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Abstract: Reliable prediction of the structure and stability of molecular crystals
and their polymorphs is essential for understanding their properties and poten-
tial applications. However, obtaining reliable binding energies of molecular solids
requires using high level electronic structure methods and strict convergence with
numerical parameters. This becomes particularly challenging for molecular solids
with many atoms in the unit cell, where calculations can become prohibitively
expensive for high levels of theory, such as coupled clusters with singles, doubles,
and perturbative triples (CCSD(T)). In this thesis, we focus on the development
and assessment of approximate theoretical methods for calculation of binding en-
ergies and use four high-dispersion solids as test systems: ethane, ethylene, and
orthorhombic and cubic forms of acetylene. To begin, we compare the efficiency
of periodic boundary conditions (PBC) and many body expansion (MBE) ap-
proaches in calculating the binding energy of the considered systems. We discuss
in detail how difficult it is to reach converged binding energy values with respect
to the numerical parameters and then compare the results obtained from both
approaches. In the remaining part of the thesis, we use the MBE results to exam-
ine the accuracy of random phase approximation (RPA) and Møller-Plesset (MP)
perturbation theory in describing individual contributions and total binding en-
ergy of the considered systems by comparing them with reference CCSD(T) data.
Additionally, we show how the accuracy of RPA can be affected by the orbital
inputs used for the calculations. We find that RPA with additional corrections is
promising, and its accuracy depends on the individual contributions and orbitals
considered. Finally, we examine the accuracy of the proposed correction scheme,
which can be used to obtain reference binding energies of the considered systems
at a lower cost than the CCSD(T) method.
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Abstrakt: Spolehlivá předpověd’ struktury a stability molekulárńıch krystal̊u
a jejich polymorf̊u je nezbytná pro pochopeńı jejich vlastnost́ı a potenciálńıch
aplikaćı. Źıskáńı spolehlivé vazebné energie molekulárńıch pevných látek však
vyžaduje použit́ı přesných metod elektronové struktury a striktńı konvergenci s
numerickými parametry. To je obzvlášt’ náročné u molekulárńıch pevných látek s
mnoha atomy v jednotkové buňce, pro které mohou být výpočty nesmı́rně časově
náročné pokud je použita vysoce přesná teoretická metoda, jako např. spřažené
klastry s jedno-, dvoj- a perturbativńımi tř́ıčásticovými excitacemi (CCSD(T)).
V této práci se zaměřujeme na vývoj a hodnoceńı přibližných metod schopných
spolehlivě popsat vazebnou energii přičemž pro testy jsme použili čtyři moleku-
lárńı krystaly vázané hlavně disperzńımi silami: ethan, ethylen a ortorombickou
a kubickou formu acetylenu. Nejprve porovnáváme efektivitu výpočt̊u vazebńı en-
ergie při použit́ı periodických okrajových podmı́nek (PBC) a pro mnohočásticovou
expanzi (MBE). Podrobně diskutujeme, jak obt́ıžné je dosáhnout konvergovaných
hodnot vazebńı energie s ohledem na numerické parametry, a poté porovnávme
výsledky źıskané z obou př́ıstup̊u. Ve zbytku práce použ́ıváme výsledky źıskané
pomoćı MBE ke studiu přesnosti aproximace náhodné fáze (RPA) a Møller-
Plessetovy (MP) poruchové teorie. Výsledky těchto metod pro individuálńı př́ı-
spěvky a celkové vazebńı energie uvažovaných systémů porovnáváme s referen-
čńımi daty źıskanými pomoćı CCSD(T). Dále ukazujeme, jak může být přesnost
RPA ovlivněna volbou orbital̊u použitých pro výpočty. Zjǐst’ujeme, že RPA
s daľśımi korekcemi je slibná a analyzujeme závislost přesnosti individuálńıch
př́ıspěvk̊u na zvažovaných orbitalech. Nakonec zkoumáme přesnost navrhovaného
korekčńıho schématu, které lze použ́ıt k źıskáńı referenčńıch vazebńıch energíı
uvažovaných systémů s nižš́ımi výpočetńımi náklady než metoda CCSD(T)

Kĺıčová slova: Molekulárńı krystaly, vazebná energie, periodické okrajové pod-
mı́nky, mnohočásticová expanze, přibĺıžeńı náhodné fáze
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Introduction
Molecular solids have received considerable research interest since they con-

stitute an important class of materials with various applications in scientific and
industrial fields, especially in pharmaceuticals and material science [1, 2, 3, 4, 5].
For instance, many commonly used drugs today are typically found in solid form,
such as Aspirin, Paracetamol, and Pyrazinamide. Molecular solids often exist in
various polymorphs, which have same chemical composition but different molec-
ular packing depending on crystallization conditions. In fact, at least 50% of
organic molecules are estimated to exhibit polymorphism [6]. Moreover, the
inclusion of cocrystals, solvates, hydrates, and salts can also introduce a wide
variety of crystal structures for a single compound [7, 8, 9]. These structural
variations significantly influence the crystal’s characteristics, such as solubility,
stability, bioavailability, and other key properties, all of which are important in
the development of their practical applications [6, 10, 11, 12].

Predicting reliably structures and stabilities of molecular crystals and their
polymorphs is essential for understanding their properties and potential applica-
tions [6, 13, 14]. However, there has been a shortage of valuable reference data
on binding energies of molecular solids. This is because the accurate calculation
of this quantity is challenging, primarily due to the need to reliably model elec-
tron correlations in periodic systems [15, 16]. Furthermore, the energy differences
between polymorphs of a crystal are typically small, often on the order of one
percent of the lattice energy, due to the subtle balance among different kinds
of noncovalent interactions in crystal. As an example, it was observed that the
difference in lattice energy between different polymorphs is less than 2 kJ/mol for
ice while the binding energy is around 60 kJ/mol [16]. This makes predicting the
binding energies and, in particular, the energy differences between polymorphs
even more challenging [14, 17, 18, 19, 20].

Currently, binding energies of molecular solids can be obtained by two main
approaches: using periodic boundary conditions (PBC) [16, 21, 22, 23] and many-
body expansion (MBE) [17, 24, 25, 26, 27, 28]. The first approach appears more
straightforward, but benchmark methods, such as couple cluster (CC), can not
be directly used in this scheme due to their high computational requirements,
except for very small systems [29]. However, coupled cluster calculations are
feasible using the second approach, which decomposes the binding energy into
interactions of dimers, trimers, tetramers, etc. [30, 31]. In both approaches,
the binding energies depend on several parameters that need to be considered
to reach high precision [21, 23]. Understanding the convergence of the binding
energies with respect to these numerical parameters is important, and is one of
the goals of this thesis.

In reality, one needs to use highly accurate methods, such as coupled-cluster
singles, doubles, and perturbative triples [CCSD(T)], and ensure strict conver-
gence with numerical parameters to obtain reliable binding energies of molecular
solids. However, this seems impractical for all molecular solids, except for very
small systems [30]. Therefore, the development of affordable methods which can
describe reliably the binding energies of molecular solids is a pressing need and
the main focus of this thesis. There is a range of approximate methods with differ-
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ent costs and levels of accuracy currently used. Density functional theory (DFT)
approximate methods are cheap but not accurate in describing long-range correla-
tion interactions [32]. Dispersion-corrected DFT methods have been developed to
address this problem [33, 34, 35, 36], but their accuracy is not always satisfactory
[21, 37, 38]. The next promising methods for calculating the binding energies of
molecular solids are those based on perturbation theory, such as random phase
approximation (RPA) or Møller–Plesset (MP) theory [21, 23, 39, 40, 41, 42].
Moreover, recent studies indicate that the choice of orbital inputs significantly
affects the accuracy of RPA calculations [43, 44, 45]. Understanding how the
accuracy of RPA methods changes with different orbitals for describing the bind-
ing energies of molecular solids is important and represents another goal of this
thesis.

To understand the various aspects of applying theoretical methods to molec-
ular solids, we selected four high-dispersion molecular solids with different elec-
trostatic moments: ethane, ethylene, and two forms of acetylene. We develop a
framework based on CCSD(T) to obtain benchmark data for n-body contribu-
tions of MBE to the binding energy of the selected systems. Two main groups of
methods were examined: RPA and MP theory. We start to analyze the conver-
gence of each energy component in different methods obtained from both MBE
and PBC approaches with numerical parameters (see Chapter 3). This allows us
to understand the challenges in achieving converged binding energy values and
identify strategies to reduce computational time. Following this, we compare
the results between MBE and PBC approaches to enhance our understanding
of their performance and precision (as detailed in Chapter 4). We then eval-
uate the effect of different orbitals on the results of each energy component in
the RPA calculations obtained from MBE approach (refer to Chapter 5). This
helps us to understand and identify the best orbitals for the RPA methods in
describing n-body contributions to the binding energy of the considered systems.
Finally, we examine the accuracy of approximate methods, including second-order
Møller–Plesset perturbation theory (MP2), third-order Møller–Plesset perturba-
tion theory (MP3), and RPA both without and with additional corrections, in
describing the n-body contributions and total binding energy of molecular solids
by comparing with the reference CCSD(T) data (as discussed in Chapter 6).
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1. Theoretical and computational
methods

In this chapter, we will give an introduction to theory and methods used to
study matter at molecular level. The basic idea of most quantum mechanic meth-
ods is to solve Schrödinger equation for a system consisting of many electrons and
nuclei. This equation is simple and exact in principle, but solving it exactly for
systems with more than one electron is currently impossible and therefore we first
discuss approaches used to solve it approximately. We then provide an overview
of density functional theory which may offer computational efficiency compared
to post-Hatree-Fock methods and yield very satisfactory results in many cases.
Following this, we describe random phase approximation method that can offer
some advantages to overcome several limitations of standard DFT functionals.
We next discuss various types of basis sets used in studies of this thesis. Finally,
we turn our attention to discussing approaches and theoretical methods currently
used to calculate binding energy of molecular solids.

1.1 Quantum mechanics

1.1.1 Schrödinger equation
In atomic units, Hamiltonian operator for a molecular system consisting of N

electrons and M nuclei can be written as:

Ĥ = −1
2

N∑︂
i=1

∇2
i − 1

2

M∑︂
A=1

1
MA

∇2
A −

N∑︂
i=1

M∑︂
A=1

ZA

riA

+
N∑︂

i=1

N∑︂
j>i

1
rij

+
M∑︂

A=1

M∑︂
B>A

ZAZB

RAB

, (1.1)

where MA is ratio of the mass of nucleus A to the mass of an electron, ZA is atomic
number of nucleus A, rij is distance between i-th and j-th electrons, and riA is
distance between i-th electron and A-th nucleus. The first two terms describe
respectively kinetic energy of electrons and nuclei, the third term represents elec-
trostatic interaction of electrons with nuclei, the fourth and fifth terms describe
interactions between electrons, and between nuclei, respectively. Relativistic ef-
fects are not included in the Hamiltonian presented in equation 1.1 because these
effects are almost entirely negligible for systems and properties studied in this
thesis. The exception is spin, for which we use the standard approach of hav-
ing spin up and down electrons. We note that spin-orbit interaction can lead to
relativistic effects, but its magnitude is smaller than any terms in the spin-less
Hamiltonian. However, these effects become important in study of heavy ele-
ments, and one has to solve Dirac’s equation instead of Schrödinger equation to
include them.

In quantum mechanics, the state of a system is determined by a wave function
that depends on spatial coordinates of all particles and time. In this thesis, we
are more interested in stationary states, i.e., those whose properties do not vary
with time. Then the wave function that contains all information of a system is
solution of a time-independent Schrödinger equation

5



ĤΨ(r, R) = EΨ(r, R), (1.2)
where r and R are the coordinates of all the electrons and nuclei, respectively.
This is an eigenvalue equation with E representing the energy of the system.

1.1.2 Born-Oppenheimer approximation
The wavefunction of a system is a complicated object being a function in a

N + M dimensional space. This makes solving the time-independent Schrödinger
equation for a system of interacting particles challenging and usually impossible.
However, in many cases, electrons move faster than nuclei by several orders. This
means that electrons can instantaneously respond to any changes in nuclear con-
figuration. Therefore, one can reduce the complexity by assuming independence
of the nuclear and electron wavefunctions. This is known as Born-Oppenheimer
(BO) approximation. Based on this approximation, we are left with electronic
Hamiltonian describing the motion of N electrons in the field of M point charges
of nuclei:

Ĥel = −1
2

N∑︂
i=1

∇2
i −

N∑︂
i=1

M∑︂
A=1

ZA

riA

+
N∑︂

i=1

N∑︂
j>i

1
rij

. (1.3)

The solution of Schrödinger equation involving the electronic Hamiltonian
ĤelΨ(r, R) = Eel(R)Ψ(r, R) is the electronic wave function that depends ex-
plicitly on the coordinates of electrons r, but depends parametrically on the
coordinates of nuclei R. Repeatedly solving the electronic Schrödinger equation
at different nuclear coordinates allows us to generate a potential energy surface
(PES). This surface helps us to understand various molecular properties, such
as stability, bond formation, reaction pathways, and molecular vibrations. The
Born-Oppenheimer approximation is generally reliable, yet its accuracy can di-
minish when dealing with the systems where two electronic states have similar
energy levels [46].

1.1.3 Many electron problem and Slater determinant
Molecules and solids involve many interacting particles, and we have to seek

the solutions to the time-independent Schrödinger equation for N -electron wave-
function with respect to a specified position of the nuclei. However, the number of
particles, combined with correlations between the particles, makes the electronic
Schrödinger’s equation for many-electron systems impossible to solve exactly.
To find approximate solutions to the Schrödinger equation, we introduce single-
electron wave functions, called orbital functions, or just simply orbitals. They
take only a single particle’s position as input and describe the particle’s state.
Let us now define a spin orbital as a wave function of a single electron describ-
ing both its spatial distribution and its spin (χ(x) with x = (r, α)). In Hartree
approach, each electron occupies its own orbital and move independently in the
field created by nuclei and other electrons. Then the total wavefunction of the
system with N electrons is taken as the product of the single-particle orbitals:

χ(x1, . . . , xN) = χ1(x1)χ2(x2) . . . χN(xN). (1.4)
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The Hartree product seems to be a natural way to express the N -electron wave
function. However, it has two significant limitations, that can not be ignored.
The first one is that this wavefunction is uncorrelated. This deficiency stems
from the definition of the Hartree product, wherein the probability of finding
electron 1 in dr1 around r1 remains unaffected by the positions of other electrons
in the system, despite the well-known fact that the electrons repel each other to
avoid the regions occupied by other electrons. The second one is that it does
not fulfill antisymmetry principle, which states that the wave function must be
antisymmetric when we change the position of two particles. This problem can be
fixed by introducing a new form of the wave function, namely Slater determinant
(SD), which is a combination of Hartree products. The Slater determinant for
two particles wavefunction can be written as:

ΨSD(x1, x2) = 1√
2

⃓⃓⃓⃓
⃓χ1(x1) χ2(x1)
χ1(x2) χ2(x2)

⃓⃓⃓⃓
⃓ = 1√

2
[χ1(x1)χ2(x2) − χ1(x2)χ2(x1)] . (1.5)

Then the wavefunction of a system of N particles can simply be written as
determinant of N × N Slater matrix:

ΨSD(x1, ..., xN) = 1√
N !

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓
χ1(x1) χ2(x1) . . . χN(x1)
χ1(x2) χ2(x2) . . . χN(x2)

... ... . . . ...
χ1(xN) χ2(xN) . . . χN(xN)

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓ . (1.6)

The Slater determinant is not a complete representation of the true wave func-
tion. However, it provides a starting point for solving the Schrödinger equation.
This approach will be discussed in terms of the HF theory below.

1.2 Hatree-Fock theory
Before presenting the HF method, we mention an important result called

variational principle. It states that the ground-state energy, E0, is always less
than or equal to the expectation value of Ĥ calculated with a trial wavefunction,
that is:

⟨ΨSD|Ĥ|ΨSD⟩ ≥ E0. (1.7)

Beginning with ΨSD as a trial wave function, then varying it until the ex-
pectation value of Ĥ is minimized, we can finally obtain approximations to the
wavefunction and the energy of the ground-state.

The idea of the HF theory is to replace the many-electron Schrödinger equa-
tion with a series of one-electron equations, in which each electron encounters
the effects of other electrons in an average way [47]. Then the expression for
the HF energy can be formulated in relation to the expectation values stemming
from one-electron operator ĥ, including contributions from electron kinetic energy
and interaction energy of electrons with nuclei, and from two-electron operators,
including coulomb operator Ĵ and exchange operator K̂ as
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EHF =
N∑︂

i=1
⟨χi(x1)|ĥi|χi(x1)⟩

+ 1
2

N∑︂
i=1

N∑︂
j=1

(︂
⟨χi(x1)|Ĵ j(x2)|χi(x1)⟩ − ⟨χi(x1)|K̂j(x2)|χi(x1)⟩

)︂
.

(1.8)

The one-electron operator ĥ, coulomb operator Ĵ , and exchange operator K̂
are defined as follows:

ĥi = −1
2

N∑︂
i=1

∇2
i −

N∑︂
i=1

M∑︂
A=1

ZA

riA

, (1.9)

Ĵ j(x2)|χi(x1)⟩ = ⟨χj(x2)| 1
r12

|χj(x2)⟩|χi(x1)⟩, (1.10)

K̂j(x2)|χi(x1)⟩ = ⟨χj(x2)| 1
r12

|χj(x1)⟩|χi(x2)⟩. (1.11)

We then can derive the HF equations which help us to determine the optimal
choice of spin orbitals. Consequently, the optimal energy value can be obtained.
Details of this process are provided in Ref. [48]. Here we just show the final HF
equations written as follows:

Fîχi = ϵiχi, i = 1, 2, . . . , N. (1.12)

In equation 1.12, Fî is Fock operator and ϵi is energy of i-th spin orbital.
The HF equations simplify the many-electron Schrödinger equation into a set of
one-electron equations. However, each equation still depends on other (N − 1)
spin orbitals which means that the solution should be known to solve the equa-
tions. The self-consistent field (SCF) method is employed to solve this problem.
This approach starts with an initial guess for all the spin orbitals. Using this
initial guess, the HF equations are solved to generate a new set of spin orbitals.
These new spin orbitals are then used to recalculate the Fock operator, and the
procedure is repeated until the spin orbitals reach convergence.

The HF equations are integro-differential equations, making them difficult to
solve directly. In order to obtain practical results, we often use a basis set expan-
sion to express the unknown spatial orbitals in terms of pre-defined functions. Let
us introduce a set of K known functions, typically chosen as basis functions that
can effectively represent molecular orbitals. Then the orbitals are approximated
as linear combinations of basis functions φµ(r) with some expansion coefficients
Cµi:

Ψi(r) ≈
K∑︂

µ=1
cµiφµ(r), i = 1, 2, . . . , K. (1.13)

Substituting this spatial orbital into equation 1.12 we obtain:

F̂ (r)
K∑︂

ν=1
cνiφν(r) = ϵi

K∑︂
ν=1

cνiφν(r), i = 1, 2, . . . , K. (1.14)

8



Multiplying by φ∗
µ(r) from the left leads to:

K∑︂
ν=1

cνiφ
∗
µ(r)F̂ (r)φν(r) = ϵi

K∑︂
ν=1

cνiφ
∗
µ(r)φν(r), i = 1, 2, . . . , K. (1.15)

Then Roothaan equations are obtained by integrating both sides of equa-
tion 1.15

K∑︂
ν=1

Fµνcνi = ϵi

K∑︂
ν=1

Sµνcνi, i = 1, 2, . . . , K. (1.16)

Finally, we can express closed-shell HF equations in a compact matrix form
as follows:

F C = SCϵ. (1.17)
where F is Fock matrix, C is coefficient matrix, S is overlap matrix, and ϵ is
diagonal matrix of orbital energies. Due to the dependence of the Fock matrix
on its own solutions, the Roothaan equations must be solved iteratively. This
iterative procedure is also known as a SCF method because the SCF convergence
is only reached when the new Fock operator is identical to the previous one.

1.3 Post-Hatree-Fock methods
The HF theory treats interactions between electrons in an average way, ne-

glecting instantaneous electron-electron interactions. Thus, the energy calculated
using the HF theory is higher than the true energy of the system. The difference
between the true energy, E0, and the HF energy is known as correlation energy

Ecorr = EHF − E0. (1.18)
To obtain more reliable energies, post-HF methods, such as configuration

interaction (CI), many-body perturbation theory (MBPT), and coupled-cluster
theory, are commonly used. Each of these methods has its strengths and limita-
tions, and the choice of method depends on several factors, including system size,
type of chemical system, computational resources, and desired accuracy. We will
discuss them in detail below. In this thesis, a method derived from CC theory
was used to calculate reference data, while a series of methods based on MBPT
theory were used to examine the accuracy for description of binding energies of
molecular solids.

1.3.1 Configuration interaction
Configuration Interaction improves upon HF single determinant wave func-

tion by representing the wave function as a linear combination of determinants.
These determinants are generated from the HF orbitals by considering the ground
state (ΨHF), formed from the N lowest energy orbitals obtained from solving
Roothaan’s equation, and the excitations of one or more electrons to give singly,
doubly, triply, ..., excited determinants (denoted as ΨS, ΨD, ΨT , ..., etc.)

ΨCI = c0ΨHF +
∑︂
S

cSΨS +
∑︂
D

cDΨD +
∑︂
T

cT ΨT + . . . (1.19)
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Since CI is a variational method, the optimal coefficients can be determined
by requiring that the energy is a minimum. With the optimal coefficients, the
wave function, which is a linear combination of determinants, is defined. The
energy of the system is then obtained by evaluating the expectation value of the
Hamiltonian operator with respect to the wave function in equation 1.19.

CI is conceptually the simplest among the post-HF methods considered in
this chapter. However, it can become computationally expensive, especially in
the case of full-CI (FCI), where all possible determinants are added to the total
wavefunction within a given basis set. This is because the number of determi-
nants in FCI calculations grows exponentially with both the size of basis set and
the number of electrons, making FCI calculations infeasible for large systems.
In practice, one often truncates or approximates the FCI method to make it
more computationally efficient. For example, CISD method is limited to single
and double excitations. Nevertheless, a big problem of truncated CI methods is
their size-inconsistency which means that the energy of two infinitely separated
molecules is not exactly twice the energy of a single molecule. This is an undesir-
able property from a theoretical perspective, especially for calculation of binding
energies.

1.3.2 Many-body perturbation theory
Many-body perturbation theory is an approach used to calculate the proper-

ties of systems by perturbing around a mean-field description and systematically
including higher-order corrections beyond the mean-field description [47]. These
corrections are organized into a series of terms, where each term represents an
increasing level of electron correlation. We start to provide standard derivation
of Rayleigh–Schrödinger perturbation theory, which is applicable to any quantum
mechanical system. Following that, we delve into the discussion of Møller-Plesset
(MP) perturbation theory using HF description as a starting point.

1.3.2.1 Rayleigh–Schrödinger perturbation theory

We consider a Hamiltonian operator comprising two components: a reference
(Ĥ0) and a perturbation (V̂ ), where V̂ operator is much smaller compared to
Ĥ0. The extent of perturbation is determined by a constant, λ, which can have
any value between 0 and 1, the former representing the unperturbed case. The
parameter-dependent Hamiltonian (Ĥ(λ) = Ĥ0 + λV̂ ) introduces an eigenvalue
problem that needs to be solved as follows:

Ĥ|Φi⟩ = (Ĥ0 + λV̂ )|Φi⟩ = Ei|Φi⟩. (1.20)

Let us assume that we know eigenfunctions and eigenvalues of Ĥ0. In other
words, the Schrödinger equation for the reference Hamiltonian operator is solved:

Ĥ0|Ψ0
i ⟩ = E0

i |Ψ0
i ⟩. (1.21)

We proceed to express the exact eigenvalues and eigenfunctions as a Taylor
series with respect to the parameter λ:

Ei = E0
i + λE

(1)
i + λ2E

(2)
i + . . . (1.22)
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|Φi⟩ = |Ψ0
i ⟩ + λ|Ψ(1)

i ⟩ + λ2|Ψ(2)
i ⟩ + . . . (1.23)

The problem now is to express these quantities in terms of zeroth-order en-
ergies and matrix elements of the perturbation V̂ between the unperturbated
wave functions. We assume that ⟨Ψ0

i |Φi⟩ = 1 and then multiply equation 1.23 by
⟨Ψ0

i |, it follows that all correction terms become orthogonal to the reference wave
function:

⟨Ψ0
i |Ψ

(n)
i ⟩ = 0 for n = 1, 2, 3 . . . (1.24)

By substituting equations 1.22 and 1.23 into equation 1.20 and equating co-
efficients of λn on both sides, we derive a set of equations:

Ĥ0|Ψ0
i ⟩ = E0

i |Ψ0
i ⟩ (1.25)

Ĥ0|Ψ(1)
i ⟩ + V̂ |Ψ0

i ⟩ = E0
i |Ψ(1)

i ⟩ + E
(1)
i |Ψ0

i ⟩ (1.26)

Ĥ0|Ψ(2)
i ⟩ + V̂ |Ψ(1)

i ⟩ = E0
i |Ψ(2)

i ⟩ + E
(1)
i |Ψ(1)

i ⟩ + E
(2)
i |Ψ0

i ⟩ (1.27)
...

When each of these equations is multiplied by ⟨Ψ0
i | and the orthogonality

relation in equation 1.24 is applied, we obtain following expressions for the n-th
order energies:

E0
i = ⟨Ψ0

i |Ĥ0|Ψ0
i ⟩ (1.28)

E
(1)
i = ⟨Ψ0

i |V̂ |Ψ0
i ⟩ (1.29)

E
(2)
i = ⟨Ψ0

i |V̂ |Ψ(1)
i ⟩ (1.30)

...

The task now is to solve the set of equations for |Ψ(n)
i ⟩ and consequently

determine the (n+1)-th order correction of energy.
Let us consider equation 1.26, which determines the first-order wave function

⟨Ψ(1)
i |. This equation can be rearranged as follows:

(E0
i − Ĥ0)|Ψ(1)

i ⟩ = (V̂ − E
(1)
i )|Ψ0

i ⟩. (1.31)

By using the orthonormality relation ⟨Ψ0
n|Ψ0

i ⟩ = δni and multiplying the equa-
tion 1.31 by ⟨Ψ0

n| from the left, we can substitute it into the expression for the
second-order energy correction (equation 1.30) and obtain:

E
(2)
i = ⟨Ψ0

i |V̂ |Ψ(1)
i ⟩ =

∑︂
n

⟨Ψ0
i |V̂ |Ψ0

n⟩⟨Ψ0
n|Ψ(1)

i ⟩ =
∑︂
n̸=i

|⟨Ψ0
i |V̂ |Ψ0

n⟩|2

E0
i − E0

n

. (1.32)

One can proceed similarly to obtain the higher order energies.
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1.3.2.2 Møller-Plesset perturbation theory

Møller-Plesset (MP) perturbation theory is a specific form of many-body per-
turbation theory, which begins with the HF systems as its unperturbed system.
The unperturbed Hamiltonian is taken as the sum of Fock operators:

Ĥ0 =
∑︂

i

f(i) =
∑︂

i

[h(i) + vHF(i)], (1.33)

where vHF is the HF potential including coulomb and exchange potentials. The
sum of the Fock operators counts the average the electron-electron repulsion twice.
Then the perturbation which is the difference between the exact Hamiltonian Ĥ
and the unperturbed Hamiltonian Ĥ0 can be expressed as:

V̂ =
∑︂
i<j

r−1
ij −

∑︂
i

vHF(i). (1.34)

The zero-order wave function corresponds to the HF determinant, and the
zeroth-order energy can be described as the sum of the orbital energies

E
(0)
0 = ⟨Ψ0|Ĥ0|Ψ0⟩ =

N∑︂
i

ϵi. (1.35)

The HF energy is the sum of zeroth-order and first-order energies. Thus, it is
necessary to go to higher-order corrections to improve on the HF energy. Exam-
ining the general formula for the second-order energy derived in equation 1.32,
it becomes clear that we need to identify the states |Ψ0

n⟩ first. According to the
Brillouin theorem, singly excited Slater determinants do not contribute. Addi-
tionally, triply excited states do not interact with |Ψ0⟩ due to the two-particle
character of the perturbation. As a result, our focus narrows to doubly excited
Slater determinants of the form |Ψrs

ab⟩, where two electrons are excited from oc-
cupied orbitals a and b to virtual orbitals r and s. For this particular Slater
determinant, we have an eigenvalue equation in the form:

Ĥ0|Ψrs
ab⟩ = (E(0)

0 − (ϵa + ϵb − ϵr − ϵs))|Ψrs
ab⟩. (1.36)

Finally, the second-order correction is obtained by summing all possible double
excitations, subject to the conditions that we sum over all pairs of occupied
orbitals (a and b) where b is greater than a, as well as all pairs of virtual orbitals
(r and s) where s is greater than r

E
(2)
0 =

∑︂
a<b,r<s

|⟨Ψ0|
∑︁

i<j r−1
ij |Ψrs

ab⟩|2

ϵa + ϵb − ϵr − ϵs

(1.37)

=
∑︂

a<b,r<s

|⟨ab|rs⟩ − ⟨ab|sr⟩|2

ϵa + ϵb − ϵr − ϵs

. (1.38)

Higher-order corrections in Møller-Plesset perturbation theory are determined
in a similar manner. Specifically, the third-order correction, as seen in the MP3
method, is calculated using doubly excited determinants. The MP methods,
especially MP2, have been widely used for calculating the properties of quan-
tum systems thanks to the balance between accuracy and computational cost.
Furthermore, unlike to CI, MP methods are size-extensive, making them partic-
ularly advantageous when studying large systems. However, these methods are
not variational, meaning they may not always yield an upper bound to the true
ground-state energy.
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1.3.3 Coupled cluster
The fundamental concept of coupled cluster methods is to include all pos-

sible corrections of wavefunction of a specific type to an infinite order [47, 49].
The electronic wave function is expanded as an exponential operator acting on a
reference wave function:

|ΨCC⟩ = eT̂ |Ψ0⟩, (1.39)

with eT̂ = Î + T̂ + 1
2 T̂

2 + 1
3! T̂

3 + . . . . The cluster operator T̂ is composed of
excitation operators T̂ i acting on the reference determinant |Ψ0⟩ to generate all
i-th excited Slater determinants

T̂ = T̂ 1 + T̂ 2 + . . . + T̂ N , (1.40)

T̂ 1|Ψ0⟩ =
Nocc∑︂

a

Nvirt∑︂
r

tr
a|Ψr

a⟩, (1.41)

T̂ 2|Ψ0⟩ =
Nocc∑︂
a<b

Nvirt∑︂
r<s

trs
ab|Ψrs

ab⟩, (1.42)

...
The expansion coefficients trs...

ab... are called amplitudes. The coupled cluster
method is defined by the truncation of the excitation operator T̂ . We consider
first the coupled cluster with singles and doubles (CCSD) model (T̂ = T̂ 1 + T̂ 2).
The Schrödinger equation can be written using the coupled-cluster wave function
defined in equation 1.39 as:

ĤeT̂ |Ψ0⟩ = EeT̂ |Ψ0⟩, (1.43)

e−T̂ ĤeT̂ |Ψ0⟩ = E|Ψ0⟩. (1.44)
By multiplying the equation 1.44 with the reference and excited state deter-

minants, we can obtain equations for the amplitudes:

⟨Ψ0|e−T̂ ĤeT̂ |Ψ0⟩ = E, (1.45)

⟨Ψr
a|e−T̂ ĤeT̂ |Ψ0⟩ = 0, (1.46)

⟨Ψrs
ab|e−T̂ ĤeT̂ |Ψ0⟩ = 0. (1.47)

The energy can be determined by taking the Schrödinger equation as presented
in equation 1.43 and projecting it onto the reference wave function:

⟨Ψ0|ĤeT̂ |Ψ0⟩ = E⟨Ψ0|eT̂ Ψ0⟩, (1.48)

⟨Ψ0|ĤeT̂ |Ψ0⟩ = E⟨Ψ0|(Î + T̂ 1 + . . . )Ψ0⟩, (1.49)

⟨Ψ0|ĤeT̂ |Ψ0⟩ = E. (1.50)
This expression can then be simplified using the fact that the electronic Hamil-

tonian contains only one- and two-electron operators and the Brillouin theorem:

E = ⟨Ψ0|Ĥ(Î + T̂ 1 + T̂ 2 + 1
2 T̂

2
1)|Ψ0⟩, (1.51)
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E = EHF +
Nocc∑︂
a<b

Nvirt∑︂
r<s

(trs
ab + tr

ats
b − ts

atr
b)⟨Ψ0|Ĥ|Ψrs

ab⟩, (1.52)

E = EHF +
Nocc∑︂
a<b

Nvirt∑︂
r<s

(trs
ab + tr

ats
b − ts

atr
b)(⟨ab|rs⟩ − ⟨ab|sr⟩). (1.53)

The procedure for deriving the CC method with higher excitations can be
obtained in a similar manner. The inclusion of the T̂

3 in the operator T̂ leads to
couple-cluster with singles, doubles and triples (CCSDT) method which becomes
too computationally expensive for large systems. As an alternative approach,
the triples contribution can be calculated separately using perturbation theory
and then added to the CCSD results. More specifically, the triples contribu-
tion is calculated from the formula established in the MP4 method by using
the CCSD amplitudes instead of the perturbation coefficients and adding a fifth-
order perturbation term, which describes the coupling between singles and triples.
This combined method is known as CCSD(T), which is currently considered as a
“golden standard” of quantum chemistry [50, 51].

