber, 2004);

g. Its defining property is that it consists of the combination of lexemes (Booij, 2005);

h. A word-sized unit containing two or more roots (Harley, 2011);

In summary, most definitions posit something along the lines that a compound
is a word or word-like linguistic object that contains two or morewords, stems,
lexemes or roots, depending on the author. Notice that none of the listed defini-
tions mentions orthography as a defining or even relevant characteristic – in other
words, we can conclude that it is generally accepted that whether a given object
is spelled as flower pot (henceforth: open compound), flower-pot (henceforth: hy-
phenated compound) or flowerpot (henceforth: closed compound) has no bearing
on its compoundhood. This observation has important implications in the realm
of computational linguistics, because by convention, many compoutational tools
depend on orthographic tokenization. Coverage of compounds in certain data
resources may therefore be inconsistent, because open and closed compounds are
handled differently – specifically, open compounds are tokenized into two or more
words, whereas closed compounds are considered to be a single word. This is the
case with e.g. Universal Dependencies1 at present.

Scalise and Vogel remark that in most of these definitions, compounds are a
special type of the units that they are composed of 2 – in other words, if a compound
is composed of lexemes or words, it is itself a lexeme or words. What follows
from this is that compounds can often later undergo compounding, themselves,
resulting in so-called recursive compounds (cf. ex. (3), (4)). These are distinct from
compounds that are flatly traced back to multiple parents, as such non-recursive
compounds have no existing in-between step (cf. ex. (5)), the name of the parody
epic Batrachomyomachia), while no *βατραχομυός or *μυομαχία exists).

(3) самолётостроение
airplane-building.n

← самолёт
airplane.n

+ строение
building.n

(RU)

(4) самолёт
airplane.n

← сам
alone.P

+ лететь
fly.v

(RU)

(5) Βατραχομυομαχία
battle-of-frogs-and-mice.n

← βάτραχος
frog.n

+ μῦς
mouse.n

+ μάχη
battle.n

(GR)

It is not the goal to decide which one of these listed definitions is the most
‘correct’ one, or even attempt to introduce its own. However, the goal is to compu-
tationally model compound words, and therefore some idea as to what compounds
are is necessary.

Working with Haspelmath’s of the aforementioned definitions, we postulate
that a compound is, in a way obvious to an average speaker,

a) a lexeme

1https://universaldependencies.org/
2Unlike e.g. morphemes, which are composed of phonemes while no being a special type of

phoneme, or derived words, which are composed of roots/stems and affixes while not being a
special type of either one.
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b) that can be traced back to at least 2 pre-existing lexemes or neoclassical con-
stituents3 (henceforth: parent words, parents, or ancestors)

c) with no reconstruction of root material, with the exception of allomorphy.

As pointed out by (Lieber and Štekauer, 2009, 5), definitions relying on the
concept of the lexeme run into the problem of making clear what exactly a lexeme
is, especially if the definition is to be applicable cross-lingually. Within the context
of this dissertation, we focus on working with existing data sources, and therefore
rely on the discretion of the authors of the databases we are operating with to
handle this problem. Which linguistic object is or is not a lexeme therefore falls out
of our scope.

2.1.1 Compounds versus blends

Condition c) presented in the postulated definition is important, because it delimits
compounding from blending. When analyzing the English smog, which is a blend
of smoke and fog, we notice that it is necessary to reconstruct the /f/ from fog in
order to trace the word back (as well as the /ouk/ from smoke). In this case, both
roots are incomplete.

This is in contrast with the Czech krvotok ‘bloodflow’ from krev ‘blood’ and tok
‘flow’. Even though it is similarly necessary to reconstruct the /e/ that is lost in
the compounding process, the same loss occurs in the inflection of krev (e.g. the
genitive krve ‘of blood’), and the change is therefore part of the regular allomorphy
of the root in question. The root is therefore complete despite missing a phoneme
(and the loss is transparent to a native speaker), and as a result satisfies condition
c).

This view is in accordance with Adams (1977, 149), who understands blends as
words containing so-called splinters, which are incompletemorpheme fragments
– and by condition c), all roots must be complete for something to be a compound.

2.1.2 Compounds versus syntactic phrases

Another aspect of compoundhood that must be addressed is its boundary with
syntax.

We understand syntactic phrases as linguistic units which are, similarly to
compounds, composed of individual words, but unlike in compounds, the exact
relationship among these constituents is explicitly signaled by the usage of function
words or inflectional markers such as case endings. Multi-word expressions, such
as the English kick the bucket or the Spanish estar en las nubes (lit. ‘to be in the
clouds’) are a specific type of syntactic phrase whosemeaning is non-compositional,
meaning that unless one has memorized these objects, there is no way to know
they mean ‘to die’ and ‘to daydream’ respectively. This makes them lexicalized,
in the sense that they must be stored in memory in a way that is at least similar
to the way words are memorized. Generally, multi-word expressions (MWEs) are

3Semantically independent linguistic objects that cannot appear as standalone words but can
combine with one another to form standalone words, typically inherited from Latin or Greek; for
details please refer to Section 2.1.4.
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nevertheless still considered to be syntactic constructs rather than morphological
words, because they exhibit internal flexion (e.g. he kicks the bucket), and therefore
fall out of the scope of this dissertation. Being able to distinguish them from
compounds is therefore important.

The problem is that in a multilingual setting, the distinction between morphol-
ogy and syntax seems to be a continuum. Haspelmath (2002) even claims that “as of
now, we do not currently have a good basis for dividing the domain of morphosyn-
tax into morphology and syntax”. Nevertheless, (Schlücker, 2019a) addresses this
issue in the context of 11 European languages, first in general, and then language
by language.

In the general case, Finkbeiner and Schlücker (2019, 1-43) use a notion proposed
by Gaeta et al. (2009) that whether or not a given linguistic object is lexicalized and
whether or not it is produced by morphological operations are two values that are
completely independent of each other. Therefore, when evaluating whether or not
a given linguistic object, one that satisfies condition b) in our postulated definition,
is a compound, there are four possible combinations of these two variables:

a) [+morphological], [+lexical]

b) [+morphological], [−lexical]

c) [−morphological], [+lexical]

d) [−morphological], [−lexical]

In this model, [+M,+L] is a typical lexicalized compound such as Liebesbrief
‘love letter’ (as signalled by the interfix -s-) ormilkshake, [+M,−L]would be a nonce
compound like bike girl or bananaphobic, [−M,+L] is a MWE like spill the beans,
and [−M,−L] is a simple syntactic construction whose meaning is determined by
the composition of its parts like own a house. Delineating the boundary between
compounds and multi-word expressions therefore boils down to determining the
[+|−M ] property, the difficulty of which in turn is depends greatly on the language
in question.

In Czech (and by extension Russian), the class of what Bozděchová (1997) calls
proper compounds (compounds created by spontaneous coinage; more details on
her classification in Section 2.2) in most cases contains morphological markers
such as the addition of an interfix, most commonly -o- as in the Czech sil-o-čára
‘line of force’← síla ‘force’+ čára ‘line’ or the Russian земл-е-трясение ‘earthquake’
← земля ‘earth’ + трясение ‘shaking’. Another morphological marker of com-
poundhood is the absence of an inflectional suffix, which allows us to distinguish
the compound vlakvedoucí ‘train conductor’ from the equivalent syntactic phrases
vedoucí vlaku or the also grammatically correct but strange-sounding due to its
archaic word order vlaku vedoucí. A similar situation can be found in Russian, where
термометр-максимум ‘thermometer maximum’ is distinguished by the lack of
inflectional ending from its associated phrase максимум термометра ‘maximum
of a thermometer’. The boundary between what Bozděchová calls improper com-
pounds, formed by the ‘freezing’ of a syntactic phrase, and synchronic syntactic
phrases, is however much blurrier. In fact, this is the case with the aforementioned
vlaku vedoucí – it could be argued that this in fact is an improper compound. The
compoundhood status of vlakvedoucí is however unambiguous. In practice, the
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Czech linguistic tradition does not consider open compounds to be compounds as
such.

Some markers of improper compounding do exist; word order is often reversed
within compounds compared to their associated syntactic phrases, as can analo-
gously be seen in the Czech penězchtivý ‘money-wanting’ vs. chtivý peněz ‘wanting
money’; the stress pattern of a compound may differ from its originating phrase
(’chválabohu ‘fortunately’ behaves as a particle vs. chvála ’Bohu ‘praise to God’), or the
collocability of a compound may differ from its associated phrase (вечнозелёный
‘evergreen’ vs. вечно зелёный ‘always green’; the former occurs almost exclusively
in reference to non-deciduous trees, while the second refers to anything that re-
mains green). Ultimately, the only problematic cases are the so-called improper
compounds where the ordering of the constituents is not switched, and specifically
in Czech improper compounds may in practice be distinguishable from MWEs or
syntactic phrases only by orthography.

The situation is rather similar in German and Dutch, in that distinguishing
compounds from MWEs is mostly reliable. Compounds are very productive in
Dutch and German, and are generally morphologically obviously distinct from
MWEs and syntactic phrases, as evidenced by the common presence of parallel
structures such Frischluft and frisches Luft ‘fresh air’, or opoefiets ‘grandma-bike’ =
‘retro bike’ and opoe’s fiets ‘grandma’s bike’.

Schlücker (2019b, 69-94) and Booij (2019, 95-126) identify the following proper-
ties of German and Dutch (respectively) compounds that do so:

(i) stress;

(ii) absence of inflection;

(iii) inseparability;

(iv) presence of linking elements, though not present in all subtypes;

(v) spelling, as compounds are consistently spelled together or hyphenated in
both languages.

Some exceptions do occur, e.g. Dutch [A+ A] compounds are not necessarily
easy to distinguish from syntactic phrases, because Dutch adjectives can be used
as adverbs without being morphologically marked. This makes it unclear if a given
object is an adjective syntactically modified by an adverb, or a compound of two
adjective formed by concatenation.

In the Romance languages, orthography is much less helpful than in the Slavic
languages or German and Dutch. Radimský (2015) on the example of Italian
however posits that Romance [N +N ]N (and perhaps by extension all) compounds,
can generally be distinguished from outputs of syntactic operations by the fact that
the relation between the constituents is implicit (e.g. caffè latte; lit. ‘milk-coffee’)
as opposed to explicitly determined by the usage of a preposition, conjunction, or
inflectional ending (e.g. caffè e latte; lit. ‘coffee with milk’), which is compatible with
the model proposed by Gaeta et al. (2009). The problem in the Romance languages
is therefore distinguishing appositional [N+N ] structures equivalent to the French
(Le) président Macron, like the Italian (mia) sorella Maria ‘(my) sister Maria’, from
compounds. The distinction can according to Radimský be made based on two

13



things. The first is the observation that such appositional constructions (with the
exception of the numeral type) tend to appear in two roughly equivalent flavors,
dubbed plain structure and parenthetical structure (cf. left vs. right in ex. (6) and (7)).
The ability to undergo a transformation into the parenthetical reveals that these
constructions are in fact syntactic in nature, and therefore not compounds.

(6) mia sorella Maria
my sister Maria

≃Maria, mia sorella
Maria, my sister

(IT)

(7) le président Macron
president Macron

≃Macron, le président
Macron, the president

(FR)

In English we also run into the problem of non-existent singular nominal end-
ings. This makes it difficult to morphologically distinguish nouns from their respec-
tive noun-derived adjectives. Bauer (2019, 45-66) argues that as a result of this
lack of morphological distinction, the boundary between compounds and MWEs
in English simply is fuzzy. Bauer nevertheless goes over several potential criteria
that could hypothetically decisively set this boundary, and shows that they all fail
at least some of the time.

i Stress can be used to distinguish e.g. black bird, a [−M,−L] syntactic phrase
with stress on the second syllable from ’blackbird, a [+M,+L] compound, along-
side the inability to modify the first constiuent in the former (*a very blackbird
nor *blackestbird) and observing that a brown blackbird is not a contradiction.
Nevertheless, Bauer finds a series of counterexamples such as ’apple cake vs.
apple ’pie and points out that real speakers are often inconsistent in stress
assignment.

ii Spelling reflects stress quite often, and can be used to distinguish railway from
iron bar; but it also fails in many cases, not least because it is like stress also
inconsistent (rainforest, rain-forest and rain forest refer to the same concept)
and also because the formally and semantically parallel schoolgirl and university
student are spelled separately.

iii The final criterion Bauer pays special attention to is if the object in question
blocks internal inflection; that is, given a compound verb such as badge-flash,
we observe that its plural usage leaves the first constituent uninflected, cf. we
badge-flashed our way into the scene vs. *we badges-flashed our way into the
scene. The sole usage of this criterion would however lead to a situation where
suggestion box would be a compound, but not suggestions box.

In summary, in English the boundary between compounding and syntactic
objects seems to be fuzzy, but in many situations there may be and indicator to go
by. It is worth pointing out, however, that at least in English, orthography can serve
as a sort of lower bound for compoundhood. That is, an object spelled with a space
or hyphen may be a compound, a MWE, or a syntactic phrase, but it would be very
hard to find an example of a MWE or syntactic phrase spelled together (barring
typos).
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Words

derivationsexpansions

compoundsnon-compound
expansions cleaner

easygoing
blue-eyed

all-seer
chimney sweep
professorship

polar

steamboat
colorblind
crybaby

reheat

Compounds
(as defined by this dissertation)

(according to Marchand)

Figure 2.1: Comparison of what is considered a compound by Marchand (1967)
and by this dissertation (in the dotted rectangle).

2.1.3 Compounds versus derivatives

In comparison to compounds, derivatives are generally understood to be words
that are coined by the addition of affixes to existing words, and can therefore be
traced back only to a single word. Unlike roots or stems, affixes must be attached
to a root or stem in order to appear, and cannot be combined with one another to
produce free forms.

It should be first noted that not all scholars are necessarily of the opinion that
the two concepts stand in opposition. Specifically, Marchand (1967) is of the opinion
that word formation can be viewed only as comprised of two types processes –
expansion and derivation. Under this consideration, expansion is understood as
the addition of a modifying element (determinant) to a free-standing, pre-existing
element, which then dominates the grammatical and lexical properties of the
resulting word (determinatum). This encompasses both steamboat and reheat, since
steamboat behaves grammatically and lexically much like boat, and reheat behaves
much like heat.

Marchand specifically states that a word is a compound if and only if it is the
product of expansion whose determinant happens to occur on its own. In contrast
to expansion, derivation is in Marchand’s view a situation where it is a bound
morpheme that dominates the lexical and grammatical properties of a given word.
Examples include clean → cleaner, where the part-of-speech is determined by
the suffix, and professor → professorship, where the suffix changes the lexical
class of the input word from personal substantive to abstract condition-denoting
substantive. Therefore, words like easygoing, highborn, heartbreaking, chimney
sweep are considered to be derivations by Marchand, but are compounds under
the definition postulated in this dissertation. The difference between these two
considerations can be observed in Figure 2.1.

While most scholars operate with the notion of derivation being the addition
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of affixes – bound lexical morphemes – instead of Marchand’s definition cited
above, compounds of the type blue-eyed and chimney sweep need to be addressed
nevertheless. The key observation here is that there is no *eyed, so blue-eyed
must be understood as derivation and compounding happening at the same time.
Analogously, for the nominal chimney sweep there is no corresponding nominal
*sweep, only the verb to sweep, forcing us to consider the word formation process
as compounding together with conversion. In accordance with Bisetto and Melloni
(2008), we call such words parasynthetic compounds. This process has been cross-
linguistically attested, and it typically but not exclusively involves having something
of a certain quality or quantity, or being the agent of a verb with the object attached
, cf. ex. (8, 9, 10, 11, 12).

(8) quinzeañera
fifteen-year-old girl.n

← quinze
fifteen.num

año,
year.a

but no *añera (ES)

(9) кровосос
bloodsucker.n

← кровь
blood.n

сосать,
suck.n

but no *сос (RU)

(10) dřevorubec
woodcutter.n

← dřevo
wood.n

rubat,
cut.v

but no *rubec (CS)

(11) bruinogig
brown-eyed.n

← bruin
brown.a

oog,
eye.n

but no *ogig (NL)

(12) langbeinig
long-legged.n

← lang
long.a

Bein,
leg.n

but no *beinig (DE)

While we do consider parasynthetic compounds to be compounds, we find it
useful to separate them from secondary compounds.

(13) sleepwalker← sleepwalk ← sleep walk (EN)

(14) Fachlehrerin
subject teacher (fem.).n

← Fachlehrer
subject teacher.n

← Fach
subject.n

Lehrer
teacher.n

(DE)

(15) garde-robier
wardrobe-carer.n

← garde-robe
wardrobe.n

← garder
retain.v

robe
clothes.n

(FR)

The last point to address is determining whether a given linguistic object is
an affix or a freely-occurring word. This question unfortunately in a lot of cases
does not have a good answer, and therefore the boundary between derivation and
compounding simply remains blurred. A typical example of this blurry boundary
are compounds containing elements that can function as prepositions. On the one
hand, no one would argue that under is a freely-occurring word in English and can
combine with other prepositions such (be)neath to form underneath, but on the
other hand it is a function word), and very productive in a way reminiscent of an
affix. As a rule of thumb, we consider non-lexical objects such as prepositions to be
freely-occurring words if they have two syllables or more (e.g. Dutch onder ‘under’,
Czechmimo ‘outside of’), otherwise, we consider them to be affixes if attached to
another word (e.g. Czech pod ‘under’).
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2.1.4 Neoclassical compounds

However, the inverse also exists, in that there are non freely-occurring linguistic
objects are semantically self-contained . These most often come from Greek, Latin,
or from Greek throug Latin. Words may be formed out of these in combination with
freely-occurring words (teleprompter← -tel- ‘distance’+ prompt, hydroelectric) -hydr-
‘water’ + electric or with one another (logography ← -log- ‘speech’ + -graph- ‘write’;
geomorphology← -ge- ‘Earth’+ -morph- ‘shape’+ -log- ‘word; speech’). The fact that
one can create a freely-occurring word just by combining neoclassical constituents
forms the primary argument for granting the status of compounds to these words,
since it is generally accepted that the combining of bare affixes together does not
produce viable words. As a result, we consider neoclassical compounding to be a
special case of compounding and therefore generally in scope of this dissertation.

Neoclassical compounding occurs in all of the languages in scope, and another
peculiarity of it is the fact that they tend to be shared among languages, in the sense
that if e.g. English has a neoclassical compound like telephone, it is highly probable
that a similar word with the same meaning will be found in the other languages
in scope, cf. German Telefon, Dutch Telefoon, Russian телефон, French téléphone,
Spanish teléfono. In fact, neoclassical compounds are often written about in the
context of internationalisms (words shared among a wide plethora of languages)
rather than in the context of compounding (Wexler, 1969; Pulcini, 2019; Melloni,
2023).

The view that neoclassical compounds are a specific type of compounding is
not necessarily shared by other scholars, though. Bauer (1998) argues that at least
in English, there is no discrete class of neoclassical compounds, and that instead
lexical enrichment should be thought of as a continuous space of three dimensions –
simplex-compound, native-foreign, abbreviated-nonabbreviated, and that neoclassical
compounding is ‘‘a label given to one small section within this three dimensional
space, but actual words diverge from the prototype considerably’’.

Furthermore ten Hacken (2011) explicitly considers neoclassical compounding
to be a subsystem of English and other European languages. While ten Hacken
denies that neoclassical compounding is productive in the sense of syntax, i.e.
being able to unintentionally produce a potentially infinite number of expressions
immediately understandable by a native speakerwithout being stored in the lexicon,
the author nevertheless concurs that neoclassical compounding is available to the
European speaker for the naming of novel concepts. This means that as time
goes on, it can be assumed that more neoclassical compounds will appear in the
languages in scope.

Panocová and ten Hacken (2020, 32) follow with the observation that while
some neoclassical compounds seem to be borrowed directly from Greek to Latin,
novel coinages do occur synchronically. When a new neoclassical compound is
coined, it is typically swiftly adoptedwithminimalmorphological changes into other
European languages by the speakers of the specialized (such asmedical or scientific)
communities that typically use these formations. Typically, the source language
is English, although in many cases the direction of borrowing is impossible to
confirm. In spite of that, the authors give the example laparoscopy as a neoclassical
coinage originating in German. The authors also compare the neoclassical lexicons
of English and Russian, and reach a conclusion that while English does have a
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productive discrete mechanism of neoclassical word coinage, Russian mostly does
not, and that Russian neoclassical compounds are mostly direct borrowings.

Ološtiak and Vojteková (2021) focus on neoclassical compounding in the West
Slavic languages. Four types of word-formation formants are distinguished, namely
bases, baseoids, affixoids, and affixes. Bases are items that can appear freely and
carry lexical meaning (terapie ‘therapy’, like in ergoterapie ‘occupational therapy’);
Baseoids are items that do not appear freely, but carry lexical meaning regardless
(ergo-, in ergoterapie ‘occupational therapy’), and Affixoids are items that are di-
achronically lexical, but have gradually lost their ability to appear independently
and have generalized their meaning enough to effectively behave like derivational
items; and affixes are elements that behave like bound morphemes. The distinc-
tion between these three types of formant seem to be congruent with the fuzzy
subspace proposal by Bauer (1998) described earlier, as the distinctions seems to
reflect the proposed simplex-compound and abbreviated-nonabbreviated axes.

Three types of compounds are by Ološtiak and Vojteková delimited according
to the type of formants they involve. Proper compounds4 are characterized as being
composed of two bases (ex. 16). Semi-compounds are composed of one base and
one baseoid (ex. 17). Finally, quasi-compounds are composed of two baseoids (ex.
18).

(16) sér|-o-|pozitivní
seropositive.a

← sérum
serum.n

pozitivní
positive.a

(CS)

(17) krypto|politika
cryptopolitics.n

← krypto-
crypto-.baseoid

politika
politics.n

(CS)

(18) eko|logie
ecology.n

← eko-
eco-.baseoid

-logie
-logy.baseoid

(CS)

Our conceptualization of neoclassical compounds is mostly congruent with
Ološtiak and Vojteková, with a reduction in granularity. Everything the authors
consider to be a baseoid and some of what the authors consider to be an affixoid
is considered to be a neoclassical constituent (labelled ‘neocon’ in examples) by us.
We also systematically interpret neoclassical constituents as identical whenever
their etymology and semantics allow for it, even under circumstances where they
undergo formal changes. For instance, the first element of logografie ‘logography’
(logo-) and the second element of sociologie ‘sociology’ (-logie) are seen to be the
same, since they both descend from the same Greek root. In our data, they are
represented by the string -log-, cf. Section 3.2.1 for more details.

As a final note, it is worth mentioning that Melloni (2023) posit that while com-
pounding is the most typical word formation process for neoclassical constituents,
it is not restricted to this one process. It is pointed out that clipping, blending,
and even derivation of neoclassical constituents can be attested in English, and
therefore operates with the broader concept of neoclassical word formation.

4The usage of this term by these authors is distinct from Bozděchová’s proposal above.
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2.2 Classification of compounds

In the linguistic literature, the debate over compounding and its taxonomy has
been centered around a number of topics. In the following subsection, we present
a list of parameters which have been used to classify compounds into taxonomies,
and then we go over a short history of compound classifications based around
these parameters.

2.2.1 Classification parameters

• Part-of-speech (POS) category of the compound and its components: if
the components obtained by splitting the compound do not correspond
to independently existing words, the POS of the component is determined
according to the closest word. If this applies to the head, the compound’s
POS is different from its head’s POS (cf. the distinctions below; for examples,
see Section 2.2). A common convention for expressing this is

[POS1 + POS2 + . . .]POSo ,

where POSn refers to the part-of-speech of the nth parent and POSo refers
to the part-of-speech of the output, i.e. the compound itself.

• Headedness: if one of the components plays a prominent role, it is consid-
ered the head; left-headed compounds and right-headed compounds are
distinguished. Most scholars (e.g. Fabb 1998; Haspelmath and Sims 2013;
Scalise and Bisetto 2009; Bozděchová 1997; Štichauer 2013) operate with
some notion of a head; that is, some compounds have a constituent that
in some way governs the properties of the given compound. For example
in 19, the resulting noun is masculine, inheriting its gender from its right
constituent, and refers to a particular city.

(19) Волгоград
Volgograd.n

← Волга
Volga.n

+ (град)
(city.n)

(RU)

Those compounds that do have a head are often analyzed as to whether
the head is followed by the non-head element, or vice versa. Compounds in
which the head precedes the modifier are termed left-headed; compounds
in which the head follows are termed right-headed; this suggests that ex. 19
is right-headed – otherwise, the word would inherit the feminine gender
of Volga, and would probably denote some part of the river. Fabb (1998)
additionally considers two-headed compounds. Some authors distinguish
between syntactic heads and semantic heads, the former of which governs the
compound’s formal properties, like gender; and the latter of which governs
the compound’s meaning.

