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1. Introduction
In mechanics of continuous media, there are two prominent types of evolutionary
problems, quasistatic and dynamic.1

The quasistatic problems are typically concerned with evolutions which are
evolving slowly, such that inertia does not play a role (or can be reasonably
neglected). Mathematically, these correspond to a parabolic partial differential
equation, the prototypical example here is the heat equation

∂tu − ∆u = f.

The dynamic problems take into account inertia in the form of Newton’s
second law of motion. In contrast to the quasistatic problems, it is meaningful
here to talk about the kinetic energy. Mathematically, these correspond to a
hyperbolic2 partial differential equation. The prototypical example in this case is
the wave equation

∂ttu − ∆u = f

which has the corresponding natural energy equality

1
2∥∂tu(t)∥2

L2⏞ ⏟⏟ ⏞
kinetic energy

+ 1
2∥∇u(t)∥2

L2⏞ ⏟⏟ ⏞
potential energy

= 1
2∥∂tu(0)∥2

L2 + 1
2∥∇u(0)∥2

L2⏞ ⏟⏟ ⏞
initial energy

+
∫︂ t

0
⟨f(s), u(s)⟩L2 ds⏞ ⏟⏟ ⏞

work done by external force

.

In some cases the borderline between parabolic and hyperbolic problems is not
clear cut. In particular, (as will be the case for us), this is the case when we have
kinetic energy as well as dissipation effects. As a prototype one can think of the
wave equation with damping, namely

∂ttu − ∆u − ε∂t∆u = f.

Here we have a dissipation of energy,3 the natural energy equality takes the form

1
2∥∂tu(t)∥2

L2⏞ ⏟⏟ ⏞
kinetic energy

+ 1
2∥∇u(t)∥2

L2⏞ ⏟⏟ ⏞
potential energy

+ ε
∫︂ t

0
∥∂t∇u(s)∥2

L2 ds⏞ ⏟⏟ ⏞
dissipated energy

= 1
2∥∂tu(0)∥2

L2 + 1
2∥∇u(0)∥2

L2⏞ ⏟⏟ ⏞
initial energy

+
∫︂ t

0
⟨f(s), u(s)⟩L2 ds⏞ ⏟⏟ ⏞

work done by external force

.

We lean towards also calling this problem hyperbolic, because the presence of
kinetic energy is the more important feature for us.

In this thesis, we investigate methods of calculus of variations [Dac08, Rin18]
applied to dynamical problems of solid mechanics [KR19, Ngu00, Dog00], and
fluid-structure interaction [BKS23, MC13, MČ15, MS22, BS18, BKS24, BS23].

1Note that some authors use the word “dynamic” for any time-dependent evolution. We
shall reserve this word for the case where inertial forces are present, as described below.

2In the presence of dissipation, the equation is not hyperbolic in a strict sense, see below.
3In a full thermodynamical system dissipated energy is converted to heat. However in this

thesis, we will not consider any thermal effects.
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In contrast to more PDE-based methods such as Galerkin approximation [Rou13,
Tem77] or the Rothe method [Kač86, Neu09], the variational time-stepping min-
imization approach naturally possesses the capacity to treat non-convex state
spaces without additional difficulty. We shall now discuss the method, called
minimizing movements [DG93] and its extension to hyperbolic problems [BKS23].

1.1 Minimizing movements
In the 90s, De Giorgi introduced his famous minimizing movements method
[DG93]. It is a versatile method for solving time evolution problems in calculus of
variations, differential equations and geometric measure theory, and in particular
for parabolic equations. The unifying property of these problems is that they
are driven by the energy contained in the system. A prominent example of such
systems are gradient flows. These are evolutionary problems of the form

∂tx = −DF (x)

with the unknown x : (0, T ) → X and given F : X → R. Examples include
ordinary differential equations (when X = Rn), or gradient flows in a Hilbert
space X [Bra14, Chapter 7], with F sufficiently smooth so that “DF” can be
understood as the Fréchet derivative. We will present this below, in a slightly
more general setting.

1.1.1 Gradient flow with forcing, in a Banach space
We present here the minimizing movements method in the case of a separable
reflexive Banach space X, which is densely embedded into a separable Hilbert
space H. In particular

X ↪→ H ≃ H∗ ↪→ X∗ (1.1)
form a Gelfand triple, i.e. both embeddings are dense and H ≃ H∗ denotes the
identification by Riesz representation theorem. Let F : X → R be

• bounded from below,4

• coercive in the sense that for some γ > 0 the functional F (·) + γ∥ · ∥2
H has

bounded sublevel sets in X,

• weakly lower semicontinuous,

• (Fréchet) differentiable and let DF : X → X∗ be bounded on bounded sets,

and further, let DF satisfy some kind of “monotonicity”-like property that we
will specify later.

