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Abstract

This dissertation consists of three scientific articles, two of which have already been published,
and the third is currently undergoing peer review. The complete texts of the publications are

appended to this thesis.

This dissertation presents a discussion of the methodology used in the geochemical processing
of mantle peridotites and the extraction of information from a limited sample size. In the course
of this dissertation, I have acquired proficiency in the methodologies of peridotite sample
preparation, acid digestion of the sample, separation of radiogenic Sr—Nd—Pb—Os—Hf isotopes,
leaching and determination of total sulfur content in peridotites, separation and determination
of siderophile elements, and in-situ determination of elements by laser ablation and electron
microprobe. The methodology of sample preparation, separation and measurement of Sr-Nd-
Pb isotopes was optimised in the conditions of CGS laboratories. The methodologies were
validated by measuring a large number of international isotope standards, and the results were

published. This publication forms part of my PhD thesis.

The second part of the dissertation addresses the heterogeneity of the Earth's mantle under the
Bohemian Massif. Specific focus was placed on Re—Os isotopes and PGE composition. A total
of 14 sites distributed across the Bohemian Massif were selected for the research project. A
total of 49 xenoliths were selected for isotopic analysis. A subset of the results from 11 sites
was published in Kochergin et al. (2016). The remaining results will be published in the paper

by Erban Kochergina et al., which is currently under review.

It was not the intention of this dissertation to resolve all issues of SCLM heterogeneity beneath
the Bohemian Massif. However, one of the aims was to contribute to the ongoing discussion on
the different types of metasomatism that have influenced its composition. The application of

Re-Os isotope analysis and PGE distribution enabled the proposal of subduction in the western



part of the Ohfe rift as a factor influencing the composition of the lithospheric mantle to be

supported.

The contribution of this work was the calculation of Re—Os model ages for peridotite xenoliths
from localities across the Ohfte rift. The calculated mantle extraction ages (Tma) range from 0.1
to 2.1 Ga, with several cases of unrealistic "future" ages explained by the presence of
metasomatic overprinting. The Re (Trp) compartment ages exhibit a range from 0.1 to 1.6 Ga.
However, Trp cannot be directly compared to crustal ages because they represent a minimum
age rather than a specific age estimate, also in part due to consideration of total Re removal
from the rocks. Accordingly, a modified model age (Trpu) was calculated assuming a non-zero
Re content in the pre-metasomatic phase and using a composition representative of the most
depleted sample in the suite. The pronounced peak in the calculated Trpn age is between 0.5

and 0.6 Ga, corresponding to the Cadomian orogenic cycle.



Abstrakt
Tato disertacni prace sestava ze tii odbornych ¢lanki, z ¢ehoz dva byly jiz publikovany, tieti je
v souCasné dobé v recenznim fizeni. PIné texty vyse uvedenych publikaci jsou piilohou této

prace.

V této disertacni praci se zabyvam metodikou geochemického zpracovani plastovych peridotita
a ziskavanim informaci z omezeného mnozstvi vzorku. V rdmci této disertacni prace jsem se
seznamila a osvojila si metodiky piipravy vzorka peridotitu, kyselinového rozkladu vzorku,
separace radiogennich izotoptt St-Nd—Pb—Os—Hf, louZeni a stanoveni celkového obsahu siry v
peridotitech, separace a stanoveni siderofilnich prvki a in-situ stanoveni prvkl pomoci laserové
ablace a elektronové mikrosondy. Metodika ptipravy vzorkil, separace a méteni izotopti Sr-Nd-
Pb byla optimalizovéna v podminkach laboratoti CGS. Tyto metodiky byly ovéfeny méfenim
velkého poctu mezindrodnich izotopovych standardid, a vysledky byly publikovany. Tato

publikace je soucasti mé doktorské prace.

Druha &ast disertaéni prace se zabyva heterogenitou zemského plasté pod Ceskym masivem.
Zvlastni pozornost byla vénovana izotoptim Re—Os a slozeni PGE. Pro vyzkumny projekt bylo
vybrano celkem 14 lokalit napii¢ Ceskym masivem. Bylo shroméazdéno 49 xenolitl, které byly
povazovany za vhodné pro izotopové méfeni. Podskupina vysledki z 11 lokalit byla
publikovana v ¢lanku Kochergina et al. (2016). Zbyvajici vysledky budou publikovany v ¢lanku

Erban Kochergina et al. ktery je v soucasné dob¢ v recenznim fizeni.

Jist€ nemohlo byt ambici této disertacni prace vytesit vSechny otazky heterogenity SCLM pod
Ceskym masivem, nicméné jednim z cili bylo pfispét k probihajici diskusi o riznych typech
metasomatismu, které ovlivnily jeho sloZeni. PouZiti analyzy izotopi Re—-Os a distribuce PGE
umoznilo podpofit mysSlenku subdukce v zipadni casti oherského riftu, kterd slozeni

litosférického plasté vyrazné ovlivnila.



Ptinosem prace byl vypocet Re—Os modelového stafi pro peridotitové xenolity z lokalit napiic¢
oherskym riftem. Vypoctena stafi extrakce plasté¢ (Tma) se pohybuji v rozmezi 0,1 az 2,1 Ga,
nekolik ptipadl nerealistického ,,budouciho® staii je vysvétleno piitomnosti metasomatického
pretisku. Staii oddéleni Re (Trp) vykazuji rozmezi od 0,1 do 1,6 Ga. Trp vSak nelze piimo
srovnavat se stafim kiiry, protoze predstavuje spiSe minimalni vékovou hranici nez konkrétni
odhad stafi, z¢asti v dusledku piedpokladu nulového obsahu Re v horninach. V souladu s tim
bylo vypocteno modifikované modelové staii (Trpi) za predpokladu nenulového obsahu Re v
piredmetasomatické fazi a za pouziti slozeni odpovidajiciho nejvice ochuzenému vzorku v suit¢.
Vyrazny vrchol ve vypocteném stafi Trpn se pohybuje mezi 0,5 a 0,6 Ga, coZ odpovida

kadomskému orogennimu cyklu.
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BM — Bohemian Massif
BABI — Basaltic Achondrite Best Initial

BSE — Bulk Silicate Earth = the Primary Uniform Reservoir = Crust + Mantle = Primitive
Mantle. Silicate portion of the Earth after the core separation, before the crust-mantle
differentiation.

SCLM - SubContinental Lithospheric Mantle represents a rigid, non-convective chemical,
thermal and mechanical boundary layer insulating the continental crust (Mohorovic¢i¢
discontinuity) and the convective asthenosphere mantle

MORB - Mid-Ocean Ridge Basalts. Products of partial melting of mantle peridotite

(Iherzolite). Primary MORB liquid can only be produced by melting of peridotites at pressures
over 15 kb, deeper than 40 km or 80 km for normal (N)-MORBEs.

N-MORB — Normal-MORB, upper, depleted mantle
E-MORB - Enriched-MORB, deeper enriched source

T-MORB — Transitional-MORB, mixing of N- and E- magmas during ascent and/or in shallow
chambers.

CC — continental crust

OIB — Oceanic Island Basalts, type of basalt that erupted within the oceans, mainly in intraplate
settings. OIB are commonly olivine-bearing lavas with subalkalic (tholeiitic) and alkalic
compositions.

DM - Depleted Mantle = N-MORB source

PUM — Primitive Upper Mantle. The PUM composition is derived here from the major-element
and rare-earth-element (REE) contents of mantle lherzolites.

CHUR - chondritic uniform reservoir

FOZO — Focal Zone is the isotopic composition of the lower mantle: 8’Sr/*Sr = 0.7025, eNd
=+9, 2%Pb/2%Pb = 19.5

HIMU - high-p, p= 28U/?Pb, enriched in 2°°Pb/?*Pb, 2°7Pb/2%Pb, depleted in 3’Sr/*¢Sr. The
origin:(1) recycled oceanic crust, (b) metasomatically enriched oceanic lithosphere

EMI1 - Enriched Mantle 1 - slightly more radiogenic in 3’Sr/*®Sr, no Pb enrichment, very low
143Nd/**Nd, high Th/U and low (U, Th)/Pb ratios. The origin: (i) recycling of delaminated
subcontinental lithosphere, (i1) recycling of subducted ancient pelagic sediment.

EM2 — Enriched Mantle 2 — more radiogenic in ’Sr/**Sr and radiogenic Pb. Origin: (i)
recycling oceanic crust and small amount of subducted sediment, (b) recycling of melt-
impregnated oceanic lithosphere.

ECRIS — European Cenozoic Rift System, 1100 km long rift system. It is a continuous system
that includes the Spanish Valencia Trough, the French Massif Central, Black Forest and Vosges,
Hegau, Urach, Rhenish Massif, Vogelsberg and the Bohemian Massif.

Incompatible elements (K, Rb, Cs, Ta, Nb, U, Th, Y, Hf, Zr, LREEs). Elements not accepted
in mantle minerals. These elements concentrated in the crust with D¥' << 1.