• Endocentricity vs. exocentricity: Centricity evaluates whether a given
compound inherits form or meaning from one of its constituents. The head
typically determines the POS and meaning in endocentric compounds; an
exocentric compound is headless or, as Bauer (2001, p. 70) puts it, it is ‘‘a
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compound which is not a hyponym of its own head element’’. constituents
by means of subsetting (endocentric; an apple cake is a type of cake) or not
(exocentric; a cutthroat is not a type of throat). This is usually understood as
being related to headedness; in fact, Fabb (1998) considers exocentricity to
be synonymous with headlessness.

• Relations between the compound’s constituents: in the literature cited below,
the compound’s internal structure is indicated by brackets, in analogy to
syntactic constituent trees. Most scholars who use the relation concept list
one or more relation that is symmetric (often calling such a relation some
variant of coordinate or coordinative) – Fabb (1998), for example, considers
coordinative compounds to be synonymous with two-headed compounds, as
the heads modify each other – and one or more asymmetric relations, such
as the subordinative and attributive relations of Scalise and Bisetto (2009).

• Syntactic type of the relation between the compound parts: the crucial
distinction is whether the components are independent of each other (coor-
dinate, coordinative, additive or copulative are some of the terms used) or
whether one depends on the other (subordinate, determinative, etc.).

2.2.2 Compound taxonomies

These features, assigned varying degrees of importance, interrelation, and priority,
have been employed to classify compounds by various scholars.

Sanskrit compounds

The first such attempt is proposed by Pāṇini, an ancient logician and grammarian,
active sometime between the 7th and 4th centuries B.C. in his grammar of Sanskrit
titled Aṣtādhyāyī (Pāṇini, 1987), who focused on nominal compounds. We rely on
the help of the 7th edition of Kale (1931) to help produce this short overview.

Under Pāṇini’s consideration, there are six types of compounds in Sanskrit.

1. Dvandva are compounds whose constituents are in what we may in the lan-
guage of contemporary theory call a coordinate or copulative relationship – that
is, their constituents are implicitly or explicitly related by a symmetric operator
and or or, as in actor-director.

2. Tatpuruṣa (translating to ‘his man’) are compounds with a nominal head el-
ement modified by a noun inflected in one of the oblique cases, and which
furthermore denote a special case of the head, much like ‘his man’ refers to an
actual man.

3. Upapada refers to a variant of tatpuruṣa compounds where the second element
is an otherwise non-existent element, typically a derivative or conversion a
verb, such as pottery-maker (strictly speaking only if maker were non-existent in
English on its own).
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4. Karmadháraya (‘what holds together’) compounds are similar to tatpuruṣa
compounds, except that the nominal head is modified by a uninflected noun, an
adjective, or other part-of-speech, such as watermill. Like the aforementioned
tatpurusa compounds, they are endocentric.

5. Bahuvrihi (‘possessing a lot of rice’ = ‘rich’), are also compounds in which a
nominal head is modified by something, but the whole compound refers to
something else than the head element or has a different part of speech (e.g.
like blue-eyed, lowlife).

6. Finally avyayibháva refers to indeclinable compounds whose head is a pronoun
or adverb.

While this classification seems to be used only seldom in contemporary literature
of compounding outside of Sanskrit and the languages of the Indian subcontinent,
so much of its terminology and observations have propagated into current theory
that it is useful to go over the classification nevertheless.

Multilingual approaches

Bisetto and Scalise (2005) compare the following classifications, sorted chronologi-
cally.

• Bloomfield (1933) classifies constructions into either determinative and and
copulative (bittersweet, loudmouth). Determinative compounds are then further
classified into subordinative (love story) and attributive (blackbird) compounds.
In addition, any type can be endocentric or exocentric.

• Bally (1944) presents an unbranching ternary classification of French com-
pounds into de coordination (sourd-muet ‘deaf-mute’), d’accord (chaleur solaire
‘solar heat’), and de rection (maison de campagne ‘villa’).

• Marchand’s 1960 classification of endocentric compounds starts with splitting
them into verbal nexus (=dependent on a governing verb whose argument
is the modifier) and non verbal-nexus. Verbal nexus compounds are then
categorized as non-synthetic (crybaby) and synthetic (babysitter). Non verbal
nexus compounds are in turn comprised of rectional and copula compounds.
The latter are then ternary-branched into subsumptive (oaktree), attributive
(girlfriend), and additive (fighter-bomber) compounds.

• Spencer (1991) offers an unbranching quaternary taxonomy of endocen-
tric (head-modifier; student film society), exocentric (predicate-argument; pick-
pocket), dvandva (roughly equivalent to copulative; Austria-Hungary) and
appositional (learner-driver) compounds.

• Fabb (1998) classifies two-constituent compounds simply into headless (exo-
centric; bluestocking), single-headed (endocentric; blackbird), and two-headed
(copulative; writer-director).
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• Olsen’s 2001 classification breaks off into three branches on the first level
– determinative (coffee cup), copulative, and possessive (greybeard). The only
subdivision is of copulative compounds, which are divided into dvandva (Simha
vyahghra ‘lion and leopard’) and pseudo-dvandva (Löwenleopard ‘lion-leopard
crossbreed’).

• Haspelmath (2002, 137-144) proposes a 5-way unbranching classification into
endocentric (lipstick), exocentric (lavapiatta ‘dishwasher’), affixed (green-eyed),
coordinative (elun-ai ‘adult and child’ (Korean)), and appositional (poet-painter).

• Bauer (2001) splits compounds four ways into determinative
(karmadhāraya), dvandva (Schleswig-Holstein), bahuvríhi (greybeard), and syn-
thetic, further classifying determinative compounds into [A+N ] (blackbird)
and [N +N ] (woman doctor) subtypes.

• Finally, Booij (2005) proposes an unbranching five-way taxonomy, splitting
compounds into endocentric (travel office), exocentric (lavapiatti ‘dishwasher’),
bahuvríhi (Kahlkopf lit. ‘bare-head’=‘bald person’), copulative (candra-ditya-u
Sanskrit ‘sun-and-moon’), and appositive (‘prince-bishop’).

Based on these classifications, Bisetto and Scalise (2005) propose another
classification. The authors speak of grammatical relations:

‘‘The grammatical relations holding between the two constituents of a
compound are basically the relations that hold in syntactic construc-
tions: subordination, coordination and attribution.’’

The relation between the components – Coordinate, Attributive, and Subordinate
– is used as the first-level criterion in Bisetto and Scalise’s classification:

1. Coordinate compounds exhibit a relation that is symmetric; that is, neither
constituent syntactically or semantically dominates over the other. In contrast,
the relation is asymmetric in both subordinate and attributive compounds.

2. In subordinate compounds, the modifier functions as a syntacto-semantic
complement to the head, typically (but not exclusively) an of relation in the
case of nominal compounds (taxi driver = driver of a taxi).

3. In attributive compounds, the modifier of the compound is either a property
expressing adjective or a noun. In the case of nouns, attributive compounds
differ from subordinate compounds is that a singular specific property of the
modifier is used to describe the head, and otherwise for the specific property
the modifier has nothing to do with the head. As an example,mushroom soup
contains the literal spore-bearing fruiting body of a fungus and is therefore
subordinate, but a mushroom cloud has nothing to do with mushrooms apart
from one single property of a mushroom, which is its shape.

The second level is the distinction between endocentric and exocentric com-
pounds. A windmill is a type of mill, but a pickpocket is not a type of pocket (nor
a type of to pick, as pickpocket is not a verb); similarly, the English endocentric
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Figure 2.2: Comparison of the multilingual taxonomies of Bisetto and Scalise (2005)
and Scalise and Bisetto (2009).

blue-eyed refers to a person who actually has blue eyes, whereas the German equiv-
alent blauäugig can either also be endocentric if used literally as ‘blue-eyed’, or
in other cases, can be used to mean ‘naive’, in which case it is exocentric. This
classification was implemented in the annotation scheme of the MORBO/COMP
database, which is one of the resources reported on later on in in Section 2.3 –
Compounds in language data resources.

Hearkening back to Bloomfield (1933) and Marchand (1960), Scalise and Bisetto
(2009) presented an extended classification scheme. Here,

1. subordinate (SUB) compounds are now further split into ground and verbal
nexus compounds,

2. attributive compounds are now a sister group to appositive compounds,
together forming the attributive/appositive (ATAP) group,

3. and the coordinate compound (COORD) group remains unchanged.

A visual comparison of the Bisetto and Scalise (2005) and Scalise and Bisetto
(2009) taxonomies over the same set of examples can be inspected in Figure 2.2.

Ground compounds are compounds whose interpretation

‘‘depends on the possibility of varying the association between the
features of the respective qualia structures [=bodies of semantico-
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encyclopedic information associated with the consituents]: these fea-
tures are elicited from the context in which the compound formations
are to be found’’.

In other words, the exact relationship between the two constituents can only
be reliably determined by understanding the context(s) in which the compound is
used.

In contrast, verbal nexus compounds are defined by the presence of a verbal
head, whose non-head is then either its argument (bookseller = sells books) or its
adjunct (street seller = sells X on the street).

The attributive/appositive distinction can be understood as follows: attributive
compounds express a property of the head by modifying it using an adjective
(high school) or a verb (playground), whereas in appositive compounds the property
is expressed by a noun, whose one selected property acts as an attribute (the
aforementionedmushroom cloud).

Scalise and Vogel (2010) point out that compounds exhibit an internal syntax
– that is, their interpretation rests upon the ability to of a speaker to impute a
syntactic relation between the components, citing the examples (20), (21), (22).

(20) taxi driver← driver of a taxi (EN)

(21) hard ball← ball which is hard (EN)

(22) poet painter← poet and painter (EN)

Furthermore, they observe that there may be more than one acceptable inter-
pretations like that, and more than one unacceptable, and that the disambiguation
of these may require extra-linguistic knowledge. As an example, they cite the com-
pound water mill, which may refer to a mill powered by water, located by water, or
producing water, but not one that grinds, drinks, or is made out of water. Experi-
mentally, this is reflected in Ó Séaghdha’s 2008 dissertation, who reports that on a
sample of 2000 English noun-noun compounds, two annotators achieved 66.2%5

agreement in categorizing compounds into eight relational types.
Ackema and Neeleman (2010) directly discuss the involvement of syntax in the

formation of compounds. While they argue that syntax is not directly involved in
the creation of compounds, they argue that the competition between morphol-
ogy and syntax dictates what sort of compound may or may not be formed in
a given language – specifically, that the existence of a phrase with a one-to-one
correspondence with regards to internal syntax blocks the existence its associated
compound.

Czech compounds

As explained earlier, the starting point for this thesis is Czech, due to the unique
insight we have into the language and the availability of relevant high-quality data.
As a result, we present classifications of specifically Czech compounds.

50.62 Cohen’s kappa
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Štichauer (2013) presents an attempt to classify Czech compounds using three
levels of categorisation, akin to the way Romance compounds are handled by
Scalise and Bisetto (2009). The first level is the distinction between coordinative,
subordinative and attributive compounds. The second level distinguishes between
exocentricity and endocentricity, or headedness – in other words, whether or not
the compound has a semantic head. The third level distinguishes between every
possible combination of part-of-speech category of the input words and the part-
of-speech category of the output compound in the format [X + Y ]Z , whereX and
Y stand for the part of speech of the parents and Z stands for the part of speech of
the product compound. This style of description is used later on in this dissertation
to statistically show the distributions of various compound types across various
data sources.

As already touched upon earlier in Section 2.1.2, Bozděchová (1997) distin-
guishes two types of compounding in Czech, depending on whether the words
entering the composition are formally modified or not. Compounding proper, which
requires morphological adjustment of the input words, and compounding improper,
which is the result of simple concatenation of a syntactic phrase with no morpho-
logical adjustments. In addition, Bozděchová puts forth a multi-level classification,
starting from the part-of-speech category of the output compound and then pro-
ceeding to semantic criteria (considering the meanings of the input items, of the
output compounds and the relationship between the output and the inputs).

Bozděchová proposes a hierarchical classification of compounds within the
onomasiological theory of word formation. The classification is applied to a dataset
of 3000 Czech compounds. The highest level is classified by the POS6 of the com-
pound. The middle level is classified by the type of referent that the compound
names – e.g. person, property bearer, place name for nouns. The lowest level is
the formal division of compounding into three categories – simple compounding
proper, complex compounding proper, and compounding improper (juxtaposition).
Compounding proper refers to the spontaneous coining of a two-rooted word
by a speaker, spurred on by the need to name a particular object in a particular
speech situation, which makes it a genuine word-formation phenomenon. This is
contrasted with compounding improper, which is the phenomenon of syntactic ex-
pression gradually solidifying over time, which places it in the domain of syntax. In
Czech, the phrase that is encoded by an improper compound can be reconstructed
solely by finding an appropriate split-point and splitting the compound there with
no morphological adjustments. For example, splitting the improper compound
vždy|zelený ‘‘evergreen’’ yields the valid, correctly formed phrase vždy zelený ‘‘always
green’’, whereas the proper compound bělobřichý ‘‘white-bellied’’ does not yield a
correctly formed phrase when split without adjustment. Complex compounding
proper corresponds to what we call parasynthetic compounding, and is described in
detail in 3.1.1.

Moreover, it is taken into account whether the compound is a result of composi-
tion only or whether also other word-formation processes (derivation, conversion)
were at play. For instance, the compound adjective in (23) was coined through
composition proper, when the ending -ý in the first input adjective (tmavý ‘dark’)
was dropped and an -o- interfix was used to concatenate it with the second adjec-

6In the introduction section for each POS, Bozděchová explains how it corresponds to a particular
onomasiological category, e.g. nouns correspond to the onomasiological category of substance.
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tive (modrý ‘blue’). In (24), the input adjective (tvrdý ‘hard’) undergoes a similar
formal modification, but the second item (the noun hlava ‘head’) is converted into
an adjective through replacing the nominal ending by an adjectival one (hlava ‘head’
→ *-hlavý ‘headed’, which cannot be used separately in Czech). Analogically to
this example of compounding and conversion in one step, in (25) the compound
is formed through compounding and derivation (i.e., the addition of the agent
suffix -ec to the input verb). A straightforward example of composition improper is
the concatenation of two nouns to a compound adverb in (26). A reversal of the
ordering of the input words is permissible, resulting in the compound verb in (27).

(23) tmav|-o-|modrý
dark-blue.a

← tmavý
dark.a

modrý
blue.a

(CS)

(24) tvrd|-o-|hlavý
stubborn.a

← tvrdý
hard.a

hlava
head.n

(CS)

(25) čern|-o-|oděnec
black dressed man.n

← černý
black.a

odít
dress.v

(CS)

(26) chvála|bohu
thankfully.adv

← chvála
praise.n

Bohu
God.n-dat.sg

(CS)

(27) blaho|přát
congratulate.v

← přát
wish.v

blaho
wellness.n-acc.sg

(CS)

2.3 Compounds in language data resources

In this section, we alphabetically list data sources that are relevant to the model-
ing of compounding across languages. One of the strongest motivations for the
research described in this thesis is the fact that compounds are often underrepre-
sented in word-formation resources, and even when they are not, their handling is
inconsistent across languages or even across individual datasets.

2.3.1 CELEX2

CELEX2 (Baayen et al., 2014) is a general lexical database covering English (50, 964
items), Dutch (118.029 items) and German (51, 278 items), which apart from word
formation also covers inflection and syntactical properties of the included lexical
items. The database covers compound structure as well – it includes the morpho-
logical segmentation of each word using nested parentheses, with an associated
part-of-speech tag for each segment. Out of all the linguistic annotations provided
in this resource, delimitation of the components (and the linking element, inter-
fix, if present), POS of the components, and annotation of the internal structure
using nested brackets (cf. (28) to (30)) were the most important. In the bracketed
structures in German, some morphs are replaced with a representative form (cf.
gang substituted by geh, which occurs in the infinitive gehen ‘to go’ in (28); but in
the English example (30) woman is not used instead of women).

(28) Umgangssprache ... Umgang+s+Sprache NxN ...

((((um)[V|.V],(geh)[V])[V])[N],

(s)[N|N.N],((sprech)[V])[N])[N] ...
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(29) Grossmachtpolitik ... Grossmacht+Politik

NN ... (((gross)[A],(Macht)[N])[N],

((polit)[R],(ik)[N|R.])[N])[N] ...

(30) womenfolk ... women+folk NN

((women)[N],(folk)[N])[N] ...

2.3.2 DeriNet

DeriNet is a lexical database of Czech where words that share a common root are
arranged into tree-like graphs according to their morphological structure – from
the morphologically simplest words (unmotivated words) to the most complex.
Unmotivated words are represented as roots, and derivatives are linked to them,
forming derivational trees. The database contains over a million entries, of which
less than a half (ca. four hundred thousand) are corpus-attested. Originally, the
resource handled exclusively derivation, but from version 2.0 (Vidra et al., 2019)
onward, support for compounding has been added in the form of a binary yes/no
compound flag for each lexeme, as well as by allowing the API to support a single
lexeme having multiple parents. While derivatives are linked to a single ancestor,
compounds can be connected to two ormore ancestors. As a result, word-formation
families containing compounds are no longer trees, but rather directed acyclic
graphs (DAGs), or multi-rooted trees. The lemmaset is based on MorfFlex7 (Hajič
et al., 2020), a morphological dictionary of Czech aiming for complete average.
The latest public version, DeriNet 2.1 (Vidra et al., 2021a) (apart from version 2.2
released as part of this dissertation – cf. Chapter 4), only contained nouns, verbs,
adjectives, and adverbs.

Some compounds were identified (=their parents have not yet been found)
based on heuristics and lexical lists of compound parts. When the compounds both
with and without the links to their ancestors are counted (all of them having the
explicit Boolean compoundhood flag set totrue) togetherwith the derivatives of all
these compounds, the number totals to 45 thousand corpus-attested compounds
available inDeriNet 2.1 (Vidra et al., 2021a). This version contains over two thousand
compounds with assigned parents. The left graph in (31) shows the unmotivated
nouns dům ‘house’ and rod ‘kin’ as ancestors of the adjectival compound domorodý
‘native’, from which the noun domorodec ‘native man’ and the adverb domorodě ‘in
a native way’ are derived.

7http://hdl.handle.net/11234/1-3186
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(31)

domorodý

dům rod

domorodec domorodě

2.3.3 GermaNet

GermaNet (Henrich and Hinrichs, 2010; Hamp and Feldweg, 1997a) is a database
that relates German verbs, nouns, and adjectives. It currently contains 215, 000
lexical units, of which 121, 655 are split compounds. This source lists for each
compound the lemmas of two immediate ancestors from which it was composed
((32) to (34)). The ancestors provided are existingwords, not just strings occurring in
the compound (cf. (33) where the verb abbiegen ‘to turn’ is given, because *Abbiege
is not a separate word in German). Compounds with more than two roots are split
in succession; see (34) where the second ancestor is a compound which is analyzed
in a separate entry in the resource. For the first component, two possibilities are
given, if both are equally relevant (cf. the action noun Umfrage ‘survey’ and the
verb umfragen ‘to survey’ in (34)).

(32) Umgangssprache Umgang Sprache

(33) Abbiegeassistent abbiegen Assistent

(34) Umfrageteilnehmer Umfrage|umfragen Teilnehmer

2.3.4 Golden Compound Analyses

Golden Compound Analyses (Vodolazsky and Petrov, 2021) is a collection of around
2000 Russian two-parent compounds hand-annotated for the purposes of training a
Russian compound splitter. Each entry also contains a morphological rule by which
the compound’s parent is incorporated ininto the word. While it also contains
information on POS of the parents and of the resulting compound, there is no
information about derivational parents or children. The structure is shown in
Figure 35.
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(35)

половина душа

вполдущи

раздираюшый

душераздирающый

Rule1028

Rule754

Rule1028

Rule754

2.3.5 MORBO/COMP

MORBO/COMP (Guevara et al., 2006) is a database of compounds covering 23
languages, including the ones in scope except for Czech. It provides information
consistent with the classification of Scalise and Bisetto (2009). The database de-
scribes the part-of-speech of each compound as well as its constituents, centricity,
syntactic headedness, semantic head (if present), linking element, and gloss in
English. In Table 2.1, the annotation provided is exemplified by three nominal
Italian compounds composed of words from different POS categories (cf. 2nd and
3rd column).

The compound’s lemma (1st column) is followed by its POS category (2nd col-
umn), the POS categories of the components (column Struct[ure]), syntactic relation
between the components (Class: subordinate/attributive/coordinate), endocentric-
ity (End[ocentric]: True/False), placement of the semantic head (Head-C), placement
of the syntactic head (H-S), the form of the first component (1st-C) and of the second
one (2nd-C), and the gloss.

While the first compound (madrelingua ‘mother tongue’) is endocentric with
the right component playing the role of head, the latter two are exocentric (and
headless). The components are listed as they occur in the compound (8th and 9th
column), they may not be existing words (cf. the third compound in the table).
While potentially highly useful for the purposes of this thesis, as of 2024 the project
seems to have been discontinued and the data are not publicly available.

Compound POS Struc Class End Head-C Head-S 1st-C 2nd-C Gloss

madrelingua N [N+N] SUB Tru right right madre lingua mother+tongue
mano lesta N [N+A] ATT Fal none none mano lesta quick+hand

= thief
dormiveglia N [V+V] CRD Fal none none dormi veglia sleep+be awake

= dozing

Table 2.1: Annotation of Italian compounds in the MORBO/COMP database.

2.3.6 UniMorph

UniMorph (Batsuren et al., 2022b) is a massive-scale coordinated effort by a team of
researchers from all over the world to build a collection of morphological resources
covering 169 different languages. As a result, its coverage varies wildly. For the
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purposes of this thesis, only the Spanish (42, 825 derivatives; 130 compounds) and
French (72, 789 derivatives; 161 compounds) branches of Unimorph are relevant. In
ex. (2.3.6), the first two examples are French, the second two are Spanish.

(36) feuille portefeuille N:N porte-
pigeon pigeonite N:N -ite
Estados Unidos estadounidense N:N -ense
utilizar utilización V:N -ción

2.3.7 Wiktionary

Wiktionary presents a massive amount of compounds for many languages. Un-
fortunately, the data resource is very inconsistently structured, and in practice, it
is difficult to extract compounds and/or descriptions thereof safely, because the
labeling conventions are in practice very inconsistent. As a result, we only accepted
entries that which

a) were explicitly tagged as compound, and

b) had their parents formatted in Wiktionary’s standard format, and

c) did not contain hyphens on either side (so as to rule out affixes).

Trying to accommodate other matches, such as non-standardly formatted par-
ents, yielded a large number of false positives, because Wiktionary annotation
turned out to be very inconsistent. As a result, we were able to scrape 257 French
compounds and 384 Spanish compounds, alongside their parents.

2.3.8 Word Formation Latin

The Word Formation Latin database contains more than 3 thousand Latin com-
pounds, with their derivatives (Litta et al., 2016). The database is organized in a
way similar to DeriNet; cf. the right graph in ex. (31) modeling the Latin adjective
magnanimus ‘high-spirited’ as being formed by combining the adjective magnus
‘high’ and the noun animus ‘spirit’, and giving rise to the noun magnanimitas ‘high-
spiritedness’. The structure is shown in Figure 37. meaning that we were able to
extract both compounds and their derivatives, totaling 3, 198 entries.

(37)

magnus animus

magnanimitas

magnanimus

30



Authors Lang(s) Approach POS scope Parent no.

Khaitan et al. (2009) en Split-point Any Any
Fritzinger and Fraser (2010) de Split-point Any 2
Henrich and Hinrichs (2011) de Valid-output Nominal 2
Clouet and Daille (2014) en, ru Valid-output Any 2
Martin Riedl (2016) de, nl, en Split-point Any Any
Krotova et al. (2020) de Split-point Nominal Any

Svoboda and Ševčíková (2021) cs Valid-output Any Any
Vodolazsky and Petrov (2021) ru Valid-output Any 2

Table 2.2: Comparison of various compound splitters sorted by year of publication.

2.4 Compounds in procedural tools

By procedural tools, we mean programs, algorithms, and models that, unlike the
data sources described in the previous section (2.3), do something with the input
word or words to produce the desired output, as opposed to simply looking for
the input in a fixed database. As a result, procedural tools can handle any word,
not just a limited set that happens to be covered by the given database, but their
output may be incorrect much more often.

In this section, we will focus primarily on so-called compound splitters, but will
also briefly go over other tools that deal with compounding in one way or another.

2.4.1 Compound splitters

A compound splitter (a.k.a decompounder) is any tool that takes a compound word
as input and decomposes it into two or more linguistic sub-elements in some way.
In contrast with static data resources, compound splitters are procedural, and
as a result should not output an out-of-vocabulary error when presented with a
novel coinage. We present a short non-exhaustive overview and classification of
compound splitters that have been presented in the literature for the languages in
scope. It is summarized in Table 2.2 .