CC methods are typically not variational, but they are size-consistent, similar
to MP methods. In the CC theory, it is important to note that a specific excitation
level is not solely a result of a single excitation operator. Instead, there are both
“connected” and “disconnected” terms that contribute to this level. For example,
a coupled-cluster wave function limited to connected double excitations not only
includes doubles, but also higher ones (quartets, etc.). This is in contrast with
both MP and CI methods and therefore CC theory provides a better description
of electron correlation effects at a given truncation level.

1.4 Density functional theory
Calculating the full wave function of a quantum system is a computationally

demanding task and can pose significant challenges related to memory storage.
In this section, we discuss the evaluation of the energy of a system using elec-
tron density instead of wave function. We begin by describing how the energy
can be obtained from electron density. Following this, we mention two theorems
postulated by Hohenberg and Kohn. Next, we turn our attention to Kohn-Sham
method, which provides a practical approach to determine the energy and prop-
erties of a system via electron density. In principle, the Kohn-Sham method is
conceptually simple and exact. However, it introduces a new quantity, exchange-
correlation energy, and we discuss this in the following part. Finally, we discuss
several approaches used to improve the accuracy of standard DFT methods.

1.4.1 Electron density
The wave function of a system with many electrons is expressed as a function

of four coordinates for each electron (three spatial coordinates and one spin co-
ordinate). Consequently, as the number of electrons (N) in the system increases,
the wave function rapidly becomes very complicated, depending on 4N variables.
Nevertheless, the energy of the system does not rely explicitly on all 4N variables,
since it is an expectation value that can be represented by one- and two-electron
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integrals. The replacement of the wave function with the electron density reduces
the complexity of dealing with 4N variables to a simpler four-dimensional density
distribution.

The electron density, denoted as ρ(r), is a measure of the probability of finding
an electron in the volume element dr at a particular position r in space [52]

ρ(r) =
∫︂

|Ψ(r)|2dr. (1.54)

The integral of the electron density over all space is equal to the total number
of electrons in the system. This property ensures that the electron density is
capable of describing the total number of electrons in the system. In addition, the
electron density exhibits a discontinuity as the electron approaches the nucleus.
This is a consequence of Coulombic attraction between the negatively charged
electrons and the positively charged nucleus. When the electron approaches very
close to the nucleus at RA, the Coulomb energy diverges for ri = RA, which
results in a cusp at the nucleus. This property shows that the electron density is
capable of describing the position of the nucleus and the nuclear charge ZA of the
system. Therefore, the electron density truly contains all necessary information
about the system, i.e., ρ(r) ⇒ {N, RA, ZA}.

The electronic Hamiltonian can then be written so that it depends only on
these variables, indicating that the energy of the system can be obtained from
the electron density. Let us start to consider the interaction of the electrons with
nuclei which is defined as:

Enucl = −⟨Ψ |
N∑︂
i

M∑︂
A

ZA

|ri − RA|
| Ψ⟩ (1.55)

= −
∫︂

dr1 · · · drNΨ∗(r1, . . . , rN)
N∑︂
i

M∑︂
A

ZA

|ri − RA|
Ψ(r1, . . . , rN). (1.56)

The sum over the electrons (i = 1 − N) can be written explicitly as follows:

−
∫︂

dr1 · · · drNΨ∗(r1, . . . , rN)
M∑︂
A

ZA

|r1 − RA|
Ψ(r1, . . . , rN) − · · · −

−
∫︂

dr1 · · · drNΨ∗(r1, . . . , rN)
M∑︂
A

ZA

|rN − RA|
Ψ(r1, . . . , rN).

(1.57)

The terms in above equation are equivalent due to the presence of the wave
function appearing twice in the integration and the antisymmetry of the wave
function. As a result, we can combine and sum them as:

−N
∫︂

dr1 · · · drNΨ∗(r1, . . . , rN)
M∑︂
A

ZA

|ri − RA|
Ψ(r1, . . . , rN). (1.58)

The integration can now be divided into two parts: one involving an integral
over r1 and the other encompassing the remaining coordinates:

−
∫︂

dr1

M∑︂
A

ZA

|r1 − RA|
N
∫︂

dr2 · · · drNΨ∗(r1, . . . , rN)Ψ(r1, . . . , rN). (1.59)
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We can see that the term in the integration over r2, . . . , rN coordinates corre-
sponds to the definition of the electron density:

ρ(r1) = N
∫︂

dr2 · · · drNΨ∗(r1, . . . , rN)Ψ(r1, . . . , rN). (1.60)

Finally, the energy of interaction of electrons with nuclei can be obtained as
follows:

Enucl = −
∫︂

dr
M∑︂
A

ZA

|ri − RA|
ρ(r). (1.61)

Summing over the nuclei results in Coulomb potential Vnucl(r) = −∑︁
A

ZA

|r−RA| ,
which simplifies the energy expression to:

Enucl =
∫︂

drVnucl(r)ρ(r). (1.62)

The above equation is just one example of a single particle local potential.
However, the nuclei are considered “external” potential. This is because due to
the BO approximation, the positions of nuclei are fixed and do not vary during the
calculation of electronic wavefunctions and energies. Then the general expression
for a local external potential Vext(r) can be formulated as:

Eext =
∫︂

drVext(r)ρ(r). (1.63)

In a similar manner, the classical Coulomb energy of the electron density can
be represented as:

Eclass = 1
2

∫︂
dr1dr2

ρ(r1)ρ(r2)
|r1 − r2|

. (1.64)

The kinetic energy can not be easily written as a functional of the density.
The earliest kinetic energy functionals, proposed by Fermi, Thomas, and others,
were based on non-interacting uniform electron gas (UEG) model [52]. In this
approximation, it is assumed that the electrons form a uniform (or homogeneous)
electron gas, meaning that the electrons move in a background uniform distri-
bution of positive charge. However, when applied to atoms and molecules, these
functionals failed to provide accurate results. Addressing this issue has driven
the development of more sophisticated and accurate kinetic energy functionals in
DFT.

Another challenging component in electronic Hamiltonian is electron-electron
interaction, which can not be integrated out to yield an explicit functional of the
electron density. The energy associated with this term can be expressed as:

Eel =
∫︂

dr1dr2
γ2(r1, r2; r1, r2)

|r1 − r2|
, (1.65)

where γ2(r1, r2; r1, r2) is second order spin-less reduced density matrix (2-RDM).
This is derived by integrating out all the electron (and spin) coordinates of the
product Ψ∗(r′

1, . . . , r′
N)Ψ(r1, . . . , rN) except for the first two.
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1.4.2 Hohenberg-Kohn Theorems
The use of electron density as the main variable in electronic structure cal-

culations has gained significant attention and development. The key motivation
for this development is due to Hohenberg-Kohn theorems, established by Pierre
Hohenberg and Walter Kohn [53]. These theorems are foundational principles in
the field of DFT.

The original work of Hohenberg and Kohn focuses on uniform electron gas
as a model system. In this context, the electronic Hamiltonian, expressed as
Ĥel = T̂ + V̂ + Û , has the key difference from the electronic Hamiltonian approx-
imated by the BO approximation being that the non-universal term V̂ accounts
for the interaction of electrons with an external potential V̂ ext. T̂ and Û are
the kinetic operator and electron-electron interaction operator, respectively. The
first Hohenberg-Kohn theorem demonstrates that, for a given N -electron system,
there exists a one-to-one correspondence between the local external potential Vext
and the electron density ρ(r) [53, 54]. Given the external potential (Vext) and the
number of electrons, we can solve Schrödinger’s equation to obtain the wavefunc-
tion (Ψ). Then the electron density ρ(r) can be obtained from the wave function
by integrating over all coordinates. Therefore, the external potential uniquely
determines the electron density. The total energy then can be obtained from the
electron density as follows:

E[ρ] =
∫︂

drVext(r)ρ(r) + F [ρ], (1.66)

in which F [ρ] = ⟨Ψ|T̂ + Û |Ψ⟩ is a general functional of the density (since Ψ → ρ)
that can be used with any external potential and gives us the exact kinetic and
electron-electron energies.

We now want to obtain the ground state energy defined by equation 1.66.
This can be based on second theorem of Hohenberg and Kohn, which states that
the ground state energy can be derived from the electron density by the use of
variational principle [52, 53]. The electron density, which provides a minimum of
the ground state energy, is therefore the exact ground state density.

Since the wave function is a unique functional of the electron density, every
trial wave function Ψ′ corresponds to a trial density ρ

′(r). Then the ground state
energy is obtained as:

E0 = min
Ψ′

⟨Ψ′|Ĥ|Ψ′⟩ (1.67)

The original proof of this second theorem was initially established using vari-
ational calculus [53]. Then, a different approach, known as constrained-search,
was introduced by Levy and Lieb [55, 56]. In this approach, the minimization
can be carried out in two steps. In the first step, a trial electron density ρ

′(r)
is fixed, and the corresponding wavefunction Ψ′(r) that minimizes the energy for
this fixed density is determined. In the second step, from the set of the densities
and corresponding wavefunctions obtained in the first step, the specific combi-
nation that yields the lowest energy is selected. These steps can be expressed as
follows:

17



E0 = min
ρ′

(︄
min

Ψ′ →ρ′
⟨Ψ′|T̂ + Û |Ψ′⟩ +

∫︂
V

′

ext(r)ρ′(r) dr

)︄
(1.68)

= min
ρ′

(︃
F [ρ′ ] +

∫︂
V

′

ext(r)ρ′(r) dr
)︃

, (1.69)

in which F [ρ′ ] = minΨ′ →ρ′ ⟨Ψ′ |T̂ +Û |Ψ′⟩ is the universal functional which requires
no explicit knowledge of ρ

′(r).
In summary, Hohenberg-Kohn theorems offer a potential approach for deter-

mining the ground state of a quantum system by considering only the electron
density. However, the equation of F [ρ] inherently involves the all-electron wave-
function. Consequently, obtaining an explicit formulation for F [ρ] in terms of the
electron density is a highly complex task and does not appear feasible for realistic
systems.

1.4.3 Kohn-Sham method
As mentioned before, the kinetic energy of electrons is challenging to calculate

directly in DFT because it depends on the electronic wave functions, which are
not explicitly known. Kohn-Sham (KS) method addresses this challenge by in-
troducing an auxiliary system of non-interacting electrons with the same electron
density as the real system [57]. The kinetic energy can then be obtained for these
auxiliary electrons and is more accurate than when obtained from the density.
Overall, the KS equations contain a single particle Hamiltonian common for all
the orbitals so that, in practice, one needs to solve similar equations to the HF
equations. Then the total energy of a real system in KS model is expressed as:

EKS[ρ] = TS[Ψ] + Eext[ρ] + J [ρ] + Exc[ρ]. (1.70)

In the equation, TS is the kinetic energy of non-interacting electrons, J is
the Coulomb interaction of electron density and can be calculated using electron-
electron repulsion integrals. The key component of the equation 1.70 is exchange-
correlation (XC) energy (Exc). This term accounts for the difference between real
and non-interacting kinetic energies, non-classical part of the electron-electron
energy and also include self-interaction correction. The last energy arises in DFT
because, in contrast to the HF approach, there exists an unphysical interaction
of an electron with itself arising from the Coulomb term of the energy (in HF
scheme the Coulomb and exchange terms cancel for an electron interacting with
itself).

The task now is to minimize the total energy functional E[ρ] under the con-
straint that the electron density ρ(r) integrates to the number of electrons (N).
This constrained minimization leads to KS equations for optimal orbitals

f̂KS(r)Ψi(r) = ϵiΨi(r), (1.71)

in which KS operator can be expressed as follows:

f̂KS(r) = −1
2∇2

r + Vext(r) + Ĵ(r) + Vxc(r). (1.72)
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The last term in the above equation is an unknown exchange correlation po-
tential, and can be expressed as functional derivative of XC energy with respect
to the density: δEXC[ρ(r)]

δρ(r) . The difference between the HF and KS equations is
that the exchange integral in the Fock operator is replaced by Vxc in the KS op-
erator. Similar to the HF method, the KS equations are typically solved using
the SCF method and with orbitals expanded using basis functions. In principle,
the KS equation is exact, meaning that for an exact expression of XC functional,
the system can be solved exactly. However, an exact XC functional has not been
found so far, approximate functionals must be used, which will be discussed in
detail in the following section.

1.4.4 Exchange-correlation functionals
The search for better and better XC functionals is never-ending mission in

DFT. Although there are some physical constraints that XC functionals should
obey, there is no systematic strategy for progressively approaching exact XC
functional, as in the case of wavefunction-based approaches, where the variational
method is cornerstone. In an attempt to formulate an expression for a complicated
XC functional, it is common practice to divide it into two components: exchange
functional and correlation functional. There is currently a large number of forms
of the XC functional available. These functionals are traditionally categorized
into several types based on their dependence on the electron density.

The simplest approximation for the XC energy is local density approximation
(LDA) assuming that the XC energy density depends only on the electron den-
sity at each point in space. The expression for the XC energy based on LDA
approximation is written as:

ELDA
XC [ρ(r)] =

∫︂
ρ(r)ϵLDA

xc (ρ(r))dr =
∫︂

ρ(r)
[︂(︂

ϵLDA
x (ρ(r)) + ϵLDA

c (ρ(r))
)︂]︂

dr.

(1.73)
In LDA, the exchange part relies on the HF exchange energy of UEG, which

can be evaluated analytically. Consequently, LDA gives the DFT exchange en-
ergy exactly for UEG. However, the correlation part is more complicated, and
can only be obtained approximately by solving the UEG system to a high accu-
racy using approaches such as quantum Monte Carlo [52]. Commonly used LDA
functionals are VWN5 [58], PZ81 [59], PW92 [60], and so on. LDA methods
are rather accurate for certain molecular properties, such as geometric structure
and vibration frequency [61, 62]. However, the binding energy of molecules and
solids calculated using LDA is often significantly overestimated [63, 64, 65]. In
a recent study, a new functional called meta-LDA, derived from LDA, has been
formulated and demonstrates improved accuracy compared to LDA [66].

The subsequent significant breakthrough in formulating Exc was the develop-
ment of generalized gradient approximation (GGA). Similar to LDA, the GGA
methods are local and depend on the electron density at a specific point. How-
ever, these methods also take into account gradient of the electron density at
that point. This inclusion aims to capture the non-uniform nature of the electron
density. Then the GGA XC energy can be expressed as follows:

EGGA
XC [ρ(r)] =

∫︂
ρ(r)ϵGGA

xc (ρ(r), ∇ρ(r))dr. (1.74)
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The GGA methods represent an improvement in the accuracy of DFT cal-
culations compared to LDA methods, making them a more reliable choice for a
wide range of systems and properties [65, 67]. There are many GGA functionals
that have gained widespread use in DFT calculations, including PBE [68], BLYP
[69], BP86 [68, 70], and many others. Among them, PBE and its modifications
are the most popular functionals, especially for condensed matter physics, due to
their reasonable accuracy over a wide range of systems [65, 71]. However, PBE
has been also known to significantly underestimate the binding energies in many
cases [72, 73, 74].

Additional improvements and modifications to GGA functionals, known as
meta-GGA functionals, can be achieved by introducing a kinetic energy depen-
dence into the GGA XC functional. Then the meta-GGA XC energy can be
written as:

EMGGA
XC [ρ(r)] =

∫︂
ρ(r)ϵMGGA

xc (ρ(r), ∇ρ(r), τ(r))dr, (1.75)

where the kinetic-energy density is given by:

τ(r) =
∑︂

i

1
2 |∇Ψi(r)|2. (1.76)

The inclusion of the total kinetic energy in the XC energy makes meta-GGA
functionals non-local. This increased flexibility allows them to more accurately
describe the properties of molecules and solids compared to LDAs and GGAs
[65, 71]. However, meta-GGA functionals typically exhibit greater sensitivity
to integration grid compared to GGAs, especially when dealing with weakly in-
teracting systems [75, 76]. The meta-GGA functionals can be categorized into
two main groups: empirical and non-empirical. The functionals like MXX se-
ries (M05, M06, M08, M11, etc.) [77, 78, 79, 80, 81, 82, 83, 84] were developed
through empirical fitting of parameters. The popular non-empirical functionals
include PKZB [85], TPSS [86], revTPSS [87], MSX (X=0,1,2) [88], SCAN [89],
TM [90], and HLE16 [91]. Among them, SCAN has emerged as a promising choice
for accurately describing properties of various systems [92, 93, 94, 95]. However,
the application of SCAN functional is limited by its sensitivity to the density of
the numerical integration grid [96]. To improve this numerical stability, rSCAN
functional was developed while retaining the accuracy of original SCAN funtional
[96]. Nevertheless, extensive tests show that rSCAN yields large errors for some
properties, such as heats of formation and atomization energies [97, 98]. This is
because rSCAN violates some of the constraints that the original SCAN satisfies.
The r2SCAN functional was then developed to address these issues [99], and it
performs well for many properties of molecules and solids [100, 101, 102, 103]. In
recent years, density-corrected SCAN functional has been also used to alleviate
the shortcoming of SCAN functional [104, 105, 106].

The inclusion of each additional ingredient into XC functionals described
above offers a systematic improvement in the accuracy. However, these XC func-
tionals still encounter three main issues: self-interaction error [59, 107], long-range
correlation interactions [32], and strong correlation effects [108]. A simple way to
reduce the self-interaction error is to use an exchange functional, which combines
contributions from the HF exchange EHF

X with the ELDA
X or EGGA

X component.
This way results in functionals known as hybrids, which can be expressed as
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follows:
EHybrids

xc = cxEHF
x + (1 − cx)EDFT

x + EDFT
c . (1.77)

It is important to note that the inclusion of full exact exchange may yield
results that are even less accurate than those obtained with GGA methods. This
is because full exact exchange is not compatible with the correlation terms used
in GGA functionals. Therefore, the choice of the fraction of exact exchange (cx)
in hybrid functionals is a crucial consideration. Some hybrid functionals widely
used include B3LYP [69, 109], PBE0 [110], and SCAN0 [111]. Clearly, hybrid
functionals are useful for the systems with strong-self-interaction errors and also
for atomization energies. However, they can encounter limitations when applied
to extended systems, because in reality the exchange interactions in extended
systems are screened at long distances, which are not adequately accounted for
by standard correlation functionals in hybrid functionals. To address this prob-
lem, range-separated hybrid functionals, which split the exchange energy into
short-range and long-range components and treat them differently, are usually
used [112, 113, 114, 115, 116]. In this approach, HF is usually used to evaluate
the short-range interactions, while semilocal DFT is applied to treat the long-
range interactions. Another advancement in hybrid functionals is double hybrid
(DH) theory, which combines standard hybrid functionals with second-order wave
function methods. Typically, a hybrid calculation is performed first, and then an
MP2 correction, evaluated on the DFT orbitals, is added to the XC energy. Many
DH functionals have been proposed [111, 117, 118, 119], and their performance
is excellent for many properties of different materials [120, 121, 122].

1.4.5 Density functional theory with dispersion correc-
tions

As mentioned above, the dispersion interactions can not be accurately de-
scribed by local and semi-local DFT functionals. In other words, standard DFT
functionals can not provide the correct −C6/R6 dependence, which is crucial
for describing the dispersion interaction energy at large interatomic distances.
Despite extensive efforts to develop local functionals for modeling dispersion in-
teractions, these attempts have proven to be unsuccessful [123, 124]. Therefore,
there has been an interest in methods for capturing dispersion interactions within
DFT over the last three decades. There are several ways to do this. Here, we
only focus on discussing the method we used in our work, usually called DFT-D
or sometimes DFT+disp. In this method, the calculations of missing dispersion
interactions are based on an atom pairwise additive treatment. The general form
for the dispersion energy, which is simply added to the total DFT energy, is:

EDFT+disp
disp = −

∑︂
AB

∑︂
n=6,8,10,...

sn
CAB

n

Rn
AB

fdamp(RAB). (1.78)

In the formula, the sum is over all atom pairs in the system, RAB represents
the distance between atoms A and B, and CAB

n corresponds to the averaged n-
th order dispersion coefficient. Some studies have demonstrated that using only
the C6 coefficient is insufficient for describing medium and short-range disper-
sion interactions [125, 126, 127]. Therefore, it is necessary to incorporate higher
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coefficients, such as C8 and C10, as they contribute significantly in equilibrium
regions [127, 128]. However, the considerably large values of these coefficients
can lead to the amplification of their corresponding errors, thereby introducing
instability in the correction [125]. The global scaling factors sn are commonly
employed to adjust the correction to the repulsive behavior of the chosen den-
sity functional [129]. The function fdamp(RAB) is a damping function which is
used to avoid singularities for small R and double-counting effects of correlation
at intermediate distances. Finally, non-additive dispersion effects arising from
three-body interactions can be calculated by adding C9, or Axilrod–Teller–Muto
(ATM) contribution [130, 131].

Among the various DFT+disp methods, the ones developed by Stefan Grimme
are widely popular. The relatively early DFT-D1 version [129] was designed for
modeling noncovalent interactions for biomolecules [132]. DFT-D2, an advance-
ment upon DFT-D1, modifies the approach by including damping functions to
the C6/R6 terms to provide more accurate description of dispersion interactions
[133]. DFT-D3 introduces a slightly higher level of complexity than DFT-D2 by
including additional ingredients, such as the coefficients for eighth-order disper-
sion terms and a new set of cutoff radii [125]. Additionally, the parameters C6 and
C8 in DFT-D3 version depend on the coordination number of each atom, which
are fixed in older versions. This makes DFT-D3 more widely used compared to
the older versions for various materials [33, 134, 135]. A similar method, named
as DFT-D3BJ, was developed later by using Becke-Johnson damping function to
improve the accuracy of dispersion interactions, particularly at short distances
[136, 137]. The newest variant, DFT-D4 [138], continues to add accuracy and
complexity by taking into account atomic partial charges and their influence on
the dispersion parameters. By doing so, DFT-D4 captures the dependency of each
atom’s dispersion parameters on its surrounding environment, leading to a more
accurate and adaptable representation of dispersion forces [139, 140, 141]. There
are other dispersion correction methods which have also gained popularity, in-
cluding dipole-exchange hole model (XDM) [142, 143, 144], Tkatchenko-Scheffler
(TS) model [145], and many-body dispersion (MBD) [146] and its rsMBD [147],
and (uMBD) [148] variants, nonlocal many-body dispersion (MBD-NL) [149].
The accuracy of these models has been examined for many properties of different
materials [36, 150, 151, 152, 153].

Although the DFT+disp methods have been widely employed to enhance the
accuracy of standard DFT methods, they still have several limitations. One
such limitation is their difficulty in accurately describing systems with significant
changes in electron density, as the interaction in these methods does not directly
derive from the electron density. Moreover, the dispersion contribution (Edisp)
in DFT+disp methods is inherently attractive, which might result in a tendency
to overbind binding energies of molecules and solids. To address this issue, the
DFT+disp methods are recommended to be used with the DFT functionals that
do not overbind. In other words, the choice of the DFT functional is critical to
the overall accuracy of the DFT+disp methods.
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1.5 Random phase approximation
Random phase approximation is an approximate electronic structure method,

which combines the elements of DFT and wave-function theory (WFT). From
the DFT perspective, it is an approach at fifth rung of Jacob’s ladder for the
exchange-correlation approximations [154], which uses not only electron density,
but also virtual orbitals and orbital energies of Kohn-Sham system [155]. From
the wave-function point of view, RPA is a ring-only approximation of coupled-
cluster doubles wave function method with HF or KS reference mean-field Hamil-
tonian [156].

1.5.1 Derivation of direct RPA equation
RPA can be derived from several theoretical frameworks, including adiabatic-

connection fluctuation-dissipation (ACFD) theorem [157, 158, 159, 160], many-
electron Green’s function theory [160, 161], and coupled cluster theory [49, 156].
Here we only present the process of deriving RPA correlation energy using ACFD
theorem.

Let us first use adiabatic connection (AC) technique to obtain the ground-
state total energy of an interacting many-body Hamiltonian [162]

Ĥ(λ) = Ĥ0 + λĤ1(λ), (1.79)

where λ is a coupling parameter that connects a reference Hamiltonian Ĥ0 =
Ĥ(λ = 0) with many-body Hamiltonian Ĥ = Ĥ(λ = 1), Ĥ1(λ) is perturbative
Hamiltonian.

The Ĥ0 and Ĥλ Hamiltonians for the electronic systems have the following
forms:

Ĥ0 =
N∑︂

i=1

[︃
−1

2∇2
i + V ext

λ=0(i)
]︃
. (1.80)

Ĥ(λ) =
N∑︂

i=1

[︃
−1

2∇2
i + V ext

λ (i)
]︃

+
N∑︂

i=1

N∑︂
j>i

λ

|ri − rj|
. (1.81)

By substituting equations 1.80 and 1.81 into equation 1.79, we obtain the
perturbative Hamiltonian Ĥ1(λ):

Ĥ1(λ) =
N∑︂

i=1

N∑︂
j>i

1
|ri − rj|

+ 1
λ

N∑︂
i=1

[︃
V ext

λ (i) − V ext
λ=0(i)

]︃
. (1.82)

The ground-state wave function |Ψλ⟩ for λ-dependent system is defined so
that it satisfies the Schrödinger equation:

Ĥ(λ)|Ψλ⟩ = E(λ)|Ψλ⟩. (1.83)

Then the ground-state total energy, E(λ = 1), can be obtained by using
Hellmann-Feynman theorem with normalization condition ⟨Ψλ|Ψλ⟩ = 1:

E(λ = 1) = E0 +
1∫︂

0

dλ⟨Ψλ|
(︄

Ĥ1(λ) + λ
dĤ1(λ)

dλ

)︄
|Ψλ⟩, (1.84)
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where E0 = ⟨Ψ0|Ĥ0|Ψ0⟩ is the zeroth-order energy.
We note that the AC path in DFT is chosen such that the electron density

is kept fixed at its physical value along the way, see Ref. [162] for details. The
equation 1.84 can be written as follows:

E = E0 +
1∫︂

0

dλ⟨Ψλ|
N∑︂

i=1

N∑︂
j>i

1
|ri − rj|

|Ψλ⟩

+
1∫︂

0

dλ⟨Ψλ|
N∑︂

i=1

d
dλ

V ext
λ (ri)|Ψλ⟩ (1.85)

= E0 + 1
2

1∫︂
0

dλ
∫︂ ∫︂

dr dr′⟨Ψλ| ρ̂(r)[ρ̂(r′) − δ(r − r′)]
|r − r′|

|Ψλ⟩

+
∫︂

dr ρ(r)[V ext
λ=1(r) − V ext

λ=0(r)]. (1.86)

In above equation, ρ̂(r) = ∑︁N
i=1 δ(r − ri) is electron density operator, and

ρ(r) = ⟨Ψλ|ρ̂(r)|Ψλ⟩ for any 0 ≤ λ ≤ 1.
The zeroth-order energy for the KS reference state |Ψ0⟩ given by Slater deter-

minant of occupied single-particle KS orbital Ψi(r) can be expressed as follows:

E0 = ⟨Ψ0|
N∑︂

i=1

[︃
−1

2∇2
i + V ext

λ=0(ri)
]︃
|Ψ0⟩ = Ts[Ψi(r)] +

∫︂
drρ(r)V ext

λ=0(r). (1.87)

Substituting equation 1.87 into equation 1.85 we get:

E = Ts[Ψi(r)] +
∫︂

drρ(r)V ext
λ=1(r)

+ 1
2

1∫︂
0

dλ

∫︂ ∫︂
drdr′⟨Ψλ| ρ̂(r)[ρ̂(r′) − δ(r − r′)]

|r − r′|
|Ψλ⟩ (1.88)

= Ts[Ψi(r)] + Eext[ρ(r)] + J [ρ(r)] + 1
2

∫︂
dλ
∫︂ ∫︂

drdr′ ρ
λ
xc(r, r′)ρ(r)

|r − r′|
. (1.89)

The last term in above equation is XC energy, in which ρλ
xc(r, r′) is XC hole

related to density-density correlation function.

