
DOCTORAL THESIS

Shahin Heydari

Development and analysis of monotone
numerical schemes

Department of Numerical Mathematics

Supervisor of the doctoral thesis: doc. Mgr. Petr Knobloch, Dr., DSc.
Study programme: Computational mathematics

Prague 2024



I declare that I carried out this doctoral thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In . . . . . . . . . . . . . date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Author’s signature

i



To my lovely family

ii



This thesis is the result of over five years studies, a time period during which
I had the opportunity to receive both mathematical and personal support from
many wonderful people, whom I would like to thank sincerely.

First of all, I would like to express my deepest gratitude toward my supervi-
sor Prof. Petr Knobloch, who has provided me with countless hours in advising
and encouraging me in my research. You were always kind, supportive, patient
and managed to give me sufficient amount of time and space to read and work
independently while at the same time always being available and open for ques-
tions and fruitful discussions. In fact, I can not even remember the numbers of
my emails which have received helpful answers, hints, and advice almost imme-
diately. I hope you know how much I appreciate your guidance, motivation, and
supports during all these years; Děkuji moc Petr.
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Abstract: In this thesis, we investigate various systems of strongly-coupled non-
linear partial and ordinary differential equations, which mainly originate from
bio-science, both theoretically and numerically. For the main part of this work,
systems of parabolic equation with cross-diffusion is considered. It is well-known
that, the systems of these types usually suffer from low regularity due to the
nature of the cross-diffusion term(s). Lack of regularity may also be caused due
to the structure of the other equations present in the system. We address these
difficulties and establish the existence of global classical solutions for different
cross-diffusion systems. Next, we show that the analytical investigation may get
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considered systems and it is necessary to approximate the respective solutions by
means of numerical methods. We show that the behavior of numerical solutions
heavily depends on the effect of the cross-diffusion term(s), i.e., when these terms
are dominant the standard numerical methods become unstable and the approx-
imate solutions are usually polluted by spurious oscillations. We present high-
resolution nonlinear finite element flux-corrected transport (FE-FCT) methods
to overcome this problem. Then, we analyze the proposed schemes and address
their solvability, positivity, and satisfaction of discrete maximum principle. The
theoretical and numerical results are validated by several numerical experiments
in various spatial dimensions.

In the last part of this work, we investigate the qualitative and quantitative
behavior of a strongly-coupled nonlinear system of ordinary differential equations.
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Introduction

0.1 What is a cross-diffusion system?
Convection, diffusion, and reaction are physical processes that play an important
role in the modeling of many real-life situations. A convection-diffusion-reaction
(CDR) equation may simply describe, a substance which undergoes diffusion and
spreads out (randomly or/and uniformly) from a higher concentration location,
moves in a certain direction due to convection coefficient, or interacts by affecting
other particles or influencing each other’s dispersal pattern. The situation is more
complex for systems of equations, where one considers not only a simple diffuser
or random directional mover, but also preferential directional motion of particles,
then the aforementioned processes are not able to describe the desirable phenom-
ena under consideration. In these cases, motility of the species is not determined
solely by their own characteristic in question but different species are considered
to be mutually interfering with each other, in other words the movement does not
only depend on the density of ith species but also on the density of jth species.
The question of how to interpret these motions in the mathematical framework
was first addressed in [1] and also in the experiments of [2], where it was suggested
that a cross-diffusion term needs to be taken into account in order to describe such
a movement. The term cross-diffusion refers to a phenomenon where the gradient
of one concentration causes the flux of another concentration in the system. The
introduction of cross-diffusion term allows the mathematical models to capture
much more features of many phenomena in physics, biology, chemistry, ecology,
or engineering sciences. For instance, the Shigesada-Kawasaki-Teramoto (SKT)
model [3] in the population dynamics is a special case of a cross-diffusion system
which was proposed to investigate a segregation phenomenon of two species that
are competing with each other in the same habitat area. A motional type of in-
teraction was considered in [4], which described the movement of predator toward
prey and of prey away from predator. The effect of cross-diffusion greatly emerges
in the mathematical modeling of cancer invasions and their treatment see, e.g,
[5, 6] and [7, 8], respectively. A chemotaxis type cross-diffusion system known as
Keller-Segel model was proposed in [9, 10], where cell movement toward or away
from a chemical source was investigated. The modeling of population dynamics
[11, 12], electrochemistry [13], cell-sorting [14], pattern formation of bacteria [15],
tumor invasion [16, 17] are among many other models utilizing cross-diffusion ef-
fects.

Many strongly coupled cross-diffusion systems can take the form

∂tu = div
(︁
A(u)∇u

)︁
+ f(u) in Ω × (0, T ], (1)

subject to boundary and initial conditions(︁
A(u)∇u

)︁
· ν = 0 on ∂Ω × (0, T ],

u(·, 0) = u0 in Ω,

where Ω ⊂ Rd (d ≥ 1) is an open bounded domain, u(x, t) ∈ Rn is a vector-valued
function representing, e.g., population densities or chemical concentration and ∂tu
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is its time derivative, A(u) ∈ Rn×n is the diffusion matrix, f(u) ∈ Rn denotes
the reactions and external forces, and ν is the outward unit normal vector to ∂Ω.
Usually, whenever u models concentration it is expected that these concentration
be non-negative, for the cases where u models mass fraction boundedness and
positivity are expected. As mentioned in the preceding, cross-diffusion systems
appear in many area of science, however the presence of the cross-diffusion term
often complicates analytical and numerical analysis, for which we will give a very
brief background in the following.

1. Some analytical background

It is known that, if the diffusion matrix A(u) is a (positive definite) diago-
nal matrix, then the corresponding equations are quite regular and the global
well-posedness can directly follow from applying energy methods. Assuming this
condition and that the components are continuous and uniformly bounded with
respect to u, a global weak existence result is proved for a system of the type (1)
in [18]. However, this assumption usually does not hold, i.e., A(u) is neither sym-
metric nor positive definite and it is usually non-diagonal as well, which leads to
lower regularity in the system in such a way that even questions of local-in-time
existence are already quite delicate, thus making such a system very challeng-
ing to handle. For the SKT system, an important and well-studied case of (1),
the existence of solution is proved for both non-degenerate and degenerate case
in[19, 20, 21] and [22, 23], respectively. For this system equipped with a nonlinear
reactive term the global existence result is proved in [24]. Sufficient assumptions
for the global existence of weak or strong solutions of various nonlinear parabolic
equations can be found in, e.g., [25, 26, 27]. A classical approach which pro-
vides a very powerful tool for obtaining an uniform estimate of the solutions that
can yield the global in time existence is based on entropy structure of the cross-
diffusion system. This method is usually used whenever the maximum principle
1 or parabolic regularity theory cannot be applied, and it works by employing a
transformation of variables whenever the cross-diffusion system under considera-
tion possesses an entropy. This transformation results in a positive semi-definite
diffusion matrix, gradient estimates, and upper and lower bounds of solutions.
Moreover, this also leads to suitable a priori estimates which are key step to
prove global solvability. This approach has been first introduced in [28], later
were employed to analyze several classes of cross-diffusion systems, see, e.g., [28]
for a population system in one dimension and [11, 19] in several dimensions, [29]
where the global in time existence of bounded weak solutions is proved for a
class of strongly-coupled parabolic system, and [30] where the entropy variables
allowed L∞ bounds without using maximum principle. For more detailed back-
ground information regarding this technique we refer the reader to [27]. It it
worth noting that there are very few results on uniqueness and this is an open
question for many cross-diffusion systems. This motivated the researchers to ex-
plore other approaches which can be used in this regard. As a result, a technique
was introduced which makes it possible to enhance the regularity of the system

1The validity of the maximum principle is of great importance since it can play an important
role in analyzing the existence, uniqueness, and positivity of solutions to partial differential
equations.
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without any assumptions about the entropy structure of the cross-diffusion sys-
tems or in general whenever the identification of the entropy structure of the
system is difficult, in addition, it also does not rely on any assumptions regard-
ing the structure of the diffusion matrix A(u). This approach allows to prove
the well-posedness of the problem at hand by controlling the ratio of diffusion
and cross-diffusion components of diffusion matrix A(u). For an example of this
approach see [31], where a global existence result of non-negative solution is ob-
tained by applying Schauder’s strategy coupled with Meyer regularity result for
a system of type (1). Moreover, the question of boundedness of the solutions
is also addressed and a weak maximum principle is proved. A very interesting
result has been proposed recently in [32], in which the maximum principle for a
larger class of cross-diffusion systems has been investigated. It was proved that,
in contrast to the conventional believe that the cross-diffusion systems only en-
joy maximum principle whenever diffusion matrix A(u) is diagonal, a new result
on the maximum principle was reported considering that A(u) can also be non-
diagonal (provided that f(u) > 0). The key idea was to employ a matrix B to
transform the diffusion matrix A(u) to a lower or upper triangular matrix, where
as a result it makes it possible to establish some maximum principles for wider
range of cross-diffusion systems, see [32] for more detail. On the other hand, a
question that global solutions might not exist at all has drawn much attention
in the mathematical analysis of cross-diffusion systems over the past few decades
so that many researchers have accepted the low regularity of the systems under
consideration and showed that this effect may lead to blow-up of the solution,
see, e.g., [33, 34, 35, 36].

2. Some numerical background

Compared to the huge amount of the analytical results regarding the cross-
diffusion systems obtained over the past few decades, the numerical methods
and their respective analysis for this class of problems are far from well-studied.
Hence, constructing an appropriate numerical scheme to solve such a problem is
of great importance to give predictions for the future and to validate the assump-
tions that the model is based on, especially when the analytical investigations
appear to be very difficult or even impossible in some cases. Various methods
can be applied in this regard, very common among them are: finite difference
method, finite volume method, and finite element method. An explicit finite dif-
ference scheme was examined in [37] for a mechanical model of tumor growth, the
considered system was given by a multiphase flow model where the velocity was
a regularization of the classical Darcy law. In [38], an efficient nonstandard finite
difference approximation was proposed for a strongly coupled system describing
cancer migration and invasion. It was shown that the proposed method guar-
antees the positivity of the numerical solutions for arbitrary mesh size and has
explicit and fast performance even with nonlinear reaction terms. A nonlinear and
linear discrete-time algorithms for cross-diffusion system were considered in [39],
where convergence rates for a time-discretized scheme was derived. A standard
two-point finite-volume flux in combination with a nonlinear positivity-preserving
approximation of the cross-diffusion coefficients was used for a reaction-diffusion
system with cross-diffusion in [40]. The existence and uniqueness of the approx-
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imate solution were investigated and a stability analysis for a model of pattern-
formation was addressed. An unconditionally positivity-preserving linear finite
volume scheme for a class of Keller-Segel systems was addressed in [41], where
an upwind technique was employed. A modification of the finite volume method
for a class of chemotaxis system was proposed in [42]. For more examples on
two-point flux approximation finite volume methods for cross-diffusion systems
see [27]. A fully discrete implicit finite element approximation with a regular-
ization technique for the SKT model was considered in [43], where convergence
results in several space dimensions were proved. Finite element methods for a
class of chemotaxis-driven PDE systems were studied in [44], where different sta-
bilization techniques were used and the most reliable and efficient solvers were
investigated. There are many other contributions on the application of different
numerical schemes to cross-diffusion systems which can be found in the literature.

As mentioned before, these systems usually contain strongly coupled nonlin-
ear equations, therefore the solution of one equation can severely influence the
results of the other equations in the system, which might lead to, e.g., nonphys-
ical (non-positive) numerical solutions, violation of the total mass conservation
law, or undershoots and overshoots in the numerical simulations. Hence, the
main difficulties in the design of a suitable numerical scheme is to preserve as
many essential properties of the considered cross-diffusion system as possible.
Most existing standard numerical schemes usually fail to satisfy these proper-
ties especially whenever the cross-diffusion term(s) appears to be much stronger
in comparison to the other terms in the system, which is usually the case in
many applications. Main feature of the solutions in these cases is the appear-
ance of layers which are narrow regions where large gradients of the solutions
are present, and standard numerical methods usually lead to heavily oscillating
solutions unless these layers are resolved by means of suitable meshes. Therefore,
the development of adaptive techniques which are usually based on a priori or
a posteriori error estimations to adapt the mesh appropriately in these layers
has been the center of attention for many researchers. For instance, an adaptive
finite-element/level-set method is employed for a model of tissue invasion in [45],
see also [46] and [47] for more examples. However, choosing a suitable mesh res-
olution is not always feasible and requires high amount of memory and/or CPU
expenses, and take a lot of computational time. Therefore, developing appropri-
ate numerical methods which are able to provide sufficiently accurate results even
on coarse meshes comparing to the width of the layers is of great importance.
In this regard, stabilization methods can be a great choice even though the de-
sign of a proper stabilization method may be quite challenging. The application
of stabilization methods to cross-diffusion systems has been addressed in several
publications, see, e.g., [48, 49, 50, 51, 52]. However, these studies mainly focus
on the Keller-Segel system and moreover, their analysis is not available.

0.2 Thesis outline
Let us close this introductory part by sketching out the outline of this thesis:

• To begin with, as mentioned above, the behavior of the approximate solu-
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tions of cross-diffusion systems are highly under the influence of the cross-
diffusion term(s). For comparably large magnitude of this term in the
system, i.e, when the cross-diffusion term is dominant, standard numerical
systems may become unstable or even lead to blow-up in the numerical
simulations, hence they need to be stabilized. This process resembles the
convection-dominated regime in the CDR equations in the computational
fluid dynamics, for which an extensive amount of stabilization methods has
been introduced over the last four decades. Hence, in Chapter 1, we shall re-
call some of these methods and their improvements with more emphasize on
the high-resolution nonlinear finite element flux-correction transport (FE-
FCT) method, which will be our method of use.

• Next, a cross-diffusion system of chemotaxis-type modeling the invasion of
healthy tissues by cancer cells is considered in Chapter 2. We address the
low-regularity of the system which is the result of the cross-diffusion term
and also the structure of the other equations in the system. We estab-
lish the existence of global classical solutions in two- and three-dimensional
bounded domains utilizing the parabolic regularity theory. Then, the nu-
merical stability of the system is investigated by manipulating the respective
parameters in the system, it is shown that in the cross-diffusion dominated
regime the standard Galerkin method combined with θ-scheme gives rise
to spurious oscillations and numerical blow-up in the system. Furthermore
the theoretical results are supported by numerical simulations in two- and
three- dimensions.

• In Chapter 3, we consider the haptotaxis counterpart of the model con-
sidered in Chapter 2, for which the techniques presented in the previous
chapter is no longer applicable and its solvability is an open problem from
the analytical point of view. Though, we address this point by means
of the numerical methods, in this regard a high-resolution nonlinear FE-
FCT method is employed for space discretization combined with an im-
plicit θ-method for time discretization and fixed-point iterations to deal
with nonlinearities. Then, making use of Brouwer’s fixed point theorem, it
is proved that both the nonlinear scheme and the linearized problems used
in the fixed-point iteration are solvable. Moreover we prove that they are
positivity-preserving. The results are supported with numerical test in two
dimensions.

• In Chapter 4, we consider a double cross-diffusion system modeling gang
rivaling interactions. The key feature of this problem is that the cross-
diffusion term is not only present in one but in two equations in the system
which poses even more challenges from analytical and numerical point of
view compared to their single cross-diffusion counterparts. We establish
the global bounded classical solutions and prove that these solution con-
verge toward homogeneous steady-state for sufficiently small initial data,
however, for large data it appears to be very difficult to obtain such re-
sults analytically. We utilize FE-FCT scheme once again and prove its
positivity preservation, moreover, we investigate the validity of the discrete
maximum principle. Making use of the numerical experiments in one- and
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two-dimensions, we address not only the asymptotic behavior of large-time
solutions but also illustrate the evolution of the gang densities throughout
the time.

• So far, we only addressed systems of partial differential equations. In Chap-
ter 5, we consider a system of strongly coupled nonlinear ordinary differen-
tial equations describing the influenza disease. We present a nonstandard
finite difference scheme and prove that it is positivity-preserving and also
elementary-stable. The results are supported by providing some numerical
experiments.
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1. On the stabilization of
convection-diffusion-reaction
equations
Transport processes play an important role in the distribution of physical quan-
tities in many applications describing simple to very complicated and complex
problems, and can be modeled in a simplest form by CDR equations. Since ob-
taining the solutions of such problems analytically is usually too complicated in
many situations, it is necessary to approximate the respective unknown solutions
by means of numerical methods at discrete level. However, if the unknown solu-
tions represent concentrations or densities then numerical methods which produce
negative solutions and violate discrete maximum principle (DMP) by creating
spurious oscillations (over/under-shoots) are not usually useful in practice. On
the other hand, preserving the qualitative properties of the method is also of
great importance, and hence during the discretization the respective mesh has to
be chosen appropriately. Last but not least, the cost of a numerical schemes is
of great interest in applications. Therefore, it is desirable that the constructed
numerical scheme not only preserves the physical properties of the continuous
model in the discrete solutions but also it is highly accurate (with respect to
appropriate meshes), robust, and computationally reasonable.

The numerical solution of CDR equations is notoriously difficult if the con-
vection is larger by the order of magnitude in comparison to diffusion or reaction.
This usually gives rise to wild oscillations in certain areas (moving fronts, in-
terior and boundary layers), where the quantity of interest changes abruptly at
reasonable grid size. In finite difference methods framework, if central-differences
are used to approximate the convective term, the obtained solutions are usually
polluted by spurious oscillations. However, it was observed that the use of up-
wind differencing leads to oscillation free solutions but also to a loss of accuracy
since these methods are typically only first-order accurate, which results in overly
diffuse solutions. It was stated that the classical upwind differences, which are ap-
plied only to convection term, produce very poor results in the presence of source
terms. Later it was shown that a combination of central and upwind methods
works rather better than upwind or central-difference alone in one-dimensional
case, but the extension of such a methods to higher dimensions are much more
difficult and complicated in practice [53, 54, 55, 56, 57]. If finite element methods
are used to solve such problems, the use of the standard Galerkin finite element
method should be avoided unless the mesh is severely refined in the problematic
regions. It was observed that the use of the Galerkin finite element method is
roughly equivalent to central-difference approximation which also inherits similar
oscillatory properties in the approximate solutions [58]. The finite element equiv-
alent of upwinding was first presented in the late 1970s in [59], by introducing
a Petrov-Galerkin formulation in one-dimension. The basis of this method was
to use shape functions that are heavier in the upstream of a node considering
the direction of the flow, this approach opposes the Galerkin method in which
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test and shape functions are usually selected from the same function space and
distributed evenly to each node of an element. Two-dimensional upwind finite
element discretization were presented in [60, 61, 62], however, generalization of
these methods to higher dimensions seems to introduce diffusion in the crosswind
direction. In addition, when applied to more complicated problems, some of these
methods were far from adequate. These difficulties have motivated researchers
to construct finite element formulations for the CDR equations that are stable,
accurate, optimal and applicable to a wide variety of problems. In the following,
we will give a brief review of the developments of some of these methods during
the past four decades, started from the 1980s through today. These methods are
called stabilized finite element methods.

Let us introduce some standard notation which will be used throughout this
work: Let Ω ⊂ Rd, d ≥ 1 be a bounded domain, then L2(Ω) denotes the Lebesgue
space, W k,p(Ω) is Sobolev spaces which is the space of functions whose distribu-
tional derivatives up to order k are belong to Lp(Ω). The norm (semi-norm)
on W k,p(Ω) is denoted by ∥·∥k,p,Ω (|·|k,p,Ω). Note that the spaces W k,2(Ω) are
Hilbert spaces with convention W k,2(Ω) = Hk(Ω) and ∥·∥k,Ω = ∥·∥k,2,Ω (similarly
|·|k,Ω = |·|k,2,Ω).

1.1 Stabilization of steady-state convection-
diffusion-reaction equations

Let Ω ⊂ Rd, d ∈ {1, 2, 3} be a polygonal or polyhedral bounded domain with a
Lipschitz-continuous boundary ∂Ω. A linear scalar steady-state CDR equation
has the form

−ε∆u + b · ∇u + cu = g in Ω, (1.1)
u = ub on ∂Ω, (1.2)

where ε > 0 is a constant diffusion (or viscosity) coefficient, b ∈ W 1,∞(Ω)d

is a solenoidal (i.e., ∇ · b = 0) convection coefficient (or velocity field), c ∈
L∞(Ω) is a reaction coefficient, g ∈ L2(Ω) is describing sources or sink terms,
ub ∈ H

1
2 (∂Ω) ∩C(∂Ω) is a prescribed boundary condition, and u is the unknown

function. For simplicity of the presentation, Dirichlet boundary condition is con-
sidered on the whole boundary ∂Ω. In addition, we shall also assume that the
following assumption holds

σ := c− 1
2 div b ≥ 0. (1.3)

Let ũb ∈ H1(Ω) be an extension of the boundary condition ub. Then, the varia-
tional formulation corresponding to (1.1)-(1.2) reads: Find u ∈ H1(Ω) such that
u− ũb ∈ V := H1

0 (Ω) and

a(u, v) = (g, v) ∀ v ∈ V, (1.4)
a(u, v) = ε (∇u,∇v) + (b · ∇u, v) + (c u, v), (1.5)
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where (·, ·) indicates the inner product in L2(Ω) or L2(Ω)d, and H1
0 (Ω) consists

of functions from H1(Ω) with zero trace on the boundary.

The standard Galerkin finite element discretization is constructed based on the
variational formulation (1.4) by replacing the function spaces with finite element
subspaces and approximating ũb by a finite element interpolant ũbh. Let Th be
a triangulation of Ω̄ that belongs to a regular family of triangulations (see [63])
and consists of open set elements. Then we introduce finite element spaces

Wh =
{︃
vh ∈ C(Ω̄); vh

⃓⃓⃓
T

∈ R(T ), ∀T ∈ Th

}︃
, Vh = Wh ∩H1

0 (Ω),

consisting of continuous piecewise (multi-)linear functions, and R(T ) = P1(T )
for triangular elements and R(T ) = Q1(T ) for rectangular elements. The usual
basis functions ϕ1, · · · , ϕN of Wh are defined by ϕi(xj) = δij, i, j = 1, 2, · · · , N ,
where δij is the Kronecker symbol and xi, i = 1, · · · , N denote the vertices of the
triangulation Th such that x1, · · · , xM ∈ Ω and xM+1, · · · , xN ∈ ∂Ω. Clearly, the
functions ϕ1, · · · , ϕM form a basis for Vh.

Any function uh ∈ Wh can be written uniquely in the form

uh =
N∑︂

i=1
ui ϕi (1.6)

and identified with the coefficient vector U = (u1, · · · , uN).

Now, let Vh ⊂ V , then the standard Galerkin method reads: Find uh ∈ Wh

such that uh − ũbh ∈ Vh and

a(uh, vh) = (g, vh) ∀ vh ∈ Vh. (1.7)

As mentioned above, this method leads to solutions that are globally polluted
with spurious oscillations in the convection-dominated regime (ε ≪ |b|h) and
need to be stabilized. The stabilized finite element methods can be formulated
as : Find uh ∈ Wh such that uh − ũbh ∈ Vh and

ah(uh, vh) = (g, vh) ∀ vh ∈ Vh, (1.8)
ah(uh, vh) = a(uh, vh) + S(uh, vh), (1.9)

where S(uh, vh) indicates the additional terms added to the Galerkin finite ele-
ment discretization. These terms are added in such a way that the stability is
enhanced, consistency is preserved, and accuracy is improved.

1. Streamline upwind/Petrov-Galerkin method

Streamline upwind/Petrov-Galerkin (SUPG) method also known as stream-
line diffusion finite element method (SDFEM) is one of the most popular linear
stabilization finite element methods which was originally introduced in [64, 65,
66]. The basic idea behind this method is to add a streamline upwind perturba-
tion acting only in the flow direction to the standard Galerkin formulation (1.7),
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which manifests itself as a stabilization term S(uh, vh) in (1.9) in the form

SSUP G(uh, vh) :=
∑︂

T ∈Th

(︃
− ε∆uh + b · ∇uh + c uh − g, τb · ∇vh

)︃
T
, (1.10)

where Th is the same triangulation used for defining the finite element space Vh

as before, T denotes an arbitrary element of the triangulation, τ denotes the non-
negative stabilization parameter, and (·, ·)T denotes integration over T in L2(T )
or L2(T )d. This consistent Petrov-Galerkin residual-based stabilization (RBS)
method introduces artificial diffusion along streamlines which maintains stability
and improves accuracy away from the areas where sharp layers exist.

Now, it remains to define the stabilization parameter τ . Although it was
noted in [66] that the structure of the stabilization term is far more important
than the value of the parameter τ , it was shown later in many studies that the
appropriate choice of the stabilization parameter is also of great importance, since
it determines the amount of the artificial diffusion to be added by the SUPG
method to the Galerkin discretization. The stabilization parameter has to be
chosen in such a way that it is large enough to suppress the spurious oscillations
but also at the same time it is small enough to prevent smearing of the layers.
Comparing to the finite difference stencils, a first stability parameter which was
limited to the linear interpolation was suggested in [66]. Originated from one-
dimensional case, the stabilization parameter on any element T ∈ Th of linear or
bilinear finite elements can be defined by the formula

τ
⃓⃓⃓
T

:= hT

2 |b|

(︃
cothPeT − 1

PeT

)︃
with PeT = |b|hT

2 ε , (1.11)

where hT is an approximation of the length of the mesh T in the direction of
the convection vector b and PeT is the local mesh cell Péclet number. It was
suggested in [67, 68] to set the stabilization parameter τ on each element T ∈ Th

as

τ
⃓⃓⃓
T

:= diam(T )
2 |b|

(︃
coth

(︂
PeT/2

)︂
− 1
PeT/2

)︃
with PeT = |b| diam(T )

2 ε , (1.12)

where diam(T ) = sup{|x− y| ;x, y ∈ T} denotes the diameter of T . Another
possibility is to set

τ
⃓⃓⃓
T

=
⎧⎨⎩τ0hT if PeT > 1
τ1h

2
T/ε if PeT ≤ 1,

(1.13)

which was suggested in [56].
Studies in [69, 70] revealed that the choice of the stabilization parameter at in-
terior and boundary layers has negligible influences on reducing the spurious
oscillations and the best way to deal with this difficulty is to refine the mesh
properly in these regions. Later in [71], the author showed that even though
controlling the inadmissible oscillations in the characteristic layers seems to be
difficult, however, it is possible to introduce an appropriate stabilization param-
eter which is able to reduce the oscillation along the outflow boundary layers
(∂Ω+ = {x ∈ ∂Ω : (b · n)(x) > 0}) to a great extent. Thus, it was suggested to
keep the stabilization parameter defined in (1.11) as it is away from the outflow
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boundary layers, and define τ on any other element which intersects with the
outflow boundary layers as

τ
⃓⃓⃓
T

:= τ0

⃓⃓⃓
T

(︃
cothPeT − 1

PeT

)︃
with PeT = |bT |hT

2 ε , (1.14)

where bT is the mean value of b in T , and τ0 is a positive piecewise constant
function satisfying ∫︂

Gh

ϕi + τ0b · ∇ϕidx = 0, i = 1, · · · ,M,

where Gh consists of all elements intersecting ∂Ω+. Another possibility to de-
sign a proper stabilization parameter was proposed in [72, 73], which relies on a
posteriori computation of this parameter and leads to considerable reduction of
unwanted nonphysical oscillations in the vicinity of the sharp layers. The analysis
regarding several possible choices of the stabilization parameters that can be used
in practice were discussed in details in many publications, e.g., [74, 75, 56], see
also [76, 77, 78] and references there in for more details and examples.

The stability and error estimate for SUPG method can be achieved with
respect to the norm

∥v∥SUP G :=
(︃
ε|v|21,Ω +

⃦⃦⃦
σ1/2 v

⃦⃦⃦2

0,Ω
+
⃦⃦⃦
τ 1/2 b · ∇v

⃦⃦⃦2

0,Ω

)︃1/2
,

see e.g., [79, 80].
A generalization of this method has been applied to various other problems, e.g.,
coupled multi-dimensional advective-diffusive system [81], Stokes and Navier-
Stokes problems [82, 83], compressible flow problems [84, 85], and first order
linear hyperbolic system [79]. The SUPG method was further enhanced by in-
corporating shock capturing operator [86, 87, 77, 88].

The SUPG method does not contain any spurious crosswind diffusion and per-
forms significantly well on many problems in comparison to the Galerkin method,
but it is not a monotone method and does not satisfy the DMP, thus it usually
yields some oscillations around sharp layers.

2. Galerkin/least-squares method

The next popular residual-based stabilization scheme known as Galerkin/least
-squares (GLS) method was developed in [89, 90], which as its name suggests adds
a least-squares term to the Galerkin method and can be formulated in (1.9) as:

SGLS(uh, vh) :=
∑︂

T ∈Th

(︃
− ε∆uh + b · ∇uh + c uh − g, τ(−ε∆vh + b · ∇vh + c vh)

)︃
T
.

(1.15)
This term is capable of enhancing the stability of the Galerkin discretization with-
out degrading accuracy. Defining a proper choice of the stabilization parameter
τ can be done similarly as for the SUPG method. Convergence analysis in [89]
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indicated that the algorithmic parameter τ must behave as

τ
⃓⃓⃓
T

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C
h2

T

ε
whenPeT is small,

C ′hT

|b|
whenPeT is large,

(1.16)

on each element T , where C and C ′ are positive constants independent of the
mesh size and Péclet number. It was also determined from this analysis when the
expression for τ changes from one case to the other. The condition (1.16) holds
if

τ
⃓⃓⃓
T

= αhT

2 |b|
, α = min{C1 Pe, C2},

where the constants C1 and C2 are related to the constant appearing in the in-
terpolation error of the finite element approximation used and also to inverse
estimates, see [89] and also [91]. There is also the possibility of using the same
parameter τ as in the SUPG method for the GLS method.

The GLS method represents a generalization of the SUPG method with ad-
ditional discontinuity capturing feature and it is applicable to a wide variety of
model problems, [92, 93, 94, 95, 96, 97, 98, 99]. The stability and error estimate
for GLS method can be achieved with respect to the norm

∥v∥GLS :=
(︃
ε|v|21,Ω +

⃦⃦⃦
σ1/2 v

⃦⃦⃦2

0,Ω
+
⃦⃦⃦
τ 1/2 (−ε∆v + b · ∇v + c v)

⃦⃦⃦2

0,Ω

)︃1/2
.

A detailed convergence analysis of the scalar steady-state convection-diffusion
equation is presented in [89]. The error analysis and existence results of the GLS
method was further investigated in [100] for CDR and Navier-Stokes problems.

Galerkin/gradient-least-squares (GGLS) method was introduced in [101] for
the cases that require a strong control over the solution gradients with the stabi-
lization term

SGGLS(uh, vh) :=∑︂
T ∈TT

(︃
∇(−ε∆uh + b · ∇uh + c uh − g), τ∇(−ε∆vh + b · ∇vh + c vh)

)︃
T
,

(1.17)

which represents the gradient of a least-square term. In order to have stronger
control over the gradient, a combination of these two methods (GLS and GGLS)
was introduced in [102].

Similar to the SUPG method, the GLS method is a Petrov-Galerkin method
and it is consistent and easily applicable to many problems. However, it is known
that the GLS method often presents good stability and accuracy properties if
the exact solution is smooth enough, otherwise, the spurious oscillations can still
remain in the vicinity of sharp layers.
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3. Unusual stabilized FE and bubble enriched Galerkin methods

Stabilized finite element methods often enhance the stability and preserve the
good accuracy property of the Galerkin method by adding mesh-dependent terms
which are evaluated on each element of the triangulation. It was shown that the
stability can be achieved also by mesh-dependent stabilization term composed by
an adjoint term from the Galerkin discretization as:

SUSF EM(uh, vh) :=
∑︂

T ∈Th

(︃
−ε∆uh+b·∇uh+c uh−f, τ (−ε∆vh−b·∇vh+c vh)

)︃
T
,

(1.18)
these methods are called unusual stabilized finite element methods (USFEM)
which were first introduced in [103, 94] and further developed in [104, 105].

Adding appropriate terms to the Galerkin variational formulation is a well-
accepted practice which performs greatly for convection-dominated equations.
However, it was found that revisiting Galerkin method using richer subspaces
rather than piecewise linear polynomials can also guarantee stability and higher
accuracy without the need to manipulate the Galerkin variational form. In other
words, the idea is to enlarge the finite element space using bubble functions de-
fined elementwise and then eliminating them using static condensation. Such
bubbles can be seen as the addition of stabilization terms, therefore choosing
the appropriate (shape and number of) bubble functions is of great importance,
in other words, the selection of an optimal stabilization parameter is practically
translate into the problem of finding an optimal bubble space.

For brevity we assume that c is constant and homogeneous Dirichlet boundary
condition on ∂Ω. Let V b

h := {v ∈ H1
0 (Ω); v

⃓⃓⃓
T

∈ R(T ) ⊕ B(T )}, where R(T ) is
defined as before and B(T ) denotes the space of bubble functions spanned by the
bubble basis function ϕT ∈ B(T ) such that:

ϕT (x) > 0, ∀x ∈ T,

ϕT (x) = 0, ∀x ∈ ∂T, (1.19)
and ϕT = 1 at the barycenter of the triangle (rectangle). Then, the standard
Galerkin method enriched with bubble functions is formulated as : Find uh ∈ V b

h

such that
a(uh, vh) = (g, vh), ∀ vh ∈ V b

h , (1.20)
where uh is the unknown solution consisting of a linear part u1 ∈ Vh and its part
spanned by bubbles, i.e.,

uh = u1 +
∑︂

T ∈Th

uT
b ϕT , (1.21)

and uT
b is the unknown bubble coefficient. Now, we wish to understand the effect

of bubble functions on the linear part of the solution u1, for this reason we utilize
the static condensation which consists of first taking vh = ϕT on T (and vh = 0
elsewhere in Ω) and also substituting (1.21) in (1.20) which leads to:

(c u1, ϕT )T + (b · ∇u1, ϕT )T + (ε∇u1,∇ϕT )T (1.22)
+ uT

b (c ϕT , ϕT )T + uT
b (b · ∇ϕT , ϕT )T + uT

b (ε∇ϕT ,∇ϕT )T = (g, ϕT )T .
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Solving (1.22) in each element for the bubble coefficient uT
b we get:

uT
b = −1

c ∥ϕT ∥2
0,T + ε∥∇ϕT ∥2

0,T

(c u1 + b · ∇u1 − ε∆u1 − g, ϕT )T . (1.23)

The second part of the static condensation is to set vh = v1 ∈ Vh in (1.20) as

(c u1, v1) + (b · ∇u1, v1) + (ε∇u1,∇v1) (1.24)
+
∑︂

T ∈Th

uT
b (ϕT , c v1)T −

∑︂
T ∈Th

uT
b (ϕT ,b · ∇v1)T −

∑︂
T ∈Th

uT
b (ϕT , ε∆v1)T = (g, v1).