Compatible elements (Ni, Cr, Co, V, Sc) concentrate in the mantle, those with D¥'> 1.
REE — Rare Earth Elements, lanthanides.

LILE — Large Ion Lithophile Elements. These elements have ionic radii too large to be
accommodated in crystal structure of tyical mantle phases.

HFSE - High Field-Strength Elements: Hf, Zr, Ti, Nb, and Ta. These elements have a high
charge-to-radius ratio, which generates an intense electronic field around each ion, and makes
it unstable in an ionic silicate crystal.

HSE - Highly siderophile elements: Re, Os, Ir, Ru, Rh, Pt, Pd, and Au (Re, Au+PGE). The
Dmetal/sﬂlcate Values > 10 000.

MSE — Moderately siderophile elements: Ga, P, W, Co, Ag, Ni, Sb, As, Ge, Mo. The Dmetal/silicate
values range from ~ 3 to 10000.

SSE — Slightly siderophile elements: Mn, V, Mo, W, Fe. The Dmetalsilicate yalyes < 1,
PGE - Platinum group elements: Os, Ir, Ru, Rh, Pt, and Pd

I-PGE - Os, Ir, Ru

P-PGE - Pt, Pd, Rh

Byr - billion years, used to show the time interval

Ga — Billion years, used to refer a time point in geological history

Ma — Million years, used to refer a time point in geological history

ppm — parts per million

ppb — parts per billion

ID — isotope dilution



Preface

The dissertation thesis is organized in a cumulative format. This Ph.D. thesis consists of three
Chapters and an appendix with three scientific articles, of which two have been published and

one is currently under review.

The initial chapter is dedicated to the problem of radiogenic isotopes and describes the basic

principles of the behaviour of radiogenic isotopes.

The following part of the study addresses the composition of the lithospheric mantle beneath
the Bohemian Massif. The radiogenic isotopes Sr—Nd and Os are of greatest interest.
Consequently, this section describes the oxidation state of the mantle beneath the Bohemian

massif, which confirms the great influence of metasomatism on its composition.

In Part III of the dissertation, I provide in detail the principle of sample preparation, separation
and measurement of Re and Os isotopes. A similar detailed description did not appear in any

of my publications, and thus I have chosen to present this methodology in a separate chapter.

The initial journal article in the appendix focuses on the methodology for the preparation of
specimens for the analysis of radiogenic isotopes, specifically strontium (Sr), neodymium (Nd)
and lead (Pb). The second and third journal articles are focused on the isotopic composition of
Re-Os in peridotite xenoliths from the BM. The second publication is focused on Re—Os isotope
systematics and PGE composition of mantle xenoliths from the westernmost part of the Ohie
(Eger) Rift in NE Bavaria. The most significant outcome of this chapter is evidence of
subduction and mantle contamination by subducted sediments. The third publication is focused
on Re—Os isotope compositions of mantle xenoliths from the entire Bohemian Massif, including
localities from Germany, the Czech Republic and Poland. The most significant achievement of

this chapter is a comparison of the Re—Os model ages of the studied peridotite xenoliths with



the Nd model ages of the crustal units from the Bohemian Massif. The most significant

outcomes of the thesis are finally highlighted in the conclusions.



CHAPTER 1: Introduction

Radiogenic isotopes as geochemical tracers
The field of mantle geochemistry aims to elucidate the nature, history and evolution of the
Earth’s mantle through the study of the chemical and isotopic composition of both mantle

samples and the melts derived from it.

Isotope geochemistry plays an important role in geological research. Radiogenic isotopes can
be used as tracers in analytical geochemistry. The radiogenic isotopic studies of igneous rocks
focus mainly on isotopes of incompatible, lithophile (Sr, Nd, Hf, Pb) and siderophile (Os) trace
elements. Radiogenic isotope ratios, expressed as %’Sr/%®Sr, *Nd/'*‘Nd, "SHf/'"’Hf,
206pp/204ph, 208pb/2%Pb, and '¥70s/'**0s have been accumulated for a range of magmatic

systems.
Strontium isotopes

Strontium is an alkaline earth metal with a similar ionic radius to that of calcium, resulting in a
common substitution of Sr** for Ca®" in minerals (Ca-feldspars, calcite, dolomite, apatite) as
well as in plant and animal tissues. It is almost omnipresent in nature, often in readily
measurable amounts. Strontium has four stable isotopes: Sr, 3°Sr, 8’Sr and 8Sr. While the
proportions of the 34Sr, ¥Sr and %¥Sr are almost fixed in nature, the ®’Sr content is highly
variable as it is a daughter product of the radioactive *’Rb decay. The Sr isotopic composition
is commonly expressed as ’Sr/*Sr ratio. As a rule of thumb, it has never been observed to be
lower than 0.69897 (basaltic achondrite best initial - BABI, (Hans et al., 2013). Values between
~0.702 and ~0.707 are typical of mantle and mantle-derived rocks (such as serpentinites or
basalts), marine sediments reach 8’Sr/*®Sr ratios broadly from 0.707 to 0.709, modern seawater
has 3’Sr/%®Sr of 0.7092 (Peucker-Ehrenbrink and Fiske, 2019), rainwater 3’Sr/*Sr ratio is

normally around 0.710 (Erban Kochergina et al., 2021; Pearce et al., 2015), likely reflecting the
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influence of seawater salts carried by atmospheric circulation. The most diverse 8’Sr/*Sr ratios
are obtained for felsic rocks (e.g., granites) which range from 0.702 up to 1, or even higher. The
signature of clastic sediments depends on its source, but it is usually confined between 0.705

and 0.750 (Faure and Mensing, 2004).

Rubidium is an alkali metal with a similar ionic radius to that of potassium. Rb" substitutes for
K" in minerals like K-feldspar and micas. Rubidium has two naturally occurring isotopes, stable
$Rb and radioactive 3’Rb. The rubidium half-life is 48.8 Gyr (Steiger and Jager, 1977). Due to
the long half-live of the 3’Rb—*’Sr decay the %’Sr radiogenic ingrowth is very slow although,
in favourable situations such as high Rb/Sr elemental ratios, radiogenic ®’Sr/*®Sr ratios can be

generated in a geologically short time.

The use of Sr as an isotopic tracer is based on a fact that different natural reservoirs can have
contrasting ®’Sr/%6Sr isotopic fingerprints. This is generally inherited from magmatic rocks as
an ultimate source of Sr in nature. The Sr isotopic signature of the rock is a result of the initial
87Sr/%6Sr during rock formation and time-integrated ingrowth of the radiogenic *’Sr since then.
However, the latter process is the more effective the higher is the Rb content in the mineral.
This leads to contrasting 3’Sr/*Sr isotopic fingerprints of individual minerals even within one
rock massive. The diverse water—rock interaction properties of these rock-forming minerals
(congruent and incongruent dissolution, ion exchange etc.) are thus governing the isotopic

composition of the potential leachate.

Since bulk rock 3’Sr/*Sr can be affected by secondary processes, obtaining the primary Sr
isotopic ratios in mantle rocks relies on either removing secondary phases or obtaining pure
mineral separates of the primary ones. In practice this means picking minerals to avoid
secondary phlogopitic mica or acid washing those separates to remove any remaining secondary

carbonates.
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Mantle peridotite xenoliths mostly contain pyroxenes and garnets that have LREE-depleted
compositions and low Rb/Sr ratio relative to PUM (Pearson et al., 2014). The Rb-Sr method
has largely been used for dating igneous rocks. If the initial ratio 3’Sr/*Sr is known or can be
estimated, then ¢ can be determined, provided that it can be assumed that the system has been

closed with respect to Rb and Sr mobility from time # until the present:

where present-day Sr isotope ratio (P) is measured by mass spectrometry, and the atomic
87Rb/%Sr ratio is calculated from Rb/Sr weight ratio. Common analytical practise involves
analyses of representative bulk samples and individual mineral fractions following
decomposition and isolaton of Rb and Sr. Nonetheless, modern instrumental developments
appear to provide less time-consuming in-situ approach, yielding ages with comparable

uncertainty to that obtained by conventional methods.
Neodymium isotopes

Samarium and neodymium are rare earth elements. Neodymium has seven natural isotopes:
M2Nd (27.153 %), "Nd (12.173 %), '*Nd (23.798 %), '**Nd (8.293 %), "**Nd (17.189 %),
Nd (5.756 %), and °Nd (5.638 %) (Meija et al., 2016). Samarium has seven naturally
occurring isotopes: **Sm (3.1 %), '47Sm (15.0 %), ¥ Sm (11.2 %), '*°Sm (13.8 %), '°°Sm (7.4
%), 132Sm (26.8 %), and '>*Sm (22.0 %), where 'Y’Sm, '*Sm and '**Sm are all radioactive with
long half-lives (about 10'¢ yr) and for geological meaning these isotopes can be considered

stable.