ρλ
xc(r, r′) = ⟨Ψλ|δρ̂(r)δρ̂(r′)|Ψλ⟩

ρ(r) − δ(r − r′), (1.90)

where δρ̂(r) = ρ̂(r)−ρ(r) is “fluctuation” of density operator around its expecta-
tion value. This term is linked to response properties (dissipation) of the system
through zero-temperature “fluctuation-dissipation” theorem [163]. This theorem
then leads to

⟨Ψλ|δρ̂(r)δρ̂(r′)|Ψλ⟩ = − 1
2π

∞∫︂
−∞

dωImχλ(r, r′, ω), (1.91)

where χλ(r, r′, ω) is the linear density-response function of the system.
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The XC energy can be rewritten with using the term v(r, r′) = 1
|r−r′| and

equation 1.91

Exc = 1
2

1∫︂
0

dλ
∫︂ ∫︂

drdr′v(r, r′)
[︃
− 1

2π

∞∫︂
−∞

dωImχλ(r, r′, ω) − δ(r − r′)ρ(r)
]︃
(1.92)

= 1
2

1∫︂
0

dλ
∫︂ ∫︂

drdr′v(r, r′)
[︃

− 1
π

∞∫︂
0

dωχλ(r, r′, iω) − δ(r − r′)ρ(r)
]︃
. (1.93)

Therefore, the task of calculating the XC energy is shifted to that of com-
puting the response functions of a series of fictitious systems along the AC path.
The random phase approximation is a particularly simple approximation of the
response function:

χλ
RPA(r, r′, iω) = χ0(r, r′, iω)

+
∫︂

dr1dr2 χ0(r, r1, iω)λv(r1, r2)χλ
RPA(r2, r′, iω),

(1.94)

where χ0(r, r1, iω) is the independent-particle response function of the KS refer-
ence system at λ = 0.

χ0(r, r′, iω) =
∑︂
i,j

(fi − fj)Ψ∗
i (r)Ψj(r)Ψ∗

j(r′)Ψi(r′)
ϵi − ϵj − iω

. (1.95)

where ϵi are orbital energies and fi are occupation factors.
Finally, the XC energy in RPA can be separated into an exact exchange (EXX)

and the RPA correlation term.

EEXX
x = 1

2

∫︂ ∫︂
drdr′v(r, r′)

[︃
− 1

π

∞∫︂
0

dωχ0(r, r′, iω) − δ(r − r′)ρ(r)
]︃

(1.96)

= −
∑︂
ij

fifj

∫︂ ∫︂
drdr′Ψ∗

i (r)Ψj(r)v(r, r′)Ψ∗
j(r′)Ψi(r′) (1.97)

and

ERPA
c = − 1

2π

∫︂ ∫︂
drdr′v(r, r′)

∞∫︂
0

dω
[︃ 1∫︂

0

dλχλ
RPA(r, r′, iω) − χ0(r, r′, iω)

]︃
(1.98)

= 1
2π

∞∫︂
0

dωTr[ln(1 − χ0(iω)v) + χ0(iω)v]. (1.99)

The RPA method offers several advantages over standard DFT approxima-
tions and other methods. The RPA correlation energy is inherently non-local,
making it well-suited for capturing long-range interactions, such as van der Waals
forces. RPA incorporates the exact-exchange energy, which cancels exactly the
self-interaction error present in the Hartree energy. Moreover, RPA considers dy-
namic electronic screening effects by summing up a sequence of “ring” diagrams
to infinite order. This makes RPA particularly effective for small-gap systems,
where finite-order MBPT methods often fail [42, 164].
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1.5.2 Beyond-RPA methods
The RPA method has been known to underestimate binding energies in many

cases [41, 43, 165, 166]. The accuracy of RPA can be improved by including
additional terms, such as higher-order exchange terms or various singles correc-
tions, or by including approximate exchange–correlation kernels [41, 167, 168,
169, 170, 171, 172, 173, 174]. Moreover, most current RPA calculations are per-
formed non-self-consistently, using DFT orbitals as input [160, 175]. There have
been several studies that analyzed whether performing self-consistent RPA calcu-
lations affects the accuracy [176, 177, 178, 179, 180] However, these methods can
significantly increase computational demands and are not yet implemented in the
PBC approach. In this section, we will discuss the beyond-RPA contributions
(corrections) we used in our work.

The total RPA energy without any corrections can be expressed as follows:

ERPA
tot = EEXX + ERPA

c . (1.100)

In above equation, EEXX is the HF energy evaluated with approximate DFT
orbitals and ERPA

c is direct RPA correlation energy.
The common correction is the inclusion of singles contributions, which arise

because Brillouin’s theorem does not apply when using DFT orbitals for RPA
calculations. This correction can be calculated by using mean-field 1-RDMs built
from the eigenvectors of the Fock matrix h[γ0]

∆EHF = EHF[γ] − EHF[γ0], (1.101)
where γ is the fully interacting 1-RDM and γ0 is the noninteracting density
matrix.

The total singles correction can be divided into linear contribution (ERSE)
and the quadratic remainder (E1RDM,quad):

ERSE =
orb∑︂
ij

δγij(h[γ0])ij. (1.102)

E1RDM,quad = 1
2

orb∑︂
ijkl

(︃
δγijδγkl − 1

2δγilδγkj

)︃
(ij|kl). (1.103)

In these equations, i, j, k, l are general (spin) orbitals, δγ represents the dif-
ference between the fully interacting and non-interacting 1-RDMs, δγ = γ − γ0.
The RSE contribution was derived in Refs. [41, 181]. The 1RDM,quad contri-
bution is a straightforward extension of RSE. Detailed derivation of this energy
component can be found in Ref. [45]. Note that the singles energy contributions
vanish for the self-consistent Hartree-Fock reference due to Brillouin theorem.

As mentioned before, the RPA correlation energy can be derived from an ap-
proximate coupled-cluster doubles theory. This derivation was shown by Scuseria
et al. [156]

ERPA
c = 2

orb∑︂
rasb

(ra|sb)T rs
ab . (1.104)

In this context, the doubles amplitudes, T rs
ab , are obtained by solving the RPA

doubles amplitude equation. These amplitudes only consider the ring (RPA)

26



term and do not include any exchange interactions. Therefore, the second-order
screened exchange correction (SOSEX) offers an alternative approach to extend
beyond the direct RPA [182]. This correction was derived from couple cluster
theory [156], and removes a subset of the Pauli-exclusion violating contributions
from RPA correlation energy

ESOSEX
c = −

orb∑︂
rasb

(sa|rb)T sr
ba . (1.105)

The SOSEX correction exhibits rapid decay with distance between molecules
in interactions. Therefore, this correction is expected to affect mostly compact
clusters. This leads to significant improvement the short-range over-correlation
probem in RPA [160, 183].

The simplifying assumptions of direct RPA correlation energy also neglect
third- and higher-order many-body perturbation theory terms, which involve in-
teractions between hole-hole and particle-particle orbital pairs. In our study, we
include the third-order correction, 2g, which was derived in detail in Ref. [45]

E2g
c = −4

∑︂
rasbtc

(ab|rs)T rt
bc T ts

ca. (1.106)

The importance of 2g correction to RPA has been observed particularly in
noncovalent systems [45, 183]. This correction decays slowly, proportional to
1/R6, with R is distance between molecules.

The addition of the RPA corrections discussed above to direct RPA energy
leads to three variants of beyond-RPA methods we used to examine in paper P2.

The basic variant is RPA+RSE approach [41, 166]

ERPA+RSE
tot = EEXX + ERPA

c + ERSE. (1.107)
The higher-level variant is renormalized second-order perturbation theory

(rPT2) approach [181]

ErPT2
tot = EHF + ERPA

c + ERSE + ESOSEX
c . (1.108)

Finally, the variant, which uses all corrections specified is referred to as
RPA+MBPT3 [45]

ERPA+MBPT3
tot = EHF + ERPA

c + ERSE

+ E1RDM,quad + ESOSEX
c + E2g

c .
(1.109)

1.6 Basis sets
As mentioned before, it is necessary to use a basis-set expansion to express

the unknown spatial orbitals in terms of well-defined functions for practical calcu-
lations in quantum mechanics. The choice of an appropriate basis set depends on
specific properties of the considered systems and desired level of precision. There
are two main types of basis sets commonly used. Specifically, localized basis sets
are typically employed in molecular and cluster calculations, whereas plane-wave
basis sets are often used in solid-state calculations. We use both of them for
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our calculations, and therefore we will discuss them in this section, starting with
localized basis sets.

Localized basis sets consist of atomic or molecular orbitals that are centered on
specific atoms or groups of atoms. The Slater-type functions introduced by Slater
[184] seem to be the most natural choice of the atomic orbitals. This is because
the radial part of Slater orbitals decays in the same way as the exact solutions of
Schrödinger equation for hydrogen atom. However, the evaluation of molecular
integrals with Slater-type orbitals can not be done analytically. To overcome this
difficulty, Francis S. Boys [185, 186] recommended the use of Gaussian orbitals,
which lead to simpler integral evaluation thanks to Gaussian product theorem.
On the other side, the radial shape of the Gaussian orbitals is not as good as
one of the Slater orbitals as they have too fast decay with increasing distance
from nucleus and no cusp at very small distances. Therefore, it is necessary to
use more Gaussian than Slater basis functions in the calculation to achieve the
same precision. To capture the correct radial behavior of Slater-type orbitals, a
linear combination of multiple Gaussian functions is used to represent one basis
function. This type of a basis function is called a contraction.

The size of a localized basis set is a crucial factor. For isolated atoms, a
minimal basis set, such as a single 1s orbital for a hydrogen atom, may be sufficient
to provide a reasonable approximation for wavefunction. However, when atoms
form chemical bonds with other atoms, this minimal basis set is often insufficient
to describe the shape of wavefunction, and it is necessary to use larger basis sets.
There are several standard basis sets which have been proposed to improve the
minimal basis set. One of them is Pople basis sets [187, 188], which have been
widely used in quantum chemistry for many years, especially for HF and DFT
calculations. However, in order to recover a significant part of the correlation
energy, correlation-consistent basis sets introduced by Dunning and coworkers,
are widely used [189, 190, 191]. These basis sets are often denoted as cc-pVXZ,
where cc represents for correlation-consistent, p for polarized, V for valence, the
number X is the cardinal number (X = D, T, Q, 5, and so on), and Z is Zeta.
They can be then systematically improvable by adding diffuse functions to capture
electron correlation more effectively. In this way, one obtains aug-cc-pVXZ basis
sets, which we use in our MBE calculations. The main advantage of Dunning’s
correlation-consistent basis sets is that they are systematically constructed with
increasing completeness, which is suitable for extrapolating to complete basis set
(CBS) limit.

The use of a small basis sets offers computational efficiency, yet it may result
in less precision. Furthermore, using finite basis sets can introduce the basis set
superposition error (BSSE). This error arises from the fact that when two or more
molecules come together to form a complex, the basis functions of one molecule
can influence the optimization of orbitals on the other molecule. This can lower
the total energy of the system and lead to an overestimation of the binding
energy. To address this error, we use large basis sets or extrapolate results to
CBS depending on considered energy components. Alternatively, counterpoise
correction methods can be employed [192, 193, 194]. Specifically, we evaluate
energies of monomers in dimer basis and similar.

The basis sets we use for our calculations in the PBC approach are plane
wave basis sets. These basis sets are a popular choice for crystal calculations due
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to their suitability for modeling these systems. The orbitals describing electron
distribution in a crystal can be expanded using a set of plane wave functions eiGr,
where G is a vector of the reciprocal lattice. Here, Fourier representation is used
to describe how electronic wave functions are expressed in terms of plane waves.
In this representation, the coefficients of plane wave expansion are Fourier coef-
ficients. By computing and storing these coefficients, we can describe electronic
structure of solid and other properties of interest. The size of the basis set is
controlled by the highest momentum of plane wave vectors that are included in
expansion. The plane wave basis sets can be used in combination with pseudopo-
tentials, which simplify the treatment of all electrons in an atom by replacing
core electrons and their interactions with nucleus with an effective potential that
acts on valence electrons. A more advanced treatment of the core electrons is
provided by the projector-augmented wave (PAW) method which is implemented
in the Vienna ab-initio simulations package (VASP) that we used for PBC cal-
culations [195, 196]. The plane wave basis sets offer several advantages. One
notable benefit is their orthogonality, which simplifies the evaluation of various
terms in electronic Hamiltonian. Moreover, they describe entire crystal cell uni-
formly, thus there is no BSSE error. Despite their advantages, it is important
to note that they are very inefficient when studying isolated molecules. This is
because the same quality of basis set is used in the regions where there is no
electron density. Furthermore, the evaluation of Fock exchange term with plane
wave basis sets is more computationally expensive in comparison with localized
basis sets.

1.7 Computational techniques
In this section, we will first focus on discussing periodic systems (molecu-

lar solids). We then discuss how the binding energy of these systems can be
determined through periodic boundary conditions and many-body expansion ap-
proaches. The advantages and limitations of these approaches are also discussed
in detail. Finally, we will introduce the correction scheme used in our work.

1.7.1 Periodic systems
Molecular solids are periodic systems, containing an infinite number of elec-

trons and nuclei. Thus, we have to find a suitable way to characterize such
systems. In molecular solids, atoms or molecules are repeated in space. This
regular repetition is determined by lattice vectors R⃗, which can be formed as a
linear combination of so-called unit-cell vectors ai⃗ as follows:

R⃗ = n1a1⃗ + n2a2⃗ + n3a3⃗ =
3∑︂

i=1
niai⃗. (1.110)

Similarly, we may construct reciprocal lattice of vectors G⃗ as:

G⃗ = n1b1⃗ + n2b2⃗ + n3b3⃗ =
3∑︂

i=1
nibi⃗, (1.111)
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where bi⃗ are primitive reciprocal lattice vectors that are defined as:
ai⃗ · bi⃗ = 2πδij. (1.112)

We note that ai⃗ vectors are not unique, and we use a specific primitive cell
known as Wigner-Seitz cell. This cell is related to first Brillouin zone (BZ) in
reciprocal space. The volume of the first BZ (VBZ) is then defined as:

VBZ = (2π)3

V0
, (1.113)

where V0 = a1⃗ · (a2⃗ × a3⃗) is the volume of the unit cell.
In the context of an infinite lattice, it is not possible to normalize a wave

function over all space because the lattice extends infinitely. Therefore, we in-
troduce a normalization volume Ω = l3V0, in which l is an integer much greater
than 1 to ensure that Ω is large enough to effectively model the infinite system.
All points that are outside Ω are then mapped onto a point inside Ω through
periodic boundary conditions.

We then introduce a translation operator acting on the wavefunction that
changes it by nothing more than a phase factor

T̂ RΨk⃗(r⃗) = eik⃗R⃗Ψk⃗(r⃗). (1.114)
Here we restrict our considerations to single-particle eigenfunctions for elec-

trons. k⃗ is a vector and may be considered as a “quantum number” characterizing
the wave functions of a periodic crystal. The eigenfunctions and eigenvalues can
then be obtained by considering only k⃗ in the first BZ. This means that we can
solve the equations for a set of k-points instead of simulating a large supercell.

The eigenfunctions are given by the Bloch’s theorem, which states that any
single-particle wave function in a periodic system can be written as the product
of a plane wave and a lattice-periodic part:

Ψk⃗(r⃗) = 1√
Ω

eik⃗r⃗ϕk⃗(r⃗). (1.115)

The energy eigenvalues are periodic in reciprocal space:
ϵ(k⃗) = ϵ(k⃗ + G⃗). (1.116)

In principle, we should know eigenvalues and eigenfunctions at all k-points
in first BZ. However, in practice, the wave functions at k-points that are close
together in BZ are almost identical due to periodicity of crystal lattice. This
enables approximation of integration over k⃗ by a weighted sum over a discrete
set of points, rather than performing a continuous integration over entire BZ.
Numerous methods have been suggested for sampling k-points in this context.
Among these, Monkhorst-Pack [197] is one of the most widely used scheme.

For periodic systems, to make the calculations practical, the plane waves
are introduced as basis functions for the expansion of unknown Bloch waves as
follows:

Ψk⃗,j(r⃗) =
∑︂
G⃗

CG⃗,k⃗,j

1√
Ω

ei(k⃗+G⃗)·r⃗. (1.117)

In above equation, j is energy band index. The sum over reciprocal lattice
vectors G⃗ is limited to those for which ℏ2

2m
(k⃗ + G⃗)2 ≤ Ecutoff . In other words, only

plane waves with kinetic energy below the specified cutoff are included in basis
set used for the calculations.
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1.7.2 Approaches for calculations of binding energy of
molecular solids

Binding energy of a crystal with PBC approach can be obtained by this ex-
pression:

Eb = Esolid

Z
− Emol, (1.118)

where Esolid is energy of a crystal, Emol is energy of an isolated molecule, and
Z is number of molecules in unit cell. In this approach, the binding energy is
influenced by various numerical parameters, including possible approximations
of core electrons, energy cutoff of plane-wave basis set, density of k-points used
for solid calculations, and volume of unit cell used for molecule calculations.
Obtaining converged values with these parameters can significantly increase the
computational time [16, 21, 23]. This has currently limited the use of PBC
approach with reference methods, such as CCSD(T) [29, 198, 199].

As an alternative, binding energy of molecular solids can be determined using
MBE calculations. The basic idea of this approach is to decompose the energy
(or other properties) of a large system into a sum of smaller contributions. This
reduces the computational requirements compared to the evaluation of single
energy in the PBC approach. Therefore, CCSD(T) method becomes feasible to
perform in the MBE approach, but still only for small systems.

In this approach, the energy of a system with N monomers can be expanded
in orders of interaction energies as follows:

E =
N∑︂

i=1
Ei +

N∑︂
i<j

∆Ei,j +
N∑︂

i<j<k

∆Ei,j,k +
N∑︂

i<j<k<l

∆Ei,j,k,l + . . . , (1.119)

where ∆Ei,j is the interaction energy of dimers, and ∆Ei,j,k and ∆Ei,j,k,l are non-
additive energies of trimers and tetramers, respectively. They can be expressed
as follows:

∆Ei,j = Ei,j − Ei − Ej. (1.120)

∆Ei,j,k = Ei,j,k − ∆Ei,j − ∆Ei,k − ∆Ej,k − Ei − Ej − Ek. (1.121)

∆Ei,j,k,l = Ei,j,k,l − ∆Ei,j,k − ∆Ei,j,l − ∆Ei,k,l − ∆Ej,k,l

− ∆Ei,j − ∆Ei,k − ∆Ei,l − ∆Ej,k − ∆Ej,l − ∆Ek,l

− Ei − Ej − Ek − El,

(1.122)

In above equations, Ei is the energy of monomer i. Ei,j is the energy of dimer,
and Ei,j,k, and Ei,j,k,l are the energies of trimer and tetramer, respectively.

The higher-order terms can be defined similarly.
In the case of molecular solids where all molecules are symmetry equivalent, we

select one of the molecules as a reference (ref). The binding energy of a molecular
solid, Eb, is then obtained from interaction energies of dimers and non-additive
three-, four-, and higher-body energies as:

Eb = 1
2
∑︂

j

∆Eref,j + 1
3
∑︂
j<k

∆Eref,j,k + 1
4
∑︂

j<k<l

∆Eref,j,k,l + . . . . (1.123)
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In our work, we assume that the gas phase structure is identical to the solid
phase structure, resulting in the monomer term being zero in equation 1.123. In
the MBE approach, there are several numerical parameters we need to consider to
reach converged results, including the choice of fragment size (dimer, trimer,. . . ),
the number of fragments included for each specific size, and the basis-set size
[17, 28, 30, 200, 201, 202]. The overall computational expense is significantly
dependent on how rapidly MBE achieves convergence with these parameters.
Moreover, the MBE convergence depends on the considered systems. Specifically,
the convergence with the fragment size can be slow for the systems where many-
body polarization effects are important [202, 203]. This issue can be addressed by
using techniques such as fragment embedding [24, 204, 205] or by using a force
field to account for more distant fragments [206]. However, the precision and
accuracy of these approaches remains a subject of uncertainty [207].

In principle, all individual contributions in MBE should be included to obtain
the total energy with a high precision. However, in practice, it is common to
neglect high-order terms (four-body and higher-order terms) in the expansion
to make the calculations more tractable because these terms are expected to
have small contributions [23, 208]. Moreover, the precise evaluation of high-order
terms can be difficult due to numerical errors [202]. However, high-order terms
have been shown to be important in predicting relative conformational energies of
proteins [209], and in systems where many-body polarization effects are significant
[202, 203, 210]. Therefore, the decision to include or neglect the high-order terms
in MBE is dependent on the considered systems and the level of desired precision.

In equation 1.123, the summations are infinite as they run over all molecules
in crystal. However, in practice, cut-off distances are introduced. This is because
the interaction energy of individual contributions at large distances is very small
and can be usually neglected [23]. In our work, we defined distance of dimers
as average Cartesian distance of all pairs of atoms between two molecules. For
trimers and tetramers, the distance is determined by summing the distances of
all the dimers contained within the cluster.

1.7.3 Correction scheme
The CCSD(T) method can be applied in the MBE approach to obtain reliable

binding energy of molecular solids, but it is typically limited to small systems.
As discussed earlier, apart from the basis set size, it is necessary to calculate
each individual contribution in MBE, ensuring convergence with the number of
molecules in each contribution (cut-off distance). This makes reaching the reliable
binding energy of large molecular solids with CCSD(T) method more challenging.
Therefore, the development of a scheme to address this difficulty is important.

It is expected that the difference in binding energy between CCSD(T) method
and approximate methods occurs mainly at short distances. This is because in-
teractions between molecules typically decrease as the distance between them
increases. Based on this fact, we tried to examine the accuracy of the correction
scheme where a portion of the CCSD(T) data is replaced with results obtained
from approximate methods [211]. Clearly, this scheme can be particularly bene-
ficial for a substantial reduction of the computational cost. The binding energy
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in the correction scheme can be expressed as follows:

EA
b = EB

b + 1
2

%∑︂
j

(︂
∆EA

ref,j − ∆EB
ref,j

)︂
+ 1

3

%∑︂
j<k

(︂
∆EA

ref,j,k − ∆EB
ref,j,k

)︂

+1
4

%∑︂
j<k<l

(︂
∆EA

ref,j,k,l − ∆EB
ref,j,k,l

)︂
.

(1.124)

In above equation, % is percentage of the fragments used for replacement, A
and B represent reference CCSD(T) and approximate methods, respectively. In
our work we tested how suitable different methods are for the correction scheme
and how large is the percentage of clusters that needs to be treated explicitly.

1.8 Methods for calculations of binding energy
of molecular solids

The calculations of reliable binding energy of molecular solids, converged with
numerical parameters using CCSD(T) method, are highly demanding and im-
practical for large systems. In this section, we will provide an overview of the
approximate methods currently used to calculate the binding energy of molecular
solids.

In principle, empirical force fields can be applied to calculate binding energy
of molecular solids [212, 213, 214]. Their notable advantage lies in their low com-
putational expense, making them suitable for calculating the properties of large
systems. However, they may not capture the subtle balances between intra- and
intermolecular interactions that occur in molecular crystals. Additionally, the
quality of predictions heavily depends on the quality of the force field parame-
ters, which may not always be readily available for all the systems. Furthermore,
the available force fields typically do not account for polarization. Nevertheless,
recent advancements in machine learning force fields (ML-FF) can yield binding
energies that are comparable with the results obtained with quantum mechan-
ical methods [26, 215]. For instance, the performance of the ML-FF approach
proposed by Thürlemann et al. is comparable to the most accurate dispersion-
corrected DFT method reported so far for crystals in X23 dataset and 13 ice
phases [215].

Over the past decade, electronic structure methods have been used widely
to describe interactions in molecular solids. Among them, semi-empirical meth-
ods, which can be derived from either HF or DFT theory by introducing em-
pirical parameters and methodological approximations, are the simplest variants
[216]. These methods, especially density-functional tight-binding, have emerged
as promising tools to calculate binding energies of molecular solids due to their
computational efficiency [217, 218, 219]. However, there are still several limita-
tions that hinder the use of these methods as the standard way for predicting the
stability of molecular crystals [220, 221].

DFT methods can be used to calculate binding energies of molecular solids.
However, the performance of these methods is influenced by the choice of DFT
functionals and the specific types of molecular solids studied [71]. For example,
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standard DFT approximations can not describe exactly charge density and dis-
persion interactions. The use of hybrid DFT functionals can mitigate delocaliza-
tion errors and offer higher accuracy [37, 222]. Additionally, dispersion-corrected
DFT models have been developed and used to obtain binding energies of molecu-
lar solids with accuracy sufficient for many purposes [33, 34, 35, 36, 146, 152, 223,
224]. As an illustration, employing the DFT method with a new XDM correction
results in a mean absolute error of merely 0.8 kJ/mol for lattice energies of 13
ice phases, surpassing the performance of all previously reported DFT functionals
[36]. Nevertheless, it is important to note that these DFT models may not always
provide high accuracy [21, 22, 63, 225]. For example, several dispersion-corrected
DFT models have shown to underestimate the binding energy of CO2 crystal by
more than 10 % [21]. Double hybrid DFT methods have also demonstrated to
provide good accuracy for binding energies of molecular solids [226, 227, 228, 229].
However, their performance was shown not to be superior to wave function meth-
ods, such as MP2 [228].

The alternative to DFT methods for obtaining binding energies of molec-
ular solids are wave function methods based on perturbation theory, such as
Møller–Plesset perturbation theory or random phase approximation. These meth-
ods do not reach the accuracy of coupled cluster [16] but provide more consistent
and offer more accurate results compared to standard DFT approximations [21].
Among such methods, MP2 theory is the simplest form of many-body pertur-
bation theory and is sometimes used [40, 230, 231, 232, 233, 234]. This method
can yield binding energies which are in a very good agreement with the reference
CCSD(T) values for some crystals, such as CH4 and CO2 [23]. However, the
quality of binding energies obtained from MP2 method is affected by the poor
performance in systems with delocalized electrons [235], and the lack of three-
body and higher dispersion terms [236]. Recently, spin-component-scaled (SCS)
MP2 variant, which scales the same-spin and opposite-spin components of the
correlation energy, has demonstrated superior performance over standard MP2
in describing the binding energies of crystals [234, 237].

RPA method can overcome the limitations of MP methods thanks to satis-
factory description of various bonding interactions. This makes the RPA method
suitable for describing the binding energies of molecular solids [16, 21, 238, 239].
However, it has known that standard RPA method tends to underestimate the
binding energies due to its reliance on non-self-consistent DFT orbitals [21, 41,
240]. For instance, the RPA binding energies of studied molecular solids under-
estimate the reference data by more than 10 % [21]. Currently, single corrections
are added to RPA to improve the accuracy of RPA for binding energies of crystals
[16, 21]. In this thesis we focus on RPA and try to understand where its errors
come from and how they can be reduced.

1.9 Summary
In this chapter, we described extensively the theoretical methods, including

HF, DFT, RPA, MP, and CC, currently used to calculate the properties of mate-
rials, especially for molecules and solids. Additionally, we discussed the method-
ologies for determining the binding energies in molecular solids using both PBC
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and MBE approaches. In the following we use the methods with a goal of under-
standing their accuracy and the effect of numerical parameters on the results.
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2. Computational details
To perform the calculations and generate the results for analysis in this thesis,

we first selected a set of molecular solids. Subsequently, we carried out the calcu-
lations of the studied methods using both MBE and PBC approaches to obtain
binding energies of the selected systems. Below, we provide a detailed description
of the computational settings used for these calculations.

2.1 Systems
Four different molecular solids were selected, including monoclinic ethane [241]

and ethylene [242], and orthorhombic and cubic forms of acetylene [243]. To dif-
ferentiate between the two acetylene forms, they are denoted as “acetylene/I”
for the orthorhombic form and “acetylene/II” for the cubic form from this point
onward. We note that in our papers (P1 and P2 in List of Publications), we used
“acetylene/c” and “acetylene/o” for the orthorhombic and cubic forms, respec-
tively, but we changed the notation in this thesis. The selection of these systems
is motivated by several key considerations. Firstly, they are held together by dis-
persion forces, which are challenging to describe accurately by electronic structure
methods. Furthermore, there is a variation in the importance of electrostatic con-
tributions from ethane to acetylene. This can have an effect on the convergence of
the energy components with the numerical parameters. Lastly, they are compact
in size, making them possible for reference CCSD(T) calculations.