Substituting the expression for uT
b we get:

a(u1, v1)−
∑︂

T ∈Th

(c u1 + b · ∇u1 − ε∆u1 − g, ϕT )
c ∥ϕT ∥2

0,T + ε ∥∇ϕT ∥2
0,T

(ϕT , c v1−b·∇v1−ε∆v1) = (g, v1),

(1.25)
∀v1 ∈ Vh, bypassing the definition of the bubble shape function ϕ, (1.25) can be
simplified as

a(u1, v1) −
∑︂

T ∈Th

(︃
c u1 + b · ∇u1 − ε∆u1 − g, τ(c v1 − b · ∇v1 − ε∆v1)

)︃
T

= (g, v1),

(1.26)
where the stability parameter τ is given by

τ
⃓⃓⃓
T

=

(︂ ∫︁
T ϕTdx

)︂2

|T |
[︂
c ∥ϕT ∥2

0,T + ε ∥∇ϕT ∥2
0,T

]︂ .
This is the USFEM method mentioned above which is similar to the GLS method.
It was shown that this method can reduce to SUPG method see, [106, 105] and
references therein for more details. Moreover, the relationship between stabilized
methods and Galerkin method enriched with bubble functions is also studied in
[107].

As noted in the preceding, choosing bubble functions of correct shape and
number is of great importance, taking inappropriate bubbles can lead to Galerkin
method which behaves like a stabilized method with a poor selection of the sta-
bility parameter. Therefore, another possibility to design special bubbles was
introduced by means of residual-free approach where the stabilizing mechanism
is considered in the enrichment of the space. In the residual-free bubble method
the optimal parameter is determined through the solution of a suitable boundary
value problem in each element. This method was suggested and investigated in
various studies, see, e.g., [108, 109, 110, 111, 112, 113].

4. Local projection stabilization method

In comparison to the residual-based stabilization methods mentioned above,
where the stability was mainly induced into the Galerkin method through stabi-
lization terms that control the derivative of approximate solution in large scales,
another scheme known as local projection stabilization (LPS) method was in-
troduced to enforce the stability using only a fluctuation of the derivative of

15



the approximate solution in small scales. This method was originally proposed
for Stokes problems in [114], later extended to stabilization of CDR problems
[115, 116, 117], and incompressible flow problems [118, 119, 120, 121].

The idea of the LPS method mainly relies on a projection Πh : Xh → Dh

of a finite-dimensional space Xh into a discontinuous space Dh, where a stabi-
lization term is added to the Galerkin discretization in such a way that it gives
L2−control over the fluctuation κh := id− Πh of the gradient of the approximate
solution. Proving the error estimate and stability results of the LPS scheme is in
need of a proper construction of an interpolation operator in the approximation
space Xh that exhibits an orthogonality property with respect to the projection
space Dh, see [122, 123, 124, 125]. It has been proven in [126, 82, 125] that such
an interpolation operator exists if both approximation space Xh and projection
space Dh satisfy local inf-sup conditions. Additionally, the appropriate choice
of Dh is of great importance, on one hand Dh has to be large enough to satisfy
some approximating properties on the other hand it should be small enough to
guarantee the inf-sup condition.

It is known that there are two variants of the LPS method: a two-level ap-
proach and a one-level approach. LPS method was first introduced as a two-level
approach [114, 119, 127, 125, 128], in which the projection space Dh ⊂ L2(Ω) lies
on a coarser grid Mh ⊂ Ω. This coarse grid Mh is constructed by utilizing a basic
finer mesh Th, and each of its macro-elements M ∈ Mh is a gathering of neigh-
boring cells T ∈ Th. Let Dh(M) :=

{︃
qh

⃓⃓⃓
M

; qh ∈ Dh

}︃
and ΠM : L2(M) → Dh(M)

denote the local L2−projection on each element M ∈ Mh, which defines the
global projection Πh : L2(Ω) → Dh by (Πhv)

⃓⃓⃓
M

:= ΠM

(︃
v
⃓⃓⃓
M

)︃
. Furthermore, set

κM := id−ΠM (id : L2(M) → L2(M) is the identity operator) to be the so-called
fluctuation operator. Then, providing that the local inf-sup condition holds, i.e.,
there exists a positive constant β independent of h such that ∀M ∈ Mh :

inf
qh∈Dh(M)

sup
vh∈Vh(M)

(vh, qh)M

∥vh∥0,M∥qh∥0,M

≥ β, (1.27)

where Vh(M) := {vh ∈ Vh; vh = 0 in Ω̄ \ M}, the local projection stabilization
term S(uh, vh) can be defined as

SLP S(uh, vh) :=
∑︂

M∈Mh

τM

(︃
κM (bM · ∇uh), κM (bM · ∇vh)

)︃
M
, ∀ vh ∈ Vh(M),

(1.28)
where τM is a non-negative stabilization parameter on each macro-element M
which can be defined analogously as for the SUPG method, and bM is the value
of b in some point inside each M .

The one-level approach was introduced later in [115, 125, 117, 115] in such a
way that the finite-dimensional space Vh and the projection space Dh are defined
on the same mesh (i.e, set Mh = Th). In this case, the approximation space
is enriched with bubble functions. Following the same strategy as before : Let
Dh(T ) :=

{︃
qh

⃓⃓⃓
T
; qh ∈ Dh

}︃
, and Πh : L2(T ) → Dh(T ) be a local projection which
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defines the global projection by (Πhv)
⃓⃓⃓
T

:= Πh

(︃
v
⃓⃓⃓
T

)︃
and κh := id − Πh be the

fluctuation operator. In addition, ∀T ∈ Th there is a β > 0 independent of h such
that the local inf-sup condition holds:

inf
qh∈Dh(T )

sup
vh∈Vh(T )

(vh, qh)T

∥vh∥0,T ∥qh∥0,T

≥ β, (1.29)

where Vh(T ) := {vh ∈ Vh; vh = 0 in Ω̄ \ T}, the local projection stabilization term
S(uh, vh) reads as:

SLP S(uh, vh) :=
∑︂

T ∈Th

τT

(︃
κT (bT · ∇uh), κT (bT · ∇vh)

)︃
T
, ∀vh ∈ Vh(T ). (1.30)

where τT is a non-negative stabilization parameter on each element T .

The LPS method is equipped with the norm

∥v∥LP S :=
(︃
ε|v|21,Ω +

⃦⃦⃦
σ1/2v

⃦⃦⃦2

0,Ω
+ SLP S(v, v)

)︃1/2
. (1.31)

It was shown in [124] that the LPS method is as stable as the SUPG method in
the sense of an inf-sup condition.

A comparison of these two variants, a detailed analysis of computed parame-
ters τM and τT based on a priori estimates, and the relation between LPS method
and RBS techniques, can be found in [115]. It was mentioned in [115], that there
is a close relation between the LPS method and sub-grid modeling [129]. More-
over, these methods can be interpreted as a special class of variational multiscale
(VMS) methods [130, 131, 132].

We would like to note that the LPS method has several advantages over the
RBS methods, namely: they form a symmetric stabilization term, do not contain
second order derivatives, and do not lead to additional coupling between vari-
ous terms when applied to a system of partial differential equations. However,
they have a few drawbacks, first, both variant require more degrees of freedom
than residual-based methods, this difficulty has been overcome using overlapping
macro-elements in [123, 133], additionally, they are not able to completely remove
the wild oscillations in the vicinity of the sharp layers as well.

5. Continuous interior penalty and/or edge stabilization method

Next in line to enhance the stability of the Galerkin discretization is contin-
uous interior penalty (CIP) or/and edge (face) stabilization method. The basic
idea behind this method consist of adding an stabilization term to (1.8) to con-
trol the gradient jumps across element boundaries instead of inside each elements.
This stabilization term can be defined as:

SCIP (uh, vh) :=
∑︂

E∈Eh

τh2
E

(︃
[b · ∇uh], [b · ∇vh]

)︃
E
, (1.32)
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where Eh denotes the set of all interior edges (faces), hE is the edge length (face
measure), τ is the stabilization parameter, and [·]E denotes the jump of a function
across an edge E. Another possible choice of S(uh, vh) is

SCIP (uh, vh) :=
∑︂

E∈Eh

τh2
E

(︃
[∇uh], [∇vh]

)︃
E
. (1.33)

The first attempt to construct such methods was proposed in [134] for CDR equa-
tions for which later the inf-sup stability, convergence property and monotonicity
of discrete solution was investigated in [135]. The edge stabilization has been
successfully applied to the generalized Stokes problem in [136], it was noted how-
ever that different results might be observed if the stabilization parameter scales
with respect to the mesh size h. The CIP method was presented and compared
with other types of stabilization methods (residual-based / projection-based) in
[118] for the Oseen problem. In [137], the authors provided a generalization of
the interior penalty method following the work [134] to a model problem of vis-
coelastic flow and proved an optimal a priori estimate. An extension of CIP for
Oseen’s equations using equal order interpolation for pressure and velocity was
presented in [138]. A CIP hp-finite element method was introduced and analyzed
for advection and advection-diffusion equation in [139].

Compared with other stabilization methods mentioned above, the formula-
tions (1.32) and (1.33) possess a few advantages: they do not require the com-
putation of second-order derivatives, the formulation remains symmetric, no hi-
erarchical meshes are needed. However, the stiffness matrix is denser due to the
connection between degrees of freedom on neighboring cells.

6. Mizukami-Hughes method

Although the aforementioned methods perform very well on many problems,
most of these methods do not satisfy the DMP and are not able to remove the
oscillations in the vicinity of sharp layers completely. Mizukami and Hughes sug-
gested that choosing an appropriate upwind direction can improve the possibility
of constructing a new method which is able to overcome this difficulty [140].
They proposed one of the first monotone methods for solving (1.1)-(1.2) with
c = 0 for linear triangular finite elements which, not only satisfies the DMP but
also provides very accurate results, since it does not lead to smearing of the layers.

Assuming that, in addition to the assumptions made at the beginning of this
section, the triangulation Th is of weakly acute type, i.e., the magnitude of all
angles of elements T ∈ Th is less than or equal to π

2 , then the idea of the Mizukami-
Hughes method is to replace the test functions ϕi by functions ϕ̄i defined by

ϕ̄i = ϕi +
∑︂

T ∈Th,
xi∈T̄

CT
i χT , i = 1, · · · ,M, (1.34)

where CT
i ’s are constants and χT is the characteristic function of T . Then, choos-
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ing the constants CT
i for any T ∈ Th in such a way that

CT
i ≥ −1

3 , ∀i ∈ {1, · · · , N}, xi ∈ T̄ ,
N∑︂

i=1,
xi∈T̄

CT
i = 0, (1.35)

and the local convection matrices are of non-negative type1, these fulfill the con-
ditions to prove the DMP (since the triangulation is of weakly acute type, all
local diffusion matrices are of non-negative type, thus it is only suffices to prove
that convection matrices are of non-negative type). Let x1, x2, and x3 be the
vertices of any element T of the triangulation Th such that for each vertex xi it is
possible to define a vertex zone and an edge zone [140]. If the convection vector
b points into a vertex zone then (1.35) holds for

CT
1 = 2

3 , CT
2 = CT

3 = −1
3 ,

and the local convection matrices are of non-negative type, however, when b
points toward an edge zone it is not possible to find appropriate CT

i ’s which
satisfy the above properties. The authors in [140], suggested to change the orien-
tation of the convection vector to deal with this problem, in which b is replaced
by any function b̃ in such a way that b̃ − b is orthogonal to ∇u, which is always
possible. The definition of CT

i ’s strongly relies on the orientation of b to guar-
antee correct solutions, for example, it was shown that for b pointing to an edge
zone if T lies in the boundary layers the definition of CT

i ’s are not appropriate and
lead to incorrect solutions, hence in [141, 142], the author presented several im-
provements to overcome such difficulties. Moreover, he showed that it is possible
to extend the prescribed method to CDR equations and to the three-dimensional
cases. Since the original Mizukami-Hughes method and its improved version are
only defined for conforming triangular finite elements, the method was later ex-
tended to bilinear quadrilateral finite elements in [143], it was shown that in this
case the properties of the method depends on the definitions of four constants
on each element of the triangulation and also proved that the method fulfills the
DMP. Another improvement of the Mizukami-Hughes method was presented in
[144], the accuracy of the discrete solution was improved for different values of
the diffusion coefficient or/and whenever the convection is not extremely large,
i.e., for small and moderate Péclet number.

The Mizukami-Hughes method possesses many nice properties: it is a mono-
tone method that always satisfies DMP which ensures oscillation-free solution
even in the vicinity of sharp layers, it is of upwind type though does not con-
tain any stabilization parameters, it is a Petrov-Galerkin method therefore it is
consistent, it is highly accurate in comparison to many other upwind methods or
stabilized methods, the construction of the method is simple and clear. However,
the method possesses some drawbacks as well: it depends on the discrete solutions
and hence it is nonlinear which may cause some difficulties when highly accurate
solutions are desired, generalization of the method to more complicated problems
is rather difficult, the method may lead to incorrect solution in some cases, and
there is no existence, uniqueness and convergence results available for the method.

1All off-diagonal entries are non-positive, the row sums are non-negative
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We would like to note that except Mizukami-Hughes method, most of the
upwind approaches introduce too much artificial diffusion which, usually lead to
the smearing of the layers and results in poor accuracy see, e.g., [62, 141, 145,
140, 146, 147].

7. Spurious oscillations at layers diminishing methods

As mentioned above, the SUPG method

a(uh, vh) +
(︁
Rh(uh), τb · ∇vh

)︁
= (g, vh), ∀vh ∈ Vh, (1.36)

with the residual Rh(uh) = −ε∆uh + b · ∇uh + c uh − g, is known to be one of
the best and most used stabilization methods in reducing the spurious oscillation
arising in the Galerkin solutions, however, since it is not a monotone method it is
not able to completely remove or considerably reduce the over- and undershoots
in problematic areas, precisely speaking, in small regions where the derivatives
of the solution are extremely large. Removing these unwanted oscillations has
been the subject of an extensive research over the last few decades, as a result, it
was revealed that adding a suitable amount of the artificial diffusion to the left-
hand side of (1.36), can lead to a discretization which fulfills the DMP in most
model cases, such a procedure is called spurious oscillations at layers diminishing
(SOLD) method. The resulting methods are nonlinear since the amount of the
artificial diffusion in these methods depends on the unknown discrete solution
uh. In the following we briefly recall different types of these methods which were
developed during the last two decades to eliminate the oscillations in the discrete
solutions of the problem (1.1)-(1.2).

• The methods of the first type tend to add isotropic artificial diffusion terms
to the left-hand side of the SUPG discretization (1.36) as

(ε̃∇uh,∇vh), (1.37)

which was originally introduced in [86] and later extended in [148, 149].
One of the best choices of ε̃ is to set

ε̃ = max
{︃

0, τ |b|
⃓⃓
Rh(uh)

⃓⃓
|∇uh|

− τ

⃓⃓
Rh(uh)

⃓⃓2
|∇uh|2

}︃
,

which was presented in [150]. It was suggested in [151] that the stabilization
parameter can be defined as

ε̃
⃓⃓⃓
T

= max
{︂
0, α [diam(T )]ν

⃓⃓
Rh(uh)

⃓⃓
− ε

}︂
, ∀T ∈ Th,

with some constants α and ν. Other possible definitions of ε̃ has been
suggested in [152, 153, 154]. In [155], an adaptive technique was used along
with this type of SOLD method to increase the convergence order and
improve the results obtained with the SUPG method. In addition, a priori
and a posteriori error estimates for these methods were also investigated in
[151, 156].
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• Next type is to add an artificial diffusion orthogonal to the streamline di-
rection (i.e., in the crosswind direction) to the (1.36) as

(ε̃ D∇uh,∇vh), (1.38)

where D is the projection onto the line or plane defined by

D =

⎧⎪⎪⎨⎪⎪⎩
I − b ⊗ b

|b|2
if b ̸= 0,

0 if b = 0,

with I being the identity tensor. Note that, in two-dimensional case the
SOLD term (1.38) can be written in the form

(︂
ε̃b⊥ · ∇uh,b⊥ · ∇vh

)︂
with b⊥ = −(b2, b1)

|b|
, (1.39)

see [157] for more detail. One of the best choices of ε̃ was introduced in [78]
following the works of [158] as

ε̃
⃓⃓⃓
T

= max
{︃

0, ηdiam(T )
⃓⃓
Rh(uh)

⃓⃓
2 |∇uh|

− ε
}︃
,

where diam(T ) is the diameter of T and η is a suitable constant. In [157]
it was suggested to define ε̃ by

ε̃
⃓⃓⃓
T

= max
{︃

0, |b|h3/2
T − ε

}︃
∀T ∈ Th,

see also [159, 160, 161, 162] for other variants of ε̃.

• Last type of the SOLD methods is based on edge-stabilization, adding the
following term to the formula (1.36)

∑︂
T ∈Th

∫︂
∂T
ε̃
⃓⃓⃓
T
sign

(︃
∂uh

∂t∂T

)︃(︃
∂vh

∂t∂T

)︃
dσ, (1.40)

where t∂T is a tangent vector to the boundary ∂T of T . For these types of
methods it was suggested to set ε̃ on each T ∈ Th, as

ε̃|T = C ε|T |
⃓⃓⃓⃓
Rh(uh)

⃓⃓⃓
T

⃓⃓⃓⃓
∀T ∈ Th,

where C is a non-negative constant [135].

In all aforementioned types of SOLD methods, the parameter ε̃ is to be set zero
whenever the denominator defining ε̃ vanishes. For a great collection, classifi-
cation, comparison, and numerical experiments of most of the SOLD methods
which has been constructed to completely remove or at least considerably reduce
the undesirable oscillations without deteriorating the accuracy, we refer to two
great reviews [78, 163], and also [71, 77] and references therein.
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Similarly to the SUPG method, the LPS scheme is also unable to remove
the oscillations completely and some of them still remain along sharp layers.
Therefore, in [78], the LPS method was combined with a SOLD term as

∑︂
M∈Mh

(︃
ε̃
⃓⃓⃓
M
κM (DM ∇uh), κM (DM ∇vh)

)︃
, (1.41)

with
ε̃
⃓⃓⃓
M

= η hM |bM |
⃓⃓
κM (DM ∇uh)

⃓⃓
, (1.42)

and

ε̃
⃓⃓⃓
M

= η hM |bM | h
d/2
M

⃓⃓
κM (DM ∇uh)

⃓⃓
|uh|1,M

, (1.43)

where M ∈ Mh is a macro-element, hM is the diameter of M , η > 0 is a user-
chosen constant parameter, and DM : Rd → Rd is the projection onto the line or
plane orthogonal to the vector bM . As proposed in [164], it is also possible to
add a nonlinear term (ε̃ D∇uh,∇vh) of SOLD type to the CIP method.

Although, SOLD methods are considered to be monotone or monotonicity pre-
serving in some model cases and are capable of significantly improve the SUPG
solutions, the main difficulty in the application of these approaches is that they
contain two user-chosen parameters. Hence, despite a huge amount of literature
on these methods, it is still impossible to choose a method with an appropriate
parameter which works perfectly in all test cases.

8. Flux corrected transport method

Going through a long pass of research to discover a method that guarantees
the DMP and as a result computes solutions without spurious oscillations, even
in the vicinity of sharp layers, another class of stabilized finite element meth-
ods has been introduced which often satisfies the DMP by construction (under
certain assumptions on the meshes). Methods of this type are called finite el-
ement flux-corrected transport (FE-FCT) methods or algebraic flux correction
(AFC) methods and were first introduced in [165, 166], following the pioneer
works of [167, 168] in the formulation of the flux correction, and since then
they have been intensively developed and improved in many publications, see,
e.g., [169, 170, 171, 172, 173, 174, 175]. Unlike previous stabilization techniques,
which were mainly based on the modification of a variational formulation of the
problem, the AFC stabilization methods are performed on the algebraic level. In
other words, they manipulate the matrix and the right hand side of the algebraic
system of equations.

The first step towards the design of an AFC scheme is to rewrite the Galerkin
formulation (1.7) as:

N∑︂
j=1

aijuj = gi, i = 1, · · · ,M, (1.44)

ui = ub
i , i = M + 1, · · · , N, (1.45)
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where aij = a(ϕj, ϕi) i, j = 1, · · · , N, gi = (g, ϕi), i = 1, · · · ,M and ub
i =

ub(xi), i = M + 1, · · · , N . Then, modify the algebraic system (1.44) in such
a way that the necessary conditions for fulfilling the DMP holds and the lay-
ers are not excessively smeared. Let A =

(︂
aij

)︂N

i,j=1
denote the stiffness matrix

corresponding to the above-mentioned discretization and U = (u1, · · · , uN) be
a solution vector consisting of unknown coefficient ui, i = 1, · · · , N . Then, the
satisfaction of the local DMP is guaranteed if and only if the matrix of the lin-
ear discretization above is a matrix of non-negative type with positive diagonal
entries, i.e., if and only if

aii > 0, ∀i = 1, · · · ,M, (1.46)
aij ≤ 0, ∀i ̸= j, i = 1, · · · ,M, j = 1, · · · , N, (1.47)

N∑︂
j=1

aij ≥ 0, i = 1, · · · ,M. (1.48)

If, in addition, the matrix of (1.44)-(1.45) is non-singular, then the global DMP
is satisfied as well. However, it is known that for the above discretization in
the convection-dominated regime the validity of the conditions above is usually
violated and as a results the DMP does not hold. As a remedy, to enforce the
DMP, a sufficient amount of artificial diffusion has to be added to (1.44). Let
D =

(︂
dij

)︂N

i,j=1
denote a symmetric artificial diffusion matrix with entries

dij = dji = − max
{︂
aij, 0, aji

}︂
, ∀i ̸= j, dii = −

∑︂
j ̸=i

dij, (1.49)

then, the matrix Ã = A + D has positive diagonal and non-positive off-diagonal
entries, and in addition ∑︁N

j=1 aij ≥ 0, i = 1, · · · ,M (provided that c ≥ 0) holds
i.e., the necessary conditions for satisfying the DMP are met, see [176]. Now, the
system (1.44)-(1.45) can be replaced by:(︂

ÃU
)︂

i
= gi, i = 1, · · · ,M, (1.50)

ui = ub
i , i = M + 1, · · · , N, (1.51)

which is a monotone low-order method. This modified system is a manifestation
of a simple artificial diffusion method and results in an excessive smearing of the
layers due to the large amount of added artificial diffusion. The smearing can be
prevented by restricting the artificial diffusion to the areas where the solutions
change abruptly, while the DMP is still respected.

The symmetric matrix D is a discrete diffusion operator with zero row and
column sums, hence it follows that

(DU)i :=
∑︂
i ̸=j

fij, i = 1, · · · , N,

with fluxes fij = dij(uj − ui). Obviously, fij = −fji for all i, j = 1, · · · , N ,
meaning that the amount of flux added to node i is subtracted from the node j
and vice-versa. Finally, for the last step of building an AFC scheme, the fluxes
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have to be limited appropriately, in other words, so-called solution-dependent flux
limiters αij ∈ [0, 1] are introduced in such a way that the DMP is maintained
and artificial diffusion is mainly localized around extrema and layer areas without
compromising the accuracy. To this end, system (1.50)-(1.51) is replaced by(︂

ÃU
)︂

i
= gi +

∑︂
i ̸=j

αijfij, i = 1, · · · ,M, (1.52)

ui = ub
i , i = M + 1, · · · , N, (1.53)

or equivalently
N∑︂

j=1
aijuj +

N∑︂
j=1

(1 − αij) dij (uj − ui) = gi, i = 1, · · · ,M, (1.54)

ui = ub
i , i = M + 1, · · · , N. (1.55)

This nonlinear scheme makes it possible to easily switch between high- and low-
order techniques depending on the smoothness of the solution, for which, clearly
the Galerkin finite element method is recovered in the smooth regions and the
low-order scheme is used in the vicinity of sharp layers. To maintain the conser-
vation property of the resulting scheme, it is usually assumed that the coefficients
αij(u1, · · · , uN) be symmetric, i.e,

αij = αji, i, j = 1, · · · , N. (1.56)

Let
bij = (1 − αij)dij, ∀i ̸= j, bii = −

∑︂
i ̸=j

bij, (1.57)

then, the system (1.54)-(1.55) can be written in the form
N∑︂

j=1

(︂
aij + bij)uj = gi, i = 1, · · · ,M, (1.58)

ui = ub
i , i = M + 1, · · · , N. (1.59)

then, the system (1.58)-(1.59) can be rewritten in the variational form, where the
algebraic term is represented by

bh(w; z, v) =
N∑︂

i,j=1
bij(w)z(xj)v(xi), w, z, v ∈ C(Ω̄),

with bij(w) = bij

(︂{︁
w(xi)

}︁N
i=1

)︂
. Then, the stability and error estimate for the

AFC scheme can be derived with respect to the solution-dependent norm

∥v∥AF C :=
(︂
ε |v|21,Ω + σ ∥v∥2

0,Ω + bh(uh; v, v)
)︂1/2

, v ∈ Vh,

see [177] for details.

Over the years, many different variant of the correction limiter αij have been
suggested in the literature, however, their definition mostly relies on the fluxes
fij. In the following we shall recall some of these limiers.

1. The Kuzmin limiter

This limiter was originally developed in [172].
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1. To begin with, one first computes

P+
i =

N∑︂
j=1,

aji≤aij

f+
ij , P−

i =
N∑︂

j=1,
aji≤aij

f−
ij , Q+

i = −
N∑︂

j=1
f−

ij , Q−
i = −

N∑︂
j=1

f+
ij ,

for i = 1, · · · ,M , where fij = dij(uj − ui), f+
ij = max{0, fij}, and f−

ij =
min{0, fij}.

2. Next, one defines

R+
i = min

{︄
1, Q

+
i

P+
i

}︄
, R−

i = min
{︄

1, Q
−
i

P−
i

}︄
, i = 1, · · · ,M.

If P+
i or P−

i vanishes, set R+
i = 1 or R−

i = 1, accordingly. At the Dirichlet
nodes, also define R+

i = R−
i = 1, i = M + 1, · · · , N .

3. Finally, for any i, j ∈ {1, · · · , N} such that aij ≥ aji, the limiter αij is
defined by

αij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
R+

i if fij > 0,
1 if fij = 0,
R−

i if fij < 0.

This is an upwind-type limiter which is applicable to P1 and Q1 elements. The
Kuzmin limiter was analyzed thoroughly in [178] for steady-state CDR equations.
The existence of a solution of the nonlinear problem and the satisfaction of the
DMP was proven under certain assumptions on the mesh, for P1 elements.

2. The BJK limiter

This limiter was originally derived in [179] for P1 elements. The first step is
to define

umax
i = max

j∈Si∪{i}
uj, umin

i = min
j∈Si∪{i}

uj, qi = γi

∑︂
j∈Si

dij, i = 1, · · · ,M,

where Si =
{︂
j ∈ {1, · · · , N} \ {i} : aij ̸= 0 or aji > 0

}︂
and γi is a positive con-

stant, see [179] for more details. As next step:

1. Compute for i = 1, · · · ,M

P+
i =

∑︂
j∈Si

f+
ij , P−

i =
∑︂
j∈Si

f−
ij ,

Q+
i = qi (ui − umax

i ) , Q−
i = qi

(︂
ui − umin

i

)︂
, (1.60)

2. Then, compute

R+
i = min

{︄
1, Q

+
i

P+
i

}︄
, R−

i = min
{︄

1, Q
−
i

P−
i

}︄
, i = 1, · · · ,M.

If P+
i or P−

i is zero, set R+
i = 1 or R−

i = 1, respectively. For Dirichlet
nodes, the values of R+

i and R−
i are set to 1.
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3. Next, calculate

α̃ij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
R+

i if fij > 0,
1 if fij = 0, i, j = 1, · · · , N,
R−

i if fij < 0,

4. Finally, set
αij = min

{︂
α̃ij, α̃ji,

}︂
i, j = 1, · · · , N.

For AFC methods equipped with this limiter, the existence of the nonlinear prob-
lem and the satisfactions of local and global DMP on arbitrary simplicial grids was
proved in [179]. Moreover, it was shown that the method is linearity-preserving.
This property demands that the modification added to the formulation vanishes
in case the solution is a polynomial of degree 1, hence leads to improved accuracy
in the regions where the solution is smooth.

3. Monotone upwind-type algebraically stabilized (MUAS) method

This method was recently proposed in [177]. Let the stabilization term in
(1.58)-(1.59) method be as follows:

bij = − max
{︂
(1 − αij)aij, 0, (1 − αji)aji

}︂
, i, j = 1, · · · , N, i ̸= j, (1.61)

bii = −
N∑︂

j=1
bij, i = 1, · · · , N. (1.62)

such that bij = bji, i, j = 1, · · · , N . Then, the limiter αij is determined as follows

1. First, compute

P+
i =

N∑︂
j=1,aij>0

aij(ui − uj)+, P−
i =

N∑︂
j=1,aij>0

aij(ui − uj)−,

and

Q+
i =

N∑︂
j=1

max
{︃
aij

⃓⃓⃓
, aji

}︃
(uj − ui)+, Q−

i =
N∑︂

j=1
max

{︃
aij

⃓⃓⃓
, aji

}︃
(uj − ui)−.

2. Then, calculate

R+
i = min

{︄
1, Q

+
i

P+
i

}︄
, R−

i = min
{︄

1, Q
−
i

P−
i

}︄
, i = 1, · · · ,M.

If P+
i or P−

i is zero, set R+
i = 1 or R−

i = 1, respectively. The values of R+
i

and R−
i are 1 at Dirichlet nodes as well.

3. Lastly, define

αij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
R+

i if ui > uj,

1 if ui = uj, i, j = 1, · · · , N.
R−

i if ui < uj,
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The MUAS method has been analyzed in [177]. The solvability of the nonlinear
discrete problem and satisfaction of local and global DMP on arbitrary simplicial
grids are proven.

4. Symmetrized monotone upwind-type algebraically stabilized method

A new algebraically stabilized method with a new definition of limiter αij,
known as symmetrized monotone upwind-type algebraically stabilized (SMUAS)
method, was recently published in [180]. It was shown that the SMUAS method
is linearity-preserving and satisfies the DMP on arbitrary simplicial meshes. This
method is defined by (1.61)-(1.62) and computed as follows:

1. Compute

P+
i =

∑︂
j∈Si

⃓⃓⃓
dij

⃓⃓⃓ {︂
(ui − uj)+ + (ui − uij)+

}︂
,

P−
i =

∑︂
j∈Si

⃓⃓⃓
dij

⃓⃓⃓ {︂
(ui − uj)− + (ui − uij)−

}︂
. (1.63)

2. Compute

Q+
i =

∑︂
j∈Si

max
{︃
aij

⃓⃓⃓
, aji

}︃{︂
(uj − ui)+ + (uij − ui)+

}︂
,

Q−
i =

∑︂
j∈Si

max
{︃
aij

⃓⃓⃓
, aji

}︃{︂
(uj − ui)− + (uij − ui)−

}︂
. (1.64)

3. Compute

R+
i = min

{︄
1, Q

+
i

P+
i

}︄
, R−

i = min
{︄

1, Q
−
i

P−
i

}︄
, i = 1, · · · ,M.

If P+
i or P−

i is zero, set R+
i = 1 or R−

i = 1, respectively. The values of R+
i

and R−
i are set to 1 for Dirichlet nodes as well.

4. Define

αij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
R+

i if ui > uj,

1 if ui = uj, i, j = 1, · · · , N.
R−

i if ui < uj,

In the above definition uij = ui + ∇uh

⃓⃓⃓
T j

i

· (xi − xj). Here T j
i is a mesh cell

containing xi that is intersected by the half line{︂
xi + θi(xi − xj) : θi > 0

}︂
.

Another possible choice of limiter known as BBK limiter is presented in [181].
Numerical studies in [182] show that AFC methods with BJK limiter usually
provide more accurate results in comparison to Kuzmin limiter. The results in
[183] revealed that using AFC method with Kuzmin limiter leads to solutions
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with sharper layers compared with the solution obtained with the BBK limiter.
The Kuzmin limiter was replaced by a value that introduces sufficient amount
of artificial diffusion and fulfills the conditions to satisfy a local DMP in [184].
A mixture of both Kuzmin and BJK limiter was proposed in [185] to obtain a
limiter which is linearity preserving and satisfies a local DMP. A simpler version
of the limiter from [186] is considered in [177], which does not use the conven-
tional inter-nodal fluxes as in other AFC methods, it was shown that the resulting
method guarantees the DMP. For numerical comparison of the AFC scheme with
Kuzmin limiter and the MUAS method see [177]. Another very promising limit-
ing strategy includes the development of a monolithic convex (MC) limiting. This
limiter was first proposed in [187] for linear advection equations and nonlinear
hyperbolic conservation laws, and its adaptation to other types of equations was
investigated very recently in [188]. AFC scheme with Kuzmin, BJK, and MC
limiters has been investigated in [189] for a steady-state CDR equation in three
dimensions.

As mentioned in the preceding, the discretized algebraically stabilized schemes
are nonlinear. With nonlinearity different concern arises, this matter has been
recently addressed in [190], where two basic fixed-point iterations and a New-
ton method were investigated for solving the nonlinear problem arising from the
AFC discretization. This investigation was further continued in [182], where
comprehensive numerical studies for solving the resulting nonlinear scheme were
presented. In this work a mixed fixed-point iteration, a refinement of Newton
method, and a regularized formal Newton method were used.

Despite the huge amount of numerical studies, the amount of rigorous math-
ematical analysis for the algebraically stabilized schemes was considerably low
for a long time. It was only very recently that the first numerical analysis for
this class of stabilized methods was carried out in [191]. It was shown that the
linear problems obtained using the fixed-point iteration are well-posed, however,
the nonlinear problem is not solvable in general. In this case, the possible non-
existence of solution seems to be the result of the violation of the symmetry
condition on the correction limiter, i.e, when αij ̸= αji, i, j = 1, · · · , N . This
shortcoming has been addressed in [178], where for the first time the existence
of the solution, existence and uniqueness of a solution of a linearized problem,
and an a priori error estimate were proven under rather general assumptions on
the limiters αij. Moreover, it was shown that under the symmetry condition and
certain restrictions on the mesh it is possible to prove the local DMP. A survey
on the development and analysis of the AFC schemes has been published in [192]
and [183]. The performance of a posteriori error estimates was studied in [193].
Furthermore, the behavior of the AFC method with Kuzmin, and BJK limiters
and of the MUAS method on adaptively refined grids, both with conforming
meshes and with hanging nodes is studied in [194]. For a survey on the finite ele-
ment methods that satisfy a local or global DMP for convection-dominated CDR
equations see [195]. A numerical study is presented in [196] which investigates
finite element methods satisfying the DMP for CDR equations.

Algebraically stabilized methods have several advantages in comparison to

28



most of the other stabilization methods: they often satisfy DMP by construc-
tion and as a result preserve the positivity of the solution, their implementation
does not depend on the space dimension, they usually provide sharp approxima-
tions of the layers. However, there are also some drawbacks: these methods are
usually nonlinear even if the problem at hand is linear, and the application of
algebraically stabilizations to higher order finite elements is not developed.

There are even more proposals of stabilized methods which are not included
in this section. Among these methods are: consistent approximate upwind
(CAU) methods [197], controlled consistent approximate upwind (CCAU) [198],
Taylor-Galerkin method [199, 200], entropy viscosity approach [201], variational
multiscale (VMS) methods [131, 132, 130], algebraic subgrid-scale stabilization
[120, 202], orthogonal subscales methods [203, 204], and many more, see also
[56, 205, 206] for reviews. However, despite more than four decade of intensive
research, there is still no method that has been proven to be a universal choice,
hence the numerical solution of convection-dominated CDR problems is still a
challenge. Moreover, for many available discretizations of this simplest model
problem the analysis still remains an open problem.