Unlike Rb and Sr, Sm and Nd display highly comparable chemical properties, and large ranges
of Sm/Nd ratio in whole rock systems are rare (Dickin, 2005). Due to its slightly lower ionic

radius, Sm is generally more compatible than Nd in the Earth’s mantle. The fractionation of Sm
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from Nd during melting and crystallisation processes alters the Sm/Nd ratios in minerals, which,
over time, will result in a change in the relative abundance of '**Nd and '**Nd. The Sm-Nd

system is completely immune to disturbance during erosion and sedimentation.

3N d/'"*Nd as well as !7SHf/'""Hf are plotted in epsilon (g) notation. The e-notation is defined

as follows:

Nd 1 [(i:ixZ)sample 1 X 104

eNd sample = |[~Ev—— — ,
(Taana) CHUR

where CHUR stands for “chondritic uniform reservoir”. The *Nd/'*Nd and '*’Sm/'*Nd of
CHUR are 0.512638 and 0.1967, respectively (Dickin, 2005). The ¢Nd allows to determine
whether the mantle source of the samples had long-term enrichment (¢'**Nd < 0) or depletion

(e'"®Nd > 0) of a light rare earth-enriched component (typical for melts).
Lead isotopes

Lead has four stable isotopes 2**Pb, 2°°Pb, 2’Pb, 2¥Pb, where only 2*/Pb is non-radiogenic. The
other lead stable isotopes are the final decay products of three decay chains from uranium and
thorium, and U-Pb daring was employed to yield the first high-precision age of the Earth
(Patterson, 1956). Lead isotopes are an effective tool in studies of mantle and crustal evolution.
Using the different isotopes in conjunction makes it possible to identify the nature of
differentiation events and place constraints on their timing (Dickin, 2005). A series of arrays to
the right of the geochron on the Pb-Pb ‘isochron’ diagram was first found by several scientists
who studied ocean-island basalts (e.g., Gast et al., 1964; Tatsumoto, 1966, 1978; Sun et al.,
1975). The slopes of OIB arrays correspond to apparent ages between 1 and 2.5 Gyr. This can
be interpreted in three different ways: (i) as a product of a two-component mixing process, (ii)
as a result of mantle differentiation events, (iii) as a result of the continuous evolution of

reservoirs with changing p values (u = 2U/?%Pb).
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The present-day p value of upper mantle is 6 or less (White et al., 1993, White, 2013), whereas
the best estimates for Bulk Silicate Earth are around 8. The depleted mantle has lower p than
bulk Earth, as confirmed by the calculations of White (White et al., 1993, White, 2013), who
suppose Pb not to be derived from some primitive mantle reservoir, but instead it can easily be

supplied by mantle plumes, which clearly penetrate the upper mantle.
Lutetium—Hafnium isotopes

The Lu—Hf isotope system has obvious similarities with Sm—Nd isotope system: all elements
are lithophile and refractory with high condensation temperatures. They behave incompatibly
during melting and are concentrated in the melt over the residual solid (Vervoort, 2014).
Lutetium is the heaviest and the least abundant of the REE, and has a 3+ valence. Lutetium has
two isotopes: stable !> Lu (97.4%) and radioactive '7Lu (2.6%), which decays to !"*Hf by beta
decay. Hafnium is a high-field-strength element (HFSE) and has six naturally occuring
isotopes: radiogenic "°Hf (5.26 %) and stable '"*Hf (0.16 %), !"7Hf (18.60 %), "8Hf (27.28 %),
IPHf (13.62 %), "8°Hf (35.06 %). The Lu-Hf method is used to determine absolute ages
(“isochron” method), and also is utilized for dating of metamorphism. The short half-life of

76Lu is 3.719£0.007 x 10'° y, (Hayakawa et al., 2023).

76H{/'"7Hf is plotted in epsilon (&) notation,

176Hf 1
Hf 1 _ (177Hf)samp €
eHf sample = |—7e~——

4
@ enon ]

-1

Rhenium—QOsmium isotopes

During the last two decades the Os isotope mantle geochemistry began to play an important
role in research. Unlike Rb—Sr, Sm—Nd, or Lu—Hf isotopic systems, Re—Os systematics are

different because of osmium compatibility during partial melting while rhenium behaves
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incompatibly (Brenan, 2008). Therefore, the Re—Os isotopic system could be used as a

geochronometer for mantle peridotites (Luguet and Pearson, 2019).

Osmium has seven stable isotopes: '3*Os (0.02 %), ¥Os (1.59 %), '¥70s (1.96 %), '380s (13.24
%), '¥0s (16.15 %), °0s (26.2 %), and *?Os (40.78 %). Rhenium has one stable '3°Re

(37.4%), and one radiogenic '®’Re (62.6%) with long half-life (4.23 £ 0.13 x 10'%y).

Osmium is a member of the platinum group elements (PGE) and highly siderophile elements
(HSE), along with Re. These elements are primarily sequestered into the core or metal during
planetary differentiation, with subordinate amounts in the mantle and crust (Shirey and Walker,
1998). The distribution coefficients of PGE between metals and silicates are greater than 10
000 (Roy-Barman et al., 1998; Jones and Drake, 1986). Rhenium and Os chalcophile nature is
manifested in distribution coefficients between sulfide and silicate melts, with orders of
magnitude variation from 10 to 1000 for Re (Roy-Barman et al., 1998; Jones and Drake, 1986)
and 3.0 x 10*to 4.8 x 10* for Os (Crocket et al, 1992; Roy-Barman et al., 1998). During mantle
differentiation, Os behaves as a compatible element that is retained in mantle residues, while
Re behaves in a relatively incompatible manner and is partially removed from the mantle
source. As a result, crustal materials are generally highly depleted in Os and relatively enriched
in Re. This large fractionation of parent and daughter material during mantle melting and the
subsequent radiogenic addition of '¥’Os results in greatly variable '’Os/!*®Os ratios in various

geological reservoirs.

Before 1994 all studies reported Os composition in terms of '370s/!360s ratios, because of the
modern chondritic and mantle '¥70s/!%Qs ~ 1 (Walker, 2016). Many laboratories measured
18705/'80s then converting to '#70s/!%0s by multiplying the measured ratio by 0.12. However,
Walker et al. (1994) analysed Pt-rich samples from Norilsk (Russia), and concluded that the
enrichment of '¥¢Os is the result of the decay of '*°Pt. Since then, the '¥70s/'"*Os ratio has been

discontinued and laboratories have gradually switched to using the '¥70s/!38Os ratio.
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The increased variability of '370s/!%80s in different rocks underlines the great interest in Os
isotope analyses. This is particularly apparent when data for the primitive upper mantle
('870s/'880s ~ 0.1296; e.g., Meisel et al., 2001) are compared with mid-ocean ridge and arc
basalts ('¥70s/'%80s up to ~1.5; e.g., Alves et al., 2002; Brandon et al., 1999; Chen et al., 2019),
continental basalts (!¥’0s/!*8Os broadly between 0.134 and 0.446; e.g., (Huang et al., 2017;
McBridge et al., 2001) and upper continental crust (Peucker-Ehrenbrink et al., 2012).
Additional Os isotope variability is introduced in destructive margins, young oceanic subducted
sediments ('*70s/!%¥0s between 0.68 and 0.92; e.g., (Mullen et al., 2015) and highly radiogenic
oceanic crust (!¥70s/"*80s up to 25 in eclogites (Becker, 2000), up to 27 in eclogitic sulfide

inclusions in Kimberly diamonds (Richardson et al., 2001).

The Re-Os system can effectively date mantle-depletion and mantle-enrichment events.
Osmium model ages can be used to date sub-continental lithospheric mantle. The Tma age
shows the time of a sample separation from the mantle with the assumption of its closed system
behaviour (e.g., Shirey and Walker, 1998). The Trp model age represents the minimum age for
a Re depletion event. It assumes a two-stage evolution of the sample Re budget including total
Re removal by partial melting and its possible later influx from host lava. In Kochergina et al.,
(2016), we discuss the use of Re—Os for the dating of mantle processes and we also suggest a
way to calculate a modified Trpn model age, assuming a non-zero Re content during the pre-
metasomatic stage and using a composition of the most depleted sample in our suite

(Kochergina et al., 2016).
Highly siderophile elements

Among many elemental and isotope tracers, the group of highly siderophile elements (HSE:
Re, Au, Os, Ir, Ru, Rh, Pt, Pd) has gained considerable attention given their strong partitioning

into metal, stark concentration contrasts in the pristine mantle and derivative melts versus
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chemically evolved lithologies (Day et al., 2016; Becker and Dale, 2015; Lorand and Luguet,

2016; Luguet and Reisberg, 2016).

At low pressures, the HSE have a strong affinity for Fe-metal and sulfides versus coexisting
silicates or oxides (Day et al., 2016), with partition coefficients estimated at >10% From the
HSE group, Re shows a partial affinity for silicate phases (Brenan, 2008). The HSE behave to
some extent differently during melting: iridium-PGE (I-PGE: Os, Ir, Ru) have melting
temperatures > 2000 °C and, together with Re, concentrate in the metal phase whilst platinum-
PGE (P-PGE: Pt, Pd, Rh) have melting temperature < 2000 °C and typically concentrate in the
residual liquid (Goldstein et al., 2009). The crystallization of mafic and ultramafic magmas
appears to leave the I-PGE in magmatic cumulates whereas the P-PGE and Re concentrate in

the differentiated products (Brenan et al., 2016).