Let x0 ∈ X and f ∈ L2((0, T ); H). We want to find a weak solution of the
forced gradient flow5

∂tx + DF (x) = f

x(0) = x0
(1.2)

4This bound is strictly speaking not necessary, it could be for instance replaced by F (x) ≥
−C(1 + ∥x∥2

H).
5Classically in the setting of gradient flows, a time-dependent term f is not treated.
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by which we mean that x ∈ Cw([0, T ]; X) ∩ W 1,2((0, T ); H) satisfies x(0) = x0
and∫︂ T

0
⟨∂tx, y⟩H + ⟨DF (x), y⟩ dt =

∫︂ T

0
⟨f, y⟩H dt, y ∈ L1((0, T ); X) ∩ L2((0, T ); H).

For this, we discretize the time at scale τ > 0. So for6 k = 1, . . . , T/τ we find
x

(τ)
k ∈ X as a minimizer of

J (τ)
k (x) = 1

2τ

⃦⃦⃦
x − x

(τ)
k−1

⃦⃦⃦2

H
+ F (x) − ⟨f (τ)

k , x⟩H , x ∈ X (1.3)

with the initial condition x
(τ)
0 := x0 and f

(τ)
k ∈ H the discretized version of f ,

defined by

f
(τ)
k :=

∫︂ τk

(k−1)τ
f dt, f (τ)(t) := f

(τ)
k for t ∈ ((k − 1)τ, kτ ].

The minimizer exists by the direct method of the calculus of variations [Dac08],
due to our assumptions on F . Further it satisfies the Euler-Lagrange equation
DJ (τ)

k (x(τ)
k ) = 0, that is

x
(τ)
k − x

(τ)
k−1

τ
+ DF (x(τ)

k ) = f
(τ)
k

in X∗. This in fact means that (recall that by (1.1) we have the embedding
X ↪→ X∗ through the scalar product on H )

⟨︄
x

(τ)
k − x

(τ)
k−1

τ
, y

⟩︄
H

+ ⟨DF (x(τ)
k ), y⟩ = ⟨f (τ)

k , y⟩H , y ∈ X.

We denote by x(τ) : (0, T ) → X the piecewise constant interpolation

x(τ)(t) := x
(τ)
k , t ∈ ((k − 1)τ, kτ ].

The aim is to pass with τ → 0 and to obtain the solution x as a limit of x(τ).
The sufficient energy estimate is directly comparing in the minimization (1.3)

with the previous step, namely J (τ)
k (x(τ)

k ) ≤ J (τ)
k (x(τ)

k−1). This reads as

1
2τ

⃦⃦⃦
x

(τ)
k − x

(τ)
k−1

⃦⃦⃦2

H
+ F (x(τ)

k ) ≤ F (x(τ)
k−1) + ⟨f (τ)

k , x
(τ)
k − x

(τ)
k−1⟩H . (1.4)

Using the Young inequality

⟨f (τ)
k , x

(τ)
k − x

(τ)
k−1⟩H ≤ τ∥f

(τ)
k ∥2

H + 1
4τ

⃦⃦⃦
x

(τ)
k − x

(τ)
k−1

⃦⃦⃦2

H

and absorbing the last term, we see that

1
4τ

⃦⃦⃦
x

(τ)
k − x

(τ)
k−1

⃦⃦⃦2

H
+ F (x(τ)

k ) ≤ F (x(τ)
k−1) + τ∥f

(τ)
k ∥2

H .

6For notational simplicity assume T is an integer multiple of τ .
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Further, the estimate sums to

1
4τ

k∑︂
i=1

⃦⃦⃦
x

(τ)
i − x

(τ)
i−1

⃦⃦⃦2

H
+ F (x(τ)

k ) ≤ F (x0) +
k∑︂

i=1
τ∥f

(τ)
i ∥2

H .

We further estimate

1
4kτ

⃦⃦⃦
x

(τ)
k − x0

⃦⃦⃦2

H
≤ 1

4kτ

(︄
k∑︂

i=1

⃦⃦⃦
x

(τ)
i − x

(τ)
i−1

⃦⃦⃦
H

)︄2

≤ 1
4τ

k∑︂
i=1

⃦⃦⃦
x

(τ)
i − x

(τ)
i−1

⃦⃦⃦2

H
≤ F (x0) + ∥f∥2

L2((0,T );H)

(1.5)

where we have used the Jensen inequality ∑︁k
i=1 τ∥f

(τ)
i ∥2

H ≤ ∥f∥2
L2((0,T );H) so con-

sequently
F (x(τ)) + 1

4T
∥x(τ)∥2

H ≤ F (x0) + ∥f∥2
L2((0,T );H).

By coercivity of F + 1
4T

∥ · ∥2
H , we have {x(τ)}τ is bounded in L∞((0, T ); X). So

that (up to a subsequence of τ → 0) we have for some x ∈ L∞((0, T ); X) that

x(τ) ∗
⇀ x in L∞((0, T ); X). (1.6)

Now we estimate the time derivative. For this, introduce the piecewise affine
interpolation

x̂(τ)(t) = t − (k − 1)τ
τ

xk + kτ − t

τ
xk−1, t ∈ ((k − 1)τ, kτ ]

so that it holds ∂tx̂
(τ) = x(τ)−x(τ)(·−τ)

τ
on (0, T ) except for finitely many times kτ .