1.2 Stabilization of transient convection-
diffusion-reaction equations

Time-dependent CDR equations appear in various applications. These equations
are not only important on their own but are often part of complex nonlinear
systems of equations that are strongly coupled in such a way that inaccuracy in
one equation directly effects all other equations in the system. Therefore, over
the years, a great deal of effort has been devoted to the development of proper
numerical methods for approximating the solution of transient problems involv-
ing convection, diffusion, and reaction terms.

Let us consider the evolutionary CDR equation

ut − ε∆u + b · ∇u + cu = g in (0, Tmax] × Ω,
u = ub on [0, Tmax] × ∂Ω, (1.65)

u(x, 0) = u0(x), in Ω,

where Ω is a polygonal or polyhedral bounded domain in Rd, d ∈ {1, 2, 3} with a
Lipschitz-continuous boundary ∂Ω, [0, Tmax] is a time interval, ε > 0 is a constant
diffusion coefficient, b(x, t) ∈ L∞

(︂
0, Tmax;W 1,∞(Ω)d

)︂
is a convection field with

∇ · b = 0, c(x, t) ∈ L∞ (︁
0, Tmax;L∞(Ω)

)︁
is a non-negative reaction coefficient,

g(x, t) ∈ L2
(︂
0, Tmax;L2(Ω)

)︂
is an outer source of the unknown quantity u, ub ∈

L2
(︄

0, Tmax;H
1
2 (∂Ω)

)︄
is the boundary condition, and u0(x) ∈ H1

0 (Ω) is the initial

data. Moreover, without loss of generality, it is assumed that there exists a
positive constant σ0 such that

0 < σ0 ≤ σ(t, x) = c(t, x) − 1
2 div b(t, x), ∀(t, x) ∈ [0, Tmax] × Ω, (1.66)
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which is the standard assumption that guarantees the unique solvability of (1.65),
see [56]. Clearly, the numerical solution of an equation of type (1.65) consists of a
double discretization process, that is, the temporal discretization and the spatial
discretization. We wish to only focus on the finite element methods for spatial
discretization in the following, thus we introduce a triangulation Th of Ω which
possesses the usual compatibility properties and define the finite element spaces
as

Wh =
{︃
vh ∈ C(Ω̄); vh

⃓⃓⃓
T

∈ R(T ), ∀T ∈ Th

}︃
, Vh = Wh ∩H1

0 (Ω),

consisting of continuous piecewise (multi)linear functions as before. As for the
time discretization, the time interval is decomposed by 0 = t0 < t1 < · · · < tn+1 =
Tmax with ∆t = tn+1 − tn being the time-step, afterward any time-integration
methods can be employed for discretizing in time. Note that, in the following, we
only consider the homogeneous Dirichlet boundary condition for the simplicity of
the presentation.

The process of discretization can be done in several ways:

• The time/space discretization, also known as Rothe’s method, in which
after a temporal discretization the obtained equation has the form of a
stationary CDR equation that has to be solved at each time instant. Then,
the fully discrete equation can be derived by employing a proper spatial
discretization method, see [207] for an example of this case. Now, let us
consider θ-scheme (θ ∈ [0, 1]) for discretizing (1.65) in time, this leads at
each discrete time tn+1 to

un+1 + θ∆t
(︂
−ε∆un+1 + bn+1 · ∇un+1 + cn+1un+1

)︂
= (1.67)

un − (1 − θ) ∆t (−ε∆un + bn · ∇un + cn un) + θ∆tgn+1 + (1 − θ)∆tgn.

Practical cases of interest are backward Euler (θ = 1), Crank–Nicolson
(θ = 1

2), and forward Euler (θ = 0). Now it remains to apply a finite ele-
ment method for discretizing in (1.67) in space, in this regard the equation
(1.67) can be transformed to a weak formulation by multiplying with a test
function from a space V = H1

0 (Ω) and applying the integration by parts
as usual. Then, after employing a finite-dimensional space Vh instead of V
(Vh ⊂ V for conforming finite element method) and with a suitable approx-
imation of initial data u0(x), the standard Galerkin formulation of (1.67)
reads as follow: Find un+1

h ∈ Vh such that

(un+1
h , vh) + θ∆t

(︂
(ε∇un+1

h ,∇vh) + (bn+1 · ∇un+1
h + cn+1 un+1

h , vh)
)︂

=

(un
h, vh) − (1 − θ) ∆t

(︂
(ε∇un

h,∇vh) + (bn · ∇un
h + cn un

h, vh)
)︂
+ (1.68)

θ∆t
(︂
gn+1, vh

)︂
+ (1 − θ)∆t

(︂
gn, vh

)︂
, ∀ vh ∈ Vh.

Note that the definition of Vh is based on the underlying triangulation Th

of Ω mentioned above.

• The space/time discretization, also known as the method of lines, in which
after the discretization in space one obtains a semi-discrete equation, then
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the fully discrete version can be derived by applying a suitable time in-
tegration method, see [208] for an example of this case. Now, let V =
H1

0 (Ω), then the variational formulation of (1.65) reads as follow: Find
u ∈ [0, Tmax] → V such that(︁
ut(t), v

)︁
+ (ε∇u(t),∇v) + (b(t) · ∇u(t) + c(t)u(t), v) = (g(t), v), (1.69)

u(0) = u0 in Ω,

for ∀ v ∈ V and t ∈ (0, Tmax]. Replacing V by a standard finite-dimensional
space of piecewise polynomial functions Vh, the time-continuous Galerkin
formulation then aims to find a function uh : [0, Tmax] → Vh such that(︂
uh,t(t), vh

)︂
+ (ε∇uh(t),∇vh) + (b(t) · ∇uh(t) + c(t)uh(t), vh) = (g(t), vh),

(1.70)
uh(0) = u0h in Ω,

for ∀ vh ∈ Vh and t ∈ (0, Tmax]. After this discretization, temporal dis-
cretization can follow by employing any suitable time-stepping technique.

• There is also space-time discretization technique, where coupled time and
space element are used. As argued in [79], the time derivative and the spatial
derivative terms should be combined into a single ”material derivative” in
this case, see also [209, 90].

It is known that the space-time discretization is the most natural setting to de-
velop finite element methods for problems of type (1.65), however, the number of
unknowns for coupled space-time formulation is very high in many applications,
which increases the computational cost and that is a rather significant drawback.
Hence, separated fully discrete discretization are in much more use for transient
CDR problems.

Typically, the size of the convection and/or reaction is much larger by order of
magnitude compared to the size of the diffusion, therefore the standard Galerkin
finite element method usually fails to deal with spatial discretization in this case.
As mentioned in the previous section, a characteristic feature of solutions in
convection-dominated regime is the presence of sharp layers, therefore suitable
stabilization techniques are in need to be able to approximate these sharp layers
properly on one hand and to prevent the occurrence of wild oscillations in these
areas on the other hand. Stabilization methods were initially designed for the
steady-state CDR equations and eventually found their way to transient prob-
lems with time-stepping methods and also to space-time formulations. In the
following we shall recall some of these techniques which have been introduced to
deal with evolutionary CDR problems in convection-dominated regime over the
years.

1. SUPG method

To begin with we start with the SUPG stabilization method which adds a
consistent diffusion term in the streamline direction to the original Galerkin for-
mulation of the problem. In case Rothe’s method is used for the discretization,
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the SUPG finite element method applied to (1.67) consists in finding an approx-
imate solution un+1

h ∈ Vh to un+1 ∈ V such that(︂
un+1

h , vh

)︂
+
∑︂

T ∈Th

(τT θ∆t)
(︂
un+1

h ,bn+1 · ∇vh

)︂
T

+ θ∆t
[︃(︂
ε∇un+1

h ,∇vh

)︂
+
(︂
bn+1 · ∇un+1

h + cn+1un+1
h − gn+1, vh

)︂
+
∑︂

T ∈Th

(τT θ∆t)
(︃(︂

− ε∆un+1
h + bn+1 · ∇un+1

h + cn+1un+1
h − gn+1

)︂
,bn+1 · ∇vh

)︃
T

]︃
=
(︂
un

h, vh

)︂
+
∑︂

T ∈Th

(τT θ∆t)
(︂
un

h,bn · ∇vh

)︂
T

− (1 − θ)∆t
[︃(︂
ε∇un

h,∇vh

)︂
+
(︂
bn · ∇un

h + cnun
h − gn, vh

)︂
,+

∑︂
T ∈Th

(τT θ∆t)
(︃(︂

− ε∆un
h + bn · ∇un

h + cnun
h − gn

)︂
,bn · ∇vh

)︃
T

]︃
, (1.71)

for ∀vh ∈ Vh. This is the time discrete stabilized approximation of (1.65) with
θ-scheme used as the temporal discretization and with a suitable approximation
of initial data u0(x), where τT is the stabilization parameter. Proper choices of
the stabilization parameter τT has been studied in various ways in the literature,
most popular among them is based on the convergence analysis of the method. In
contrast to the steady-state, where the role of the reaction was usually neglected
in the stabilization parameter, this term plays a crucial role in the transient case
specially whenever the time-step size is very small, thus, a suitable parameter
usually takes this term into account. It was suggested in [158, 207] to chose the
stabilization parameter τT as:

τT =
(︃

h2
T

4 θ∆t ε + 2hT θ∆t|bn+1| + h2
T (1 + θ∆t cn+1)

)︃
,

where hT is an appropriate measure for the size of the mesh cell T which is
usually chosen in the direction of the convection field. Another possible proposal
was proposed in [159, 210, 207] as

τT = min
{︄

hT

2 θ∆t |bn+1|
,

1
1 + θ∆t cn+1 ,

h2
T

θ∆t ε

}︄
.

In [105, 211, 207], it was suggested to set

τT =
(︃

h2
T

(1 + θ∆tcn+1)h2
T ξ(PeT,1) + 6θ∆tεξ(PeT,2)

)︃
,

with

PeT,1 = 6 θ∆t ε
h2

T (1 + θ∆t cn+1) , P eT,2 =
hT θ∆t

⃓⃓⃓
bn+1

⃓⃓⃓
3 θ∆t ε ,

and

ξ(s) =
⎧⎨⎩1 if 0 < s ≤ 1,
s if s ≥ 1.
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In case method of lines is used for the discretization, the finite element SUPG
approximation of (1.70) has the following form (time-continuous case): For all
t ∈ (0, Tmax] find uh(t) ∈ Vh such that(︂

uh,t(t), vh

)︂
+
∑︂

T ∈Th

(︂
uh,t(t),b(t) · ∇vh

)︂
T

+
(︂
ε∇uh(t),∇vh

)︂
+
(︂
b(t) · ∇uh(t) + c(t)uh(t), vh

)︂
+
∑︂

T ∈Th

(︂
− ε∆uh(t) + b(t) · ∇uh(t) + c(t)uh(t),b(t) · ∇vh

)︂
T

=
(︂
g(t), vh

)︂
+
∑︂

T ∈Th

(︂
g(t),b(t) · ∇vh

)︂
, (1.72)

for ∀vh ∈ Vh and t ∈ (0, Tmax] and a suitable approximation of initial data. This
formulation is strongly consistent. Some authors has suggested the use of a non-
consistent treatment of the time derivative as: For all t ∈ (0, Tmax] find uh(t) ∈ Vh

such that(︂
uh,t(t), vh

)︂
+
(︂
ε∇uh(t),∇vh

)︂
+
(︂
b · ∇uh(t) + cuh(t), vh

)︂
+
∑︂

T ∈Th

(︂
− ε∆uh(t) + b · ∇uh(t) + cuh(t),b · ∇vh

)︂
T

=
(︂
gh(t), vh

)︂
+
∑︂

T ∈Th

(︂
gh(t),b · ∇vh

)︂
, (1.73)

for ∀vh ∈ Vh and t ∈ (0, Tmax]. However, it turned out that this method loses its
accuracy, regardless of the choice of the time-discretization.

Lastly, in the case of space-time approach, it was suggested in [79] to use the
SUPG method together with the discontinuous Galerkin method in time. The
idea behind this approach was to be able to treat the temporal derivative like first
order spatial derivative. In this case the space-time SUPG stabilization term is
given by

SSUP G(vh) = v′
h + b · ∇vh,

see [212] for more details.

Concerning the numerical analysis, a post-processing technique was used in
the approximation of linear transient CDR equations in [213]. The technique
followed the procedure of approximation with a standard Galerkin method un-
til a certain time instant and then proceeded by using a SUPG stabilization
method in a single steady problem. The error bounds were obtained with regard
to the SUPG norm in convection-dominated regime and a sub-optimal conver-
gence was proven. Moreover, it was shown that the temporal error of the fully
discrete post-processed approximation can be bounded by the temporal error
of the Galerkin approximation. An extension of this technique for stabilizing
evolutionary convection-diffusion problems was studied in [214]. The stability
of the SUPG finite element method was demonstrated analytically in [208] for
convection-diffusion equations. In this study, it was pointed out that the combi-
nation of the SUPG stabilization method and and implicit time-stepping scheme
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can be considered as a safe and effective method regardless of the length of the
time-step. It was also mentioned that for a very fine time-step size spurious
oscillations might occur in the front layers in the numerical simulation. Later,
the first theoretical investigation for the small time-step instability for the SUPG
method was reported in [215]. In this work, a pure evolutionary transport equa-
tion was considered, where the stability and quasi-optimal convergence in time
was established for the SUPG finite element discretization in space together with
the backward Euler and Crank–Nicolson finite difference discretization in time.
These results were obtained for sufficiently smooth data. However, it was shown
that if the data are not sufficiently regular, for small time-step a deterioration
might be detected in the stability and convergence analysis which may lead to
some oscillations in the layers. The analysis of [215] was further extended in
[216] to CDR problems. It was argued that the source of instability for small
time-step might be the result of the choice of the stabilization parameter and
their dependence on the length of the time-step, whenever Rothe’s method is
used. It was pointed out that the stabilization vanishes if the time-step length
approaches zero. This idea motivated the authors to search for stabilization pa-
rameters that do not depend on the length of the time-step. Baring in mind
that the necessity of entering the time derivative in the stabilization parameter
secures the consistency, the investigation proceeded by proving error estimates
in the L2-norm, the norm of the material derivative, and also the norm of the
streamline derivative (which where missing in the study of [215]). This allowed
the stabilization parameter to be chosen similarly to the steady-state case. The
proof was carried out under certain regularity conditions on the data while the
backward Euler and Crank–Nicolson scheme were used in the temporal discretiza-
tion. The method of lines was used for the discretization of the CDR equation in
[217], it was shown that the proposed method is adequately stable since due to
the procedure of discretizing in space before time, the stabilization parameters
are free of the length of the time-step. Another possibility that attracted the
attention of some authors was to not only consider adding artificial diffusion to
deal with spatial stability but also to consider more proper time-discretization
to overcome temporal instability. In this regard, [218] suggested to combine the
standard Galerkin method with high-order multi-step explicit method which how-
ever led to severe restrictions on the allowable time-steps in either convection-
or diffusion-dominated regime. Later, it was suggested in [219, 220] to employ a
high-order implicit time-stepping scheme coupled with classical stabilized tech-
niques, and it was shown that the method is spatially stable and highly accurate.

2. GLS method

As for the GLS method, space-time formulation was traditionally the method
of use at the start for discretizing the transient CDR equations which was referred
to as ST-GLS formulation. In this case the element domain was considered as
coupled space and time elements and the formulation was given by

SST −GLS(vh) = v′
h − ε∆vh + b · ∇vh + cvh,

see [221, 222] for more details.
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By performing the time discretization prior to the spatial one, similarly to the
SUPG method the GLS formulation of the problem (1.65) takes the form: Find
un+1

h ∈ Vh such that

(︂
un+1

h , vh

)︂
+
∑︂

T ∈Th

(τT θ∆t)
(︂
un+1

h ,−ε∆vh + bn+1 · ∇vh + cn+1vh

)︂
T

+ θ∆t
[︃(︂
ε∇un+1

h ,∇vh

)︂
+
(︂
bn+1 · ∇un+1

h + cn+1un+1
h , vh

)︂
+
∑︂

T ∈Th

(τT θ∆t)
(︃

− ε∆un+1
h + bn+1 · ∇un+1

h + cn+1un+1
h ,−ε∆vh + bn+1 · ∇vh + cn+1vh

)︃
T

]︃
=
(︂
un

h, vh

)︂
+
∑︂

T ∈Th

(τT θ∆t)
(︂
un

h,−ε∆vh + bn · ∇vh + cnvh

)︂
T

− (1 − θ)∆t
[︃(︂
ε∇un

h,∇vh

)︂
+
(︂
bn · ∇un

h + cnun
h, vh

)︂
+
∑︂

T ∈Th

(τT θ∆t)
(︃

− ε∆un
h + bn · ∇un

h + cnun
h,−ε∆vh + bn · ∇vh + cnvh

)︃
T

]︃

+ θ∆t
[︃(︂
gn+1, vh

)︂
+
∑︂

T ∈Th

(τT θ∆t)
(︂
gn+1,−ε∆vh + bn+1 · ∇vh + cn+1vh

)︂
T

]︃

+ (1 − θ)∆t
[︃(︂
gn, vh

)︂
+
∑︂

T ∈Th

(τT θ∆t)
(︂
gn,−ε∆vh + bn · ∇vh + cnvh

)︂
T

]︃
(1.74)

for all vh ∈ Vh. The method of lines version of the GLS method can be obtained
similarly as the SUPG method as well. From the practical point of view, there
are no major differences between SUPG and GLS methods, especially when there
is no reaction term present and linear elements are used (the second-order deriva-
tives are zero in the element interior). Several expressions of the stabilization
parameter τT have been proposed for the GLS scheme for transient problems
which are mainly based on the minimization of the error, see [90]. Finally, an
optimal error bound was derived in [223], where a Galerkin least-squares method
was employed for space discretization along with a θ-scheme for time discretiza-
tion.

3. LPS method

Performing with local projection into a large scale space, LPS methods add
an appropriate stabilization to small scale of the Galerkin finite element solu-
tion. Employing two finite element spaces at once, and applying either two-level
method or enrichment method, the LPS schemes add a linear stabilization term
of the form

SLP S(uh, vh) :=
∑︂

M∈Mh

τM

(︃
κM (∇uh), κM (∇vh)

)︃
M
, ∀ vh ∈ Vh, (1.75)

where κM denotes the fluctuation operator, and Mh can be equal to Th in case
enrichment method is used, or a coarser triangulation with macro-elements M
(which are a collection of elements T ) in case of two-level technique. The nu-
merical simulation of the LPS method for time-dependent CDR equations was
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first studied in [207], where the enriched LPS method was used and compared
with other stabilization methods in convection-dominated regime. In [224], a one-
step θ-scheme as time discretization was used along with an LPS finite element
method containing a nonlinear crosswind-diffusion term for an evolutionary CDR
equation. It was shown that both the fully nonlinear and its linearized version
are solvable without any restriction on the time-step. Moreover, the uniqueness
was established for both approaches and an a priori error estimate with respect
to the standard LPS norm was derived. The use of high-order discretization was
tackled in [225], where the discontinuous Galerkin method was applied alongside
the LPS method for a partial differential equation in a time-dependent domain.
The application of the LPS scheme combined with the discontinuous Galerkin
method in time was studied for fixed-domain problems in [226]. A monotone
local projection scheme for a convection-dominated transport problem was intro-
duced in [227], where the stabilization term was proposed in such a way that
it guaranteed the monotonicity and enforced the linearity preservation on each
mesh.

4. SOLD methods

SOLD methods have originally been introduced to reduce or even completely
remove spurious oscillations at layers from the solutions obtained using SUPG
methods for stationary CDR equations. Later, they were utilized with other
stabilization methods such as LPS and further extended and were added to sta-
bilization methods for transient CDR problems. These methods are in general
nonlinear. Even though there is no general SOLD method known that works per-
fectly well on every example, it is shown that these methods still work remarkably
well for many special cases and are able to reduce the oscillations considerably
in the vicinity of sharp layers. An application of various types of SOLD methods
for time-dependent CDR problems can be found in [228] and also in [207], among
other studies. As mentioned, these methods work in different ways:

• SOLD methods which add isotropic diffusion to the SUPG stabilization
method (1.71) as: (︂

ε̃∇un+1
h ,∇vh

)︂
, (1.76)

with ε̃ = σ
|Rh(un+1

h
)|2

∥∇un+1
h ∥2

2

where Rh(un+1
h ) is the residual of (1.67). The definition

of σ has been investigated in many studies. It was shown in [149, 207] that
σ can be chosen as

σ
⃓⃓⃓
T

= max

⎧⎪⎪⎨⎪⎪⎩0, τT

(︃
θ∆tRh(un+1

h )∇un+1
h⃓⃓⃓

∇un+1
h

⃓⃓⃓2 )︃
− τT

⎫⎪⎪⎬⎪⎪⎭ ,
where τT is the SUPG stabilization parameter and τT (s) is this parameter
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evaluated in s. Another idea was suggested in [150, 207] to chose σ

σ
⃓⃓⃓
T

= τT

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0,

θ∆t
⃓⃓⃓
bn+1

⃓⃓⃓
⃓⃓⃓⃓
⃓θ∆tRh(un+1

h
)∇un+1

h

|∇un+1
h |2

⃓⃓⃓⃓
⃓

− 1

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

We refer the reader to [152, 207, 229] for other examples of this parameters
and their derivation.

• SOLD methods which add anisotropic diffusion terms as(︂
ε̃ D∇un+1

h ,∇vh

)︂
, (1.77)

with

D =

⎧⎪⎨⎪⎩
I − (θ∆tbn+1)⊗(θ∆tbn+1)

θ∆t|bn+1|2 if θ∆tb ̸= 0,

0 else.
for which the parameter ε̃ can have the form

ε̃
⃓⃓⃓
T

= max

⎧⎪⎨⎪⎩0, C
diam(T )

⃓⃓⃓
Rh(un+1

h )
⃓⃓⃓

2
⃓⃓⃓
∇un+1

h

⃓⃓⃓ − θ∆tε

⎫⎪⎬⎪⎭ ,
as considered in [159, 78, 207], or it can be chosen as

ε̃
⃓⃓⃓
T

=
τT θ∆t

⃓⃓⃓
bn+1

⃓⃓⃓2 ⃓⃓⃓
Rh(un+1

h )
⃓⃓⃓

θ∆t|bn+1|2
⃓⃓⃓
∇un+1

h

⃓⃓⃓
+
⃓⃓⃓
Rh(un+1

h )
⃓⃓⃓ (1.78)

as proposed in [160, 78, 207]. Other choices of the parameter ε̃ can be found
in [158, 228, 157].

• SOLD methods of edge stabilization type
∑︂

T ∈Th

|T |
∫︂

∂T
ΨT (un+1

h ) sign
(︃
∂un+1

h

∂t∂T

)︃(︃
∂vh

∂t∂T

)︃
dσ, (1.79)

with the parameter function ΨT (un+1
h ) which can be chosen as in [78] given

by

ΨT (un+1
h ) = C

⃓⃓⃓⃓
Rh(un+1

h )
⃓⃓⃓
T

⃓⃓⃓⃓
.

where C is a constant. For more examples of this function see [164, 135, 207].

5. FCT method

Applying a one-step θ-method and using the standard Galerkin finite element
discretization of (1.65) leads to an equation of the form (1.68) at each time instant
tn+1 which can be rewritten in an algebraic form as follow:(︂

MC + θ∆tAn+1
)︂
un+1 =

(︂
MC − (1 − θ)∆tAn

)︂
un + θ∆tGn+1 + (1 − θ)∆tGn,

(1.80)
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where MC = (mij)i,j=1,··· ,N is the consistent mass matrix, An+1 = (aij)n+1
i,j=1,··· ,N is

the stiffness matrix consisting of the sum of diffusion, convection, and reaction,
Gn+1 = (gn+1

1 , · · · , gn+1
N )T is the source vector, and un+1 = (un+1

1 , · · · , un+1
N )T

denotes the vector of unknowns. The matrix and vector entries are defined by

mij = (ϕj, ϕi),
an+1

ij = (ε∇ϕj,∇ϕi) + (bn+1 · ∇ϕj + cn+1ϕj, ϕi),
gn+1

i = (g, ϕi),

where N is the number of degrees of freedom (the length of the vectors) and ϕi

are defined as in the previous section.

As already mentioned, the solution of (1.80) exhibits massive spurious os-
cillations in the convection-dominated regime. Although stabilization methods
such as SUPG work quite well in reducing these oscillations, they are not able
to completely suppress the under- and over-shoots in various situations specially
whenever sharp layers are present. It is known however that the numerical meth-
ods that satisfy the DMP such as FE-FCT approaches work remarkably well in
this regard. To fulfill the requirements of DMP and derive a FE-FCT scheme, set

ML = diag(mi), mi =
N∑︂

j=1
mi,j, i = 1, · · · , N,

Dn+1 =
(︂
dn+1

ij

)︂n+1

ij
, dn+1

ij = − max
{︂
an+1

ij , 0, an+1
ji

}︂
, ∀i ̸= j, dn+1

ii = −
∑︂
j ̸=i

dn+1
ij ,

Ln+1 = An+1 + Dn+1. (1.81)

The matrix ML is called the lumped mass matrix. Now, (1.80) can be replaced
by(︂

ML + θ∆tLn+1
)︂

un+1 =
(︁
ML − (1 − θ)∆tLn)︁un + θ∆tGn+1 + (1 − θ)∆tGn.

(1.82)

Note that Ln+1 does not possess positive off-diagonal entries. This method rep-
resents a stable low-order counterpart of (1.80), which does not show any under-
or over-shoots, however, it is extremely diffusive and smears the layers to a great
extent. Now, the goal is to modify the right-hand side of (1.82) in such a way that
the solution becomes less diffusive while at the same time the spurious oscillations
are still precluded. First, (1.82) is written in the form(︂

ML + θ∆tLn+1
)︂

un+1 =
(︁
ML(1 − θ)∆tLn)︁un

+ θ∆tGn+1 + (1 − θ)∆tGn + fn+1(un+1,un), (1.83)

where fn+1(un+1,un) is defined by subtracting the residual of (1.80) from (1.82).
Since the matrix D and also the difference of the mass and lumped mass matrices
(i.e., MC − ML) have zero row sums, one can write

fn+1
i (un+1,un) =

N∑︂
j=1

fn+1
ij , i = 1, · · · , N, (1.84)
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where fn+1
ij denote the fluxes which are given as

fn+1
ij = mij(un+1

i − un+1
j ) −mij(un

i − un
j )

− θ∆tdn+1
ij (un+1

i − un+1
j ) − (1 − θ)∆tdn

ij(un
i − un

j ), i, j = 1, · · · , N.
(1.85)

Now, the idea of flux correction in the FE-FCT scheme is to restrict those fluxes
fn+1

ij that would otherwise produce spurious oscillations. This can be done by
introducing

Fn+1
i (un+1,un) =

N∑︂
j=1

αn+1
ij fn+1

ij , i = 1, · · · , N, (1.86)

where αn+1
ij ∈ [0, 1] is a solution-dependent correction factor, which has to be

symmetric in order to maintain conservativity, i.e., αn+1
ij = αn+1

ji , i, j = 1, · · · , N .
Then, the next step is to replace fn+1(un+1,un) in (1.83) by Fn+1(un+1,un). The
Galerkin method is recovered in the smooth regions for αn+1

ij = 1 while αn+1
ij = 0

leads to the low-order scheme in the layers.

The FE-FCT scheme is a nonlinear scheme and can be treated in two different
ways:

• The nonlinear version: which utilizes an explicit solution ū with forward
Euler scheme at the time tn+1 − ∆t

2 as was suggested in [170] which reads

ū = un − (1 − θ)∆tM−1
L (Lnun −Gn) , (1.87)

where ū is used to define the correction factors αn+1
ij for the nonlinear FE-

FCT scheme.

• The linearized version: which utilizes an approximation obtained using an
explicit scheme instead of un+1 in the fluxes fn+1

ij . Using the idea in [174],
and applying un+ 1

2 = un+1+un

2 in the definition leads to

fn+1
ij = ∆tmij

(︂
v

n+ 1
2

i − v
n+ 1

2
j

)︂
+ ∆t dn+1

ij

⎡⎣(un
j − un

i ) + θ∆t
(︂
v

n+ 1
2

j − v
n+ 1

2
i

)︂⎤⎦ ,
where

v
n+ 1

2
i = M−1

L (Gn − Lnun)i.

For computing the correction factor αn+1
ij different algorithms has been introduced

over the years, among them is Zalesak’s limiter suggested in [168] and Monolitic
Convex limiting proposed in [187], which are as follows:

1. Zalesak’s limiter
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1. Compute

P+
i :=

∑︂
j∈Si

max{0, fn+1
ij }, P−

i :=
∑︂
j∈Si

min{0, fn+1
ij },

where Si = {j ∈ {1, · · · , N} \ {i} : ∃T ∈ Th : xi, xj ∈ T̄}.

2. Compute

Q+
i := max

j∈Si∪{i}
{ūn+1

j − ūn+1
i }, Q−

i := min
j∈Si∪{i}

{ūn+1
j − ūn+1

i },

where ūn+1 is the solution of (1.87), which is used to guarantee the positivity
of the solution.

3. Compute

R+
i :=

⎧⎪⎨⎪⎩min
(︂
1, miQ

+
i

∆tP +
i

)︂
if P+

i > 0,
1 if P+

i = 0.
, R−

i :=

⎧⎪⎨⎪⎩min
(︂
1, miQ

−
i

∆tP −
i

)︂
if P−

i < 0,
1 if P−

i = 0.

4.

αij =
⎧⎨⎩min{R+

i , R
−
j } if fn+1

ij > 0,
min{R−

i , R
+
j } otherwise.

This choice of correction factors guarantees that the aforementioned FE-
FCT method satisfies the DMP.

1. Monolitic Convex limiter

The effect of time-stepping methods on FE-FCT scheme for transient CDR
equations appears to be problematic in some situations. In this regard, an alterna-
tive was introduced in [187], known as Monolitic Convex (MC) limiting strategy,
where suggested that the limited fluxes αn+1

ij fn+1
ij = f̄

n+1
ij could be defined by

f̄
n+1
ij :=⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min
{︃
fn+1

ij ,min
{︂
2dn+1

ij (ūij − umax
i ), 2dn+1

ij (umin
j − ūji),

}︂}︃
if fn+1

ij > 0,

0 if fn+1
ij = 0,

max
{︃
fn+1

ij ,max
{︂
2dn+1

ij (ūij − umin
i ), 2dn+1

ij (umax
j − ūji),

}︂}︃
if fn+1

ij < 0.
(1.88)

where

2dn+1
ij ūij =

(︂
an+1

ij + dn+1
ij

)︂(︂
un+1

i + un+1
j ),

umax
i = max

j∈Si∪{i}
un+1

j , umin
i = min

j∈Si∪{i}
un+1

j .

The linear and nonlinear FE-FCT schemes were considered in [230], in which
the accuracy and efficiency of the schemes was investigated. It was shown that
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the nonlinear FE-FCT schemes usually provide the most accurate results, how-
ever, the explicit schemes seem to be faster and more efficient in practice. A
numerical study of FE-FCT methods for solving scalar transient CDR equations
was presented in [207]. The method was then compared with other traditional
stabilization techniques in convection-dominated regime. The numerical exam-
ples were carried out in 2D with homogeneous Dirichlet boundary conditions.
Later, the results were extended to 3D problems with inhomogeneous Dirichlet
and homogeneous Neumann boundary conditions in [231]. In [232], the FE-FCT
scheme was generalized to implicit finite element scheme and nonlinear systems
of hyperbolic conservation laws. The Zalesak’s limiter was revisited due to its de-
pendence on the time-step length which effects the stability and positivity of the
solutions, therefore the use of an iterative limiting strategy was suggested. More-
over, an extension of the FE-FCT scheme to compressible Euler equations was
investigated in this study. Three FE-FCT techniques based on the Runge-Kutta,
Crank–Nicolson, and backward Euler time-integration were presented in [174], it
was shown that the resulted methods are robust and efficient. Additionally, an
alternative to FE-FCT schemes was introduced using an intermediate solution of
a positivity-preserving low-order scheme. As noted before, the FE-FCT methods
are nonlinear, hence the application of different types of solvers were studied in
[189] and the question of high accuracy and efficiency was addressed.

Due to the construction of FE-FCT methods which mainly targets the alge-
braic form of the discretized finite element method compared to other traditional
stabilized schemes that usually work by modifying the bilinear form, the nu-
merical analysis of these methods are quite scarce, specially in time-dependent
case. First attempt in this regard was reported in [233], where the FCT method
was applied to a time-dependent convection-diffusion equation and also to a pure
transport equation. Making use of the implicit function theorem for Lipschitz
functions, the existence and uniqueness of a solution was proved provided that
the time-steps are sufficiently small. In [234], the existence of a solution was
established for a nonlinear FE-FCT scheme with arbitrary time-steps. The proof
used a consequence of Brouwer’s fixed-point theorem. Applying the backward
Euler for temporal discretization, the error analysis and stability of the linear
and nonlinear FE-FCT schemes for evolutionary CDR equation was reported in
[235]. The optimal rate of convergence in L2 and H1 norm and sub-optimal con-
vergence rate in FCT norm was proved. The DMP and positivity-preservation
for stationary and evolutionary CDR equations was extensively studied in [195].

There are other stabilization techniques for time-dependent convection dominated
CDR equations which are not included in this section. Among them are the US-
FEM [236], the Bubble stabilization method [237], the subgrid scale method [238],
the characteristic Galerkin method [239, 240], and the Taylor-Galerkin method
[199]. We refer the reader to [207, 219, 220, 241] for a comparison regarding
some of these stabilization approaches. However, we would like to note that to
our best knowledge, there seem to be no results on Mizukami-Hughes methods
in this regard.
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1.3 Application of stabilized methods to cross-
diffusion systems

As mentioned in the introduction, the very important aspect of a cross-diffusion
system is the presence of cross-diffusion term(s), which makes the theoretical
and numerical analysis of such a problems much more challenging. It is known
that for comparably large magnitude of this term(s) in the system, standard
numerical schemes such as Galerkin finite element method usually become unsta-
ble and simply fail to produce desirable results, therefore a proper stabilization
technique need to be applied. In this regard, we considered several types of cross-
diffusion systems (which will be thoroughly studied in the following chapters).
To enhance the stability of the standard Galerkin method in use, we tried differ-
ent stabilization methods as mentioned in the previous section, we noticed that
traditional stabilized techniques such as SUPG, GLS and USFEM fail to over-
come the instability resulting from the Galerkin formulation and huge amount of
under- and over-shoots was observed that led to blow-up in the numerical sim-
ulations. However, approaches which were based on the algebraic stabilization
worked remarkably well by reducing the spurious oscillations and also preserving
the positivity of solutions through the time. Therefore, due to the obtained de-
sirable results using algebraic stabilization techniques only these type of methods
will be considered in the following chapters.
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2. Paper I
This chapter is based on the paper entitled ”Global existence of classical solutions
and numerical simulations of a cancer invasion model”, published in Mathematical
Modeling and Numerical Analysis (ESAIM: M2AN).