The metasomatic modification of lithospheric mantle, caused mainly by the interaction with
ascending fluids and melts, has also been investigated for HSE and Re—Os isotope systematics
(e.g., (Ackerman et al., 2009b; Kochergina et al., 2016; Luguet and Reisberg, 2016). Luguet
and Reisberg 2016 systematically described the effects of metasomatic agents on HSE
behaviour of non-cratonic peridotites: 1) Percolation of S-undersaturated silicate melts resulting
in a decrease of HSE and S, the *7Os signatures could be modified toward more radiogenic
values; 2) percolation of S-saturated silicate melts is typified by Pd moderately enrichments
compared to Pt, leading to the primitive upper mantle (PUM)-like HSE patterns and non-
radiogenic '%’0s/!%80s signatures; 3) percolation of C—O-S fluid/vapors lead to an increase in
Os and Pd, in contrast to Ir and Pt and radiogenic '*’Os/'®¥Os; 4) syn- and/or post-eruption
alteration is manifested in sub-chondritic Osn/Iry ratios, due to volatilization or remobilization

of Os (Fig. 1).
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Figure 1. Schematic petrological history of non-cratonic peridotite xenolits and its effects on
HSE signatures, adopted from Luguet and Reisberg (2016). Sample normalized by Orgueil CI-

chondrite (Fisher-Godde et al. 2010).
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CHAPTER 2: Geochemical and isotopic constraints on the composition of the

upper mantle beneath the Bohemian Massif

Variscan basement of the Bohemian Massif

The Bohemian Massif is a tectonic unit consolidated during the Variscan (Hercynian) orogeny
(McCann, 2008). It formed between the Upper Devonian and Lower Carboniferous (ca. 380—
280 Ma) as a result of closure of the Rheic ocean and collision between Laurussia
(Laurentia+Baltica+Avalonia) and Gondwana supercontinents (Franke, 2000, Kroner and
Romer, 2013). The entire Variscan orogeny extends from northernmost Africa through Spain,
southern England, France, and Germany to the Czech Republic and Poland as its eastern
promontory. In fact, it is a continuation of the Ouachita—Alleghanian orogeny in North America
and is also often correlated with Devonian—Carboniferous part of the Altai orogeny. The
Bohemian Massif is the largest preserved remnant of the Variscan basement in Europe.
Boundary of the Bohemian Massif generally traces the geographic outline of the Czech
Republic, although it overlaps to adjacent parts of Poland, Germany and Austria. The entire
Variscan belt is traditionally subdivided into several major units with distinctively different
lithology, metamorphism and tectonic styles (Schulmann et al., 2009, 2014). These can be

distinguished also within the Bohemian Massif (Fig. 2):

- Saxothuringian Unit to the north, either Neoproterozoic Peri-Gondwanan crust (Kroner
et al., 2007) or microcontinent assemblage (Franke, 2000) with Paleozoic cover corresponding

to the continental crust of the Armorican plate (Schulmann et al. 2009);

- Moldanubian Unit to the south, high- to medium-grade metamorphosed domain intruded
by Carboniferous granitic plutons, altogether forming the high-grade core of the orogrny

(Schulmann et al. 2009);

- Brunia Neo-Proterozoic basement with Paleozoic cover;
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- Tepla—Barrandian Unit between Saxothuringian and Moldanubian, consisting of
Neoproterozoic basement and its Early Palaeozoic cover. It is interpreted as an independent
crustal block (the Bohemia Terrane of South Armorica sensu) (Franke, 2000; Schulmann et al.,

2009).
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Figure 2. Simplified geological map of the Bohemian Massif, adopted from Schulmann et al.,
2009. CBPC: Central Bohemian Plutonic Complex; CMP: Central Moldanubian Pluton. The
lower left insert shows the Bohemian Massif's position in the European Variscides frame. RH:
Rhenohercynian zone; ST: Saxothuringian Zone; M: Moldanubian Zone; B: Brunia Continent;

L: Lugian domain.

The Variscan orogenic process in the Bohemian Massif was largely controlled by two-sided
subduction of Cambro—Ordovician Saxothuringian oceanic lithosphere and Moravo—Silesian
Cadomian crust below the Moldanubian towards southeast and northwest, respectively. The
subduction appears to have operated since at least 400 Ma and is indicated by synchronous

eclogitization of the Saxothuringian crust and its exhumation along the suture (Schulmann et
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al., 2009, 2014). Low- to medium-grade metamorphic rocks prevail in the Saxothuringian,
whereas high-grade rocks are characteristic for the Moldanubian. Mantle metasomatism likely
took place at ~ 340 Ma, during the final Variscan collision (Schaltegger et al., 1996, 1999).
Dostal et al., (2020) compared the compiled Nd isotopic data and the Tpm ages of the mantle-
derived rocks from the whole Bohemian Massif (Fig. 3). They described that the Late Paleozoic
mantle-derived rocks have radiogenic €Nd() values of old depleted mantle model ages. In
contrast, Late Proterozoic-Early Paleozoic within-plate mafic igneous rocks show positive
eNd(y) and younger Nd model ages (Fig.3). This suggests that the entire Bohemian Massif had
a cogent history during Variscan orogeny, and the modification of the SCLM is probably due
to contamination of a mantle source by fluids and silicic melts from subducted sediments
(Ackerman et al., 2009a; Erban Kochergina et al. under review; Dostal et al., 2019a; 2019b;

Krmickova et al., 2020; Soder and Romer, 2018).
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Peridotites of the Bohemian Massif

Orogenic peridotites and peridotite xenoliths provide a wealth of knowledge about
geochemical processes operating in the mantle. The composition of the mantle directly affects
the composition of mafic rocks. The occurrence of massive peridotites in the BM is associated
with its pre-Variscan and Variscan history, and the occurrence of mantle xenoliths is
associated with the Cenozoic period.

The crystalline basement contains various serpentinised relicts of pre-Variscan mantle
tectonically incorporated into high-temperature—high-pressure crustal rocks. (e.g. McCann,
2008; Downes, 2001). Further, mantle rocks are represented by abundant xenoliths hosted by
Cenozoic intra-plate primitive lavas (Ackerman et al., 2013b; Fediuk, 1994, Kochergina et al.,
2016; Matusiak-Malek et al., 2010, 2014; Medaris et al., 1990, 2005a, 2015a; Puziewicz 2011,

2015; Ulrych and Pivec, 1997; Ulrych et al., 2004, 2011).

Peridotites of the Saxothuringian Unit of the Bohemian Massif

The Marianské Lazné complex

The Maridnské Lazné Complex (MLC) is a southeast dipping eclogite-bearing allochthonous
body displaying some meta-ophiolite features. It represents a vestige of the Early Paleozoic
Saxothuringian ocean (Matte et al., 1990) with MORB oceanic crust formed in the Early
Cambrian that was subducted and eclogitized in the Mid-Devonian (Collet et al., 2018; Medaris
etal., 2011). It is located along a major tectonic boundary between Saxothuringian and Tepla—
Barrandian Units (Fig. 2). Its metamorphism was the result of a short-lived episode of
subduction and exhumation during Late Devonian (Frasnian-Famennian) time (MI€och and

Konopasek, 2010).

The MLC is composed of predominant metabasic rocks with subordinate amounts of

extensively serpentinized peridotites. The harzburgitic protoliths were largely recrystallized to



23

a medium-temperature assemblage of forsteritetenstatite tremolite+chlorite prior to

serpentinization (Medaris et al, 2011).

The Sm—Nd age of eclogite facies metamorphism in the MLC was determined at 367+4 and
377£7 Ma (Beard et al.,, 1995). Using the U-Pb method in zircons from migmatized
amphibolites the exhumation of the mafic rocks was dated at the age of ~360 Ma (Timmermann
et al., 2004). The synthesis of available age data for various MLC segments (Collett et al. 2018)
indicates a comlex polyphase evolution of the entire area, with ages ranging from ~500 to ~350

Ma.