Note that since

∥x̂(τ) − x(τ)∥L∞((0,T );X) ≤ max
K=1,...T/τ

∥x
(τ)
k − x

(τ)
k−1∥X ≤ 2τ 1/2

√︂
F (x0) + ∥f∥2

L2((0,T );H),

it holds also
x̂(τ) ∗

⇀ x in L∞((0, T ); X).
Then we see from (1.5) that

∥∂tx̂
(τ)∥2

L2((0,kτ);H) =
k∑︂

i=1
τ

⃦⃦⃦⃦
xi − xi−1

τ

⃦⃦⃦⃦2

H
≤ 4

(︄
F (x0) +

k∑︂
i=1

τ∥f
(τ)
i ∥2

H

)︄

so that we have a weak limit (for a subsequence)

∂tx̂
(τ) ⇀ v in L2((0, T ); H)

for some v ∈ L2((0, T ); H). It is not hard to see that v = ∂tx, as for any
y ∈ C1

c ((0, T ); H) it holds∫︂ T

0

⟨︂
∂tx̂

(τ), y
⟩︂

H
dt →

∫︂ T

0
⟨v, y⟩Hdt

with the left hand side equal to

= −
∫︂ T

0

⟨︄
x̂(τ),

y − y(· − τ)
τ

⟩︄
H

dt → −
∫︂ T

0
⟨x, ∂ty⟩H dt.
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Thus we have that the weak limit satisfies x ∈ L∞((0, T ); X) ∩ W 1,2((0, T ); H).
In particular notice that this implies the Hölder continuity x ∈ C0,1/2([0, T ]; H)
and also the weak continuity x ∈ Cw([0, T ]; X). Using the boundedness of DF
we have by (1.6) (for another subsequence)

DF (x(τ)) ∗
⇀ A in L∞((0, T ); X∗)

We thus see that if it can be further proved that

A = DF (x), (1.7)

then x is a solution to the equation (1.2). To show (1.7), one usually employs the
Minty method [Min63], which uses some monotonicity-like property of DF such
as pseudomonotonicity [Rou13].
Example (parabolic p-Laplace equation). To show a concrete example, we demon-
strate this on the parabolic p-Laplace equation with Neumann boundary. Let
X = W 1,p(Ω), H = L2(Ω), u0 ∈ W 1,p(Ω) where Ω ⊂ Rn is a Lipschitz domain,

F (u) = 1
p

∫︂
Ω

|∇u|p dx, u ∈ W 1,p(Ω)

and consider also the right hand side f ∈ L2((0, T ) × Ω). Since F is convex, then
DF is monotone. Then the minimizing movements procedure provides a solution
to the corresponding gradient flow

∂tu − div(|∇u|p−2∇u) = f in (0, T ) × Ω,

∂nu = 0 on (0, T ) × ∂Ω,

u(0) = u0.

Notice that here the functional F itself is not coercive on the space X = W 1,p(Ω),
as there is no Poincaré inequality in this space.
Remark. The main advantage of the scheme is that it allows to treat noncon-
vexities, in particular in the state space. That is, it can be used to solve the
problem with a constraint x(t) ∈ E for some weakly closed set E ⊂ X. Note that
in the minimization (1.3), we can simply minimize over E instead of X. This
will be vital for our applications in large strain elasticity, as we want to forbid
(self-)interpenetration of matter. The energy also need not be convex, although
there still should be some way of ensuring (1.7).

1.1.2 Hyperbolic minimizing movements
The minimizing movements method works very well for problems that can be
formulated as a gradient flow, as demonstrated above. These include various
kinds of parabolic PDE. However, for hyperbolic problems, the scheme is not
directly applicable. Let us demonstrate the issue on the wave equation.

Consider the wave equation in a Lipschitz domain Ω ⊂ Rn. That is, given
u0 ∈ W 1,2(Ω), u∗ ∈ L2(Ω) and f ∈ L2((0, T ) × Ω), the problem

∂ttu − ∆u = f in Ω,

∂nu = 0 in ∂Ω,

u(0) = u0,

∂tu(0) = u∗.