2.1 Global existence of classical solutions and
numerical simulations of a cancer invasion
model

In this paper we considered a model of cancer invasion which is descried by a
system of nonlinear PDEs consisting of a cross-diffusion-reaction equation and
two additional nonlinear ordinary differential equations as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = 1
α
∆u− χ∇ · (u∇c) + µu(1 − u) in Ω × (0,∞),

ct = −pc in Ω × (0,∞),
pt = 1

ϵ
(uc− p) in Ω × (0,∞),

1
α
∂νu = χv∂νc on ∂Ω × (0,∞),

(u, c, p)(·, 0) = (u0, c0, p0) in Ω,

(2.1)

where µ, χ, α, ϵ are positive constants, u0, c0, p0 are initial conditions, and u, c, p
denote the concentrations of the invasive cancer cells, extracellular matrix and
protease, respectively. Let us summarize the idea behind the definition of the
system:

• The cancer cells spread isotropically inside the domain Ω: term 1
α
∆u,

• The cancer cells grow with a proliferation rate µ: term µu (1 − u),

• The cancer cells move spatially toward the higher concentration of the ex-
tracellular matrix : term −χ∇ · (u∇c),

• The degradation of the extracellular matrix: term −p c

• The protease production, which is a result of interaction between invading
tumor and the connecting tissue: term 1

ϵ
uc,

• The natural decay of the extracellular matrix: term −1
ϵ
p.

This system is a variant of a cancer invasion model developed in [242] for the
malignant invasion of tumor, where we added the extra chemotaxis movement
1
α
∆u which allowed us to study the properties of the model analytically.

In the first part of the paper, we proved under several transformations of the
system, which allowed us to control the problematic taxis term −χ∇·(u∇c), that
the system (2.1) possesses global classical solutions for widely arbitrary initial
data in two- and three-dimensional space. This led to our main analytical result:
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Theorem. Suppose that α, χ, µ, ϵ are positive constants, that

Ω is a smooth bounded domain inRd, d ∈ {1, 2, 3},

and that u0, c0, p0 ∈ ⋃︁
γ∈(0,1) C

2,γ(Ω) are non-negative functions satisfying

1
α
∂νu0 = χvu0∂νc0 on ∂Ω.

Then, there exists a unique global classical solution (u, c, p) of (2.1) with regularity
(u, c, p) ∈ (C2,1(Ω × (0, T ]) ∩ C1(Ω × [0, T ]))3, which, moreover, is non-negative.

In the next part of the paper, we analyzed the behavior of these solutions nu-
merically. For this purpose, we utilized Galerkin method for spatial discretization,
θ-method for time discretization, and fixed-point iteration to treat the nonlinear
terms. We carried out several numerical experiments in two and three spatial
dimensions which support our analytical results. Moreover, we addressed the
numerical stability of the system and showed that it heavily relies on the choices
of the haptotactic coefficient χ. Fixing the proliferation rate µ and varying the
taxis coefficient χ one can easily make the diffusion or the transport of the cancer
cells dominant. The latter usually gives rise to spurious oscillations or numerical
blow up in the system, in which case a stabilization method is required to prevent
these difficulties. This observation led to our results to be presented in the next
chapter.
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Abstract. In this paper, we study a cancer invasion model both theoretically and numerically. The
model is a nonstationary, nonlinear system of three coupled partial differential equations modeling the
motion of cancer cells, degradation of the extracellular matrix, and certain enzymes. We first establish
existence of global classical solutions in both two- and three-dimensional bounded domains, despite
the lack of diffusion of the matrix-degrading enzymes and corresponding regularizing effects in the
analytical treatment. Next, we give a weak formulation and apply finite differences in time and a
Galerkin finite element scheme for spatial discretization. The overall algorithm is based on a fixed-
point iteration scheme. Our theory and numerical developments are accompanied by some simulations
in two and three spatial dimensions.
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1. Introduction

The model

One of the defining characteristics of a malignant tumour is its capability to invade adjacent tissues [21];
accordingly the mathematical literature directed at understanding underlying mechanisms is vast (see e.g. the
surveys [29,36]).

In this paper we focus on the following variant of a cancer invasion model developed by Perumpanani et al. [34]
for the malignant invasion of tumours and investigate

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝑢𝑡 = 1
𝛼∆𝑢− 𝜒∇ · (𝑢∇𝑐) + 𝜇𝑢(1− 𝑢) in Ω× (0,∞),

𝑐𝑡 = −𝑝𝑐 in Ω× (0,∞),

𝑝𝑡 = 1
𝜀 (𝑢𝑐− 𝑝) in Ω× (0,∞),

1
𝛼𝜕𝜈𝑢 = 𝜒𝑢𝜕𝜈𝑐 on 𝜕Ω× (0,∞),

(𝑢, 𝑐, 𝑝)(·, 0) = (𝑢0, 𝑐0, 𝑝0) in Ω.

(1.1)

Keywords and phrases. Haptotaxis, Tumour invasion, Global existence, Fixed-point scheme, Numerical simulations.
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We aim for a rigorous existence proof for global solutions and the development of a reliable numerical scheme
with an implementation in a modern open-source finite element library.

In (1.1), the motion of cancer cells (density denoted by 𝑢) mainly takes place by means of haptotaxis, i.e.
directed motion toward higher concentrations of extracellular matrix (density 𝑐), of strength 𝜒 ≥ 0. Motivated by
experiments of Aznavoorian et al. [7], who reported only “a minor chemokinetic component” of the cell motion,
the original model of [34] does not include a term for random (chemokinetic) cell motility at all. Acknowledging
that “minor” does not mean “none at all”, we deviate from [34] in this aspect and incorporate this motility term
in (1.1) (𝛼 ∈ (0,∞), with the formal limit 𝛼→∞ corresponding to the model of [34]). Additional growth of the
population of tumour cells is described by a logistic term (with 𝜇 being a positive parameter). The extracellular
matrix is degraded upon contact with certain enzymes (proteases, concentration 𝑝), which, in turn, are produced
where cancer cells and matrix meet and decay over time. The reaction speed of these protein dynamics can be
adjusted via the parameter 𝜀 > 0. As many proteases remain bound to the cellular membrane – or are only
activated when on the cell surface (cf. the model derivation in [34]), no diffusion for 𝑝 is incorporated in the
model. This last point is in contrast to the otherwise similar popular models in the tradition of [4,33] or [9], the
latter of which additionally included a chemotactic component of the motion of cancer cells.

Global solvability

In order to construct global classical solutions of (1.1), it is necessary to control the haptotaxis term −𝜒∇ ·
(𝑢∇𝑐) in the first equation and thus in particular to gain information on the spatial derivative of the second
solution component. For relatives of (1.1) including a diffusion term ∆𝑝 in the third equation, this has already
been achieved in [40] and [28] by applying parabolic regularity theory to the equation for 𝑝, first yielding
estimates for the spatial derivative of 𝑝 and then also on 𝑐; the results of [28] even cover the long-term asymptotics
of solutions. Moreover, the presence of diffusion for the produced quantities has also been made use of to obtain
global existence results for different cancer invasion models, see for instance [42].

However, the absence of any spatial regularization in both the second and third equation makes the corre-
sponding analysis much more challenging. Up to now, global classical solutions have only been constructed for
a rather limited set of initial data: already in [34], where (1.1) has been proposed for 𝛼 =∞, it has been shown
that the model formally obtained by taking the limit 𝜀↘ 0 admits a family of travelling wave solutions. Corre-
sponding results for positive 𝜀 have then been achieved in [31]. Moreover, if 𝜀 = 0, travelling wave solutions may
contain shocks [30] and solutions of related systems without a logistic source may even blow up in finite time
[35]. In general, the destabilizing effect of taxis terms such as −𝜒∇· (𝑢∇𝑐) may not only make it challenging but
even impossible to obtain global existence results for certain problems. We refer to the survey [25] for further
discussion regarding the consequences of low regularity in chemotaxis systems.

Despite these challenges, in the first part of the present paper we are able to give an affirmative answer to
the question whether (1.1) also possesses global classical solutions for widely arbitrary initial data in the two
and three-dimensional setting. Our analytical main result is the following

Theorem 1.1. Suppose that 𝛼, 𝜒, 𝜇, 𝜀 are positive constants, that

Ω is a smooth bounded domain in R𝑛, 𝑛 ∈ {1, 2, 3},

and that 𝑢0, 𝑐0, 𝑝0 ∈
⋃︀

𝛾∈(0,1) 𝐶
2+𝛾(Ω) are nonnegative and such that 1

𝛼𝜕𝜈𝑢0 = 𝜒𝑢0𝜕𝜈𝑐0 on 𝜕Ω. Then there

exists a unique global classical solution (𝑢, 𝑐, 𝑝) of (1.1) with regularity

(𝑢, 𝑐, 𝑝) ∈
(︀
𝐶2,1(Ω× (0,∞)) ∩ 𝐶1

(︀
Ω× [0,∞)

)︀)︀3
,

which, moreover, is nonnegative.
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CANCER INVASION: CLASSICAL SOLUTIONS AND NUMERICAL SIMULATIONS 1895

Numerical modeling

In the second part of our paper we then analyze the behavior of these solutions numerically with an imple-
mentation in the modern open-source finite element library deal.II [5, 6]. Related numerical studies in various
software libraries using different numerical schemes are briefly described in the following. The traditional method
of lines has been widely used for simulations of the cancer invasion process [15,19]. In addition, finite difference
methods [23] have been considered and in [10,22], the authors proposed a nonstandard finite difference method
which satisfies the positivity-preservation of the solution, that is an important property in the stability of the
model. Moreover, the finite volume method [11], spectral element methods [41], algebraically stabilized finite
element method [37], the discontinuous Galerkin method [16], combinations of level-set/adaptive finite elements
[1,44], and a hybrid finite volume/finite element method [2,8] have also been proposed in the literature for some
cancer invasion models and chemotaxis. Finally, we mention that in [38] the authors illustrate their theoretical
results for a related cancer model employing discontinuous Galerkin finite elements implemented as well in
deal.II.

The main objective in the numerical part is the design of reliable algorithms for (1.1) and their corresponding
implementation in deal.II. First, we discretize in time using a 𝜃-method, which allows for implicit 𝐴-stable time
discretizations. Then, a Galerkin finite element scheme is employed for spatial discretization. The nonlinear
discrete system of equations is decoupled by designing a fixed-point algorithm. This algorithm is newly designed
and then implemented and debugged in deal.II.

These developments then allow to link our theoretical part and the numerical sections in order to carry
out various numerical simulations to complement Theorem 1.1. Specifically, several parameter variations of the
proliferation coefficient 𝜇 and the haptotactic coefficient 𝜒 will be studied in two- and three spatial dimensions.
These studies are non-trivial due to the nonlinearities and the high sensitivity of (1.1) with respect to such
parameter variations.

Plan of the paper

The outline of this paper is as follows. In Section 2, we study the global existence of classical solutions. Next,
in Section 3, we introduce the discretization in time and space using finite differences in time and a Galerkin
finite element scheme in space. We also describe the solution algorithm. In Section 4, we carry out several
numerical simulations demonstrating the properties of our model and the corresponding theoretical results.
Therein, we specifically study parameter variations. Finally, our work is summarized in Section 5.

Notation

Let Ω ⊂ R𝑛, 𝑛 ∈ N be a bounded domain. By 𝐿𝑝(Ω) and 𝑊 1,𝑝(Ω), we denote the usual Lebesgue and
Sobolev spaces, respectively, and we abbreviate 𝐻1(Ω) := 𝑊 1,2(Ω). Furthermore, ⟨·, ·⟩ denotes the duality
product between (𝐻1)* and 𝐻1.

For 𝑚 ∈ N0 and 𝛾 ∈ (0, 1), we denote by 𝐶𝑚+𝛾(Ω) the space of functions 𝜙 ∈ 𝐶𝑚(Ω) with finite norm

‖𝜙‖𝐶𝑚+𝛾(Ω) := ‖𝜙‖𝐶𝑚(Ω) + sup
𝑥,𝑦∈Ω,𝑥 ̸=𝑦

|𝜙(𝑥)− 𝜙(𝑦)|
|𝑥− 𝑦|𝛾 ·

Moreover, for 𝑚1,𝑚2 ∈ N0, 𝛾1, 𝛾2 ∈ [0, 1) and 𝑇 > 0, we denote by 𝐶𝑚1+𝛾1,𝑚2+𝛾2(Ω × [0, 𝑇 ]) the space of all
functions 𝜙 whose derivatives 𝐷𝛼

𝑥𝐷
𝛽
𝑡 𝜙, |𝛼| ≤ 𝑚1, 0 ≤ 𝛽 ≤ 𝑚2, (exist and) are continuous, and which have finite

norm

‖𝜙‖𝐶𝑚1+𝛾1,𝑚2+𝛾2 (Ω×[0,𝑇 ]) :=
∑︁

|𝛼|≤𝑚1,
0≤𝛽≤𝑚2

⃦⃦
⃦𝐷𝛼

𝑥𝐷
𝛽
𝑡 𝜙
⃦⃦
⃦
𝐶0(Ω×[0,𝑇 ])
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+
∑︁

|𝛼|=𝑚1,
0≤𝛽≤𝑚2

sup
𝑥,𝑦∈Ω,𝑥 ̸=𝑦,

𝑡∈[0,𝑇 ]

⃒⃒
⃒𝐷𝛼

𝑥𝐷
𝛽
𝑡 𝜙(𝑥, 𝑡)−𝐷𝛼

𝑥𝐷
𝛽
𝑡 𝜙(𝑦, 𝑡)

⃒⃒
⃒

|𝑥− 𝑦|𝛾1

+
∑︁

|𝛼|≤𝑚1,
𝛽=𝑚2

sup
𝑥∈Ω,

𝑠,𝑡∈[0,𝑇 ],𝑠 ̸=𝑡

⃒⃒
⃒𝐷𝛼

𝑥𝐷
𝛽
𝑡 𝜙(𝑥, 𝑡)−𝐷𝛼

𝑥𝐷
𝛽
𝑡 𝜙(𝑥, 𝑠)

⃒⃒
⃒

|𝑡− 𝑠|𝛾2
·

Notationally, we do not distinguish between spaces of scalar- and vector-valued functions.

2. Global existence of classical solutions

As a first step in the proof of Theorem 1.1, we apply two transformations in Subsection 2.1; the first one
allows us to get rid of some parameters in (1.1), the second one changes the first equation to a more convenient
form. We then employ a fixed point argument to obtain a local existence result for the transformed system in
Lemma 2.5.

The proof that these solutions are global in time consists of two key parts, both relying on the fact that
the second and third equation in (1.1) at least regularize in time (which allows us to prove Lemma 2.7 and
Lemma 2.10). First, in order to prove boundedness in 𝐿∞, the comparison principle allows us to conclude
boundedness in small time intervals (cf. Lemma 2.8). We then iteratively apply this bound to obtain the result
also for larger times (cf. Lemma 2.9). As to bounds for the spatial derivatives, we secondly apply a testing
procedure to derive estimates valid on small time intervals (cf. Lemma 2.11), which then is again complemented
by an iteration procedure (cf. Lemma 2.12). Finally, we are able to make use of parabolic regularity theory (inter
alia in the form of maximal Sobolev regularity) to conclude in Lemma 2.14 that the solutions exist globally.

2.1. Two transformations

We first note that with regards to Theorem 1.1 we may without loss of generality assume 𝜒 = 1 and 𝜀 = 1.
Indeed, suppose that Theorem 1.1 holds for this special case. Then, assuming the conditions of Theorem 1.1 to
hold, we set

𝛼̃ :=
𝛼𝜒

𝜀
, 𝜒̃ := 1, 𝜇̃ := 𝜀𝜇, 𝜀 := 1

and further
𝑢̃0(𝑥̃) = 𝑢0(

√
𝜒𝑥̃), 𝑐0(𝑥̃) = 𝜀𝑐0(

√
𝜒𝑥̃), 𝑝0(𝑥̃) = 𝜀𝑝0(

√
𝜒𝑥̃)

for 𝑥̃ ∈ Ω̃ := 1√
𝜒Ω. By Theorem 1.1, there then exists a global classical solution of (1.1) (with all parameters

and initial data replaced by their pendants with tildes) (𝑢̃, 𝑐, 𝑝). Then

(𝑢, 𝑐, 𝑝)(𝑥, 𝑡) :=
(︁
𝑢̃
(︁

𝑥√
𝜒 ,

𝑡
𝜀

)︁
, 1

𝜀 𝑐
(︁

𝑥√
𝜒 ,

𝑡
𝜀

)︁
, 1

𝜀𝑝
(︁

𝑥√
𝜒 ,

𝑡
𝜀

)︁)︁
, (𝑥, 𝑡) ∈

(︀
Ω× [0,∞)

)︀
, (2.1)

fulfills
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

𝑢𝑡 = 𝜒
𝛼̃𝜀∆𝑢− 𝜀𝜒

𝜀 ∇ · (𝑢∇𝑐) + 𝜇̃
𝜀 𝑢(1− 𝑢) in Ω× (0,∞),

𝑐𝑡 = − 𝜀2

𝜀2 𝑐𝑝 in Ω× (0,∞),

𝑝𝑡 = 1
𝜀2 (𝜀𝑢𝑐− 𝜀𝑝) in Ω× (0,∞),

𝜕𝜈𝑢 =
𝛼̃𝜀

√
𝜒√

𝜒 𝑢𝜕𝜈𝑐 on 𝜕Ω× (0,∞),

(𝑢, 𝑐, 𝑝)(𝑥, 0) =
(︀
𝑢̃0,

1
𝜀 𝑐0,

1
𝜀𝑝0
)︀(︁

𝑥√
𝜒

)︁
for 𝑥 ∈ Ω

and thus (1.1). Moreover, following precedents from, e.g. [13, p.19], we set

𝑤(𝑥, 𝑡) := 𝑢(𝑥, 𝑡)e−𝛼𝑐(𝑥,𝑡), 𝑥 ∈ Ω, 𝑡 ≥ 0. (2.2)
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Then ∇𝑤 = e−𝛼𝑐∇𝑢− 𝛼e−𝛼𝑐𝑢∇𝑐, so that

1
𝛼∆𝑤 +∇𝑐 · ∇𝑤 = e−𝛼𝑐∇ ·

(︀
1
𝛼e𝛼𝑐∇𝑤

)︀
= e−𝛼𝑐

[︀
1
𝛼∆𝑢−∇ · (𝑢∇𝑐)

]︀
(2.3)

and (1.1) (with 𝜒 = 𝜀 = 1) is equivalent to

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝑤𝑡 = 1
𝛼∆𝑤 +∇𝑐 · ∇𝑤 + 𝛼𝑝𝑐𝑤 + 𝜇𝑤 − 𝜇e𝛼𝑐𝑤2 in Ω× (0,∞),

𝑐𝑡 = −𝑝𝑐 in Ω× (0,∞),

𝑝𝑡 = 𝑤e𝛼𝑐𝑐− 𝑝 in Ω× (0,∞),

𝜕𝜈𝑤 = 0 on 𝜕Ω× (0,∞),

(𝑤, 𝑐, 𝑝)(·, 0) = (𝑤0, 𝑐0, 𝑝0) in Ω

(2.4)

for 𝑤0 := 𝑢0e−𝛼𝑐0 . Expanding ∇ · (𝑢∇𝑐) to ∇𝑢 · ∇𝑐 + 𝑢∆𝑐 shows that this transformation allows us to get rid
of a term involving ∆𝑐 in the first equation at the price of adding several zeroth order terms. In particular as
the second equation does not regularize in space, (2.4) turns out to be a more convenient form for the following
analysis.

2.2. Local existence

In this subsection, we construct maximal classical solutions of (2.4) in Ω× [0, 𝑇max) for some 𝑇max ∈ [0,∞)
by means of a fixed point argument. Moreover, we provide a criterion for when these solutions are global in
time (that is, when 𝑇max =∞ holds), which then will finally be seen to hold true in Lemma 2.14.

As a preparation, we first collect results on (Hölder) continuous dependency of solutions to ODEs on the
data.

Lemma 2.1. Let Ω ⊂ R𝑛, 𝑛 ∈ N, be a bounded domain, 𝑇 > 0, 𝑑 ∈ N, 𝛾1, 𝛾2 ∈ [0, 1), 𝑣0 ∈ 𝐶𝛾1(Ω) and assume
that 𝑓 : Ω × [0, 𝑇 ] × R𝑑 → R𝑑 is (𝛾1, 𝛾2)-Hölder continuous with respect to its first two arguments and locally
Lipschitz continuous w.r.t. the third variable, in the sense that for every compact 𝐾 ⊂ R𝑑 there is 𝐿 > 0 such
that

sup
𝑡∈[0,𝑇 ],𝑣∈𝐾

‖𝑓(·, 𝑡, 𝑣)‖𝐶𝛾1 (Ω) ≤ 𝐿,

sup
𝑥∈Ω,𝑣∈𝐾

‖𝑓(𝑥, ·, 𝑣)‖𝐶𝛾2 ([0,𝑇 ]) ≤ 𝐿,

sup
(𝑥,𝑡)∈Ω×[0,𝑇 ]

|𝑓(𝑥, 𝑡, 𝑣)− 𝑓(𝑥, 𝑡, 𝑤)| ≤ 𝐿|𝑣 − 𝑤| for all 𝑣, 𝑤 ∈ 𝐾.

Then for any compact 𝐾 ⊂ R𝑑 there is 𝐶 > 0 such that whenever 𝑣 : Ω × [0, 𝑇 ] → R𝑑 is such that 𝑣(𝑥, ·) ∈
𝐶0([0, 𝑇 ]) ∩ 𝐶1((0, 𝑇 )) for all 𝑥 ∈ Ω, 𝑣 solves

𝑣𝑡(𝑥, 𝑡) = 𝑓(𝑥, 𝑡, 𝑣(𝑥, 𝑡)) for all 𝑥 ∈ Ω, 𝑡 ∈ (0, 𝑇 ); 𝑣(𝑥, 0) = 𝑣0(𝑥) for all 𝑥 ∈ Ω (2.5)

and satisfies 𝑣
(︀
Ω× [0, 𝑇 ]

)︀
⊂ 𝐾, then 𝑣, 𝑣𝑡 ∈ 𝐶𝛾1,𝛾2

(︀
Ω× [0, 𝑇 ]

)︀
and

‖𝑣‖𝐶𝛾1,1+𝛾2(Ω×[0,𝑇 ]) ≤ 𝐶.

Proof. First, we let 𝐾 be a compact superset of 𝑣
(︀
Ω× [0, 𝑇 ]

)︀
and let 𝐿 be as in the assumptions on 𝑓 . We

introduce 𝜔1 ∈ 𝐶0([0,∞)) such that |𝑓(𝑥, 𝑡, 𝑤)− 𝑓(𝑦, 𝑡, 𝑤)| ≤ 𝜔1(|𝑥 − 𝑦|) for all 𝑥 ∈ Ω, 𝑦 ∈ Ω, 𝑡 ∈ [0, 𝑇 ] and
𝑤 ∈ 𝐾, |𝑣0(𝑥)− 𝑣0(𝑦)| ≤ 𝜔1(|𝑥− 𝑦|) for all 𝑥 ∈ Ω, 𝑦 ∈ Ω and such that 𝜔1(0) = 0 and sup𝑟>0 𝑟

−𝛾1𝜔1(𝑟) < ∞.
We then fix 𝑥 ∈ Ω, 𝑦 ∈ Ω ∖ {𝑥} and let 𝑣(𝑡) = (𝑣(𝑥, 𝑡)− 𝑣(𝑦, 𝑡)) · 1

𝜔1(|𝑥−𝑦|) · Then

𝑣𝑡(𝑡) =
1

𝜔1(|𝑥− 𝑦|) (𝑓(𝑥, 𝑡, 𝑣(𝑥, 𝑡))− 𝑓(𝑦, 𝑡, 𝑣(𝑥, 𝑡)) +
1

𝜔1(|𝑥− 𝑦|) (𝑓(𝑦, 𝑡, 𝑣(𝑥, 𝑡))− 𝑓(𝑦, 𝑡, 𝑣(𝑦, 𝑡)))
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≤ 1 +
𝐿

𝜔1(|𝑥− 𝑦|) |𝑣(𝑥, 𝑡)− 𝑣(𝑦, 𝑡)| for all 𝑡 ∈ (0, 𝑇 ),

so that 𝑣𝑡 ≤ 1 + 𝐿|𝑣| and, analogously, 𝑣𝑡 ≥ −1 − 𝐿|𝑣|, so that boundedness of |𝑣| results from Grönwall’s
inequality and hence 𝑣 ∈ 𝐶𝛾1,0

(︀
Ω× [0, 𝑇 ]

)︀
, and sup𝑡∈[0,𝑇 ]‖𝑣(·, 𝑡)‖𝐶𝛾1 (Ω) is bounded due to the choice of 𝜔1.

For 𝜏 > 0, we treat 𝑣(𝑥, 𝑡) = (𝑣(𝑥, 𝑡) − 𝑣(𝑥, 𝑡 + 𝜏))/𝜔2(𝜏) with some 𝜔2 such that |𝑓(𝑥, 𝑡, 𝑣) − 𝑓(𝑥, 𝑡 +
𝜏, 𝑣)| ≤ 𝜔2(𝜏) in the same way. This ensures the claimed regularity of 𝑣, whereupon that of 𝑣𝑡 follows from
𝑣𝑡(𝑥, 𝑡) = 𝑓(𝑥, 𝑡, 𝑣(𝑥, 𝑡)), (𝑥, 𝑡) ∈ Ω× (0, 𝑇 ), and continuity of the right-hand side up to 𝑡 = 0 and 𝑡 = 𝑇 . �
Lemma 2.2. In addition to the assumptions of Lemma 2.1, let 𝑚 ∈ N and 𝑣0 ∈ 𝐶𝑚+𝛾1(Ω). If all derivatives
of 𝑓 w.r.t. 𝑥 and 𝑣 up to order 𝑚 satisfy the conditions Lemma 2.1 poses on 𝑓 , then any solution 𝑣 as in
Lemma 2.1 belongs to 𝐶𝑚+𝛾1,1+𝛾2

(︀
Ω× [0, 𝑇 ]

)︀
.

Proof. For 𝑖 ∈ {1, . . . , 𝑛}, 𝑣 = 𝜕𝑥𝑖𝑣 satisfies

𝑣𝑡 = 𝑓𝑥𝑖
(𝑥, 𝑡, 𝑣(𝑥, 𝑡)) + 𝑓𝑣(𝑥, 𝑡, 𝑣(𝑥, 𝑡))𝑣 in Ω× (0, 𝑇 ), 𝑣(·, 0) = (𝑣0)𝑥𝑖

in Ω

and Lemma 2.1 can be applied to 𝑣. An inductive argument takes care of higher derivatives. �

By applying these results to the ODEs appearing in (2.4), we obtain

Lemma 2.3. Let Ω ⊂ R𝑛, 𝑛 ∈ N, be a bounded domain, 𝛼 ≥ 0 and 𝑇 ∈ (0,∞). Let 0 ≤ 𝑤 ∈ 𝐶0
(︀
Ω× [0, 𝑇 ]

)︀

and 𝑐0, 𝑝0 ∈ 𝐶0
(︀
Ω; [0,∞)

)︀
.

(a) Then
{︃
𝑐𝑡 = −𝑝𝑐
𝑝𝑡 = 𝑤e𝛼𝑐𝑐− 𝑝 (2.6)

has a unique solution (𝑐, 𝑝) ∈
(︀
𝐶0,1

(︀
Ω× [0, 𝑇 ]

)︀)︀2
.

(b) For any 𝑀 > 0 there is 𝐶 = 𝐶(𝑀) > 0 such that whenever 𝑇 ∈ (0, 𝑇 ], 𝑤 ∈ 𝐶1,0
(︁

Ω× [0, 𝑇 ]
)︁
, 𝑐0, 𝑝0 ∈ 𝐶1(Ω)

with
sup

𝑡∈[0,𝑇 ]

‖𝑤(·, 𝑡)‖𝐶1(Ω) ≤𝑀, ‖𝑐0‖𝐶1(Ω) ≤𝑀, ‖𝑝0‖𝐶1(Ω) ≤𝑀,

then
‖(𝑐, 𝑝)‖𝐶1(Ω×[0,𝑇 ]) ≤ 𝐶.

(c) If, for some 𝑘 ∈ N0 and 𝛾1, 𝛾2 ∈ [0, 1), 𝑤 ∈ 𝐶𝑘+𝛾1,𝛾2
(︀
Ω× [0, 𝑇 ]

)︀
and 𝑐0, 𝑝0 ∈ 𝐶𝑘+𝛾1(Ω), then 𝑐, 𝑝 ∈

𝐶𝑘+𝛾1,1+𝛾2
(︀
Ω× [0, 𝑇 ]

)︀
.

Proof. (a) Given 𝑤 ∈ 𝐶0
(︀
Ω× [0, 𝑇 ]

)︀
, for every 𝑥 ∈ Ω the existence and uniqueness of a solution

(𝑐, 𝑝)(𝑥, ·) ∈ 𝐶0([0, 𝑇max(𝑥)]) ∩ 𝐶1((0, 𝑇max(𝑥))) of (2.6), with some 𝑇max(𝑥) ∈ (0, 𝑇 ] such that
lim sup𝑡↗𝑇max(𝑥)(|𝑐(𝑥, 𝑡)|+ |𝑝(𝑥, 𝑡)|) = ∞ or 𝑇max(𝑥) = 𝑇 , follows from Picard–Lindelöf’s theorem. By
an ODE comparison argument, nonnegativity of 𝑐 follows from that of 𝑐0, and nonnegativity of 𝑝 from that
of 𝑝0, 𝑤 and 𝑐. Therefore, 0 ≤ 𝑐(𝑥, 𝑡) ≤ 𝑐0(𝑥) for all 𝑥 ∈ Ω and 𝑡 ∈ (0, 𝑇max(𝑥)) due to the sign of 𝑐𝑡 = −𝑝𝑐.
Consequently,

𝑝(𝑥, 𝑡) = e−𝑡𝑝0(𝑥) +

∫︁ 𝑡

0

e−(𝑡−𝑠)𝑤(𝑥, 𝑠)e𝛼𝑐(𝑥,𝑠)𝑐(𝑥, 𝑠) d𝑠

≤ max

{︂
𝑝0(𝑥), 𝑐0(𝑥)e𝛼𝑐0(𝑥) max

𝑠∈[0,𝑇 ]
𝑤(𝑥, 𝑠)

}︂
for all 𝑥 ∈ Ω, 𝑡 ∈ [0, 𝑇max(𝑥)),

which also shows that 𝑇max(𝑥) = 𝑇 for all 𝑥 ∈ Ω. The remainder of part (a) follows from an application of
Lemma 2.1 with 𝛾1 = 𝛾2 = 0.
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(b) We apply Lemma 2.1 to 𝑣 = (∇𝑐,∇𝑝), the solution of

𝑣𝑡 =

(︂
−𝑝𝐼𝑛×𝑛 −𝑐𝐼𝑛×𝑛

(𝛼𝑤e𝛼𝑐𝑐+ 𝑤e𝛼𝑐)𝐼𝑛×𝑛 −𝐼𝑛×𝑛

)︂
𝑣 +

(︂
0

e𝛼𝑐𝑐∇𝑤

)︂
, 𝑣(0) =

(︂
∇𝑐0
∇𝑝0

)︂
∈ R2𝑛,

noting that sufficient regularity is given by the assumption on 𝑤 and part (a).
(c) Follows from Lemma 2.2.

�

Both as an ingredient to the proof of Lemma 2.5 below and also for its own interest, we note that classical
solutions of (2.4) are unique.

Lemma 2.4. Let Ω ⊂ R𝑛, 𝑛 ∈ N, a bounded domain and let 𝛼, 𝜇 > 0 as well as 𝜒 = 𝜀 = 1. Suppose (𝑢1, 𝑐1, 𝑝1)
and (𝑢2, 𝑐2, 𝑝2) are two solutions of (1.1) with the same initial data (𝑢0, 𝑐0, 𝑝0) ∈ 𝐶0(Ω)× 𝐶1(Ω)× 𝐶1(Ω) and
assume that they belong to (︀

𝐶2,1
(︀
Ω× (0, 𝑇 )

)︀
∩ 𝐶1

(︀
Ω× [0, 𝑇 ]

)︀)︀3

for some 𝑇 > 0. Then (𝑢1, 𝑐1, 𝑝1) = (𝑢2, 𝑐2, 𝑝2) in Ω× [0, 𝑇 ].