Split-point compound splitters simply return the index of the place wherein the
given word should be split, which is what Khaitan et al. (2009) applied to English
using normalized frequency and character n-grams. While the split-point approach
allows the task to be handled as a regression or classification problem (as opposed
to a sequence-to-sequence approach), the drawback is that in many languages
a point-split systematically fails to yield valid lemmas. This is of little concern in
English, where examples of this situation are rare, but such an approach started
being a problem once the attention in NLP shifted tomoremorphologically complex
languages.

For example, in the Dutch example (38), we see an -e- interfix. Inserting a
split-point at bruide.gom would result in *bruide, which is not a Dutch word; con-
versely, a split-point at bruid.egom results in the similarly nonsensical *egom. This
problem can be solved by building split-point splitters so that they drop interfixes,
for instance by using a list of them like Henrich and Hinrichs (2011) did. However,
in some languages, even interfix dropping falls short, and the split-point approach
starts being impractical. For example, splitting Czech zeměpis as země.pis results
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in *pis, which is not a valid lemma (cf. ex. 59). Instead, the appropriate output
would be psát ‘to write’. Similarly, Russian вод.о.провод (cf. example51) cannot be
point-split correctly, as it would yield the non-existent *вод (40). Sporadically, the
problem appears even in English, where women.folk (ex. 41) would yield women,
which is a plural, and therefore not a lemma.

(38) bruidegom
bridegroom.n

→ bruid
bride.n

gom
groom.n

(NL)

(39) zeměpis
geography.n

→ země
earth.n

psát
write.v

(CZ)

(40) водопровод
water_piping.n

→ вода
water.n

провод
conduit.n

(RU)

(41) womenfolk
n

→ woman
n

folk
n

(EN)

Valid-output compound splitters attempt to deal with the previously described
problems. This may be achieved by equipping a split-point splitter a table of rules
and/or a vocabulary or corpus, like Clouet and Daille (2014) or Vodolazsky and
Petrov (2021) did, or by treating the task as a sequence-to-sequence procedure
outright, which is an approach that Svoboda and Ševčíková (2021) took.

Some compound splitters restrict themselves to nominal compounds, such as
the splitters of Henrich and Hinrichs (2011) or Krotova et al. (2020) for German; gen-
eral compound splitters handle any compound regardless of the POS of either the
parents or the compound. Finally, splitters differ in how many parents they return.
Some splitters either return exactly two parents, like the splitter of Fritzinger and
Fraser (2010); others return any number of parents, like Svoboda and Ševčíková’s
2021 splitter.

Out of the languages in scope, compound splitters have been built for five of
the seven languages. To the best of our knowledge, no splitters have been built for
French or Spanish at the time of submission of this thesis, with the exception of DériF
(Namer, 2003), which only handles neoclassical compounds like those in example
42. Before the introduction of Czech Compounds Splitter (more details in Chapter
3.2), Czech also had no procedural tool for identifying or splitting compounds.
Derivational Analyzer of Czech (Derivancze; Pala and Šmerk, 2015), as its name
suggests, is limited to derivational relations in the lexicon of Czech.

(42) psychologie
psychology.n

→ -psych-
soul.neoc

-log-
word.neoc

(FR)

Splitting of Czech compounds has been addressed by Czech Compound Splitter
(Svoboda and Ševčíková, 2022), which is the predecessor ofWFA.ces (Svoboda and
Ševčíková 2022; Chapter 3.3) and PaReNT (Svoboda and Ševčíková 2024; Chapter
3.4). Its primary capability, compound splitting, can be understood as a special case
of parent retrieval limited to confirmed compounds. Analogously, it also performed
compound identification, which is word formation classification limited to a binary
set of classes – compounds and non-compounds.

Henrich and Hinrichs (2011) linked German nominal compounds to their re-
spective parents in GermaNet (Hamp and Feldweg, 1997b) using an ensemble of
pattern-matching models with an accuracy of 92%. Sugisaki and Tuggener (2018)
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achieved an F1-score of 92% for finding split-points in German compounds using an
unsupervised approach, although they also restricted their efforts to noun-headed
compounds only. Ma et al. (2016) achieved an accuracy of 95% using a neural
approach trained on the aforementioned GermaNet. Their model performed both
splitting and identification of compounds, with the accuracy being an aggregated
score of both. Krotova et al. (2020) achieved an accuracy of 96% with a deep-neural
model trained on GermaNet data, again restricting themselves to nominal com-
pounds. Clouet and Daille (2014) achieved F1-scores of 80% and 63% respectively
for finding split-points in English and Russian compounds using a corpus-based
statistical approach on manually split compounds.

It is worth mentioning that apart from the languages in scope, a significant
amount of research has been dedicated to the study of Sanskrit compounds. This
ranges from early, relatively simple rule-and-lexicon based attempts by Huet (2005),
who lists no accuracy in his study, to Hellwich and Nehrdich’s (2018) deep-learning
solution trained on a corpus of 560, 000 Sanskrit sentences with its compound
split-points annotated, achieving an accuracy of 96%.

2.4.2 Other procedural tools

Out of all the other already-established tasks in computational linguistics and
natural language processing, the closest to compound splitting is probably mor-
phological segmentation, in that morphological segmenters are typically expected
to shed light into the internal structure of compounds. These tools typically return
a list of morphs or morphemes (e.g. happiness -> [happ, i, ness] or [happ, y, ness],
or seasickness -> [sea, sick, ness]). Such morphs or morphemes may or may not be
valid words.

A well-known segmenter is Morfessor, introduced as unsupervised in 2002 by
Creutz and Lagus, extended into semi-supervision in 2010 by Kohonen et al., and
generalized beyond morphological segmentation in 2013 by Virpioja et al. It has
been shown that its application on two languages can improve machine translation
(Grönroos et al., 2018).

Othermorphological segmenters, however, are tailored to a particular language.
For example, Cotterell et al. (2016) built one for English using weighted context-free
grammars, and the SIGMORPHON 2022 Shared Task on Morpheme Segmentation
(Batsuren et al., 2022a) challenged researchers to segment words in 8 different
languages using training data from the aforementioned Unimorph database (Bat-
suren et al., 2022b). While this resource does cover segmentation, extracting the
information may be difficult. To address this problem, a multilingual annotation
scheme for morphological segmentation has been proposed by Žabokrtský et al.
(2022), potentially streamlining the development of multilingual segmenters in the
future.

Another task related to parent retrieval is stemming. The now classic Porter algo-
rithm was developed in 1979 and published in 1980. There is also a programming
language built by Porter, specifically tailored for writing stemmers, called Snowball
(Porter, 2001), in which a Czech stemmer called Czech Snowball Stemmer (Chmelař
et al., 2011) was implemented.

It has been demonstrated in several languages that NLP tasks such as informa-
tion retrieval and text classification are significantly improved if the input data is
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first stemmed. This has been shown for Swedish (Carlberger et al., 2001), Albanian
(Biba and Gjati, 2014) and even Czech (Dolamic and Savoy, 2009), which suggests
that the task of parent retrieval, addressed in the present thesis, might also po-
tentially be of practical interest for the purposes of applications like information
retrieval.

Parent retrieval, under our interpretation, differs from stemming in that

• it requires the input to have already been lemmatized;

• it has to return a lexical item that appears in the given language’s usage as
an independent item; and

• it only returns the immediate ancestor of the input word.

For instance, given the English word unhappiness, the string *happi in (43) might
be considered to be a correct stemming, despite the fact this string does not occur
by itself in written English. When stemming, emphasis is placed on lumping words
like unhappiness, happiness and happiest under a single label (*happi in this case),
be it linguistically correct or not. In contrast, (44) or alternatively (45) is what we
would expect a parent retriever to do.

(43) unhappiness← *happi

(44) unhappiness← unhappy

(45) unhappiness← happiness

To conclude, the coverage of compounds in data sets and tools highly depends
on the language in question, with German and Dutch receiving the most attention
and French and Spanish the least. In this dissertation, we will make use of all the
data sets listed in this chapter, except for MORBO/COMP, which unfortunately does
not seem to be available.
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3. Developing tools for compound
analysis

This chapter presents a series of three tools, each an improvement over the next –
Czech Compound Splitter, Word Formation Analyzer for Czech, and PaReNT. Originally,
the plan had been to start with Czech and then later spread out into the other
language. While that ultimately did happen, what also happened is that we spread
out into other types of words formation. Czech Compound Splitter is therefore the
only tool in the series that is specialized in compounding only – the following two
can also handle derivation. Before we present the three tools, however, we will
introduce some of the considerable number of formal challenges presented by the
languages in scope in Section 3.1.1, and the reasoning and principles behind the
solution employed to tackle them in Section 3.1.2.

3.1 Problems and the solution

3.1.1 Challenges

Sometimes, the process of compounding is a simple concatenation of otherwise
freely occurring words, as in ex. (46)

(46) chevalvapeur
horsepower.N

← cheval
horse.N

+ vapeur
steam.N

(FR)

Often, compounding is however far more complex than that, and this section
demonstrates the non-triviality of handling these words.

When dealing with compounds, an immediate problem arises – where lies
the boundary between compounding and other word-formation processes, and
between compounding and syntax? This is a heated topic in morphology because
the question begs the answer to other unsolved questions, such as the precise def-
initions of wordhood and morpheme boundness, as already addressed in Chapter
2. As a result, numerous edge cases exist – and for computational purposes, these
need to be resolved one way or another.

(47) ondersteunen
support.V

← onder
under.P

+ steunen
support.V

(NL)

In ex. (47), ondersteunen can either be considered a compound, or it can be
understood as a derivative of steunen with the prefix onder-. The case for the com-
pounding interpretation can bemade by observing that onder syntactically behaves
like a free word in German. However, the productivity pattern of compounds with
onder is much more reminiscent of derivation. Furthermore, Lieber and Štekauer
(2011) propose that roots should have more semantic substance than affixes, but it
is difficult to argue that onder has more semantic substance than for example the
undisputed affix pre-. As a rule of thumb, we tend to consider edge cases like this
to be compounds if the leading element is two syllables or longer, and derivatives
otherwise.
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Another type of word straddling the boundary is the already-mentioned neoclas-
sical compound. It is a special case of compounding wherein elements borrowed
from Ancient Greek and Latin are combined either with each other or with free
words. We term such elements neoclassical constituents.1 For example, in the En-
glishmonolog, neither the first constituent *mono- nor the second constituent *-log
can be attested on their own.

Neoclassical compounds, under our interpretation, constitute what Ološtiak
and Vojteková (2021) consider semi-composition and quasi-composition. The Ger-
man noun Soziologie ‘sociology’ in (48) is an example of quasi-composition in their
framework. In a broader sense, chemical compounds also satisfy the definition of
semi-composition, as in (49).

(48) -soci-
-soci-.neocon

+ -log-
-log-.neocon

→ Sozi|-o-|logie, but no *Sozi
sociology.n

nor *logie (DE)

(49) -tetra-
-tetra-.neocon

+ chlor
chlorine.n

+ ethylen
ethylene.n

→ tetra|chlor|ethylen, but no *tetra
tetrachlorethylene.n

(CS)

On the other end of the spectrum, there is the fuzzy boundary between com-
pounding and syntax, or what Lieber and Štekauer (2011) term the macro question.
It may not always be clear at which point a given syntactic phrase has ‘solidified’
enough to be considered a word on its own. The Czech tradition would, for in-
stance, consider the adjective vždyzelený mentioned in Section 2.2 to be a single
word, but this largely relies on orthographic convention, which may not be reli-
able in English (cf. flowerpot, flower-pot, flower pot are all valid spellings) or other
languages (e.g. French portemonnaie vs. porte-monnaie ‘wallet’, Italianmezzaluna
vs. mezza luna ‘half-moon’, Czech machinelearningový vs. machine learningový vs.
machine-learningový ‘related to machine learning’).

Morphological variation

Some compounds are formed by themere juxtaposition of existing words. However,
this is often not the case. In ex. (50), we observe the addition of an -e- interfix
between the constituents. In some languages, variation goes beyond interfix
addition.

In вод.о.провод (cf. ex. (51)), the interfix replaces the ending of the first con-
stituent *вод. Internal flexion also appears, like in the English womenfolk (ex. (52)),
where the first constituent is inflected for plurality. Additionally, stem allomorphy
often appears. It may takes the form of vowel alternation, for example /o/→ ∅,
like in (53).

(50) bruidegom
bridegroom.N

← bruid
bride.N

+ gom
groom.N

(NL)

(51) водопровод
water piping.N

← вода
water.N

+ провод
conduit.N

(RU)

(52) womenfolk
N

← woman
N

+ folk
N

(EN)

1Also known as baseoid under (Ološtiak and Vojteková, 2021)
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(53) любв|-е-|обильный
affectionate.n

← любовь
love.n

+ обильный
abundant.a

(RU)

In (54), the compound is traced back to the noun phrase porta lettere ‘carries
letter’ where both words are inflected – the first for the 3rd person (infinitive is
portare ‘to carry’) and the second for number (singular is ‘lettero’). Additionally,
there are compounds that cannot be meaningfully split into two parents; cf. the
compound in (55) which is composed of a multi-word numeral expression (dvě a půl
‘two and a half’) and the final part which was converted from a noun (léto ‘year.n’
→ -letý ‘-year.a’).

(54) portalettere
postman.a

← porta
carries.v

lettere
letters.n.pl

(IT)

(55) dvaapůlletý
two-and-a-half-year-old.a

← dvě
two.num

+ a
and.c

+ půl
half.num

+ léto,
year.a

but no *letý

(CS)

Parasynthetic compounding

One of theways compounding interacts with other aspects of language is when it oc-
curs simultaneously with some other word-formation process, which as previously
mentioned we call parasynthetic compounding.

Compounding and derivation in one step (56) as well as compounding and
conversion in one step (57) are possible, often accompanied by vowel and consonant
changes; for instance, in (57) two cases of stem vowel alternation ( ∅ ← /e/ in ps
← pes and /o/ ← /e:/ in vod ← vést), a stem consonant alternation (/d/ ← /s/
in vod← vést), and an interfix insertion all occur at the same time. Note that in
parallel to (57), the compound in can also be analysed as an output of compounding
and conversion in one step (59). In contrast, for psovod such an alternative is not
available because *vod is not attestable as a separate noun in Czech.

(56) modr|-o-|oký
blue-eyed.a

←modrý
blue.a

oko,
eye.n

but no *oký (CS)

(57) ps|-o-|vod
dog-handler.n

← pes
dog.n

vést,
lead.v

but no *vod (CS)

Whether or not a given compound is parasynthetic may be a matter of analysis.
This leads to difficulty in annotation. Similarly to the examples just discussed, the
second parent of Czech přímotop (ex. (58)) can only be topit, not *top, which is
a bare stem and not a word, so the motivating process behind this word must
be compounding together with conversion. However, the similar krvotok (ex. 58)
can be either analogously understood as compounding together with conversion,
assigning the verb téci ‘to flow’ as the second parent, or we can assign the noun tok
‘flow’ as the parent and understand the motivating process as simple compounding
proper (cf. Bozděchová (1997)).

(58) přímotop
heater.N

← přímo
directly.Adv

+ topit
heat.V

(CS)
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(59) krvotok
bloodflow.N

← krev
blood.N

+ téci/tok
to flow/flow.V/N

(CS)

The reason words like *haired as in red-haired or *legged as in bow-legged
are unattested is probably because the base assumption is all humans have these
body parts, and therefore such words would carry minimal information value.

(60) белокурый
white-haired.A

← белый + кура
white.A hair.N

, but no *курый (RU)

(61) blauwogig
blue-eyed.A

← blauw + oog,
blue.A eye.N

but no *ogig (NL)

(62) blue-eyed
A

← blue + eye,
A N

but no *eyed (EN)

(63) albicapillus
white-haired.A

← albus + capilla,
white.A hair.N

but no *capillus (LA)

Looking at the difficulties outlined above, it soon became clear that in a multi-
lingual setting, there was very little we could assume that would help us compu-
tationally analyze compounds. We could not assume we could find the parents
of compounds by calculating a split-point, because all of the languages in scope
except English use interfixes and exhibit frequent stem allomorphy. We could not
rely on string overlap, because e.g. psovod contains neither pes nor vést. Also, many
compounds contain multiple parents, which makes dictionary-search approaches
inefficient.

It also became clear that the amount of linguistic knowledge required to cover a
new language was considerable despite the amount of data available, and it would
be necessarily to employ a language expert for each new language in order to
support a multi-lingual rule-based system for compound analysis, which would not
scale very well in the future. Another observation regarding compound analysis is
that for a human, it is intuitively very easy. No Czech person has trouble figuring out
that psovod comes from pes and vést (or alternatively vodit), although the amount of
morphological reconstruciton necessary to arrive at these parents is considerable.

Fortunately, the one thing we did have was data, and we decided to use a
general technique that tends to be very good for things that are difficult to program
explicitly but easy for human intuition – deep learning.

3.1.2 A general solution

Deep learning is generally understood as the branch of machine learning that deals
with deep neural network models using representation learning. A neural network
is a computationalmodel historically inspired by the functioning of biological neural
structures, but has since diverged from its original goal of modeling biological
structures and instead focused on the development of highly general models
applicable to a wide plethora of input data structures and tasks.

As a result, a large portion of this dissertation relies on deep learning in one or
another, we include a short introduction explaining the basic concepts pertaining
to this topic for readers who may not be familiar with it. It must be stressed that
this area of research is both wide and deep, and that the concepts presented here
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are carefully selected so that they are immediately relevant to the topics of the
dissertation.

Multi-layer perceptron

The most basic type of neural network is called a multi-layer perceptron, or alter-
natively feedforward layer (FF) if used as part of a larger model (Rumelhart et al.,
1986).

In an MLP, the input represented as a vector v of size n is multiplied by a weight
matrixW of shape [n×m], a bias vector b is added to it, and the resulting vector u
of sizem has the neural network’s so-called activation function applied to it. Finally,
the vector u is multiplied by a reshaping matrix X of shape [m× o], where o is the
size of the desired output vector, and passed through an output function, whose
choice depends on the task at hand. For regression tasks, the identity function is
used, but for classification tasks, the softmax2 output function is typically utilized,
which is defined as

softmax(o)i =
eoi∑︁K
j=1 e

oj
,

where o represents the number of classes being predicted, and the values of the
softmax output representing the probabilities assigned to each class by the model.

The step represented by the multiplication of the input byW and the addition
of b is known as the hidden layer of the given MLP. It can be shown using what’s
known as the Universal Approximation Theorem (Cybenko, 1989; Hornik, 1991)
that any continuous function from Rn to Rm can be approximated by a MLP which
is either sufficiently wide (=m is sufficiently large) or deep (= there is a sufficient
amount of hidden layers). Since strings of characters can be represented as vectors
(though achieving that is not as simple as just using a MLP – see Section 3.2.2 for
details), it stands to reason that neural networks were just the general solution
that we were looking for.

Training of neural models

In the setup of supervised learning, neural networks are generally trained on a
dataset of (input, expected output) pairs using stochastic gradient descent (SGD)
(Rumelhart et al., 1986; Robbins andMonro, 1951) or its variants (SGD with momen-
tum (Polyak, 1964), SGDwith Nesterovmomentum (Nesterov, 1983), ADAM (Kingma
and Ba, 2014)...). The usage of SGD necessitates the selection of a so-called loss
function, which is, roughly speaking, a function of two variables which returns a
single variable that in some sense describes the ‘closeness’ or ‘similarity’ of the two
input variables. The higher the loss function, the less similar the two inputs are
In the case of classification, this is usually categorical crossentropy (Mannor et al.,
2005), defined as

H(e, ê) = −
C∑︂
i=1

ei log eî,

2softmax is a differentiable function that takes a vector and re-scales it so that its elements sum
to 1. This makes it so that the output vector can be re-interpreted as a distribution.
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where C is the number of categories being predicted, e is the expected output
(which is a one-hot vector corresponding to the correct category), and ẽ is the
output distribution, and ei is the i-th entry in e.

The purpose of the training procedure is then to set the network parameters so
that the loss function’s outputs are minimized. In SGD, the entire neural network
is interpreted as a single differentiable function parameterized by the network’s
weight matrices and bias vectors. First, the neural network’s weights are randomly
initialized. Then, in each training step, a random example pair (i, o_gold) is selected
from the dataset, and the output o_pred from the neural network is saved. Then, the
gradient of the loss with respect to the neural network’s parameters is calculated.
For this purpose, an algorithm called backpropagation is used. Backpropagation
uses the fact that each layer of the model is a function, and that the forward pass
through the neural network is therefore a composition of those functions. It can
then, starting from the output function, use the chain rule of derivatives to find the
gradient of each layer and therefore of the whole model.

Then, the gradient is subtracted from the neural model’s weights. The intuition
behind this step is that subtracting the gradient sets the model’s weight to what
would have resulted in zero loss. However, the model would never generalize this
way (since it would only learn to recognize that one example), so the gradient is
first element-wise multiplied by a small number called the learning rate. The higher
the learning rate, the faster the model trains, but the danger of the model not
converging properly or at all also gets higher. It therefore often leads to the best
results if the learning rate is dynamically adjusted throughout the training process
using a learning rate schedule.

In Python-like pseudocode:

model.initialize_weights()
learning_rate = 0.01
epochs = 10

for epoch in epochs:
for example in dataset:

i, o_gold = example
o_pred = model.classify(i)
loss = Categorical_crossentropy(o_pred, o_gold)
gradient = take_gradient(model.weights, loss)
update = -1*(learning_rate * gradient)
model.weights = model.weights + update

Having trained a model, it is now critical to gauge whether or not the model
actually performs the given task well. Since the model is based around large
matrices of numbers which are difficult to interpret, and the fact that it learns
without direct human involvement, a rigorous methodology must be implemented
to ensure that the model performs as it should.

Evaluation of neural models

Our evaluationmethodologywas guided by the important observation that the data
on which a model is evaluated must be different from the data it was trained on.
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This is because of a phenomenon known as overfitting, where, roughly speaking,
the model learns the training examples ‘by heart’ instead of generalizing, which
makes it perform excellently on learned data, but terribly on unseen data. Before
model development, it is therefore necessary to split the data into three parts which
do not overlap:

1. The training (train) set, which is used to train an array of models based on
various hyperparameter (such as layer size or learning rate) settings (60 % of
the data);

2. The development (devel) set, which is used to select the best model from the
array based on one or more evaluation metrics (20 % of the data);

3. The evaluation (eval) set, which is used to calculate evaluation metrics for the
purposes of model publication or deployment (20 % of the data).

The split between the devel and eval sets exists because the act of selection from
an array of models introduces bias into the evaluation. The choice of evaluation
metric largely depends on the task at hand, but for the classification and compound
splitting/parent retrieval models presented in this thesis, we used these:

Accuracy refers to the number of times the model predicted correctly divided
by the total amount of predictions. Accuracy is very simple, but does not take into
account type of error3 or potential imbalance of classes in the devel and eval data.

Precision refers to all correctly predicted instances of class (True Positives) i
divided by all instances of class i. Unlike accuracy, Precision must be calculated
for each class separately.Sensitivity (True Positive Rate; TPR; Recall) refers to all True
Positives divided by all True Positives + all False Negatives. Specificity (True Negative
Rate; TNR) refers to all True Negatives of class i divided by all False Positives + all
True Negatives.

Balanced accuracy refers to the sum of Sensitivity and Specifity divided by two
and averaged over all of the classes. In classification, it is important to take into
account that there exists a dummy accuracy or no information rate, which is defined
as 1

num_of_classes
. Roughly speaking, this is the accuracy of a model that predicts by

guessing at random, e.g. predicting a binary (e.g. predict Red vs. Blue, with no
other values possible) by tossing a coin Models performing with balanced accuracy
around this value are not valuable or useful. The purpose of balanced accuracy is
to take into account potential imbalance in the devel or eval data. For example, in a
dataset of 100 examples, where 99 cases are Red and 1 is Blue, a dummymodel that
always guesses Red would get 99% accuracy, which looks impressive at first glance.
However, it would get 50% balanced accuracy, revealing that it is not actually a
useful model.

Finally, the F1 score for binary classification is defined as the harmonic mean of
Precision and Recall as

F1 = 2× Precision×Recall

Precision×Recall
.

The F1 score is, like balanced accuracy, useful for imbalanced datasets.

3This can be a huge problem in applications such as medical machine learning, where misclassi-
fying a tumor as a healthy bundle of cells is a much more costly mistake than the opposite.
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For about 38% of the hand-annotated compounds in our dataset, there was
ambiguity as to which parents they should be linked to. For instance, monopro-
gramový ‘having a single programme’ may be considered to be either composed of
the neoclassical constituent -mon- and the adjective programový, or it alternatively
may be composed of -mon- and the noun program, which would be derivation and
compounding in one step. For the purposes of evaluation, both were considered
to be correct splittings.