Table 2.1: The unit cell volume at experimental equilibrium (V0), the lattice
constants (a, b, c), the number of molecules in the unit cell (Z), and the CSD
code of the selected molecular solids.

Systems V0(Å) Lattice constants Z CSD code
a b c

Ethane 138.89 4.226 5.623 5.845 2 ETHANE01
Ethylene 124.18 4.626 6.620 4.067 2 ETHLEN01
Acetylene/I 208.23 6.198 6.023 5.578 4 ACETYL11
Acetylene/II 227.54 6.105 6.105 6.105 4 ACETYL03

The crystal structures of the selected systems were obtained from the Cam-
bridge Structural Database (CSD) [244], as detailed in Table 2.1. Using the
optB88-vdW functional [245, 246, 247, 248], we optimized atom positions of the
selected systems while keeping the lattice parameters at their experimental val-
ues. Subsequently, we directly extracted the geometries of isolated molecules from
these optimized crystal structures and used them without additional optimization
for the MBE calculations using mbe.py library in Ref. [23].
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2.2 Orbitals used for RPA calculations
Within the PBC approach, four KS-DFT orbitals were selected: KS/PBE,

KS/SCAN, KS/PBE0, and KS/SCAN0. Apart from these orbitals, we used sem-
icanonical/PBE (abbreviated as semi/PBE) and HF orbitals within the MBE
approach. Here the semi/PBE orbitals are eigenstates of the occupied-occupied
and virtual-virtual blocks of the Fock matrix computed from KS/PBE occupied
orbitals [249, 250, 251]. This means that they serve as intermediate choice be-
tween KS/PBE and HF orbitals. For the RPA corrections in the rPT2 and
RPA+MBPT3 methods, we used only three types of orbitals, including KS/PBE,
semi/PBE, and HF orbitals. The only exception here are the RSE corrections,
for which all examined orbitals were used.

2.3 Computational techniques
We begin by describing the techniques in the MBE approach. To generate

structures of the fragments (dimers, trimers, . . . ) for the calculations, we used
an in-house library from Ref. [23]. The identification of symmetry equivalent
clusters was carried out using the approach proposed in Ref. [252]. The Molpro
program [253] was used for the MP2, MP3, and CCSD(T) calculations. For the
RPA and its additional corrections, an in-house code using a canonical-orbital
variant of the algorithm described in Ref. [43] was used. All the correlation
energies were obtained within the frozen-core approximation.

The MBE calculations were first calculated up to the 4-body term for the
CCSD(T) calculations. We then found that for our systems the contribution
of the 4-body CCSD(T) energy is very small, and its accurate evaluation can
be challenging due to numerical errors as observed before [202]. Therefore, we
decided to truncate the MBE calculations at the 4-body term for MP2 and RPA
based on pure DFT orbitals. For MP3 and RPA based on semi/PBE or HF
orbitals, the calculations were limited to the 3-body term. Similarly, all RPA
corrections were determined up to the 3-body term, with the exception of RSE,
which was extended up to the 4-body term. The detailed discussion of the used
settings follows in the next chapter.

Dunning’s augmented correlation-consistent basis sets were used for all the
MBE calculations [254]. The extrapolations to CBS limit using the formula of
Halkier et al. [255] were applied to reduce the basis-set incompleteness errors of
the correlation energies.

ECBS = (X + 1)nEX+1 − XnEX

(X + 1)n − Xn
, (2.1)

where EX is the energy in the AVXZ basis set, and n = 3 was set. The complete
auxiliary basis set singles corrections (CABS) [256, 257] to the HF energy were
calculated to improve the basis set convergence of the HF component. To mitigate
the basis-set dependence of the MP2 and CCSD correlation energies, the F12
methods were used in some cases [258, 259]. In these cases, the extrapolations
are made using equation 2.1 with n = 5 [23, 260]. For the triples (T) component
in the CCSD(T) method, scaling was applied to the two-body term [261], while it
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remained unscaled for the three- and four-body contributions. This is because the
non-additive (T) contributions converge quickly with the basis set size, resulting
in almost no difference between the scaled and unscaled (T) values [44].

We now move to describe the techniques in the PBC approach. We used
VASP [195, 196, 262], which implements PAW method [263, 264], to perform the
RPA and MP2 calculations. More specifically, the RPA calculations followed the
algorithm described in Ref. [265, 266]. The RSE energies were evaluated according
to Ref. [41]. For the MP2 calculations, the standard algorithm implemented in
VASP by Marsman et al. was used [267]. The “standard” PAW data sets based
on KS/PBE states were employed for the correlation energies. For the mean-
field energies, the “hard” PAW data sets were used, except for the HF and RSE
components, which used “standard” PAW data sets. In the second part of the
next chapter, we discuss the convergence of the energies with respect to various
parameters that are needed to obtain converged binding energies.
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3. Convergence of energy
components with numerical
parameters

The energy components calculated from both MBE and PBC approaches de-
pend on various numerical parameters. It is essential to determine the optimal
settings for these parameters that are reliable and computationally feasible for
obtaining very precise energy values. In this chapter, we first focus on under-
standing the challenges associated with reaching converged values of the energy
components with respect to the numerical parameters. We then try to estimate
the uncertainties in the energy components to make comparison of their results
between MBE and PBC approaches more reliable in the next chapter. The con-
vergence of the energy components with numerical parameters in the MBE cal-
culations was discussed in our papers P1 and P2, while the convergence of the
energy components in the PBC calculations is discussed in our upcoming work.

3.1 Many body expansion
In the MBE approach, the results of n-body contributions are affected by two

main parameters: basis set and cut-off distance. We need to obtain converged
values of the energy components with these two parameters for comparison with
PBC results in chapter 4 and examination of approximate methods in chapter
6. The effect of these parameters will be discussed in detail in this section,
starting with the basis set, then with the cut-off distance. We note that obtaining
converged values with the cut-off distance is only necessary when using MBE
results to compare to PBC results or when calculating a reference binding energy.
For testing of accuracy, it is sufficient to use a non-converged n-body contribution.

3.1.1 Basis set
It is critical to understand and identify which basis set is reliable enough for

each energy component, as the computational cost increases rapidly with the
basis-set size. To evaluate the convergence of an energy component with the
basis-set size, it is typically necessary to compute this energy using various basis
sets. However, this can be computationally demanding. Here, we only evaluate
the convergence of the energy components with the basis set based on difference
between the values obtained with the AVQZ and AVTZ basis sets. We discuss
the convergence of each of n-body terms separately, starting with the two-body
contributions, then with the non-additive contributions.

3.1.1.1 Two-body terms

The basis set convergence of the energy components obtained from the 2-body
calculations was discussed in our papers P1 and P2. Specifically, we focused on
the energy components in the MP2 and CCSD(T) methods in paper P1, and
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Table 3.1: The basis set convergence of the energy components obtained from the
2-body calculations in different approaches (kJ/mol). The values show differences
between the values obtained with the AVQZ and AVTZ basis sets. The energy
components (EDFT, EEXX, and ERSE) do not depend on the transformation from
KS/PBE orbitals to semi/PBE orbitals, and are thus identical.

Inputs Components Ethane Ethylene Acetylene/I Acetylene/II

KS/PBE

EDFT 0.00 −0.03 −0.15 −0.25
EEXX −0.04 −0.05 −0.09 −0.07
ERSE 0.02 0.02 0.05 −0.02
ERPA

c −0.63 −0.81 −1.32 −0.98
ESOSEX

c 0.13 0.18 0.31 0.22

semi/PBE

EDFT 0.00 −0.03 −0.15 −0.25
EEXX −0.04 −0.05 −0.09 −0.07
ERSE 0.02 0.02 0.05 −0.02
E1RDM,quad 0.01 0.00 0.00 0.01
ERPA

c −0.58 −0.73 −1.13 −0.87
ESOSEX

c 0.14 0.19 0.31 0.22
E2g

c −0.10 −0.15 −0.25 −0.19

KS/SCAN

EDFT −0.13 −0.09 −0.17 −0.11
EEXX 0.11 0.15 0.07 0.02
ERSE −0.12 −0.15 −0.13 −0.11
ERPA

c −0.06 −0.29 −1.04 −0.76

KS/PBE0

EDFT −0.01 −0.01 −0.09 −0.17
EEXX −0.02 −0.01 −0.03 −0.07
ERSE 0.00 0.00 −0.01 −0.01
ERPA

c −0.59 −0.78 −1.27 −0.96

KS/SCAN0

EDFT −0.04 0.00 −0.07 −0.02
EEXX 0.04 0.07 0.04 0.00
ERSE −0.06 −0.09 −0.09 −0.08
ERPA

c −0.22 −0.45 −1.10 −0.82

HF

EHF −0.02 −0.01 −0.04 −0.07
EHF+CABS −0.01 0.00 0.00 0.00
ERPA

c −0.71 −0.97 −1.50 −1.18
EMP2

c −0.54 −0.74 −1.18 −0.92
EMP2−F12

c −0.03 −0.09 −0.60 −0.45
EMP3

c −0.50 −0.71 −1.18 −0.94
ECCSD

c −0.31 −0.53 −0.95 −0.75
ECCSD−F12b

c −0.02 −0.10 −0.40 −0.45
ET

c (scaled) 0.03 0.00 −0.04 −0.04
ESOSEX

c 0.20 0.28 0.45 0.34
E2g

c −0.12 −0.18 −0.32 −0.25
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on the energy components in RPA calculations based on KS/PBE, semi/PBE
and HF orbitals in paper P2. The energy components of the remaining methods
were not discussed in our published papers. Understanding the convergence of the
energy components in all studied methods is important. Therefore, we summarize
the results of the basis set convergence of the energy components in all studied
methods in Table 3.1.

Referencing Table 3.1 for KS/PBE orbitals, we see that the energy differences
between AVQZ and AVTZ of the mean field energies (DFT, EXX, and RSE)
remain consistently below 0.1 kJ/mol, except for the DFT energy in some cases.
For example, the DFT(KS/PBE) energy difference between AVQZ and AVTZ
reaches up to 0.25 kJ/mol for acetylene/II. This indicates that the 2-body DFT
energies converge more slowly with the basis set compared to the other mean field
energies. For the other orbital inputs studied, the convergence of the mean field
energies with the basis set is similar to that observed for KS/PBE orbitals.

The components of the correlation energy (RPA, MP2, MP3, and CCSD) de-
pend more strongly on the basis-set size, as expected. The values of these energy
components obtained with AVQZ differ from those calculated with AVTZ in the
range of 0.1 to 1.5 kJ/mol. The basis set convergence of the RPA correlation
energies depends on DFT orbitals used. Specifically, the RPA values based on
KS/SCAN and KS/SCAN0 orbitals converge more rapidly than those based on
KS/PBE and KS/PBE0 orbitals (see Table 3.1). Among the correlation energies
based on HF orbitals, CCSD exhibits the fastest convergence, while RPA con-
verges the slowest. This is due to the absence of second-order exchange energy in
the RPA calculations. This observation indicates that we need to use large basis
set or extrapolate to CBS to obtain the RPA correlation energy converged with
the basis set.

The scaling procedure proposed by Knizia et al. [261] has been shown to effec-
tively reduce the basis-set size dependence of the (T) component [44]. We applied
this procedure to the 2-body (T) calculations. The results show that the basis set
convergence of (T(scaled)) component is faster than that of correlation energies
discussed above. Indeed, the energy differences between AVQZ and AVTZ for
this component are around only 0.05 kJ/mol or less (see Table 3.1).

The SOSEX and 2g corrections demonstrate a faster convergence than the
RPA correlation energies, but slower than the mean field energies. Their energy
differences between AVQZ and AVTZ fall within the range of 0.1 to 0.5 kJ/mol
(see Table 3.1). These corrections converge faster for KS/PBE orbitals than for
HF orbitals. Interestingly, the addition of the SOSEX corrections results in some
cancellations in the basis set errors for the RPA correlation energy. This makes
the RPA+SOSEX energy less sensitive to the basis set than the RPA correlation
energy.

As discussed above, the energy components obtained from the 2-body calcu-
lations depend on the basis-set size, especially for the correlation energies. The
question that arises now is how the convergence of the energy components with
the basis set is influenced by distance. To clarify this point, we divided dimers into
two groups: a proximate group (r < 10 Å) and a distant group (10 < r < rcut).
It is evident from Fig. 3.1 that the differences between AVQZ and AVTZ arise
primarily at the proximate dimers, while these differences are close to zero for
the distant dimers. This result may be understood as follows: as the distance be-
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Figure 3.1: Cut-off distance dependence of the energy differences between the
AVQZ and AVTZ basis sets obtained from the 2-body calculations for ethylene.

tween molecules increases, the strength of interactions decreases and perturbing
potential of other molecule becomes more homogeneous so that smaller basis sets
are required for the distant dimers compared to the proximate dimers. Conse-
quently, one can use small basis sets, such as AVTZ or even AVDZ, for the distant
dimers. This can lead to the significant savings of CPU time as the number of
distance dimers is large.

Finally, we discuss the importance of the CABS corrections and F12 approach
in improving the basis set convergence of the HF and correlation energies, respec-
tively. As can be seen in Table 3.1, the HF+CABS values change only marginally,
by less than 0.01 kJ/mol, when going from AVTZ to AVQZ basis set in comparison
with the change of HF values without corrections (0.01–0.07 kJ/mol). Therefore,
the use of the CABS corrections is beneficial in calculating HF component. In
other words, employing CABS corrections allows us to obtain converged HF en-
ergy with a small basis set. The incorporation of the F12 corrections significantly
improves the basis set convergence for the MP2 and CCSD correlation energies.
Specifically, the differences between AVQZ and AVTZ for MP2-F12 and CCSD-
F12b are reduced to below 0.1 kJ/mol for ethane and ethylene. However, notable
differences (0.4–0.6 kJ/mol) observed for the two forms of acetylene arise from
numerical errors when using the AVQZ basis set with the F12 method. This issue
may come from the need to sum contributions of a large number of fragments,
and was also observed before [23, 202]. Overall, the CABS and F12 corrections
provide valuable means to improve the basis set convergence of the studied en-
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ergy components, but numerical noise needs to be considered when using these
corrections.

3.1.1.2 Non-additive terms

It was previously shown that the basis set convergence of the non-additive
terms is considerably faster than that of the two-body term [23, 44, 208]. Con-
sequently, one can use a small basis set to obtain converged values of the non-
additive terms. However, the basis set convergence of the non-additive DFT
energies has not yet been studied. Moreover, the convergence behavior of the
non-additive RPA correlation energies in molecular solids with the basis set re-
mains an open question. Similar to the 2-body terms, we discussed the basis set
convergence of several energy components in our works. Here we will extend the
discussion to include the energy components in all studied methods. The data
for the basis set convergence are summarized in Table 3.2 for the 3-body term
and in Table 3.3 for the 4-body term.
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Figure 3.2: Cut-off distance dependence of the energy differences between the
AVQZ and AVTZ basis sets obtained from the 3-body calculations for ethylene.

Let us first examine the basis set convergence of the mean field energies.
Observing Tables 3.2 and 3.3 for KS/PBE orbitals, it is evident that the errors in
the 3-body and 4-body mean field energies between the AVQZ and AVTZ basis
sets are almost negligible, except for some cases. For example, large differences
(around 0.1 kJ/mol) are observed in the case of the 3-body DFT and EXX energies
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Table 3.2: The basis set convergence of the energy components obtained from the
3-body calculations in different approaches (kJ/mol). The values show differences
between the values obtained with the AVQZ and AVTZ basis sets. The energy
components (EDFT, EEXX, and ERSE) do not depend on the transformation from
KS/PBE orbitals to semi/PBE orbitals, and are thus identical.

Inputs Components Ethane Ethylene Acetylene/I Acetylene/II

KS/PBE

EDFT −0.03 −0.01 0.04 0.07
EEXX 0.00 −0.03 0.01 0.02
ERSE 0.00 0.03 0.00 −0.02
ERPA

c −0.17 −0.18 −0.16 −0.14
ESOSEX

c 0.08 0.07 0.07 0.05

semi/PBE

EDFT −0.03 −0.01 0.04 0.07
EEXX 0.00 −0.03 0.01 0.02
ERSE 0.00 0.03 0.00 −0.02
E1RDM,quad 0.03 0.00 0.00 −0.05
ERPA

c −0.14 −0.07 −0.06 0.00
ESOSEX

c 0.05 0.03 0.03 0.03
E2g

c −0.03 −0.01 −0.01 0.01

KS/SCAN

EDFT 0.05 −0.01 0.09 0.02
EEXX 0.02 −0.03 −0.08 −0.05
ERSE −0.02 0.03 0.08 0.06
ERPA

c −0.34 −0.28 −0.05 −0.06

KS/PBE0

EDFT −0.03 −0.01 0.05 0.08
EEXX 0.01 0.00 0.00 −0.01
ERSE 0.00 0.00 0.01 0.01
ERPA

c −0.10 −0.09 −0.06 −0.07

KS/SCAN0

EDFT 0.02 −0.03 0.04 0.01
EEXX 0.03 −0.01 −0.04 −0.03
ERSE −0.03 0.01 0.04 0.04
ERPA

c −0.21 −0.16 −0.03 −0.04

HF

EHF 0.00 0.00 0.00 0.00
ERPA

c 0.03 0.05 0.05 0.03
EMP2

c – 0.01 – –
EMP2−F12

c – 0.01 – –
EMP3

c 0.01 0.02 0.05 0.03
ESOSEX

c −0.01 −0.02 −0.03 −0.01
E2g

c 0.00 0.01 0.01 0.00
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Table 3.3: The basis set convergence of the energy components obtained from
the 4-body calculations in different approaches (kJ/mol). The values show
differences between the values obtained with the AVQZ and AVTZ basis sets.

Inputs Components Ethane Ethylene Acetylene/I Acetylene/II

KS/PBE

EDFT 0.00 0.01 −0.01 −0.01
EEXX 0.01 −0.01 0.00 0.00
ERSE 0.00 0.00 0.01 −0.01
ERPA

c 0.07 0.08 0.11 0.08

KS/SCAN

EDFT −0.07 0.00 0.01 0.02
EEXX 0.00 0.00 0.03 0.00
ERSE 0.00 0.00 −0.02 −0.01
ERPA

c 0.14 0.10 0.00 0.00

KS/PBE0

EDFT 0.00 0.01 0.00 −0.01
EEXX 0.00 0.00 0.00 0.00
ERSE 0.00 0.00 0.00 0.00
ERPA

c 0.04 0.05 0.07 0.04

KS/SCAN0

EDFT −0.05 0.00 0.02 0.01
EEXX −0.01 0.00 0.02 0.01
ERSE 0.00 0.00 −0.02 −0.01
ERPA

c 0.08 0.08 0.01 0.00

HF EHF – 0.00 – –
ERPA

c – 0.00 – –

based on KS/SCAN for acetylene/I (see Table 3.2). However, these significant
errors can stem from numerical noise. This can be seen in Fig. 3.2 as an example,
where the difference in the 3-body DFT (KS/PBE) energy is nearly zero at short
distances but begins to increase at larger distances. The behavior of the basis set
convergence remains consistent for the non-additive mean field energies based on
other inputs. Overall, the non-additive mean field energies can achieve converged
values with small basis sets, such as AVTZ or even AVDZ, without the need for
extrapolations.

We now turn to discuss the correlation energies. The errors of the 3-body
MP2 and MP3 correlation energies between AVQZ and AVTZ are very small (be-
low 0.02 kJ/mol), as shown in Table 3.2. However, the data show that the non-
additive RPA correlation energies exhibit relatively slow convergence with the ba-
sis set size. For example, the 3-body RPA(KS/PBE) correlation energies obtained
with AVQZ differ from those obtained with AVTZ by around 0.1–0.2 kJ/mol (Ta-
ble 3.2). These errors are significant for the non-additive contributions, and it
is necessary to extrapolate the non-additive RPA correlation energies to CBS to
achieve converged values.

The basis set convergence of the non-additive RPA correlation energies is
influenced by the choice of orbitals. Indeed, the 3-body RPA correlation energy
based on HF orbitals shows a faster convergence compared to that based on
DFT orbitals, see Fig. 3.2. Moreover, the convergence can be also affected by
characteristics of the considered systems. It is observed that the convergence
is quicker for the two forms of acetylene than for ethane and ethylene. For

45



instance, the error in the 3-body RPA correlation energy based on KS/SCAN
is only 0.05 kJ/mol for acetylene/I, but reaches approximately 0.4 kJ/mol for
ethane (Table 3.2). This smaller error for acetylene is observed for each trimer
contributing to the total 3-body energies. Thus, the non-additive RPA correlation
energies tend to converge more rapidly with the basis set size for the studied
systems with π electrons.

Finally, we examine the basis set convergence of the 3-body RPA corrections
(SOSEX and 2g). These energy components show very little dependence on the
basis-set size, changing by less than 0.10 kJ/mol between the AVTQZ and AVTZ
basis sets (Table 3.2). Similar to the RPA correlation energy, these corrections
converge faster when based on HF orbitals compared to KS/PBE and semi/PBE
orbitals. Therefore, the use of HF orbitals can be beneficial in enhancing basis
set convergence of the RPA correlation energy and its corrections. Moreover, the
slow basis set convergence of the 3-body RPA correlation energies can be reduced
partly when adding the SOSEX corrections to the RPA correlation energies. This
is again due to the opposite basis set convergence of the second-order direct and
exchange terms [268, 269].

3.1.1.3 Used basis sets and uncertainties

Based on the convergence behavior of the energy components with the basis
set discussed, we decided to use the basis set settings for the energy components
shown in Table 3.4. We attempted to use the basis sets that are sufficiently large
to achieve converged values of the energy components. However, due to computa-
tional cost, we were unable to reach converged values for the energy components
exhibiting slow basis set convergence to within 0.01 kJ/mol. Therefore, we now
try to estimate the errors in the energy components associated with the basis-set
convergence problem.

Table 3.4: The basis sets used for obtaining converged values of the energy
components for all the considered systems.

Energy components 2-body 3-body 4-body
EHF AVQZ AVTZ AVTZ
EDFT AVQZ AVQZ AVQZ
EEXX AVQZ AVQZ AVQZ
ERSE AVQZ AVQZ AVQZ
E1RDM,quad AVQZ AVQZ -
ERPA

c AVTZ→AVQZ AVTZ→AVQZ AVTZ→AVQZ
ESOSEX

c AVTZ→AVQZ AVTZ→AVQZ -
E2g

c AVTZ→AVQZ AVTZ→AVQZ -
EMP2

c AVTZ→AVQZ AVTZ AVTZ
EMP2−F12

c AVTZ→AVQZ AVTZ AVTZ
EMP3

c AVTZ→AVQZ AVTZ→AVQZ -
ECCSD

c AVTZ→AVQZ AVTZ AVDZ
ECCSD−F12b

c AVTZ→AVQZ AVTZ AVDZ
ET

c AVQZ AVTZ AVDZ

The errors of the mean field energies for all n-body contributions can be safely
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neglected when AVQZ or AVTZ basis set was used. The errors of the 3-body and
4-body correlation energies can also be considered negligible, except for the RPA
correlation energies based on DFT orbitals. Based on their convergence behavior,
we can estimate their uncertainties to be less than 0.05 kJ/mol.

The main errors arising from the basis set convergence problem are observed
for the 2-body correlation energies. As discussed previously, the basis set conver-
gence of the 2-body correlation energies depends on examined methods. However,
performing the calculations with all methods using large basis sets is computa-
tionally demanding. Therefore, for a general estimation, we only performed the
MP2 calculations for ethylene to obtain values with various basis sets presented
in Table 3.5.

Table 3.5: Basis set convergence of the 2-body MP2 correlation energies in
kJ/mol for ethylene. Here the energies are given to three decimal digits to be
able to show small changes between them.

Basis sets MP2 MP2-F12
AVDZ −31.070 −34.191
AVTZ −33.764 −34.888
AVQZ −34.051 −35.022
AV5Z −34.753 −34.994
AVDZ→AVTZ −34.899 −34.995
AVTZ→AVQZ −35.039 −35.004
AVQZ→AV5Z −35.017 −35.003

We note that all 2-body correlation energies of the studied methods were
obtained with AVTZ→AVQZ extrapolation (see Table 3.4), except for (T) com-
ponent, where the AVQZ basis set was used. One can see from Table 3.5 that
the difference in the 2-body MP2 correlation energy between AVTZ/AVQZ and
AVQZ/AV5Z is very small (below 0.03 kJ/mol). Therefore, it is reasonable to as-
sume that uncertainties arising from the basis set convergence issue are negligible
for our purposes, around a few hundredths of kJ/mol. The exception here are the
2-body RPA correlation energies, which converge more slowly with the basis set
size compared to the correlation energies based on wavefunction methods. Based
on their convergence behavior, we estimate their errors to be around 0.05 kJ/mol
or less.

3.1.2 Cut-off distance
The values of n-body contributions depend on the number of fragments in-

cluded in each contribution (dimer, trimer, . . . ), which is theoretically infinite.
However, in practice, only a limited number of fragments (within some cut-off dis-
tance) are typically considered. In other words, we truncate the calculations at
distances that are sufficient to obtain converged values of the energy components.
This is because interactions at large distances have minimal contribution on the
overall energy [23], and the calculations involving such distances can introduce
numerical noise [23, 202]. The cut-off distances and the number of symmetry
inequivalent fragments for each system used in our calculations are listed in Ta-

47



ble 3.6. Understanding how the energy components converge with respect to the
cut-off distance is crucial for determining appropriate cut-off values for calculat-
ing energy components accurately. We will discuss this based on paper P1 in this
section, starting with the 2-body terms, and then with the non-additive terms.

Table 3.6: Cut-off distance (rcut, in Å) and corresponding number (N) of
symmetry inequivalent dimers, trimers, and tetramers within the selected cut-off
distance for the MBE calculations.

Systems 2-body 3-body 4-body
rcut N rcut N rcut N

Ethane 19.5 436 25.2 991 34.6 200
Ethylene 18.6 428 26.3 1672 33.1 202
Acetylene/I 24.4 1174 27.0 2875 31.8 282
Acetylene/II 24.8 1094 27.4 2655 32.1 164

In this section, we divide the energy components into two groups. The first
group comprises the mean field energies (DFT, EXX, HF, RSE, and 1RDM,quad)
and SOSEX corrections. The second group includes the correlation energies
(RPA, MP2, MP3, CCSD, and T) and 2g corrections. This classification is based
on their similar convergence behavior with respect to the cut-off distance. The
energy components in the first group are expected to converge quickly with the
cut-off distance, while those in the second group converge slowly due to long-
range correlation interactions. We also note that the convergence behavior of
each energy component in the RPA calculations with the cut-off distance remains
consistent for all the examined orbitals.

3.1.2.1 Two-body terms

As previously noted, some energy components exhibit similar convergence
behavior with distance. Hence, we only present the convergence of selected energy
components as representative examples. Specifically, we show the convergence of
DFT, EXX, and RSE for the first group, and RPA for the second group.

We start to discuss the convergence of the energy components in the first
group. One can see from Fig. 3.3(a) that the convergence of the DFT energy
is remarkably rapid for ethane. However, an oscillatory convergence trend is
observed for the two forms of acetylene. This behavior can be attributed to dif-
ferences in electrostatic moments of molecules, especially the quadrupole moment.
Specifically, ethane has a zero moment, whereas for acetylene, it is approximately
4 a.u [270, 271]. Similar oscillatory convergence patterns were observed for other
systems as well [23]. The convergence behavior with the cut-off distance of other
energies in the first group is similar to that of the DFT energy. However, it is re-
markable that the convergence of the singles corrections (RSE and 1RDM,quad)
exhibits relatively little dependence on the systems compared to the other mean
field energies (see Fig 3.3(c)). These energy components show a very rapid con-
vergence with the cut-off distance, and change only 0.01 kJ/mol for ethane and
ethylene, and 0.03 kJ/mol for the two forms of acetylene between 8 Å and cut-off
used.
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Table 3.7: The values of the energy components (kJ/mol) obtained from the 2-
body calculations for distant dimers (10 < r < rcut) in different approaches.

Inputs Components Ethane Ethylene Acetylene/I Acetylene/II

KS/PBE

EDFT 0.00 0.05 −0.02 0.10
EEXX 0.00 0.06 −0.07 0.15
ERSE 0.00 0.00 0.05 −0.02
ERPA

c −0.53 −0.51 −0.46 −0.37
ESOSEX

c −0.04 −0.03 −0.03 0.01

Semi/PBE

EDFT 0.00 0.05 −0.02 0.10
EEXX 0.00 0.06 −0.07 0.15
ERSE 0.00 0.00 0.05 −0.02
E1RDM,quad 0.00 0.00 0.00 0.00
ERPA

c −0.41 −0.39 −0.31 −0.30
ESOSEX

c −0.02 −0.01 −0.01 0.01
E2g

c −0.10 −0.10 −0.07 −0.08

KS/SCAN

EDFT 0.00 0.05 −0.03 0.11
EEXX 0.00 0.06 −0.03 0.13
ERSE 0.00 0.00 0.00 0.00
ERPA

c −0.51 −0.46 −0.40 −0.33

KS/PBE0

EDFT 0.00 0.05 −0.03 0.11
EEXX 0.00 0.06 −0.03 0.12
ERSE 0.00 0.00 0.00 0.00
ERPA

c −0.48 −0.45 −0.39 −0.33

KS/SCAN0

EDFT 0.00 0.05 −0.03 0.11
EEXX 0.00 0.06 −0.03 0.11
ERSE 0.00 0.00 0.00 0.00
ERPA

c −0.46 −0.43 −0.38 −0.34

HF

EHF 0.00 0.06 −0.03 0.13
EHF+CABS 0.00 0.06 −0.03 0.13
ERPA

c −0.37 −0.37 −0.35 −0.29
EMP2

c −0.61 −0.63 −0.62 −0.53
EMP2−F12

c −0.61 −0.62 −0.60 −0.55
EMP3

c −0.57 −0.55 −0.45 −0.38
ECCSD

c −0.51 −0.47 −0.40 −0.35
ECCSD−F12b

c −0.51 −0.47 −0.40 −0.35
ET

c −0.10 −0.10 −0.09 −0.08
ESOSEX

c −0.02 −0.01 0.01 0.01
E2g

c −0.09 −0.09 −0.08 −0.07
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Figure 3.3: Cut-off distance convergence of the 2-body DFT (a), EXX (b), RSE
(c), and RPA correlation (d) energies. Here data based on KS/PBE were used.