(1.8)
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Let us mimic (1.3), so that we discretize the time with some time step τ > 0 and
approximate the second time derivative with a double difference quotient. Thus
we find u

(τ)
k as a minimizer of

J (τ)
k (u) = τ 2

2

⃦⃦⃦⃦
⃦⃦u − 2u

(τ)
k−1 + u

(τ)
k−2

τ 2

⃦⃦⃦⃦
⃦⃦

2

L2

+ 1
2∥∇u∥2

L2 − ⟨fk, u⟩L2 , u ∈ W 1,2(Ω)

where for the initial conditions we put u
(τ)
0 = u0 and we appropriately define

u
(τ)
−1 = u0 − τu∗, so that u∗ = u0−u

(τ)
−1

τ
. Again by the direct method, this minimizer

exists.
Using as in (1.4) the estimate J (τ)

k (u(τ)
k ) ≤ J (τ)

k (u(τ)
k−1) reads as

τ 2

2

⃦⃦⃦⃦
⃦⃦u

(τ)
k − 2u

(τ)
k−1 + u

(τ)
k−2

τ 2

⃦⃦⃦⃦
⃦⃦

2

L2

+ 1
2∥∇u

(τ)
k ∥2

L2 ≤ τ 2

2

⃦⃦⃦⃦
⃦⃦u

(τ)
k−1 − u

(τ)
k−2

τ 2

⃦⃦⃦⃦
⃦⃦

2

L2

+ 1
2∥∇u

(τ)
k−1∥2

L2

+⟨fk, u
(τ)
k − u

(τ)
k−1⟩.

The gradient term telescopes as before, but it is not clear how to get any esti-
mate on the discrete time derivative u

(τ)
k

−u
(τ)
k−1

τ
independently of τ . This estimate

is needed if we hope to pass to the limit τ → 0 and solve the problem (1.8).
Fortunately, Benešová, Kampschulte and Schwarzacher have figured out how

to modify this method in such a way that the hyperbolic problem can be solved
[BKS23, Section 3]. Their crucial idea is to discretize time in two different scales.
Namely, the velocity scale τ and the (possibly much larger) acceleration scale h.
Keeping the acceleration scale fixed, one can solve this as a parabolic problem on
the velocity scale, and pass with τ → 0 with no problem. Then, one can utilize
the resulting equation to obtain sufficient estimates for passing with h → 0 and
thereby solving the hyperbolic problem. This we show below.

Continuing our wave equation example, this means that we first solve the
time-delayed problem

∂tu − ∂tu(· − h)
h

− ∆u = f in Ω,

∂nu = 0 on ∂Ω,

u(0) = u0

(1.9)

on each interval of length h, that is subsequently on on (0, h), (h, 2h), . . . , (T −
h, T ). Then ∂tu(· − h) is not a part of the solution and is already known (for the
first interval we put ∂tu(t) := u∗ for t ∈ (−h, 0)). It can thus be treated as a given
forcing term. So we view this as a gradient flow with forcing f̃ = f +∂tu(·−h)/h,
which can be readily solved as in (1.2). Explicitly, given τ > 0 now the next step
u

(τ)
k is found by minimizing

1
2τh

∥u − u
(τ)
k−1∥2

L2 + 1
2∥∇u∥2

L2 − ⟨f (τ)
k , u⟩ − 1

h
⟨w(τ)

k , u⟩, u ∈ W 1,2(Ω)

where w
(τ)
k = 1

τ

∫︁ kτ
(k−1)τ ∂tu(t − h) dt for k > 0 and w0 = u∗. By this procedure one

obtains solution to the time-delayed equation (1.9) as before.
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The crucial observation now is that the time-delayed equation gives us enough
estimates to pass with h → 0. Let us denote by u(h) the solution of the time-
delayed problem (1.9). The idea is to use ∂tu

(h) as a test function, however we
run into the well-known regularity issue for hyperbolic equations, since we have
only ∂tu

(h) ∈ L2((0, T ) × Ω). If it were possible to test with ∂tu
(h), one would

obtain the energy inequality

1
2h

∫︂ t

t−h
∥∂tu

(h)∥2
L2 dt + 1

2∥∇u(h)(t)∥2
L2 ≤ 1

2∥u∗∥2
L2 + 1

2∥∇u0∥2
L2 +

∫︂ t

0
⟨f, ∂tu

(h)⟩ dt

(1.10)
which contains sufficient bounds for the limit passage h → 0, solving the original
problem (1.8). The issue of insufficient regularity can be solved by introducing
artificial dissipation term in the time-delayed equation (1.9) which vanishes in
the limit, for details see [BKS23, Section 3] and also (1.14) below.

1.2 Nonlinear viscoelasticity
One of the main focuses of this thesis is the inertial evolution of viscoelastic solids.
Here we briefly touch upon some standard notions from the mathematical theory
of elastic solids. The interested reader is referred to [KR19] for a more thorough
exposition.

The standard description of solids is in the so-called Lagrangian coordinates.
That is, there is the reference configuration Q ⊂ Rn, the deformation η : Q → Rn

which maps it to the deformed configuration η(Q) ⊂ Rn. The notation that we
use here may differ from other authors. We choose to adopt the notation widely
used in the area of fluid-structure interaction, where it is standard to denote the
solid deformation by η, see Section 1.3 below.

Figure 1.1: Elastic solid in Lagrangian coordinates.

A main feature such elastic solids is the existence of a Piola-Kirchhoff stress
tensor representing the elastic response of the material.

One of the standard assumptions is that of hyperelasticity [Tou64]. The defin-
ing attribute of hyperelastic materials is the existence of a stored energy. In the
most classical way, it means that the stress tensor is given by the derivative of
the stored energy, which depends on ∇η. There are other models, namely non-
simple materials, where the stress tensor may depend also on ∇2η, or even higher
gradients of the deformation η. For us, this will mainly play the mathematical
role of providing higher regularity.