The T-7 borehole

One of the best studied mantle samples from the Saxothuringian part of the Bohemian Massif
are samples from 450 meters T-7 borehole, located in northen Bohemia, ~20 km southest of the
Erzgebirge near the village Staré. The T-7 peridotite consists of interlayered garnet lherzolite,
harzburgite, and phlogopite-garnet pyroxenite (Medaris et al., 2015b). Peridotite provides
evidence for partial melting, cryptic metasomatism, and modal metasomatism (Medaris et al.,
2015b). Metasomatised samples contain phlogopite; they are depleted in HFSE, enriched in
LREE, and show highly radiogenic 3’Sr/*6Sr~0.7090. Altogether it signifies a subduction
component in the metasomatising melt. Medaris et al. (2015b) suggest that metasomatism
occurred at high temperatures and pressures (1030—-1150°C and 36.1-48.0 bar) in the garnet
stability field, and was probably associated with Variscan subduction and amalgamation of the

BM.
Peridotites of the Moldanubian Unit of the Bohemian Massif

The occurrence of spinel and garnet peridotites accompanied by garnet pyroxenites and
eclogites in the Moldanubian is predominantly limited to the Gfohl Unit representing the

uppermost tectonic unit in the Moldanubian Zone of the Bohemian Massif. It consists of HT—
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HP felsic rocks (mostly gneisses and granulites) with estimated P-T conditions of 900—-1000°C
and 15-18 kbar (Faryad, 2009; Kusbach et al., 2015; Medaris et al., 2005), but it also hosts
abundant bodies of peridotites, pyroxenites and eclogites having different sources, history and
P-T—t paths (Ackerman et al., 2009a; Kusbach et al., 2015; Medaris et al., 1990, 2005, 2006;
Racek et al., 2006, 2008). Based on major and trace elements composition, P-T conditions and

cooling rates, three types of peridotites were identified by Medaris et al. (2005):

- Type I (the Mohelno type peridotite: peridotites from Mohelno, Biskoupky, and Lom
pod Libinem): Mg—Cr spinel or garnet peridotites devoid of garnet pyroxenite or eclogite layers
have depleted major element and REE compositions, yield P-T estimates (1100—1400°C) that
lie in a low P/T (15-30 kbar) regime, and experienced very rapid cooling. They most likely
represent the suboceanic mantle lithosphere. Spinel peridotites from Mohelno and Biskoupky
could have been stable up to pressures of 21-22 kbar, and their equilibration temperature at

~1100 °C is less than that of garnet peridotites at ~ 1300 °C (Medaris et al., 2005).

- Type II (the Horni Bory type peridotite: peridotites from Bory and Sklenné): Mg—Cr to
Fe-Ti spinel-garnet peridotites associated with abundant garnet pyroxenite layers with
relatively high Fe contents. Their petrogenesis is closely related to subduction melt/rock
reactions (Ackerman et al., 2009a). Samples lie in the low to medium P/T regions (from 20 to

50 kbar, 800 to 1200 °C) (Medaris et al., 2005).

- Type III (the Nové Dvory type peridotite: peridotites Nové Dvory, Hamry): Mg—Cr
garnet peridotites with lenses/layers of eclogite and garnet pyroxenite show variable LREE
depletion to enrichment, yield P-T estimates (from 30 to 60 kbar 800 to 1300 °C) in a medium
P/T regime, and cooled more slowly than Type I. This type of peridotite is most likely derived

from subcontinental lithosphere.
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Uranium—Pb zircon dating of the Gfohl orthogneisses and granulites shows an age range of
500-390 Ma for magmatic protolith of the Gfohl unit (Friedl et al., 2004; Schulmann et al.,
2005). The age of high-grade metamorphism is Carboniferous, the age of peak metamorphic
conditions ranging from ~350 to 340 Ma (U-Pb) (Friedl et al., 2004; Kroner et al., 2007,
Schulmann et al., 2005), the cooling ages range from ~330 to 325 Ma (Ar—Ar) (Dallmeyer et

al., 1992; Fritz et al., 1996).

The Sm—Nd ages for garnet peridotites, pyroxenites and eclogites from the Gfohl Unit yield a
wide range from ~377 to 324 Ma with generally large errors (Beard et al., 1992; Becker, 1997;
Brueckner et al., 1991; Medaris et al., 1995). The Re depletion model ages (Trp) of the Gfohl
Unit peridotites range from 0.5 to 1.1 Ga (Ackerman et al., 2009a; Kochergina et al., 2015;
Medaris et al., 2012), corresponding to other peridotite localities from the Bohemian Massif
(Ackerman et al., 2009a; Medaris et al., 2015b), but are resolvedly younger than peridotites

from lower Austria (0.1-2.1 Ga) in the southern Bohemian Massif (Becker et al., 2001).

Post-Variscan evolution and Cenozoic volcanism

Variscan consolidation of the Bohemian Massif was followed by several episodes of
sedimentation and volcanism. Permo—Carboniferous post-orogenic extension led to the
development of a series of sedimentary basins comprising also coal beds and voluminous
volcanism of predominantly basaltic composition. Another period of intense sedimentation
appeared during the Cretaceous depositing extensive marine strata mainly in the Northern
Bohemia (Nadaskay et al., 2019). Tertiary sedimentation accompanied tectonic reactivation of
the Bohemian Massif, in response to the plate collision of Europe and Africa associated with
the Alpine Orogeny. This led to formation of present-day relief, opening of extensional basins
within the Ohfe Rift in the Northwest and also voluminous effusive basaltic to phonolitic

volcanism (Lustrino and Wilson, 2007).
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Post-Variscan volcanism within the Bohemian Massif is a part of the European Cenozoic Rift
System (ECRIS) (Lustrino and Wilson, 2007), reaching from Spain to Poland. H.Stille stressed
the fact that volcanism roughly follows the Variscan blocks (Fig.4; (Stille, 1964). First (and
rare) signs of volcanism are documented already from the Upper Cretaceous, long before the
onset of the extension regime. Cenozoic volcanic rocks in the Bohemian Massif form an arc-
shaped belt which extends over 500 km from its western to its easternmost parts. The Ohte Rift
(180 km long and <30 km wide) is the locus of the largest preserved amounts of volcanic rocks
in the belt. The Ohfe rift zone is a part of the ECRIS (Prodehl et al., 1995), which traverses the
lithosphere of central and western Europe from the Mediterranean to the North Sea, over a
distance of 1100 km. It is a continuous system that includes the Spanish Valencia Trough, the
French Massif Central, Black Forest and Vosges, Hegau, Urach, Rhenish Massif, Vogelsberg
and the Bohemian Massif (Lustrino and Wilson 2007; Ulrych and Pivec 1997). The Ohfte Rift
continues to the NE beyond the Elbe Fault Zone to the Sudetic Marginal Fault (SW Poland)
where the Ohfe Rift is marked by numerous isolated lava outcrops, which form the so-called
Lubansko—Frydlant volcanic "complex" (Puziewicz et al., 2015). The eastern segment contains
mainly isolated volcanic edifices within the Labe—Odra fault system, whereas two large
volcanic complexes are situated in the west: Ceské Stfedohoii Volcanic Complex and

Doupovské Hory Volcanic Complex.
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Figure 4. The of the Cenozoic basalt fields in Europe, adopted from Wilson and Downes (1991).

The thickness of the lithosphere beneath the Ohte Rift is approximately 80 km in the west and
120 km in the east (BabuSka and Plomerova, 2006, 2010, 2013). Quaternary volcanism is
evident in the western part of the Ohte Rift (the Vogtland and western Bohemia area) and
seismic studies show that the local uplift of the Mohorovicic discontinuity beneath this area
indicates a seismic discontinuity at a depth of ~50 to ~60 km (Geissler et al. 2007). The
Mohorovicic discontinuity beneath Lower Silesia and Upper Lusatia is located at depths of 30—

35 km (e.g; Grad et al., 2008; Majdanski et al., 2006; Puziewicz et al., 2015).

Based on ages, geochemical and mineralogical characteristics of volcanic rocks and paleo stress

conditions, Ulrych et al., (2011) have defined three distinct periods of volcanic activity:
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1. Pre-rift period (Late Cretaceous to Mid Eocene, 79-49 Ma), compressional stress field;
2. Syn-rift period (Mid Eocene to Mid Miocene, 42—16 Ma), tensional stress field,

3. Late-rift period (16—0.26 Ma)

3.1 Mid to Late Miocene episode (16—6 Ma), compressional stress field,
3.2 Late Miocene to Early Pleistocene episode (6—0.9 Ma), tensional stress field,
3.3 Early to Late Pleistocene episode (0.9-0.26 Ma), compressional stress field.