Additionally, a more relaxed metric was proposed by us which considers a
predicted parent-candidate to be correct if it belongs to the same morphological
family as the annotated parent. This metric is referred to as root accuracy, because
all items of a morphological family are represented as a tree structure with the
unmotivated word as the root node in DeriNet. DeriNet data are used to determine
whether or not the predicted parent-candidate shares the same morphological
family as the annotated parent. The solutions described in the following section
exhibit different weaknesses and strengths.

3.2 Czech Compound Splitter

For some languages such as Sanskrit or German, compounding had been mapped
and modeled extensively in both static data resources and procedural tools, but
this was until 2021 not the case in Czech.

This chapter focuses on modelling compounding in Czech, which is a language
where compounds are nearly always represented in writing as a single string of
graphical symbols unbroken by whitespace. The problem we tackle is twofold: a)
upon being given a graphical word, to decide whether or not it is a compound; and
b) upon being given a confirmed compound, to return the citation forms of its base
words (from here: parent words or parents). Task a) will be referred to as compound
identification and is approached as an instance of binary classification; and task b)
will be referred to as compound splitting. The tasks can be seen as part of the more
general problem of morphological segmentation, which refers to the splitting of a
word into morphemes (affixes, roots, endings).

After a brief report on the compilation of the data set including examples of
some challenges of Czech compounding (Section 3.2.1), the experiments are de-
scribed and their performance is compared in Section 3.2.2. The solutions we
implemented include a baseline solution which performs compound splitting only.
A more advanced approach based on phonemic string similarity we call Interlex-
ical Matrices of Likeness, or IML(), is also limited to compound splitting. Finally,
a deep learning based tool dubbed Czech Compound Splitter was trained, which
simultaneously carries out both compound identification and compound splitting.

3.2.1 Data

The training data of Czech Compound Splitter had two primary components – a small
dataset ofmanually-annotated genuine Czech compoundwords taken fromDeriNet
and a large set of mostly nonsensical but roughly correctly formed compounds
synthetically generated by combining non-compounds together.
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Manual annotation of DeriNet data

The compilation procedure began by extracting 1, 500 words from the DeriNet
word-formation resource that had previously been labelled as having compound
status. As their parent words had not been yet identified, this had to be done by
hand. 53 were dropped, because they had been labelled as compounds mistakenly
(levopimar, a medicine brand name), or are derivatives of compounds (e.g. the
adverb velechytře derived from the adjective velechytrý ‘very clever’). After this
cleanup process was done, 1, 447 compounds remained in the data set. 20% of the
data set compounds was held out for the purposes of validation. The training set
therefore consisted of 1, 158 hand-annotated compounds, while the holdout data
set set consisted of 289 hand-annotated compounds. The holdout set was further
split in half. The first half, the test set, was used to determine when to stop training
Czech Compound Splitter. The performance of all the approaches presented here
was evaluated on the other half, the validation set.

Neoclassical constituents, as they do not have an agreed-upon citation form, are
labelled with hyphens on both sides, maintaining the original Greek stem as bare
as possible. We also systematically interpret these elements as identical whenever
their etymology and semantics allow for it, even under circumstances where they
undergo formal changes. For instance, the first element of logografie ‘logography’
(logo-) and the second element of sociologie ‘sociology’ (-logie) are seen to be the
same, since they both ultimately descend from the same Greek root. In our data,
they are represented by the string -log-.

Greek orthography is respected as much as possible, so we respect the distinc-
tion between τ and θ, so the first element of teologie ‘theology’ is labeled as -theo-
(not -the-, as that would be ambiguous with the root of teorie ‘theory’). Zero ablaut
forms are preferred as labels of neoclassical compounds, unless this would result in
an asyllabic label. Thus, both the first element of gastronomie ‘gastronomy’ and the
second element ofmelanogaster (the epithet of the fruitfly Drosophila melanogaster)
is labeled as -gastr-, but the first element of gonokok ‘gonococcus’ and the second
element ofmutagen ‘mutagen’ are labelled as -gen-.

Generation of synthetic data

Because the hand-annotated data set of compounds obtained from DeriNet is too
small to reliably train a deep learning model, we simulated various compound
formation procedures that take place in Czech. For example, in (64) we see the
process of taking a random adjective stripped of its ending and concatenating
it with an -o- interfix and with another random adjective. The output is usually
nonsensical, like in the example, but formally correctly formed.

(64) Adjective 1
důležitý

+
+
-o-
-o-

+
+
Adjective 2
neomylný

→
→

Compound Adjective
důležitoneomylný

important.adj infallible.adj important-infallible.adj

For the purpose of training Czech Compound Splitter, we simulated a number of
such compound formation procedures in Python using randomly selected lexemes
from DeriNet, creating a data set of about 280, 000 synthetic compounds. The
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1st parent 2nd parent Overall Overall root
Method accuracy accuracy accuracy accuracy

Baseline 22% 42% 11% 16%
IML() 42% 66% 24% 39%
Czech Compound Splitter 61% 66% 54% 61%

Table 3.1: Overall performances the three solutions exhibited.

compound part of the training data set therefore consisted of this synthetic data
set combined with all of the hand-annotated compounds apart from the holdout
described above.

3.2.2 Experiments

Baseline solution

We first present a naive algorithm only intended as a baseline to help provide
context for the performances of the other solutions. This solution assumes the
given compound has two parents. It attempts to find an ‘o’ grapheme in the middle
third of the input word. If it finds one, it splits the word on this ‘o’, creating two
subwords. If no ‘o’ is found, it does the same with ‘i’. If no ‘i’ is found, it simply splits
the input in the middle, if the number of graphemes in the graphical word is even,
the left subword ends up being the longer one. Between each subword and every
word in the lexicon, Levenshtein (1966) distance is calculated, and the word with
the smallest distance from the subword is selected. Please refer to Table 3.1 to see
its performance.

The IML()-based heuristic algorithm

The second attempt to split compounds is based on a phonological similarity mea-
surement function developed specifically for this purpose. We developed a function
that takes two words as input and returns a rational number representing the total
degree of phonological similarity between the two words. We then attempted to
find pairs of words which, when concatenated, exhibited a low degree of IML()
similarity with the compound in question. IML() cannot perform compound iden-
tification, because the method already assumes the input word has exactly two
parents.

We began by manually defining a phonemic correspondence weight by hand
for each possible pair of phonemes in Czech, basing these weights on linguistic
intuition. The minimum weight is 0, which is the correspondence weight strictly
between a phoneme and itself, and the maximum weight is 1, which is the corre-
spondence weight between a phoneme and a phoneme it never alternates with,
like between /a/ and /t/. Note that this relationship is asymmetric by design, be-
cause we estimated that, for example, /h/→ /z/ is much more common than /z/→
/h/. From this, it directly follows that the ordering of the words that are input into
the IML() function matters. There are 32 phonemes in the Czech language, so
it follows that the total amount of phonemic correspondences equals 322 = 1024.
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/t/ /n/ /r/ /s/ /z/ /ts/ …

/t/ 0 0.8 1 0.8 0.9 0.8 …
/n/ 0.7 0 0.9 1 1 1 …
/r/ 0.7 0.9 0 0.9 1 1 …
/s/ 0.6 1 0.7 0 0.2 0.6 …
/z/ 0.8 0.3 0.9 0.2 0 1 …
...

...
...

...
...

...
...

. . .

Table 3.2: Sample of the referential matrix of correspondence weights between
pairs of Czech phonemes.

This can be described by a square matrix, where each column and row corresponds
to one of the Czech phonemes and each element describes the correspondence
weight between the Czech phonemes. This is what we call a correspondence matrix.
Part of the matrix used in this study is shown in Table 3.2. Note that the diagonal is
composed entirely of zeroes, and that the matrix is not symmetric with respect to
said diagonal, which reflects the asymmetric nature of Czech phoneme alternation
described in the previous paragraph.

The IML() similarity measurement function takes two words, transcribes both
of them phonologically, and uses the values found in the correspondence matrix to
build a separate matrix of correspondence weights between every single pair of
phonemes from the two input graphical words. The cheapest path through it is
found, beginning in the top left corner of the matrix, and ending in the bottom
right corner. We used the A∗ algorithm, an extension of Dijsktra’s algorithm, to
find the shortest path (Hart et al., 1968).

The lower the output value, the higher the similarity, with IML(word1, word2)
being equal to 0 if and only if word1 = word2, because the correspondence weight
between a pair of phonemes is zero if and only if the two phonemes in the pair are
identical – which is why the diagonal of the referential matrix is composed of zeros,
and in that the only zeros in the referential matrix are located on the diagonal.

Based on this similarity function, we were able to find the pair of words from
the lexicon mentioned previously which, when concatenated, exhibited the highest
similarity with the compound word in question. The algorithm therefore requires
the compound in question and a lexicon to find its parents in. A visual demon-
stration of the idea behind the algorithm with the word černomodrý ‘black and
blue’ and a toy lexicon can be viewed in Table 3.3. The table shows the outputs
of the IML(compound,word1 + word2) calculations for each word pair from the
{černý, červený,modrý} {‘black’, ‘red’, ‘blue’} lexicon. The algorithm generates all
pairs of lexemes from a given lexicon, concatenates them and calculates IML()
for each pair. It then (correctly in this case) selects the pair with the smallest value.
The problem is that the size of our lexicon ultimately exceeded 800, 000 lexemes,
meaning that every time a compound is split, over 800, 0002 = 6.4×1011 interlexical
matrices need to be built and run through the A∗ pathfinding algorithm.

A heuristic filter was therefore added. For this purpose, a variant of the IML()
function, the IMLsub() function, was defined. The two functions are similar with
two key differences. First, in the case of the IMLsub(), the cheapest path does
not have to reach the bottom right corner of the matrix. Instead, the path’s to-
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IML(černomodrý,černý + černý) = 5.8
IML(černomodrý,černý + červený) = 5.0
IML(černomodrý,černý +modrý)= 0.6
IML(černomodrý,červený + černý) = 5.7
IML(černomodrý,červený + zelený) = 6.9
IML(černomodrý,červený +modrý) = 2.6
IML(černomodrý,modrý + černý) = 9.6
IML(černomodrý,modrý + zelený) = 9.8
IML(černomodrý,modrý +modrý) = 10.6

Table 3.3: Sample of the algorithm’s functioning, without the heuristic filter.

tal cost is calculated whenever it reaches either the right or bottom edge of the
interlexical matrix. IMLsub(word1, word2) returns the degree to which word2 is a
fuzzy substring of word1, with respect to their phonological similarity. Second, the
pathfinding algorithm used in IMLsub() is not A∗, but a best-first solution. This
makes IMLsub() significantly faster than IML(), because the whole interlexical
matrix need not be constructed beforehand. Only word pairs (lexeme1, lexeme2)
which satisfied the following conditions were selected:

1. First2Chars(lexeme1) = First2Chars(compound),

2. CountSyl(lexeme1 + lexeme2) ≥ CountSyl(compound),

3. IMLsub(lexeme1) ≤ 2.2 AND IMLsub(lexeme2) ≤ 2.2,

where First2Chars() is a function which returns the first two graphical characters
of a given graphical word, CountSyl() counts the syllables of the given graphical
word (assuming it is a Czech word) and compound is the input compound being
split.

This pair of words then constituted the predicted parents. The performance
of this method in compound splitting can be found in Table 3.1. The application
of the algorithm seems to be much less practical than that of Czech Compound
Splitter, because it takes about ten to fifteen minutes to split a single compound on
a single processor given a lexicon of our size, despite the fact that the algorithm’s
asymptotic time complexity (even without the heuristic) is O(n) = n2, where n
refers to the size of the lexicon. The matrix building step takes |word1| × |word2|
correspondence matrix lookup operations, but because the step occurs exactly
once for each parent-candidate pair, it constitutes a constant, and is therefore by
convention omitted when assessing asymptotic time complexity. It is additionally
of interest that the root accuracy of this method was higher by 11 percentage points
than its raw accuracy. Error analysis revealed that this increase primarily caused a
common error where a substring of a compound is homonymous to a noun derived
from an adjective, while that adjective is the parent. For example, bíločerný ‘black
and white’ is split into the noun bílo ‘whiteness’ and the adjective černý ‘black’, while
two adjectives (bílý ‘white’ and černý ‘black’) are the correct parents.

46



Czech Compound Splitter

Because the performance and practicality of the IML()-based heuristic algorithm
was deemed unsatisfactory, a neural compound splitting tool we named Czech
Compound Splitter was created. It decides if an graphical word is a compound and
if so, it returns its predicted parent words, all in one step. If the graphical word is
identified as a compound, it returns its parents separated by spaces. The estimated
number of parents is thus the number of spaces in the output +1, and the status
of a compound is determined if this number is greater than 1.

The tool was created by using the Marian machine translation framework de-
veloped by Microsoft (Junczys-Dowmunt et al., 2018) to build a model and train it.
This was done by feeding the model a parallel corpus of input and output data,
where the model is trained to take an element of the input data, which was a Czech
word, and the output was either the single derivational parent of that word if it
was a non-compound, or all of the parents of that word separated by spaces if
it was a compound. For example, Czech Compound Splitter was trained to return
kov ‘metal’ upon being given the graphical word kovový ‘made of metal’, and to
return uhlík vodík ‘carbon hydrogen’ upon being given the graphical word uhlovodík
‘carbohydrate’. The non-compounds and their parents were taken from DeriNet.

The total training data set for Czech Compound Splitter consisted of:

• 1, 158 genuine compounds, with their splittings

• 280, 000 synthetic compounds, with their splittings

• the near entirety of DeriNet’s non-compounds, with their derivational parents

The rest of DeriNet’s non-compounds, totalling 144 lexemes, was held-out as
a small collection of counter-examples in order to test the performance of Czech
Compound Splitter in compound identification.

An inherent weakness of MLP’s is the fact that their input must be represented
as a fixed-length vector. However, compound words are not fixed-length, be they
represented as sequences of graphemes, phonemes, syllables, morphemes, or
otherwise, but there fortunately exists a neural architecture which can handle
sequential data.

The simplest way to handle such data would be to initialize a feedforward layer
for input of size 2 × n4 and output of size n, called the RNN cell. Then, the first
grapheme in the given input compound would be concatenated with a zero vector,
resulting in a vector of size 2×n, and fed back into the model. In the next step, the
output of the MLP is concatenated with the second vector, fed back into the model,
and then the third vector in the sequence is concatenated with the output and fed
back in, until the sequence has run out. The last output vector then represents

4Where n is the embedding dimension – each grapheme is embedded into a vector space either
by a so-called one-hot vector, which is a vector of zeros except the entry corresponding to the
character’s index in a dictionary, which is set to 1. n is therefore the size of the collection of all
graphemes in the training data, plus three special tokens – <START>, <END>, and <UNKNOWN>,
which is used when an unknown grapheme is encountered.
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Figure 3.1: LSTM Cell.

the whole sequence, and can be fed into e.g. a feedforward layer with the softmax
output function to produce a recurrent classifier model.

The problemwith the previous setup is that the longer the sequence, the higher
the probability that some important information from the previous step does not get
passed along to the next. Obviously, the problem compounds itself as the sequence
iterates along, making it highly probable that a given model has forgotten e.g.
information about the prefix of a given word once it gets to its last grapheme.

To solve this, in 1997 Hochreiter and Schmidhuber introduced the Long Short-
Term Memory (LSTM) model architecture, which was used in Czech Compound
Splitter. The high-level principle of the LSTM cell is that it combines three FF layers
with the sigmoid activation function (FFf , FFi, FFo), one FF layer with the hyper-
bolic tangent (tanh) activation function (FFt), and the operations of Hadamard
(elementwise) vector product, elementwise vector sum, and the tanh function.

The sigmoid function:

σ(x) =
1

1 + e−x

The hyperbolic tangens function:

tanh(x) =
ex − e−x

ex + e−x

The structure of the cell is illustrated in Figure 3.1, where white rounded rectan-
gles represent singular operations and white angled rectangles represent FF layers.
The cell is composed of four blocks:

1. The forget gate (f ), which takes the output from the previous time-step (ht−1),
concatenates it with the current time-step’s input (it), passes it through its
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own sigmoid-activated FF layer (FFf ), and multiplies it with the previous
step’s carousel vector (ct−1), resulting in cf ;

2. The input gate (i), which then takes the concatenation of ht−1 and it, passes it
through its own sigmoid-activated FF layer FFi and the hyperbolic tangent-
activate FF layer FFt in parallel, multiplying the results, and adds it element-
wise to the carousel vector ct̃, resulting in ct;

3. The output gate (o), which passes the concatenation of ht−1 and it through
FFo, and multiplies the result with tanh(ct), resulting in ht;

4. The constant error carousel (c). In addition to feeding back the cell’s previous
output at each time-step, the LSTM cell emits (ct) and feeds back (ct−1) a
vector of equal size as h.

ct and ht are then used in the next iteration as ct−1 and ht−1. In the first iteration,
both of these are set to zero.

The purpose of the constant error carousel is to help prevent the exploding/van-
ishing of errors in the gradient during training. The problem with recurrent or
very deep neural networks is that the repeated application of a squashing func-
tion such as sigmoid or hyperbolic tangent leads to the constant diminishing of
the input. This is a problem during backpropagation, because during training as
the gradient flows backward through time, it gets squashed almost to zero. The
usage of a non-squashing activation function, on the other hand, may result in
the gradient exploding, which is also a problem. The LSTM cell architecture uses
squashing functions, but the constant error carousel maintains a consistent flow of
information through time, forwards and backwards, unbroken by non-linearities,
which mitigates this issue.

In compound splitting of Czech, the required output sequence often needs
to be longer than the input sequence, as is the case with the compound psovod
(6 characters), whose correct splitting is pes vést (8 characters). The sequence-
to-sequence (seq2seq or s2s) architecture is designed specifically to transform a
sequence of (textual) data into another sequence of (textual) data without any
assumption regarding the relative lengths of either one (= it does not assume
the input sequence must be longer or shorter than the input), which makes this
approach suitable not only for compound splitting, but also for tasks such as
machine translation (Sutskever et al., 2014; Cho et al., 2014) or parent retrieval
(Chapter 3.4). The input sequence is fed into an LSTM layer, which is an LSTM cell
set up so that it iterates over any sequence fed into it. The last output ht (where t is
the length of the input sequence) can be understood as representing the whole
sequence. This layer is called the encoder, since it encodes the input sequence into
a fixed-length vector known as the context vector.

The decoder (using greedy autoregressive decoding in this case) is another LSTM
layer, which in the first time step takes as its input the context vector concatenated
with a vector representing a special <START> token. The output vector of this step
is then run through a classifier FF layer, in which each of the classes corresponds
to one item in the vocabulary (which in the case of e.g. English parent retrieval is
simply the English alphabet, plus the <START> and <START> special tokens). The
item thus selected from the vocabulary is then embedded into the same vector
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Figure 3.2: LSTM-based seq2seq example compound splitter.

space as in the encoder and fed back into the LSTM cell as the input for the next
iteration. The LSTM cell iterates until the special <START> token is emitted.

The procedure is illustrated in Figure 3.2 on the Czech compound psovod. The
Marian framework also offers a s2s model enriched with attention, which is a way
of supplying the decoder of the model with information about the whole input
sequence at every step. Specifically, attention enriches each element of a data
sequence A with information about data sequence B by taking one element from
sequence A, scoring the relevance of those two elements in some way, and then
adds the thus-weighted sum to that element. The attention mechanism does this
with every element of A, and outputs the result. In cases where A = B, we refer to
a specific type of attention called self-attention.

Bahdanau attention (Bahdanau et al., 2014), also known as additive attention,
is the type of attention used in Czech Compound Splitter. It utilizes a FF layer of input
shape [2×n] (where n is the dimensionality of the items in sequenceA) that returns
a single score variable to score the pairs of items from A and B. It simply takes a
pair fromA andB, concatenates it together, and thus obtains a sequence of scores
of length B. It runs the score sequence through the softmax function, forcing the
sequence to sum to 1, and then calculates the weighted sum of sequence B, using
the softmaxed score sequence as the weights, and adds it to the relevant item from
sequence A.

To sum up, the architecture of CCS is a s2s LSTMmodel enriched with Bahdanau
attention.

3.2.3 Tool performance

In compound identification, Czech Compound Splitter achieved an accuracy of 92%
and an F1-score of 91%. Its performance in compound splitting can be found in
Table 3.1. We see that root accuracy is just barely higher than accuracy. Error
analysis reveals that this was due to the fact that a large proportion of the mistakes
Czech Compound Splitter made because it often did not recognize the input as a
compound. Similarly, it frequently returned a nonsensical string that is not a Czech
word; see a sample of errors in Table 3.4.

It is worth noting that Czech Compound Splitter made only a single false positive
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Compound English translation CCS splitting Correct splitting

dlouhohořící ‘long-burning’ dlouhohořící dlouho + hořící
CCS returns the original string, performing no splitting.

osmiramenný ‘eight-armed’ osm + ramenný osm + rameno
CCS returns a non-existing derivative of an existing word.

petrogeneze ‘petrogenesis’ -petro- + geneze -petr- + geneze
CCS includes the interfix in one of the parents.

Table 3.4: A sample of the errors Czech Compound Splitter (CCS) typically makes.

error, meaning that it almost never labelled a non-compound as a compound. This
suggests that it primarily recognizes compound status by detecting lexical-seeming
substructures, as opposed to focusing on surface-level criteria like character length
or the presence of an -o- interfix. Czech Compound Splitter run on a single GPU
takes about 0.2 seconds to perform a single identification and splitting. The entire
compiled model is about 300MB in size and can be compiled to run on CPUs.

3.3 Word Formation Analyzer for Czech

Having developed a compound splitter for Czech, we decided to generalize the
task of compound splitting to include derivation. This was in large part motivated
by the discovery that the underlying model of Czech Compound Splitter benefitted
from being trained on derivatives from DeriNet as well, albeit only as examples of
non-compounds. The natural next step was therefore to expand the binary task
of compound identification to the ternary task of word formation classification,
and to build a tool that can not only return the parents of compounds, but also
of derivatives. After all, a native speaker of Czech, when given a word, generally
finds it easy to determine which Czech word or words it comes from, or if any such
ancestor word exists. In contrast, there is no trivial automatic procedure that can
do the same.

Research on this topic had so far been mostly limited to creating static data
resources, similar in principle to dictionaries, capturing Czech words with links to
their respective ancestors. The problem is that speakers and writers constantly
coin new words to suit their communicative requirements, which means that no
static data resource can capture the entirety of Czech word formation at any given
point in time. This creates the need for a procedural tool capable of handling any
word, regardless if it is a long-established word or a new coinage, irrespective of
whether or not it is a compound.

In this chapter, we therefore presentWord Formation Analyzer for Czech (WFA.ces),
a tool based around an ensemble of three sequence-to-sequence deep-learning
models. The tool takes as its input a string of characters assumed to be a Czech
lexeme in its dictionary form (lemma), and returns a predicted sequence of one or
more words the input string was originally motivated by. Since the tool receives
nothing but an isolated string as its input, the procedure is entirely based on the
written form of the input. WFA.ces can perform two tasks:
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1. Parent retrieval

WFA.ces predicts which word or words the input lemma is motivated by. It
does this by generating a list of candidate sequences of parent words, and
returning the best sequence based on a particular reranking procedure of
the user’s choice. This task is similar to that of stemming, but with a stronger
focus on linguistic adequacy. Parent retrieval does not handle inflection, so
inputting happiest into WFA.ces may in practice result in unexpected behavior.

2. Word formation classification

WFA.ces classifies the input lexeme into one of the classes compound, derivative,
or unmotivated. It returns the class compound if there are two or more words
in the output (hlavonožec (‘cephalopod’)← hlava (‘head’) + noha (‘leg’)); the
class derivative if there is one word AND it differs from the input (hlavička
(‘little_head’) ← hlava (‘head’)); and finally, if there is one word AND it is
identical to the input, it returns the class unmotivated (hlava (‘head’)← hlava
(‘head’)).

3.3.1 Data

The golden data was acquired from DeriNet 2.0 (Vidra et al., 2019). From there, all
lexemes that fulfill all of the following requirements at the same time were taken
and designated as derivative:

• have a single parent,

• are attested in the SYN2015 corpus of Czech (Křen et al., 2016),

• and are not labeled as either unmotivated or compound,

Then they were paired with their respective DeriNet parent, alongside the class
label for derivative.