In evolution problems, it is also possible to talk about viscosity. As with
the elastic stress, the viscous stress can be standardly assumed to arise from a
dissipation potential. The classical case is the Kelvin-Voigt viscoelastic material,
where the stress is the sum of the elastic and the viscous stress. In the setting of
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nonsimple materials, there is also the hyperstress coming from the second gradi-
ent. These are the materials that we will use due to their desirable mathematical
properties.

Our work is focused on the variational point of view and not so much on the
modelling and continuum mechanics. We thus prefer to write all our equations
with operator notation. That is, for a deformation η the elastic stress is given by
an elastic energy potential E and equal to DE(η). Then DE(η) ∈ X∗ where X is
the space of admissible deformations. Likewise, the viscosity will be arising from
the dissipation potential R and the viscous stress for a deformation η is now given
by D2R(η, ∂tη),7 where D2 represents the derivative with respect to the second
variable.

The typical equation is then of the form

ρ∂ttη⏞ ⏟⏟ ⏞
change of momentum

+ DE(η)⏞ ⏟⏟ ⏞
elastic stress

+ D2R(η, ∂tη)⏞ ⏟⏟ ⏞
viscous stress

= f⏞⏟⏟⏞
external force

(1.11)

where ρ is the (Lagrangian) density.

1.2.1 Large deformations
We are in the setting of finite strain, so we allow for large deformations, and
do not resort to any linearizations of the problem (1.11). For these reasons, the
physically desirable injectivity of the deformation becomes a problem.

A standard physical requirement in elasticity is the positivity of the Jacobian
of the deformation [Bal76, Cia88], namely det ∇η > 0 in Q. A closely related
question to this is the existence of the Euler-Lagrange equation for the minimizer
of an elastic energy. In classical nonlinear elasticity, it is a famous open problem
to show the satisfaction of the Euler-Lagrange equation for the static minimizer
[Bal02], along with the uniform positivity of the Jacobian. A way to circumvent
this issue is the usage of nonsimple materials. In particular, [HK09] have shown
that under suitable growth condition on the Jacobian, an upper bound on the
energy gives a uniform positive lower bound on the Jacobian of the deformation

E(η) ≤ E0 =⇒ det ∇η(x) ≥ ε0 > 0, x ∈ Q (1.12)

where ε0 depends on E0. This then ensures locally the existence of the Euler-
Lagrange equation for minimizers of E.

As the body is allowed to deform largely, it may happen that two far away
parts of the body would overlap. As this interpenetration of matter is not physi-
cally reasonable, we impose the non-interpenetration as an extra condition. The
by-now classical analytical way is the Ciarlet-Nečas condition [CN87], which as-
serts that

|η(Q)| =
∫︂

Q
det ∇η(x)dx. (1.13)

This condition ensures that the deformation with positive Jacobian is injective,
except possibly at the boundary.

7Here the dependence of R also on η is necessary to allow the physically desirable property
of frame indifference, as was observed by [Ant98].
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Altogether, the set of admissible deformations in our applications will be

E =
{︃

η ∈ W 2,q (Q;Rn) : η(Q) ⊂ Ω, det ∇η > 0, |η(Q)| =
∫︂

Q
det ∇η(x)dx

}︃
,

where q > n and Ω ⊂ Rn is a given Eulerian container (including the possibility
Ω = Rn), and the equation (1.11) is solved under the condition that η(t) ∈ E .

Now we discuss how this this setting makes it well-suited for the hyperbolic
minimizing movements scheme. The minimization may be performed only over
E , which is weakly closed in W 2,q(Q;Rn). By virtue of (1.12), the Jacobian of
the deformation is positive, consequently the only way for the minimization to
reach η ∈ ∂E is that there is a collision. If there is a collision, it corresponds
to a Lagrange multiplier in the minimization (1.3). The method is also well-
suited for studying such multipliers. The time-delayed equation then can be
solved by minimizing movements. The passage to the limit in the time-delayed
problem requires testing with ∂tη, which necessitates usage of regularized energy
and dissipation (otherwise there is not enough regularity for this testing). Those
can be chosen of the form

Eh(η) = E(η) + ha0
⃦⃦⃦
∇k0η

⃦⃦⃦2

L2
, Rh(η, b) = R(η, b) + h

⃦⃦⃦
∇k0b

⃦⃦⃦2

L2
, (1.14)

where W k0,2(Q;Rn) ↪→ W 2,q(Q;Rn). The appropriately chosen regularizations
vanish in the limit, for the full proof see [BKS23, Section 3] or [ČGK24].

1.3 Fluid-Structure interactions
In the final part, we shall deal with fluid-structure interactions. These are prob-
lems where an elastic structure is mechanically coupled to a fluid. The mutual
interaction poses many mathematical challenges.