Regarding the volume and number of individual volcanic bodies, the second, syn-rift period, is
by far the most important. Geochemically, the Cenozoic volcanism has a typical intraplate
alkaline character with prevailing basanites, tephrites and foidites followed by differentiated

lavas up to phonolites and trachytes, intrusive equivalents of all these rocks and rare exotic

lavas such as melilitites or polzenites.
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Figure 5. Total alkali vs. silica diagram (TAS, Le Bas et al., 1986) from the Bohemian Massif,

data from Lustrino and Wilson, 2007

Many primitive lava flows contain abundant mantle xenoliths, Ulrych and Adamovi¢ (2004)
list further 106 individual volcanoes containing macroscopic ultramafic xenoliths. By far the
most prominent and best-studied locality is the Kozakov volcano (Ackerman et al., 2007;
Christensen et al., 2001; Medaris et al.2015a). All studied xenolith suites record chemical
depletion of mantle by partial melting and subsequent metasomatism by basaltic and/or alkaline
silicate melts (Ackerman et al., 2007, 2015a; Geissler et al., 2007; Matusiak-Matek et al., 2010,
2013, 2014; Puziewicz et al., 2011, 2015; Spacek et al., 2013). Garnet peridotite xenoliths have
never been found in basalts of the Bohemian Massif; however, Spagek et al. (2013) described
rare mantle xenoliths from Zinst basanite lava flow (Upper Palatinate, Bavaria, Germany)
containing zoned mineral clusters of fine-grained symplectites representing former garnet and
its reaction products during melt-rock reactions and transport of the xenoliths to surface.
Ackerman et al. (2013) re-examined these xenoliths and described the presence of the
carbonatite metasomatism overprint, which is the subject of much debate. Based on
petrographic characteristics, major and trace element compositions, as well as Sr—Nd isotopic
data on monzodiorite—essexite—sodalite syenite suites and the associated dike swarms of the
Roztoky Intrusive Complex (Ceské stfedohoti), Skala et al., (2014) suggested variable crustal
contributions and/or a heterogeneous mantle source, with indices of carbonatite-like influence
although no such rocks have been reported there. Later, Rapprich et al. (2017) published the
first unequivocal evidence of the presence of carbonatites in the Bohemian Massif. The
silicified carbonatite sample was found in the R2 drill hole (Roztoky nad Labem, Roztoky
Intrusive Complex) at the depth of 152.9-154.8 m. The stable C—O isotopic composition (§'*0
= 7.43 %o, 8'°C = —2.46 %o) of this sample is clearly distinct from surrounding sedimentary

rocks of the Bohemian Cretaceous Basin, which probably sourced carbonates from older
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subduction events. The 87Sr/*®Sr3p ~ 0.7062 and €Ndso = —10.8 points to an enriched mantle
reservoir without known counterparts among alkaline silicate rocks from the Ohte Rift. The
authors assume that this is a lithospheric mantle modified during the Variscan subduction. The
Sr—Nd isotopes may indicate a continuum of enriched radiogenic isotope systematics in

worldwide carbonatite occurrences.

Sr-Nd-Pb isotopic composition of mantle beneath the Bohemian Massif

Most studies of the isotopic composition of the upper mantle beneath the Bohemian Massif are
based on the study of the isotopic composition of extrusive volcanic rocks (Ackerman et al.,
2015b; Dostal et al., 2019 a, b, 2000; Haase and Renno, 2008; Krmickova et al., 2020; Ulrych
et al., 2011). Most of the data available in the literature come from the study of massive
peridotites, while a handful of data has been collected on peridotite xenoliths. There are several
reasons for this: (1) mantle xenoliths often are very small in size; (i1) peridotites usually contain
small amounts of Nd, Sr and Pb, which complicates the process of separation and measurement
of their isotope compositions; (iii) most isotope analyses are performed on clinopyroxene
separates, so it is critically important to clarify whether the clinopyroxene is primary or

secondary (metasomatism) in origin.

Much more research has been done on mantle-derived rocks (Dostal et al., 2019 a,b, 2000;
Haase and Renno, 2008; Holub et al., 2003, 2012; Krmickova et al., 2020; Ulrych et al., 2011).
Deriving the isotopic composition from the composition of basalt also has several pitfalls: (1)
mantle heterogeneity is smaller than the scale of the melting regions in the shallow mantle; (2)

basalts are isotopically less extreme and less variable than their mantle source (Stracke, 2021).

Very often research on mantle and mantle-derived rocks focuses only on Nd isotopes because

of the high probability that secondary low-temperature processes have strongly altered the
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original Sr isotopic composition. Massive peridotites from the Moldanubian unit are the most

thoroughly studied in the Bohemian Massif (Fig. 6, 7), and their study is connected with the

exploration of the subduction of the lithospheric plates and ultrapotassic plutonic rocks.

Massive peridotites and pyroxenites from this dataset show various Nd isotope compositions,

and eNds337 varies from —6 to +10 (Fig. 6).
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Figure 6. Modified from figure 12 c of Janousek et al., (2020). Binary plot of ¥’ Sr/**Srss; vs.

eNds3; showing the analyses from the Trebic Pluton (Janousek et al., 2020), Moldanubian

Grt/Spl peridotites, Grt pyroxenites and eclogites (whole-rocks and Cpx: Brueckner et al. 1991

Beard et al. 1992; Becker 1996a, b; Medaris Jr. Et al. 1995, 2009; Ackerman et al. 2009;

Kusbach et al. 2015), glimmerites (Becker et al. 1999), Moldanubian HP-HT granulites

(Valbracht et al. 1994; Vellmer 1992, Becker 1997, Janousek et al. 2004 and unpublished data;

Kusbach et al. 2015), Blatna Composite Pluton of the CBPC (including monzonitic rocks—
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Janousek et al. 2010 and unpublished data, all recalculated to 346 Ma), Rastenberg Pluton

(Gerdes et al. 2000) as well as Tabor and Jihlava syenitoids (Janousek et al. 2019).

Figure 7 shows the Sr—Nd isotopic composition of upper mantle beneath the Bohemian Massif.
Massif peridotites represent Variscan mantle, and rare peridotite xenolith data represent post-
Variscan Cenozoic mantle composition. Mosldanubian and Saxothuringian massive peridotites
show a broad scale Sr-Nd isotope composition (Fig 7), where eNd; vary from —10 to +11. In
contrast, samples of peridotite xenoliths have higher eNd; values (+2 to +9), similar to those in

Cenozoic volcanic rocks (+5 to +7) (Dostal et al, 2019a).
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Figure 7. Sr-Nd isotopic composition of peridotites from the BM. Red symbols denote samples
from Saxothuringian Unit, blue symbols denote samples from Moldanubian Unit. Peridotite
xenoliths data (triangles) are from Ackerman et al., 2007, 2013, Blusztajn and Shimizu, 1994,
Matusiak-Maltek et al., 2014. Massif peridotites data (squares) are from Ackerman et al., 2009a,

2020, Beard et al., 1992, Kusbach et al., 2015, Medaris et al., 1995, 2009, 2013, 2015a, Svojtka
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et al., 2016, Erban Kochergina unpublished data. Epsilon Nd and initial isotopic ratios are

calculazted to the sample’s closer ages.

Re-Os isotopic composition of peridotites from the Bohemian Massif

The analysis of HSE concentrations and Os isotope compositions is technically challenging,

but the number of papers on Re—Os in mantle and mantle-derived rock samples of the Bohemian

Massif has increased in the last decade. In Table 1 we list publications related to Re—Os isotopic

composition of mantle rocks from the Bohemian Massif Massif.

Table 1. Reference list of Re—Os data from the Bohemian Massif.

Bohemian Massif and implications for the reliability of Os

model ages, Chemical Geology, 430, 90-107.

Publication Samples Data
Peridotite xenoliths

Ackerman, L., Walker, R. J., Puchtel, I. S., Pitcher, L., | Spinel peridotites | HSE, bulk-
Jelinek, E., Strnad, L. (2009) Effects of melt percolation on rock

highly siderophile elements and Os isotopes in 1870s/'%80s
subcontinental lithospheric mantle: a study of the upper

mantle profile beneath Central Europe, Geochimica et

Cosmochimica Acta, 73, 2400-2414.

Kochergina, Y.V., Ackerman, L., Erban, V., Matusiak- | spinel peridotites | Re-, Os-
Malek, M., Puziewicz, J., Halodova, P., gpaéek, P., Trubac, abundances,
J., Magna T. (2016) Rhenium-osmium isotopes in bulk-rock
pervasively metasomatized mantle xenoliths from the 18705/1%80s

Massive peridotites and pyroxenites
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Ackerman, L., Kotkova, J., Copjakové, R., Slama, J.,
Trubag, J., Dillingerova, V. (2020) Petrogenesis and Lu-Hf
dating of (ultra)ymafic rocks from the Kutnd Hora
Crystalline Complex: implications for the Devonian
evolution of the Bohemian Massif, Journal of Petrology,

61, 8, egaa075

eclogites,
pyroxenites,

peridotites

Re-, Os-
abundances,
bulk-rock

187OS/I8SOS

Ackerman, L., Haluzova, E., Bizimis, M., Slama, J.,
Svojtka, M., Hirajima, T., Erban, V. (2016) Re-Os and Lu-
Hf isotopic constraints on the formation and age of mantle
pyroxenites from the Bohemian Massif, Lithos, 256-257,

197-210.

spinel and garnet

pyroxenites

bulk-rock

187OS/I8SOS

Medaris, L. G., Ackerman, L., Jelinek, E., Magna, T. (2015)
Depletion and Cryptic Metasomatism of Central European
Lithospheric Mantle: Evidence from Elemental and Li
Isotope Compositions of Spinel Peridotite Xenoliths,

Kozakov Volcano, Czech Republic, International Journal

of Earth Sciences, 104, 1925-1956.

garnet peridotites

Re-, Os-
abundances,
bulk-rock

18708/1880S

Ackerman, L., Pitcher, L., Strnad, L., Puchtel, I. S., Jelinek,
E., Walker, R. J. (2013) Highly siderophile element (HSE)
geochemistry of peridotites and pyroxenites from Horni
Bory: implications for HSE behaviour in subduction-related
upper mantle, Geochimica et Cosmochimica Acta, 100,

158-175.