Similarly, all lexemes that fulfilled the following properties were taken and
designated as unmotivated:

• have no parents,

• are attested in the SYN2015 corpus of Czech,

• and are labeled as unmotivated,

The compounds used were compounds from DeriNet with both parents linked.
In addition, 285 compounds were hand-annotated specifically as part of creating
WFA.ces. This data was then compiled into a dataframe of three columns – the first
was the lemmas of the lexical items, the second was the parent(s) of these items,
and the third contained the respective word class labels.

The data was split into a train set (60%), a test set (20%) and a validation set
(20%) according to the compound class, as it was the class with the least items. The
unmotivated and derivative classes were split such that there was the same number
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Model type Dropout Direction Training iterations

default 0.2 left to right 100, 000
transformer 0.5 left to right 900, 000
s2s 0 right to left 30, 000

Table 3.5: Description of the configurations in the model ensemble used inWord
Formation Analyzer for Czech

of items from each of the classes in both the test and validation sets. The rest of
the derivative items and unmotivated items were added into the train set.

Some errors in class labelling were manually found in the test and validation
sets, and were appropriately corrected, which resulted in a class imbalance, albeit
very slight. The exact composition of the resulting train, test, and validation sets
can be viewed in Table 3.6.

For the purposes of evaluating parent retrieval, we use accuracy, which we
define as the proportion of cases wherein all parents were correctly predicted by
WFA.ces.5 In the case of neoclassical compounds, we strictly require the predicted
constituents to be correctly hyphenated, as in (65), otherwise the prediction counts
as incorrect, cf. (66) and (67).

(65) krypt|-o-|fašista
cryptofascist.noun

← -krypt-
-crypt-.neocon

fašista
fascist.noun

✓

(66) krypt|-o-|fašista
cryptofascist.noun

← krypt-
crypt-.neocon

fašista
fascist.noun

✗

(67) krypt|-o-|fašista
cryptofascist.noun

← krypt
crypt.neocon

fašista
fascist.noun

✗

For the purposes of evaluating word formation classification, we rely on con-
vention, using balanced accuracy (balanced so as to compensate for the slightly
imbalanced train and validation sets) to assess the model’s performance across all
three classes; and precision, recall, and F1-score metrics, to evaluate the tool for
each word class separately.

For about 38% of the hand-annotated compounds in our dataset, there was
ambiguity as to which parents they should be linked to. For instance, rybolov
‘fishery’ may be considered to be either composed of the noun ryba ‘fish’ and the
noun lov ‘hunt’, or it alternatively may be analysed as an output of compounding
and conversion with the noun ryba ‘fish’ and the verb lovit ‘to hunt’ as inputs (cf.
(68a), (68b)). For the purposes of evaluation, both were considered to be correct
retrievals. This decision is technical rather than linguistic, and is not supposed to
reflect any theoretical preference or view on directionality of conversion and other
related issues.

(68) a. ryb|-o-|olov
fishery.n

← ryba
fish.n

lov
hunt.n

✓

(69) b. ryb|-o-|lov
fishery.n

← ryba
fish.n

lovit
hunt.v

✓

5Parent retrieval accuracy of unmotivated words is equal to the precision of word formation
classification, if we consider unmotivated to be the positive class.
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Class Training Testing Validation

Compounds 1, 164 284 280
Synth. compounds 280, 000 0 0
Derivatives 148, 921 285 287
Unmotivated 4, 911 284 288
Total 435, 280 853 855

Table 3.6: The number of lexemes in each formation class, alongside their respec-
tive parents, that composed the datasets used to train, develop, and test Word
Formation Analyzer for Czech

3.3.2 Experiments

The core of WFA.ces was, like its predecessor, built using the Marian framework
developed by Junczys-Dowmunt et al. (2018), utilizing an ensemble of three models
described in Table 3.5. All of the models in the ensemble were then trained on the
dataset described in Table 3.6 with layer regularization. The model ensemble was
trained to take a lexeme from the train set as its input (left-hand side of the arrow
in the examples in the previous section) and return its corresponding parent(s) as
output (right-hand side of the arrow), separated by spaces if there is more than
one parent.

Model ensemble training and tuning

The model ensemble contained Marian’s default model (GRU encoder-decoder;
Cho et al. 2014), an s2s model similar to the one used in Czech Compound Splitter
(but with every input fed into it in reverse), and a Transformer model akin to the
one described in (Vaswani et al., 2017).

The Transformer architecture was introduced in 2017 by Vaswani et al. and
revolutionized the field. The Transformer, like the RNN and LSTM, is designed to
operate on sequences of data of any length. However, unlike in the case of recurrent
models, the Transformer operates on the sequential data in parallel. Information
about the ordering of the sequence is not maintained by the model’s architecture,
but is instead encoded into the sequence itself using so-called positional encoding.

In positional encoding, for each vector in the sequence, a positional vector is
generated and then added, giving the model information about the position of
each sequence element. This has two main advantages over the recurrent setup.

1. The model is more parallelizable, since it is unlike in the case of Vanilla RNNs
and LSTMs not necessary to wait until item 1 from sequence A is processed
to start processing item number 2.

2. The positional encoding makes it so that it is not difficult for the model to
find long-term dependencies. In the RNN/LSTM/GRU setup, the model has to
learn to hold onto important information for six timesteps between e.g. item
1 and item 7. In contrast, with the positional encoding setup, it is no more
difficult to learn a dependency between item 1 and item 7 than between item
1 and item 2.
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Figure 3.3: The Transformer. By Yuening Jia, CC BY-SA 3.0, via Wikipedia.

In the Vaswani et al. setup, the positional encoding for each vector in the input
sequence is calculated by the equation

PE(pos, 2i) = sin
(︂ pos

100002i/dmodel

)︂
for even indices in the vector, and the equation

PE(pos, 2i+ 1) = cos
(︂ pos

100002i/dmodel

)︂
for odd indices. Since these have the same size as the input vectors, they can

be summed.
Next, the positional embedding-enriched sequence is fed through a stack of

Transformer blocks. The input of a Transformer block is first run through so-called
multi-head scaled dot-product attention.

In scaled dot-product attention (Vaswani et al., 2017), three trainable weight
matrices are used – WQuery, WKey, and WValue. Then, three linear transformations
take place.

1. WQuery is used to transform A into a matrix Q of shape [len(A)× dQ],

2. WKey is used to transform B into a matrixK of shape [len(B)× dK ],
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3. andWValue is used to transform B into a matrix V of shape [len(B)× dV ],

where len(X) refers to the length of sequenceX and dY refers to the dimen-
sionality of item Y . The attention is then performed by the equation

Attention(Q,K, V ) = softmax

(︃
QKT

√
dK

)︃
V,

where the softmax function is performed per row. The matrix QKT is divided
by the square root of the key dimensionality, because the magnitude of some of
the matrix values increases with dimensionality. This would lead to very small
values after the application of the softmax function, leading to small gradients
and by extension slow training. In multi-head attention, multiple attention blocks
with separate trainable weight matrices are run in parallel, summed, and then
multiplied by a separate trainable weight matrixWo before being output.

The output from the multi-head attention is then added back to the input of
the block (a skip connection), and run through a Layer normalization block (Ba
et al., 2016). Then, each vector in the sequence is separately run alongside a
skip connection through a feedforward layer and normalized again before being
returned as output. Since these blocks return a sequence of the same shape that
they accept as input, they can be stacked any number of times.

While a positional encoder followed by simple Transformer block stack ending
in a sum-across-sequence layer and an output layer can be useful for tasks like
classification, the Transformer is typically utilized in an encoder-decoder fashion
akin to the s2s architecture described in the previous Section. This arrangement,
which can be viewed in Figure 3.3, is useful for sequence-generation tasks, such
as natural language generation, machine translation, and compound splitting or
parent retrieval.

The hyperparameters of themodel ensemble, such as the dropout rate, number
of training iterations, amd directionality of the specific model were fine-tuned
manually on the development set.

Tool functioning

WFA.ces works by feeding the Marian model ensemble an input lexeme L in its
lemma form and generating a list of possible parent sequences of size n, where n is
a natural number chosen by the user. The parent sequences in the list are ordered
by their probabilities as predicted by the model ensemble. It then uses simple
procedures to find the best candidate in this list to produce the desired outcome
for each of the two tasks.

• Parent retrieval. WFA.ces takes the list of possible parent sequences and uses
one of the following reranking procedures, as chosen by the user, to select
the best one:

– First best: WFA.ces simply returns the first parent sequence in the list.

– Lexicon: WFA.ces uses a provided lexicon to select the first parent se-
quence in the parent sequence list whose elements are all attestable in
that lexicon. If none such sequence can be found in the list, it uses First
best.
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Lexeme class
Reranking method

Oracle First best Lexicon Frequency

Compound 70% 56% 55% 57%
Derivative 87% 69% 75% 59%
Unmotivated 91% 71% 84% 67%
Total 83% 65% 71% 61%

Table 3.7: The accuracy scores ofWord Formation Analyzer for Czech in the task of
parent retrieval, broken up for each word formation class, as measured on the
validation set for n = 4.

– Frequency: WFA.ces uses a list of relative corpus frequencies6 and assigns
each element of each sequence in the list of possible parent sequences.
It then selects the parent sequence with the smallest sum of squared
frequencies.

– Oracle: This method is only available if the ground truth is already
known, and as such, it is only useful for the purpose of evaluation of
the other reranking methods. It returns the correct result, if present in
the sequence list.

• Word formation classification. WFA.ces takes the list of possible parent se-
quences, and:

1. Checks if any of them contains a space character.

2. If yes, it classifies L as a compound.

3. If not, it checks whether or not any of the parent sequences are equal
to L.

(a) If yes, it classifies L as an unmotivated lexeme.

(b) If not, it classifies L as a derivative.

From this, it follows that when usingWFA.ces as a word formation classification
tool, one can consider n to be a user-defined classification threshold: the lower it
is, the moreWFA.ces tends to classify lexemes as compounds; the higher it is, the
moreWFA.ces tends to classify words as either unmotivated or derivative.

3.3.3 Performance evaluation and error analysis

The performance ofWFA.ces in parent retrieval can be viewed in Table 3.7. The best
reranking method in total is Lexicon, though of interest is also Frequency, due to
its performance in the retrieval of the parents of compounds. This is important,
because a user of the tool might decide that the retrieval of compositional parents
is more important than the retrieval of derivational parents for the user’s purposes,
and may select the reranking procedure appropriately. Similarly, a user might
decide to use the First best method for applications where a reliable lexicon of

6Acquired from DeriNet 2.0 for the purposes of this Section.
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Positive lexeme class
Classification metric
Precision Recall F1

Compound 96% 92% 94%
Derivative 74% 97% 84%
Unmotivated 96% 70% 81%

Table 3.8: The Precision, Recall and F1 scores achieved by Word Formation Analyzer
for Czech for each word formation class.

potential parent words might not be available, such as for the analysis of tech-
nical or medical vocabulary, despite the fact that the method exhibits the lowest
performance in general performance on our validation set.

In word formation classification, the tool additionally achieved a balanced
accuracy of 87% across all three word formation classes. Its performance in this
task with regards to each class can be viewed in Table 3.8, wherein each line
corresponds to the given class being considered positive and all the others being
considered negative for the purposes of the metrics listed in each column. The
performance in the classification of compounds is especially promising, suggesting
that Czech compounds carry a very distinctive formal fingerprint.

Error analysis confirms that each reranking method presents its own set of
strengths and weaknesses. The weakness of the First best method is that it often
returns strings which are not Czech lemmas (cf. the first line in Table 3.9). The
Lexicon method partially solves the problem of nonsensical string outputs, but
introduces other problems. For example, it often assumes that neoclassical com-
pounds are unmotivated, because even when a correct splitting comes up in the
predicted sequence list, one or more of its constituents might not be present in
the lexicon. WFA.ces therefore searches for other candidates in the list, wherein
the entire neoclassical compound often appears, and is thus returned as the only
candidate attestable in the given lexicon (cf. the second line in Table 3.9). The
shortcoming of the Frequency reranking, on the other hand, is that it returns highly
frequent words even when they are a formally dissimilar candidate from the input
(ex. third line in Table 3.9 – malý ‘small’). Additionally, the tool has no way of
leveraging semantics to its advantage, leading it to analyze siný ‘light blue’ as a
derivative of sít ‘to sow’ (the penultimate line of Table 3.9). Some errors were not
specific to any particular reranking method. For example, many adverbs in Czech
are derived from adjectives. The single most common error in derivational retrieval
was in the analysis of such adverbs – instead of retrieving the motivating adjective,
WFA.ces retrieved the adjective’s parent, essentially skipping one derivational step
(cf. the last line of Table 3.9).

In parent retrieval, WFA.ces outperforms Czech Compound Splitter. Parent re-
trieval, restricted to compounds, is equivalent to compound splitting; WFA.ces
exhibits an accuracy of 57% in this task, whereas Czech Compound Splitter scores
three percentage points less.

The result of WFA.ces in word formation classification is somewhat comparable
to Czech Compound Splitters’s performance of 92% in compound identification, but the
difference between the two is that the former discriminates between three classes
(and thus has a random hit baseline of ca. 33.3%), while the latter discriminates
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Reranking Input word Predicted Correct

First best plnovous ‘full_beard’ *plnový plný vous ‘full beard’
Lexicon ombrograf ‘ombrograph’ ombrograf -ombr- -graf-
Frequency malamut ‘Malamute’ malý ‘small’ malamut ‘Malamute’
All siný ‘light_blue’ sít ‘sow (verb)’ siný ‘light_blue’
All žensky ‘womanly (adv)’ žena ‘woman’ ženský ‘womanly’

Table 3.9: A sample of the errors ofWFA.ces under various reranking methods.

between two classes (having a random hit baseline of 50%). Since the difference
between the accuracy scores is five percentage points, but the difference between
the baselines is ca. 17 percentage points, we can conclude that WFA.ces represents
an improvement over Czech Compound Splitter. Another feature which sets WFA.ces
apart in this regard is its classification threshold, which Czech Compound Splitter
notably lacks, and strongly prefers to identify words as non-compounds.

3.4 PaReNT (Parent Retrieval Neural Tool)

The successor of WFA.ces is PaReNT (Parent Retrieval Neural Tool), a deep-learning-
based multilingual tool performing parent retrieval and word formation classification
in English, German, Dutch, Spanish, French, Russian, and Czech. Parent retrieval
refers to determining the lexeme or lexemes the input lexeme was based on (e.g.
darkness is traced back to dark; waterfall decomposes into water and fall). Ad-
ditionally, PaReNT performs word formation classification, which determines the
input lexeme as a compound (e.g. proofread), a derivative (e.g. deescalate) or as
an unmotivated word (e.g. dog). From a computational perspective, distinguis-
ing between these may not be trivial, as exemplified in the compound ex. (70),
the derivative ex. (71) and the unmotivated ex. (72). Data is aggregated from a
range of word-formation resources, as well as Wiktionary, to train and test the
tool. The tool is based on a custom-architecture hybrid transformer block-enriched
sequence-to-sequence neural network utilizing both a character-based and seman-
tic representation of the input lexemes, with two output modules – one decoder-
based dedicated to parent retrieval, and one classifier-based for word formation
classification. PaReNT achieves a mean accuracy of 0.62 in parent retrieval and a
mean balanced accuracy of 0.74 in word formation classification.

(70) English

backache→ back ache

(71) English

backness→ back

(72) English

baklava→ λ
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Figure 3.4: Visual schema of the process of training PaReNT.

3.4.1 Data

The high-level overview of PaReNT ’s functioning is simple – all available data sources
are utilized to compile a flat list of lexemes in their lemma form and a corresponding
list of parent sequences:

sea [sea]
seasick [sea sick]
seasickness [seasick]

The list pair is then split into training, development, and validation sets. A deep
neural model is then trained on the training dataset to take a triple consisting of a
special language token, the input lexeme as a sequence of character sequences,
and the input lexeme as a semantic embedding, and to retrieve the sequence of
its parents separated by spaces and classify the lexeme into one of: compound,
derivative, unmotivated. Its hyperparameters are tuned using the development set,
and its performance is calculated on the validation set. This process can be viewed
in the third part of Figure 3.4.

For the purposes of this Section, we adjust two established linguistic concepts
to suit our needs. First, we understand compounds as lexical units that regularly ap-
pear as graphical words, as opposed to compounds written with a space, which we
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consider syntactic constructs and therefore out-of-scope. This criterion (as Haspel-
math 2017 argues) is an artifact of a combination of the Western linguistic tradition
and often arbitrary orthographical conventions, but since the parent retrieval of
such compounds is identical to tokenization, it was deemed uninteresting.

The data sources used in this study were selected so that in summary, they
contained at the very least several hundred examples of each of the given categories
for each of the languages in scope. A concise description of the sizes of the data
sources used in this study can be viewed in Table 3.10, alongside their respective
citations. Additionally, we crawled Wiktionary to enrich our dataset with French
and Spanish compounds, because MorphoLex (2020) offered only several hundred
compounds for each language. The data is split into three subsets – training,
development, and validation, at a 60/20/20 ratio. The split was done according
to what we call lexicographical blocks. This means that lexemes belonging to the
same DAG had to end up in the same subset. As a specific example, each of the
German words Arbeit, arbeitslos and Fabrikarbeit were placed in the development
subset. In total, the training set contained 543, 066 words, the development set
180, 293words and the validation set 179, 725words. Splitting along lexicographical
blocks ensures that the model’s ability to retrieve and classify lexemes bearing
unseen roots is evaluated. If information about DAGs is missing from a particular
dataset, as is the case with Wiktionary or GermaNet, we consider lexemes sharing
the rightmost parent to belong to the same lexicographical block. Lastly, on input,
every Russian word is losslessly transcribed into the Latin script, and transcribed
back again on output. Evaluation is calculated in the original Cyrilic.

3.4.2 Experiments and evaluation

We use TensorFlow (Abadi et al., 2015) to build a custom architecture encoder-
decoder recurrent neural model. It is equipped with a sequential decoder module
(that we call the Retriever module) with Luong cross-attention for parent retrieval,
and a classification head with self-attention for word formation classification. In
Luong attention (Luong et al., 2015), the attention score is calculated by simply
calculating the dot product between the relevant items from A and B. A trainable
weight matrix may however optionally be used to multiply the item from A first,
with no activation function.

We use a multi-lingual subword embedding model provided by BPEmb (Heinzer-
ling and Strube, 2017) to feed semantic information about the input lexemes into
the model. The model architecture can be viewed in Figure 3.4.

First, the input lexeme is byte-pair-encoded into a sequence of subwords, and
its respective language token is embedded into a two-dimensional space. Then,
the subword sequence is fed into the Encoder module, where each subword is in
parallel:

1. embedded into a 300-dimensional semantic space provided by BPEmb;

2. split into individual characters and fed into a time-distributed bi-directional
LSTM layer with a dimensionality of 300.

Thus, a 300-dimensional dual representation, one semantic and one character-
based, is obtained for each word. These representations are then concatenated
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Data Lang Comps Derivs Unmot Authors

DeriNet 2.1 cze 2, 240 264, 748 13, 748 Vidra et al. (2021a)
CELEX dut 66, 428 19, 703 7, 569 Baayen et al. (2014)
CELEX eng 6, 267 15, 435 14, 661 Baayen et al. (2014)
Wiktionary eng 20, 253 0 0 —
Unimorph fre 161 72, 789 2 Batsuren et al. (2022b)
MorphoLex fre 313 0 6, 655 Mailhot et al. (2020)
Wiktionary fre 173 0 0 —
CELEX ger 19, 304 18, 372 9, 140 Baayen et al. (2014)
GermaNet ger 99, 080 0 0 Henrich and Hinrichs (2010)
Golden Comps rus 1, 699 0 0 Vodolazsky and Petrov (2021)
DerivBase.ru rus 0 133, 645 20, 612 Zeller et al. (2014)
Unimorph spa 130 30, 646 1 Batsuren et al. (2022b)
DeriNet.ES spa 0 42, 825 16, 141 Kyjánek et al. (2021)
Wiktionary spa 329 15 0 —

All sources All 216, 377 598, 178 88, 529 —

Table 3.10: The data sources used in the training of PaReNT, grouped by language.

and fed into a bi-directional LSTM layer, the result of which is the output of the
Encoder module. A stack of so-called Transformer-like blocks follows. This con-
struct is similar to the familiar Transformer Multi-Head Attention Block, except it
runs in a time-distributed manner, as opposed to its parallel-running Transformer
counterpart. The number of stacked Transformer-like blocks was one of the hyper-
parameters that was tuned during the training process. The model then branches
off into the Classifier module and the Retriever module.

In the Classifier module, self-attention is calculated on the Encoder output,
and the sequence dimension is globally averaged over. Then, the result is passed
through a fully-connected layer and passed through a three-unit Softmax layer.

In the Retriever module, the Encoder output is used to recursively generate the
parent of the given lexeme grapheme by grapheme in the way that is described
in (Vaswani et al., 2017). First, the input is fed into a self-attention block, which
calculates attention between each pair of items from the input sequence. The
attention is then added to the original input sequence. Next, alongside a skip
connection, it is passed through a time-distributed fully-connected layer and added
back. Finally, it is passed through a layer normalization.

For the evaluation of PaReNT ’s performance in parent retrieval, we use Accu-
racy, which we define as the number of times PaReNT returned parents exactly
string-equivalent (including capitalization) to the label parents in the correct or-
dering divided, by the number of items in the test set. To evaluate word-formation
classification, we used Accuracy, defined as the percentage of class hits divided by
the number of items in the test set. Because the datasets we used are generally
imbalanced in terms of word-formation class, we additionally used Balanced Ac-
curacy from scikit-learn, which is defined as (Specificity + Sensitivity)/2. As an
auxiliary metric, we use Family accuracy, which describes the proportion of cases
where PaReNT’s retrieval output shares its word formation family with the label.
We used this metric only on Czech, since DeriNet 2.1 is the only resource at our
disposal with the required structure and completeness.
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PaReNT

Lang Retrieval accuracy Classification accuracy Class bal acc

Czech 0.64 (0.75) 0.96 0.66
German 0.60 0.95 0.86
English 0.69 0.86 0.84
Spanish 0.75 0.98 0.74
French 0.50 0.94 0.54
Dutch 0.55 0.89 0.80
Russian 0.64 0.97 0.72

Mean 0.62 0.94 0.74

Most-Frequent

Lang Retrieval accuracy Classification accuracy Class bal acc

Czech 0.05 (N/A) 0.94 0.33
German 0.06 0.81 0.33
English 0.25 0.49 0.33
Spanish 0.18 0.82 0.33
French 0.08 0.91 0.33
Dutch 0.09 0.70 0.33
Russian 0.13 0.86 0.33

Mean 0.12 0.79 0.33

ChatGPT

Lang Retrieval accuracy Classification accuracy Class bal acc

Czech 0.39 (0.66) 0.87 0.36
German 0.28 0.57 0.71
English 0.33 0.39 0.38
Spanish 0.3 0.64 0.64
French 0.4 0.53 0.31
Dutch 0.11 0.60 0.69
Russian 0.25 0.74 0.63

Mean 0.29 0.62 0.53

Table 3.11: The performance of PaReNT and baselines for each language.
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The best model uses 2 bidirectional layers of 2, 048 units in the encoder, and a
single Transformer-like block with two attention heads of dimensionality 512. In
the retriever, Luong attention is used for Cross-Attention and 1 unidirectional layer
of 2, 048 units to decode the output. In the classification head, Luong self-attention
is used, with 512 units and a dropout of 0.3 in the final fully-connected layer. It was
trained for 13 epochs, with a recurrent dropout of 0.2 in all recurrent layers and
a regular dropout 0.5 of in all fully connected layers. The optimizer we used was
ADAM, and we used a cyclical learning rate schedule (Smith, 2017) with a starting
value of 10−4 and a final value of 10−5. Its performance, broken down by language,
can be found in Table 3.11.

PaReNT is directly compared against two baselines. The Most-Frequent baseline
performs parent retrieval by returning the input unchanged, and always guesses
Unmotivated as the category. The other baseline is ChatGPT (OpenAI, 2021), which
is given the following prompt:

Perform parent retrieval (predict which word or words the input lemma
is motivated by) and word formation classification (predict whether the
input lemma is a compound, a derivative, or unmotivated) on the given
words. For each word, you will also be given its language of origin as a
language token {cs : Czech, ru : Russian, de : German, es : Spanish, fr :
French, nl : Dutch, en : English}. Format the output as tsv.

The words:

<list of words>

ChatGPT formats the output differently on each query, or sometimes even
misunderstands the task or outright refuses to perform it, so its output has to
be manually checked, regenerated if needed, and then reformatted. As a result,
evaluation of ChatGPT is performed on a small sample of n = 300 words. These
were fed into ChatGPT in increments of 100 words, prepended by the prompt each
time.