This area of research has been very active in the recent years. There have
been results with fluids interacting with lower-dimensional structures such as
plates or shells [BS18, SS22, MC13, MČ15, KSS23, LR14], see also [BGN14] for
an overview with applications. More recent result handle also the case of bulk
solids (i.e. of full dimension), results here include [BKS23, BKS24, KMT24]. We
shall treat the latter case of a bulk solid immersed in a fluid and describe the
setting here.

The solid deformation is described at each time t by a Lagrangian map
η(t) : Q → Ω. The fluid occupies the rest of the fixed container Ω ⊂ Rn, so
that the fluid domain is Ω(t) = Ω\η(t, Q). The fluid is determined by its velocity
v(t) : Ω(t) → Rn and pressure p : Ω(t) → R.

Q

reference solid

η Ω(t)

physical domain Ω

η(Q)

Figure 1.2: Geometrical description of the fluid-structure interaction problem.
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The solid is viscoelastic in Section 1.2, and the fluid is an incompressible
Navier-Stokes fluid. Then the equations read as

ρs∂ttη + DE(η) + D2R(η, ∂tη) = ρsf in Q,

ρf (∂tv + v · ∇v) = ν∆v − ∇p + ρff in Ω(t),
div v = 0 in Ω(t)

(1.15)

along with a boundary condition at the fluid-solid interface.
The kinematic coupling through a no-slip boundary condition

∂tη = v ◦ η on ∂Q (1.16)

is treated in [BKS23]: this paper brings, additionally to the Hyperbolic minimiz-
ing movements, two other novelties.

First, it is the construction of a minimizing movement scheme which solves
the corresponding parabolic fluid-structure interaction problem [BKS23, Section
2]. A prominent feature is that the fluid domain Ω(t) is time-dependent. For
this, in constructing the minimizing movements approximation ηk, vk, one needs
to construct the fluid domain Ωk as well. These need to constructed in such a way
that in the limit one solves the parabolic equation and also recovers the boundary
coupling condition (1.16). The suitable approximation ηk, vk, Ωk satisfies the
coupling

ηk ∈ E , vk ∈ W 1,2
div (Ω(τ)

k−1;Rn), Ωk−1 = Ω \ ηk−1(Q)

with v|∂Ω = 0 and ηk − ηk−1

τ
= vk ◦ ηk−1 on ∂Q

and solves an iterative minimization scheme analogous to (1.3). Sufficient bounds
to pass to the weak limits are obtained by comparison of (ηk, vk) with (ηk−1, 0),
in analogy with (1.4). One point worth mentioning here is the global velocity
field. Although the approximate fluid velocity vk is defined on a varying domain
Ωk, one may define a global velocity field uk which is equal to vk on Ωk−1 and to
∂tηk ◦ (ηk−1)−1 on ηk−1(Q). Thanks to the no slip condition, uk ∈ W 1,2(Ω;Rn)
and thus in this way one can work on the fixed domain Ω in the estimates.

The second novelty is the fluid-structure interaction in the fully dynamical
setting [BKS23, Section 4]. In contrast to the parabolic problem, one needs
to construct, already at the discrete level, a flow map Φ which captures the
movements of each particle of the fluid. In the limit, the flow map has the
property ∂tΦt = v(t) ◦ Φt and Φ0 = id. This is vital for the Navier-Stokes
problem since then the time-delayed problem contains the fluid term

v ◦ Φh − v(· − h)
h

which is a time-delayed approximation of the material time derivative ∂tv+v ·∇v.
The energy estimates for h → 0 again use (∂tη, v) as a test function in the
time-delayed problem (analogously to (1.9)). Here regularity issues are solved by
adding extra W k0,2-dissipation terms for the solid (as in (1.14)) as well as the
fluid. For all the details see [BKS23, Section 4].
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2. Results of the thesis
Here we describe the contents and results of the papers contained in this thesis.

2.1 Papers I and II – Collisions of elastic solids
In [ČGK24] we solve the dynamical problem for viscoelastic solids in presence
of collisions. Our approach treats the fully inertial problem (1.11) and contrary
to previous results, the solution is global in time and continues after the time of
collision. We thus solve the equation

ρ∂ttη + DE(η) + D2R(η, ∂tη) = f + σ,

η(0) = η0,

∂tη(0) = η∗

(2.1)

for given initial values η0, η∗, where σ is the contact force, and the reference
domain Q has C1,α boundary. We emphasize that the contact force σ is not given
a priori, we construct it as a consequence of the no-interpenetration condition
(1.13). This force is a measure supported at the points of contact, and acting
in a normal direction to the boundary. In this way we claim the force σ to be
physically reasonable. Moreover the solution satisfies the energy inequality

E(η(t)) + ρ

2 ∥∂tη(t)∥2
L2 +

∫︂ t

0
2R (η, ∂tη) dt ≤ E (η0) + ρ

2 ∥η∗∥2
L2 +

∫︂ t

0
⟨f, ∂tη⟩L2 dt.