We now shift our focus to the convergence of the energy components in the
second group: correlation energies and 2g corrections. As depicted in Fig. 3.3(d),
the convergence trend of the RPA correlation energy is similar for all the consid-
ered systems. Specifically, contributions at small cut-off distances dominate, and
minimal or no oscillations are observed for larger cut-off distances. The same
convergence behavior is observed for the remaining energy components in the
second group due to the need to describe the long-range correlation interactions.

Let us examine in a more detail the contributions of the energy components
at large distances presented in Table 3.7. The data show that the contributions of
the singles corrections (RSE and 1RDM,quad) and SOSEX components at large
distances are close to zero. This implies that these energy components converge
fast with distance and their converged values with the cut-off distance can be
obtained at short cut-off values. The HF and EXX energies, although small, are
non-negligible for the systems with π interactions. For instance, the contribu-
tion of the EXX(KS/PBE) component is up to 0.15 kJ/mol for acetylene/II (see
Table 3.7). This is mainly due to differences in electrostatic moments of the con-
sidered molecules as discussed above. For the energy components in the second
group (correlation energies and 2g corrections), we observe a slow convergence
with the cut-off distance, which is expected because the correlation interactions
decay proportionally to −r−6 with the intermolecular distance r. The contribu-
tions of the correlation energies at large distance are between −0.30 kJ/mol and
−0.60 kJ/mol. The contributions of the 2g energies are smaller, near 0.1 kJ/mol,
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for all the considered systems. Therefore, obtaining converged values of the cor-
relation energy components and 2g corrections with the cut-off distance requires
performing calculations at very large distances or extrapolating with distance.

3.1.2.2 Non-additive terms

We now move to discuss the energy components obtained from the 3-body
and 4-body calculations. Similar to the 2-body terms, we will focus on the cut-off
distance convergence of the DFT, EXX, RSE, and RPA components as represen-
tative examples. These are shown in Fig. 3.4 for the 3-body terms and in Fig. 3.5
for the 4-body terms.
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Figure 3.4: Cut-off distance convergence of the 3-body DFT (a), EXX (b), RSE
(c), and RPA correlation (d) energies. Here data based on KS/PBE were used.

Let us start with the 3-body terms. One can see from Fig. 3.4(b) that the
convergence of the 3-body EXX energy is rather fast for ethane. However, no-
table fluctuations with both negative and positive terms occur for the two forms
of acetylene with distances below 20 Å that lead to changes of several kJ/mol.
Beyond that distance, the 3-body EXX energy tends to stabilize and converge
within a few tenths of kJ/mol. This means that the convergence of the 3-body
EXX energy with the cut-off distance clearly depends on the magnitude of the
electrostatic moments of the considered systems. Similar behavior is observed
for the other energies in the first group (DFT, HF, RSE, 1RDM,quad, and SO-
SEX corrections). The convergence of the 3-body singles corrections (RSE and
1RDM,quad) is observed to have minimal dependence on the systems when com-
pared to other mean field energies, similar to that observed for the 2-body terms.
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The contributions of these corrections beyond 20 Å are less than 0.05 kJ/mol for
all the considered systems.
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Figure 3.5: Cut-off distance convergence of the 4-body DFT (a), EXX (b), RSE
(c), and RPA correlation (d) energies. Here data based on KS/PBE were used.

One can see from Fig. 3.4(d) that the convergence of the 3-body RPA corre-
lation energies with the cut-off distance is almost similar for all the considered
systems. The dominant contributions occur within distances below 20 Å, and
beyond that threshold, they change by less than 0.2 kJ/mol. For the other en-
ergies within the second group (MP2, CCSD, (T) and 2g corrections), the same
convergence behavior as in the case of the RPA correlation energy is observed.

We now turn to consider the 4-body terms. From Fig. 3.5, it can be observed
that all 4-body energy components are not completely converged with the cut-
off distance used. The convergence is complicated, and significant changes are
observed for all the energy components. We have also tested that extending
the cut-off by several Å can lead to numerical noise and still changes the values
of energy components by few tenths of kJ/mol. This shows that it is difficult
to obtain converged values of the 4-body energy components with the cut-off
distance. Further investigation is needed to gain a better understanding of this
issue.

3.1.2.3 Uncertainties

The use of the cut-off distance typically introduces errors in the energy com-
ponents, and we now try to estimate these errors. This is important for gaining a
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better understanding when comparing MBE results with PBC in the next chap-
ter. Here we only estimate the errors in the energy components for the 2-body and
3-body calculations because the 4-body energy components are not completely
converged with the cut-off distance, as discussed above.
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Figure 3.6: Method for estimating the uncertainty of the 3-body EXX contribu-
tion based on KS/PBE of acetylene/II.

To estimate the uncertainty of an energy component, we first calculate the
average value of this energy component within a specified interval, ranging from
a fixed cut-off to the largest cut-off. The selected intervals for all systems are
summarized in Table 3.8. Then, we determine the uncertainty by examining the
variations in energy within the selected interval relative to its average value. This
procedure is illustrated more clearly in Fig. 3.6, and is similar to that used in
Ref. [23].

The uncertainties for the energy components in the first group are provided in
Table 3.9, while those for the energy components in the second group are listed in
Table 3.10. We note that the errors in the energy components in the RPA calcu-
lations displayed in Tables 3.9 and 3.10 are based on KS/PBE orbitals. However,
these errors remain nearly constant, with changes of less than 0.02 kJ/mol, when
other orbitals are employed.

For the energy components in the first group, the uncertainties of the 2-body
terms are safely negligible (below 0.03 kJ/mol). The uncertainties are larger for
the 3-body terms. However, these larger errors are only observed for the DFT,
EXX, and HF energies of the systems with delocalized electrons. For instance, an
uncertainty of 0.19 kJ/mol is noted for the 3-body EXX energy of acetylene/II
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Table 3.8: Cut-off distance interval (R, in Å) and corresponding number (N)
of dimers and trimers selected to estimate the uncertainties of energy components.

Systems 2-body 3-body
R N R N

Ethane 15.5−19.5 210 22.2−25.2 598
Ethylene 14.6−18.6 224 23.3−26.3 856
Acetylene/I 20.4−24.4 516 24.0−27.0 1630
Acetylene/II 20.8−24.8 444 24.7−27.4 1473

Table 3.9: The estimated uncertainties (in kJ/mol) of the energy components in
the first group of the methods for all the considered systems.

Components Contributions Ethane Ethylene Acetylene/I Acetylene/II

DFT 2-body 0.00 0.01 0.02 0.01
3-body 0.02 0.07 0.06 0.18

EXX 2-body 0.00 0.01 0.02 0.03
3-body 0.02 0.06 0.10 0.19

HF 2-body 0.00 0.01 0.02 0.02
3-body 0.00 0.07 0.10 0.20

RSE 2-body 0.00 0.00 0.00 0.02
3-body 0.01 0.00 0.01 0.01

1RDM,quad 2-body 0.00 0.00 0.01 0.00
3-body 0.03 0.00 0.01 0.01

SOSEX 2-body 0.00 0.01 0.00 0.01
3-body 0.02 0.01 0.02 0.04

Table 3.10: The estimated uncertainties (in kJ/mol) of the energy components
in the second group of the methods for all the considered systems.

Components Contributions Ethane Ethylene Acetylene/I Acetylene/II

RPA 2-body 0.05 0.06 0.01 0.01
3-body 0.02 0.04 0.03 0.05

MP2-F12 2-body 0.05 0.07 0.02 0.02
3-body 0.01 0.01 0.03 0.04

MP3 2-body 0.05 0.07 0.01 0.01
3-body 0.08 0.02 0.07 0.06

CCSD-F12b 2-body 0.04 0.06 0.01 0.01
3-body 0.05 0.01 0.05 0.05

T 2-body 0.01 0.01 0.00 0.00
3-body 0.00 0.01 0.00 0.00

2g 2-body 0.01 0.01 0.00 0.00
3-body 0.01 0.01 0.01 0.03
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(see Table 3.9). The uncertainties of the remaining energies in the first group for
the 3-body terms can generally be considered insignificant.

For the energy components in the second group, the uncertainties of (T)
and 2g energy components for both 2-body and 3-body terms are mostly be-
low 0.01 kJ/mol. The exception is the 3-body 2g energy of acetylene/II, which
has an uncertainty of 0.03 kJ/mol. The uncertainties of the other correlation
energies are slightly larger but less than 0.1 kJ/mol.

3.1.3 Summary
The convergence of the energy components in examined methods obtained

from the MBE approach with the basis set and the cut-off distance was discussed
in detail. The key observations from these discussions can be summarized as
follows:

The basis set convergence rate is different for the energy components. Extrap-
olations to CBS are necessary to achieve converged correlation energies, whereas
sufficiently large basis sets, such as AVTZ, are adequate for obtaining converged
mean field energies. The convergence of the RPA correlation energies with the
basis set is comparatively slower than that of the correlation energies obtained
by wavefunction methods. The choice of the examined orbitals can also influence
the basis set convergence of the RPA correlation energies, with those based on
HF orbitals converging faster than those based on DFT orbitals. Adding the
SOSEX corrections to the RPA correlation energies can mitigate the slow basis
set convergence of the RPA correlation energies because the SOSEX corrections
remove the spurious second-order self-interaction terms at short distances in the
RPA correlation energies. Furthermore, the basis set convergence of the energy
components depends on distance, and large basis sets are mainly required for
interactions at short distances, while small basis sets can be used for interactions
at large distances to save computational cost.

The mean field energies and SOSEX corrections exhibit a more rapid con-
vergence with the cut-off distance compared to the correlation energies and 2g
corrections. As a result, the converged values of the mean field energies and
SOSEX corrections can be obtained at short distances, while large distances or
extrapolations to infinite distance are required for obtaining converged correlation
energies and 2g corrections due to the need to account for long-range correlation
interactions. The cut-off distance convergence of the energy components is af-
fected by the characteristics of the considered systems. Obtaining convergence
for the energy components involving the non-additive terms with the cut-off dis-
tance, particularly for the 4-body terms, is challenging and can not be completely
achieved. This issue can be possibly mitigated by employing a force field to ac-
count for the contributions at large distances [235].

3.2 Periodic boundary conditions
Binding energy of molecular solids can be obtained by the PBC approach,

which is generally simpler to set up compared to MBE. However, achieving a
converged binding energy of a molecular solid in PBC requires extrapolating the
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energy with respect to several numerical parameters, leading to a substantial in-
crease in computational cost, and complexity of the setup. This section will focus
on understanding how the energy components in the RPA and MP2 calculations
converge with numerical parameters. We will start with k-points and cell volume
used for the calculations of solids and molecules respectively, then with plane
wave basis set, and finally with PAW potentials.

3.2.1 k-points and cell volume
The convergence of the energy components with k-points and cell volume are

discussed in detail in our forthcoming work. Here we just mention the main
features. For our calculations, we used a (Nk)3 k-point grid for solids and a
simulation box a × (a + 1) × (a + 2) Å3 for isolated molecules. The values of Nk

and a were varied to assess how they affect the convergence and to find reliable
settings. These tests are discussed below.
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Figure 3.7: Convergence of the EXX(KS/PBE) energy for ethylene solid and
isolated molecule as a function of the supercell volume without and with the use
of the real-space Coulomb cut-off. For the solid, the supercell volume is obtained
as the unit cell volume times the number of k-points and data between 23 and
73 k-points are shown. For the molecule, the supercell is the simulation cell. A
plane-wave basis-set cut-off of 1100 eV was used.

We begin by evaluating the convergence of the mean field energies, including
DFT, EXX, HF, and RSE energies, with k-points for solid calculations and cell
volume for molecule calculations. The convergence of these energies with k-points
and cell volume can be slow due to the presence of the Coulomb singularity in
the exchange potential [272, 273], except for the DFT energy based on semilocal
orbitals (KS/PBE and KS/SCAN). Therefore, it is necessary to extrapolate the
energy to infinite k-points and cell volume assuming a dependence of 1/N3

k for
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solid and 1/V for molecule to obtain converged values [21]. Alternatively, one can
use Coulomb cut-off technique [274] with sufficiently large number of k-points and
large cell volume to reach converged energy values [23]. The advantage of this
technique in improving significantly the convergence of the mean field energies
with k-points and cell volume is illustrated in Fig. 3.7 as an example. Indeed, the
EXX(KS/PBE) values obtained from Nk = 3 and Nk = 7 differ by 6.9 kJ/mol
per molecule without the use of the technique, while this difference is reduced to
only 1.5 kJ/mol when the technique is used.
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Figure 3.8: The convergence of the EXX energy for solid ethylene (left) and solid
acetylene/II (right) with respect to the number of k-points. The calculations
used a plane-wave basis-set cut-off of 1100 eV and the Coulomb cut-off method.
Note the different scales on the y-axis. The EXX energy gives the values printed
by VASP.

The convergence of the mean field energies with k-points is not similar for
all the considered solids. Specifically, the convergence is notably faster for the
two forms of acetylene than for ethane and ethylene, see Fig. 3.8 as an example.
This difference may be attributed to variations in cell volume and symmetry
among the considered systems. The exception here is the DFT energy based on
KS/PBE and KS/SCAN states, where a k-points with Nk = 4 is sufficient for all
the considered solids. For all isolated molecules considered, the convergence of
the mean field energies with cell volume is almost the same.

In our calculations of the mean field energies, we decided to use the Coulomb
cut-off technique to obtain converged values because this approach is reasonably
simple to perform and avoids the unnecessary uncertainty that extrapolations
can introduce. However, using this technique requires a sufficiently large num-
ber of k-points and a large cell volume. Here, we tried to use large number of
k-points and large cell volume so that the uncertainties related to the conver-
gence problems of k-points and cell volume for all the mean field energies can
be safely negligible. These converged settings for k-points and cell volume for
all the considered systems are summarized in Table 3.11. However, for the RSE
calculations of solid ethane and ethylene, we applied the extrapolations. This is
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because the calculations of the RSE energy for these two solids with the large
number of k-points (Nk = 6) are computationally demanding. However, a spot
check for KS/PBE and ethylene shows that the extrapolated RSE value (from
Nk = 3 to Nk =4) are within 0.01 kJ/mol of energy obtained with the cut-off
scheme and Nk = 6.

Table 3.11: The k-point set and the cell side a in Å used for the PBC calculations.
DFT, RPA are settings for KS/PBE and KS/SCAN calculations, DFTh, RPAh
are settings for KS/PBE0 and KS/SCAN0 calculations, → denotes extrapolation
of the energies with steps of 1 k-point grid for solids or 1 Å for isolated molecules.

Methods Parameters Ethane Ethylene Acetylene/I Acetylene/II

DFT Nk 4 4 4 4
a 17 17 17 17

DFTh Nk 6 6 4 4
a 20 20 20 20

EXX/HF Nk 6 6 3 3
a 17 17 17 17

RSE Nk 3→4 3→4 3 3
a 10 10 10 10

RPA Nk 4 4 4 4
a 10 10 10 10

RPAh Nk 2→4 2→4 2→4 2→4
a 8→10 8→10 8→10 8→10

xMP2 Nk 3 3 2 2
a 11 7→11 7→11 7→11

dMP2 Nk 4 4 4 4
a 11 7→11 7→11 7→11

We now shift our discussion to the RPA correlation energy. To obtain the RPA
converged values with k-points and cell volume, the extrapolations are required
in case that the RPA correlation energies converge slowly with these parameters.
When based on semilocal functionals, the RPA correlation energies are extrapo-
lated to infinite number of k-points and infinite cell volume using a dependence
of 1/N6

k for solids and a dependence of 1/V 2 for molecules. This convergence
behavior was observed in previous work [275]. However, for the RPA correlation
energies based on hybrids, the extrapolations are done using different convergence
behavior: 1/N3

k for solids and 1/V for molecules. This arises from the treatment
of singularity of Hartree-Fock potential at the Γ point [272, 273]. One can see
from Fig. 3.9 that the convergence of the RPA correlation energy is more rapid for
KS/PBE orbitals than for KS/PBE0 orbitals. Specifically, the difference in the
RPA correlation energy per molecule between Nk = 3 and Nk = 4 is very small
(below 0.05 kJ/mol) when using KS/PBE orbitals, but notably larger, exceeding
0.1 kJ/mol, with KS/PBE0 orbitals. Similarly, for isolated molecules, the discrep-
ancy between boxes with dimensions a = 9 Å and a = 10 Å is less than 0.1 kJ/mol
for KS/PBE, but surpasses 0.3 kJ/mol for KS/PBE0. The same behavior is ob-
served when comparing the convergence of the RPA correlation energies between
KS/SCAN and KS/SCAN0 orbitals. These results indicate that the converged
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Figure 3.9: The convergence of the RPA correlation energy of ethylene solid and
molecule with k-points and cell volume. RPA was evaluated on KS/PBE (a, b)
and KS/PBE0 (c, d) states. A cut-off of 600 eV was used.

RPA values based on KS/PBE and KS/SCAN orbitals can be directly obtained
with a sufficiently large number of k-points for solids or a sufficiently large cell
volume for molecules, whereas extrapolations with these parameters are neces-
sary to obtain converged RPA values for KS/PBE0 and KS/SCAN0 states (see
Table 3.11). We note that the convergence of the RPA correlation energies based
on hybrid functionals with k-points and cell volume can be improved when using
the Coulomb cut-off technique at the step of DFT calculations.

Based on the convergence behavior of the RPA correlation energies discussed
above, we can estimate the errors in the RPA correlation energies based on
KS/PBE and KS/SCAN orbitals, caused by the convergence problem of k-points
and cell volume, are below 0.1 kJ/mol for all the considered systems. However, for
the RPA correlation energies based on KS/PBE0 and KS/SCAN0 orbitals, these
errors are comparatively larger, falling within the range of 0.1 to 0.2 kJ/mol.

We now consider the convergence of the MP2 correlation energy. The compu-
tational cost for the calculations of the MP2 correlation energy (scales as O(N5))
is higher than that of the RPA correlation energy (scales as O(N4)). Obtaining
the MP2 correlation energies for solids with a large number of k-points and a
high plane-wave basis set is challenging due to high computational requirements.
Based on the fact that the MP2 correlation energy can be decomposed into ex-
change contribution (xMP2) and direct contribution (dMP2), we only performed
the xMP2 calculations using the standard MP2 implementation, while the dMP2
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part was calculated using RPA algorithm starting from HF orbitals. It is clear
that this way can reduce significantly computational cost for the MP2 calcula-
tions if the xMP2 component converges faster than dMP2. For the xMP2 part,
we note that we could only perform a calculation up to Nk = 3 with a plane-wave
basis-set cut-off (tag ENCUT in VASP) of 400 eV for ethane and ethylene, and
up to Nk = 2 with a plane-wave basis-set cut-off of 700 eV for the two forms of
acetylene, shown in Table 3.11.

For all the solids that we considered, the MP2 correlation energy is found to
converge quickly with the number of k-points, similar to that of the RPA corre-
lation energy based on KS/PBE and KS/SCAN orbitals. This rapid convergence
is due to the use of the Coulomb cut-off technique in the HF states applied for
the MP2 calculations. However, for the isolated molecules, we find that the MP2
correlation energy converges rather slowly with cell volume. Hence, in most cases,
extrapolations are necessary, with only the exception being the dMP2 energy of
ethane (see Table 3.11).

Based on the convergence behavior, the uncertainties associated with the con-
vergence problems of k-points and cell volume for the MP2 correlation energies
are estimated to be less than 0.2 kJ/mol for all the systems considered. The main
source of uncertainty arises from errors in the xMP2 component. Additionally,
the uncertainties are expected to be greater for the two forms of acetylene com-
pared to ethane and ethylene due to the missing of xMP2 energy data for the
former with large number of k-points (Table 3.11).

Finally, we note that it is difficult to obtain all the datapoints that are required
to perform extrapolations as mentioned above. This is mainly due to the fact that
the memory requirements for the RPA and MP2 calculations increase very fast
with numerical parameters. To overcome this limitation, we adopted a strategy
where we obtained the desired energy for a large cut-off and dense k-point grid
(Edense

large ) by using known energies obtained with smaller cut-off and sparse k-point
grid. This approach can be expressed as: Edense

large = Esparse
large +(Edense

small −Esparse
small ) [21].

We applied the same strategy to isolated molecules, where energies were evaluated
for different cell sizes instead of k-point grids.

3.2.2 Plane wave basis sets
We now consider the convergence of the energy components with plane-wave

basis sets. We observe that the choice of DFT orbitals almost does not affect the
convergence of the energy components in the RPA calculations with the basis sets.
Moreover, the convergence is the same for all the considered systems. Therefore,
we will discuss one system as a representative example.

We start to consider the convergence of the mean field energies with the basis
set. Here, we show EXX of ethylene in Fig. 3.10 as an example. One can see
that the energy difference in the EXX binding energy between ENCUT = 1000
eV and ENCUT = 1200 eV is very small (below 0.01 kJ/mol). Therefore, we
used an ENCUT of 1100 eV to obtain converged values of all the mean field
energies with the basis set. The exception here is the RSE component, where
an ENCUT of 800 eV was used. The reason for this is that the convergence
of the RSE with the basis set was found to be faster than the convergence of
the other mean field energies. By using these cut-off values, the uncertainties
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Figure 3.10: The convergence of the binding energy of EXX(KS/PBE) with the
plane wave basis sets for ethylene. A k-points with Nk = 2 and a cell volume
with a = 8 were used for the calculations.
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Figure 3.11: The convergence of the binding energy of RPA(KS/PBE0) with the
plane wave basis sets for ethane.
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from the basis set convergence problem for the mean field energies can be safely
considered negligible.

We now move to discuss the convergence of the correlation energies (RPA and
MP2) with the basis set size. These energy components converge slowly with the
basis set, and extrapolations are used to obtain converged values. It was observed
that the leading order error of the RPA correlation energy depends as E−3/2

cut on the
plane-wave cut-off [275, 276]. However, for binding energy of molecular solids a
different dependence being proportional to E−5/2

cut was found to dominate [21, 41].
We also used such convergence behavior for our calculations, shown in Fig. 3.11
as an example. In our calculations, the RPA and MP2 correlation energies were
evaluated for different values of cut-off, from 400 eV to 800 eV with 100 eV
increments. However, for the final extrapolations, we only considered cut-offs
from 600 to 800 eV. This is due to numerical noise when the data for smaller cut-
offs (400 and 500 eV) were used (see Fig. 3.11). This behavior was also observed
in previous work [21]. The convergence behavior of the MP2 correlation energy
with the basis set is similar to that of the RPA correlation energy.

To estimate the uncertainties of the correlation energies due to the basis set
convergence problem, we have examined that the RPA binding energy obtained
by extrapolating to infinite basis set using cutoffs from 600 to 1000 eV agrees
within 0.01 kJ/mol with values extrapolated from 600 to 800 eV. This very small
error indicates that using data within the range of 600 to 800 eV for extrapolations
is sufficient to obtain converged binding energies of the RPA and MP2 correlation
energies. Therefore, the uncertainties associated with the basis set convergence
problem can be safely considered negligible for these energy components.

3.2.3 PAW potentials
As mentioned in the computational setup, the mean field energies (HF and

RSE) and correlation energies (RPA and MP2) were evaluated with standard
PAW potentials. To assess the uncertainties arising from the use of standard
PAWs instead of hard ones, we took ethylene as an example and calculated the
energy components using hard PAWs, employing the settings similar to those
used for standard PAWs.

Table 3.12: The values of the binding energies of ethylene (in kJ/mol) obtained
from standard and hard potentials.

Energy components KS/PBE KS/PBE0
Standard Hard Standard Hard

RSE −2.53 −2.57 −0.89 −0.92
EXX 12.66 12.63 10.60 10.57
RPA −30.63 −30.68 −27.42 −27.53

The results presented in Table 3.9 show that the differences of the energy
components between standard and hard potentials are small, being less than
0.15 kJ/mol. These errors should be considered when assessing the overall un-
certainties. Notably, the errors in the EXX and RSE energies are smaller in
comparison to those observed in the RPA component. The small effect of hard
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potentials on the RSE energies was also observed previously [21]. Finally, we note
that we used PAW potentials based on KS/PBE states for all the calculations.
This choice may have an impact on the results of the energy components based
on KS/SCAN and KS/SCAN0 states.

3.2.4 Summary
The numerical parameters affecting the results of the energy components in

the RPA and MP2 calculations obtained from the PBC approach were discussed
in detail. We find that achieving converged binding energy of a molecular solid
with numerical parameters is challenging. The Coulomb cutoff technique [274]
is beneficial for achieving the mean field energies converged with the k-points
and cell volume. However, the computational and memory requirements pose
limitations on achieving convergence of the RPA and MP2 correlation energies
with respect to the k-points and cell volume. To obtain converged binding energy
with the basis set, sufficiently large basis sets can be used for the mean field
energies, while extrapolation to infinite basis-set limit is necessary for the RPA
and MP2 correlation energies. Standard PAW potentials should be acceptable for
obtaining energy components in the RPA and MP2 calculations for the considered
systems if a precision loss of around 0.1 kJ/mol is acceptable.
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4. Comparison between MBE
and PBC results

Comparing the energy components obtained from the MBE approach with
those obtained from PBC can provide valuable insights into the precision issues
discussed in the previous chapter. An excellent agreement was found between
MBE and PBC approaches for the energy components in the MP2 calculations
[23]. However, the comparison of the energy components in the RPA calculations
between these approaches has not yet been studied, and we will focus on dis-
cussing this in this chapter. We expect the differences in the energy components
between MBE and PBC to be less than 0.1 kJ/mol. Any differences larger than
0.1 kJ/mol will be considered significant errors, likely arising from the conver-
gence problem of the energy components with numerical parameters. Moreover,
comparing the energy values in the RPA calculations obtained from the MBE
and PBC approaches can also serve to validate the reliability of the RPA pro-
gram applied in our MBE calculations. We will start to discuss the mean field
energies, and then with the correlation energies.

4.1 Mean field energies
The mean field binding energies obtained from both MBE and PBC ap-

proaches are summarized in Tables A.1–A.4 in Attachments. Here we show
the differences between the MBE and PBC values for these energy components
in Fig. 4.1. We note that the differences between the MBE and PBC val-
ues are rather similar for EXX(KS/PBE) and EXX(KS/PBE0), as well as for
EXX(KS/SCAN) and EXX(KS/SCAN0). For the RSE component, the differ-
ences are comparable when based on KS/PBE and KS/SCAN, and when based
on KS/PBE0 and KS/SCAN0. Therefore, we only present EXX evaluated with
KS/PBE and KS/SCAN, and RSE evaluated with KS/PBE and KS/PBE0 in
Fig. 4.1 to make the graph simpler.

Let us start with the DFT and HF energies. One can see from Fig. 4.1
that the errors of DFT are less than 0.1 kJ/mol for KS/PBE and KS/PBE0
orbitals. These errors come from the slow convergence of the non-additive DFT
contributions obtained from MBE with the cut-off distance (see Fig. 3.4(a) and
3.5(a) in chapter 3). However, the errors are notably larger for KS/SCAN and
KS/SCAN0 orbitals. For example, the errors in DFT(KS/SCAN) are around
0.35 kJ/mol for ethane and ethylene. These large errors in the DFT energies based
on KS/SCAN and KS/SCAN0 orbitals can be due to the numerical instabilities
in the convergence of the DFT energies when using meta-GGA functionals [277].
Additionally, the use of PAW potentials based on KS/PBE can contribute to
these large errors. Furthermore, they also originate from the slow convergence
with the fragment size of the DFT energy compared to the other mean field
energies. Indeed, the 4-body DFT values remain relatively large, reaching up
to over 2 kJ/mol in some cases, whereas none of the other mean field energies
predict such high values for the 4-body contributions (Tables A.2–A.4). Thus,
the importance of the 5-body DFT contributions in the MBE calculations should
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Figure 4.1: The differences in the mean field energies between MBC and PBC
approaches.

be studied to better understand if the 5-body term would reduce the difference
between MBE and PBC. The differences in the HF energy are very small (below
0.1 kJ/mol). These erros stem from the slow convergence of the non-additive
HF contributions with the cut-off distance, similar to the DFT energies based on
KS/PBE and KS/PBE0. The small errors for the HF energies were also observed
for other systems [23].

The errors in the EXX energy are less than 0.2 kJ/mol (see Fig. 4.1). These
errors are mainly due to the slow convergence of the non-additive EXX contribu-
tions with the cut-off distance in MBE (see Fig. 3.4(b) and 3.5(b) in chapter 3).
For ethane and ethylene, the differences are larger for KS/SCAN and KS/SCAN0
than for KS/PBE and KS/PBE0. This may be again due to the use of PAWs
based on KS/PBE in the PBC calculations. However, the opposite trend is ob-
served for the two forms of acetylene. This observation can be a result of a
quicker convergence with the fragment size of the EXX energy using KS/SCAN
and KS/SCAN0 compared to KS/PBE and KS/PBE0. For instance, in the case
of acetylene/I, the contribution of the 4-body EXX energy for KS/PBE is more
than twice that for KS/SCAN (see Table A.3).