The dummy balanced accuracy in classification is 0.33 for each language, be-
cause there are 3 word formation categories. Most-Frequent accuracy for retrieval
is the same as the proportion of unmotivated words in the given language’s test
set. The figure in (parentheses) on the second line indicates Family accuracy, which
describes howmany times the system correctly identified the Czech word formation
family of the correct parent(s). It is not listed for the Most-Frequent model, because
it always returns the word unchanged, and a word is trivially part of its own word
family in 100% of cases.

Comparing tables 3.10 and 3.11, it seems that the performance of the model
for a given language not only depends on the amount of data available, but also on
the morphological complexity of the language. For instance, despite the sparsity
of the data available for Spanish, the model achieves high Accuracy classifying its
lexemes. In Czech, the situation is the opposite – the amount of data available is
large, but the performance is lower.

Not only does PaReNT outperform ChatGPT by a considerable margin in both
tasks for every language (cf. Table 3.11), but also performs the tasks much more
consistently. Since ChatGPT tends to format the output slightly differently upon
each query, and also sometimes refuses to perform the task in the first place,
PaReNT is much more suitable for pipelining in downstream applications.
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We also compare PaReNT to Word Formation Analyzer for Czech. PaReNT ’s per-
formance in parent retrieval of Czech words at 0.64 is slightly lower than that of
WFA.ces at 0.67. We attribute this to our splitting the data set by lexicographical
block, which was not used in the case ofWFA.ces.

We additionally attempt to compare PaReNT ’s performance in splitting German
compounds with Krotova et al. (2020)’s deep splitter, which was trained and evalu-
ated solely on GermaNet. At face value, it achieves an Accuracy of 0.95. We subset
our validation dataset so that only compounds from GermaNet are left, and we
measure Accuracy on the subset and arrive at a markedly worse 0.69. However, we
note the a) Krotova et al.’s tool is a split-point splitter, and is evaluated as such7;
and also, PaReNT was trained not only on GermaNet, but also on CELEX, which has
somewhat different annotation conventions. We use two different adjustments to
try and take these differences into account. First, we adjust the performance of
PaReNT to closer match the evaluation conventions of Krotova et al., as outlined
in the Error Analysis section of their paper. We hand-annotate a 10% sample of
the errors in the validation set in accordance with the classification set forth in
the Error analysis section, and only consider errors of type 3, 4, 6, 7, and 8, which
amount to 51% of all the errors. After this adjustment, PaReNT ’s Accuracy climbs
to 0.84 compared to the 0.95 of Krotova et al. Second, we adjust the Accuracy of
Krotova et al. to closer match our evaluation conventions, one of which is that all
predicted parents must be valid words in their lemma form. However, only 60%
of compounds in GermaNet are formed by a simple concatenation of their parent
lemmas. As a result, the rest cannot be handled by a split-point splitter according
to the aforementionded criterion8. We therefore consider the 60% to be the oracle
score (maximum attainable value) for the split-point splitter, and arrive at 0.57
Accuracy for (Krotova et al., 2020)’s splitter compared to PaReNT ’s 0.69.

3.4.3 Manual error analysis

Presented here is a linguist-performed analysis and interpretation of the errors
made by PaReNT, in the hopes of not only shedding light on the tool’s functioning,
but also on the word formation systems of the languages in question. The errors
have been analyzed by a human expert on a 1% random sample of the 179, 720
item validation dataset.

Due to the character-by-character decoding of PaReNT, it possible to retrieve
any number of proposed parent sequences as generated by the model. For the
purposes of evaluation and analysis in this thesis, the most probable candidate
according to the model’s beam search module (beam_size = 6) was selected, but
often, it was also interesting to see what alternatives the model emitted. For
example, the model’s behavior to some degree reflects the arbitrary nature of the
distinction between compounding and derivation can be often rather arbitrary.
For example, in the training data, the -less substring from doubtless is traditionally
considered to be a suffix despite the attested appearance of the isolated word
less, and therefore the model is trained and expected to return doubt, which the
model correctly retrieves. However, as the second candidate retrieval, the model

7Interfixes are left attached to the left-hand parent.
8Unless it has explicit interfix handling, which the authors do notmention and their Error analysis

section seems to indicate otherwise. The reason is explained and exemplified in Section 2.2.
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proposes doubt less, interpreting the word as a compound (behaving similarly in
cases like headless→ head less and even cross-linguistically with Arbeitslos→ Arbeit
los). In other words, the model emergently learns to partially operate in a different
linguistic framework than it was trained on.

The error classification that follows was however, as previously mentioned,
made on the best available candidate for each input.

Type 1: Data conflict

The output of the model is correct, but conflicts with the label in the data.
In the data, each lexeme is assigned a single set of parents. Language reality

is however often ambiguous, and the parents of a lexeme can be assigned in
different ways. As a result, the model sometimes returns a lexeme that is correct,
but disagrees with the label in the data, like in the Spanish ex. (73), where the
expected output is alcoholización ‘alcoholization’. Additionally, the datasets we used
sometimes contain typos or other errors. This was in fact the case in the English ex.
(74), where the listed output is in fact correct – and the item is wrongly listed as
Unmotivated.

(73) desalcoholización
dealcoholization.N

→ desalcoholizar
to dealcoholize.V

(ES)

(74) north-northeast→ north north east (EN)

Type 2: Inflectional confusion

The model mishandles the behavior of inflectional morphemes in word formation.
The role of inflection in word formation, typically compounding, has been

touched upon in Section 2.2. The example womenfolk was used to illustrate that
sometimes inflected words enter a word-formation process. When womenfolk
specifically is fed into the model, it fails to return woman and instead returns
women. It also occasionally generates an inflectional ending in a context where it
looks like it could have been dropped (Spanish ex. (75), where PaReNT attaches a
verbal ending to the expected poem ’poem”).

(75) poema
poem.N

→ *poemar
NONSENSE

(ES)

Type 3: Morphophonemic ambiguity

The model fails to compensate for a difficult-to-account-for morphophonemic
process.

The bulk of the model’s predictions are based on the reverse application of
word-formation rules. For instance, the model notices that there exists a pattern in
English <root>+ment, so upon seeing development, it returns develop. The problem
is that itmay be unclear how the rule should be retroactively applied. As an example,
in Czech, the addition of a a suffix can induce stem allomorphy, resulting in /s/
→ /š/. The application of the same suffix on another word, however, can yield /š/
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→ /š/, so when analyzing a word of the pattern *s + <suffix>, the model has to
guess whether to generate /s/ or /š/. In the Czech ex. (76), the expected result is
rychlokvasit ‘to ferment quickly’.

(76) rychlokvašený
quickly fermented.A

→ rychlokvašit
NONSENSE

(CS)

Type 4: Neural hallucination

The model baselessly hallucinates non-existent structures.
Sometimes, the model for unclear reasons simply switches, skips, replaces,

overgenerates a character or split, or does something else that is difficult to inter-
pret. Occasionally, it even hallucinates an entire morpheme, like in the Czech ex.
(77), where an adjectival suffix and ending is added to the first nonsensical parent,
or in the Dutch ex. (78), where an infinitive ending is added to both parents.

(77) přezůvka
slipper.N

→ *přazový
NONSENSE

*lažba
NONSENSE

(CS)

(78) hoegrootheid
amount.N

→ *hoegen
NONSENSE

roten
to rot.V

(NL)

Type 5: Overretrieval

The model does not return the parent of the input, but the parent of the parent.
In ex. (79), we would expect PaReNT to output множитель ‘factor’ – the parent

of which is the actually received output множить ‘to multiply’. Similarly, we would
expect the verbmouler ‘to mold’ as an intermediate step in ex. (80). This error often
overlaps with Type 1: Data conflict, typically in cases where the model interprets
a compound as parasynthetic when such an interpretation is unnecessary. This is
the case in ex. (81), where Wechsel ‘change’ would be a simpler interpretation. The
consistency of this error’s appearance is reflected by the fact that Family accuracy
is considerably higher than raw Accuracy, as shown in Section 3.11.

(79) множительный
multiplicable.A

→ множить
multiply.V

(RU)

(80) moulerie
molding.N

→moule
mold.N

(FR)

(81) Tempowechsel
change of tempo.N

→ Tempo
tempo.N

wechseln
to change.V

(DE)

Type 6: False morphemehood

The model misjudges the presence of a morpheme, typically an interfix. In ex. (82),
PaReNT mistakes part of the stem of the verb wandern ‘to hike; to wander’ for an
interface, drops it, andends up with the completely unrelated wordWand ‘wall’.

The most interesting aspect of this error is that its consistent presence across
all languages seems to imply that the concept of the morpheme is in some way a
meaningful way to break down language into constituent parts (as Haspelmath

67



2017 proposes), as opposed to a mere artifact of a particular linguistic tradition is
the case with the distinction between inflectional and derivational morphology).
The model for example (cf. ex. (82)) noticed that the um/eum originally Latin
ending gets frequently dropped across many of the languages in the set, retrieving
Jagdmuseum ‘hunting museum’ as Jagd ‘hunt’, *Muse ‘muse’, but failed to take into
account that it does not behave like a morpheme in German, so the expected result
would be Jagd ‘hunt’Museum ‘museum’. In other words, the fact that themorpheme
emerges out of a linear-algebra based approximation of word-trees completely
unrelated to either the human brain implies that morphemes are more than a
result of arbitrary choices made in the context of a particular linguistic tradition.

(82) Wandermöglichkeit
hiking opportunity.N

→Wand
wall.N

Möglichkeit
opportunity

(DE)

Type 7: Semantic irrelevance

The model retrieves a word in a formally correct manner, but in a way that no
human would find intuitive or meaningful.

The problem in ex. (83) is that while the compound is split on a morphological
boundary, the given compound is not a compound of three words, but rather a
recursive compound. A human knows that, because the first real parentWochenende
is a common word meaning ‘weekend’, but the model has no way of inferring this
from its training data. The most obvious way to mitigate this type of error is to rely
on the fact that such meaningless retrievals are unlikely to find support in corpora,
because the probability of an appearance of a semantically redundant word like
this is low.

(83) Oktoberwochenende
October weekend.N

→ Oktoberwochen
October weeks.N

ende
end.N

(DE)

Type 8: Missplitting

A non-compound is split (ex. (84)), a compound is left unsplit (ex. (85)), or a
compound is split outside of a morphological boundary (ex. (86)).

(84) compartmental→ *compart mental (EN)

(85) bullring→ bullring (EN)

(86) raceabout→ *racea bout (EN)

As a final note regarding the error analysis, it needs to be stressed that certain
word-formation phenomena are easier for tools like PaReNT to model than oth-
ers. For instance, the highly productive and common English derivational schema
develop→ development, enjoy → enjoyment is generally easily reconstructed by
simply dropping the ‘-ment’ suffix, while the unproductive and much rarer broad
→ breadth, deep→ depth pattern is much harder, since there exist fewer exam-
ples and the sound changes are much less predictable. In other words, In the
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Figure 3.5: Vector space of PaReNT’s Language Embedder module.

future, we would therefore like to develop an evaluation methodology that takes
the complexity and frequency of certain word-formation processes into account.

3.4.4 Language Embedder analysis

As described earlier, one of the important parts of the model is the Language
Embedder, which encodes each language token as a two-dimensional vector. A
visualization of the underlying linear space of the language embedding module is
shown in Figure 3.5. It can be used to show similarities between languages in terms
of word formation. The closer the points are together, the more similar their word
formation systems. The axes simply correspond to the two dimensions of the linear
space, and have no obvious direct interpretation. The Embedder is trained just
like everything else in the network, and the language embedding is concatenated
alongside the semantic and character representations in the sequence right before
the first Transformer-Like block. What this means is that the model, as it is trained,
was during training forced to cluster together languages that are in some way
or another similar with regards to their word formation systems, analogously to
how word embedders cluster words that are similar in terms of meaning. The two
dimensions were specifically chosen so that the embedding space can be viewed
without the help of dimensionality reduction, whose choice of parametersmay carry
selection bias into the interpretation. Our initial hypothesis was that a clustering
based on the languages’ genetic or typological proximity would emerge, but this
seems to not have happened, and we therefore consider this to be a negative result.
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3.4.5 Final remarks

The deep-learning nature of PaReNT makes its usage somewhat computationally
intensive. It does not however require a GPU to be practical, since the model
processes about 20 lexemes per second on a CPU with batch inference, and takes
up about 2 GB of disk space. While this does make it more cumbersome than e.g.
a Snowball-based stemmer or a similar rule-based tool, it can still be comfortably
used on a consumer-grade computer.

As a culmination of the efforts described in this chapter, we release a public
version of PaReNT, alongside the part of the training data scraped from Wiktionary,
which can now be found on GitHub alongside a short manual describing its usage.9

PaReNT can be used in three ways:

• in interactive mode, which is run in a Linux terminal and is used for toying
around and showcasing the tool;

• in CLI mode, which is also run in a Linux terminal, but takes in a .tsv
file containing a lemma column and optionally a language column, and it
outputs the same file with the following columns added:

1. PaReNT_retrieval_best: Best parent(s), selected from PaReNT_re-
trieval_candidates based on columns 4), 5) and 6).

2. PaReNT_retrieval_greedy: Parent(s) retrieved using greedy decod-
ing.

3. PaReNT_retrieval_candidates: All candidates retrieved using
beam search decoding, sorted by score.

4. PaReNT_Compound_probability: Estimated probability the word is
a Compound.

5. PaReNT_Derivative_probability: Estimated probability the word
is a Derivative.

6. PaReNT_Unmotivated_probability: Estimated probability the
word is Unmotivated

• as an importable Python package, which provides the model architecture as
a TensorFlow Model subclass alongside a training method, with the option of
loading pre-trained weights trained on the data described in this thesis.

9https://github.com/iml-r/PaReNT
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4. Annotating compounds in DeriNet

Armed with a tool that analyzes compounds, it is now time to demonstrate how its
power can be harnessed to enrich existing data sources so that both compounding
and derivation can be studied in the context of each other. The following chapter
thus documents the process and results of using PaReNT’s output and/or training
data to reannotate and find compositional parents in DeriNet 2.1 (Vidra et al.,
2021a), resulting in DeriNet 2.2 (Svoboda et al., 2024b). The chapter is broken up
into two sections.

Section 4.1 – Annotation scheme describes the annotation scheme and the
reasoning behind the decisions made. Despite the fact that this is the only chapter
that is notmulti-lingual, and only dealswith Czech, we tried to design the annotation
scheme such that it would carry over into other languages easily. Section 4.2 –
DeriNet 2.2 goes over the details of the actual annotation process of DeriNet,
the way PaReNT was utilized to help this process, and offers some insight into
compounding as considered together with other word-formation processes as
covered by DeriNet, in turn shedding some light into the word formation of Czech.
The data set has been publicly released.1 (Svoboda et al., 2024b).

4.1 Annotation scheme

In this section, we will describe the decision-making process behind which parents
are supposed to be mapped to a given compound. In many cases, this mapping
is fairly obvious, as is the case with garážmistr ‘garage foreman’, where the only
reasonable option is a mapping to garáž ‘garage’ +mistr ‘foreman’, but in many
other cases, it may not be. We consider two types of compounds – standard
compounds and neoclassical compounds.

4.1.1 Standard compounds

Standard compounds are compounds whose parent sequence contains exactly
zero neoclassical constituents. As already delved into in Section 2.1, most standard
compounds can be traced back to a syntactic phrase (Scalise and Vogel, 2010). We
therefore propose that linking compounds to their ancestors should reflect this
observation, in that each compound should be assigned its corresponding syntactic
phrase, and the parents are to be the lemmatized words from that phrase in the
order that they appear in the given compound. If two or more phrases compete,
we choose the one whose sequence of lemmas is most string-similar to the target
compound.

However, there are cases where no such phrase is available (spolupacient). This
is usually because there exists a so-called compositional schema (Booij, 2010).
Here, compounds are described based on the formal properties that they share
with other compounds coupled with analogous meaning, since the form-meaning

1https://lindat.mff.cuni.cz/repository/xmlui/handle/derinet22 (CC BY-NC-SA
4.0)
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correspondence is a cornerstone of construction morphology. A simple example
would be the following Czech schema:

[spolu xNj
]Nk

⇌ [who plays role j together]k,

where j represents the input, Nj the fact that the input must be a noun, xNj

represent that the input noun is a variable,Nk is the output noun, and the left hand
side represents the form and the right hand side represents the meaning of the
construction.

Example of this schema include spolupacient ‘co-patient’, spoluautor ‘co-author’,
and spoluzakladatel ‘co-founder’. This schema is actually a subschema of the more
abstract schema

[xAdvi yNj
]Nk

⇌ [who plays role j in an i way]j,

This schema, in addition to spolupacient, spoluautor and spoluzakladatel, also
covers e.g. místokrál ‘viceroy’← místo ‘instead’ + král ‘king’ and rádobyodborník
‘so-called expert’← rádoby ‘so-called’ + odborník ‘expert’. In such cases, we try and
preserve consistency across the given schema – in other words, we do not link
spolupořadatel to spolu and pořádat, because this would then either force us to link
spolupacient to the non-existent *pacientit, or introduce schematic inconsistency.

The annotation workflow for a given compound c therefore goes as follows.
Given c, do:

1. Check if c is part of an obvious established schema. If not;

2. Find an associated syntactic phrase p, lemmatize it, delete function words,
and link words according to ordering in c. If a set of more such phrases P is
found;

3. Select pn ∈ P whose lemmas are most string-similar to c after lemmatization,
deletion of grammatical words, and word order rearrangement.

Item number 3 is actually proxy for Select phrase pn from the set of candidate
phrases P that requires the least morphological operations to get from pn to c. It exists
because e.g. krvotok ‘bloodflow’ can be associated with the set of phrases {tok krve
‘flow of blood’, krev teče ‘blood flows’}. After we lemmatize, delete grammatical
words, and rearrange word order, we get {krev tok, krev teče}, and so we choose the
latter element, that is krev tok. Ultimately, the goal is always to map compounds
onto their parent lexemes, and the tracing of their associated phrases serves only
as a tool for that purpose.

Some compounds in Czech can be traced back to their parents very easily,
because there is only one reasonable phrase that they can possibly represent. For
example, dřevodomek ‘wooden house’ can only be reasonably traced to domek
ze dřeva ‘house made of wood’ (ergo simply dřevo domek). The only reasonably
possible competing phrase would be dřevěný domek ‘wooden house’, but such a
phrase would yield the non-existent *dřevěnodomek. Similarly, černopáska (a species
of snail) can only be traced back to černá páska.

In the case of spoluposluchač ‘co-listener’, the situation is a bit more complicated.
The phrase *posluchač spolu ‘listener together’ makes no sense, however going a
step further and tracing back to poslouchat spoluwould force us to trace spolupacient
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‘co-patient’ to the non-existent *spolu pacientit ‘to be patients together’. This rule
was introduced by observing that in the data, such schematic clusters occur often,
and we did not want to fragment these.

Pětiotvorový ‘five-holed’ needs to be traced back to pět otvorů ‘five holes’, because
*pět otvorový is not grammatical. Similarly, stejnosměrný ‘same-directional’ must be
traced back to stejný směr ‘same direction’, since *směrný does not exist.

In krvotok ‘bloodflow’, we run into the competing phrases (krev teče→ krev téci)
‘blood flows’ and tok krve (→ krev tok) ‘flow of blood’, we select krev tok, since it
is semanticall and formally closer. In contrast, with psovod ‘dog handler’ we are
forced to trace back to vést psa ‘handle a dog’, because no *vod exists. We do not
consider this to be a violation of item no. 1 in the annotation workflow, because
téci and vést are two different verbs and therefore are not the same schema.

Sometimes, the process of tracing a compound back to syntactic phrases must
be guided by the annotator’s knowledge of its usage. This is the case with jihoam-
erický ‘South American’, are traced back to jižní Amerika ‘South America’, not to jih
Ameriky ‘south of America’. The reason is that in the overwhelming majority of
cases, jihoamerický ‘South American’ specifically refers to the entire continent of
South America, as opposed to the southern part of one of the Americas.

Another problem that appears is that it is sometimes unclear whether the
relation between the compound constituents is subordinative or coordinative,
which can influence the tracing process. In zemědělskolesnický ‘pertaining to
agricultural forestry’/‘pertaining agriculture and forestry’, outside of context it
is unclear whether the relation is subordinative and be traced back to zemědělské
lesnictví ‘agricultural forestry’, or copulative and should be traced back to zeměděl-
ství a lesnictví ‘agriculture and forestry’.2 In cases like this, we rely on protypicality –
which option is more typical? We therefore trace back zemědělskolesnický to zeměděl-
ský (a) lesnický ‘agriculture and forestry’, frýdeckomístecký ‘from Frýdek-Místek’ to
FrýdekMístek (as it is a toponym), and americkofrancouzský to americký (a) francouzský
‘American and French’.

A troublesome situation arises when there is a pair of compounds which are de-
rived from the same parents, but could also be considered derivatives of each other.
That is the case with divotvorný ‘miracle-working’ and divotvůrce ‘miracleworker’,
with no *divotvor or *divotvůr. In such cases, we select the most string-similar
option, and map divotvorný to tvorný div(ů) ‘miracle working’ and divotvůrce to div(ů)
tvůrce.

In this scheme, we only consider primary compounds. Secondary compounds are,
in accordance with the current DeriNet API convention, understood as derivatives
or conversions of compounds.

4.1.2 Neoclassical compounds

Within the languages in scope, originally Greco-Latin roots (or what are perceived
as such by speakers) play a special role in the lexicon (cf. Section 2.1.4). What
that sets these roots apart from most others in the languages in scope is that

2According to Czech orthography, except for a short list of exception such as černobílý ‘black-
and-white’, coordinative compounds should be spelled with a hyphen. However, this rule is often
ignored, and therefore cannot be relied upon.
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these neo-classical constituents do not appear on their own. For example, the Greco-
Roman root -log-, having the very vaguemeaning of ‘pertaining to words, language,
knowledge, communication’, never appears as an isolated *log with that meaning,
but appears as what we call an attested variant with a much more specific meaning,
in the case of log of diary or list of events. Further examples for the -log- neoclassical
constituent include derivation (logic), or the compounds psychology, logography3.

An interesting aspect of these neoclassical constiuents is the fact that they are
shared across all of the languages in scope, and thus form a shared, mostly scientific
and scholarly lexical stratum. For instance, if a neoclassical compound, such as
archaeology, is found in English, there is a high probability that a corresponding
neoclassical compound with a similar meaning can be found in the other languages
in scope. This introduces a strong incentive to label them in a way that is at least
somewhat language agnostic.

To achieve that, we label these constituents with hyphens on both ends, to
visually demonstrate that they can serve as both suffixes or prefixes. In contrast
with Ološtiak and Vojteková, who model this root as either a prefix (logo-) or a suffix
(-logy), we consider the shared root in all of these cases be the same object, labelled
as -log-. Thematic vowels, which in the terminology of Ancient Greek morphology
denotes the stem-trailing vowels determining which morphological schema a given
stem follows (such as -o- as in logography or -e- + -o- in teleology)are therefore
usually omitted, except in cases where doing so would lead to confusion. Details
on their orthography are difficult to establish, since while the meaning and rough
phonology of the constituents are cross-linguistically shared, their orthography
generally is not – which can occur intra-linguistically as well, compare the English
spelling variants archaeology vs. archeology. We therefore prefer a strong corre-
spondence to the original Greek spelling transcribed into the Latin script according
to the customs of Roman scribes. Archaeology and archeology therefore share the
same constituent -archai- coming from the ancient Greek ἀρχαῖος ‘old’.

A good way of understanding the need for introducing this synchronic model
stems from the observation that in general, scientifically literate native speakers
of the languages in scope have the ability to at least roughly infer the meaning
of a given neoclassical compound despite the fact that they may have no direct
knowledge of either Greek or Latin. As an example, a reader of this dissertation
might be able to infer that autophagy (transparently from -aut- ‘itself’ and -phag-
‘devour’) refers to eating oneself in some way – which is roughly correct, since the
term refers to a biological process of cellular orderly self-degradation. Similarly, the
word logographer (-log- ‘speech’ and -graph- ‘write’) refers to a writer of speeches;
a macrophage is a large eater, and refers to a massive white blood cell that rids our
bodies of harmful microorganisms by devouring them whole.

This precludes the possibility of capturing these neoclassical compounds as root
nodes in DeriNet (since the data resources only links existing lexemes to existing
lexemes), because that would imply that these words are opaque to native speakers.
Since they are not root nodes, they must be linked to something – however, as we
have established, the neoclassical compounds appear on their own, which in turn
precludes their inclusion in a lexical data resource such as DeriNet.

The solution is a compromise. We propose including neoclassical constituents
as root nodes, with Neocon as the part-of-speech tag and hyphens on both sides

3In combination with the neoclassical derivative suffix -y.
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Table 4.1: Horizontal table of Czech neoclassical constituents.