Proof. We let 𝐶 > 0 be such that

max
{︁
‖𝑢𝑖(·, 𝑡)‖𝐿∞(Ω), ‖∇𝑢𝑖(·, 𝑡)‖𝐿∞(Ω), ‖𝑐𝑖(·, 𝑡)‖𝐿∞(Ω), ‖𝑝𝑖(·, 𝑡)‖𝐿∞(Ω), ‖∇𝑐𝑖(·, 𝑡)‖𝐿∞(Ω), ‖∇𝑝𝑖(·, 𝑡)‖𝐿∞(Ω)

}︁
≤ 𝐶

for all 𝑡 ∈ [0, 𝑇 ] and 𝑖 ∈ {1, 2}. Then computing

1

2

d

d𝑡

(︂∫︁

Ω

(𝑢1 − 𝑢2)2 +

∫︁

Ω

(𝑐1 − 𝑐2)2 +

∫︁

Ω

(𝑝1 − 𝑝2)2 +

∫︁

Ω

|∇(𝑐1 − 𝑐2)|2 +

∫︁

Ω

|∇(𝑝1 − 𝑝2)|2
)︂

= − 1

𝛼

∫︁

Ω

|∇(𝑢1 − 𝑢2)|2 +

∫︁

Ω

∇(𝑢1 − 𝑢2)[(𝑢1 − 𝑢2)∇𝑐1 + 𝑢2∇(𝑐1 − 𝑐2)] + 𝜇

∫︁

Ω

(𝑢1 − 𝑢2)2

− 𝜇
∫︁

Ω

(𝑢1 − 𝑢2)2(𝑢1 + 𝑢2)−
∫︁

Ω

(𝑐1 − 𝑐2)(𝑝1 − 𝑝2)𝑐1 −
∫︁

Ω

(𝑐1 − 𝑐2)2𝑝2 −
∫︁

Ω

(𝑝1 − 𝑝2)2

+

∫︁

Ω

(𝑝1 − 𝑝2)𝑢1(𝑐1 − 𝑐2) +

∫︁

Ω

(𝑝1 − 𝑝2)(𝑢1 − 𝑢2)𝑐2 −
∫︁

Ω

∇(𝑐1 − 𝑐2)∇(𝑝1 − 𝑝2)𝑐1

−
∫︁

Ω

∇(𝑐1 − 𝑐2)(𝑝1 − 𝑝2)∇𝑐1 −
∫︁

Ω

𝑝2|∇(𝑐1 − 𝑐2)|2 −
∫︁

Ω

∇(𝑐1 − 𝑐2)(𝑐1 − 𝑐2)∇𝑝2

−
∫︁

Ω

|∇(𝑝1 − 𝑝2)|2 +

∫︁

Ω

∇(𝑝1 − 𝑝2)(𝑐1 − 𝑐2)∇𝑢1 +

∫︁

Ω

∇(𝑝1 − 𝑝2)𝑢1∇(𝑐1 − 𝑐2)

+

∫︁

Ω

∇(𝑝1 − 𝑝2)∇(𝑢1 − 𝑢2)𝑐2 +

∫︁

Ω

∇(𝑝1 − 𝑝2)(𝑢1 − 𝑢2)∇𝑐2

≤ ((2 + 𝛼𝐶)𝐶 + 𝜇+ 2𝐶𝜇)

∫︁

Ω

(𝑢1 − 𝑢2)2 + 5𝐶

∫︁

Ω

(𝑐1 − 𝑐2)2 + (4𝐶 − 1)

∫︁

Ω

(𝑝1 − 𝑝2)2

+ (5 + 𝛼𝐶)𝐶

∫︁

Ω

|∇(𝑐1 − 𝑐2)|2 + ((4 + 𝛼𝐶)𝐶 − 1)

∫︁

Ω

|∇(𝑝1 − 𝑝2)|2 in (0, 𝑇 ),

we obtain (𝑢1, 𝑐1, 𝑝1) = (𝑢2, 𝑐2, 𝑝2) from Grönwall’s inequality. �

Making use of Schauder’s fixed point theorem and applying Lemmas 2.1–2.4, we now obtain a local existence
result for the system (2.4).
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Lemma 2.5. Assume that

Ω is a smooth bounded domain in R𝑛, 𝑛 ∈ {1, 2, 3}, 𝛼, 𝜇 > 0 (2.7)

and that

𝑤0, 𝑐0, 𝑝0 ∈ 𝐶2+𝛾(Ω) for some 𝛾 ∈ (0, 1) are nonnegative and fulfill 𝜕𝜈𝑤0 = 0 on 𝜕Ω. (2.8)

Then (2.4) has a nonnegative unique solution

(𝑤, 𝑐, 𝑝) ∈
(︁
𝐶2+𝛾,1+ 𝛾

2

(︀
Ω× (0, 𝑇max)

)︀
∩ 𝐶1

(︀
Ω× [0, 𝑇max)

)︀)︁3

for some 𝑇max > 0, which can be chosen such that

𝑇max =∞ or lim sup
𝑡↗𝑇max

‖𝑤(·, 𝑡)‖𝐶1+𝛾(Ω) = ∞. (2.9)

Proof. For 𝑇 > 0 and 𝑀 > 0 we introduce the set

𝑆𝑀,𝑇 =

{︃
𝑤 ∈ 𝐶0

(︀
[0, 𝑇 ];𝐶1(Ω)

)︀⃒⃒
⃒0 ≤ 𝑤, sup

𝑡∈[0,𝑇 ]

‖𝑤(·, 𝑡)‖𝐶1(Ω) ≤𝑀
}︃

and given 𝑤 ∈ 𝑆𝑀,𝑇 we let (𝑐, 𝑝) be the solution of (2.6) (cf. Lemma 2.3(a)). We then let 𝑣 be the unique (weak)
solution (see [24, Thm. III.5.1], [27, Thm. 6.39]) of

𝑣𝑡 =
1

𝛼
∆𝑣 + 𝑓 · ∇𝑣 + 𝑔𝑣 in Ω× (0, 𝑇 ), 𝜕𝜈𝑣 = 0 on 𝜕Ω× (0, 𝑇 ), 𝑣(·, 0) = 𝑤0 in Ω, (2.10)

where 𝑓 = ∇𝑐 and 𝑔 = 𝛼𝑝𝑐 + 𝜇 − 𝜇e𝛼𝑐𝑤 belong to 𝐿∞(Ω × (0, 𝑇 )) according to Lemma 2.3(a) and (b), and
define Φ(𝑤) = 𝑣 in Ω× [0, 𝑇 ]. We choose 𝑀 > 0 such that

𝑀 > ‖𝑐0‖𝐶1(Ω), 𝑀 > ‖𝑝0‖𝐶1(Ω), 𝑀 > ‖𝑤0‖𝐶1+𝛾(Ω), 𝑀 > ‖𝑤0‖𝐶1(Ω) + 1 (2.11)

and introduce the constants 𝑐1 = 𝑐1(𝑀) from Lemma 2.3(b) (for 𝑇 = 1), 𝑐2 > 0 from [27, Thm. 6.40] such that
all solutions 𝑣 of (2.10) with ‖𝑓‖𝐿∞(Ω×(0,𝑇 )) ≤ 𝑐1, ‖𝑔‖𝐿∞(Ω×(0,𝑇 )) ≤ 𝛼𝑐21 + 𝜇 + 𝜇e𝛼𝑐1𝑀 and ‖𝑤0‖𝐿∞(Ω) ≤ 𝑀

satisfy ‖𝑣‖𝐿∞(Ω×(0,𝑇 )) ≤ 𝑐2, and 𝑐3 > 0 such that by [26, Thms. 1.1 and 1.2], all solutions 𝑣 of (2.10) with

𝜕𝜈𝑤0 = 0 on 𝜕Ω, ‖𝑤0‖𝐶1+𝛾(Ω) ≤ 𝑀 , ‖𝑓‖𝐿∞(Ω×(0,𝑇 )) ≤ 𝑐1, ‖𝑔‖𝐿∞(Ω×(0,𝑇 )) ≤ 𝛼𝑐21 + 𝜇e𝛼𝑐1 + 𝜇e2𝛼𝑐1𝑀 and

‖𝑣‖𝐿∞(Ω×(0,𝑇 )) ≤ 𝑐2 also fulfil ‖𝑣‖
𝐶1+𝛾,

1+𝛾
2 (Ω×[0,𝑇 ])

≤ 𝑐3. Finally, we fix 𝑇 ∈ (0, 1] such that 𝑐3
√
𝑇 ≤ 1.

Successive applications of Lemma 2.3 [27, Thm. 6.40] and [26, Thms. 1.1 and 1.2] then ensure that

‖Φ(𝑤)‖
𝐶1+𝛾,

𝛾
2 (Ω×[0,𝑇 ])

≤ 𝑐3. (2.12)

In particular,

‖Φ(𝑤)(·, 𝑡)‖𝐶1(Ω) ≤ ‖Φ(𝑤)(·, 0)‖𝐶1(Ω) + ‖Φ(𝑤)(·, 𝑡)− Φ(𝑤)(·, 0)‖𝐶1(Ω) ≤ ‖𝑤0‖𝐶1(Ω) + 𝑐3𝑡
1
2 ≤𝑀

for every 𝑡 ∈ [0, 𝑇 ]. As 𝑣 is moreover nonnegative by the maximum principle, Φ maps 𝑆𝑀,𝑇 to itself and,
according to (2.12) has a compact image. Schauder’s fixed point theorem provides a fixed point 𝑤 of Φ, that is,
(together with 𝑐 and 𝑝) a solution of (2.4) in Ω× [0, 𝑇 ].

As 𝑤 ∈ 𝐶1+𝛾,0
(︀
Ω× [0, 𝑇max)

)︀
, 𝑝, 𝑐,∇𝑐 belong to 𝐶𝛾, 𝛾2

(︀
Ω× [0, 𝑇max)

)︀
by Lemma 2.3(c) with 𝛾2 = 0. Since

moreover 𝑤 ∈ 𝐶𝛾, 𝛾2
(︀
Ω× [0, 𝑇max)

)︀
, also 𝑓 and 𝑔 in (2.10) belong to this space. Then [24, Thm. IV.5.3] (if
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combined with the uniqueness statement of [24, Thm. III.5.1] and 𝐶2+𝛾 regularity of 𝑤0) makes 𝑤 a clas-
sical solution with 𝑤𝑡, 𝐷

2
𝑥𝑤 ∈ 𝐶𝛾, 𝛾2

(︀
Ω× [0, 𝑇max)

)︀
. An invocation of Lemma 2.3(c) yields 𝐷2

𝑥𝑐,𝐷
2
𝑥𝑝,∇𝑝 ∈

𝐶𝛾,1+ 𝛾
2

(︀
Ω× [0, 𝑇max)

)︀
. In order to prove ∇𝑤𝑡 ∈ 𝐶𝛾, 𝛾2

(︀
Ω× (0, 𝑇max)

)︀
, we fix 𝑡0 ∈ (0, 𝑇max) and a cutoff func-

tion 𝜁 ∈ 𝐶∞(R) with 𝜁 = 0 on (−∞, 𝑡02 ] and 𝜁 = 1 on [𝑡0,∞). As 𝜁𝑤 then fulfills

⎧
⎪⎨
⎪⎩

(𝜁𝑤)𝑡 = 1
𝛼∆(𝜁𝑤) +∇𝑐 · ∇(𝜁𝑤) + 𝛼𝑝𝑐(𝜁𝑤) + 𝜇(𝜁𝑤)− 𝜇e𝛼𝑐𝑤(𝜁𝑤) + 𝜁 ′𝑤 in Ω× (0, 𝑇max),

𝜕𝜈(𝜁𝑤) = 0 on 𝜕Ω× (0, 𝑇max),

(𝜁𝑤)(·, 0) = 0 in Ω,

an application of [24, Thm. IV.5.3] to 𝜁𝑤 ensures that ∇(𝜁𝑤)𝑡 ∈ 𝐶𝛾, 𝛾2
(︀
Ω× [0, 𝑇max)

)︀
, which entails ∇𝑤𝑡 ∈

𝐶𝛾, 𝛾2
(︀
Ω× [𝑡0, 𝑇max)

)︀
. Moreover, nonnegativity of 𝑤 as well as of 𝑐 and 𝑝 follows from the inclusion 𝑤 ∈ 𝑆𝑀,𝑇

and the comparison principle for ordinary differential equations, respectively.
Since 𝑀 and 𝑇 only depend on the quantities in (2.11) and as solutions are unique by Lemma 2.4; the above

reasoning can therefore be applied to extend the solution until some maximal existence time characterized by

𝑇max =∞ or lim sup
𝑡↗𝑇max

(︁
‖𝑐(·, 𝑡)‖𝐶1(Ω) + ‖𝑝(·, 𝑡)‖𝐶1(Ω) + ‖𝑤(·, 𝑡)‖𝐶1+𝛾(Ω)

)︁
=∞. (2.13)

According to Lemma 2.3(b), boundedness of the norm of 𝑤 in this expression already implies that of the norms
of 𝑐 and 𝑝, therefore (2.13) can be reduced to (2.9).

Finally, uniqueness of this solution has already been asserted in Lemma 2.4. �

By fixing initial data as in (2.8), we henceforth implicitly also fix the unique classical solution (𝑤, 𝑐, 𝑝) of
(2.4) given by Lemma 2.5 and denote its maximal existence time by 𝑇max.

2.3. 𝐿∞ bounds

The results in the previous subsection show that Theorem 1.1 follows once we have shown that for the
solutions constructed in Lemma 2.5 the second alternative in (2.9) cannot hold. That is, we need to derive
sufficiently strong a priori estimates. In this subsection, we begin with bounds in 𝐿∞.

For the second solution component, such a bound directly follows from the comparison principle.

Lemma 2.6. Suppose (2.7) and that (𝑤0, 𝑐0, 𝑝0) satisfies (2.8). Then the solution (𝑤, 𝑐, 𝑝) constructed in
Lemma 2.5 fulfills

‖𝑐(·, 𝑡)‖𝐿∞(Ω) ≤ ‖𝑐0‖𝐿∞(Ω) for all 𝑡 ∈ (0, 𝑇max).

Proof. The function 𝑐 := ‖𝑐0‖𝐿∞(Ω) is a supersolution of the second equation in (2.4) and 𝑐 ≥ 0 by
Lemma 2.5. �

As a preparation for obtaining 𝐿∞ estimates also for the other two solution components, we note that the
time regularization in the third equation in (2.4) implies that we can bound 𝑝 by a quantity including an
arbitrarily small contribution of the 𝐿∞ norm of 𝑤 – at least if we are willing to shrink the time interval on
which this estimates holds accordingly.

Lemma 2.7. Suppose (2.7) and let 𝑀 > 0. Then there exists 𝑇 ⋆ > 0 such that for all (𝑤0, 𝑐0, 𝑝0) satisfying
(2.8) and

‖𝑐0‖𝐿∞(Ω) ≤𝑀,

the solution (𝑤, 𝑐, 𝑝) of (2.4) fulfills

‖𝑝‖𝐿∞(Ω×(0,𝑇 )) ≤ ‖𝑝0‖𝐿∞(Ω) + min
{︁ 𝜇

2𝑀𝛼
, 1
}︁
‖𝑤‖𝐿∞(Ω×(0,𝑇 )) for all 𝑇 ∈ (0, 𝑇 ⋆] ∩ (0, 𝑇max).
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Proof. We choose 𝑇 ⋆ > 0 so small that 𝑀e𝛼𝑀
(︀
1− e−𝑇⋆)︀ ≤ min

{︀
𝜇

2𝑀𝛼 , 1
}︀

and fix 𝑇 ∈ (0, 𝑇 ⋆] ∩ (0, 𝑇max). By
the variation-of-constants formula and Lemma 2.6, we have

‖𝑝(·, 𝑡)‖𝐿∞(Ω) ≤ e−𝑡‖𝑝0‖𝐿∞(Ω) +

∫︁ 𝑡

0

e−(𝑡−𝑠)‖𝑤e𝛼𝑐𝑐‖𝐿∞(Ω)(·, 𝑠) d𝑠

≤ ‖𝑝0‖𝐿∞(Ω) + ‖𝑐0‖𝐿∞(Ω)e
𝛼‖𝑐0‖𝐿∞(Ω)‖𝑤‖𝐿∞(Ω×(0,𝑇 ))

∫︁ 𝑇⋆

0

e−𝑠 d𝑠

≤ ‖𝑝0‖𝐿∞(Ω) +𝑀e𝛼𝑀
(︁

1− e−𝑇⋆
)︁
‖𝑤‖𝐿∞(Ω×(0,𝑇 )) for all 𝑡 ∈ (0, 𝑇 ),

which implies the statement due to the definition of 𝑇 ⋆. �

We now turn our attention to 𝐿∞ estimates of 𝑤. The fact that the transformed quantity 𝑤 fulfills an
equation whose first- and second-order terms reduce to e−𝛼𝑐∇ ·

(︀
1
𝛼e𝛼𝑐∇𝑤

)︀
(cf. (2.3)), an expression without

any explicit ∇𝑐, opens the door for certain testing procedures. In related works, these have been used to first
derive boundedness in 𝐿𝑝 and then, after an iteration argument, also in 𝐿∞ (see for instance [42, Prop. 5.1],
[40, Lemma 3.5] and [39, Lemma 3.10]). However, here we are able to employ a slightly faster method: another
advantage of the transformation 𝑤 = e−𝛼𝑐𝑢 is that sufficiently large constant functions are supersolutions of
the equation for 𝑤 in (2.4), at least as long both 𝑐 and 𝑝 are bounded. Therefore, the previous two lemmata
allow us to prove boundedness for 𝑤 on small timescales.

We also emphasize that the following proof crucially relies on the presence of a logistic source in the first
equation, that is, on positivity of 𝜇. (The same would be true for testing procedures similar to those performed
in the works referenced above.) In fact, this is essentially the only place where we directly make use of the
assumption 𝜇 > 0.

Lemma 2.8. Suppose (2.7) and let 𝑀 > 0. Let 𝑇 ⋆ > 0 be as given by Lemma 2.7. Then there is 𝐾 > 0 with
the following property: for all 𝐿 > 0 and all (𝑤0, 𝑐0, 𝑝0) satisfying (2.8) and

‖𝑤0‖𝐿∞(Ω) ≤ 𝐿, ‖𝑐0‖𝐿∞(Ω) ≤𝑀 as well as ‖𝑝0‖𝐿∞(Ω) ≤ 𝐿,

the solution (𝑤, 𝑐, 𝑝) of (2.4) fulfills

‖𝑤(·, 𝑡)‖𝐿∞(Ω) + ‖𝑝(·, 𝑡)‖𝐿∞(Ω) ≤ 𝐾(𝐿+ 1) for all 𝑡 ∈ (0, 𝑇 ⋆] ∩ (0, 𝑇max).

Proof. We fix 𝑇 ∈ (0, 𝑇 ⋆] ∩ (0, 𝑇max). By Lemmas 2.6 and 2.7, we may estimate

𝑤𝑡 −
1

𝛼
∆𝑤 −∇𝑐 · ∇𝑤 = 𝑤(𝛼𝑝𝑐+ 𝜇− 𝜇e𝛼𝑐𝑤) ≤ 𝑤

(︀
𝑀𝛼‖𝑝‖𝐿∞(Ω×(0,𝑇 )) + 𝜇− 𝜇𝑤

)︀

≤ 𝑤
(︁
𝐿𝑀𝛼+

𝜇

2
‖𝑤‖𝐿∞(Ω×(0,𝑇 )) + 𝜇− 𝜇𝑤

)︁

in Ω× (0, 𝑇 ). Therefore, the comparison principle, applied with the constant supersolution

𝑤 := max

{︂
𝐿,
𝐿𝑀𝛼

𝜇
+ 1 +

1

2
‖𝑤‖𝐿∞(Ω×(0,𝑇 ))

}︂
,

asserts

‖𝑤‖𝐿∞(Ω×(0,𝑇 )) ≤ 𝑤 ≤ max
{︀
𝐿,𝐿𝑀𝛼𝜇−1 + 1

}︀
+

1

2
‖𝑤‖𝐿∞(Ω×(0,𝑇 ))

and thus
‖𝑤‖𝐿∞(Ω×(0,𝑇 )) ≤ 2 max

{︀
𝐿,𝐿𝑀𝛼𝜇−1 + 1

}︀
.

Since ‖𝑝‖𝐿∞(Ω×(0,𝑇 )) ≤ 𝐿 + ‖𝑤‖𝐿∞(Ω×(0,𝑇 )) by Lemma 2.7, this implies the statement for 𝐾 :=
5 max

{︀
1,𝑀𝛼𝜇−1

}︀
. �
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Next, iteratively applying Lemma 2.8 allows us to derive boundedness for all solution components on all bounded
time intervals. We note that a prerequisite for such an iteration procedure is that the time 𝑇 ⋆ given by Lemma 2.7
(and to a lesser extent also the constant 𝐾 given by Lemma 2.8) only depends on the data in a manageable
way. This justifies why we have kept track of the dependencies of the constants in the previous lemmata.

Lemma 2.9. Suppose (2.7) and let 𝑀 > 0. Then there are 𝐶1, 𝐶2 > 0 with the following property: for all 𝐿 > 0
and all (𝑤0, 𝑐0, 𝑝0) satisfying (2.8) and

‖𝑤0‖𝐿∞(Ω) ≤ 𝐿, ‖𝑐0‖𝐿∞(Ω) ≤𝑀 as well as ‖𝑝0‖𝐿∞(Ω) ≤ 𝐿,

the solution (𝑤, 𝑐, 𝑝) of (2.4) fulfills

‖𝑝(·, 𝑡)‖𝐿∞(Ω) + ‖𝑤(·, 𝑡)‖𝐿∞(Ω) ≤ e𝐶1𝑡𝐶2(𝐿+ 1) for all 𝑡 ∈ (0, 𝑇max). (2.14)

Proof. We set 𝑤(·, 𝑡) = 𝑤0 and 𝑝(·, 𝑡) = 𝑝0 for 𝑡 < 0, and let 𝑇 ⋆ > 0 and 𝐾 > 1 be as given by Lemmas 2.7
and 2.8, respectively. Moreover, setting

𝐼𝑗 := ((𝑗 − 1)𝑇 ⋆, 𝑗𝑇 ⋆] ∩ (−∞, 𝑇max) for 𝑗 ∈ N0

and applying Lemma 2.7 (which is applicable for the same 𝑀 by Lemma 2.6) and Lemma 2.8 to initial data
(𝑤, 𝑐, 𝑝)(·, (𝑗 − 1)𝑇 ⋆), we can estimate

‖𝑝‖𝐿∞(Ω×𝐼𝑗) ≤ ‖𝑝‖𝐿∞(Ω×𝐼𝑗−1) + ‖𝑤‖𝐿∞(Ω×𝐼𝑗)

and

‖𝑤‖𝐿∞(Ω×𝐼𝑗) ≤ 𝐾
(︀
‖𝑤‖𝐿∞(Ω×𝐼𝑗−1) + ‖𝑝‖𝐿∞(Ω×𝐼𝑗−1) + 1

)︀

for all 𝑗 ∈ N with (𝑗 − 1)𝑇 ⋆ < 𝑇max. However, the same estimates hold trivially also in the case of (𝑗 − 1)𝑇 ⋆ ≥
𝑇max, as then 𝐼𝑗 = ∅. Thus,

𝐴𝑗 := ‖𝑝‖𝐿∞(Ω×𝐼𝑗) + ‖𝑤‖𝐿∞(Ω×𝐼𝑗) + 1, 𝑗 ∈ N,

fulfills

𝐴𝑗 ≤ ‖𝑝‖𝐿∞(Ω×𝐼𝑗−1) + 2𝐾
(︀
‖𝑤‖𝐿∞(Ω×𝐼𝑗−1) + ‖𝑝‖𝐿∞(Ω×𝐼𝑗−1) + 1

)︀
+ 1 ≤ (2𝐾 + 1)𝐴𝑗−1 for all 𝑗 ∈ N.

A straightforward induction then yields 𝐴𝑗 ≤ (2𝐾 + 1)𝑗𝐴0 ≤ e𝑗 ln(2𝐾+1)(2𝐿+ 1) for all 𝑗 ∈ N. If 𝑡 ∈ 𝐼𝑗 for some
𝑗 ∈ N0 and thus (𝑗 − 1)𝑇 ⋆ < 𝑡, that is 𝑗 < 𝑡

𝑇⋆ + 1, then

‖𝑤(·, 𝑡)‖𝐿∞(Ω) + ‖𝑝(·, 𝑡)‖𝐿∞(Ω) ≤ 𝐴𝑗 ≤ e𝑗 ln(2𝐾+1)(2𝐿+ 1) ≤ e𝑡(𝑇
⋆)−1 ln(2𝐾+1)2(2𝐾 + 1)(𝐿+ 1).

Since (0, 𝑇max) ⊂ ⋃︀𝑗∈N0
𝐼𝑗 , this implies (2.14) for 𝐶1 = ln(2𝐾+1)

𝑇⋆ and 𝐶2 = 2(2𝐾 + 1). �

2.4. Gradient bounds in 𝐿4

While the 𝐿∞ estimates proven in the previous subsection surely form an important step towards proving
global existence, the extensibility criterion (2.9) also requires boundedness of the gradients – which will be the
topic of the present and the following subsection.

As a first step, we again make use of the time regularization in the second and third equation in (2.4) to
obtain
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Lemma 2.10. Suppose (2.7) and let 𝑇0 ∈ (0,∞) as well as 𝑞 ∈ (1,∞). For all 𝑀 > 0, there exists 𝐶 > 0 such
that if (𝑤0, 𝑐0, 𝑝0) satisfying (2.8) are such that the corresponding solution (𝑤, 𝑐, 𝑝) of (2.4) fulfills

𝑤 ≤𝑀, 𝑐 ≤𝑀 and 𝑝 ≤𝑀 in Ω× [0, 𝑇 ), (2.15)

where 𝑇 := min{𝑇0, 𝑇max}, then
(︂∫︁

Ω

|∇𝑐(·, 𝑡)|𝑞 +

∫︁

Ω

|∇𝑝(·, 𝑡)|𝑞
)︂
≤ 𝐶

(︂∫︁

Ω

|∇𝑐0|𝑞 +

∫︁

Ω

|∇𝑝0|𝑞 +

∫︁ 𝑡

0

∫︁

Ω

|∇𝑤|𝑞
)︂

for all 𝑡 ∈ [0, 𝑇 ). (2.16)

Proof. According to (2.4),

(∇𝑐)𝑡 = −𝑝∇𝑐− 𝑐∇𝑝 and (∇𝑝)𝑡 = −∇𝑝+ 𝑤(𝛼𝑐+ 1)e𝛼𝑐∇𝑐+ e𝛼𝑐𝑐∇𝑤

hold in Ω × (0, 𝑇 ). By testing these equations with 𝑞|∇𝑐|𝑞−2∇𝑐 and 𝑞|∇𝑝|𝑞−2∇𝑝, respectively, and applying
Young’s inequality, we obtain

d

d𝑡

∫︁

Ω

|∇𝑐|𝑞 = −𝑞
∫︁

Ω

𝑝|∇𝑐|𝑞 − 𝑞
∫︁

Ω

𝑐|∇𝑐|𝑞−2∇𝑐 · ∇𝑝 ≤𝑀𝑞

(︂∫︁

Ω

|∇𝑐|𝑞 +

∫︁

Ω

|∇𝑝|𝑞
)︂

and

d

d𝑡

∫︁

Ω

|∇𝑝|𝑞 = −𝑞
∫︁

Ω

|∇𝑝|𝑞 + 𝑞

∫︁

Ω

𝑤(𝛼𝑐+ 1)e𝛼𝑐|∇𝑝|𝑞−2∇𝑝 · ∇𝑐+ 𝑞

∫︁

Ω

e𝛼𝑐𝑐|∇𝑝|𝑞−2∇𝑝 · ∇𝑤

≤𝑀(𝛼𝑀 + 1)e𝛼𝑀𝑞

(︂∫︁

Ω

|∇𝑐|𝑞 +

∫︁

Ω

|∇𝑝|𝑞
)︂

+𝑀e𝛼𝑀𝑞

(︂∫︁

Ω

|∇𝑝|𝑞 +

∫︁

Ω

|∇𝑤|𝑞
)︂

in (0, 𝑇 ). Thus, setting 𝑐1 := 𝑀𝑞 +𝑀(𝛼𝑀 + 1)e𝛼𝑀𝑞 +𝑀e𝛼𝑀𝑞, we can conclude

d

d𝑡

(︂∫︁

Ω

|∇𝑐|𝑞 +

∫︁

Ω

|∇𝑝|𝑞
)︂
≤ 𝑐1

(︂∫︁

Ω

|∇𝑐|𝑞 +

∫︁

Ω

|∇𝑝|𝑞
)︂

+ 𝑐1

∫︁

Ω

|∇𝑤|𝑞 in (0, 𝑇 ),

which after an application of Grönwall’s inequality turns into

(︂∫︁

Ω

|∇𝑐(·, 𝑡)|𝑞 +

∫︁

Ω

|∇𝑝(·, 𝑡)|𝑞
)︂
≤ e𝑐1𝑡

(︂∫︁

Ω

|∇𝑐0|𝑞 +

∫︁

Ω

|∇𝑝0|𝑞
)︂

+ 𝑐1

∫︁ 𝑡

0

e𝑐1(𝑡−𝑠)

∫︁

Ω

|∇𝑤(·, 𝑠)|𝑞 d𝑠

≤ e𝑐1𝑇
(︂∫︁

Ω

|∇𝑐0|𝑞 +

∫︁

Ω

|∇𝑝0|𝑞
)︂

+ 𝑐1e𝑐1𝑇
∫︁ 𝑡

0

∫︁

Ω

|∇𝑤|𝑞, 𝑡 ∈ (0, 𝑇 ),

and thus asserts (2.16) for 𝐶 := max{𝑐1, 1}e𝑐1𝑇 . �

Next, we follow [39, Lemma 3.14] and test the first equation in (2.4) with −∆𝑤, which when combined with
Lemma 2.10 allows us to obtain certain gradient bounds first on small time scales and then by means of an
iteration argument also on each finite time interval.

Lemma 2.11. Suppose (2.7) and let 𝑀 > 0. There exists 𝑇1 ∈ (0,∞) such that if (𝑤0, 𝑐0, 𝑝0) satisfying (2.8)
are such that the corresponding solution (𝑤, 𝑐, 𝑝) of (2.4) fulfills (2.15), we can find 𝐶 > 0 such that

∫︁

Ω

|∇𝑐(·, 𝑡)|4 ≤ 𝐶 for all 𝑡 ∈ [0, 𝑇1] ∩ [0, 𝑇max). (2.17)
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Proof. By 𝑐1, we denote the constant appearing in (2.16) given by Lemma 2.10 applied to 𝑇0 = 1 and 𝑞 = 4.
Moreover, the Gagliardo–Nirenberg inequality (cf. [32] or [18, (A.2)] for this form) asserts that there is 𝑐2 > 0
such that∫︁

Ω

|∇𝜙|4 ≤ 𝑐2
∫︁

Ω

|∆𝜙|2 + 𝑐2 for all 𝜙 ∈ 𝐶2(Ω) with 𝜕𝜈𝜙 = 0 in 𝜕Ω and ‖𝜙‖𝐿∞(Ω) ≤𝑀. (2.18)

We then choose 𝑇1 ∈ (0, 1) so small that

𝑇1𝑐1𝑐2𝛼
3 ≤ 1

8𝑐2𝛼
(2.19)

holds and fix a solution (𝑤, 𝑐, 𝑝) of (2.4) with maximal existence time 𝑇max fulfilling (2.15).
These choices now allow us to infer from Lemma 2.10 that

∫︁ 𝑇

0

∫︁

Ω

|∇𝑐|4 ≤ 𝑐1
(︃∫︁ 𝑇

0

∫︁

Ω

|∇𝑐0|4 +

∫︁ 𝑇

0

∫︁

Ω

|∇𝑝0|4 +

∫︁ 𝑇

0

∫︁ 𝑡

0

∫︁

Ω

|∇𝑤(·, 𝜏)|4 d𝜏 d𝑡

)︃

≤ 𝑐1
(︃∫︁ 𝑇

0

∫︁

Ω

|∇𝑐0|4 +

∫︁ 𝑇

0

∫︁

Ω

|∇𝑝0|4 +

∫︁ 𝑇

0

∫︁ 𝑇

0

∫︁

Ω

|∇𝑤(·, 𝜏)|4 d𝜏 d𝑡

)︃

≤ 𝑇1𝑐1
(︃∫︁

Ω

|∇𝑐0|4 +

∫︁

Ω

|∇𝑝0|4 +

∫︁ 𝑇

0

∫︁

Ω

|∇𝑤|4
)︃

holds for all 𝑇 ∈ (0, 𝑇1] ∩ (0, 𝑇max). Next, we test the first equation in (2.4) with −∆𝑤 to obtain

1

2

d

d𝑡

∫︁

Ω

|∇𝑤|2 = − 1

𝛼

∫︁

Ω

|∆𝑤|2 −
∫︁

Ω

(∇𝑐 · ∇𝑤)∆𝑤 −
∫︁

Ω

(︀
𝛼𝑝𝑐𝑤 + 𝜇𝑤 − 𝜇e𝛼𝑐𝑤2

)︀
∆𝑤

≤ − 1

2𝛼

∫︁

Ω

|∆𝑤|2 + 𝛼

∫︁

Ω

|∇𝑐 · ∇𝑤|2 + 𝛼|Ω|(𝛼𝑀3 + 𝜇𝑀 + 𝜇e𝛼𝑀𝑀2)2⏟  ⏞  
=:𝑐3

and thus

1

2

∫︁

Ω

|∇𝑤(·, 𝑇 )|2 − 1

2

∫︁

Ω

|∇𝑤0|2 +
1

2𝛼

∫︁ 𝑇

0

∫︁

Ω

|∆𝑤|2

≤ 𝛼
∫︁ 𝑇

0

∫︁

Ω

|∇𝑐 · ∇𝑤|2 + 𝑇𝑐3

≤ 1

4𝑐2𝛼

∫︁ 𝑇

0

∫︁

Ω

|∇𝑤|4 + 𝑐2𝛼
3

∫︁ 𝑇

0

∫︁

Ω

|∇𝑐|4 + 𝑇1𝑐3

≤
(︂

1

4𝑐2𝛼
+ 𝑇1𝑐1𝑐2𝛼

3

)︂∫︁ 𝑇

0

∫︁

Ω

|∇𝑤|4 + 𝑇1𝑐1𝑐2𝛼
3

(︂∫︁

Ω

|∇𝑐0|4 +

∫︁

Ω

|∇𝑝0|4
)︂

+ 𝑇1𝑐3 (2.20)

for all 𝑇 ∈ (0, 𝑇1] ∩ (0, 𝑇max). Since (2.19) and (2.18) imply
(︂

1

4𝑐2𝛼
+ 𝑇1𝑐1𝑐2𝛼

3

)︂∫︁ 𝑇

0

∫︁

Ω

|∇𝑤|4 ≤
(︂

1

2𝑐2𝛼
− 1

8𝑐2𝛼

)︂∫︁ 𝑇

0

∫︁

Ω

|∇𝑤|4

≤ 1

2𝛼

∫︁ 𝑇

0

∫︁

Ω

|∆𝑤|2 +
𝑇

2𝛼
− 1

8𝑐2𝛼

∫︁ 𝑇

0

∫︁

Ω

|∇𝑤|4 (2.21)

for all 𝑇 ∈ (0, 𝑇1] ∩ (0, 𝑇max), we conclude from (2.20) and (2.21) that

1

8𝑐2𝛼

∫︁ 𝑇

0

∫︁

Ω

|∇𝑤|4 ≤ 1

2

∫︁

Ω

|∇𝑤0|2 + 𝑇1𝑐1𝑐2𝛼
3

(︂∫︁

Ω

|∇𝑐0|4 +

∫︁

Ω

|∇𝑝0|4
)︂

+ 𝑇1𝑐3 +
𝑇

2𝛼
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for all 𝑇 ∈ (0, 𝑇1] ∩ (0, 𝑇max). Again applying Lemma 2.10, we finally see that (2.17) holds for some 𝐶 > 0
(depending on 𝑤0, 𝑐0 and 𝑝0). �

Lemma 2.12. Suppose (2.7) and that (𝑤0, 𝑐0, 𝑝0) satisfies (2.8). For all 𝑇 ∈ (0, 𝑇max] ∩ (0,∞), there exists
𝐶 > 0 such that the solution of (2.4) fulfills

∫︁

Ω

|∇𝑐(·, 𝑡)|4 ≤ 𝐶 for all 𝑡 ∈ [0, 𝑇 ]. (2.22)

Proof. Lemma 2.6 and Lemma 2.9 assert that (2.15) holds for some 𝑀 > 0. We fix 𝑇1 ∈ (0,∞) be as given
by Lemma 2.11 for this 𝑀 . If 𝑗 ∈ N0 is such that 𝑇1𝑗 < 𝑇 , an application of Lemma 2.11 to the solution
with initial data (𝑤, 𝑐, 𝑝)(·, 𝑇1𝑗) shows that there is 𝑐𝑗 > 0 such that (2.22) holds with 𝐶 replaced by 𝑐𝑗 for all

𝑡 ∈ [𝑇1𝑗, 𝑇1(𝑗 + 1)]. Thus, the statement follows for 𝐶 := max
{︁
𝑐𝑗 : 𝑗 ∈ N0, 𝑗 <

𝑇
𝑇1

}︁
. �

2.5. Hölder estimates for the gradients

Lemmas 2.6, 2.9 and 2.12 provide several bounds for the right-hand side of the first equation in (2.4), which
allow us to make use of parabolic regularity theory to iteratively improve our bounds. In particular, we adapt the
techniques developed in [39, pp. 791–792], where only planar domains are considered, to the three-dimensional
setting.