Peridotites,

pyroxenites

HSE, bulk-
rock

187OS /1 SSOS
sulphide

petrography
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Becker, H., Carlson, R.W., Shirey, S.B. (2004). Slab- | peridotites HSE, bulk-
derived osmium and isotopic disequilibrium in garnet rock
pyroxenites from a Paleozoic convergent plate margin 1870s/1380s
(lower Austria). Chemical Geology 208, 141-156
Becker, H., Shirey, S.B., Carlson, R.W. (2001). Effects of | peridotites Re-, Os-
melt percolation on the Re—Os systematics of peridotites abundances
from a Paleozoic convergent plate margin. Earth and and  bulk-
Planetary Science Letters 188, 107—121. rock
1870)5/188O)g
Lamproites
Krmicek, L., Ackerman, L., Hruby, J., Kynicky, J. (2020) | lamproites HSE, bulk-
The highly siderophile elements and Re-Os isotope rock

geochemistry of Variscan lamproites from the Bohemian

Massif:  implications  for  regionally  dependent

metasomatism of orogenic mantle, Chemical Geology, 532,

187OS/1880S
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Figure 8. Re-Os composition of mantle samples from the Bohemian Massif. Red symbols denote
samples from Saxothuringian Unit, blue symbols denote samples from Moldanubian Unit.
Triangles denote peridotite xenolites, squares- massive peridotites/pyroxenites. Moldanubian
massif peridotites/pyroxenites from Ackerman et al., (2009a), Erban Kocergina unpublished
data, Medaris et al. (2009), Saxothurinfian massif peridotites from Medaris et al. 2015,
Saxothuringian peridotite xenoliths from Ackerman et al., (2009b), Kochergina et al., (2016),
Erban Kochergina et al. (under review). PUM - primitive upper mantle (Re, Os — Becker et
al., 2006; '8’Re/'%30s, 17 0s/!%80s — Meisel et al., 2001; CHUR - chondritic uniform reservoir

(Fisher-Godde et al. 2010).

Most peridotite xenoliths have low Re concentration, which can be interpreted as a result of
high degrees of partial melting of the SCLM beneath the BM. Radiogenic '¥’0s/'*®Os
composition of the peridotite xenoliths as well as the high '8’Re/!®8Os ratio be caused by host-
basalt contamination (Kochergina et al., 2016) or contamination by eclogites/subducted

sediments (Erban Kochergina et al., under review).
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Oxidation state of the mantle benath the Bohemian Massif

The SCLM can be chemically modified by (i) partial melting and (i1) metasomatic interactions
caused by infiltrating fluids or melts. The presence of newly formed minerals such as apatite,
phlogopite, amphibole or secondary clinopyroxene is referred to as “modal” metasomatism.
Geochemical overprinting of pre-existing mineral phases, expressed by changes in trace
element and/or isotope composition rather than by formation of new phase is referred as

“cryptic” metasomatism.

One of the parameters that metasomatism can change is the oxidation state of lithospheric
mantle. The peridotite oxygen fugacity (fO2) can be calculated from the olivine and spinel
compositions, using the formulation of (Ballhaus et al., 1991). The oxidation state of the mantle
is important for the elements sensitive to the system's redox condition (e.g., Fe, C, S, U, Re, Ir).
The global mean for non-cratonic peridotites equals AFMQ —0.68; (Foley, 2011), where AFMQ
= log fOx(sample) — -log fO» (fayalite-magnetite-quartz)]. The average for the metasomatically
overprinted peridotites worldwide is AFMQ +0.38, 0.86 log units higher than for the unaffected

peridotites (AFMQ —0.48) (Foley, 2011).
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Figure 9. Adopted from Foley (2011). Schematic illustration showing the formation, alteration
and subduction of oceanic crust and lithosphere relevant to the fixation of redox conditions and
later redox melting. (1) MORB oxidation state is approximately FMQ -1. Hydrothermal
alteration results in serpentine and magnetite formation. (2) The lower lithosphere is slightly
more reduced than basalts at the surface. It is impregnated by more water-rich, low-degree
melts that form pyroxenite veins. (3) Part of the water is released during subduction.
Carbonates introduced at the surface may remain in the solid residue (yellow blocks). (4)
Subducted sedimentary material provides Na and K that may help to depress the solidus
temperature at a later stage. (5) The subducted lithosphere at depths of 150-350 km contains
rocks with a mixture of redox states, but is generally more oxidized than the surrounding
mantle. Redox melting is probably rare in the subduction zone environment because of the low
thermal gradients. (6) Recycled blocks in the mantle at 250—400 km, derived either by peeling

off from the lower oceanic lithosphere or from deep recycling of ocean crust, are mostly at fO;
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2-3 log units above the ambient mantle peridotite in the region of hydrous redox melting.
Generally not oxidized enough for widespread carbonate redox melting. Water release by
oxidation of methane in the lower blocks leads to melting by hydrous redox melting at higher
levels (7). Many ‘plumes’ may be upward movement of small-degree melts and fluids that cause
major melting beneath the lithosphere under ocean islands. They are also a contributor to
basaltic melts at mid-ocean ridges. Redox melting may be concentrated in pyroxenitic material

in the recycled blocks.

The positive AfO> is more typical for subduction-related peridotites, as was described by (Cao
et al., 2011) in Chinese North Qilian eclogites with AFMQ from 0 to 2.5. Seawater-altered
samples have negative AfO, with AFMQ —2 to ~0, (Deschamps et al., 2013). Samples from the
Kozakov volcano from the Bohemian Massif show lower AfO2 with AFMQ from —0.04 to 0.65
(Ackerman et al., 2007). The elevated AFMQ of peridotites from NE Bavaria relative to the
global average for non-cratonic peridotites (AFMQ —0.68; (Foley, 2011) could be a result of
metasomatism due to subduction and/or eclogite contamination. The AfO> of samples from NE
Bavaria is comparable to the oxidation state of spinel peridotites (Group A) across Massif
Central, France (Uenver-Thiele et al., 2017, 2014). The negative AfO> of samples from the

Bohemian Massif from this suite suggests possible seawater alteration (Fig. 10).
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Figure 10. Histograms illustrating the ranges in Alog fO: for (a) a global compilation of non-
cratonic lithospheric mantle—hashed line (Foley, 2011); (b) Massif Central peridotite xenoliths
— grey colour; (c) Bohemian massif peridotite xenoliths from Kozdakov (Ackerman et al., 2007)

and NE Bavaria (unpublished data).

Non-traditional isotopes

The advancements in instrumental methods allow to extend research to study the behaviour of
non-traditional isotopes (e.g., Li, Mg, Cr, Fe, Zn, Ca and many others) also in the lithospheric

mantle. Therefore, there is an ever-increasing number of publications trying to constrain the
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processes taking place in the mantle using non-traditional isotopes and/or combining the results
of traditional and non-traditional isotope systems. Surveys of mantle composition indirectly by
using derivative melts of mantle (e.g., lamprophyres, lamproites) are becoming increasingly

common.

For example, Janousek et al., (2022) described a decoupling of mantle-compatible Mg and
mantle incompatible Sr—Nd isotope systems in Variscan subduction-related plutonic rocks from
the Bohemian Massif. Majority of Mg-rich studied samples show similar Mg isotopic
composition as local orogenic peridotites (8**Mg from —0.53 %o to —0.33%o), close to the global
mantle average (—0.25%o). (JanouSek et al 2022). Authors concluded that §*°Mg of the
progressively metasomatized harzburgitic mantle is mostly buffered by the mantle end-

member. On the other hand, Sr—Nd-Pb are swamped by the crustally derived contribution.

Novik et al., (2022) focused on stable Cr isotope systematics in three mantle-derived domains
of Central European Variscides: the serpentinized peridotite body at Biskoupky, two
serpentinized peridotite bodies at the Kutnd Hora Complex, and serpentinite from the
Marianské Lazné Complex. The authors concluded that mantle-derived rocks show
homogeneous §*°Cr ~ —0.12 %o, identical to the currently accepted mantle value. Weathering
and serpentinization appear to affect the Cr isotopic composition by shifting §*°Cr toward

heavier values, up to +0.14%o.