Neocon -psych- soul, mind, sanity
Attested variant psycho trippy, trippiness

Etymology ψυχή (Greek) soul
psychologie ‘psychology’, algopsychalie ‘algopsychalia’, psychóza ‘psychosis’

Neocon -log- science, speech
Attested variant log computer log

Etymology λόγος (Greek) speech; word; thought
pedologie ‘pedology’, logography ‘logografie’, logo ‘logo’

Neocon -mini- small version of
Attested variant mini miniskirt

Etymology minimus (Latin) smallest
miniauto ‘minicar’,minisukně ‘miniskirt’

Neocon -crypt- hidden, secret
Attested variant krypta underchurch vault

Etymology κρυπτός (Greek) hidden
kryptografie ‘cryptography’, kryptofašista ‘cryptofascist’, krypto ‘cryptocurrency’

Neocon -aut- it(self), spontaneous
Attested variant auto car

Etymology αὐτός (Greek) it(self), spontaneous
automobil ‘automobile’, autofágie ‘autophagy’

Neocon -tel- over distance, end
Attested variant – –

Etymology τῆλε (Greek) end
telegraf ‘telegraph’, autotelický ‘autotelic’, telomer ‘telomer’

Neocon -haim- blood
Attested variant – –

Etymology αἷμα (Greek) blood
hemoglobin ‘hemoglobin’, anémia ‘anaemia’

Neocon -hemi- half
Attested variant – –

Etymology ἥμισυς (Greek) half
hemisféra ‘hemisphere’, hemikrystalický ‘hemicrystallic’

Neocon -bio- life
Attested variant bio organic products

Etymology βίος (Greek) life, force
biologie ‘biology’, biogeografie biogeographics, anabióza anabiosis

Neocon -bi- two, both
Attested variant bi bisexual

Etymology bini (Latin) twice
bigamie ‘bigamy’, bicykl ‘bicycle’, binaurální ‘binaural’

Neocon -di- two, both
Attested variant – –

Etymology δίς (Greek) twice
dichotomie ‘dichotomy’, digraf ‘digraph’

Neocon -dis- into (two or more) parts
Conversion – –
Etymology dis- (Latin) asunder

diskriminace ‘discrimination’
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as proposed above. Neoclassical compounds are then to be linked to all their
associated constituents in much the same manner as standard compounds.

It is interesting to point out that apart from compounding, neoclassical con-
stituents can be modeled as undergoing any other word formation process, not
just compounding. As a result, many neoclassical constituents can by modeled
as having undergone e.g. conversion4 in Czech, resulting in e.g. (-krypt-→ krypta
‘church crypt’) or derivation (-psych-→ psychika ‘psyche’), leading to some having
attested variants (but not all – -typhl- meaning ‘blind’ has no *tyfla or *tyflický).
While we model the lexicon of unattested neoclassical constituents as being shared
cross-linguistically, their attested variants may be language-specific, as evidenced
by the aforementioned English log, which has no equivalent in Czech.

The attested variants of neoclassical constituents, we propose, should be linked
either to a neoclassical compound should they obviously be a clipping thereof (like
the Czech auto ‘car’ should be linked to automobil ‘motorcar’), or directly to the
associated neoclassical constituent if such an association is not clear (the English
psychic should be linked directly to -psych-). This would lead to a multilingually
consistent and intuitively legible word-formation trees, as demonstrated in Figure
4.1. As of now, derivatives/conversions of neoclassical constituents and clippings of
neoclassical compounds are not handled in DeriNet 2.2 in this way, but the figure
shows how such words, e.g. psychika ‘psyche’, pathos ‘pathos’, could be handled
in the future. Specifically, we would like to link these items directly to the neo-
classical constituents -psych- and -path-, respectively. The figure also illustrates
that judgment calls will have to be made regarding the mapping of neoclassical
compounds containing more than one constiuent. On a surface level, it would
perhaps make sense to map psychopathologie ‘psychopathology’ to psychopat ‘psy-
chopath’, a person exhibiting impaired empathy and remorse (among others), and
psychopathology denotes the study of mental illness in general and not specifi-
cally psychopathy. It therefore makes sense to link it to -psych- ‘soul’ and patologie
‘pathology’, better reflecting the form/meaning correspondence.

A table displaying a diverse set of examples can be found in Table 4.1. Each
segment is its own mini-table, with four rows. The first row of each segment is the
neoclassical constituent itself, the second row is an associated attested variant (if
it exists in Czech), and the third row is the word or morpheme as it existed in its
original language. The final row lists examples of words which contain the given
neoclassical constituent. The first of the three columns is the legend; the second
gives the form of the linguistic object in question; the third gives the meaning.

4.2 DeriNet 2.2

In this section, we describe DeriNet version 2.2. First we go over the practicalities
that we ran into applying PaReNT to the annotation scheme described earlier, and
then we show statistical results and interpretations pertaining to the newly-linked
compounds found in the new version of the data set.

4Unlike in the English tradition, in Czech the sole addition of an inflectional ending, i.e. -a, is
considered conversion.
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psychopatologie

-log-

patologie

-path-

psychopat

pathos

psychouš

psychický

logika

-psych-

psychina

psychologie

Figure 4.1: Proposal how to model neoclassical compounds, constituents, and their
derivatives in a cross-linguistically consistent manner.

4.2.1 Creating version 2.2

The first problem we ran into when annotating DeriNet’s compounds was that
many of them had parents not present in DeriNet 2.1, because they belonged
to a part-of-speech category that had previously been excluded from the data
source – specifically, pronouns (such as se ‘him/her/itself’), numerals (dvě ‘two’, půl
‘half’), and adpositions (mimo ‘outside of’) (see 2.3). The first step in the creation of
DeriNet 2.2was therefore the rollback of that decision, and the following addition of
numerals, adverbs, and pronouns. 163 pronouns, 774 numerals, and 95 adpositions
were taken from the MorfFlex database (Hajič et al., 2020) – which is historically the
original source of DeriNet’s underlying lemmaset – and added to DeriNet alongside
their respective POS. Some (but not all) numerals contained information on their
numerical value, e.g. the numeral třiadvacet contains the value 23. We used the
num2words5 package to convert this value into words and, with manual correction,
find the compounding parents of such numerals.

The current version of PaReNT’s Retriever module supports not only returning a
single parent sequence, but it can also return a list of candidate parent sequences.
This allowed us to develop a parent candidate scoring function that takes into account

1. ordering of the candidate list (i.e. PaReNT’s implicit scoring function);

5https://github.com/savoirfairelinux/num2words
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Word type DeriNet 2.1 DeriNet 2.2 Added

Neoclassical constituents 202 285 83
Compounds 1,952 6,336 4,384
Derivatives 782,814 782,904 90
Variants 50,533 50,511 -22
Unmotivated 203,079 199,668 -3,411
Conversions 144 135 -9

Total size 1,039,012 1,040,127 1,115

Table 4.2: Differences in word types in DeriNet 2.2 and DeriNet 2.1.

2. presence of all the candidate parents in DeriNet;

3. presence of all the candidate parents in DeriNet except the last letter.

Item number 3 is there because PaReNT tends to drop the ending of the first
constituent (cf. Section 3.11). However, suchminormisretrievals can still be valuable
during the annotation process, because filling in a missing ending is faster than
writing out a whole parent sequence.

The exact formula of the scoring function for a candidate sequence is

Scs =
1

i
+

cs∑︂
1

w(csi),

where cs refers to the candidate parent sequence, Scs to its score, p to a parent,
i to its index in PaReNT’s output, and w(x) refers to a weighting function that
assigns scores based on the presence in DeriNet. w(x) is defined as

w(x) =

⎧⎪⎨⎪⎩
10 if x ∈ DeriNet

9 if x ∈ DeriNet[: −1]
0 if x /∈ DeriNet ∧ x /∈ DeriNet[: −1]

whereDeriNet is the set of all lemmas in DeriNet 2.2 andDeriNet[: −1] the
set of all lemmas in DeriNet except their last letters.

A given parent sequence therefore receives 1 point if it’s the first in PaReNT’s
output, and an additional 10 points for each predicted parent that is present in
DeriNet, or, failing that, 9 points if it’s present in DeriNet disregarding last letters. If
it is present in neither, the parent receives zero points. The candidate sequence list
coming from PaReNT was thus re-scored, and the best-scoring parent sequence
was the one being corrected during the annotation process.

In this way, we hand-annotate 5, 022 compounds so that they are compatible
with the new annotation scheme described in Section 4.1.1, plus re-annotating the
ones that were already there, according to the annotation scheme presented in
Section 4.1. All the new compounds were detected using PaReNT, but as shown
in Table 3.10, the tool does not score a 100% in word formation classification.
Therefore, some derivatives had been misclassified as compounds, and were an-
notated as such in case they had previously been recorded as unmotivated, which
is the reason for the addition of 90 derivatives. The annotation was performed by
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Figure 4.2: Output POS distribution of compounds in DeriNet 2.2 –N is Noun, A is
Adjective, C is Numeral, V is Verb, R is Adverb.

manually correcting the best candidate sequence (according to the Scs candidate
scoring function) from the output of PaReNT’s retrieval module. In addition to these
hand-annotated compounds, we were able to find 1, 398 additional compounds by
pattern-matching neoclassical constituents and other commonmodifiers (sám ‘self’,
půl ‘half’ ...) with unmotivated words in DeriNet. This approach is lemma-based,
but some lexemes in DeriNet share their lemmas with other lexemes, which leads
to ambiguity when trying to link these lexemes. The final round of annotation
therefore consisted of resolving these ambiguities, of which there were 820.

It is important to note than in the current version of DeriNet, the label of
compounding does not propagate downward in the word-formation tree. That
is, only immediate or primary compounds such as dřevorubec ‘woodcutter’ are
labelled as compounds; their derivatives and other word-formation children, a.k.a
secondary compounds (in this case e.g. dřevorubecký ‘pertaining to woodcuttery’).
Table 4.2, which shows the POS distribution of each compound in DeriNet reflects
this, and only shows primary compounds. However, secondary compounds can be
traced by starting off at each compound and recursively travelling downward in
its subtree. By doing so, we discover that, apart from the 6, 336 aforementioned
primary compounds, there are 14, 750 secondary compounds (and their children,
and the children of their children ...) currently traced back to their parents.

4.2.2 Statistical analysis

The statistics presented here are calculated on the set of 6, 336 primary compounds
that were linked to their parents by the procedure described above. Although
our annotation increased the amount of compounds in DeriNet over threefold
compared to the previous version, it still covers only a part of the compounds
present in this resource.6 The reason is our adherence to DeriNet’s general policy

6We tried to estimate the coverage of the current annotation by sampling 200 lexemes from
DeriNet, excluding capitalized lexemes such as given names, and hand-annotating them regarding
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[Neoc + N ]N biošunka (‘organic ham’)

[A + N ]A červenošt́ıtý (‘red-shielded’)

[N + N ]N autodráha (‘slot car track’)

[C + A]A poloautonomńı (‘semi-autonomous’)

[A + A]A šedožlutý (‘grey-and-yellow’)

[C + N ]N dvojobraz (‘dual image’)

[C + C]C šestašedesát (‘sixty-six’)

[A + N ]N prvočinitel (‘prime factor’)

[N + A]A vzduchočist́ıćı (‘air-cleaning’)

[C + N ]A pětivrstvý (‘five-layered’)

[N + N ]A vnitrožilńı (‘intravenous’)

[ADP + N ]A mimošpičkový (‘non-peak’)

[Neoc + Neoc]N panotypie (‘pantotype’)

[N + V ]N blátošlap (‘mudwalker’)

[Neoc + A]A fotoelektrický (‘photoelectric’)

[R + N ]A mimoú̌redńı (‘extra-official’)

[A + A + A]A červenomodrožlutý (‘red-blue-yellow’)

[PRON + V ]V samonaštvat (‘anger oneself’)

[PRON + N ]N samožadatel (‘self-applicant’)

[C + C + C]C stoťriapadesátý (‘153rd’)

[N + V ]A zkázověstný (‘foreboding’)

[R + A]A vždyživý (‘ever-living’)

[PRON + A]A samonatahovaćı (‘self-stretching’)

[N + Neoc]N plazmagen (‘plasmagen’)

[V + N ]N lamželezo (‘ironbreaker’)

[C + V ]V poločistit (‘half-clean’)

[R + N ]N spolužadatel (‘co-applicant’)

[Neoc + N ]A monoprogramový (‘single-program’)

[R + V ]V spoluuž́ıvat (‘use together’)

[C + C + N ]A dvousethektarový (‘200-hectare’)

[R + R]R sotvakdy (‘barely ever’)

[PRON + V ]N samopal (‘sub-machine gun’)

[A + V ]N prvouka (‘elementary science’)

[PRON + V ]A nicnetuš́ıćı (‘unsuspecting’)

[R + A]N skorodospělý (‘near-adult’)

[A + A]N punkrock (‘punkrock’)

[A + V ]A jasnožrivý (‘clairvoyant’)

[R + V ]A svrchǔrečený (‘aforementioned’)

[Neoc + A]N biozelený (‘organic green’)

Figure 4.3: Distribution of compound patterns for number of entries with examples
and translations in DeriNet 2.2, filtered for n > 5 occurrences in the data set.
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of highly prioritizing precision over recall; meaning that it is considered much less
of a problem if a word is left unlinked compared to incorrectly linking a word to the
wrong parent(s). As a result, we were extremely precise, and actually went over the
annotated set many times to fine-tune and tweak the annotation scheme to a high
standard.

The first observation we measure regarding primary compounds is their output
part-of-speech distribution, illustrated in Figure 4.2. We see that nominal-output
compounds are the dominant part-of-speech, but adjectival compounds are not
far behind.

We attribute the relative abundance of adjectival compounds to a very common
specific pattern of parasynthetic compounding on the boundary between word
formation and syntax, wherein a compound coinage is forced by the necessity to
use a adjective-noun noun phrase as a modifier, resulting in a [A+N ]A compound.
The underlying noun phrases can be

• place names as in jihoamerický (ex. (87)) or lysohorský (ex. (88); Lysá hora
is a mountain in the Czech Republic), which cover ca. 40% of [A + N ]A
compounds,7

(87) jihoamerický
South American.A

← Jižní
South.A

+ Amerika
America.N

(CZ)

(88) lysohorský
from Lysá hora.A

← Lysá
Bare.A

+ hora
mountain.N

(CZ)

• terms describing scientific, scholarly, administrative, or political fields or
concepts, as in sociálněpedagogický (ex. (89)) or právněhistorický (ex. (90)),

(89) sociálněpedagogický
socially pedagogical.A

← sociální
social.A

+ pedagogika
pedagogics.N

(CZ)

(90) právněhistorický
pertaining to history of law.A

← právní
law.A

+ historie
history.N

(CZ)

• descriptions of body parts, such as ploskohlavý (ex. (91)) or červenoštítý (ex.
(92)) lit. ‘red-plated’, but actually the specific epithet of the species Dinoptera
collaris),

(91) ploskohlavý
flat-headed.A

← ploský
flat.F.sg.A

+ hlava
head.N

(CZ)

(92) červenoštítý
red-shielded.A

← červený
red.A

+ štít
shield/plate.N

(CZ)

• or any other kind of adjective-noun phrase, as in černoděrový (ex. (93)) or
každodenní (ex. (94)).

(93) černoděrový
pertaining to black holes.A

← černý
black.F.sg.A

+ díra
hole.N

(CZ)

their compoundhood status. The estimate based on this sample is that there are roughly 53, 000
primary compounds in DeriNet 2.2. Of that, 6, 336, or about 12%, are now mapped to their parents.

7Estimated by checking if any parent in the compound is capitalized.
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(94) každodenní
everyday.A

← každý
every.A

+ den
day.N

(CZ)

Evidence for the claim that syntactic needs are responsible for a large chunk of
compound coinages in Czech can be found in Figure 4.3, where the distribution of
compound patterns, with respect to both the POS of their parents and their output
in DeriNet 2.2, is visualized. Here we see that the [A+N ]A pattern is the second
most common pattern after nominal-output hybrid neoclassical compounds, which
are represented by the pattern [Neocon+N ]N .

We found a total of 103 unique compound patterns. However, most of them
have very few occurrences in DeriNet, so we show only the ones that have more
than 5 occurrences in Figures 4.3 and 4.4 and Table 4.3.

The thirdmost common compound POS is the numeral-output compound, and it
lags behind adjectival-output compounds by roughly an order of magnitude. While
numerals play an important role in Czech compounding, they generally only play
the role of modifiers, with the only consistently productive pattern of numeral-head
or numeral-output compounds being [C + C]C such as dvaasedmdesát ‘two-and-
seventy’ or třiatřicet ‘thirty-three’ and [C + C + C]C ‘třistaosmdesátšest’.

Verbal-output compounds are even rarer, with only four patterns reaching the
cutoff of 6 or more examples in the data. Most of these fall into specific schemas,
and they are as follow:

• [Pron V ]V , whose modifier is usually the pronoun sám ‘alone’ and se ‘self’,
with the meaning usually being to do something by one self or to oneself – e.g.
samonaštvat ‘make oneself angry’, sebeopylit ‘autopollinate’,

• [R V ]V , whose modifier is usually the adverbs spolu ‘together’ or znovu
again, with the meaning being to do something together/again – e.g. spoluuží-
vat ‘use together’, znovustvořit ‘re-create’

• [C V ]V , whose modifier is always the numeral půl ‘half’, with the meaning
being to half-do something – e.g. polospát ‘to be half-asleep’.

However, in spite of their relative rarity, verbal-output compounds seem to be
remarkably productive – meaning that they often undergo further word formation
– compared to other types of compounds in Czech. Inspecting Table 4.3, we notice
that the first two of these three patterns produce more descendants compared to
all the other compound types. The reason for this is that for all the verbs in DeriNet,
the average amount of word-formation descendants is 25.30 (counting in possibly
unattested nodes), which is much higher than for example the average number of
descendants for nouns which is 2.34. The numbers of around 14.00 seen for the
verbal-output compounds, while lower, therefore simply shadows the high baseline
productivity of verbs in Czech.

The situation with nouns is different. The average amount of descendants for
non-proper nouns is 2.34, which falls within the general range of nominal-output
compounds, lying between 0.00 – 2.72 depending on type, with the exception of
the highly productive neoclassical [Neoc+Neoc]N . The productivity of adjectives,
similar to verbs, seems to be affected by compounding, seeing that the average
number of descendants for adjectives in general (2.44) falls just out of the general
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Compound type Depth Descendants Example Translation

[PRON + V ]V 2.99 18.70 samonaštvat ‘anger oneself’
[R + V ]V 2.72 14.22 spoluužívat ‘use together’
[C + V ]V 2.29 12.11 poločistit ‘half-clean’
[PRON + V ]A 1.73 10.73 nicnetušící ‘unsuspecting’
[A+ V ]N 1.45 10.09 prvouka ‘elementary science’
[Neoc+Neoc]N 1.07 8.38 panotypie ‘pantotype’
[A+ V ]A 1.62 3.25 jasnozřivý ‘clairvoyant’
[N + V ]N 1.12 2.72 blátošlap ‘mudwalker’
[PRON + V ]N 1.17 2.58 samopal ‘sub-machine gun’
[R + V ]A 1.14 2.43 svrchuřečený ‘aforementioned’
[N + V ]A 1.04 2.13 zkázověstný ‘foreboding’
[N + A]A 1.06 2.09 vzduchočistící ‘air-cleaning’
[C +N ]A 1.02 2.02 pětivrstvý ‘five-layered’
[A+ A]A 1.02 1.98 šedožlutý ‘grey-and-yellow’
[PRON +N ]N 0.90 1.92 samožadatel ‘self-applicant’
[A+ A+ A]A 1.00 1.92 červenomodrožlutý ‘red-blue-yellow’
[A+N ]A 1.00 1.86 červenoštítý ‘red-shielded’
[R +N ]N 0.95 1.86 spolužadatel ‘co-applicant’
[C + A]A 1.00 1.83 poloautonomní ‘semi-autonomous’
[R + A]A 0.90 1.71 vždyživý ‘ever-living’
[Neoc+ A]A 1.04 1.67 fotoelektrický ‘photoelectric’
[A+ A]N 1.00 1.67 punkrock ‘punkrock’
[R +N ]A 1.01 1.61 mimoúřední ‘extra-official’
[ADP +N ]A 0.97 1.55 mimošpičkový ‘non-peak’
[N +N ]A 0.95 1.55 vnitrožilní ‘intravenous’
[N +Neoc]N 0.87 1.47 plazmagen ‘plasmagen’
[Neoc+N ]A 0.83 1.39 monoprogramový ‘single-program’
[C +N ]N 0.77 1.39 dvojobraz ‘dual image’
[V +N ]N 0.75 1.34 lamželezo ‘ironbreaker’
[PRON + A]A 0.69 1.33 samonatahovací ‘self-stretching’
[N +N ]N 0.68 1.32 autodráha ‘slot car track’
[Neoc+ A]N 0.43 1.29 biozelený ‘organic green’
[C + C +N ]A 1.00 1.18 dvousethektarový ‘20-hectare’
[A+N ]N 0.63 1.12 prvočinitel ‘prime factor’
[Neoc+N ]N 0.39 0.76 biošunka ‘organic ham’
[R +R]R 0.08 0.08 sotvakdy ‘barely ever’
[C + C]C 0.01 0.02 šestašedesát ‘sixty-six’
[C + C + C]C 0.00 0.00 stotřiapadesátý ‘153rd’
[R + A]N 0.00 0.00 skorodospělý ‘near-adult’

Table 4.3: Productivity of each compound type in Czech, measured on their word-
formation subtree depth and number of word-formation descendants, sorted by
no. of descendants.
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range adjectival compounds (1.26 – 2.43), excluding the [Pron + V ]A pattern,
which seems to be rare (n = 11) and which contains the hugely productive outlier
samostatný ‘independent’. Compounding seems to have a dampening effect on
further word formation in the case of compound verbs and compound adjectives,
whereas compound nouns seem to behave much like any other Czech word in
that regard. This observation may be somewhat skewed, however, by the fact that
DeriNet is as of now incomplete, in the sense that some lexemes are not yet linked
to their derivational ancestors.

DeriNet additionally allows us to gauge how far from its root a given word is –
in other words, how tall a given word ‘supertree’ is. We call this the height) a given
word. For example, the height of spinelessness is 2, because it is a derivative of
spineless (height 1), which in turn is a derivative of spine, which is an unmotivated
word (height 0) We calculate the average height of each parent for each compound
pattern. This is shown in Figure 4.4. We observe that a given part-of-speech
category may exhibit very different heights depending on which position or in
which compound type it is included.

For example, adjectives in themost common pattern ofmulti-parent compound-
ing ([A+A+A]A) seems to be composed almost exclusively of unmotivated parents.
This is because this pattern almost exclusively involves colors (e.g. červenomodrož-
lutý ‘red-blue-yellow’), which tend to be unmotivated words.

In general, there seems to be an overall preference for the modifier to have
lower height than the head of the compound across the board, although there are
three8 notable exceptions.

The first is the already discussed [A+N ]A highly common parasynthetic pat-
tern. This is at least partially because the modifier is often a color, basic quality
(big/small), or cardinal direction (north/south/west/east), which are all usually
unmotivated words. The second is yet another parasynthetic pattern, [N + V ]A.
Here, the difference is caused by the fact that Czech verbs entering parasynthetic
compounding seem to be mostly unmotivated across the board. In contrast, the
verbs in [X + V ]V compounds seem to be much deeper.

8Strictly speaking, there are more, but these are uninteresting – e.g. anything with a neoclassical
constituent in the head (=for Czech, almost exclusively rightmost) position, since neoclassical
constituents always have height zero, as they are unmotivated by definition; or the [R+R]R type,
where the difference is negligible.
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biošunka (‘organic ham’)

A N

0.0

0.5

1.0

1.5

2.0

2.5

C
o
n
st
it
u
en
t
h
ei
g
h
t

[A +N ]A
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Figure 4.4: Average word-formation history (height) of each parent for the com-
pound types in DeriNet for n > 5.
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Figure 4.4: (continued)
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5. Incorporating compounds into
Universal Dependencies

So far, this dissertation has only dealt with modelling compounds in the context
of word-formation data resources. But word-formation data resources such as
DeriNet generally only capture the parents of a given compound, not the relation
between them. Instead of forcing a syntactic label into DeriNet, we instead ven-
ture into placing compounds directly into a syntactic data resource. This thesis
therefore wraps with a vision to explore shores unknown, and proposes a way to fit
compounds into a syntactic data resource that can capture the relations between
constituents, specifically Universal Dependencies (UD), which is a multilingual de-
pendency treebank. The data resource represents an opportunity to make explicit
the claim that compounds encode syntactic phrases.