As it is used multiple times in the proof of Lemma 2.14 below, we first state the following consequence of
maximal Sobolev regularity results.

Lemma 2.13. Suppose that Ω ⊂ R𝑛, 𝑛 ∈ N, is a smooth, bounded domain. Let 𝑇 > 0, 𝛼 > 0, 𝑠 ∈ (0,∞) and
𝑞 ∈ (𝑛,∞). For any𝑀 > 0, there is 𝐶 > 0 such that if 𝑤0 ∈ 𝐶2(Ω) with 𝜕𝜈𝑤0 = 0 on 𝜕Ω, 𝑓 ∈ 𝐿∞((0, 𝑇 );𝐿𝑞(Ω))
and 𝑔 ∈ 𝐿𝑠((0, 𝑇 );𝐿𝑞(Ω)) are such that

‖𝑤0‖𝐶2(Ω) ≤𝑀, ‖𝑓‖𝐿∞((0,𝑇 );𝐿𝑞(Ω)) ≤𝑀 and ‖𝑔‖𝐿𝑠((0,𝑇 );𝐿𝑞(Ω)) ≤𝑀, (2.23)

then every solution 𝑤 ∈ 𝐶2,1(Ω× (0, 𝑇 )) ∩ 𝐶1(Ω× [0, 𝑇 )) of
⎧
⎪⎨
⎪⎩

𝑤𝑡 = 1
𝛼∆𝑤 + 𝑓 · ∇𝑤 + 𝑔 in Ω× (0, 𝑇 ),

𝜕𝜈𝑤 = 0 on 𝜕Ω× (0, 𝑇 ),

𝑤(·, 0) = 𝑤0 in Ω

with |𝑤| ≤𝑀 in Ω× (0, 𝑇 ) fulfills

‖𝑤𝑡‖𝐿𝑠((0,𝑇 );𝐿𝑞(Ω)) + ‖∆𝑤‖𝐿𝑠((0,𝑇 );𝐿𝑞(Ω)) + ‖∇𝑤‖𝐿𝑠((0,𝑇 );𝐿∞(Ω)) ≤ 𝐶. (2.24)

Proof. We fix the data 𝑤0, 𝑓 and 𝑔 and a solution 𝑤 but emphasize that the constants 𝑐1 and 𝑐2 below only
depend on 𝑀 (and Ω, 𝑇 , 𝛼, 𝑠 and 𝑞). Since 𝑓 · ∇𝑤 + 𝑔 ∈ 𝐿𝑠

loc([0, 𝑇 );𝐿𝑞(Ω)) by assumption, [20, Thm. 2.3]
asserts that 𝑤 is also the unique solution of [20, (2.6)] and thus that the estimate [20, (2.7)] holds. From [20,
(2.7)] in conjunction with (2.23), we hence obtain 𝑐1 > 0 such that

‖𝑤𝑡‖𝐿𝑠((0,𝑇 );𝐿𝑞(Ω)) +
1

𝛼
‖∆𝑤‖𝐿𝑠((0,𝑇 );𝐿𝑞(Ω)) ≤ 𝑐1‖𝑓 · ∇𝑤‖𝐿𝑠((0,𝑇 );𝐿𝑞(Ω)) + 𝑐1. (2.25)

Since 𝑞 > 𝑛, the embedding 𝑊 2,𝑞(Ω) →˓→˓ 𝑊 1,∞(Ω) is compact, so that an application of Ehrling’s lemma
combined with elliptic regularity (cf. [17, Thm. 19.1]) shows that there is 𝑐2 > 0 such that

‖∇𝜙‖𝐿∞(Ω) ≤
1

2𝑀𝑐1𝛼
‖∆𝜙‖𝐿𝑞(Ω) + 𝑐2‖𝜙‖𝐿∞(Ω) for all 𝜙 ∈ 𝐶2(Ω) with 𝜕𝜈𝜙 = 0 on 𝜕Ω. (2.26)

Additionally relying on Minkowski’s inequality, we thus obtain
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‖𝑓 · ∇𝑤‖𝐿𝑠((0,𝑇 );𝐿𝑞(Ω)) ≤ ‖𝑓‖𝐿∞((0,𝑇 );𝐿𝑞(Ω;R𝑛))‖∇𝑤‖𝐿𝑠((0,𝑇 );𝐿∞(Ω))

≤𝑀
(︂

1

2𝑀𝑐1𝛼
‖∆𝑤‖𝐿𝑠((0,𝑇 );𝐿𝑞(Ω)) + 𝑐2‖𝑤‖𝐿𝑠((0,𝑇 );𝐿∞(Ω))

)︂

≤ 1

2𝑐1𝛼
‖∆𝑤‖𝐿𝑠((0,𝑇 );𝐿𝑞(Ω)) +𝑀2𝑇

1
𝑠 𝑐2.

In combination with (2.25), this yields

‖𝑤𝑡‖𝐿𝑠((0,𝑇 );𝐿𝑞(Ω)) +
1

2𝛼
‖∆𝑤‖𝐿𝑠((0,𝑇 );𝐿𝑞(Ω)) ≤ 𝑐1 +𝑀2𝑇

1
𝑠 𝑐1𝑐2,

upon which another application of (2.26) implies (2.24) for some 𝐶 > 0. �

Lemma 2.14. Suppose (2.7) and that (𝑤0, 𝑐0, 𝑝0) satisfies (2.8). Then the maximal classical solution (𝑤, 𝑐, 𝑝)
of (2.4) given by Lemma 2.5 is global in time.

Proof. We may without loss of generality assume that 𝛾 in (2.8) satisfies 𝛾 < 7
12 , let (𝑤, 𝑐, 𝑝) the solution of

(2.4) provided by Lemma 2.5 and suppose that on the contrary the maximal existence time 𝑇max is finite. By
Lemmas 2.6 and 2.9,

𝑤𝑡 = 1
𝛼∆𝑤 +∇𝑐 · ∇𝑤 + 𝑔 in Ω× [0, 𝑇max)

holds for 𝑔 = 𝛼𝑝𝑐𝑤 + 𝜇𝑤 − 𝜇e𝛼𝑐𝑤2 ∈ 𝐿∞(Ω× (0, 𝑇max)). Moreover, the initial data fulfill (2.8), ∇𝑐 belongs to
𝐿∞((0, 𝑇max);𝐿4(Ω)) by Lemma 2.12 (applied to 𝑇 = 𝑇max < ∞) and 𝑤 is bounded by Lemma 2.9, hence an
application of Lemma 2.13 with 𝑠 = 12 and 𝑞 = 4 shows that (2.24) holds, which entails that

‖∇𝑤‖𝐿12(Ω×(0,𝑇max)) ≤ 𝑐1
for some 𝑐1 > 0. Therefore, Lemma 2.10 (applied to 𝑇0 = 𝑇max) asserts that ∇𝑐 ∈ 𝐿∞((0, 𝑇max);𝐿12(Ω)), so
that we may again apply Lemma 2.13, this time with 𝑠 = 12 and 𝑞 = 12, to obtain 𝑐2 > 0 such that

‖𝑤𝑡‖𝐿12(Ω×(0,𝑇max)) + ‖∆𝑤‖𝐿12(Ω×(0,𝑇max)) ≤ 𝑐2.

This in turn renders [24, Lemma II.3.3] applicable, which asserts finiteness of ‖𝑤‖
𝐶

19
12

, 19
24 (Ω×[0,𝑇max])

, contradicting

the extensibility criterion in Lemma 2.5. Thus our assumption that 𝑇max is finite must be false. �

2.6. Proof of Theorem 1.1

The proof of Theorem 1.1 has now been reduced to referencing some of the lemmata above.

Proof of Theorem 1.1. Lemma 2.5 asserts the local existence of a unique maximal classical solution of (2.4),
which is global in time by Lemma 2.14. Therefore, the statement follows by transforming back to the origi-
nal variables; that is, first setting 𝑢(𝑥, 𝑡) := 𝑤(𝑥, 𝑡)e𝛼𝑐(𝑥,𝑡) for 𝑥 ∈ Ω and 𝑡 ∈ [0,∞) and then applying the
transformation in (2.1). �

3. Weak formulation, discretization and numerical solution

In this section, we address the numerical realization of (1.1). To this end, we first derive a weak formulation
and then apply the Rothe method, namely, first temporal discretization using finite differences, and afterward
spatial discretization based on a Galerkin finite element scheme. Due to the highly nonlinear behavior, we then
propose and implement a fixed-point algorithm to solve all three equations sequentially. Similar algorithms and
implementations are available in the deal.II library [5, 6], and we have former experiences in solving highly
nonlinear coupled PDE systems, e.g., [43], but the algorithmic design, implementation and code verification of
(1.1) in deal.II is novel to the best of our knowledge.
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3.1. Weak formulation

Using integration by parts and the homogeneous boundary conditions, the variational formulation for the

system (1.1) reads: find 𝑢, 𝑐, 𝑝 ∈ 𝐿2
(︀
0, 𝑇,𝐻1(Ω)

)︀
with 𝑢𝑡, 𝑐𝑡, 𝑝𝑡 ∈ 𝐿2

(︁
0, 𝑇,

(︀
𝐻1(Ω)

)︀*)︁
and the initial conditions

𝑢0 = 𝑢(0) ∈ 𝐻1(Ω), 𝑐0 = 𝑐(0) ∈ 𝐿2(Ω), 𝑝0 = 𝑝(0) ∈ 𝐿2(Ω) such that for almost all times 𝑡 ∈ (0, 𝑇 ), we have

⟨𝑢𝑡, 𝜑𝑢⟩+
1

𝛼

∫︁

Ω

∇𝑢 · ∇𝜑𝑢 d𝑥− 𝜒
∫︁

Ω

𝑢∇𝑐 · ∇𝜑𝑢 d𝑥− 𝜇
∫︁

Ω

𝑢(1− 𝑢)𝜑𝑢 d𝑥 = 0 ∀𝜑𝑢 ∈ 𝐶∞(Ω),

⟨𝑐𝑡, 𝜑𝑐⟩+

∫︁

Ω

𝑝𝑐𝜑𝑐 d𝑥 = 0 ∀𝜑𝑐 ∈ 𝐶∞(Ω), (3.1)

⟨𝑝𝑡, 𝜑𝑝⟩ − 𝜀−1

∫︁

Ω

(𝑢𝑐− 𝑝)𝜑𝑝 d𝑥 = 0 ∀𝜑𝑝 ∈ 𝐶∞(Ω).

3.2. Temporal discretization and fixed point scheme

Let us now proceed and subdivide the time interval [0, 𝑇 ] into 𝑁 subintervals [0, 𝑇 ] = ∪𝑁−1
𝑛=0

[︀
𝑡𝑛, 𝑡𝑛+1

]︀
with the

uniform time steps ∆𝑡 = 𝑡𝑛+1 − 𝑡𝑛, 𝑛 = 0, 1, 2, . . . , 𝑁 − 1. We use 𝑐𝑛+1(𝑥) := 𝑐
(︀
𝑥, 𝑡𝑛+1

)︀
, 𝑝𝑛+1(𝑥) := 𝑝

(︀
𝑥, 𝑡𝑛+1

)︀

and 𝑢𝑛+1(𝑥) := 𝑢
(︀
𝑥, 𝑡𝑛+1

)︀
to denote the approximation of the solutions at time 𝑡𝑛+1. Specifically, for time

discretization we employ the well-known 𝜃 method allowing us to work with implicit 𝐴-stable time-stepping
schemes for choice 𝜃 ∈ [0.5, 1] in each equation. Further, a fixed-point scheme is used to decouple the previous
system and to treat the nonlinear and coupled terms.

Then, a semi-discrete and linearized form of the system (3.1) in the interval
[︀
𝑡𝑛, 𝑡𝑛+1

]︀
reads: for given

𝑢𝑛+1
0 = 𝑢𝑛, 𝑐𝑛+1

0 = 𝑐𝑛 and 𝑝𝑛+1
0 = 𝑝𝑛 find 𝑢𝑛+1

𝑘 ∈ 𝐻1(Ω), 𝑐𝑛+1
𝑘 ∈ 𝐻1(Ω) and 𝑝𝑛+1

𝑘 ∈ 𝐻1(Ω) such that

∫︁

Ω

𝑢𝑛+1
𝑘 𝜑𝑢 d𝑥+ 𝜃∆𝑡

(︂
1

𝛼

∫︁

Ω

∇𝑢𝑛+1
𝑘 · ∇𝜑𝑢d𝑥− 𝜒

∫︁

Ω

𝑢𝑛+1
𝑘 ∇𝑐𝑛+1

𝑘−1 · ∇𝜑𝑢d𝑥− 𝜇
∫︁

Ω

𝑢𝑛+1
𝑘

(︀
1− 𝑢𝑛+1

𝑘−1

)︀
𝜑𝑢d𝑥

)︂

=

∫︁

Ω

𝑢𝑛𝜑𝑢 d𝑥− (1− 𝜃)∆𝑡
(︂

1

𝛼

∫︁

Ω

∇𝑢𝑛 · ∇𝜑𝑢d𝑥

−𝜒
∫︁

Ω

𝑢𝑛∇𝑐𝑛 · ∇𝜑𝑢d𝑥− 𝜇
∫︁

Ω

𝑢𝑛(1− 𝑢𝑛)𝜑𝑢d𝑥

)︂
∀𝜑𝑢 ∈ 𝐶∞(Ω)

and
∫︁

Ω

𝑐𝑛+1
𝑘 𝜑𝑐d𝑥+ 𝜃∆𝑡

∫︁

Ω

𝑝𝑛+1
𝑘−1𝑐

𝑛+1
𝑘 𝜑𝑐d𝑥 =

∫︁

Ω

𝑐𝑛𝜑𝑐d𝑥− (1− 𝜃)∆𝑡
∫︁

Ω

𝑝𝑛𝑐𝑛𝜑𝑐d𝑥 ∀𝜑𝑐 ∈ 𝐶∞(Ω)

and

(︀
1 + 𝜀−1𝜃∆𝑡

)︀ ∫︁

Ω

𝑝𝑛+1
𝑘 𝜑𝑝d𝑥

=
(︀
1− 𝜀−1(1− 𝜃)∆𝑡

)︀ ∫︁

Ω

𝑝𝑛𝜑𝑝d𝑥+ 𝜀−1𝜃∆𝑡

∫︁

Ω

𝑢𝑛+1
𝑘 𝑐𝑛+1

𝑘 𝜑𝑝d𝑥+ 𝜀−1(1− 𝜃)∆𝑡
∫︁

Ω

𝑢𝑛𝑐𝑛𝜑𝑝d𝑥 ∀𝜑𝑝 ∈ 𝐶∞(︀Ω
)︀

for 𝑘 = 1, 2, . . . , 𝑘*, where 𝑘* is the iteration index where some stopping criterion is met, and for 𝑛 = 0, 1, . . . , 𝑁−
1. For details on the specific steps and stopping tolerances we refer the reader to Section 3.4.

3.3. Spatial Galerkin discretization with finite elements

Our spatial discretization is based on a Galerkin finite element scheme using conforming finite elements
(bilinear in two dimensions and trilinear in three dimensions). To this end, Ω is decomposed into quadrilaterals
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or hexahedra making up a mesh 𝒯ℎ. Then, a conforming subspace 𝑉ℎ ⊂ 𝐻1(Ω) for approximating 𝑢𝑛+1
ℎ , 𝑐𝑛+1

ℎ

and 𝑝𝑛+1
ℎ is designed, which is composed of 𝑄𝑐

1 functions. In detail, we define

𝑉ℎ = {𝑣 ∈ 𝐶0(Ω) ; 𝑣|𝐾 ∈ 𝑄1(𝐾) for 𝐾 ∈ 𝒯ℎ}.

Denoting by 𝑄1(𝐾̂) the space of polynomials on the reference cell 𝐾̂ (square in two dimensions and cube in
three dimensions) which are linear in each variable, the shape functions from 𝑄1(𝐾) are obtained using 𝑄1(𝐾̂)
transformations of functions in 𝑄1(𝐾̂) onto 𝐾, so-called isoparametric finite elements. We refer the reader to
the classical textbook [12] for more details.

Moreover, we denote by (·, ·) the scalar product in 𝐿2(Ω).
The discrete solutions 𝑢𝑛+1

ℎ , 𝑐𝑛+1
ℎ and 𝑝𝑛+1

ℎ are written as linear combinations of standard basis functions of
𝑉ℎ:

𝑢𝑛+1
ℎ (𝑥) =

𝑀∑︁

𝑖=1

𝑢𝑛+1
𝑖 𝜑𝑖(𝑥), 𝑐𝑛+1

ℎ (𝑥) =
𝑀∑︁

𝑖=1

𝑐𝑛+1
𝑖 𝜑𝑖(𝑥), 𝑝𝑛+1

ℎ (𝑥) =
𝑀∑︁

𝑖=1

𝑝𝑛+1
𝑖 𝜑𝑖(𝑥), (3.2)

where 𝑀 denotes the number of spatial degrees of freedom, i.e., dim𝑉ℎ = 𝑀 . The fully discrete system then
reads as follows:

𝑀∑︁

𝑖=1

[︂
(𝜑𝑖, 𝜑𝑗) + 𝜃∆𝑡

(︂
1

𝛼
(∇𝜑𝑖,∇𝜑𝑗)− 𝜒

(︁
𝜑𝑖∇𝑐𝑛+1

ℎ,𝑘−1,∇𝜑𝑗
)︁
− 𝜇

(︁
𝜑𝑖

(︁
1− 𝑢𝑛+1

ℎ,𝑘−1

)︁
, 𝜑𝑗

)︁)︂]︂
𝑢𝑛+1
𝑖,𝑘

=

𝑀∑︁

𝑖=1

[︂
(𝜑𝑖, 𝜑𝑗)− (1− 𝜃)∆𝑡

(︂
1

𝛼
(∇𝜑𝑖,∇𝜑𝑗)− 𝜒(𝜑𝑖∇𝑐𝑛ℎ,∇𝜑𝑗)− 𝜇(𝜑𝑖(1− 𝑢𝑛ℎ), 𝜑𝑗)

)︂]︂
𝑢𝑛𝑖 , (3.3)

and

𝑀∑︁

𝑖=1

[︁
(𝜑𝑖, 𝜑𝑗) + 𝜃∆𝑡

(︁
𝑝𝑛+1
ℎ,𝑘−1𝜑𝑖, 𝜑𝑗

)︁]︁
𝑐𝑛+1
𝑖,𝑘 =

𝑀∑︁

𝑖=1

[(𝜑𝑖, 𝜑𝑗)− (1− 𝜃)∆𝑡(𝑝𝑛ℎ𝜑𝑖, 𝜑𝑗)]𝑐𝑛𝑖 , (3.4)

and

𝑀∑︁

𝑖=1

[︀(︀
1 + 𝜀−1𝜃∆𝑡

)︀
(𝜑𝑖, 𝜑𝑗)

]︀
𝑝𝑛+1
𝑖,𝑘

=
𝑀∑︁

𝑖=1

[︀(︀
1− 𝜀−1(1− 𝜃)∆𝑡

)︀
(𝜑𝑖, 𝜑𝑗)

]︀
𝑝𝑛𝑖 + 𝜀−1𝜃∆𝑡

(︁
𝑢𝑛+1
ℎ,𝑘 𝑐

𝑛+1
ℎ,𝑘 , 𝜑𝑗

)︁
+ 𝜀−1(1− 𝜃)∆𝑡(𝑢𝑛ℎ𝑐𝑛ℎ, 𝜑𝑗), (3.5)

where 𝑗 = 1, . . . ,𝑀 and the unknown solution coefficients
{︁
𝑢𝑛+1
𝑖,𝑘

}︁𝑀

𝑖=1
∈ R𝑀 ,

{︁
𝑐𝑛+1
𝑖,𝑘

}︁𝑀

𝑖=1
∈ R𝑀 and

{︁
𝑝𝑛+1
𝑖,𝑘

}︁𝑀

𝑖=1
∈

R𝑀 at each fixed-point iteration 𝑘 and each time step 𝑛 + 1 define the corresponding finite element functions
𝑢𝑛+1
ℎ,𝑘 ∈ 𝑉ℎ, 𝑐𝑛+1

ℎ,𝑘 ∈ 𝑉ℎ and 𝑝𝑛+1
ℎ,𝑘 ∈ 𝑉ℎ, respectively, analogously as in (3.2). Each linear system is solved with a

sparse direct solver.

3.4. Algorithm

Collecting all pieces from the previous subsections, we arrive at the following final algorithm.

Algorithm 3.1 (Fixed-point iterative scheme).
Let the fully discrete form (3.3)–(3.5) be given.

Step 1: initialize at time 𝑡 = 0 for 𝑛 = 0 with 𝑢0ℎ = 𝑖ℎ 𝑢0, 𝑐0ℎ = 𝑖ℎ 𝑐0 and 𝑝0ℎ = 𝑖ℎ 𝑝0, where 𝑖ℎ is the standard
Lagrange interpolation operator,
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Step 2: for 𝑛 ≥ 0 (time step number index)
set 𝑢𝑛+1

ℎ,0 = 𝑢𝑛ℎ, 𝑐
𝑛+1
ℎ,0 = 𝑐𝑛ℎ and 𝑝𝑛+1

ℎ,0 = 𝑝𝑛ℎ
for 𝑘 ≥ 1 (fixed-point iteration index)
(a) Given 𝑢𝑛ℎ, 𝑐

𝑛
ℎ and 𝑢𝑛+1

ℎ,𝑘−1, 𝑐
𝑛+1
ℎ,𝑘−1. Determine 𝑢𝑛+1

ℎ,𝑘 with (3.3).

(b) Given 𝑝𝑛ℎ and 𝑝𝑛+1
ℎ,𝑘−1. Determine 𝑐𝑛+1

ℎ,𝑘 with (3.4).

(c) Given 𝑢𝑛ℎ, 𝑐
𝑛
ℎ, 𝑝

𝑛
ℎ and 𝑢𝑛+1

ℎ,𝑘 , 𝑐
𝑛+1
ℎ,𝑘 . Determine 𝑝𝑛+1

ℎ,𝑘 with (3.4).

(d) if
{︁⃦⃦
⃦𝑢𝑛+1

ℎ,𝑘 − 𝑢𝑛+1
ℎ,𝑘−1

⃦⃦
⃦
𝑙2
,
⃦⃦
⃦𝑐𝑛+1

ℎ,𝑘 − 𝑐𝑛+1
ℎ,𝑘−1

⃦⃦
⃦
𝑙2
,
⃦⃦
⃦𝑝𝑛+1

ℎ,𝑘 − 𝑝𝑛+1
ℎ,𝑘−1

⃦⃦
⃦
𝑙2

}︁
< 𝑇𝑜𝑙 = 10−8 stop and set

𝑢𝑛+1
ℎ = 𝑢𝑛+1

ℎ,𝑘 , 𝑐
𝑛+1
ℎ = 𝑐𝑛+1

ℎ,𝑘 , 𝑝
𝑛+1
ℎ = 𝑝𝑛+1

ℎ,𝑘 ,

increment 𝑛 ↦→ 𝑛+ 1 and go back to step 2 (proceed to next time point)
(e) else set

𝑢𝑛+1
ℎ,𝑘 = 𝛽𝑢𝑛+1

ℎ,𝑘 + (1− 𝛽)𝑢𝑛+1
ℎ,𝑘−1,

𝑐𝑛+1
ℎ,𝑘 = 𝛽𝑐𝑛+1

ℎ,𝑘 + (1− 𝛽)𝑐𝑛+1
ℎ,𝑘−1,

𝑝𝑛+1
ℎ,𝑘 = 𝛽𝑝𝑛+1

ℎ,𝑘 + (1− 𝛽)𝑝𝑛+1
ℎ,𝑘−1,

for some 𝛽 ∈ [0, 1] and go to (a) and increment 𝑘 ↦→ 𝑘+1 (next fixed-point iteration); here we set 𝛽 = 0.5.

Remark 3.2. The system of algebraic equations of each equation at each step is solved using the sparse direct
solver UMFPACK [14].

Remark 3.3. We notice that the relaxation parameter 𝛽 can also be obtained via a backtracking procedure
starting with 𝛽 = 1 and constructing a sequence with 𝛽 → 0 for 𝑘 →∞ until convergence is achieved.

Remark 3.4. A rigorous numerical convergence analysis in weak function spaces of the discretized equations
for ∆𝑡 → 0 and ℎ → 0 towards their continuous limits exceed the purpose of this paper and is left for future
studies. However, there is hope for convergence in light of the classical solutions obtained in Section 2.

4. Numerical simulations

In order to illuminate the evolution of solutions and show their qualitative behavior, beyond the mere existence
assertion of Theorem 1.1, in this section, we perform several numerical simulations in two and three spatial
dimensions. The main objective are investigations of the influence of variations in the proliferation coefficient
𝜇 and the haptotactic coefficient 𝜒, whose size did not matter for Theorem 1.1. The specific values are chosen
for illustrative purposes, not due to their biological relevance. For a discussion of realistic diffusion and taxis
coefficients of tumor cells see, for instance, [3].

4.1. Geometry, final time, parameters, and initial conditions

For all the experiments except those in Subsection 4.5, the computations are performed on the square domain
Ω = (0, 20)2, discretized uniformly using quadrilateral elements. This mesh is uniformly refined 5 times at the
beginning of the computation resulting into 1089 degrees of freedom. The final time is 𝑇 = 50, we set 𝜃 = 0.5
and use as time step size ∆𝑡 = 1. As initial conditions, we use

𝑢0(𝑥) = exp(−𝑥2), 𝑐0(𝑥) = 1− 0.5 exp(−𝑥2), 𝑝0(𝑥) = 0.5 exp(−𝑥2),

in all computations, unless otherwise mentioned. As parameters, we use the fixed values 𝛼 = 10 and 𝜀 = 0.2,
while 𝜇 and 𝜒 are varied and specified in each respective subsection below. We notice that the smoothness
conditions on the domain and satisfaction of the boundary conditions at the initial time 𝑡 = 0 are violated in
this section in comparison to our theory established in Section 2.

Upfront, concerning the computational cost of the fixed-point scheme, in a computational analysis for all
numerical examples, we observed the iteration numbers displayed in Table 1.
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Table 1. Fixed-point iteration numbers in the numerical simulation in Section 4.

Section 4.2 𝜇 = 10−10 𝜇 = 0.5 𝜇 = 1.0

# of iteration at 𝑡 = 1 31 31 31
# of iteration at 𝑡 = 50 24 22 22

Section 4.3 𝜒 = 0.25 𝜒 = 0.75 𝜒 = 1.25

# of iteration at 𝑡 = 1 30 30 31
# of iteration at 𝑡 = 50 26 26 -

Sections 4.4 and 4.5 Section 4.4: 𝜇 = 𝜒 = 1 Section 4.5(3d): 𝜇 = 𝜒 = 1.0

# of iteration at 𝑡 = 1 32 31
# of iteration at 𝑡 = 50 22 24

4.2. Simulations for different proliferation coefficients 𝜇

First, we study the influence of the cancer cell proliferation coefficient on the cancer invasion for 𝜇 = 10−10,
0.5, 1.0 with small haptotactic rate 𝜒 = 0.01. We notice that our theory in Section 2 requires 𝜇 > 0 and for this
reason we made the previous choice 𝜇 = 10−10. Numerically we are interested in a value being close to zero in
order to study the behavior of the cancer invasion model. Proliferation shows the ability of a cancer cell to copy
its DNA and divide into 2 cells, therefore an increase in the proliferation rate of tumours causes an accelerated
invasion of cancer cells into connective tissues domain. In all the computations we use 𝛼−1 = 0.1, 𝜀 = 0.2.

The results obtained with the standard Galerkin discretization of the system (1.1) are displayed in Figures 1–6,
at time instances 5, 15, 25 and 35. The snapshots of cancer cell invasion, connective tissue and protease are
plotted in Figures 1, 3 and 5. We start with 𝜇 = 10−10, that is, almost no growth in the cancer cell density.
As we can see from Figure 1, there is no growth in the cancer during the initial stage, and despite a small
amount of concentration at the initial period, the cancer cell density and also protease (which is produced by
cancer cells upon contact with connective tissues) are decreased and spread slowly due to diffusion effect and
the invasion does not continue after time 𝑡 = 15. Now, let us consider 𝜇 = 0.5. As we can see from Figure 3, in
this case, an increase of the concentration of cancer cells becomes visible, and it continues during the time. The
cancer invasion gradually increases and degrades nearly half of the connective tissue by the time 𝑡 = 25. For
𝜇 = 1.0, Figure 5 shows the growth effect. Due to high proliferation rate, cancer cells produce more protease,
which helps them to invade the connective tissues area rapidly. In particular, cancer cells complete invasion in
three-quarters of the connective tissue domain at 𝑡 = 25 when 𝜇 = 1.0 is used. The snapshots of cancer cell
invasion for different values of proliferation rate are given in Figures 2, 4 and 6. As explained, by increasing the
value of 𝜇, cancer cells increase and the invasion happens more rapidly for all the considered time intervals.

4.3. Effects of the haptotactic coefficient 𝜒

In this subsection, we consider the effect of the haptotactic coefficient on the connective cells degeneration by
varying 𝜒. We choose 𝜒 = 0.25, 0.75, 1.25 with small proliferation rate 𝜇 = 0.01, diffusion coefficient 𝛼−1 = 0.1
and 𝜀 = 0.2. The effects of haptotactic coefficient at different time instances are depicted in Figures 7–12.
Starting with 𝜒 = 0.25, the snapshot at 𝑡 = 5 shows that the cancer cells reduce at the origin and start
migrating towards the direction of the gradient of connective tissue. The migration of the cancer cells becomes
more clear and the effect of haptotaxis can be clearly seen at 𝑡 = 5 in Figures 9 and 10, where the small cluster
of cancer cells is created and spreads further by time. Increasing the amount of 𝜒 accelerates the cancer cells
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Figure 1. The effect of the proliferation rate on cancer cell invasion 𝑢, connective tissue 𝑐 and
protease 𝑝 at different time instants, 𝑡 = 5, 15, 25, 35 for 𝜇 = 10−10. The functions are plotted
along the line 𝑦 = 𝑥. (a) 𝑡 = 5, (b) 𝑡 = 15, (c) 𝑡 = 25 and (d) 𝑡 = 35.

Figure 2. The snapshots of cancer cell invasion 𝑢 for 𝜇 = 10−10, the maximum amount of
cancer cells decreasing from left to right is 0.3106, 0.1348, 0.08619, and 0.06333. The color scale
in the legend is not fixed in order to display better the current shape. (a) 𝑡 = 5, (b) 𝑡 = 15, (c)
𝑡 = 25 and (d) 𝑡 = 35.

Figure 3. The effect of proliferation rate on cancer cell invasion 𝑢, connective tissue 𝑐 and
protease 𝑝 at different time instants, 𝑡 = 5, 15, 25, 35 for 𝜇 = 0.5. The functions are plotted
along the line 𝑦 = 𝑥. (a) 𝑡 = 5, (b) 𝑡 = 15, (c) 𝑡 = 25 and (d) 𝑡 = 35.
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Figure 4. The snapshots of cancer cell invasion 𝑢 for 𝜇 = 0.5. The color scale in the legend is
not fixed. (a) 𝑡 = 5, (b) 𝑡 = 15, (c) 𝑡 = 25 and (d) 𝑡 = 35.

Figure 5. The effect of proliferation rate on cancer cell invasion, connective tissue and protease
at different time instants, 𝑡 = 5, 15, 25, 35 for 𝜇 = 1.0. The functions are plotted along the line
𝑦 = 𝑥. (a) 𝑡 = 5, (b) 𝑡 = 15, (c) 𝑡 = 25 and (d) 𝑡 = 35.

Figure 6. The snapshots of cancer cell invasion 𝑢 for 𝜇 = 1.0. The color scale in the legend is
not fixed. (a) 𝑡 = 5, (b) 𝑡 = 15, (c) 𝑡 = 25 and (d) 𝑡 = 35.

migration and the cancer cells should move toward the boundary of the domain quickly, but as we can see from
Figures 11 to 12, oscillations start at 𝑡 = 5 and the numerical simulation breaks down for 𝜒 = 1.25.

4.4. Identical proliferation and haptotactic coefficients

In this subsection, we consider the case when the proliferation rate is equal to haptotactic coefficient, i.e.,
𝜇 = 𝜒 = 1, and all other parameters are the same as in the previous subsections. As it can be seen from
Figures 13 and 14, due to the proliferation rate, the concentration of cancer growths quickly even from the
beginning resulting from a high amount of haptotaxis, therefore the tumour migrates rapidly inside the domain
and degrades the connective tissue in a much shorter amount of time.
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Figure 7. Haptotactic effect on cancer cell invasion, connective tissue and protease at different
time instants, 𝑡 = 5, 15, 25, 35 for 𝜒 = 0.25. (a) 𝑡 = 5, (b) 𝑡 = 15, (c) 𝑡 = 25 and (d) 𝑡 = 35.

Figure 8. The snapshots of cancer cell invasion 𝑢 for 𝜒 = 0.25, the maximum amount of cancer
cells decreasing from left to right is 0.1788, 0.07284, 0.04968, and 0.03984. The color scale in
the legend is not fixed in order to display better the current shape. (a) 𝑡 = 5, (b) 𝑡 = 15, (c)
𝑡 = 25 and (d) 𝑡 = 35.

Figure 9. Haptotactic effect on cancer cell invasion, connective tissue and protease at different
time instants, 𝑡 = 5, 15, 25, 35 for 𝜒 = 0.75. (a) 𝑡 = 5, (b) 𝑡 = 15, (c) 𝑡 = 25 and (d) 𝑡 = 35.
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Figure 10. The snapshots of cancer cell invasion 𝑢 for 𝜒 = 0.75, the maximum amount of
cancer cells decreasing from left to right is 0.1018, 0.03925, 0.02622, and 0.02060. The color
scale in the legend is not fixed in order to display better the current shape. (a) 𝑡 = 5, (b) 𝑡 = 15,
(c) 𝑡 = 25 and (d) 𝑡 = 35.

Figure 11. Haptotactic effect on cancer cell invasion, connective tissue and protease at different
time instants, 𝑡 = 0, 5 for 𝜒 = 1.25. (a) 𝑡 = 0 and (b) 𝑡 = 5.

Figure 12. The snapshots of cancer cell invasion 𝑢 for 𝜒 = 1.25, with maximal values 1.0 and
0.1067, respectively. The color scale in the legend is not fixed in order to display better the
current shape. (a) 𝑡 = 0 and (b) 𝑡 = 5.
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Figure 13. Degradation of connective tissue 𝑐 for 𝜒 = 1.0, 𝜇 = 1.0 at different time instants
𝑡 = 0, 10, 20 and 30. The color scale in the legend is not fixed. (a) 𝑡 = 0, (b) 𝑡 = 10, (c) 𝑡 = 20
and (d) 𝑡 = 30.

Figure 14. Invasion of cancer cells 𝑢 for 𝜒 = 1.0, 𝜇 = 1.0 at different time instants 𝑡 = 0, 10, 20
and 30. The color scale in the legend is not fixed in order to display better the current shape.
(a) 𝑡 = 0, (b) 𝑡 = 10, (c) 𝑡 = 20 and (d) 𝑡 = 30.