For the RSE component, the errors are below 0.15 kJ/mol. Similar to the other
mean field energies, these errors in the RSE component are due to the convergence
problem of the non-additive RSE contributions with the cut-off distance in MBE
(see Fig. 3.5(c) in chapter 3). We note again that the RSE component in the
PBC calculations was evaluated with standard PAWs. The variation in the RSE
energy between standard and hard PAWs is small, being less than 0.05 kJ/mol
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(see Table 3.9 in the previous chapter). However, this small variation can also
contribute to overall errors in the RSE component. Compared to the DFT and
EXX energies, the differences in the RSE energies between the MBE and PBC
approaches are not significantly influenced by the orbitals studied. For all the
systems considered, the differences are smaller for KS/PBE0 and KS/SCAN0
orbitals than for KS/PBE and KS/SCAN orbitals, with the exception of ethy-
lene, where the opposite trend is observed. The smaller errors for KS/PBE0
and KS/SCAN0 compared to KS/PBE and KS/SCAN can result from a faster
convergence of the RSE energy based on KS/PBE0 and KS/SCAN0 with the
fragment size. For instance, in the case of the two forms of acetylene, the 4-body
RSE contributions are nearly negligible when employing KS/PBE0, whereas they
remain above 0.1 kJ/mol with KS/PBE (see Table A.4).

4.2 Correlation energies
We now turn to discuss the errors in the RPA and MP2 correlation energies,

presented in Fig. 4.2. The binding energies of these correlation energies obtained
from both MBE and PBC approaches are summarized in Table A.5 and Table A.6
in Attachments. We note that the 2-body contributions of the RPA and MP2
correlation energies obtained from the MBE approach were extrapolated to in-
finite cut-off distance assuming a r−3

cut dependence of the binding energy on the
cut-off distance rcut. This extrapolation was done to enhance the reliability of
the total RPA and MP2 correlation energies obtained from the MBE approach
when compared to PBC.
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Figure 4.2: The differences in the correlation energies between MBC and PBC
approaches.

The errors in the RPA correlation energies between two approaches are rel-
atively large, but remain below 0.4 kJ/mol, i.e, around 2 %. As discussed in
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the previous chapter, the RPA correlation energies evaluated with PBC converge
slowly with numerical parameters, and extrapolations are necessary in some cases.
These extrapolations can introduce large errors in the RPA correlation energies
between two approaches. Additionally, the RPA correlation energies were ob-
tained using standard PAWS, and the difference in the RPA correlation energies
of around 0.1 kJ/mol between standard and hard PAWs (see Table 3.9 in chapter
3) can also contribute to these large errors. Finally, the slow convergence of the
RPA correlation energies with the basis set and cut-off distance in MBE calcu-
lations can cause these significant errors. Indeed, the RPA correlation energies
show a slower convergence with the basis set than the correlation energies based
on WFT (see Table 3.1 as an example). The larger errors in the RPA correlation
energies observed for hybrid orbitals compared to semilocal orbitals are mainly
due to the slow convergence of the RPA correlation energies based on hybrid
functionals with k-points or cell volume in the PBC calculations (see Fig. 3.9 in
the previous chapter).

The MP2 correlation energies obtained from both approaches also exhibit ac-
ceptable agreement, with the errors below 0.4 kJ/mol. These errors are slightly
larger than those observed for other systems [23]. However, they can stem from
either several extrapolations of the MP2 correlation energies with parameters in
PBC or from the slow distance convergence of the non-additive MP2 correlation
energies in MBE, with the former being the dominant source of error. For ex-
ample, the most significant differences, reaching approximately 0.4 kJ/mol, are
observed in the case of the two acetylene forms, are mainly due to the need to
use sparse k-point sets for the xMP2 energies for two these systems in PBC.

4.3 Summary
The differences between the MBE and PBC values are generally smaller for

the mean field energies than for the correlation energies. The main errors in the
mean field energies arise from the convergence problems related to the fragment
size and cut-off distance in the MBE calculations. Thus, additional tests on the
systems that exhibit a rapid convergence with fragment size and avoid the con-
vergence issues with the cut-off distance can help to understand these errors. For
correlation energies, the errors are primarily caused by the convergence problems
with the numerical parameters in PBC compared to MBE. These errors can be
significantly reduced when the numerical noise from extrapolations with k-points
or cell volume, and basis-set cutoff, becomes negligible. The dependence of the
correlation energies on k-points or cell volume can be reduced using the scheme
developed by Liao and Grüneis [278]. Finally, the agreement between the MBE
and PBC values for the energy components in the RPA calculations also shows
reliability of the RPA program we used in our MBE calculations.
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5. Effect of orbitals on energy
components in RPA calculations

RPA calculations can be performed either non-self-consistently (based on DFT
orbitals) or self-consistently. However, self-consistent RPA calculations are com-
putationally demanding. Thus, most RPA calculations are currently based on
DFT orbitals, in which KS/PBE orbitals are a common choice [160, 165, 279,
280, 281]. This is primarily due to their computational efficiency compared to
meta-GGA or hybrid functionals. Moreover, RPA calculations based on KS/PBE
orbitals have been widely used in solid-state studies [16, 21, 167, 282]. However,
recent studies have shown that the quality of RPA results can be sensitive to
the choice of orbitals [42, 43, 44, 282]. For example, for methane-water cage the
variation in the RPA interaction energy between the KS/PBE and KS/SCAN
orbitals was found to be around 1.5 kJ/mol [44]. This observation motivated us
to evaluate the effect of different orbital inputs on the RPA results for molecular
solids. As discussed in chapter 3, orbitals can affect significantly the basis set
convergence of the RPA correlation energies obtained from the MBE approach.
In this chapter, we will focus on understanding the influence of the orbitals on
the results of the energy components in the RPA calculations. We find that the
results are qualitatively similar for different systems. Therefore, we will focus on
discussing ethylene as an illustrative example and refer to the results of other sys-
tems, which are summarized in Attachments, as necessary. The work presented
here is composed of the results of our upcoming paper and paper P2.

5.1 Mean field energies
We start to discuss the mean field binding energies (DFT, EXX, HF, and

RSE), focusing on how these energies change when they are evaluated on orbitals
from hybrid functionals compared to semilocal functionals. One can see from
Table 5.1 that the 2-body DFT energies based on all the examined function-
als are attractive. The values derived from KS/SCAN and KS/SCAN0 exhibit
stronger binding than those derived from KS/PBE and KS/PBE0. This behavior
is consistent with observation in previous works [44, 89, 105]. The magnitude of
the 2-body DFT interactions is observed to decrease by approximately 2 kJ/mol
when transitioning from KS/PBE to KS/PBE0 and by around 0.8 kJ/mol when
transitioning from KS/SCAN and KS/SCAN0 (Table 5.1). This shows that the 2-
body DFT energies based on hybrid functionals tend to approach the 2-body HF
energy, which is repulsive in the case of ethylene (see Table 5.1). This observation
was also noted before in Ref. [44].

The 3-body DFT energies are repulsive for KS/PBE and KS/PBE0, while they
are attractive for KS/SCAN and KS/SCAN0. These findings are also consistent
with previous works [283, 284]. Conversely, the 4-body DFT energies exhibit an
opposite trend compared to the 3-body DFT values for all the studied functionals.
As shown in Table 5.1, the non-additive DFT energies based on KS/SCAN and
KS/SCAN0 are closer to HF energy compared to those based on KS/PBE and
KS/PBE0. Similar to the 2-body interactions, the effect of exact exchange on
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Table 5.1: The mean field energies of ethylene in kJ/mol obtained from the RPA
calculations using the MBE approach. The values of EXX and RSE components
do not depend on the transformation from KS/PBE to semi/PBE.

Components Orbitals 2-body 3-body 4-body Total

DFT

KS/PBE −8.57 6.86 −1.86 −3.57
KS/SCAN −11.97 −3.08 1.48 −13.57
KS/PBE0 −6.52 4.10 −1.19 −3.61
KS/SCAN0 −11.18 −1.92 0.88 −12.24

EXX

KS/PBE 14.22 −2.15 0.62 12.69
KS/SCAN 12.08 0.46 −0.31 12.23
KS/PBE0 11.25 −0.79 0.19 10.65
KS/SCAN0 10.52 0.33 −0.15 10.70

RSE

KS/PBE −3.21 1.02 −0.33 −2.52
KS/SCAN −1.47 −0.60 0.16 −1.91
KS/PBE0 −1.02 0.15 −0.06 −0.93
KS/SCAN0 −0.34 −0.57 0.08 −0.83

1RDM,quad semi/PBE −1.50 0.72 – –
HF – 9.38 −0.38 0.02 9.02

the 3- and 4-body DFT energies is more significant when moving from KS/PBE
to KS/PBE0 than from KS/SCAN to KS/SCAN0 (see Table 5.1).

The variations in n-body DFT contributions among the examined orbitals are
quite large (Table 5.1). However, we find that the changes in n-body orders of
DFT energy tend to cancel each other, leading to comparable total DFT binding
energies for KS/PBE and KS/PBE0, as well as for KS/SCAN and KS/SCAN0.
Finally, the differences in total DFT energies between semilocal functionals and
their hybrid counterparts are found to be below 1.5 kJ/mol for all the considered
systems.

We now turn to discuss the EXX component. The 2-body EXX energies based
on all orbitals are more repulsive than the 2-body HF energy. Thus, the 2-body
EXX energies become less repulsive when going from KS/PBE and KS/SCAN
to KS/PBE0 and KS/SCAN0, respectively, which was also observed before in
Ref. [44]. For the 3-body interactions, the addition of exact exchange in hybrids
causes a decrease in the EXX binding energy for KS/PBE but an increase for
KS/SCAN. The behavior observed for the 4-body terms is opposite to that of
the 3-body terms. These changes in the 3-body and 4-body EXX energies occur
because the values derived from hybrid functionals tend to approach the HF
values (see Table 5.1). Similar to the behavior observed in the DFT energy,
the changes in all n-body EXX energies when exact exchange is introduced are
more significant for KS/PBE compared to KS/SCAN. However, these changes are
smaller in magnitude than those observed for the DFT energy (see Table 5.1).
Finally, we also find that there are cancellations in the errors of n-body EXX
contributions, leading to differences of below 1.0 kJ/mol in total EXX binding
energies between KS/PBE and KS/SCAN. The same behavior is observed for
KS/PBE0 and KS/SCAN0.

Let us shift our discussion to the RSE component. The difference between
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the EXX and HF values is expected to decrease when the RSE corrections are
added to EXX energy. As shown in Table 5.1, adding exact exchange in hybrid
functionals results in a decrease in the binding of the 2-body RSE energies based
on both KS/PBE and KS/SCAN. This can be explained by noting that the 2-
body EXX energies based on hybrid functionals are closer to the 2-body HF
energy than those based on semilocal functionals. Therefore, the strength of the
2-body RSE interactions is smaller for hybrids than for semilocal functionals.
Transitioning from KS/PBE to KS/PBE0 results in a decrease in the repulsive
interaction within the 3-body RSE energies and the attractive interaction within
the 4-body RSE energies. These trends can also be understood in the context
of the changes observed in the EXX energies, as discussed above for the 2-body
terms. Remarkably, there is almost no change in the 3-body and 4-body RSE
energies when going from KS/SCAN to KS/SCAN0 (see Table 5.1 for ethylene
and Tables A.7–A.9 for the other systems). This means that exact exchange has
a minimal effect on the non-additive RSE corrections based on KS/SCAN.

5.2 Correlation energies
We now discuss how the correlation energies are influenced by the input states,

starting with the RPA component. One can see from Table 5.2 that the 2-body
RPA energies are more attractive when using KS/PBE and KS/SCAN orbitals
compared to other orbitals. This difference originates from smaller electronic
gap observed for RPA based on semilocal DFT orbitals than for RPA based on
other orbitals, which was also noted before for other systems [43, 44]. Similar
to the behavior observed for the mean field energies, the change in the 2-body
RPA correlation energy from KS/PBE to KS/PBE0 is larger than the change
from KS/SCAN to KS/SCAN0. As discussed in chapter 2, semi/PBE orbitals
are an intermediate choice between KS/PBE and HF orbitals. Thus, the 2-body
RPA(semi/PBE) correlation energy is found to be less attractive than 2-body
RPA(KS/PBE) but more attractive than 2-body RPA(HF) for ethane (see Ta-
ble A.10). However, for the systems with π electrons, the 2-body RPA(semi/PBE)
energy is notably less attractive than 2-body RPA(KS/PBE), but relatively close
to the HF values. For example, for the two forms of acetylene, the difference be-
tween the 2-body RPA(semi/PBE) and 2-body RPA(HF) energies is very small
(below 0.15 kJ/mol) (see Tables A.11 and A.12). These observations indicate
that semi/PBE orbitals can be used to replace HF orbitals for performing the
2-body RPA calculations in the systems with high electrostatic contributions.
We note that the reduced binding of the RPA(semi/PBE) correlation energy is
then corrected by the 2g term when both these components contribute to the
RPA+MBPT3(semi/PBE) method.

The 3-body RPA correlation energies based on all examined orbitals are re-
pulsive. When going from KS/PBE to KS/PBE0, the repulsive interaction in
the 3-body RPA values decreases for ethane and ethylene (see Table A.10 and
Table 5.2). This trend aligns with the change in the 3-body DFT energy from
KS/PBE to KS/PBE0, and has been observed previously in Ref. [44]. How-
ever, we observe an increase in the 3-body RPA repulsive term for the two forms
of acetylene when moving from KS/PBE to KS/PBE0, as shown in Tables A.11
and A.12. When going from KS/SCAN to KS/SCAN0, the changes in the 3-body
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Table 5.2: The correlation energies of ethylene in kJ/mol obtained from the RPA
calculations using the MBE approach.

Components Orbitals 2-body 3-body 4-body Total

RPA

KS/PBE −32.15 1.07 0.24 −30.84
KS/SCAN −30.91 0.47 −0.02 −30.46
KS/PBE0 −28.90 1.01 0.09 −27.80
KS/SCAN0 −28.44 0.58 −0.01 −27.87
HF −24.12 1.49 −0.11 −22.74
semi/PBE −25.31 0.66 – –

SOSEX
KS/PBE −2.31 0.69 – –
semi/PBE −0.74 0.41 – –
HF 0.11 0.03 – –

2g
semi/PBE −5.11 0.34 – –
HF −5.22 0.61 – –

RPA correlation energy are minimal (below 0.15 kJ/mol) for all considered sys-
tems. This is also consistent with the changes in the 3-body DFT energy, where
the shift from KS/SCAN to KS/SCAN0 is significantly smaller than the change
from KS/PBE to KS/PBE0, as discussed above. The 3-body RPA energies de-
rived from HF orbitals (approximately 1-2 kJ/mol) exhibit significantly stronger
repulsion compared to those computed from DFT orbitals, which aligns with
the differences between the 3-body HF and 3-body DFT energies. The 3-body
RPA(semi/PBE) values are less repulsive than both the 3-body RPA(KS/PBE)
and RPA(HF) energies for all the considered systems.

Adding exact exchange into KS/PBE0 results in a reduction of the repulsive
interactions observed in the 4-body RPA(KS/PBE) values. An exception to this
trend is noted in the case of ethane, but the change is very small. As seen in
Table 5.2, the exact exchange has almost no impact on the 4-body RPA value
based on KS/SCAN orbitals for ethylene. The same behavior is observed for
other systems (Tables A.10–A.12).

Similar to the behavior seen in the mean field energies, the variations in n-
body RPA correlation energies tend to cancel each other. As a result, the total
RPA correlation energies based on KS/PBE and KS/SCAN orbitals, as well as
KS/PBE0 and KS/SCAN0 orbitals, are comparable.

We now move to discuss the SOSEX and 2g corrections. We note again that
these components were obtained only up to the 3-body terms. The attractive
interaction in the 2-body SOSEX corrections is significantly decreased when go-
ing from KS/PBE to HF orbitals. This is expected as the SOSEX corrections
are added to remove second-order Pauli-exclusion violating contributions in the
RPA correlation energy using DFT orbitals. As discussed above, the 3-body
RPA correlation energies based on HF orbitals are much more repulsive than
those based on DFT orbitals. Consequently, the repulsive interactions in the 3-
body SOSEX energies are found to decrease when going from KS/PBE to HF
orbitals. The 2g values based on both semi/PBE and HF orbitals are attractive,
with only a minimal difference of 0.1 kJ/mol. However, the magnitude of the
repulsive 3-body 2g values obtained from HF orbitals is double of that obtained
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for semi/PBE orbitals. These differences are consistent with differences between
the RPA(semi/PBE) and RPA(HF) correlation energies, discussed above.

5.3 Summary
The results of the energy components in the RPA calculations are affected

by the choice of orbital inputs. Adding exact exchange in hybrid functionals
has a greater effect on the change in energy of both the mean field and RPA
correlation energies when based on KS/PBE orbitals compared to KS/SCAN or-
bitals. Remarkably, there is almost no change in the non-additive energies of RSE
and RPA correlation energies when KS/SCAN input is replaced by KS/SCAN0.
For all the energy components, the changes in n-body contributions between
KS/PBE and KS/SCAN orbitals are relatively large, but the errors in n-body
contributions tend to cancel each other, resulting in relatively small differences
in the total energies between these orbitals. The same behavior is observed for
KS/PBE0 and KS/SCAN0 orbitals. However, there are exceptions regarding the
total DFT energies, where the values derived from KS/PBE are similar to those
from KS/SCAN, and similarly, the values from KS/PBE0 are comparable to those
from KS/SCAN0.
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6. Accuracy of examined
approximate methods

For molecular solids, the accuracy of approximate methods is commonly as-
sessed by comparing their binding energies to reference data [16, 21, 28, 285].
However, this approach has limitations as a single binding energy value is often
insufficient to fully understand the deviations of approximate methods from the
reference. To obtain a more comprehensive understanding, it is preferable to
evaluate each n-body contribution of the binding energy obtained from MBE by
comparing it with the reference [31]. In this chapter, we first discuss the results
which were published in papers P1 and P2 where we tested the accuracy of MP2,
MP3, RPA and beyond-RPA methods in describing of n-body terms contributing
to the binding energy of all the considered systems. In the remaining part of this
chapter, we will examine the performance of the correction scheme, where the
n-body contributions at large distance obtained from the CCSD(T) reference are
substituted by those obtained from approximated methods. Then, we evaluate
the accuracy of some dispersion-corrected DFT methods obtained from the PBC
approach. These results will be presented in our forthcoming work. As the re-
sults are spread over different papers, we combine them here to give a broader
perspective.

6.1 Two-body terms
The 2-body contributions of the examined methods for all the considered

systems are summarized in Table A.13 in Attachments, and are compared with
reference CCSD(T) data in Fig. 6.1. Let us start to consider the RPA method
without any additional corrections. Fig. 6.1 shows that the total 2-body RPA
energies based on all studied orbitals significantly underestimate the reference
CCSD(T) data. The average relative differences calculated for all the considered
systems compared to the reference data range from approximately 18% to 32%.
Specifically, the RPA(KS/SCAN) values exhibit the closest agreement with the
reference data, while RPA(HF) values give the largest errors. This observation
was also found previously for other system [44]. The reason for this is that the
RPA correlation energies based on HF orbitals are considerably less attractive
than those based on DFT orbitals, due to the larger electronic gap of HF.

The addition of the RSE corrections improves significantly the accuracy of the
direct RPA method, in which the values based on pure DFT functionals (KS/PBE
and KS/SCAN) show a better agreement with the reference than those based on
hybrids (KS/PBE0 and KS/SCAN0). RPA+RSE shows better performance for
KS/PBE than for KS/SCAN, primarily due to the more significant influence of
the RSE corrections based on KS/PBE. These findings are also consistent with
those reported in Ref. [44].

We now turn to examine the RPA methods with the remaining corrections
beyond RSE. The SOSEX corrections are applied to remove the second-order
Pauli-exclusion violating contributions in the RPA correlation energy evaluated
with DFT orbitals, and we find that their contributions calculated with KS/PBE
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Figure 6.1: The two-body contributions to the total binding energies of the ap-
proximate methods compared to the CCSD(T) reference data.

orbitals are important for the 2-body terms of the considered systems. For
instance, the SOSEX(KS/PBE) contribution is even larger than the contribu-
tion of RSE(KS/PBE) for acetylene/I (refer to Table A.8 and Table A.11).
RPA+RSE(KS/PBE) is improved significantly when the SOSEX(KS/PBE) cor-
rections are added. Indeed, the agreement of the rPT2(KS/PBE) method, where
both RSE and SOSEX corrections are added to total RPA, with the CCSD(T)
reference is excellent and the relative errors are below 1% for all the consid-
ered systems (see Fig. 6.1). We note that this exceptional agreement arises
not from error cancellation, but from the observation at the level of each in-
dividual dimer in the 2-body contributions, see Fig. 6.2 as an example. The
improvement of rPT2(KS/PBE) over RPA+RSE(KS/PBE) was also noted pre-
viously for dispersion-dominated systems [181]. However, it is important to note
that rPT2(KS/PBE) yields significant errors for hydrogen-bonded systems [181].
Therefore, the accuracy of the rPT2(KS/PBE) method should be examined for
molecular solids with hydrogen bonds.

The RPA+MBPT3 method was evaluated with addition of all corrections
considered (RSE, 1RDM,quad, SOSEX, and 2g). We note again that the EXX
and RSE values do not change when going from KS/PBE to semi/PBE orbitals.
The 2-body RPA and SOSEX correlation energies evaluated with semi/PBE
are less attractive than when evaluated with KS/PBE. The diminished attrac-
tion of the RPA(semi/PBE) correlation energies can be improved by the 2g
corrections, but it is not fully compensated. Consequently, when adding all
terms together, RPA+MBPT3(semi/PBE) offers only a slight improvement over
RPA+RSE(KS/PBE). Their relative errors compared to the CCSD(T) reference
data are still larger than 5% for all the considered systems. The general under-
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Figure 6.2: The difference between the rPT2(KS/PBE) and CCSD(T) binding
energies over distance for the 2-body contributions of ethylene.

binding trend of RPA+MBPT3(semi/PBE) for high-dispersion systems was also
observed before in Ref. [45].

When using HF orbitals as a starting point, the contributions of the 2-body
SOSEX corrections are very small (see Table 5.2 in the previous chapter as an
example). This leads to a similar level of accuracy between the RPA(HF) and
rPT2(HF) methods, as shown in Fig. 6.1. However, a significant improvement is
observed with RPA+MBPT3(HF) compared to RPA(HF). Remarkably, for the
two forms of acetylene, the precision achieved with RPA+MBPT3(HF) is almost
comparable to that of RPA+MBPT3(semi/PBE). The notable improvement of
RPA+MBPT3(HF) over RPA(HF) is a consequence of the effective compensa-
tion of the 2g(HF) corrections for the reduced attractiveness of the RPA(HF)
correlation energies.

We now shift our focus to the examination of the WFT methods. The CCSD
energies show an average error for all the systems from the reference data of
around 20 %, with larger errors observed for ethane and ethylene compared to
the two forms of acetylene. These large errors are due to the absence of the
2-body (T) component, which plays an important role for the 2-body energies in
general. For MP2, we find that the deviation from CCSD(T) increases notably
when going from ethane to the systems with delocalized electrons. The relative
errors range from around 4.6% for ethane to as high as 17.5% for acetylene/I.
This result can be understood by the limitation of MP2 in describing the systems
with delocalized electrons [286, 287]. However, MP3 exhibits an opposite trend.
Specifically, the 2-body MP3 energies deviate from the reference data by less than
3% for the systems with π electrons, but reach up to 8% for ethane. These errors
show that the MP3 method outperforms all the examined methods, apart from
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rPT2(KS/PBE), for the systems with delocalized electrons. Finally, the MP2.5
method performs quite well for all the considered systems, generally exhibiting
smaller errors compared to those observed in the RPA and beyond-RPA methods
based on HF orbitals. These results indicate that the MP2.5 and MP3 methods
are better choices compared to the beyond-RPA(HF) methods for the 2-body
contributions of the considered systems, at least in terms of accuracy.

Understanding the accuracy of the approximate methods for proximate and
distant dimers separately is important as the contributions of the energy com-
ponents depend strongly on the cut-off distance. For the proximate dimers, we
find that the errors of the examined methods compared to the CCSD(T) refer-
ence data are mostly similar to those for the dimers summed over all distance.
For example, rPT2(KS/PBE) also yields the errors of less than 1% for all the
considered systems when examining the proximate dimers. This similarity arises
because the largest contribution of the energy components typically comes from
short intermolecular separations. Therefore, we only discuss the accuracy of the
approximate methods for the distant dimers, summarized in Table 6.1. The in-
teractions at large distances are governed by the leading terms which decay as
(−C6/R6) with the intermolecular distance R. By examining the distant dimers,
we can assess how accurately approximate methods predict the leading order of
the interaction energy. Moreover, we can test how the leading order is affected
by the choices made for RPA orbital inputs or by the addition of further MP or
CC terms.

We first consider the performance of the RPA and beyond-RPA methods for
the distant dimers. When compared to the CCSD(T) reference data, the direct
RPA method yields errors of less than 0.2 kJ/mol, with RPA(KS/PBE) exhibiting
the smallest errors (see Table 6.1). Then there is almost no improvement when
going from direct RPA(KS/PBE) to RPA(KS/PBE) with additional corrections.
This is due to the fact that the RSE(KS/PBE) and SOSEX(KS/PBE) corrections
converge rapidly with distance, and their contributions become nearly negligible
at large distances. The 2g corrections account for third-order RPA corrections
and are known to converge rather slowly with distance, as discussed before in
chapter 3. The contributions of the 2g(semi/PBE) corrections are approximately
0.1 kJ/mol for all the considered systems. However, the contribution of the
RPA(semi/PBE) correlation energies for the distant dimers are smaller compared
to that of RPA(KS/PBE) (see Table 3.7 in chapter 3). Consequently, the errors in
RPA+MBPT3(semi/PBE) are also similar to those observed for RPA(KS/PBE).
These observations imply the direct RPA(KS/PBE) method gives the results close
to CCSD(T) for the distant dimers with the errors below 0.1 kJ/mol.

We now move to discus the WFT methods. Among these methods, MP2.5 and
MP3 outperform MP2 and CCSD for the distant dimers. The errors of the MP2.5
and MP3 methods compared to the CCSD(T) reference are below 0.05 kJ/mol for
all the considered systems. These errors are even smaller than those observed for
the RPA and RPA-beyond methods. The exception here is ethane, where MP2
shows an excellent agreement with the reference data. However, the interactions
are clearly too large for the systems with π electrons.

In summary, the RPA methods based on KS/PBE orbitals perform better than
those based on HF and other DFT orbitals. The direct RPA methods without
corrections perform poorly for the 2-body contributions of all the considered
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Table 6.1: Total 2-body energies of the examined methods for distant dimers
(10 < r < rcut) (kJ/mol) for all the considered systems.

Methods Ethane Ethylene Acetylene/I Acetylene/II
KS/PBE

ERPA
total −0.54 −0.45 −0.53 −0.22

ERPA+RSE
total −0.54 −0.45 −0.48 −0.24

ErPT2
total −0.57 −0.48 −0.51 −0.23

Semi/PBE
ERPA+MBPT3

total −0.53 −0.44 −0.41 −0.24
KS/SCAN

ERPA
total −0.50 −0.40 −0.43 −0.23

ERPA+RSE
total −0.50 −0.40 −0.43 −0.23

KS/PBE0
ERPA

total −0.48 −0.39 −0.42 −0.22
ERPA+RSE

total −0.48 −0.39 −0.42 −0.21
KS/SCAN0

ERPA
total −0.46 −0.37 −0.41 −0.20

ERPA+RSE
total −0.46 −0.37 −0.41 −0.20

HF
ERPA

total −0.37 −0.31 −0.38 −0.16
ErPT2

total −0.39 −0.32 −0.38 −0.15
ERPA+MBPT3

total −0.48 −0.41 −0.45 −0.22
EMP2

total −0.61 −0.56 −0.63 −0.42
EMP2.5

total −0.59 −0.53 −0.55 −0.33
EMP3

total −0.57 −0.49 −0.48 −0.25
ECCSD

total −0.51 −0.41 −0.43 −0.22
E

CCSD(T)
total −0.61 −0.51 −0.52 −0.30

systems, but the inclusion of the additional corrections significantly improve their
accuracy. Among the RPA variants, rPT2(KS/PBE) achieves the best accuracy
for all considered systems. For the wavefunction methods, MP2 is suitable only for
ethane, while MP3 is a good choice for the systems with delocalized electrons. The
differences in the 2-body energies between approximate methods and CCSD(T)
reference are notably smaller for the distant dimers compared to the proximate
dimers. Therefore, one can consider using the 2-body energies of the distant
dimers obtained from approximate methods, such as the RPA methods based on
KS/PBE or MP2.5 and MP3 methods, instead of the CCSD(T) reference without
sacrificing significant accuracy, thereby saving computational costs.

6.2 Three-body terms
We now turn to discuss the 3-body terms. The data for the examined meth-

ods are summarized in Table A.14, and are compared to the reference CCSD(T)
data in Fig. 6.3. To begin, we focus on the RPA method without any additional
corrections. According to Fig. 6.3, RPA based on KS/SCAN and KS/SCAN0 per-
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forms much better than that based on KS/PBE and KS/PBE0. Remarkably, the
RPA(KS/PBE) energies even have incorrect signs for all the considered systems.
These observations are consistent with those observed in Ref. [44]. The accuracy
of the RPA(HF) method is similar to the RPA(KS/SCAN) and RPA(KS/SCAN0)
methods for ethane, aligning with findings reported for methane clathrate [44].
This can be clarified by noting that the EXX energies using KS/SCAN and
KS/SCAN0 are close to the HF energies than when KS/PBE and KS/PBE0
are used. However, for the remaining systems, RPA based on HF orbitals ex-
hibits superior performance compared to that based on DFT functionals. This
indicates that HF orbitals are more suitable than DFT orbitals for describing the
3-body RPA energies for the systems with π interactions.