We construct the solution as follows. The minimizing movements scheme
produces an approximation even if there is contact i.e. when ∂E is reached. Now
only some directions are admissible (i.e. those that do not result in overlap), we
have the variational inequality for these directions.

Drawing from the static case in [PH17] one can characterize this inequality by
a measure. The idea is, roughly speaking, to see how large gap can one create with
how much energy. Then, separating these reachable and unreachable distances
with a hyperplane, we get the contact force. Here having a “normal direction” is
what enables to obtain σ as a measure.

Note that one can, instead of this geometrical argument, use directly the
equation and and get σ in the dual space W −2,q′ . This weaker result has been for
the quasistatic case found in [KR20].

Next, passing to the limit in time-delayed variational inequality proceeds after
we check that −∂tη is an admissible test direction. Intuitively, this should be the
case, as this is the direction from which the body came from, and indeed we
prove this to be the case. For this we include a characterization of admissible
test functions.

For passing to the limit with the contact force, we use our compactness-closure
result. It says that if a sequence of deformations of bounded energy converges in
C1, each having a contact force bounded as measure, then a subsequence of these
contact forces converges to a limit contact force. We emphasize here that this in
particular means that the normal direction is preserved in the limit.

12



2.1.1 Lipschitz boundary
In the subsequent work [ČGK23], we extend these results to solids which have
only a Lipschitz boundary in the reference configuration Q.

As described above, the notion of a “normal direction” is crucial for construct-
ing the measure σ. The main contribution of this work is identifying the correct
generalization of a normal for Lipschitz boundaries which allows for the entire
procedure.

For this, we use the notions of tangent and normal cones from variational
analysis [RW98] that we shall describe here. It may be at first glance tempting to
define the tangent cone at the point x ∈ ∂Q as the limit of vectors pointing inside
Q, in the paper we call this the tangent cone TQ(x). The drawback is that this
notion is not stable with respect to convergence of deformations. But it turns
out that the regular tangent cone ˆ︁TQ(x) is sufficiently stable. This is constructed,
loosely speaking, as the vectors that are also close to tangent vectors for nearby
points.

Finally the (convexified) normal cone NQ(x) is the dual cone to the regular
tangent cone. This we claim to be the correct generalization of the normal for
our problem. Using this dual description of cones, we go carefully through the
approximation and recover most of the steps. The static case of constructing the
contact force measure for Lipschitz domain has been investigated by [Pal19].

The one step that we do not recover, is the testing with ∂tη. It turns out to be
challenging to verify that this is an admissible direction, the reasons are described
in the paper. Instead of this, to get the energy estimate, we use the Moreau-Yosida
approximation [AGS05] in the minimizing movements. This refined estimate is
sufficient for limit passage and solving the problem (2.1).

2.2 Paper III – Full time-discretization
The paper [ČS23] investigates a fully time-discrete approximation scheme for
equations of elastodynamics of the type

∂ttη(t, x) + DE(η(t, x)) = f(t, x) for (t, x) ∈ [0, T ] × Q

η(0, x) = η0(x), ∂tη(0, x) = η∗(x) for x ∈ Q,

in the spirit of [BKS23]. As demonstrated in Section 1.1.2, the hyperbolic min-
imizing movements scheme of lies in usage of two different time scales, velocity
scale τ and the acceleration scale h. It is shown that by this method, one can
first pass with τ → 0 and obtain the time-delayed equation, which yields suffi-
cient estimates for the final passage h → 0. It is thus in essence a subsequent
limit passage of two discretization parameters.

As a step towards making this scheme amenable to numerical methods, we
investigate here the behavior of this scheme when both scales are kept discrete,
and pass with h, τ → 0 simultaneously. In this way ∂ttη is approximated as

∂ttη(t) ≈
η(t)−η(t−τ)

τ
− η(t−h)−η(t−h−τ)

τ

h
.

For this, we need a discrete (in τ) estimates, which are independent of h. In
particular note that the τ -estimates (1.4) are h-dependent and conversely the
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energy inequality (1.10) depends on having already passed with τ → 0. So here
we attempt to imitate the continuous estimate while remaining discrete in τ :
Instead of ∂tη we test with the time difference quotient (of length τ). A technical
difficulty is that in this case is that the chain rule

⟨DE(η), ∂tη⟩ = d

dt
E(η)

cannot be used. The inequality⟨︃
DE(η1),

η1 − η0

τ

⟩︃
≥ E(η1) − E(η0)

τ

would be a suitable replacement, however in general it holds only for convex
energies E. Since we want to include energies that are necessarily not convex, we
obtain the desired results for energies where the non-convexity can be sufficiently
estimated. We thus rely on what we call the non-convexity estimate1

⟨DE (η1) , η1 − η0⟩ ≥ E (η1) − E (η0) − C ∥η1 − η0∥2 . (2.2)

Note that this estimate is energy-dependent, that is, the constant C depends on
max(E(η0), E(η1)). It is thus a remarkable property of the scheme that using first
the minimizing movements estimate (see (1.4)) is sufficient to get the constant C
independent of h and thus (2.2) yields the desired h-independent estimate.