4.5. Three dimensional simulations

In this final subsection, we perform numerical simulations in three spatial dimensions to consider some more
realistic movement. Here, the experiments are performed on a mesh with 32 768 hexahedral elements covering
the domain Ω. Figures 15 and 16 show the snapshots of cancer cells and connective tissues for growth rate 𝜇 = 1
and haptotactic coefficient 𝜒 = 1. Further, we use the parameters 𝛼−1 = 0.1 and 𝜀 = 0.2. As it can be seen,
at 𝑡 = 5 the connective tissue covers the entire domain and only a small amount of cancer cells exists at the
corner, by the time cancer cells growth and invade the domain of connective tissue quickly and by 𝑡 = 35 almost
all the domain is occupied by cancer cells.

5. Conclusions

In this paper, we established theoretical proofs, numerical algorithms, implementations and numerical simu-
lations for a cancer invasion model. In our theoretical part, existence of global classical solutions in both two-
and three-dimensional bounded domains was established. In the proofs, we employed the fact that the second
and third equation in (1.1) at least regularize in time. For showing boundedness in 𝐿∞, the comparison principle
allowed us to conclude boundedness in small time intervals, which then was iteratively applied to obtain the
result also for larger times. For the spatial derivatives, we secondly applied a testing procedure for deriving
estimates valid on small time intervals, again followed by an iteration procedure. Parabolic regularity theory
yielded global existence of the solutions.

The numerical stability of the system heavily depends on the haptotactic coefficient 𝜒. By fixing proliferation
rate 𝜇 and varying the 𝜒 one can make either the diffusion or transport of the cells dominant. The later usually
gives rise to spurious oscillations or numerical blow up in the system. In order to study such properties, (1.1)

68



CANCER INVASION: CLASSICAL SOLUTIONS AND NUMERICAL SIMULATIONS 1917

Figure 15. Degradation of connective tissue 𝑐 for 𝜒 = 1.0, 𝜇 = 1.0 at different time instants
𝑡 = 5, 15, 25 and 35. The color scale in the legend is not fixed in order to display better the
current shape. (a) 𝑡 = 5, (b) 𝑡 = 15, (c) 𝑡 = 25 and (d) 𝑡 = 35.

Figure 16. Invasion of cancer cells 𝑢 for 𝜒 = 1.0, 𝜇 = 1.0 at different time instants 𝑡 = 5, 15, 25
and 35. The color scale in the legend is not fixed in order to display better the current shape.
(a) 𝑡 = 5, (b) 𝑡 = 15, (c) 𝑡 = 25 and (d) 𝑡 = 35.

was discretized using finite differences in time and Galerkin finite elements in space. A fixed-point scheme was
designed to decouple the three equations, yielding a robust nonlinear procedure. These developments and their
implementation allowed us to study numerically variations in 𝜇 and 𝜒 in two and three spatial dimensions and
to illustrate our theoretical results.

Compared to other models, the system in this article did not feature any spatial regularizing effects in the
third (or second) equation. This was based on the modelling in [34], where it was argued that there should
be no diffusion term for the protease equation. Key challenges both in the analytical and numerical part are
precisely caused by this biologically motivated choice. Related works treating systems including a diffusion term
also for the third equation crucially make use of the corresponding smoothing effects – a direct adaptation of
their methods would evidently have been insufficient for the system at hand.

As to future work, we notice that higher parameter variations resulting into convection-dominated regimes,
require the design and implementation of stabilization methods such as streamline upwind Petrov–Galerkin
stabilizing formulations or algebraic flux corrected transport. This would introduce additional terms in the
equation (3.3) of our nonlinear fixed-point scheme. In case of an algebraic stabilization, an additional nonlin-
earity would be possibly created since it involves limiters that often depend on the unknown discrete solution.
Nevertheless, this nonlinearity can be treated in the framework of the considered fixed-point iterations so that
it does not increase the computational cost significantly.
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3. Papers II and III
This chapter is based on the paper entitled ”Flux-corrected transport stabilization
of an evolutionary cross-diffusion cancer invasion model”, published in Journal
of Computational Physics and the paper entitled ”Solvability and numerical so-
lution of a cross-diffusion cancer invasion model, accepted for publication in the
proceeding of the ENUMATH 2023 conference.

3.1 Flux-corrected transport stabilization of an
evolutionary cross-diffusion cancer invasion
model

In this paper we considered a haptotactic counterpart of the problem given in the
previous chapter as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = −χ∇ · (u∇c) + µu(1 − u) in Ω × (0, T ],
ct = −pc in Ω × (0, T ],
pt = 1

ϵ
(uc− p) in Ω × (0, T ],

u ∂c
∂n

= 0 on ∂Ω × (0, T ],
(u, c, p)(·, 0) = (u0, c0, p0). in Ω,

(3.1)

As it can be seen, there is no diffusion term in the system and therefore the
technique used in the previous section is not applicable anymore. This leaves the
question of proving the solvability of this particular problem unanswered from
the analytical point of view. Though, we addressed this point from the numerical
perspective. Then we showed that, when the convective (or haptotactic) part
of the system is dominant, the standard methods for the studied system may
become unstable. Next, we employed a high-resolution nonlinear flux-corrected
transport method along with an implicit θ-method for spatial and temporal dis-
cretization, respectively. Using a consequence of Brouwer’s fixed point theorem,
we then proved that both the nonlinear scheme and its linearized version obtained
using the fixed point-iteration are solvable and positivity-preserving. Finally, the
numerical analysis were supported by carrying out several numerical simulations
in 2D.

Our main results are summarized as follows: After the aforementioned double
discretization process, the fully discrete implicit version of (3.1) has the form

cn+1
i = cn

i e−τn+1 (pn+1
i +pn

i )/2 , (3.2)

pn+1
i = e−τn+1/ϵ pn

i + 1
τ 2

n+1

⎧⎨⎩
(︃
un+1

i (ϵ− τn+1) − un
i ϵ
)︃(︃
cn+1

i (ϵ− τn+1) − cn
i ϵ
)︃

−
(︃
un+1

i ϵ− un
i (ϵ+ τn+1)

)︃(︃
cn+1

i ϵ− cn
i (ϵ+ τn+1)

)︃
e−τn+1/ϵ

+ (un+1
i − un

i )(cn+1
i − cn

i ) ϵ2
(︂
1 − e−τn+1/ϵ

)︂⎫⎬⎭, (3.3)
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(ML + θ τn+1 Ln+1) un+1 = (ML − (1 − θ) τn+1 Ln) un +
⎛⎝ M∑︂

j=1
αn+1

ij fn+1
ij

⎞⎠M

i=1

.

(3.4)

For this discretization the following result holds:

Theorem. Consider any n ∈ {0, . . . , N − 1} and let un, cn,pn ∈ RM satisfy
un ≥ 0, 1 ≥ cn ≥ 0, pn ≥ 0. Let the time step τn+1 satisfy the conditions

(1 − θ) τn+1 l
n
ii ≤ mi , θ τn+1

⎛⎝µmi + χnv κ
2 ∑︂

K∋xi

hd−2
K

⎞⎠ < mi , i = 1, . . . ,M ,

where (lnii)M
i=1 is the diagonal of Ln, nv is the number of vertices of a cell in

Th, and κ is a constant satisfying ∥∇ϕi∥L2(K) ≤ κh
d/2−1
K for any K ∈ Th and

i = 1, . . . ,M . Then there exist vectors un+1, cn+1,pn+1 ∈ RM satisfying (3.4),
(3.2), (3.3) where the limiters αn+1

ij are computed using the Zalesak algorithm
from the fluxes fn+1

ij . Moreover, these vectors satisfy un+1 ≥ 0, 1 ≥ cn+1 ≥ 0,
and pn+1 ≥ 0.
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In the present work, we investigate a model of the invasion of healthy tissue by cancer cells which 
is described by a system of nonlinear PDEs consisting of a cross-diffusion-reaction equation and 
two additional nonlinear ordinary differential equations. We show that when the convective part 
of the system, the haptotaxis term, is dominant, then straightforward numerical methods for the 
studied system may be unstable. We present an implicit finite element method using conforming 
𝑃1 or 𝑄1 finite elements to discretize the model in space and the 𝜃-method for discretization in 
time. The discrete problem is stabilized using a nonlinear flux-corrected transport approach. It is 
proved that both the nonlinear scheme and the linearized problems used in fixed-point iterations 
are solvable and positivity preserving. Several numerical experiments are presented in 2D to 
demonstrate the performance of the proposed method.

1. Introduction

Keller and Segel [1,2] proposed the first mathematical model for description of chemotactical processes. Chemotaxis refers to the 
motion in the direction to (or away from) the position of higher concentration based on the gradient of chemical substances and its 
chemotacitivity character which controls the speed of this motion. Their model has been widely extended and followed to develop 
more sophisticated and complex chemotaxis models and played a vitally important role in many areas of science, in particular 
in medical and biological applications, for example, bacteria and cell aggregation [3–5], tumor angiogenesis and invasion [6–9], 
biological pattern formation [10,5], and immune cell migration [11]. From the analytical point of view, mathematical analysis for 
chemotaxis systems of equations is a challenge and causes many questions especially in the context of the existence and uniqueness 
of solutions. In the last three decades, many researchers have been actively involved and answered some of these questions [12–17]. 
From the numerical point of view, so far a great deal of research on chemotaxis models has been done in various areas, including 
the finite difference method [7,8,18], discontinuous Galerkin method [19,20], finite element method [21–24], finite volume method 
[25], operator-splitting methods [26], or fractional step algorithms [27]. However, many analytical and numerical aspects are still 
untouched and call for further investigation.

The chemotaxis problems are usually strongly coupled nonlinear systems of equations whose solutions represent concentrations 
or densities and need to be non-negative in order to satisfy the physics behind the system. Hence, it is difficult to construct an 
efficient and accurate numerical method that does not produce solutions with negative values. Another interesting aspect is the 
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singular, spiky and oscillatory behavior of the solutions. In particular, when the chemotaxis term dominates the diffusion and reaction 
terms, standard discretization methods typically provide nonphysical oscillatory numerical solutions. To overcome this problem, 
stabilization methods can be applied. Up to now, many scientists used flux-corrected transport (FCT) algorithms, i.e., nonlinear 
high-resolution schemes introduced by Boris and Book [28–30], later developed based on linear finite element discretizations by 
Kuzmin, Löhner et al. [31–34], and further extended to linear and nonlinear space-time FEM-FCT in [35]. In [36], an implicit 
flux-corrected transport scheme was developed and applied to three benchmark examples of the general Keller–Segal model in two 
spatial dimensions. It was shown that the proposed method is positivity preserving and sufficiently accurate, even in the cases where 
solutions blow up in the center or at the boundary of the domain. The investigations of the blow-up behavior of the solutions were 
further extended to three spatial dimensions in [37]. In [38,39], an FEM-FCT scheme was coupled with a level-set method to obtain 
positivity preserving solutions on a stationary surface and evolving-in-time surfaces. It was shown that the proposed method is able 
to produce accurate numerical solutions, which makes it possible to couple the partial differential equations defined on a specific 
domain with the PDEs that are defined on the surface of this domain. This scheme was further used with operator-splitting techniques 
to solve chemotaxis models in 3D. The operator-splitting method splitted a 3D problem into a sequence of 1D subproblems and the 
FEM-FCT algorithm was used to solve each 1D subproblem separately [40]. In [41], the authors used an efficient adaptive moving 
mesh finite element approach based on the parabolic Monge–Ampère method for determining the coordinate transformation for the 
adaptive mesh combined with an FCT scheme which guarantees the non-negativity of the solutions. As a result, the computational 
cost was significantly reduced. All aforementioned techniques were also applied to the same benchmark examples. A different case 
was studied in [42,43], where the authors used the pressure-correction scheme and flux-corrected transport algorithm to propose an 
efficient linear positivity-preserving method and analyzed the error estimate for the solution of chemotaxis–Stokes equations.

In this work, we focus on a cancer-invasion model developed in [44], modeling the motion of cancer cells, degradation of extra-

cellular matrix, and certain enzymes (e.g., protease). These enzymes play an important role in the degradation of the extracellular 
matrix and they are usually activated whenever cancer cells come in contact with the extracellular matrix. In [45], we extended the 
proposed model by a diffusion term, gave a rigorous proof for the existence of the global classical solution and presented numerical 
results for a Galerkin finite element discretization. In the present paper, a diffusion term is not considered, which makes the problem 
more challenging. In [46], one of the authors of the present paper applied a positivity preserving non-standard finite difference 
method to solve the nonlinear system in 1D, see also [47] for related approaches. Here, we consider the finite element method and 
apply the FCT technique to guarantee positivity preservation. First, however, we consider the more diffusive nonlinear low-order 
method. An additional nonlinearity is then introduced by the flux correction. We prove that both nonlinear problems are solvable 
and positivity preserving. To the best of our knowledge, the current work is a first attempt to gain an insight into the applicability 
of the FCT technique to the numerical solution of a haptotaxis system without self-diffusion and to provide a rigorous analysis of the 
solvability and positivity preservation. Note that the existence and uniqueness for the FEM-FCT method applied to linear evolutionary 
convection-diffusion equations has been addressed only recently in [48,49]. We also present a fixed-point algorithm for the iterative 
solution of the FCT discretization and prove that it is well posed and provides a non-negative solution at each step. Consequently, the 
non-negativity of the approximate solution is guaranteed independently of the choice of a stopping criterion. The properties of the 
proposed FCT scheme are illustrated by various numerical simulations carried out using our newly designed algorithm in the deal.II 
library [50,51].

The outline of this paper is as follows. In Section 2, we formulate the mathematical model which is discretized by the Galerkin 
method in Section 3. Then, the FCT stabilization is introduced in Section 4, where also the solvability and positivity preservation is 
proved. The fixed-point algorithm is proposed and investigated in Section 5. In Section 6, we report several numerical simulations in 
two spatial dimensions carried out for various regimes. Finally, our results are summarized in Section 7.

2. Mathematical model

In this section, we discuss the following nondimensionalized continuous model of a malignant cancer invasion proposed by 
Perumpanani et al. in [44,52]. The model contains three unknown variables, namely the cancer cell density 𝑢 = 𝑢(𝑥, 𝑡), connective 
tissue 𝑐 = 𝑐(𝑥, 𝑡), and protease 𝑝 = 𝑝(𝑥, 𝑡), and it consists of the equations

𝜕𝑢
𝜕𝑡

= 𝜇 𝑢(1 − 𝑢) − 𝜒 ∇ ⋅ (𝑢∇𝑐) in Ω× (0, 𝑇 ] , (2.1)

𝜕𝑐
𝜕𝑡

= −𝑝𝑐 in Ω× (0, 𝑇 ] , (2.2)

𝜕𝑝
𝜕𝑡

= 𝜖−1(𝑢𝑐 − 𝑝) in Ω× (0, 𝑇 ] , (2.3)

where Ω is a bounded polyhedral domain in ℝ𝑑 , 𝑑 ∈ {1, 2, 3}, [0, 𝑇 ] is a time interval, and 𝜇, 𝜒 , 𝜖 are positive constants. Here, 𝜇
and 𝜒 denote the proliferation and haptotaxis rate of cancer cells, respectively, and the parameter 𝜖 is supposed to be small since 
the units of connective tissues and invasive cells are much larger than the protease. In the process of invasion, the connective tissue 
is affected by the invasive flux of 𝑢∇𝑐 into its compartment. Since the connective tissue does not contain any empty space large 
enough for passing of passive cancer cells, it degrades by protease which is produced by invasive cancer cells upon contact with 
connective tissue. It can be shown that if the initial conditions of the above model are non-negative, then the computed solutions 
stay non-negative at all times, for more details see [52,53,47] and the references therein.
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The system (2.1)–(2.3) is subjected to the homogeneous Neumann boundary condition

𝑢 𝜕𝑐
𝜕𝑛

= 0 on 𝜕Ω× [0, 𝑇 ] , (2.4)

where 𝑛 is the unit outward normal vector on 𝜕Ω. The above equations are endowed with the initial conditions

𝑢(𝑥,0) = 𝑢0(𝑥) , 𝑐(𝑥,0) = 𝑐0(𝑥) , 𝑝(𝑥,0) = 𝑝0(𝑥) , 𝑥 ∈Ω , (2.5)

where 𝑢0, 𝑐0, 𝑝0 ∶ Ω → [0, 1] are given functions.

In [45], we considered a modified version of (2.1)–(2.3) containing an extra diffusion term in (2.1). Precisely, instead of the 
equation (2.1), we considered

𝜕𝑢
𝜕𝑡

= 𝜇 𝑢(1 − 𝑢) − 𝜒 ∇ ⋅ (𝑢∇𝑐) + 𝛼−1Δ𝑢 in Ω× (0, 𝑇 ] (2.6)

with a positive constant 𝛼. This required to replace the boundary condition (2.4) by

𝛼−1 𝜕𝑢
𝜕𝑛

= 𝜒 𝑢 𝜕𝑐
𝜕𝑛

on 𝜕Ω× [0, 𝑇 ] .

Thus, the problem considered in this paper corresponds to the limit case 𝛼→∞ of the problem from [45]. In that paper, we proved 
the existence of global classical solutions for two- and three-dimensional bounded domains Ω with smooth boundaries and we proved 
that these solutions are non-negative. However, if (2.6) is replaced by (2.1), i.e., if no diffusion term is present, the technique used in 
[45] cannot be applied and the solvability of the model is an open problem. Our numerical results in [45] demonstrate that by fixing 
the proliferation rate 𝜇 and varying the haptotaxis 𝜒 one can make either the diffusion or the transport of the cancer cells dominant. 
The domination of the convection term can produce spurious oscillations and a blow-up in the solution of the system as it is the case 
to be considered in here.

3. A Galerkin discretization

The solution of the problem (2.1)–(2.5) satisfies

( 𝜕𝑢
𝜕𝑡
, 𝑣
)
= 𝜇

(
𝑢(1 − 𝑢), 𝑣

)
+ 𝜒

(
𝑢∇𝑐,∇𝑣

)
in (0, 𝑇 ] and for 𝑣 ∈𝐻1(Ω) , (3.1)

𝑐(𝑥, 𝑡) = 𝑐0(𝑥) e− ∫ 𝑡
0 𝑝(𝑥,𝑠) d𝑠 ∀ (𝑥, 𝑡) ∈ Ω × [0, 𝑇 ] , (3.2)

𝑝(𝑥, 𝑡) = e−𝑡∕𝜖
⎡⎢⎢⎣
𝑝0(𝑥) + 1

𝜖

𝑡

∫
0

𝑢(𝑥, 𝑠) 𝑐(𝑥, 𝑠) e𝑠∕𝜖 d𝑠
⎤⎥⎥⎦

∀ (𝑥, 𝑡) ∈ Ω × [0, 𝑇 ] , (3.3)

where (⋅, ⋅) denotes the inner product in 𝐿2(Ω) or 𝐿2(Ω)𝑑 . To define an approximate solution of (2.1)–(2.5), we first introduce a 
triangulation ℎ of Ω consisting of simplicial (for 𝑑 = 1, 2, 3), quadrilateral (for 𝑑 = 2) or hexahedral (for 𝑑 = 3) shape-regular cells 
possessing the usual compatibility properties (see, e.g., [54]). For any cell 𝐾 ∈ ℎ, we denote by ℎ𝐾 the diameter of 𝐾 and assume 
that ℎ𝐾 ≤ ℎ. We denote by 𝑉ℎ ⊂ 𝐻1(Ω) the usual conforming 𝑃1 or 𝑄1 finite element space constructed using the triangulation ℎ. Let 𝜙1, … , 𝜙𝑀 be the standard basis functions of 𝑉ℎ associated with the vertices 𝑥1, … , 𝑥𝑀 of ℎ. Thus, the basis functions are 
non-negative and satisfy 𝜙𝑖(𝑥𝑗 ) = 𝛿𝑖𝑗 for 𝑖, 𝑗 = 1, … , 𝑀 , where 𝛿𝑖𝑗 is the Kronecker symbol. Any function 𝑣ℎ ∈ 𝑉ℎ can be identified 
with a coefficient vector 𝐯 = (𝑣𝑗 )𝑀𝑗=1 with respect to these basis functions. Precisely, introducing the bijective operator 𝜋ℎ ∶ℝ𝑀 → 𝑉ℎ
by

𝜋ℎ𝐯 =
𝑀∑
𝑗=1

𝑣𝑗 𝜙𝑗 ,

one has 𝑣ℎ = 𝜋ℎ𝐯. The assumed shape regularity of ℎ implies that

‖∇𝜙𝑖‖𝐿2(𝐾) ≤ 𝜅 ℎ𝑑∕2−1𝐾 ∀ 𝐾 ∈ ℎ , 𝑖 = 1,… ,𝑀 , (3.4)

where 𝜅 is a fixed constant independent of 𝑖, 𝐾 , and ℎ. Next, the time interval [0, 𝑇 ] is decomposed by 0 = 𝑡0 < 𝑡1 <⋯ < 𝑡𝑁 = 𝑇 and 
we set 𝜏𝑛 = 𝑡𝑛 − 𝑡𝑛−1, 𝑛 = 1, … , 𝑁 . At each time level 𝑡𝑛, the solution of (2.1)–(2.5) will be approximated by functions 𝑢𝑛ℎ, 𝑐

𝑛
ℎ, 𝑝

𝑛
ℎ ∈ 𝑉ℎ. 

These functions can be identified with coefficient vectors 𝐮𝑛 = (𝑢𝑛𝑗 )
𝑀
𝑗=1, 𝐜𝑛 = (𝑐𝑛𝑗 )

𝑀
𝑗=1, 𝐩𝑛 = (𝑝𝑛𝑗 )

𝑀
𝑗=1, respectively, satisfying 𝑢𝑛ℎ = 𝜋ℎ𝐮𝑛, 

𝑐𝑛ℎ = 𝜋ℎ𝐜𝑛, 𝑝𝑛ℎ = 𝜋ℎ𝐩𝑛. Note that 𝑢𝑛ℎ(𝑥𝑖) = 𝑢𝑛𝑖 , 𝑐
𝑛
ℎ(𝑥𝑖) = 𝑐𝑛𝑖 , and 𝑝𝑛ℎ(𝑥𝑖) = 𝑝𝑛𝑖 for 𝑖 = 1, … , 𝑀 . We set

𝑢0𝑖 = 𝑢0(𝑥𝑖) , 𝑐0𝑖 = 𝑐0(𝑥𝑖) , 𝑝0𝑖 = 𝑝0(𝑥𝑖) , 𝑖 = 1,… ,𝑀 . (3.5)

Using linear interpolation with respect to time between the time levels gives functions 𝑢ℎ,𝜏 , 𝑐ℎ,𝜏 , 𝑝ℎ,𝜏 defined on Ω × [0, 𝑇 ]. For 
example, 𝑢ℎ,𝜏 satisfies

𝑢ℎ,𝜏 (𝑥, 𝑡) =
1

𝜏𝑛+1

[
𝑢𝑛+1ℎ (𝑥)(𝑡− 𝑡𝑛) + 𝑢𝑛ℎ(𝑥)(𝑡𝑛+1 − 𝑡)

]
∀ 𝑥 ∈Ω , 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1] , 𝑛 = 0,… ,𝑁 − 1 ,
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or, equivalently,

𝑢ℎ,𝜏 (𝑥𝑖, 𝑡) =
1

𝜏𝑛+1

[
𝑢𝑛+1𝑖 (𝑡− 𝑡𝑛) + 𝑢𝑛𝑖 (𝑡𝑛+1 − 𝑡)

]
∀ 𝑖 = 1,… ,𝑀 , 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1] , 𝑛 = 0,… ,𝑁 − 1 .

Replacing the space 𝐻1(Ω) in (3.1) by 𝑉ℎ and applying the 𝜃-method for discretization in time (with 𝜃 ∈ [0, 1]), one obtains

(
𝑢𝑛+1ℎ − 𝑢𝑛ℎ
𝜏𝑛+1

, 𝑣ℎ

)
= 𝜃 𝜇

(
𝑢𝑛+1ℎ (1 − 𝑢𝑛+1ℎ ), 𝑣ℎ

)
+ 𝜃 𝜒

(
𝑢𝑛+1ℎ ∇𝑐𝑛+1ℎ ,∇𝑣ℎ

)

+ (1 − 𝜃)𝜇
(
𝑢𝑛ℎ(1 − 𝑢𝑛ℎ), 𝑣ℎ

)
+ (1 − 𝜃)𝜒

(
𝑢𝑛ℎ∇𝑐

𝑛
ℎ,∇𝑣ℎ

)
∀ 𝑣ℎ ∈ 𝑉ℎ , 𝑛 = 0,… ,𝑁 − 1 . (3.6)

Defining the matrices 𝕄 = (𝑚𝑖𝑗 )𝑀𝑖,𝑗=1 and 𝔸𝑛 = (𝑎𝑛𝑖𝑗 )
𝑀
𝑖,𝑗=1 with

𝑚𝑖𝑗 = (𝜙𝑗,𝜙𝑖) , 𝑎𝑛𝑖𝑗 = −𝜇
(
𝜙𝑗 (1 − 𝑢𝑛ℎ), 𝜙𝑖

)
− 𝜒

(
𝜙𝑗∇𝑐𝑛ℎ,∇𝜙𝑖

)
,

the discrete variational problem (3.6) can be written in the matrix form

(𝕄+ 𝜃 𝜏𝑛+1𝔸𝑛+1)𝐮𝑛+1 = (𝕄− (1 − 𝜃) 𝜏𝑛+1𝔸𝑛)𝐮𝑛 , 𝑛 = 0,… ,𝑁 − 1 . (3.7)

The relations (3.2) and (3.3) suggest to define the coefficients of 𝑐𝑛ℎ and 𝑝𝑛ℎ by

𝑐𝑛𝑖 = 𝑐0(𝑥𝑖) e
− ∫ 𝑡𝑛

0 𝑝ℎ,𝜏 (𝑥𝑖,𝑠) d𝑠 , 𝑖 = 1,… ,𝑀 , 𝑛 = 0,… ,𝑁 , (3.8)

𝑝𝑛𝑖 = e−𝑡𝑛∕𝜖
⎡
⎢⎢⎣
𝑝0(𝑥𝑖) +

1
𝜖

𝑡𝑛

∫
0

𝑢ℎ,𝜏 (𝑥𝑖, 𝑠) 𝑐ℎ,𝜏 (𝑥𝑖, 𝑠) e𝑠∕𝜖 d𝑠
⎤
⎥⎥⎦
, 𝑖 = 1,… ,𝑀 , 𝑛 = 0,… ,𝑁 . (3.9)

Then, for 𝑖 = 1, … , 𝑀 and 𝑛 = 0, … , 𝑁 − 1, one has

𝑐𝑛+1𝑖 = 𝑐𝑛𝑖 e
− ∫ 𝑡𝑛+1

𝑡𝑛
𝑝ℎ,𝜏 (𝑥𝑖,𝑠) d𝑠 , (3.10)

𝑝𝑛+1𝑖 = e−𝜏𝑛+1∕𝜖 𝑝𝑛𝑖 +
1
𝜖
e−𝑡𝑛+1∕𝜖

𝑡𝑛+1

∫
𝑡𝑛

𝑢ℎ,𝜏 (𝑥𝑖, 𝑠) 𝑐ℎ,𝜏 (𝑥𝑖, 𝑠) e𝑠∕𝜖 d𝑠 . (3.11)

A direct computation gives

𝑐𝑛+1𝑖 = 𝑐𝑛𝑖 e
−𝜏𝑛+1 (𝑝𝑛+1𝑖 +𝑝𝑛𝑖 )∕2 , (3.12)

𝑝𝑛+1𝑖 = e−𝜏𝑛+1∕𝜖 𝑝𝑛𝑖 +
1

𝜏2𝑛+1

{(
𝑢𝑛+1𝑖 (𝜖 − 𝜏𝑛+1) − 𝑢𝑛𝑖 𝜖

)(
𝑐𝑛+1𝑖 (𝜖 − 𝜏𝑛+1) − 𝑐𝑛𝑖 𝜖

)

−
(
𝑢𝑛+1𝑖 𝜖 − 𝑢𝑛𝑖 (𝜖 + 𝜏𝑛+1)

)(
𝑐𝑛+1𝑖 𝜖 − 𝑐𝑛𝑖 (𝜖 + 𝜏𝑛+1)

)
e−𝜏𝑛+1∕𝜖

+(𝑢𝑛+1𝑖 − 𝑢𝑛𝑖 )(𝑐
𝑛+1
𝑖 − 𝑐𝑛𝑖 ) 𝜖

2 (1 − e−𝜏𝑛+1∕𝜖
)}

, (3.13)

for 𝑖 = 1, … , 𝑀 and 𝑛 = 0, … , 𝑁 − 1. Note that the effects described by the model (2.1)–(2.5), such as haptotaxis, strongly rely on 
the nonlinear coupling terms. Therefore, all nonlinearities are treated implicitly in the discrete problem (3.7)–(3.9).

To compute a solution of the nonlinear problem (3.7)–(3.9) at time 𝑡𝑛+1 (assuming that the solution vectors 𝐮𝑛, 𝐜𝑛, and 𝐩𝑛 at the 
previous time instant 𝑡𝑛 are known), we apply simple fixed-point iterations leading to sequences 𝐮𝑛+1𝑘 = (𝑢𝑛+1𝑗,𝑘 )𝑀𝑗=1, 𝐜𝑛+1𝑘 = (𝑐𝑛+1𝑗,𝑘 )𝑀𝑗=1, 
and 𝐩𝑛+1𝑘 = (𝑝𝑛+1𝑗,𝑘 )𝑀𝑗=1. We set 𝐮𝑛+10 = 𝐮𝑛, 𝐜𝑛+10 = 𝐜𝑛, 𝐩𝑛+10 = 𝐩𝑛 and then, for 𝑘 > 0 and 𝑖 = 1, … , 𝑀 , we define

𝑐𝑛+1𝑖,𝑘 = 𝑐𝑛𝑖 e
−𝜏𝑛+1 (𝑝𝑛+1𝑖,𝑘−1+𝑝

𝑛
𝑖 )∕2 , (3.14)

𝑝𝑛+1𝑖,𝑘 =e−𝜏𝑛+1∕𝜖 𝑝𝑛𝑖 +
1

𝜏2𝑛+1

{(
𝑢𝑛+1𝑖,𝑘−1 (𝜖 − 𝜏𝑛+1) − 𝑢𝑛𝑖 𝜖

)(
𝑐𝑛+1𝑖,𝑘 (𝜖 − 𝜏𝑛+1) − 𝑐𝑛𝑖 𝜖

)

−
(
𝑢𝑛+1𝑖,𝑘−1 𝜖 − 𝑢𝑛𝑖 (𝜖 + 𝜏𝑛+1)

)(
𝑐𝑛+1𝑖,𝑘 𝜖 − 𝑐𝑛𝑖 (𝜖 + 𝜏𝑛+1)

)
e−𝜏𝑛+1∕𝜖

+(𝑢𝑛+1𝑖,𝑘−1 − 𝑢𝑛𝑖 )(𝑐
𝑛+1
𝑖,𝑘 − 𝑐𝑛𝑖 ) 𝜖

2 (1 − e−𝜏𝑛+1∕𝜖
)}

. (3.15)

The iterate 𝐮𝑛+1𝑘 is computed by solving the linear system

(𝕄+ 𝜃 𝜏𝑛+1𝔸𝑛+1
𝑘−1)𝐮

𝑛+1
𝑘 = (𝕄− (1 − 𝜃) 𝜏𝑛+1𝔸𝑛)𝐮𝑛 , (3.16)
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where the matrix 𝔸𝑛+1
𝑘−1 is defined by

𝔸𝑛+1
𝑘−1 =

(
− 𝜇

(
𝜙𝑗 (1 − 𝑢𝑛+1ℎ,𝑘−1), 𝜙𝑖

)
− 𝜒

(
𝜙𝑗∇𝑐𝑛+1ℎ,𝑘 ,∇𝜙𝑖

))𝑀
𝑖,𝑗=1

(3.17)

and 𝑢𝑛+1ℎ,𝑘−1 = 𝜋ℎ𝐮𝑛+1𝑘−1 and 𝑐𝑛+1ℎ,𝑘 = 𝜋ℎ𝐜𝑛+1𝑘 are the finite element functions corresponding to the coefficient vectors 𝐮𝑛+1𝑘−1 and 𝐜𝑛+1𝑘 , 
respectively.

The linear system (3.16) has the form

𝔹𝐮𝑛+1 =𝕂𝐮𝑛 (3.18)

and it is desirable that this system is positivity preserving, i.e., that 𝐮𝑛+1 ≥ 0 if 𝐮𝑛 ≥ 0. A necessary and sufficient condition for this 
property is 𝔹−1𝕂 ≥ 0 but this condition is difficult to verify. Sufficient conditions are formulated in the following lemma. Note that, 
throughout the paper, an inequality of the type 𝐮𝑛 ≥ 0 means that the inequality holds for each component of the vector 𝐮𝑛. Similarly, 
the fact that all entries of a matrix 𝕂 are non-negative is expressed by 𝕂 ≥ 0.

Lemma 3.1. Let the matrices 𝔹 = (𝑏𝑖𝑗 )𝑀𝑖,𝑗=1 and 𝕂 = (𝑘𝑖𝑗 )𝑀𝑖,𝑗=1 satisfy

𝑏𝑖𝑖 ≥ 0 , 𝑘𝑖𝑖 ≥ 0 , 𝑏𝑖𝑗 ⩽ 0 , 𝑘𝑖𝑗 ⩾ 0, ∀ 𝑖, 𝑗 = 1,… ,𝑀 , 𝑖 ≠ 𝑗 ,

and let 𝔹 be a strictly diagonally dominant or an irreducibly diagonally dominant matrix. Then 𝔹 is an M-matrix and the scheme (3.18) is 
positivity preserving.

Proof. According to [55, Theorem 3.27], 𝔹 is an M-matrix. Thus, 𝔹−1 ≥ 0 and hence also 𝔹−1𝕂 ≥ 0, which implies the result. □

In general, the linear system (3.16) originating from a standard Galerkin discretization does not satisfy the above constraints 
because the mass matrix is non-negative and the stiffness matrix may contain positive off-diagonal entries. Our numerical results in 
Section 6 show that indeed the concentration 𝐮 may become negative in some parts of the computational domain Ω.

4. FCT stabilization

As we will see in Section 6, the magnitude of the solutions gradients can be extremely large in some regions. The solution of the 
Galerkin discretization from the previous section may become negative especially in these regions. As a remedy, in the following we 
will modify the Galerkin discretization to guarantee a positivity preservation property. As shown by Kuzmin [32–34], this property 
can be readily enforced at the discrete level using a conservative manipulation of the mass and stiffness matrices. The former will 
be approximated by its diagonal counterpart 𝕄L constructed using row-sum mass lumping, whereas the latter will be modified by 
adding an artificial diffusion matrix. To limit the amount of the artificial diffusion, the FEM-FCT approach will be applied following 
[33].