Figure 6.3: The three-body contributions to the total binding energies of the
approximate methods compared to the CCSD(T) reference data.

We now discuss the results obtained for RPA with the RSE corrections added.
The effect of these corrections varies depending on the type of DFT orbitals used.
For KS/PBE and KS/PBE0, the 3-body RSE energies are positive and cancel
partly the negative values of the 3-body EXX energies, and therefore they enhance
the accuracy of RPA. By contrast, the RSE corrections reduce the accuracy of
RPA when using KS/SCAN and KS/SCAN0. This behavior was also noted before
and is possibly due to over-correction of the RSE corrections in the errors of the
3-body energies [43]. This recommends not to use the RSE corrections with the
3-body RPA(KS/SCAN) and RPA(KS/SCAN0) energies. The effect of the RSE
corrections is notably more pronounced for KS/PBE orbitals than for KS/PBE0
orbitals. The average improvement is approximately 1 kJ/mol for the former
but only 0.1 kJ/mol for the latter, as expected due to smaller RSE corrections
for hybrid functionals. Thus, the RSE corrections may be not necessary for
the 3-body RPA(KS/PBE0) energies, especially for the systems with delocalized
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electrons.
Let us move to discuss the RPA methods with additional corrections be-

yond RSE. While the SOSEX corrections based on KS/PBE and semi/PBE were
deemed negligible for the 3-body energy of methane clathrate [45], they play a
significant role in the 3-body contributions of the considered systems. For in-
stance, the SOSEX(KS/PBE) energy amounts to more than a half of the RSE
energy for ethylene (see Tables 5.1 and 5.2). When combining the positive values
of the SOSEX(KS/PBE) and RPA(KS/PBE) correlation energies, the result-
ing RPA+SOSEX(KS/PBE) values become closer to the CCSD(T) correlation
energies. This makes the rPT2(KS/PBE) method much more accurate than
the RPA+RSE(KS/PBE) variant. The accuracy of rPT2(KS/PBE) is then im-
proved further by RPA+MBPT3(semi/PBE). Specifically, the average error is
reduced by around 0.6 kJ/mol when using RPA+MBPT3(semi/PBE) compared
to rPT2(KS/PBE).

When HF orbitals are used, the rPT2(HF) method demonstrates a compara-
ble level of accuracy to RPA(HF), as the contribution of the 3-body SOSEX(HF)
energies is minimal (below 0.03 kJ/mol) for all the systems considered. The
RPA+MBPT3(HF) method is more accurate than rPT2(HF) for ethane and ethy-
lene, whereas it is slightly inferior to rPT2(HF) for the two forms of acetylene.
This discrepancy can be explained by the fact that the rPT2(HF) energies are
much closer to CCSD(T) for the two forms of acetylene than for ethane and
ethylene. Then the addition of the 2g corrections can improve the accuracy of
rPT2(HF) for ethane and ethylene but may lead to overcorrection for the two
forms of acetylene. Hence, when using HF orbitals for the two forms of acetylene,
additional corrections may be unnecessary as the basic RPA method is sufficiently
good.

We now examine the accuracy of the WFT methods. Among these methods,
CCSD yields the 3-body energies that are in the best agreement with the refer-
ence for all the considered systems due to small contributions of the 3-body (T)
component. The MP2.5 method is also an excellent choice for the 3-body terms.
The errors of MP2.5 are slightly smaller than those of RPA+MBPT3(HF) for all
the considered systems, except for ethane, for which the error of MP2.5 is around
0.4 kJ/mol. This is a consequence of error cancellation between MP2 (underes-
timation) and the MP3 (overestimation) binding energies, which was also noted
before for the 3-body contributions of molecules [288]. The errors in the MP2
and MP3 methods are quite large, ranging from 0.5 to 1.6 kJ/mol. Specifically,
MP2 performs better for the two forms of acetylene than for ethane and ethylene,
while the opposite trend is observed for MP3. These trends are in contrast to the
behavior observed in the 2-body terms.

As with the 2-body terms, the performance of the approximate methods for
the 3-body terms is also influenced by distance. Thus, it is important to examine
the performance of those methods as a function of the separation of molecules
in a cluster. To do this, we divided all trimers into four groups based on the
number of close contacts between molecules (n = 0, 1, 2, 3). Two molecules are
in contact when R < 5 Å for ethane and acetylene/I and R < 6 Å for ethylene
and acetylene/II, where R is intermolecular distance between molecules. We then
analyze the errors of the approximate methods as a function of the molecules in
contact, as shown in Fig. 6.4.
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Ethane

Ethylene

Acetylene/I

Acetylene/II

No. of contacts:3

No. of contacts:1

No. of contacts: 2

No. of contacts: 0

A: RPA(KS/PBE)
B: RPA(KS/SCAN)
C: RPA(KS/PBE0)
D: RPA(KS/SCAN0)
E: RPA(HF)

F: RPA+RSE(KS/PBE)
G: RPA+RSE(KS/SCAN)
H: RPA+RSE(KS/PBE0)
I: RPA+RSE(KS/SCAN0)

K: rPT2(KS/PBE)
L: rPT2(HF)

M: RPA+MBPT3(semi/PBE)

N: RPA+MBPT3(HF)

O: MP2
P: MP2.5
Q: MP3
R: CCSD

Figure 6.4: Signed errors in the three-body nonadditive energies of all the consid-
ered systems. The results are grouped according to the number of close contacts
between the molecules in a trimer. Note the different scales on y axis.

We start to examine the RPA methods. One can see from Fig. 6.4 that at
long range, for the systems with no close contacts (n = 0), the RPA methods
without any corrections based on all studied orbitals yield the errors of below
0.05 kJ/mol compared to the CCSD(T) reference. However, we note that the
CCSD(T) energies for n = 0 are rather small (between 0.1 and 0.3 kJ/mol) for
the considered systems. Therefore, the errors of around 0.05 kJ/mol are small
in magnitude, but relatively large. The inclusion of additional corrections only
changes the errors of the RPA methods marginally.

For the groups with close contacts (n = 1, 2, 3), the 3-body RPA energies
show considerable errors from the CCSD(T) reference. These errors decrease
significantly when the RSE corrections based on KS/PBE and KS/PBE0 orbitals
are added, but increase when including the RSE corrections based on KS/SCAN
and KS/SCAN0 orbitals. This is in agreement to the behavior observed for the
total 3-body energies. The largest errors in the RPA+RSE methods based on
DFT orbitals are primarily observed in the group with two contacts, whereas
for the RPA(HF) method, the most significant errors originate from the group
with three contacts. This may result from the slower convergence of the RPA
correlation energies based on DFT orbitals with distance compared to those based
on HF orbitals (see Fig. 3.2).

The remaining additional corrections also influence significantly the perfor-
mance of the approximate methods for the groups with close contacts. As shown
in Fig. 6.4, rPT2(KS/PBE) is more accurate than RPA+RSE(KS/PBE), and
RPA+MBPT3(semi/PBE) outperforms rPT2(KS/PBE) for all the groups with
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close contacts. However, the errors in the RPA+MBPT3(semi/PBE) method
compared to the CCSD(T) reference are still larger than 0.1 kJ/mol for the groups
with close contacts. The only exception is the group with n = 3 of ethane, where
RPA+MBPT3(semi/PBE) yields an error of 0.03 kJ/mol.

When based on HF orbitals, the RPA methods with and without corrections
tend to perform better than those based on KS/PBE orbitals in trimers with close
contacts between the molecules. For the group with n = 1, the RPA(HF) method
yields very small errors (below 0.1 kJ/mol) for all the considered systems. The
inclusion of additional corrections into RPA(HF) almost does not change these
errors a lot. However, for the group with n = 3, RPA+MBPT3(HF) shows a
significant improvement over RPA(HF). We observe this behavior for the group
with n = 2 only for ethane. For the other systems, RPA+MBPT3(HF) performs
slightly less effectively than RPA(HF). These observations suggest that the 3-
body RPA(HF) energies can be used to replace the CCSD(T) reference for the
groups of n = 1, 2, but for the group of n = 3, the RPA+MBPT3(HF) results are
the preferable choice.

We now move to examine the WFT methods. The CCSD method shows
substantial differences with the reference CCSD(T) only for the group with three
contacts, ranging from 0.1 to 0.3 kJ/mol. For the remaining groups, it yields
relatively accurate results, with errors below 0.1 kJ/mol. Nevertheless, it is worth
noting that the CCSD method is computationally expensive. The other methods
(MP2, MP2.5, and MP3) show significant differences with the reference, starting
with the group with one contact. The only exception here is MP2.5 for the group
with n = 1, where the errors are below 0.1 kJ/mol for all the considered systems.
Therefore, the RPA methods based on HF orbitals are generally more effective
than MP methods for describing the trimers with close contacts.

In summary, the RPA methods based on DFT orbitals are less accurate than
those based on HF orbitals for the 3-body terms of the considered systems. This
arises from the poor performance of the RPA methods evaluated with DFT or-
bitals when the molecules in trimers are in close contacts. Among the RPA
variants, the RPA+MBPT3(HF) method generally demonstrates the best per-
formance for the 3-body terms of the considered systems. Among the WFT
methods, MP2.5 is a good choice for describing the 3-body contributions.

6.3 Four-body terms
We now move to discuss the 4-body terms. The 4-body contributions of the

energy components in all methods for all the considered systems are relatively
small. Moreover, the calculations of the 4-body energy components are compu-
tationally demanding. Therefore, we only examine the accuracy of the RPA and
RPA+RSE methods based on DFT orbitals, MP2, and CCSD methods for the
4-body terms, shown in Table A.15 in Attachments and Fig. 6.5.

The 4-body CCSD(T) reference energy is around −0.03 kJ/mol for acety-
lene/II, and −0.10 kJ/mol for other systems (see Table A.15). These small values
come from small contributions of the energy components in the CCSD(T) calcu-
lations, and they tend to partially cancel each other. Considering first the RPA
method, we find that the 4-body RPA energies based on KS/PBE and KS/PBE0
are too positive and yield large errors when compared with the CCSD(T) refer-
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Figure 6.5: The four-body contributions to the total binding energies of the
approximate methods compared to the CCSD(T) reference data.

ence data. For example, the error is larger than 1 kJ/mol for acetylene/I when
KS/PBE is used. These large errors arise from both mean field and correlation
energies. Indeed, the EXX and RPA correlation energies based on KS/PBE and
KS/PBE0 are largely positive, and they do not tend to cancel each other for all
the considered systems (see Table A.3 and Table A.5). The only exception here is
the RPA correlation energy of ethane, which is close to zero (Table A.5). When
using KS/SCAN and KS/SCAN0 orbitals, the 4-body RPA energies give smaller
errors (see Fig. 6.5). Remarkably, the 4-body RPA(KS/SCAN0) energies are
nearly identical to the reference data, with the errors below 0.05 kJ/mol for all
considered systems. These small errors mainly originate from the contributions
of the EXX component because the 4-body RPA correlation energies based on
KS/SCAN and KS/SCAN0 orbitals are almost zero (Table A.5).

The addition of the RSE corrections into RPA generally improves the ac-
curacy of the RPA method. The largest improvement is observed for KS/PBE
orbitals, while for other orbitals, the change is less than 0.2 kJ/mol. However,
we find that for the two forms of acetylene, RPA+RSE based on KS/PBE0 and
KS/SCAN0 orbitals show either similar or even worse results compared to RPA.
These changes are very small, and may come from numerical noise of the 4-
body RSE contributions. Overall, KS/SCAN and KS/SCAN0 still give better
agreement than KS/PBE and KS/PBE0 for RPA+RSE when compared to the
CCSD(T) reference.

Among the WFT methods, CCSD shows remarkable accuracy, with the errors
of only 0.01 kJ/mol for all the considered systems. The reason for this is that the
4-body (T) energies are very small, and can be safely neglected. The errors in
MP2 are larger, but less than 0.10 kJ/mol for all the considered systems. These
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errors are comparable to those observed for RPA+RSE when based on KS/SCAN
and KS/SCAN0 orbitals.

In summary, KS/SCAN0 orbitals tend to yield superior results compared to
other orbitals for both RPA and RPA+RSE methods. We expect that the ac-
curacy of these methods will be improved when using HF orbitals, which should
be explored in future studies. The very small contributions of the 4-body terms
can make the assessment of the examined methods unreliable. Therefore, further
tests on systems with significant 4-body contributions should be carried on to
thoroughly assess the accuracy of the examined methods.

6.4 Total binding energies
The accuracy of the approximate methods for describing each n-body contri-

bution was discussed in detail. The question now is how the errors of n-body
contributions affect the results of total binding energies. The errors from n-body
contributions can accumulate or cancel each other, depending on their magni-
tudes and signs. We will discuss this in this section by comparing the total RPA
and MP2 binding energies to the CCSD(T) reference. The total binding energies
are summarized in Table A.16 in Attachments, and their relative deviations from
the reference are presented in Fig. 6.6.
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Figure 6.6: Relative difference of the binding energies obtained from the approx-
imate methods with respect to the reference data.

We start to discuss the RPA method. As expected, the binding energies of
RPA without RSE corrections underestimate significantly the reference data, with
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better agreement observed for the values based on KS/PBE and KS/SCAN or-
bitals compared to those based on KS/PBE0 and KS/SCAN0 orbitals. The range
of errors is between −22% and −12% for KS/PBE and KS/SCAN, and around
−27 to −14% for KS/PBE0 and KS/SCAN0. For RPA based on KS/PBE and
KS/PBE0 orbitals, the largely positive errors in the 4-body terms are partly can-
celled by the negative errors in the 3-body terms, resulting in overall negative
errors. Then these negative errors cancel partly the positive errors in the 2-body
terms, leading to the total underestimated binding energies. Therefore, the errors
in RPA based on KS/PBE and KS/PBE0 depend strongly on error cancellation
between n-body terms. However, for RPA based on KS/SCAN and KS/SCAN0,
the effect of error cancellation between n-body terms is smaller. The 4-body RPA
energies based on these orbitals are close to reference, and have very small errors.
Thus, the error cancellation mainly occurs when the negative errors in the 3-body
terms counteract the positive errors in the 2-body terms. This finding indicates
that RPA based on KS/SCAN and KS/SCAN0 orbitals is better suited for the
correction scheme compared to RPA based on KS/PBE and KS/PBE0 orbitals.
Interestingly, due to these error cancellations, the relative deviations of the RPA
energies based on KS/PBE and KS/SCAN differ by only a few percent, despite
significant differences in their n-body terms. We observe the same behavior for
RPA based on KS/PBE0 and KS/SCAN0 orbitals. The accuracy of the RPA
method is then improved significantly when the RSE corrections are included.
The errors in RPA+RSE compared to the CCSD(T) reference are from approx-
imately −9% to −3% for KS/PBE and KS/SCAN orbitals and from −19% to
−12% for KS/PBE0 and KS/SCAN0 orbitals.

We now turn to discuss the WFT methods, starting with MP2. We note that
the errors in the 4-body MP2 energies are very small for all considered systems
(below 0.1 kJ/mol), thus their contributions on the final deviation are minimal.
For ethane, MP2 predicts accurately binding energy with a relative error of below
1%. This exceptional accuracy arises from error cancellation between a positive
error in the 2-body terms (around 1 kJ/mol) and a negative error in the 3-body
terms (around −1.4 kJ/mol). The latter error is partly due to the absence of
three-body correlations. For the other systems, we find that MP2 overestimates
the binding energies by at least 14%. Although the negative error in the 3-body
terms for these systems is somewhat smaller than that for ethane, an inaccurate
description with second-order perturbation theory for the systems with π elec-
trons results in significantly negative errors in the 2-body terms. Consequently,
the combination of the negative errors in both 2- and 3-body terms leads to a
substantially overestimated total MP2 binding energy for these systems.

For all the considered systems, the relative errors obtained from CCSD are
generally larger than those observed for RPA based on all orbitals. The only
exception here is ethane, where CCSD performs better than RPA based on
KS/PBE0 and KS/SCAN0 orbitals. The errors in the 3-body CCSD energies
are relatively small (below −0.3 kJ/mol), while the errors in the 4-body terms
are negligible. Thus, the notably large errors in CCSD mainly come from the
positive errors in the 2-body terms, exceeding 4 kJ/mol for all the considered
systems due to the absence of the 2-body (T) component.

Overall, MP2 performs well for ethane but shows significant deterioration for
π-electron systems. Conversely, RPA offers a good description for both ethane

84



and π-electron systems, with RPA+RSE(KS/PBE) being the best choice due to
its accuracy. The overall error in the examined methods is strongly influenced by
the error cancellation between n-body terms.

6.5 Correction scheme
The calculations of the binding energies for large molecular solids at the

CCSD(T) level are currently highly computationally demanding. However, we
have shown that the difference in binding energy between the CCSD(T) reference
and examined methods occurs mainly at short distances. This motivated us to
assess the accuracy of the correction scheme where a portion of n-body contri-
butions, obtained from CCSD(T) data at large distances, is replaced with results
obtained from approximate methods. The details of this scheme was discussed
in chapter 1. It is expected that the correction scheme performs best when the
n-body contributions from the approximate methods are close to the CCSD(T)
values. Moreover, the performance of this scheme depends on the error cancel-
lation of the n-body contributions. Therefore, our results show that standard
DFT functionals are not suitable for this scheme, and more accurate methods are
needed.

The results are relatively similar for all the considered systems, and therefore
we focus on the results of ethylene in Table 6.2 as an example, and mention the
results of other systems summarized in Attachments (Tables A.17–A.19) when
necessary. Let us explain the percentage (%) in Table 6.2 more clearly. This
percentage is the fraction of the n-body contributions that are calculated using the
approximate method. The rest of the contributions is obtained at the CCSD(T)
level. When replacing the contributions, we start from those with the largest
distance. Thus, for a percentage of 100% all the CCSD(T) contributions are
replaced by the results of the approximate method. A percentage of 10% means
that we use 10% of the results from the approximate methods to replace the
CCSD(T) results at large distances while retaining 90% of the CCSD(T) results
at short distances. To evaluate the performance of the correction scheme, we test
how the results differ when the number of contributions obtained at the more
approximate level is increased.

Let us start with the 2-body terms. Among the methods tested for this
scheme, we expect that 2-body MP2 is a good choice for ethane, while 2-body
RPA+RSE(KS/PBE) is a better choice for the other systems. As shown in Ta-
ble 6.2, substituting 10% of the 2-body CCSD(T) energy with either the 2-body
RPA+RSE energy or the 2-body MP2 energy yields negligible errors. The errors
are slightly larger when the percentage is increased to 50%, but they remain very
small, below 0.03 kJ/mol. Even with a 70% substitution, the errors remain mini-
mal, staying below 0.1 kJ/mol. The errors tend to be smaller when using 2-body
MP2 for replacement compared to 2-body RPA+RSE. However, this trend is re-
versed for the two forms of acetylene, where MP2 predicts wrongly their 2-body
binding energies (see Table A.18 and Table A.19 in Attachments). When consid-
ering 2-body RPA+RSE as the replacement, we find that the errors increase in
the following order of orbitals: KS/PBE < KS/SCAN < KS/PBE0 < KS/SCAN0
< HF. This observation is consistent with the conclusion that KS/PBE orbitals
are the best choice for RPA+RSE in the 2-body terms.
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Table 6.2: The errors (in kJ/mol) of the values obtained using correction scheme
with respect to the CCSD(T) benchmark for ethylene. Here, the percentage
(%) represents the portion of the CCSD(T) results replaced by the results of
approximate methods.

Percentage n-body RPA+RSE MP2
KS/PBE KS/SCAN KS/PBE0 KS/SCAN0 HF –

100%
2-body 2.34 3.17 4.81 5.23 8.57 −2.13
3-body −1.63 −1.22 −1.19 −1.21 −0.44 −1.11
4-body 0.65 −0.06 0.33 0.04 0.02 0.06
Total 1.36 1.89 3.95 4.05 8.32 −3.18

90%
2-body 0.11 0.18 0.20 0.23 0.35 −0.10
3-body −0.40 −0.34 −0.21 −0.23 0.05 −0.03
4-body 0.57 −0.06 0.29 0.03 0.05 0.06
Total 0.28 −0.23 0.28 0.03 0.45 −0.08

70%
2-body 0.02 0.04 0.04 0.05 0.08 −0.03
3-body −0.10 −0.10 −0.07 −0.08 −0.04 −0.08
4-body 0.42 −0.04 0.21 0.02 0.02 0.04
Total 0.33 −0.10 0.19 −0.01 0.06 −0.07

50%
2-body 0.01 0.02 0.01 0.02 0.03 −0.01
3-body −0.05 −0.05 −0.02 −0.03 0.02 0.00
4-body 0.24 0.00 0.12 0.02 −0.01 0.02
Total 0.20 −0.03 0.11 0.01 0.05 0.01

30%
2-body 0.00 0.01 0.01 0.01 0.01 −0.01
3-body −0.02 −0.02 −0.01 −0.01 −0.01 0.00
4-body 0.10 0.01 0.05 0.01 0.00 0.00
Total 0.08 −0.01 0.04 0.00 0.01 0.00

10%
2-body 0.00 0.00 0.00 0.00 0.00 0.00
3-body −0.01 0.00 0.00 −0.01 −0.01 0.00
4-body 0.02 0.00 0.01 0.00 0.01 0.00
Total 0.02 0.00 0.01 0.00 0.00 −0.01

For the 3-body terms, the errors remain below 0.1 kJ/mol when replacing
70% of the reference data with values from the approximate methods. These
errors decrease further, to less than 0.05 kJ/mol, when the substitution fraction
is below 50%. The correction scheme works more effectively when using 3-body
RPA+RSE based on HF orbitals or 3-body MP2 compared to 3-body RPA+RSE
based on the DFT orbitals. This is again consistent with the performance of the
approximate methods for the 3-body terms relative to the CCSD(T) reference
data.

In the case of the 4-body terms, the errors remain below 0.07 kJ/mol when
90% of the CCSD(T) results is treated with RPA+RSE based on meta-GGA
and its hybrids, or HF. Similarly, substituting with the MP2 results yields the
same level of errors. However, relatively large errors are observed when using
RPA+RSE based on KS/PBE and KS/PBE0, starting from a 30% replacement.
This is due to the poor performance of the RPA+RSE method based on KS/PBE
and KS/PBE0 for the 4-body terms.
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Clearly, there is an error in the correction scheme for each n-body contribution.
Fortunately, the errors in different n-body contributions tend to cancel each other.
For instance, when 90% of replacement is done by RPA+RSE(KS/SCAN0), the
positive error in the 2-body terms can be cancelled completely by the negative
error in the 3-body terms. This make the correction scheme more useful when
considering the total binding energies. Moreover, we find that the methods which
are the best for describing total binding energies may not yield the best precision
for the correction scheme. For example, while the RPA+RSE(KS/SCAN0) and
MP2 methods describe poorly for the total binding energy of ethylene, they ex-
hibit stronger error cancellation between n-body terms compared to other meth-
ods when using the correction scheme, resulting in smaller overall errors. Indeed,
the errors in the total binding energy is very small (below 0.1 kJ/mol) when up to
90% of RPA+RSE(KS/SCAN0) or MP2 is used for replacement (see Table 6.2).

Overall, the correction scheme appears to be highly promising, and its accu-
racy varies depending on the percentage of the replacement and the approximate
methods considered. This scheme proves particularly advantageous for molecu-
lar solids, where the large number of n-body terms can be efficiently evaluated
using simpler methods, resulting in significant reductions in computational re-
quirements.

6.6 Dispersion-corrected DFT methods
The CCSD(T) dataset for all the considered systems is valuable as it can

be used to test the accuracy of other methods. DFT has been widely used to
study molecular solids. However, it is known that standard DFT functionals can
not describe exactly long-range van der Waals interactions, which are important
for high-dispersion systems. This issue can be addressed by including dispersion
interactions in DFT. The question now is how well these dispersion-corrected
DFT methods describe binding energies of molecular solids considered. To this
end, we first obtained binding energies of the considered systems using the PBC
approach with PBE0-D2 [133], PBE0-D3 [125], PBE0-D3BJ [125, 136], PBE0-
rsMBD [147], and PBE0-TS [145] functionals. In these calculations, we used the
Coulomb cut-off technique to avoid extrapolations of the energy with k-points
and cell volume. Then, a box of 25 × 25 × 25 Å3 was used for the calculations
of all the isolated molecules. For the calculations of solids, a 6 × 6 × 6 k-point
set was used for solid ethane and ethylene, and a 4 × 4 × 4 k-point set was used
for the two forms of solid acetylene. The basis-set cut-off was set to 1000 eV and
the “hard” PAW data sets were used. We note that these settings were found to
obtain converged energy values for our considered systems. Other systems may
require different settings.

The results of the dispersion-corrected DFT methods compared to the refer-
ence CCSD(T) data are shown in Fig. 6.7. It is evident that all selected DFT
models tend to overestimate the reference data to a different extent. Among
them, the PBE0-D2 model shows the best agreement for all the systems exam-
ined, except for ethane, where the PBE0-D3BJ model exhibits the smallest error.
Conversely, the PBE0-TS model overestimates strongly the reference data for all
the considered systems. Clearly, the performance of the dispersion-corrected DFT
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Figure 6.7: Relative difference of the binding energies obtained from several
dispersion-corrected DFT methods with respect to the reference data.

methods is influenced by the specific parameters used in dispersion correction.
The performance of the studied DFT methods, except for PBE0-TS, typically

surpasses that of the RPA method without RSE corrections. Upon incorpo-
rating RSE corrections, the RPA+RSE method using KS/PBE and KS/SCAN
states demonstrates superior performance compared to the studied DFT meth-
ods. However, both the PBE0-D2 and PBE0-rsMBD methods perform better
than the RPA+RSE method based on KS/PBE0 and KS/SCAN0 for all the
systems considered.

Overall, dispersion-corrected DFT methods can offer a valuable tool for ob-
taining reliable binding energies of molecular solids. However, the accuracy of
these methods depends strongly on the choice of parameters in the dispersion
correction and the characteristics of the considered systems. Therefore, we rec-
ommend that a systematic test should be carried to assess thoroughly the relia-
bility of these methods before employing them in actual calculations for binding
energies of molecular solids.
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Conclusion
In this thesis we developed an efficient setup for obtaining reference binding

energies from MBE at the CCSD(T) level of four crystalline hydrocarbons. We
then used the reference CCSD(T) results to examine the accuracy of several elec-
tronic structure methods for describing n-body contributions and total binding
energies of the considered systems. Moreover, we compared the binding energies
obtained from MBE and PBC approaches to evaluate the reliability of our MBE
approach. The main findings from obtained data can be summarized as follows.

It is challenging to achieve converged values for binding energies of molecular
solids with respect to numerical parameters in both MBE and PBC calculations.
In MBE, the uncertainties in the energy components arise from the problem with
the cut-off distance convergence, and the accuracy of the correlation energies is
further affected by the basis set convergence issue. In PBC, using the Coulomb
cut-off technique is essential for accelerating the convergence of the energy com-
ponents with k-points and cell volume, yet the calculations of correlation energies
are limited by computational and memory requirements. The values of the en-
ergy components obtained with MBE and PBC approaches agree well, and the
differences in the energy components between two approaches are consistent with
uncertainties estimated for the values. We suggest that combining the mean
field energies from PBC with the correlation energies from MBE is a promising
approach to achieving total binding energies with a high precision.

Within the MBE approach, the basis set convergence is notably slower for
the RPA correlation energies than for the correlation energies based on WFT.
The inclusion of the SOSEX corrections alongside RPA can improve the slow
basis set convergence of the RPA correlation energies. Further research is needed
to explore approaches for addressing this issue effectively. Obtaining converged
values of the energy components at short distances requires a large basis set or
CBS, whereas smaller basis sets, such as AVTZ or even AVDZ, are sufficient
for the energy components at large distances. The contribution of the mean
field energies and SOSEX corrections mainly come from short-range interactions,
yet the contributions of the correlation energies at large distances need to be
considered in the total energy summed over all distances. These findings indicate
some strategies which can be used to save computational time.

The orbital inputs influence significantly the results of the energy components
in the RPA calculations. The energy changes in all n-body terms are much larger
when transitioning from KS/PBE to KS/PBE0 compared to transitioning from
KS/SCAN to KS/SCAN0. The orbital inputs also affect the basis set convergence
of the RPA correlation energies, with the values based on HF orbitals converg-
ing faster than those based on DFT orbitals. Thus, the non-additive RPA(HF)
correlation energies can be obtained with sufficiently large basis set without ex-
trapolations to CBS.

The accuracy of the examined methods depends on the n-body terms and the
systems considered. None of the methods tested achieves errors below 1 kJ/mol
for both 2-body interactions and non-additive contributions. For the RPA and
beyond-RPA methods, KS/PBE orbitals demonstrate better performance than
other orbitals for the 2-body terms, whereas HF orbitals are significantly supe-
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rior to DFT orbitals for the non-additive terms. Specifically, rPT2(KS/PBE)
achieves almost a benchmark-level accuracy for the 2-body terms, but inaccu-
rately predicts the 3-body contributions. Conversely, RPA+MBPT3(HF) is the
most accurate method for the 3-body terms, but systematically underestimates
the 2-body interactions. Therefore, further beyond-RPA methods need to be in-
vestigated to find a single method that yields uniform accuracy for both dimers
and non-additive contributions. For the WFT methods, MP3 is a good choice for
the 2-body terms, while MP2.5 is suitable for the 3-body terms.

The n-body components in the RPA calculations strongly depend on the
choice of orbital inputs. However, the errors arising from these n-body contribu-
tions tend to cancel each other. Consequently, the total binding energies based on
KS/PBE and KS/SCAN, as well as those based on KS/PBE0 and KS/SCAN0,
are similar. The MP2 method predicts the total binding energy of ethane almost
accurately, but for the other systems, RPA with additional corrections is the best
choice among the examined methods.