Lithium isotopes have proven to be a good tool for identifying subduction, fluid-assisted
interactions and mantle contamination by sedimentary rocks (Ackerman et al., 2013). Several
studies have already been published on the investigation of extremely variable potassic melts
(lamprophyric to lamproitic), the result of partial melting of the orogenic mantle beneath the
Bohemian Massif (Abdelfadil et al., 2014; Krmicek et al., 2020a, 2020b, 2016). The Li isotopic
and elemental composition of lamprophyres largely overlap with the 8’Li of sedimentary and

metamorphic rocks representing Gondwana Upper Crust. Krmicek et al., (2020b) suggest that
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this is the type of crustal material that had been subducted to metasomatize the upper mantle
beneath the Bohemian Massif. Positive (up to +5.1%o) 8’Li of lamproites from Saxo-Thuringian
and Moldanubian Zones indicate that their source may have been modified by subducted

oceanic lithosphere.
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Chapter 3: Sample preparation, chromatographic separation and
measurements of Os isotopic ratios and HSE concentrations in mantle
peridotites

The whole-rock HSE concentrations and Os isotopes could be determined by isotope dilution
(ID) of approximately 1-2 g of sample powder. Under oxidative conditions, Os forms OsO4
gas, which can permeate plastics and Teflon. The Carius tube digestion method is the most
suitable for Os analyses. Samples are digested in sealed Carius tubes using 4 ml concentrated
HCI and 5 ml concentrated HNO3 at ~260 °C for 48 — 72 h (Shirey and Walker, 1995). The
original design of the thick-walled glass tubes for sample digestion was described by Carius in
1865. Shirey and Walker (1995) suggest using borosilicate glass Carius tubes with a 20 cm long
body with 1.3 cm inner diameter (i.d.) and 1.9 cm outer diameter (0.d.). These tubes have a 5
cm long sample introduction neck with 0.6 cm i.d. and 0.9 cm o.d. tubing (Fig. 11-A). During
the sample loading, the lower half of the tube is immersed in ice (Fig. 11-B), where all reagents
including spikes (enriched isotopes) are chilled upon addition to the tube. Chilling of the tube
(1) helps to reduce the vapour pleasure of the reagents and makes the sealing more reliable, and
(i1) slows down the Re and Os loss from the tube due to the oxidation during loading. The
Carius tubes are sealed using an oxygen-propane torch and placed in a steel jacket with a
threaded cap (Fig. 11-C, D). When the samples are at a room temperature, Carius tubes in the
jackets could be slowly heated in the oven. After the decomposition tubes are removed from
the jackets and left in the ice, to prevent gas leakage during opening and eliminate Os loss.
After opening, the ampoules are immediately transferred to a clean laboratory, followed by
separation of Os and other HSE. The sample digestion is crucial for the HSE analyses, described

in detail by Shirey and Walker (1995).

Osmium is extracted from the aqua regia solution into CCly (Fig. 11-E) and then back-extracted

into HBr (Fig. 11-F) (Cohen and Waters, 1996). The separation process is as follows. After
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complete opening of the Carius tubes, the aqua regia with the decomposed material is poured
into 15 ml centrifuge tubes and subsequent centrifugation. Centrifugation helps to separate the
aqua regia with elements of interest from the undecomposed silicate matrix. After that aqua
regia is poured into 50 ml centrifuge tubes with 2 ml of CCls. After shaking and centrifugation
we could observe 2 phases in 50 ml centrifuge tubes: the CCls containing Os at the bottom, and
aqua regia containing Re, Pd, Pt, Ir, and Rh above it. Subsequently, CCly is extracted very
carefully to pre-prepared 15 ml Teflon beakers containing 4 ml concentrated ultra-pure HBr (44
—49%, Romil). To remove all Os from the matrix we repeat the process of mixing the sample
with 2 ml of CCls, shaking and centrifugation three times. Then 15 ml Teflon beakers with HBr
and CCly are placed on the hot plate for 12 hours where reaction occurs at a temperature of 70
° C to reduce Os to HBr. The final Os fraction is purified by micro-distillation following Birck
et al., (1997) (Fig. 11-G). One drop of ultra-pure HBr (0.02 ml of 8.8 N) is pipetted into the tip
of a conical vial. The dried (after HBr) residue of nearly-pure Os is dissolved in one drop of 8
% m/v CrO3 in H2SO4 (12N). This mixture is placed on the cap of the conical vial. The vial is
then placed over the cap and sealed tightly in the upside-down position, wrapped completely in
aluminium foil except for a hole at the conical end of the vial, and placed on a hot plate for at
least three hours at 80° C. In this arrangement, the Os oxidizes at the expense of Cr, volatilizes
and subsequently re-dissolves in the cooler HBr in the conical vial tip. The whole process leads

to a complete separation of Os from Re.

Iridium, Ru, Pt, Pd and Re are separated by anion exchange chromatography using 1.6 ml of
BioRad AG1-X8 resin (mesh 100-200), (Fig. 11-H). Separation is performed using PP 12 ml
columns (Biorad), i.e. the same as used for Sr and REE fraction precleaning. After purification
(combination of 10 M HCl, 14 M HNO3 and MQ water) and equilibration of the columns with

1 M HCI, the Re fraction is captured using 12 ml of 6M HNO:s.






Figure 11. Re — Os separation method. A-Carius tubes used for digestion, B- chilled samples

with spike and aqua regia in ice before sealing, C- the sample should be shaken vigorously

after sealing to mix the acid, sample and spike for better digestion, D- Carius tubes wrapped
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in Al foil and steel jacket, used for sample protection, E- 50 ml centrifuge tube with 2 ml of
CClyon the bottom and aqua regia on the top after centrifugation, F'- HBr with Os on the bottom
and HCly on the top of the 50 ml centrifuge tube after centrifugation, G- micro distillation
process in Savillex Teflon vial with conical interior, Os fixed in the drop of HBr at the tip of a

cone. Photos were provided by Jakub Trubac.
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Conclusions

Modern geochemical techniques offer significant potential for investigating the structure and
processes occurring within the Earth's mantle. It is becoming increasingly necessary to analyse
samples of a smaller size or those containing low concentrations of the elements under study.
In the publication by Erban Kochergina et al. (2022), I present improved methods for sample
digestion for isotope analysis. The particularity of these digestion methods addresses issues that
can arise with varying sample matrices, ensuring complete dissolution of the sample before
column chromatography. Pre-separation using cation-exchange columns is effective in
addressing the challenge of dealing with samples with considerable volume, such as peridotite
and serpentinite samples with relatively low Nd concentrations. The methods presented here

have been validated using a large variety of isotopic standards.

Peridotite xenoliths brought to the surface by basaltic lavas attest to a variety of mantle
processes, including partial melting, melt percolation or refertilization. The whole rock Re—Os
concentrations and Os isotopic compositions were determined for 49 xenoliths collected from
14 localities across the northern BM (Erban Kochergina, under review; Kochergina et al.,
2016). Xenoliths from the BM are characterized by a relatively small size (up to 10 cm). The
majority of the studied xenoliths, with the exception of those from the western edge of the BM,
display an absence of primary sulphides. In the publication Erban Kochergina et al., (under
review), | focused on the study of xenoliths that were characterised by high sulfide content. It
was determined that some samples contained not only secondary sulfides but also primary
sulfides. In contrast with our initial expectations, the samples in question exhibit a markedly
low sulfur content. Peridotites from Zinst and Teichelberg show lower S abundances (17-65
ppm) than those from Hirschentanz (76—149 ppm), in all cases well below the S abundance of
the Earth's primitive upper mantle (PUM) estimated at 250+50 ppm (Lorand, 1990) and only

marginally overlapping the S content of the depleted mantle at 119 ppm (Salters and Stracke,
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2004). The elevated sulfure concentration is found to be correlated with the presence of

secondary metasomatic sulfides.

Most samples were affected by variable extent of metasomatic overprint, which is frequently
accompanied by low Os concentrations. The majority of samples demonstrated Os
concentrations below 1 ppb. Rhenium concentrations in the whole suite are below the primitive
mantle value. A subset of samples shows evidence for Re addition from host basaltic rocks,

consistent with the presence of abundant melt pockets with secondary sulphides.

The '870s/'880s ratios range from 0.1135 to 0.1474 and cannot be directly related to individual
mantle domains, implying the inability of more recent tectonic events to reset the original Os
isotopic systematics. Several samples showed high radiogenic '*70s/"*®Os ratios. Unlike the
samples from Krzeniow (Poland) with elevated '37Os/!%30s and high '®’Re/'**Os (up to 5.69),
where we assume contamination by basalt, the samples from the western edge of the BM
represent mantle contaminated by eclogite or sediment during subduction. For these samples,
we have ruled out possible contamination by the surrounding basalt because its isotopic

composition (0.1330-0.1370) is lower than that of the studied peridotites (0.1314—-0.1474).

The calculated mantle extraction ages (Tma) range from ~0.1 to 2.1 Ga, whereas future ages

obtained for nine samples indicate metasomatic overprints.

The assumption of Re/Os = 0 for calculating Trp may under-estimate the true Re/Os of the
sample prior to a metasomatic event. We therefore performed a second-step calculation of Trpin
by considering the most depleted sample of the suite (13BR3) to be representative of the
composition of the regional depleted mantle. It follows that the Trpn ages of samples from this
study (<0.1-2.0 Ga) may represent a more realistic estimate of the age of mantle melting than
Trp (<0.1-1.6 Ga). The main maximum in the Trpn histogram (~0.45—-0.6 Ga) corresponds to

Cadomian basement of the Saxothuringian Unit. There is no significant evidence that a major
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mantle depletion episode took place during Variscan orogeny or later phases of the Bohemian

Massif evolution.
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