In Universal Dependencies, compounds are represented according to tokeniza-
tion, which reflects the orthographic conventions of the language. A closed com-
pound corresponds to a single word in Universal Dependencies (e.g. waterfall)
while a hyphenated compound (father-in-law) and an open compound (apple pie)
to multiple words. The aim of this chapter is to open a discussion on how to move
towards a more consistent annotation of compounds. The solution we argue for is
to represent the internal structure of all compound types analogously to syntactic
phrases, which would not only increase the comparability of compounding within
and across languages, but also allow comparisons of compounds and syntactic
phrases.

The chapter is structured as follows. We first describe how compounds are
currently handled in UD, exemplifying the general and language-specific problems
of compounds. Then we discuss steps that can be taken to make the annotation of
compounds more coherent and to bring it closer to the way syntactic relations are
annotated, but without losing the difference between compounding and syntax.
Future directions regarding the automation of compound identification and anno-
tation are outlined to some extent. The version of Universal Dependencies we are
operating with throughout the chapter is v2.12 (Zeman et al., 2023).

5.1 Current annotation

We start by introducing how words considered as compounds in the literature are
treated according to the UD annotation principles (de Marneffe et al., 2021).1 The
application of these rules to each of the languages under survey is described in the
following subsections. Syntactic annotation in UD is based on tokenization, which
in turn follows the spelling conventions of individual languages. Since the term
compound covers words spelled in several ways, compounds are not annotated
uniformly in UD.

1See also https://universaldependencies.org/guidelines.html
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Dataset Language Compounds Entries

CELEX2 (2014) English 6,267 52,447
CELEX2 (2014) German 19,304 51,728
GermaNet (2011) German 121,655 215,000
DeriNet 2.1 (2021a) Czech 45,473 431,857
Word Formation Latin (2016) Latin 3,198 36,258
Golden Compound Analyses (2021) Russian 1,699 1,699

Table 5.1: The databases employed in the present survey for identification of
compounds in the Universal Dependencies treebanks of the five languages. The
last two columns specify the number of lemmas (types).

5.1.1 Guidelines

Closed compounds, appearing in the text as continuous orthographic words, are
handled as discrete, internally unstructured (= atomic) items which enter into
relations with other items of the sentence structure. Although the compound’s
components are linked by similar relations as the constituents of syntactic phrases,
these intra-word relations are not captured in UD because ‘‘there is no attempt at
segmenting words into morphemes’’.2

Open compounds, which are spelled as two (or more) separate words, are
treated as two (or more) items that are arranged into a subtree with the head
component as the root and the less prominent item(s) as dependent node(s). The
relation between the head and the other component is labeled with the dedicated
syntactic relation compound. This relation is assigned to open compounds regard-
less of the semantic relation between the components (cf. apple pie = ‘‘pie made
from apples’’ vs. coffee cup = ‘‘cup for coffee’’ vs. water mill = ‘‘mill powered by
water’’, etc.). Besides the bare compound relation, there are 22 subtypes of this re-
lation intended for language-specific phenomena,3 of which only compound:prt
is used in some languages under analysis, namely in English and German. The
compound:prt is used for ‘‘[p]article verbs where the particle is realized as a sep-
arate word (which may alternate with affixed particles), for example Swedish byta
ut (‘exchange’; cf. utbytt ‘exchanged’)’’.

Hyphenated compounds are treated in the same way as in open compounds.
The hyphen is attached to the head, with the relation label punct.4

Annotation of compounds is explored for English, Czech, Russian, German, and
Latin. In each language, it is performed based on all treebanks available in the UD
collection (i.e. ten treebanks for English with a total of 46K sentences, four German
treebanks containing 208K sentences, six treebanks for Czech with 208K sentences,
five Latin treebanks with 59K sentences, and five treebanks for Russian with 111K
sentences). The language set is different from the language set pertaining to the
rest of this thesis, because the task at hand requires much more familiarity with
the given languages, and the author’s knowledge of Spanish, French, and Dutch

2https://universaldependencies.org/u/overview/tokenization.html
3https://universaldependencies.org/ext-dep-index.html
4This is the case for the languages in scope, but the claim does not hold for all languages in UD.

Swedish hyphenated compounds are for instance handled the same way as closed compounds.
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Lang compound Sentences w/ compound:prt Sentences w/ Total Total
relations compound relations compound:prt words sent.

English 22K (3,0%) 13.5K (29.3%) 2.5K (0.3%) 2.3 (5.0%) 726K 46K
German 1.8K (0.1%) 1.4K (0.7%) 22.4K (0.6%) 21.8K (10.5%) 3.8K 208K
Czech 2.7K (0.1%) 1,3K (1.1%) 0 (0.00%) 0 (0.0%) 2.2K 128K
Latin 85 (0.01%) 82 (0.1%) 0 (0.00%) 0 (0.0%) 983K 59K
Russian 1.9K (0.1%) 1,8K (1.6%) 0 (0.00%) 0 (0,0%) 1.8K 111K

Table 5.2: The number of sentences containing a compound or compound:prt
relation.

was insufficient for this purpose.
The number of sentences containing the compound relation in the languages’

UD treebanks is listed in Table 5.2. The compound:prt relation is used only in
English and German; it will not be further commented upon.

The UD treebanks for English

Out of the languages analyzed, English treebanks contain the highest number of
compound relations, both in absolute numbers and in percentages, owing to the
fact that in this language, [N +N ] sequences are analyzed as compounds. English
is also a language where these [N +N ] compounds can alternatively be spelled
with a hyphen or even without a space as a single graphical word (cf, Table 5.3),
resulting in different tree structures; cf. the textbook example flower pot as an
open compound with the hyphenated (flower-pot) and closed spelling alternative
(flowerpot) annotated in line with the UD guidelines in ex. (95).

(95)

flower pot
noun noun

compound

root

flower - pot
noun punct noun

compound

punct

root

flowerpot
noun

root

The compound relation is also assigned to noun+adj phrases (emerald green,
labour intensive), as well as complex open numerals such as twenty one.

Even though the relationship between the components of the open compound
stone wall, which can be paraphrased as ‘‘wall of stones’’, is the same as the relation-
ship between the adjective wooden and the noun wall (‘‘wall of wood’’), the syntactic
relations within these sequences are labeled differently, namely compound in the
first sequence while amod in the second; cf. ex. (96).

(96)

stone wall
noun noun

compound

root

wooden wall
adj noun

amod

root
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If there were an adjective to the noun stone (*stonen) or if stonewere considered
also as an adjective in English, the annotation would have been no different from
wooden wall. This is encountered in the phrase west side, where west is interpreted
as an adjective (while the formally identical noun west and the formally different
adjective western exist) and therefore handled as an adjectival modifier (amod) of
the nominal governor.

The UD treebanks for German

German is a language where compounding is widely used, but compounds are
typically spelled as compact strings. Nevertheless, both hyphenated compounds
(cf. the Anglicism Trackpad-Click) and open compounds ([N +N ] sequences, often
with proper names; e.g. Präsident Franjo ‘President Franjo’) are documented in the
treebanks, both types assigned the compound relation.

In German we also find cases of (here, closed) compounds with the compo-
nents’ relations analogous to those between words in syntactic phrases, but these
analogies are not obvious in the current annotation; cf. the compound altbekannt
‘well-known’, which is represented by a single node, and the phrase älteste bekannt
‘oldest known’, which is represented as a tree headed by the second word with the
first element linked by the amod relation in ex. (97).

(97)

altbekannt
adj

root

älteste bekannt
adj adj

amod

root

The UD treebanks for Czech

Also in Czech, compounds are commonly written as continuous strings, still a
hyphen may connect the components in coordinate compounds. In the data,
however, the compound relation appears not only with hyphenated compounds
(indo-australský ‘Indo-Australian’), but also with numeral expressions, which in
Czech are separated by spaces.5 The rightmost component is taken as the head
and the other parts are depending on it as modifiers; cf. the right structure in
ex. (98). When a numeral construction enters derivation, the output is a closed
compound and it is represented by a single node; cf. the adjective dvacetitisícový
‘twenty-thousand’ on the left in ex.(98) which is traced back to the phrase dvacet
tisíc ‘twenty thousand’.

(98)

dvacetitisícový
adj

root

dvacet tisíc
num noun

compound

root

5The interpretation of numerals as compounds, though, does not conform to the Czech linguistic
tradition.
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Similarly, nouns modified by adjectival modifiers can give rise to adjectives
with two roots and closed spelling. Cf. the noun phrase pravý úhel ‘right angle’
and the adjectival compound pravoúhlý ‘right-angled’ in ex. (99), which is close to
the German adjective blauäugig ‘blue-eyed’ mentioned in the introductory section
in that the right component does not exist as a separate adjective (*úhlý ‘angled’
similar to *äugig ‘*eyed’).

(99)

pravoúhlý
adj

root

pravý úhel
adj noun

amod

root

The UD treebanks for Latin

Latin treebanks contain the lowest number of compound relations, as documented
in Table 5.2. Its current usage is limited to numeral expressions if they are spelled
as separate words in a way described above for Czech, with the addendum that
sometimes one of the words is unus ‘one’ labeled as a determiner and not a numeral.
Example (100) is also analogous to Czech, documenting an adjectival compound
(magnanimus ‘high-spirited’) that is based on a noun phrase (here, more specifically,
on a phrase with the head noun preceding the adjectival modifier: animus magnus
lit. ‘spirit high’ = ‘high spirit’).

(100)

magnanimus
adj

root

animus magnus
noun adj

amod

root

The UD treebanks for Russian

In the Russian treebanks, the compound relation is – unlike in Czech – applied to
“noun compounds (e.g., стресс менеджмент ‘stress management,Жар птица ‘Fire
bird’), but also adjective compounds (e.g., бэд блоки ‘bad blocks’, мини колонка
‘mini speaker’, Гранд отель ‘Grand hotel’) and some other types (‘+ 1’, ‘№ 1’)”.6

Such [N +N ] compounds and adj+noun compounds are often loanwords or direct
translations of foreign expressions.

In addition, now similarly to Czech and also Latin, the compound relation ap-
pears also with numerals (две тысячи ‘two thousand’) and hyphenated construc-
tions (город-государство; ‘city-state’).

Noteworthy are compounds which are analyzed as [N + V ] structures in the
Golden Compound Analyses database. Since they are closed compounds, they
are currently represented by a single node in the treebanks, but the relationship
between the components resembles the obj relation of the object noun to its

6https://universaldependencies.org/ru/dep/compound.html
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governing verb; cf. рукомойник ‘washbasin’ and the phrase мыть руки ‘to wash
hands’ in ex. (101), or короед ‘bark beetle’ traced back to есть кору ‘to eat bark’
andтравосеяние ‘grass sowing’ related to сеять траву ‘to sow grass’.

(101)

рукомойник
adj

root

мыть руки
verb noun

obj

root

5.2 Syntax-based annotation of compounds

As we have tried to show, the current annotation does not allow to get a complex
picture of compounds (as multi-root items) either within one language or across
languages. On the one hand, the compound relation only applies to open and
hyphenated compounds while closed compounds are not marked in any way. On
the other hand, the compound relation is underspecified, without capturing the
different relations observed between the components in individual compounds –
the exact same label is used for English [N +N ] compounds, which themselves
document a variety of internal relationships, and for relations between numerals
in Czech, for example.

5.2.1 Covering all compound types

We now roughly outline a preliminary proposal for a new annotation of compounds
in UD that should overcome these issues. Rather than offering an ultimate solution
to each individual aspect of compound annotation, we present in our proposal one
or more possible solutions based on what we have encountered in the literature or
in existing language resources, with our primary goal being to initiate a discussion
on this topic.

Compounds with all types of spelling should be approached as complex struc-
tures that consist of components which are linked by a relationship that is often
similar to syntactic relations between words in syntactic phrases:

(a) Closed compounds should be split into their respective constituents for this
purpose, and further handled in the same manner as open and hyphenated
compounds. Compounds with three and more components will be divided
into individual parts (e.g. the above German example Umfrageteilnehmer ‘sur-
vey participant’ into Umfrage+ Teil+ Nehmer) and their relationships will be
captured by arranging them into a tree structure (see the next points). As
illustrated, in closed compounds a ‘‘+’’ sign may be used on the first (or on all
non-final) components to indicate the original morphological boundary, so that
the information on their orthography is retained. An interfix, if contained in
a compound, will be part of the preceding component (cf. Umgangssprache
‘colloquial language’ as Umgangs+ Sprache).
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(b) Since such an approach would yield strings that do not exist as separate words
(cf. *Abbiege in Abbiegeassistent), we propose – in accordance with the fact that
the words in syntactic phrases are treated in this way – to assign a lemma to
each component. It can be a full word that is identical with the component
(i.e. Umgang ‘dealing’ or umgehen ‘to deal’ and Sprache ‘language’ for Umgangs+
Sprache) or close to it (abbiegen ‘to turn’ and Assistent ‘assistant’ for Abbiege+
Assistent). Derivatives of compounds would share this lemmatization with their
ancestors, e.g. domorodec ‘native man’ would be lemmatized as domo+ rodý
‘native’ (i.e. dům ‘house’ and rod ‘kin’).

(c) All types of compounds should be organized into subtrees in away analogous to
syntactic phrases in UD, making a distinction between subordinate compounds
(with the compound’s head as the governor and its modifier as its dependent;
cf. bohapustý ‘godless’ in ex. (102) and coordinate compounds (with the first
component as the root of the subtree and all the other conjuncts depending
on it; cf. černobílý ‘black-and-white’ in ex. (103)).

(102)

boha+ pustý
noun adj

compound:nmod

root

pustý boha
adj noun

nmod

root

(103)

černo+ bílý
adj adj

compound:conj

root

černý a bílý
adj cconj noun

conj

cc

root

(d) Though the subtree modeling the syntactic structure of a compound’s com-
ponents is proposed to be as close an analogy as possible to the subtrees of
syntactic phrases, the relation may retain the compound/phrase distinction. As
bare compound relations are not informative, the relations within compounds
could be tagged with a compound:<relation> label, where <relation> is
an already-existing UD syntactic relation. This restriction regarding forcing
compound subtypes into established relations should pertain solely to a) cur-
rently bare compound relations and b) closed compounds currently treated
as atomic units, not to established, already-subtyped relations such as the
compound:prtmentioned in Section 5.1.1. These should not be overwritten,
their further usage is neither blocked nor discouraged by our proposal.

How these individual pieces of annotation could be brought into the data is
discussed in the next section.

5.2.2 Towards the proposed annotation

1. Identification of closed compounds. To get a preliminary idea of which
part of the treebank data for individual languages would be affected by the
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Language Closed compounds Total words Sentences w/ cl comp Total sent

English 5,934 (0.82%) 726K 5,286 (11.57%) 46K
German 156,629 (4.11%) 3,810K 87,104 (50.14%) 208K
Czech 47,103 (2.11%) 2,222K 34,775 (27.27%) 128K
Latin 26,271 (2.62%) 983K 18,353 (31.27%) 59K
Russian 4,803 (0.27%) 1,830K 4,460 (4.00%) 111K

Table 5.3: A lower bound estimate of the amount of closed compounds (tokens) in
Universal Dependencies.

proposed annotation, the number of closed compounds in the UD treebanks
needs to be estimated in addition to the number of the compound relations
(which are in Table 5.2). In this study, we used the lists of compounds con-
tained in the language resources discussed above in Section 2. The figures
in Table 5.3 are heavily conditioned by the size of the resources used. The
figures represent a lower bound for the actual amount of closed compounds
contained in UD, since none of the data sources list the compounds from
their respective languages exhaustively. They are based on searching for the
known compounds (and their derivatives) extracted from the data sources
listed in Table 5.1

With these limitations in mind, Table 5.3 suggests that the influence of such
a change would be substantial, especially in German, where more than 156
thousand closed compounds were identified, which are part of 87 thousand
sentences (i.e. 50% of all sentences). The least affected language by our cur-
rent estimate would be Russian with less than 5 thousand closed compounds
distributed over 4 thousand (4%) sentences; this is due to the relatively low
coverage of the Golden Compound Analyses database used as the Russian
compound data source in this study (see Table 5.1). The utilization of re-
sources with higher coverage or another more sophisticated approach could
render these numbers substantially higher.

The gap between the percentage of words that are closed compounds and
the percentage of trees that contain them is caused by the fact that many
often used words happen to be closed compounds. Taking Latin, where
this pheonemon is pronounced, as an example,Word Formation Latin (Litta
et al., 2016) contains compound words such as horsum ‘hither; this way’ from
hic ‘this’ versum ‘side’ or quasi ‘as if’ from qui ‘as’ and si ‘if’. Similarly, CELEX
contains draußen ‘out there’ from da ‘there’ and außen ‘außen’ or woher ‘where
from’ from wo ‘where’ and her ‘here’.

2. For splitting of compounds and lemmatization of the components, the
language data sources reviewed above can be taken as a starting point,
because they contain high-quality, linguistically adequate material. Whereas
CELEX both divides the compounds into substrings and assigns representative
forms to its individual parts (cf. geh for gang above), the other resources
provide full-fledged ancestors for compounds that would fit our idea of
components’ lemmas. Even if the resources for some languages are limited,
the existing data can – after unifying the annotation according to the proposal
– be used for training automatic tools. PaReNT (Svoboda and Ševčíková,
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2022), performs both compound splitting and component lemmatization
with decent results on Czech.

3. Specifying the syntactic structure andassigning syntactic relation labels
is another important step for which existing sources provide only very limited
data (cf. the bracketed structure in CELEX). Since the pilot manual annota-
tion was based around a mostly mechanical process of finding compound-
associated phrases, feeding them into UDPipe (Straka et al., 2016), and ob-
serving the relation within the phrase, a semi-automatic procedure is being
developed that follows this approach. For example, the German compound
Zittergras ‘quaking-grass’ encodes the phrase das Gras zittert. The syntactic
annotation provided for this phrase by UDPipe is then replicated in the com-
pound, cf. the structures of the compound and of the underlying phrase
both with Gras as nsubj in ex.(104). The English example killjoy with the
obj relation follows in ex. (105).

(104)

Zitter+ gras
verb noun

compound:nsubj

root

Gras zittert
noun verb

nsubj

root

(105)

kill+ joy
verb noun

compound:obj

root

kill joy
verb noun

obj

root

In addition to the examples provided in this section (ex. (102) through ex.
(105)), the envisioned annotation scheme is applied to the examples that
were presented above in Section 5.1 – see Table 5.4, where the annotation
according to the current UD guidelines is shown on the left-hand side and
the proposed annotation on the right.
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flowerpot
noun

root

flower pot
noun noun

compound

root

flower - pot
noun punct noun

compound

punct

root

flower+ pot
noun noun

compound: nmod

root

flower pot
noun noun

compound: nmod

root

flower - pot
noun punct noun

compound: nmod

punct

root

wooden wall
adj noun

amod

root

stone wall
noun noun

compound

root

wooden wall
adj noun

amod

root

stone wall
noun noun

compound: nmod

root

altbekannt
adj

root

älteste bekannt
adj adj

amod

root

alt+ bekannt
adj adj

compound: amod

root

älteste bekannt
adj adj

amod

root

dvacetitisícový
adj

root

dvacet tisíc
num noun

compound

root

dvaceti+ tisícový
num adj

compound: nummod

root

dvacet tisíc
num noun

compound: nummod

root

pravoúhlý
adj

root

pravý úhel
adj noun

amod

root

pravo+ úhlý
adj adj

compound: amod

root

pravý úhel
adj noun

amod

root

magnanimus
adj

root

animus magnus
adj noun

amod

root

magn+ animus
adj noun

compound: amod

root

animus magnus
noun adj

amod

root

рукомойник
adj

root

мыть руки
verb noun

obj

root

руко+ мойник
noun adj

compound: obj

root

мыть руки
verb noun

obj

root

Table 5.4: A comparison between how compounds are handled currently in UD
(left) and how they would be handled by the proposed annotation scheme (right).
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6. Conclusion

In this dissertation, we described and evaluated the development of a series of
three tools – Czech Compound Splitter,Word Formation Analyzer for Czech and PaR-
eNT – capable of static modeling of compounds, meaning that the tool accepts a
compound word as input and returns its parents. We then offer a practical demon-
stration how such a tool can be used to enrich DeriNet, and by extension allow the
study of compounding in the context of other word-formation processes such as
derivation. Finally, we also show how, in the future, compounding can additionally
be studied not only in the context of word formation, but also in the context of
syntax, by surveying the way compounding is handled at the moment in Universal
Dependencies, and proposing a way to handle them consistently.

Czech Compound Splitter is the result of the first attempts to systematically
identify and split Czech compounds. While there has been a lot of attention invested
into automatic compound splitting in languages such as German or Sanskrit, in the
Slavic languages, the topic had largely, though not completely, been overlooked.
We have attempted to tackle the problem using three approaches – one that uses
simple heuristics, another based on an asymmetric word similarity metric based on
finding the shortest path through a matrix of phonological similarity, and another
utilizing a deep learning model partially trained on synthetic data, using the Marian
Translation framework. Despite a surprising amount of irregularity and difficulty in
Czech compounds, the Czech Compound Splitter tool achieved an accuracy of 54% in
the task of compound splitting and an accuracy of 84% in compound identification.

Word Formation Analyzer for Czech (WFA.ces) is an extension of CCS into derivation,
the result being a computational tool capable of parent retrieval andword formation
classification. It is based around an ensemble of deep-learning models built using
the Marian framework, equipped with output analysis and reranking. It is able
to perform word formation classification with 87% balanced accuracy, specifically
excelling in discerning compounds from non-compounds, in which it achieves an
F1-score of 94%, and parent retrieval with 71% accuracy, as measured on a separate
data set. It outperforms its predecessor, Czech Compound Splitter, in every regard.

As the final entry in the series, we presented PaReNT (Parent Retrieval Neural
Tool). It is an extension of WFA.ces into six more languages – English, German,
Dutch, Russian, Spanish, and French. Unlike its predecessors built within the
Marian framework, which are character-based only, PaReNT is based on the Ten-
sorflow framework and runs on a dual-representation input, custom-designed
encoder/decoder with a classification module RNN neural network coupled with a
Transformer-like block and two output modules, one for parent retrieval and one
for word formation classification. PaReNT has achieved a total Accuracy of 0.62 in
parent retrieval and a Balanced Accuracy of 0.74 in word-formation classification
on an independent validation data set. PaReNT is now freely available as both a
command-line tool and an importable Python package.1

To demonstrate the usage of PaReNT in enriching data sources, we used it to
detect and retrieve nearly 4, 400 compounds – increasing the original amount of
compounds threefold – andwith the help of amanual check, map these compounds
to their parents as part of the DeriNet word-formation network, releasing the

1https://github.com/iml-r/PaReNT
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version 2.2 as a result. In order to perform this mapping, numerals, pronouns, and
appositions had to be added into DeriNet, since they previously weren’t present
and many compounds have these as their parents. As part of the update, we
also revisited the annotation scheme that had been originally implemented in
DeriNet, and on which PaReNT had been trained on, and developed an improved
one, based around the idea that compound words encode phrases. The new
annotation scheme is based around mapping compounds to the content words
contained in these phrases. The scheme is designed to easily carry over into the
other languages in scope. In addition, it can handle neoclassical compounds
by mapping them to neoclassical constituents, which are assumed to be shared
among the languages in scope, and their handling is designed with this fact inmind.
Using DeriNet 2.2 released as part of this thesis2, we presented some statistical
findings regarding the productivity of various compound types with respect to their
input and output parts-of-speech ([POS1 + POS2]POS3), as well as examining the
derivative productivity of the various compound types and the derivation height of
the parents of the various compound types.

In the last chapter of this dissertation, we explored the current treatment of
compounds in Universal Derivations in five languages. Compounding in many
cases straddles the line between word formation and syntax and the exact bound-
ary between the two is sometimes dependent on linguistic tradition, which is in
turn often dependent on a specific language or language area. We proposed an
annotation scheme that handles closed, hyphenated and open compounds in the
same vein. The proposal approaches compounds analogously to how Universal
Derivations currently handle syntax. We observed that the handling of open and
hyphenated compounds varies widely according to the particular language in ques-
tion, and that closed compounds are taken into account in none of them. Based on
these observations and also the long-standing tradition of describing compounds
from a syntactic perspective present in the linguistic literature, the objective of
the paper was to open a discussion on whether a multilingual annotation scheme
for compounds in Universal Dependencies that employs the dependency relations
already in use is useful and what features it should have.

In conclusion, this dissertation contributes to the study of compounding by
releasing a multi-lingual model of word formation capable of compound analysis,
showing how its usage can help the enrichment of existing data resources in order
to study compounds in the context of other word-formation processes, and paving
the way to systematically study compounds in the context of syntax, across lan-
guages, by proposing an annotation scheme that captures compounds in Universal
Dependencies.

2https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-5538
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