Overall, we find that the description of binding energies of molecular solids
with strong dispersion interactions remains a challenge for approximate electronic
structure methods. The many-body-resolved binding energies provide more de-
tailed insights into the sources of errors for a given method than assessment based
solely on total binding energies. RPA with additional corrections demonstrates a
good choice for describing the binding energies of the considered systems. How-
ever, further improvements are required to obtain a RPA variant with uniform
accuracy for all n-body contributions. The CCSD(T) data for the solids studied
in this work can be used as a benchmark for the development of novel low-scaling
approaches. The proposed correction scheme offers substantial savings in com-
putational cost and can be used for further work in molecular solids.
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materials-ready dispersion correction that uniformly treats metallic, ionic,
and van der Waals bonding. Journal of the American Chemical Society,
142(5):2346–2354, 2020.

[149] J. Hermann and A. Tkatchenko. Density functional model for van der
Waals interactions: Unifying many-body atomic approaches with nonlocal
functionals. Physical Review Letters, 124:146401, 2020.

[150] B. Winkler and V. Milman. Accuracy of dispersion-corrected density func-
tional theory calculations of elastic tensors of organic molecular structures.
Crystal Growth & Design, 20(1):206–213, 2020.

[151] A. J. A. Price, K. R. Bryenton, and E. R. Johnson. Requirements for an
accurate dispersion-corrected density functional. The Journal of Chemical
Physics, 154(23):230902, 2021.

102



[152] D. O’Connor, I. Bier, Y.-T. Hsieh, and N. Marom. Performance of
dispersion-inclusive density functional theory methods for energetic ma-
terials. Journal of Chemical Theory and Computation, 18(7):4456–4471,
2022.

[153] B. Emrem, R. Kempt, K. Finzel, and T. Heine. London dispersion-corrected
density functionals applied to van der Waals stacked layered materials:
Validation of structure, energy, and electronic properties. Advanced Theory
and Simulations, 5(7):2200055, 2022.

[154] J. P. Perdew and K. Schmidt. Jacob’s ladder of density functional approx-
imations for the exchange-correlation energy. AIP Conference Proceedings,
577(1):1–20, 2001.

[155] J. P. Perdew, A. Ruzsinszky, L. A. Constantin, J. Sun, and G. I. Csonka.
Some fundamental issues in ground-state density functional theory: A guide
for the perplexed. Journal of Chemical Theory and Computation, 5(4):902–
908, 2009.

[156] G. E. Scuseria, T. M. Henderson, and D. C. Sorensen. The ground state cor-
relation energy of the random phase approximation from a ring coupled clus-
ter doubles approach. The Journal of Chemical Physics, 129(23):231101,
2008.

[157] D. C. Langreth and J. P. Perdew. The exchange-correlation energy of a
metallic surface. Solid State Communications, 17(11):1425–1429, 1975.

[158] O. Gunnarsson and B. I. Lundqvist. Exchange and correlation in atoms,
molecules, and solids by the spin-density-functional formalism. Physical
Review B, 13:4274–4298, 1976.

[159] D. C. Langreth and J. P. Perdew. Exchange-correlation energy of a metallic
surface: Wave-vector analysis. Physical Review B, 15:2884–2901, 1977.

[160] X. Ren, P. Rinke, C. Joas, and M. Scheffler. Random phase approxima-
tion with exchange for an accurate description of crystalline polymorphism.
Journal of Materials Science, 47(21):7447–7471, 2012.

[161] F. Caruso, D. R. Rohr, M. Hellgren, X. Ren, P. Rinke, A. Rubio, and
M. Scheffler. Bond breaking and bond formation: How electron correla-
tion is captured in many-body perturbation theory and density-functional
theory. Physical Review Letters, 110:146403, 2013.

[162] X. Ren, P. Rinke, C. Joas, and M. Scheffler. Random-phase approxima-
tion and its applications in computational chemistry and materials science.
Journal of Materials Science, 47:7447–7471, 2012.

[163] R. Kubo. The fluctuation-dissipation theorem. Reports on Progress in
Physics, 29(1):255, 1966.

[164] J. Harl and G. Kresse. Accurate bulk properties from approximate many-
body techniques. Physical Review Letters, 103:056401, 2009.

103



[165] Y. Li, D. Lu, H.-V. Nguyen, and G. Galli. Van der Waals interactions
in molecular assemblies from first-principles calculations. The Journal of
Physical Chemistry A, 114(4):1944–1952, 2010.

[166] X. Ren, A. Tkatchenko, P. Rinke, and M. Scheffler. Beyond the random-
phase approximation for the electron correlation energy: The importance
of single excitations. Physical Review Letters, 106(15):153003, 2011.

[167] T. Olsen and K. S. Thygesen. Beyond the random phase approximation:
Improved description of short-range correlation by a renormalized adiabatic
local density approximation. Physical Review B, 88(11):115131, 2013.

[168] T. Olsen and K. S. Thygesen. Accurate ground-state energies of solids and
molecules from time-dependent density-functional theory. Physical Review
Letters, 112:203001, 2014.

[169] N. Colonna, M. Hellgren, and S. de Gironcoli. Correlation energy within
exact-exchange adiabatic connection fluctuation-dissipation theory: Sys-
tematic development and simple approximations. Physical Review B,
90(12):125150, 2014.

[170] B. Mussard, D. Rocca, G. Jansen, and J. G. Ángyán. Dielectric matrix
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tronic properties of solid molecular hydrogen from many-electron theories.
Physical Review B, 103(5):054111, 2021.

[200] T. J. Mach and T. D. Crawford. Computing optical rotation via an N-body
approach. Theoretical Chemistry Accounts, 133(3):1449, 2014.

[201] R. M. Richard, K. U. Lao, and J. M. Herbert. Achieving the CCSD(T)
basis-set limit in sizable molecular clusters: Counterpoise corrections for
the many-body expansion. The Journal of Physical Chemistry Letters,
4(16):2674–2680, 2013.

106



[202] R. M. Richard, K. U. Lao, and J. M. Herbert. Understanding the many-
body expansion for large systems. I. Precision considerations. The Journal
of Chemical Physics, 141(1):014108, 2014.

[203] K. U. Lao, K.-Y. Liu, R. M. Richard, and J. M. Herbert. Understanding
the many-body expansion for large systems. II. Accuracy considerations.
The Journal of Chemical Physics, 144(16):164105, 2016.

[204] E. E. Dahlke and D. G. Truhlar. Electrostatically embedded many-body
expansion for large systems, with applications to water clusters. Journal of
Chemical Theory and Computation, 3(1):46–53, 2007.

[205] P. J. Bygrave, N. L. Allan, and F. R. Manby. The embedded many-body
expansion for energetics of molecular crystals. The Journal of Chemical
Physics, 137(16):164102, 2012.

[206] S. Wen and G. J. O. Beran. Accurate molecular crystal lattice ener-
gies from a fragment QM/MM approach with on-the-fly ab initio force
field parametrization. Journal of Chemical Theory and Computation,
7(11):3733–3742, 2011.
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A. Attachments

A.1 Chapter 4
The results of the energy components in the RPA and MP2 calculations ob-

tained from both MBE and PBC approaches.

Table A.1: The DFT energies in kJ/mol obtained from the MBE and PBC
approaches for all the considered systems.

Input Method Ethane Ethylene Acetylene/I Acetylene/II

KS/PBE

2-body −5.55 −8.57 −15.88 −15.64
3-body 6.86 6.86 6.28 5.42
4-body −1.81 −1.86 −2.07 −1.18
Total MBE −0.5 −3.57 −11.67 −11.40
PBC −0.43 −3.52 −11.51 −11.46

KS/SCAN

2-body −8.31 −11.97 −21.08 −19.17
3-body −5.15 −3.08 −1.53 −0.82
4-body 2.28 1.48 0.57 0.29
Total MBE −11.18 −13.57 −22.04 −19.70
PBC −11.54 −13.92 −22.33 −19.91

KS/PBE0

2-body −3.10 −6.52 −14.57 −14.54
3-body 3.93 4.10 3.67 3.35
4-body −1.13 −1.19 −1.30 −0.73
Total MBE −0.30 −3.61 −12.38 −11.92
PBC −0.25 −3.61 −12.30 −11.98

KS/SCAN0

2-body −7.58 −11.18 −20.44 −18.79
3-body −3.44 −1.92 −0.92 −0.36
4-body 1.41 0.86 0.29 0.14
Total MBE −9.61 −12.24 −21.07 −19.01
PBC −9.68 −12.46 −21.29 −19.20

Table A.2: The HF energies in kJ/mol obtained from the MBE and PBC
approaches for all the considered systems.

Method Ethane Ethylene Acetylene/I Acetylene/II
2-body 12.95 9.38 1.64 −2.24
3-body −0.62 −0.38 −0.90 −0.15
4-body 0.03 0.02 0.03 0.05
Total MBE 12.36 9.02 0.77 −2.34
PBC 12.42 8.96 0.70 −2.37
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Table A.3: The EXX energies in kJ/mol obtained from the MBE and PBC
approaches for all the considered systems.

Input Method Ethane Ethylene Acetylene/I Acetylene/II

KS/PBE

2-body 19.45 14.22 6.53 1.63
3-body −2.95 −2.15 −2.47 −1.36
4-body 0.89 0.62 0.60 0.41
Total MBE 17.39 12.69 4.66 0.68
PBC 17.38 12.63 4.46 0.52

KS/SCAN

2-body 18.02 12.08 3.81 −0.69
3-body −0.10 0.46 −0.15 0.54
4-body −0.23 −0.31 −0.26 −0.13
Total MBE 17.69 12.23 3.40 −0.28
PBC 17.52 12.12 3.34 −0.37

KS/PBE0

2-body 16.03 11.25 3.37 0.95
3-body −1.29 −0.79 −1.27 −0.41
4-body 0.32 0.19 0.15 0.13
Total MBE 15.06 10.65 2.25 −1.23
PBC 15.07 10.57 2.10 −1.35

KS/SCAN0

2-body 15.76 10.52 2.32 −1.84
3-body −0.14 0.33 −0.22 0.42
4-body −0.07 −0.15 −0.14 −0.05
Total MBE 15.55 10.70 1.96 −1.47
PBC 15.35 10.57 1.88 −1.53
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Table A.4: The RSE energies in kJ/mol obtained from the MBE and PBC
approaches for all the considered systems.

Input Method Ethane Ethylene Acetylene/I Acetylene/II

KS/PBE

2-body −4.46 −3.21 −3.06 −2.40
3-body 1.46 1.02 0.81 0.60
4-body −0.52 −0.33 −0.24 −0.15
Total MBE −3.52 −2.52 −2.49 −1.95
PBC −3.66 −2.53 −2.46 −1.83

KS/SCAN

2-body −3.13 −1.47 −0.95 −0.58
3-body −0.36 −0.60 −0.67 −0.58
4-body 0.11 0.16 0.19 0.11
Total MBE −3.38 −1.91 −1.43 −1.05
PBC −3.47 −1.88 −1.35 −0.90

KS/PBE0

2-body −1.93 −1.02 −0.79 −0.55
3-body 0.36 0.15 0.04 0.02
4-body −0.14 −0.06 0.01 0.01
Total MBE −1.71 −0.93 −0.74 −0.52
PBC −1.73 −0.89 −0.71 −0.49

KS/SCAN0

2-body −1.51 −0.34 0.09 0.20
3-body −0.38 −0.57 −0.64 −0.51
4-body 0.03 0.08 0.12 0.07
Total MBE −1.86 −0.83 −0.43 −0.24
PBC −1.90 −0.76 −0.44 −0.20
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Table A.5: The RPA correlation energies in kJ/mol obtained from the MBE and
PBC approaches for all the considered systems.

Input Method Ethane Ethylene Acetylene/I Acetylene/II

KS/PBE

2-body −37.64 −32.22 −28.13 −22.41
3-body 1.89 1.07 0.46 0.23
4-body −0.01 0.24 0.53 0.32
Total MBE −35.76 −30.91 −27.14 −21.86
PBC −35.44 −30.63 −27.14 −21.72

KS/SCAN

2-body −36.36 −30.97 −27.27 −21.67
3-body 0.93 0.47 0.43 0.14
4-body −0.05 −0.02 −0.01 0.01
Total MBE −35.48 −30.52 −26.85 −21.52
PBC −35.47 −30.48 −27.04 −21.35

KS/PBE0

2-body −33.14 −28.95 −25.81 −20.52
3-body 1.42 1.01 0.76 0.45
4-body −0.04 0.09 0.24 0.15
Total MBE −31.76 −27.85 −24.81 −19.92
PBC −31.44 −27.42 −24.51 −19.74

KS/SCAN0

2-body −32.79 −28.49 −22.50 −20.22
3-body 0.86 0.58 0.56 0.28
4-body −0.05 −0.01 −0.01 0.01
Total MBE −31.98 −27.92 −24.95 −19.93
PBC −31.74 −27.60 −24.84 −19.83

Table A.6: The MP2 correlation energies in kJ/mol obtained from the MBE and
PBC approaches for all the considered systems.

Method Ethane Ethylene Acetylene/I Acetylene/II
2-body −35.89 −35.12 −34.18 −27.46
3-body 0.68 0.83 0.98 0.63
4-body −0.05 −0.07 −0.08 −0.04
Total MBE −35.26 −34.36 −33.28 −26.87
PBC −35.52 −34.18 −32.86 −26.49

125



A.2 Chapter 5
The effect of the examined orbitals on the RPA results for ethane, acetylene/I,

and acetylene/II are summarized in Tables A.7–A.12.

Table A.7: The mean field energies of ethane in kJ/mol obtained from the RPA
calculations using the MBE approach. The values of EXX and RSE components
do not depend on the transformation from KS/PBE to semi/PBE

Components Orbitals 2-body 3-body 4-body Total

DFT

KS/PBE −5.55 6.86 −1.81 −0.50
KS/SCAN −8.31 −5.15 2.28 −11.18
KS/PBE0 −3.10 3.93 −1.13 −0.30
KS/SCAN0 −7.58 −3.44 1.41 −9.61

EXX

KS/PBE 19.45 −2.95 0.89 17.39
KS/SCAN 18.02 −0.10 −0.23 17.69
KS/PBE0 16.03 −1.29 0.32 15.06
KS/SCAN0 15.76 −0.14 −0.07 15.55

RSE

KS/PBE −4.46 1.46 −0.52 −3.52
KS/SCAN −3.13 −0.36 0.11 −3.38
KS/PBE0 −1.93 0.36 −0.14 −1.71
KS/SCAN0 −1.51 −0.38 0.03 −1.86

1RDM,quad semi/PBE −1.71 0.84 – –
HF - 12.95 −0.62 0.03 12.36

Table A.8: The mean field energies of acetylene/I in kJ/mol obtained from
the RPA calculations using the MBE approach. The values of EXX and RSE
components do not depend on the transformation from KS/PBE to semi/PBE

Components Orbitals 2-body 3-body 4-body Total

DFT

KS/PBE −15.88 6.28 −2.07 −11.67
KS/SCAN −21.08 −1.53 0.57 −22.04
KS/PBE0 −14.75 3.67 −1.30 −12.38
KS/SCAN0 −20.44 −0.92 0.29 −21.07

EXX

KS/PBE 6.53 −2.47 0.6 4.66
KS/SCAN 3.81 −0.15 −0.26 3.40
KS/PBE0 3.37 −1.27 0.15 2.25
KS/SCAN0 2.32 −0.22 −0.14 1.96

RSE

KS/PBE −3.06 0.81 −0.24 −2.49
KS/SCAN −0.95 −0.67 0.19 −1.43
KS/PBE0 −0.79 0.04 0.01 −0.74
KS/SCAN0 0.09 −0.64 0.12 −0.43

1RDM,quad semi/PBE −1.63 0.72 – –
HF - 1.64 −0.90 0.03 0.77
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Table A.9: The mean field energies of acetylene/II in kJ/mol obtained from
the RPA calculations using the MBE approach. The values of EXX and RSE
components do not depend on the transformation from KS/PBE to semi/PBE

Components Orbitals 2-body 3-body 4-body Total

DFT

KS/PBE −15.64 5.42 −1.18 −11.4
KS/SCAN −19.17 −0.82 0.29 −19.7
KS/PBE0 −14.54 3.35 −0.73 −11.92
KS/SCAN0 −18.79 −0.36 0.14 −19.01

EXX

KS/PBE 1.63 −1.36 0.41 0.68
KS/SCAN −0.69 0.54 −0.13 −0.28
KS/PBE0 −0.95 −0.41 0.13 −1.23
KS/SCAN0 −1.84 0.42 −0.05 −1.47

RSE

KS/PBE −2.4 0.6 −0.15 −1.95
KS/SCAN −0.58 −0.58 0.11 −1.05
KS/PBE0 −0.55 0.02 0.01 −0.52
KS/SCAN0 0.2 −0.51 0.07 −0.24

1RDM,quad semi/PBE −1.29 0.53 – –
HF - −2.24 −0.15 0.05 −2.34

Table A.10: The correlation energies of ethane in kJ/mol obtained from the
RPA calculations using the MBE approach.

Components Orbitals 2-body 3-body 4-body Total

RPA

KS/PBE −37.56 1.89 −0.01 −35.68
KS/SCAN −36.29 0.93 −0.05 −35.41
KS/PBE0 −33.07 1.42 −0.04 −31.69
KS/SCAN0 −32.72 0.86 −0.05 −31.91
HF −25.18 1.34 – –
semi/PBE −28.68 0.97 – –

SOSEX
KS/PBE −1.51 0.45 – –
semi/PBE −0.36 0.31 – –
HF 0.12 0.01 – –

2g
semi/PBE −6.37 0.51 – –
HF −5.79 0.58 – –
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Table A.11: The correlation energies of acetylene/I in kJ/mol obtained from the
RPA calculations using the MBE approach.

Components Orbitals 2-body 3-body 4-body Total

RPA

KS/PBE −28.09 0.46 0.53 −27.10
KS/SCAN −27.25 0.43 −0.01 −26.83
KS/PBE0 −25.78 0.76 0.24 −24.78
KS/SCAN0 −25.48 0.56 −0.01 −24.93
HF −23.19 1.65 – –
semi/PBE −23.12 0.38 – –

SOSEX
KS/PBE −3.31 0.68 – –
semi/PBE −1.21 0.39 – –
HF −0.25 −0.03 – –

2g
semi/PBE −3.65 0.21 – –
HF −4.11 0.61 – –

Table A.12: The correlation energies of acetylene/II in kJ/mol obtained from
the RPA calculations using the MBE approach.

Components Orbitals 2-body 3-body 4-body Total

RPA

KS/PBE −22.38 0.23 0.32 −21.83
KS/SCAN −21.64 0.14 0.01 −21.49
KS/PBE0 −20.50 0.45 0.15 −19.90
KS/SCAN0 −20.19 0.28 0.01 −19.90
HF −18.48 1.13 – –
semi/PBE −18.35 0.27 – –

SOSEX
KS/PBE −2.87 0.59 – –
semi/PBE −1.17 0.34 – –
HF −0.41 0.03 – –

2g
semi/PBE −3.01 0.14 – –
HF −3.35 0.43 – –
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A.3 Chapter 6
The results of the n-body energies and total energies of the examined methods

for all the systems are listed in Tables A.13–A.16. The results of the correction
scheme for ethane, acetylene/I, and acetylene/II are summarized in Tables A.17–
A.19.

Table A.13: Total 2-body energies of the examined methods summed over all
distances (kJ/mol) for all the considered systems.

Methods Ethane Ethylene Acetylene/I Acetylene/II
KS/PBE

ERPA
total −18.11 −17.94 −21.56 −20.75

ERPA+RSE
total −22.57 −21.15 −24.62 −23.16

ErPT2
total −24.08 −23.46 −27.93 −26.03

semi/PBE
ERPA+MBPT3

total −22.12 −21.65 −26.14 −24.60
KS/SCAN

ERPA
total −18.27 −18.84 −23.44 −22.33

ERPA+RSE
total −21.40 −20.31 −24.39 −22.91

KS/PBE0
ERPA

total −17.04 −17.65 −22.41 −21.45
ERPA+RSE

total −18.97 −18.67 −23.20 −22.00
KS/SCAN0

ERPA
total −16.96 −17.92 −23.16 −22.03

ERPA+RSE
total −18.47 −18.26 −23.07 −21.83

HF
ERPA

total −12.23 −14.74 −21.55 −20.71
ErPT2

total −12.11 −14.63 −21.80 −21.13
ERPA+MBPT3

total −17.90 −19.85 −25.91 −24.47
EMP2

total −22.80 −25.61 −32.51 −29.70
EMP2.5

total −22.40 −24.30 −29.70 −27.60
EMP3

total −21.90 −23.07 −26.93 −25.44
ECCSD

total −18.25 −18.08 −22.39 −21.59
E

CCSD(T)
total −23.89 −23.49 −27.66 −25.86
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Table A.14: Total 3-body energies of the examined methods summed over all
distances (kJ/mol) for all the considered systems.

Methods Ethane Ethylene Acetylene/I Acetylene/II
KS/PBE

ERPA
total −1.06 −1.10 −2.02 −1.13

ERPA+RSE
total 0.41 −0.07 −1.21 −0.53

ErPT2
total 0.86 0.63 −0.53 0.06

semi/PBE
ERPA+MBPT3

total 1.15 0.99 0.02 0.52
KS/SCAN

ERPA
total 0.81 0.94 0.27 0.68

ERPA+RSE
total 0.47 0.33 −0.39 0.11

KS/PBE0
ERPA

total 0.12 0.23 −0.49 0.12
ERPA+RSE

total 0.49 0.36 −0.45 0.07
KS/SCAN0

ERPA
total 0.72 0.91 0.33 0.70

ERPA+RSE
total 0.34 0.35 −0.30 0.19

HF
ERPA

total 0.73 1.12 0.74 0.98
ErPT2

total 0.74 1.14 0.72 1.02
ERPA+MBPT3

total 1.32 1.75 1.33 1.45
EMP2

total 0.06 0.45 0.08 0.48
EMP2.5

total 1.06 1.59 1.31 1.41
EMP3

total 2.06 2.73 2.54 2.33
ECCSD

total 1.25 1.36 0.74 0.98
E

CCSD(T)
total 1.45 1.56 0.97 1.15
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Table A.15: Total 4-body energies of the examined methods summed over all
distances (kJ/mol).

Methods Ethane Ethylene Acetylene/I Acetylene/II
KS/PBE

ERPA
total 0.88 0.86 1.13 0.73

ERPA+RSE
total 0.36 0.53 0.89 0.58

KS/SCAN
ERPA

total −0.28 −0.33 −0.27 −0.12
ERPA+RSE

total −0.17 −0.17 −0.08 −0.01
KS/PBE0

ERPA
total 0.28 0.28 0.39 0.28

ERPA+RSE
total 0.14 0.22 0.40 0.29

KS/SCAN0
ERPA

total −0.12 −0.16 −0.15 −0.04
ERPA+RSE

total −0.09 −0.08 −0.03 0.03
HF

EMP2
total −0.02 −0.05 −0.05 0.01

ECCSD
total −0.09 −0.10 −0.08 −0.02

E
CCSD(T)
total −0.10 −0.11 −0.10 −0.03

Table A.16: Total n-body energies of the examined methods summed over all
distances (kJ/mol).

Methods Ethane Ethylene Acetylene/I Acetylene/II
KS/PBE

ERPA
total −18.29 −18.15 −22.44 −21.16

ERPA+RSE
total −21.82 −20.67 −24.94 −23.12

KS/SCAN
ERPA

total −17.73 −18.23 −23.42 −21.78
ERPA+RSE

total −21.11 −20.14 −24.85 −22.83
KS/PBE0

ERPA
total −16.63 −17.15 −22.53 −21.13

ERPA+RSE
total −18.41 −18.13 −23.30 −21.67

KS/SCAN0
ERPA

total −16.36 −17.17 −22.97 −21.37
ERPA+RSE

total −18.29 −18.05 −23.42 −21.64
HF

EMP2
total −22.75 −25.21 −32.51 −29.22

ECCSD
total −17.17 −16.93 −21.82 −20.72

E
CCSD(T)
total −22.54 −22.04 −26.77 −24.74
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Table A.17: The errors (in kJ/mol) of the values obtained using correction
scheme with respect to the CCSD(T) benchmark for ethane. Here, the percent-
age (%) represents the portion of the CCSD(T) results replaced by the results of
approximate methods.

Percentage n-body RPA+RSE MP2
KS/PBE KS/SCAN KS/PBE0 KS/SCAN0 –

100%
2-body 1.32 2.50 4.93 5.43 1.09
3-body −1.04 −0.97 −0.95 −1.10 −1.38
4-body 0.45 −0.07 0.23 0.01 0.08
Total 0.74 1.45 4.21 4.34 −0.21

90%
2-body 0.11 0.17 0.20 0.24 −0.01
3-body −0.37 −0.36 −0.21 −0.26 −0.06
4-body 0.39 −0.06 0.20 0.01 0.06
Total 0.12 −0.25 0.19 −0.02 0.00

70%
2-body 0.02 0.04 0.05 0.05 −0.01
3-body −0.10 −0.12 −0.07 −0.09 −0.08
4-body 0.28 −0.04 0.14 0.01 0.04
Total 0.20 −0.12 0.11 −0.03 −0.05

50%
2-body 0.01 0.01 0.02 0.02 0.00
3-body −0.04 −0.05 −0.03 −0.04 −0.04
4-body 0.16 −0.01 0.08 0.01 0.02
Total 0.12 −0.05 0.16 −0.01 −0.03

30%
2-body 0.00 0.00 0.01 0.01 0.00
3-body −0.02 −0.02 −0.01 −0.01 −0.01
4-body 0.08 −0.01 0.04 0.00 0.01
Total 0.07 −0.03 0.04 0.00 0.00

10%
2-body 0.00 0.00 0.00 0.00 0.00
3-body 0.00 −0.01 0.00 0.00 −0.01
4-body 0.02 0.00 0.01 0.00 0.00
Total 0.01 −0.01 0.00 −0.01 −0.01

132



Table A.18: The errors (in kJ/mol) of the values obtained using correction
scheme with respect to the CCSD(T) benchmark for acetylene/I. Here, the
percentage (%) represents the portion of the CCSD(T) results replaced by the
results of approximate methods.

Percentage n-body RPA+RSE MP2
KS/PBE KS/SCAN KS/PBE0 KS/SCAN0 –

100%
2-body 3.03 3.27 4.44 4.58 −4.87
3-body −2.18 −1.35 −1.42 −1.27 −0.89
4-body 0.99 0.03 0.50 0.08 0.05
Total 1.84 1.94 3.52 3.39 −5.71

90%
2-body 0.03 0.07 0.07 0.08 −0.07
3-body −0.43 −0.35 −0.21 −0.23 −0.16
4-body 0.88 0.03 0.44 0.07 0.04
Total 0.47 −0.25 0.30 −0.08 −0.19

70%
2-body 0.00 0.02 0.02 0.02 −0.02
3-body −0.12 −0.11 −0.06 −0.08 −0.06
4-body 0.63 0.05 0.31 0.06 0.03
Total 0.51 −0.05 0.27 0.00 −0.05

50%
2-body 0.00 0.01 0.01 0.01 −0.01
3-body −0.05 −0.05 −0.02 −0.03 −0.01
4-body 0.39 0.07 0.18 0.06 0.03
Total 0.34 0.03 0.17 0.03 0.01

30%
2-body 0.00 0.00 0.01 0.00 −0.01
3-body −0.02 −0.02 −0.01 −0.02 −0.03
4-body 0.18 0.05 0.08 0.03 0.00
Total 0.16 0.03 0.07 0.02 −0.04

10%
2-body 0.00 0.00 0.00 0.00 −0.01
3-body −0.01 −0.01 0.00 −0.01 −0.01
4-body 0.05 0.02 0.02 0.01 0.00
Total 0.04 0.01 0.02 0.01 −0.01
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Table A.19: The errors (in kJ/mol) of the values obtained using correction
scheme with respect to the CCSD(T) benchmark for acetylene/II. Here, the
percentage (%) represents the portion of the CCSD(T) results replaced by the
results of approximate methods.

Percentage n-body RPA+RSE MP2
KS/PBE KS/SCAN KS/PBE0 KS/SCAN0 –

100%
2-body 2.71 2.94 3.86 4.02 −3.83
3-body −1.68 −1.05 −1.09 −0.96 −0.68
4-body 0.60 0.01 0.30 0.04 0.04
Total 1.62 1.90 0.08 3.10 −4.47

90%
2-body 0.05 0.06 0.07 0.07 −0.09
3-body −0.42 −0.36 −0.18 −0.19 −0.10
4-body 0.54 0.01 0.27 0.04 0.04
Total 0.17 −0.29 0.16 −0.09 −0.16

70%
2-body 0.03 0.02 0.03 0.02 −0.05
3-body −0.06 −0.08 −0.05 −0.06 −0.06
4-body 0.37 0.02 0.18 0.03 0.02
Total 0.33 −0.04 0.16 −0.01 −0.08

50%
2-body 0.03 0.01 0.02 0.01 −0.04
3-body −0.03 −0.04 −0.02 −0.02 0.00
4-body 0.24 0.03 0.12 0.03 0.03
Total 0.23 −0.01 0.11 0.01 −0.02

30%
2-body 0.01 0.00 0.01 0.00 −0.03
3-body 0.00 −0.01 −0.01 −0.01 −0.01
4-body 0.11 0.02 0.05 0.02 0.02
Total 0.12 0.01 0.05 0.01 −0.03

10%
2-body 0.00 0.00 0.00 0.00 −0.01
3-body −0.01 −0.01 0.00 0.00 0.00
4-body 0.03 0.01 0.01 0.00 0.00
Total 0.02 0.00 0.01 0.00 −0.01
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