In the paper [ČS23], we show two properties of the fully time-discrete mini-
mization scheme2

ηℓ
k = argmin

η∈E

τh

2

⃦⃦⃦⃦
⃦⃦⃦ η−ηℓ

k−1
τ

− ηℓ−1
k

−ηℓ−1
k−1

τ

h

⃦⃦⃦⃦
⃦⃦⃦

2

L2

+E(η)+ cτ 2

2

⃦⃦⃦⃦
⃦∇ηℓ

k − ηℓ
k−1

τ

⃦⃦⃦⃦
⃦

2

L2
−
⟨︂
f ℓ

k, η
⟩︂

L2
.

First, we prove its stability in [ČS23, Section 2]. Stability means that the
energy of the discrete solution does not grow, resp. that it only grows as a result
of work done by the external force f .

Second, under convexity of highest-order terms in E, we show a linear rate of
convergence in [ČS23, Section 3]. To obtain the convergence rate results, we use
regularity results that we also develop there, namely in [ČS23, Subsection 3.1].
Linear convergence rate then means that the discrete solution converges to the
regular solution linearly with respect to the discretization step length.

2.3 Paper IV – Fluid-Structure interaction with
slip

In the last paper [ČKS24] we extend the previous results to the case of visco-
elastic bulk solid interacting with an incompressible Navier-Stokes fluid (1.15) to
the case of a full slip condition at the fluid-solid interface. The main novelty here

1This property is by some authors called λ-convexity [AGS05].
2For the precise role of the artificial dissipation cτ2

2

⃦⃦⃦
∇ ηℓ

k−ηℓ
k−1

τ

⃦⃦⃦2

L2
we refer to the paper

itself, and just note here that it vanishes with τ → 0.
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is the treatment of the impermeability condition, that is, (1.16) is replaced by
the kinematic condition

v · n = (∂tη ◦ η−1) · n on ∂η(t, Q) (2.3)

where n denotes the normal vector to the fluid-solid interface ∂η(t, Q) (the de-
formed configuration). For this coupled system we prove the existence of weak
solutions.

The coupled test functions are continuous over the entire fluid-solid domain Ω
and are divergence free in the fluid part Ω(t). These are the very same test func-
tions employed by [BKS23] (Note that if only these test functions were employed,
only the no-slip condition can be treated). This means that we require that for
ξ ∈ C∞([0, T ] × Ω;Rn) with ϕ := ξ ◦ η in Q and div ξ = 0 in Ω(t), ξ(T ) = 0,
ϕ(T ) = 0 it holds

−
∫︂ T

0
ρs⟨∂tη, ∂tϕ⟩ dt +

∫︂ T

0
DE(η)⟨ϕ⟩ + D2R(η, ∂tη)⟨ϕ⟩dt

+
∫︂ T

0
−ρf⟨v, ∂tξ⟩Ω(t) + ρf⟨v, v · ∇ξ⟩Ω(t) + ν⟨εv, εξ⟩Ω(t) dt

=
∫︂ T

0
ρs⟨f, ϕ⟩dt +

∫︂ T

0
ρf⟨f, ξ⟩Ω(t) dt + ρs⟨η∗, ϕ(0)⟩ + ρf⟨v0, ξ(0)⟩Ω(0).

The fluid-only test functions are defined in the fluid part of the domain only,
and have zero normal component at the fluid boundary. This then allows the
tangential jump of the velocity to be seen by the test functions, and in this way
the slip condition is obtained. This means that for all ξ ∈ C∞([0, T ] × Ω(t);Rn),
ξ · n = 0 on ∂Ω(t), div ξ = 0, with ξ(T ) = 0 it holds∫︂ T

0
−ρf⟨v, ∂tξ⟩Ω(t) + ρf⟨v, v · ∇ξ⟩Ω(t) + ν⟨εv, εξ⟩Ω(t) dt =

∫︂ T

0
ρf⟨f, ξ⟩Ω(t) dt

+ρf⟨v0, ξ(0)⟩Ω(0).

We include also the strong pointwise formulation of the problem, including
all the boundary conditions coming from the stress, the slipping law, and the
solid hyperstress, and show its compatibility with the weak formulation. Namely,
we show that provided a weak solution is sufficiently regular, it is also a strong
solution. Further for the weak formulation, we show how pressure can be recon-
structed.

A technical point in our construction is that the global velocity field is no
longer a W 1,2(Ω;Rn) function due to the tangential jump between fluid and solid.
For this reason, we treat the velocities separately and treat the convergences in
spaces of functions on moving domains.
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second-gradient nonlinear elasticity. ESAIM: Control, Optimisation
and Calculus of Variations, 15(4):863–871, October 2009.
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Paper IV: Antońın Češ́ık, Malte Kampschulte, and Sebastian Schwarzacher.
Fluid-structure interactions with slip. 2024

Publications not used in the thesis
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