Since the methods considered in this section guarantee that the approximate solutions are non-negative, it is possible to replace 
the matrix 𝔸𝑛 from the previous section by 𝔸̃𝑛 = (𝑎̃𝑛𝑖𝑗 )

𝑀
𝑖,𝑗=1 with

𝑎̃𝑛𝑖𝑗 = −𝜇
(
𝜙𝑗 (1 − |𝑢𝑛ℎ|), 𝜙𝑖

)
− 𝜒

(
𝜙𝑗∇𝑐𝑛ℎ,∇𝜙𝑖

)
.

The matrix 𝔸̃𝑛 is more suitable for theoretical considerations than the matrix 𝔸𝑛 . However, a non-negative approximate solution 𝑢𝑛ℎ, 
𝑐𝑛ℎ, 𝑝𝑛ℎ satisfying a discrete problem based on the matrix 𝔸̃𝑛 will satisfy also the corresponding discrete problem with the original 
matrix 𝔸𝑛.

Using the matrix 𝔸̃𝑛, we introduce a symmetric artificial diffusion matrix 𝔻𝑛 = (𝑑𝑛𝑖𝑗 )
𝑀
𝑖,𝑗=1 defined by

𝑑𝑛𝑖𝑗 = −max{𝑎̃𝑛𝑖𝑗 ,0, 𝑎̃
𝑛
𝑗𝑖} for 𝑖 ≠ 𝑗 , 𝑑𝑛𝑖𝑖 = −

𝑀∑
𝑗=1,𝑗≠𝑖

𝑑𝑛𝑖𝑗 ,

and we set 𝕃𝑛 = 𝔸̃𝑛 + 𝔻𝑛. Note that 𝕃𝑛 = (𝑙𝑛𝑖𝑗 )
𝑀
𝑖,𝑗=1 is a Z-matrix (i.e., it has non-positive off-diagonal entries). Furthermore, we 

introduce the lumped mass matrix 𝕄L = diag(𝑚1, … , 𝑚𝑀 ) with

𝑚𝑖 =
𝑀∑
𝑗=1

𝑚𝑖𝑗 , 𝑖 = 1,… ,𝑀 .

Now, the simplest way to enforce the positivity preservation is to consider the so-called low-order method corresponding to the 
so-called high-order method (3.7) which is defined by

(𝕄L + 𝜃 𝜏𝑛+1 𝕃𝑛+1)𝐮𝑛+1 = (𝕄L − (1 − 𝜃) 𝜏𝑛+1 𝕃𝑛)𝐮𝑛 , 𝑛 = 0,… ,𝑁 − 1 . (4.1)

Note that the matrix 𝕃𝑛+1 depends on 𝐮𝑛+1 and 𝐜𝑛+1 so that the low-order problem is again nonlinear. In contrast to the Galerkin 
discretization (3.7), it is now possible to assure the positivity preservation for sufficiently small time steps.
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Lemma 4.1. Let the time step 𝜏𝑛+1 satisfy the conditions

(1 − 𝜃) 𝜏𝑛+1 𝑙𝑛𝑖𝑖 ≤𝑚𝑖 , 𝜃 𝜏𝑛+1
(
𝜇𝑚𝑖 + 𝜒

(
∇𝑐𝑛+1ℎ ,∇𝜙𝑖

))
<𝑚𝑖 , 𝑖 = 1,… ,𝑀 . (4.2)

Then the matrix 𝕄L − (1 − 𝜃) 𝜏𝑛+1 𝕃𝑛 has non-negative entries and 𝕄L + 𝜃 𝜏𝑛+1 𝕃𝑛+1 is an M-matrix.

Proof. The first condition in (4.2) implies that 𝕄L − (1 − 𝜃) 𝜏𝑛+1 𝕃𝑛 has non-negative diagonal entries. The off-diagonal entries of 
this matrix are non-negative as well, since 𝕄L is diagonal and 𝕃𝑛 is a Z-matrix.

Denoting 𝔹 =𝕄L + 𝜃 𝜏𝑛+1 𝕃𝑛+1, one has for any 𝑖 ∈ {1, … , 𝑀}

𝑀∑
𝑗=1

𝑏𝑖𝑗 =𝑚𝑖 + 𝜃 𝜏𝑛+1
𝑀∑
𝑗=1

𝑎̃𝑛+1𝑖𝑗 =𝑚𝑖 − 𝜃 𝜏𝑛+1
(
𝜇
(
1 − |𝑢𝑛+1ℎ |, 𝜙𝑖

)
+ 𝜒

(
∇𝑐𝑛+1ℎ ,∇𝜙𝑖

))
,

where we used the fact that 
∑𝑀

𝑗=1 𝜙𝑗 = 1. Since (1, 𝜙𝑖) = 𝑚𝑖, it follows from the second condition in (4.2) that 
∑𝑀

𝑗=1 𝑏𝑖𝑗 > 0. Thus, 
𝑏𝑖𝑖 >

∑
𝑗≠𝑖 |𝑏𝑖𝑗 |, i.e., 𝔹 is strictly diagonally dominant and hence non-singular. Moreover, 𝔹 is a matrix of non-negative type and 

hence it is an M-matrix (see, e.g., [56, Corollary 3.13]). □

Corollary 4.2. Let the time step 𝜏𝑛+1 satisfy the conditions (4.2). Then the low-order scheme (4.1) is positivity preserving, i.e.,

𝐮𝑛 ⩾ 0 ⇒ 𝐮𝑛+1 ⩾ 0 . (4.3)

Proof. According to Lemma 4.1, the matrix 𝕄L + 𝜃 𝜏𝑛+1 𝕃𝑛+1 is non-singular, (𝕄L + 𝜃 𝜏𝑛+1 𝕃𝑛+1)−1 ≥ 0, and 𝕄L − (1 − 𝜃) 𝜏𝑛+1 𝕃𝑛 ≥ 0, 
which immediately implies (4.3). □

Remark 4.3. The second condition in (4.2) involves 𝑐𝑛+1ℎ which implicitly depends on 𝜏𝑛+1 through 𝐩𝑛+1 and hence also through 
𝐮𝑛+1. Therefore, it is desirable to replace this condition by a condition independent of 𝑐𝑛+1ℎ . This is possible since we will show that 
the values of 𝑐𝑛+1ℎ are in the interval [0, 1]. Then, employing (3.4), one gets

(
∇𝑐𝑛+1ℎ ,∇𝜙𝑖

)
=

𝑀∑
𝑗=1

𝑐𝑛+1𝑗 (∇𝜙𝑗,∇𝜙𝑖) ≤ ∑
𝐾∋𝑥𝑖

𝑀∑
𝑗=1

‖∇𝜙𝑗‖𝐿2(𝐾) ‖∇𝜙𝑖‖𝐿2(𝐾) ≤ 𝑛v 𝜅
2 ∑
𝐾∋𝑥𝑖

ℎ𝑑−2𝐾 ,

where 𝑛v is the number of vertices of a cell in ℎ (𝑛v = 𝑑 +1 for simplices, 𝑛v = 4 for quadrilaterals, and 𝑛v = 8 for hexahedra). Thus, 
if the time step 𝜏𝑛+1 satisfies

𝜃 𝜏𝑛+1

(
𝜇𝑚𝑖 + 𝜒 𝑛v 𝜅

2 ∑
𝐾∋𝑥𝑖

ℎ𝑑−2𝐾

)
< 𝑚𝑖 , 𝑖 = 1,… ,𝑀 , (4.4)

and 𝑐𝑛+1ℎ ∈ [0, 1], then the second condition in (4.2) holds. Note that (4.4) may be significantly more restrictive than (4.2).

To prove that the low-order discretization consisting of the equations (4.1), (3.12), and (3.13) has a solution, we shall use the 
following consequence of Brouwer’s fixed-point theorem.

Lemma 4.4. Let 𝑋 be a finite-dimensional Hilbert space with inner product (⋅, ⋅)𝑋 and norm ‖ ⋅‖𝑋 . Let 𝑃 ∶𝑋 →𝑋 be a continuous mapping 
and 𝐾 > 0 a real number such that (𝑃𝑥, 𝑥)𝑋 > 0 for any 𝑥 ∈𝑋 with ‖𝑥‖𝑋 =𝐾 . Then there exists 𝑥 ∈𝑋 such that ‖𝑥‖𝑋 <𝐾 and 𝑃𝑥 = 0.

Proof. See [57, p. 164, Lemma 1.4]. □

Theorem 4.5. Consider any 𝑛 ∈ {0, … , 𝑁 −1} and let 𝐮𝑛, 𝐜𝑛, 𝐩𝑛 ∈ℝ𝑀 satisfy 𝐮𝑛 ≥ 0, 1 ≥ 𝐜𝑛 ≥ 0, 𝐩𝑛 ≥ 0. Let the time step 𝜏𝑛+1 satisfy the 
conditions

(1 − 𝜃) 𝜏𝑛+1 𝑙𝑛𝑖𝑖 ≤𝑚𝑖 , 𝜃 𝜏𝑛+1

(
𝜇𝑚𝑖 + 𝜒 𝑛v 𝜅

2 ∑
𝐾∋𝑥𝑖

ℎ𝑑−2𝐾

)
<𝑚𝑖 , 𝑖 = 1,… ,𝑀 . (4.5)

Then there exist vectors 𝐮𝑛+1, 𝐜𝑛+1, 𝐩𝑛+1 ∈ℝ𝑀 satisfying (4.1), (3.12), (3.13) and 𝐮𝑛+1 ≥ 0, 1 ≥ 𝐜𝑛+1 ≥ 0, 𝐩𝑛+1 ≥ 0.

Proof. To get rid of the exponential dependence on 𝐩𝑛+1 when estimating the nonlinear terms in (4.1), we replace (3.12) by

𝑐𝑛+1𝑖 = 𝑐𝑛𝑖 e
−𝜏𝑛+1 (|𝑝𝑛+1𝑖 |+𝑝𝑛𝑖 )∕2 , 𝑖 = 1,… ,𝑀 . (4.6)

At the end of the proof, we will show that 𝐩𝑛+1 ≥ 0 so that the original relation (3.12) will be recovered.
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For 𝑢, 𝑝 ∈ℝ and 𝑖 = 1, … , 𝑀 , we introduce the notation

𝐶𝑖(𝑝) = 𝑐𝑛𝑖 e
−𝜏𝑛+1 (|𝑝|+𝑝𝑛𝑖 )∕2 (4.7)

and

𝑃𝑖(𝑢, 𝑝) =
1

𝜏2𝑛+1
𝑢𝐶𝑖(𝑝)

{
(𝜖 − 𝜏𝑛+1)2 + 𝜖2

(
1 − 2e−𝜏𝑛+1∕𝜖

)}

+ 𝜖
𝜏2𝑛+1

𝑢 𝑐𝑛𝑖

{
𝜏𝑛+1

(
1 + e−𝜏𝑛+1∕𝜖

)
− 2 𝜖

(
1 − e−𝜏𝑛+1∕𝜖

)}

+ 𝜖
𝜏2𝑛+1

𝑢𝑛𝑖 𝐶𝑖(𝑝)

{
𝜏𝑛+1

(
1 + e−𝜏𝑛+1∕𝜖

)
− 2 𝜖

(
1 − e−𝜏𝑛+1∕𝜖

)}

+ 1
𝜏2𝑛+1

𝑢𝑛𝑖 𝑐
𝑛
𝑖

{
𝜖2
(
2 − e−𝜏𝑛+1∕𝜖

)
− (𝜖 + 𝜏𝑛+1)2 e−𝜏𝑛+1∕𝜖

}
+ e−𝜏𝑛+1∕𝜖 𝑝𝑛𝑖 . (4.8)

Then, the validity of (4.6) and (3.13) is equivalent to

𝑐𝑛+1𝑖 = 𝐶𝑖(𝑝𝑛+1𝑖 ) , 𝑝𝑛+1𝑖 = 𝑃𝑖(𝑢𝑛+1𝑖 , 𝑝𝑛+1𝑖 ) , 𝑖 = 1,… ,𝑀 .

Note that

|𝑃𝑖(𝑢, 𝑝)| ≤ (|𝑢|+ 𝑢𝑛𝑖 ) 𝑐
𝑛
𝑖

(2 𝜖 + 𝜏𝑛+1
𝜏𝑛+1

)2
+ 𝑝𝑛𝑖 ∀ 𝑢, 𝑝 ∈ℝ , 𝑖 = 1,… ,𝑀 . (4.9)

Furthermore, for 𝐮, 𝐩 ∈ℝ𝑀 and 𝑖, 𝑗 = 1, … , 𝑀 , we denote

𝐴𝑖𝑗 (𝐮,𝐩) = −𝜇
(
𝜙𝑗 (1 − |𝜋ℎ𝐮|), 𝜙𝑖

)
− 𝜒

(
𝜙𝑗∇(𝜋ℎ𝐂(𝐩)),∇𝜙𝑖

)
, (4.10)

𝐷𝑖𝑗 (𝐮,𝐩) = −max{𝐴𝑖𝑗 (𝐮,𝐩),0,𝐴𝑗𝑖(𝐮,𝐩)} for 𝑖 ≠ 𝑗 , 𝐷𝑖𝑖(𝐮,𝐩) = −
𝑀∑

𝑗=1,𝑗≠𝑖
𝐷𝑖𝑗 (𝐮,𝐩) , (4.11)

𝑆𝑖(𝐮,𝐩) =𝑚𝑖 𝑢𝑖 + 𝜃 𝜏𝑛+1
𝑀∑
𝑗=1

(𝐴𝑖𝑗 (𝐮,𝐩) +𝐷𝑖𝑗 (𝐮,𝐩))𝑢𝑗 − [(𝕄L − (1 − 𝜃) 𝜏𝑛+1 𝕃𝑛)𝐮𝑛]𝑖 , (4.12)

where 𝐂(𝐩) = (𝐶𝑖(𝑝𝑖))𝑀𝑖=1. Then (4.1) with 𝑐𝑛+1ℎ defined by (4.6) is equivalent to

𝑆𝑖(𝐮𝑛+1,𝐩𝑛+1) = 0 , 𝑖 = 1,… ,𝑀 .

Therefore, defining the operator 𝑃 ∶ℝ2𝑀 →ℝ2𝑀 by

𝑃 𝐔 = (𝑆1(𝐮,𝐩),… , 𝑆𝑀 (𝐮,𝐩), 𝑝1 − 𝑃1(𝑢1, 𝑝1),… , 𝑝𝑀 − 𝑃𝑀 (𝑢𝑀,𝑝𝑀 )) ∀ 𝐔 = (𝐮,𝐩) ∈ℝ2𝑀 , (4.13)

the vectors 𝐮𝑛+1, 𝐜𝑛+1, 𝐩𝑛+1 are a solution of (4.1), (4.6), (3.13) if and only if 𝐔 = (𝐮𝑛+1, 𝐩𝑛+1) satisfies 𝑃 𝐔 = 0 and 𝐜𝑛+1 =𝐂(𝐩𝑛+1).
To show that the equation 𝑃 𝐔 = 0 has a solution, we will verify the assumptions of Lemma 4.4. Since it is obvious that the 

operator 𝑃 is continuous, it suffices to investigate the product (𝑃 𝐔, 𝐔), where (⋅, ⋅) is the Euclidean inner product in ℝ2𝑀 . We will 
denote the corresponding norm by ‖ ⋅ ‖. The Euclidean norm in ℝ𝑀 will be denoted by ‖ ⋅ ‖𝑀 . Since the matrix (𝐷𝑖𝑗 (𝐮, 𝐩))𝑀𝑖,𝑗=1 is 
symmetric and has zero row sums and non-positive off-diagonal entries, one obtains

𝑀∑
𝑖,𝑗=1

𝑢𝑖 𝐷𝑖𝑗 (𝐮,𝐩)𝑢𝑗 = −1
2

𝑀∑
𝑖,𝑗=1

𝐷𝑖𝑗 (𝐮,𝐩)(𝑢𝑖 − 𝑢𝑗 )2 ≥ 0 ∀ 𝐮,𝐩 ∈ℝ𝑀 .

Furthermore, since 0 ≤ 𝐂(𝐩) ≤ 1, the expressions 
(
𝜙𝑗∇(𝜋ℎ𝐂(𝐩)), ∇𝜙𝑖

)
can be bounded independently of 𝐩. Therefore, using the 

equivalence of norms on finite-dimensional spaces, one obtains

𝜃 𝜏𝑛+1
𝑀∑

𝑖,𝑗=1
𝑢𝑖 (𝐴𝑖𝑗 (𝐮,𝐩) +𝐷𝑖𝑗 (𝐮,𝐩))𝑢𝑗 ≥ 𝜃 𝜏𝑛+1 𝜇 ‖𝜋ℎ𝐮‖3𝐿3(Ω) −𝐶1 ‖𝐮‖2𝑀 ≥ 𝐶2 ‖𝐮‖3𝑀 −𝐶1 ‖𝐮‖2𝑀 ,

where 𝐶1 and 𝐶2 are positive constants independent of 𝐮 and 𝐩. Thus,

𝑀∑
𝑖=1

𝑢𝑖 𝑆𝑖(𝐮,𝐩) ≥ 𝐶2 ‖𝐮‖3𝑀 −𝐶1 ‖𝐮‖2𝑀 −𝐶3 ‖𝐮‖𝑀 , (4.14)

where 𝐶3 = ‖(𝕄L − (1 − 𝜃) 𝜏𝑛+1 𝕃𝑛) 𝐮𝑛‖𝑀 . Finally, using (4.9), it follows that
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𝑀∑
𝑖=1

𝑝𝑖 (𝑝𝑖 − 𝑃𝑖(𝑢𝑖, 𝑝𝑖)) ≥ ‖𝐩‖2𝑀 −𝐶4 ‖𝐩‖𝑀 ‖𝐮‖𝑀 −𝐶5 ‖𝐩‖𝑀,

with positive constants 𝐶4 and 𝐶5 independent of 𝐮 and 𝐩. Applying the Young inequality, the previous two inequalities imply that 
there exist positive constants 𝐶6 and 𝐶7 such that

(𝑃 𝐔,𝐔) ≥ 1
2
‖𝐔‖2 +𝐶2 ‖𝐮‖3𝑀 −𝐶6 ‖𝐮‖2𝑀 −𝐶7 ≥ 1

2
‖𝐔‖2 − 𝐶3

6

𝐶2
2

−𝐶7 ∀ 𝐔 = (𝐮,𝐩) ∈ℝ2𝑀 .

Thus, for any 𝐾 >
√

2𝐶3
6 ∕𝐶

2
2 + 2𝐶7, one has (𝑃 𝐔, 𝐔) > 0 for any 𝐔 ∈ℝ2𝑀 with ‖𝐔‖ =𝐾 . Therefore, according to Lemma 4.4, there 

exists a solution 𝐔 of the equation 𝑃 𝐔 = 0 and hence also a solution 𝐮𝑛+1, 𝐜𝑛+1, 𝐩𝑛+1 of (4.1), (4.6), and (3.13).

It immediately follows from (4.6) that 0 ≤ 𝐜𝑛+1 ≤ 1. Thus, according to Corollary 4.2 and Remark 4.3, the solution satisfies 
𝐮𝑛+1 ≥ 0. Since (3.13) is equivalent to (3.11), one also has 𝐩𝑛+1 ≥ 0 and hence (3.12) is satisfied as well. □

Although the solution of (4.1), (3.12), (3.13) does not possess negative values under the time step restrictions (4.2), it is usu-

ally very inaccurate since too much artificial diffusion is introduced by the modifications leading to the low-order method (4.1), 
cf. Section 6.3. Therefore, in the FEM-FCT methodology, a correction term 𝐟

𝑛+1
is added in such a way that the method becomes less 

diffusive while negative values are still excluded. This leads to an extension of (4.1) in the form

(𝕄L + 𝜃 𝜏𝑛+1 𝕃𝑛+1)𝐮𝑛+1 = (𝕄L − (1 − 𝜃) 𝜏𝑛+1 𝕃𝑛)𝐮𝑛 + 𝐟
𝑛+1

.

The high-order method (3.7) (with 𝔸𝑛 replaced by 𝔸̃𝑛) is recovered if

𝐟
𝑛+1

= (𝕄L −𝕄)(𝐮𝑛+1 − 𝐮𝑛) + 𝜃 𝜏𝑛+1𝔻𝑛+1 𝐮𝑛+1 + (1 − 𝜃) 𝜏𝑛+1𝔻𝑛 𝐮𝑛 . (4.15)

Since 𝔻𝑛 has zero row sums, one can write

(𝔻𝑛 𝐮𝑛)𝑖 =
𝑀∑
𝑗=1

𝑑𝑛𝑖𝑗 (𝑢
𝑛
𝑗 − 𝑢𝑛𝑖 ) , 𝑖 = 1,… ,𝑀 .

For the terms with the matrices 𝔻𝑛+1 and 𝕄L −𝕄 (which also have zero row sums), one can proceed analogously and hence (4.15)

holds if an only if

𝐟
𝑛+1

=

( 𝑀∑
𝑗=1

𝑓𝑛+1
𝑖𝑗

)𝑀

𝑖=1

,

where the algebraic fluxes 𝑓𝑛+1
𝑖𝑗 are given by

𝑓𝑛+1
𝑖𝑗 = −𝑚𝑖𝑗 (𝑢𝑛+1𝑗 − 𝑢𝑛+1𝑖 ) +𝑚𝑖𝑗 (𝑢𝑛𝑗 − 𝑢𝑛𝑖 ) + 𝜃 𝜏𝑛+1 𝑑

𝑛+1
𝑖𝑗 (𝑢𝑛+1𝑗 − 𝑢𝑛+1𝑖 ) + (1 − 𝜃) 𝜏𝑛+1 𝑑𝑛𝑖𝑗 (𝑢

𝑛
𝑗 − 𝑢𝑛𝑖 ) . (4.16)

Because 𝕄, 𝔻𝑛+1, and 𝔻𝑛 are symmetric matrices, one has 𝑓𝑛+1
𝑖𝑗 = −𝑓𝑛+1

𝑗𝑖 . Note also that the fluxes depend on (unknown) values of 
the approximate solution at time level 𝑡𝑛+1.

Now, the idea of the FCT approach is to limit the fluxes 𝑓𝑛+1
𝑖𝑗 by solution dependent correction factors 𝛼𝑛+1𝑖𝑗 ∈ [0, 1] called limiters 

so that the non-negativity of the approximate solution can be guaranteed but less artificial diffusion is introduced than in case of the 
low-order method. This leads to the discrete problem

(𝕄L + 𝜃 𝜏𝑛+1 𝕃𝑛+1)𝐮𝑛+1 = (𝕄L − (1 − 𝜃) 𝜏𝑛+1 𝕃𝑛)𝐮𝑛 +
( 𝑀∑

𝑗=1
𝛼𝑛+1𝑖𝑗 𝑓 𝑛+1

𝑖𝑗

)𝑀

𝑖=1

. (4.17)

The original Galerkin discretization is recovered for 𝛼𝑖𝑗 = 1 while the largest amount of artificial diffusion is introduced for 𝛼𝑖𝑗 = 0. 
The latter setting is appropriate in the neighborhood of steep fronts and large gradients. The artificial diffusion can be removed in 
regions where the solution is smooth and where non-positive off-diagonal entries of the stiffness matrix do not pose any threat to 
non-negativity. The corrected fluxes depend on the approximate solution in a nonlinear way but since the problem in here is already 
nonlinear, we can treat both nonlinearities simultaneously.

It is convenient to write the nonlinear problem (4.17) in the form

𝕄L 𝐮 = (𝕄L − (1 − 𝜃) 𝜏𝑛+1 𝕃𝑛)𝐮𝑛 , (4.18)

𝕄L 𝐮̃ =𝕄L 𝐮+
( 𝑀∑

𝑗=1
𝛼𝑛+1𝑖𝑗 𝑓 𝑛+1

𝑖𝑗

)𝑀

𝑖=1

, (4.19)

(𝕄L + 𝜃 𝜏𝑛+1 𝕃𝑛+1)𝐮𝑛+1 =𝕄L 𝐮̃ . (4.20)
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According to Lemma 4.1, the steps (4.18) and (4.20) are positivity preserving under the conditions (4.2). To guarantee the positivity 
preservation of the second step, the limiters 𝛼𝑛+1𝑖𝑗 have to be defined appropriately. We will apply the Zalesak algorithm [58] which 
will be described next.

The solution of the nonlinear problem (4.18)–(4.20) is computed by fixed-point iterations where the algebraic fluxes are calculated 
using the previous iterate. Since the properties of the Zalesak algorithm do not depend on the form of these fluxes, we will denote 
them simply by 𝑓𝑖𝑗 . Then, the aim is to find limiters 𝛼𝑖𝑗 ∈ [0, 1] such that the solution 𝐮̃ of

𝕄L 𝐮̃ =𝕄L 𝐮+
( 𝑀∑

𝑗=1
𝛼𝑖𝑗 𝑓𝑖𝑗

)𝑀

𝑖=1

satisfies

𝑢min
𝑖 ≤ 𝑢̃𝑖 ≤ 𝑢max

𝑖 , 𝑖 = 1,… ,𝑀 , (4.21)

where

𝑢min
𝑖 = min

𝑗∈𝑖∪{𝑖}
𝑢𝑗 , 𝑢max

𝑖 = max
𝑗∈𝑖∪{𝑖}

𝑢𝑗 , 𝑖 = 1,… ,𝑀 ,

and 𝑖 is the index set of neighbor vertices to the vertex 𝑥𝑖 (note that two vertices of the triangulation ℎ are called neighboring if 
they are contained in the same mesh cell). To preserve conservativity, it is important that the limiters 𝛼𝑖𝑗 form a symmetric matrix. 
The limiting process begins with canceling all fluxes that are diffusive in nature and tend to flatten the solution profiles, cf. [33]. The 
required modification is

𝑓𝑖𝑗 ∶= 0 if 𝑓𝑖𝑗 (𝑢𝑗 − 𝑢𝑖) > 0 . (4.22)

The remaining fluxes are truly antidiffusive and the computation of 𝛼𝑖𝑗 involves the following steps:

1. Compute the sum of positive/negative antidiffusive fluxes into node 𝑖

𝑃+
𝑖 =

∑
𝑗∈𝑖

max{0, 𝑓𝑖𝑗} , 𝑃−
𝑖 =

∑
𝑗∈𝑖

min{0, 𝑓𝑖𝑗} . (4.23)

2. Compute the distance to a local extremum of the auxiliary solution 𝐮

𝑄+
𝑖 =𝑚𝑖 (𝑢

max
𝑖 − 𝑢𝑖) , 𝑄−

𝑖 =𝑚𝑖 (𝑢
min
𝑖 − 𝑢𝑖) . (4.24)

3. Compute the nodal correction factors for the net increment to node 𝑖

𝑅+
𝑖 =min

{
1,
𝑄+
𝑖

𝑃+
𝑖

}
, 𝑅−

𝑖 =min
{
1,
𝑄−
𝑖

𝑃−
𝑖

}
. (4.25)

If a denominator is zero, set the respective value of 𝑅+
𝑖 or 𝑅−

𝑖 equal to 1.

4. Check the sign of the antidiffusive flux and define the correction factor by

𝛼𝑖𝑗 =
⎧⎪⎨⎪⎩

min{𝑅+
𝑖 ,𝑅

−
𝑗 } if 𝑓𝑖𝑗 > 0 ,

1 if 𝑓𝑖𝑗 = 0 ,
min{𝑅−

𝑖 ,𝑅
+
𝑗 } if 𝑓𝑖𝑗 < 0 .

(4.26)

It can be easily verified (see, e.g., [56]) that this algorithm leads to the property (4.21).

Now we are in a position to prove the solvability and positivity preservation for the above FCT discretization.

Theorem 4.6. Consider any 𝑛 ∈ {0, … , 𝑁 −1} and let 𝐮𝑛, 𝐜𝑛, 𝐩𝑛 ∈ℝ𝑀 satisfy 𝐮𝑛 ≥ 0, 1 ≥ 𝐜𝑛 ≥ 0, 𝐩𝑛 ≥ 0. Let the time step 𝜏𝑛+1 satisfy the 
conditions (4.5). Then there exist vectors 𝐮𝑛+1, 𝐜𝑛+1, 𝐩𝑛+1 ∈ℝ𝑀 satisfying (4.17), (3.12), (3.13) where the fluxes 𝑓𝑛+1

𝑖𝑗 are given by (4.16)

and (4.22) and the limiters 𝛼𝑛+1𝑖𝑗 are computed using the Zalesak algorithm (4.23)–(4.26) from the fluxes 𝑓𝑛+1
𝑖𝑗 . Moreover, these vectors 

satisfy 𝐮𝑛+1 ≥ 0, 1 ≥ 𝐜𝑛+1 ≥ 0, and 𝐩𝑛+1 ≥ 0.

Proof. The proof follows the lines of that of Theorem 4.5. Thus, we again start with replacing (3.12) by (4.6). We again define 𝐶𝑖, 
𝑃𝑖, 𝐴𝑖𝑗 , and 𝐷𝑖𝑗 by (4.7), (4.8), (4.10) and (4.11), respectively, whereas 𝑆𝑖 are now defined by

𝑆𝑖(𝐮,𝐩) =𝑚𝑖 𝑢𝑖 + 𝜃 𝜏𝑛+1
𝑀∑
𝑗=1

(𝐴𝑖𝑗 (𝐮,𝐩) +𝐷𝑖𝑗 (𝐮,𝐩))𝑢𝑗 −
𝑀∑
𝑗=1

𝛼𝑖𝑗 (𝐮,𝐩)𝑓𝑖𝑗 (𝐮,𝐩)

− [(𝕄L − (1 − 𝜃) 𝜏𝑛+1 𝕃𝑛)𝐮𝑛]𝑖 ,
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where 𝛼𝑖𝑗 (𝐮, 𝐩) are defined by the Zalesak algorithm (4.23)–(4.26) for the algebraic fluxes 𝑓𝑖𝑗 (𝐮, 𝐩) defined by

𝑓𝑖𝑗 (𝐮,𝐩) =
{

𝑓𝑖𝑗 (𝐮,𝐩) if 𝑓𝑖𝑗 (𝐮,𝐩)(𝑢𝑗 − 𝑢𝑖) ≤ 0 ,
0 if 𝑓𝑖𝑗 (𝐮,𝐩)(𝑢𝑗 − 𝑢𝑖) > 0 ,

with 𝐮 from (4.18) and

𝑓𝑖𝑗 (𝐮,𝐩) =
(
−𝑚𝑖𝑗 + 𝜃 𝜏𝑛+1𝐷𝑖𝑗 (𝐮,𝐩)

)
(𝑢𝑗 − 𝑢𝑖) +

(
𝑚𝑖𝑗 + (1 − 𝜃) 𝜏𝑛+1 𝑑𝑛𝑖𝑗

)
(𝑢𝑛𝑗 − 𝑢𝑛𝑖 ) .

Then, defining the operator 𝑃 ∶ℝ2𝑀 →ℝ2𝑀 by (4.13), the vectors 𝐮𝑛+1, 𝐜𝑛+1, 𝐩𝑛+1 are a solution of (4.17), (4.6), (3.13) if and only 
if 𝐔 = (𝐮𝑛+1, 𝐩𝑛+1) satisfies 𝑃 𝐔 = 0 and 𝐜𝑛+1 =𝐂(𝐩𝑛+1).

The solvability of the equation 𝑃 𝐔 = 0 will be again proved using Lemma 4.4. To show the continuity of the operator 𝑃 at any 
point 𝐔̃ ≡ (𝐮̃, ̃𝐩) ∈ℝ2𝑀 , it suffices to consider the terms 𝛼𝑖𝑗 (𝐮, 𝐩) 𝑓𝑖𝑗 (𝐮, 𝐩) since the remaining terms in the definition of 𝑃 are clearly 
continuous. Moreover, 𝑓𝑖𝑗 and hence also 𝑓𝑖𝑗 are continuous. Thus, if 𝑓𝑖𝑗 (𝐔̃) ≠ 0, then the denominators in the formulas defining 
𝛼𝑖𝑗 (𝐔) with 𝐔 = (𝐮, 𝐩) do not vanish in a neighborhood of 𝐔̃ and hence 𝛼𝑖𝑗 is continuous at 𝐔̃. Consequently, also 𝛼𝑖𝑗 𝑓𝑖𝑗 is continuous 
at 𝐔̃. If 𝑓𝑖𝑗 (𝐔̃) = 0, then

|(𝛼𝑖𝑗 𝑓𝑖𝑗 )(𝐔) − (𝛼𝑖𝑗 𝑓𝑖𝑗 )(𝐔̃)| = |(𝛼𝑖𝑗 𝑓𝑖𝑗 )(𝐔)| ≤ |𝑓𝑖𝑗 (𝐔)| = |𝑓𝑖𝑗 (𝐔) − 𝑓𝑖𝑗 (𝐔̃)| ,
which shows that 𝛼𝑖𝑗 𝑓𝑖𝑗 is again continuous at 𝐔̃.

To estimate (𝑃 𝐔, 𝐔) from below, let us denote

𝛼𝑖𝑗 (𝐮,𝐩) =
{

𝛼𝑖𝑗 (𝐮,𝐩) if 𝑓𝑖𝑗 (𝐮,𝐩)(𝑢𝑗 − 𝑢𝑖) ≤ 0 ,
0 if 𝑓𝑖𝑗 (𝐮,𝐩)(𝑢𝑗 − 𝑢𝑖) > 0 .

Then 𝛼𝑖𝑗 again form a symmetric matrix and 𝛼𝑖𝑗 𝑓𝑖𝑗 = 𝛼𝑖𝑗 𝑓𝑖𝑗 . Therefore, 𝑆𝑖(𝐮, 𝐩) can be written in the form

𝑆𝑖(𝐮,𝐩) =
𝑀∑
𝑗=1

𝑚𝑖𝑗 𝑢𝑗 + 𝜃 𝜏𝑛+1
𝑀∑
𝑗=1

𝐴𝑖𝑗 (𝐮,𝐩)𝑢𝑗

+
𝑀∑
𝑗=1

(
1 − 𝛼𝑖𝑗 (𝐮,𝐩)

)(
−𝑚𝑖𝑗 + 𝜃 𝜏𝑛+1𝐷𝑖𝑗 (𝐮,𝐩)

)
(𝑢𝑗 − 𝑢𝑖)

+
𝑀∑
𝑗=1

(
1 − 𝛼𝑖𝑗 (𝐮,𝐩)

)(
𝑚𝑖𝑗 + (1 − 𝜃) 𝜏𝑛+1 𝑑𝑛𝑖𝑗

)
(𝑢𝑛𝑗 − 𝑢𝑛𝑖 )

−[(𝕄− (1 − 𝜃) 𝜏𝑛+1𝔸𝑛)𝐮𝑛]𝑖 .

Denoting 𝐵𝑖𝑗 =
(
1 − 𝛼𝑖𝑗 (𝐮, 𝐩)

)(
−𝑚𝑖𝑗 + 𝜃 𝜏𝑛+1𝐷𝑖𝑗 (𝐮, 𝐩)

)
, one has

𝑀∑
𝑖,𝑗=1

𝑢𝑖
(
1 − 𝛼𝑖𝑗 (𝐮,𝐩)

)(
−𝑚𝑖𝑗 + 𝜃 𝜏𝑛+1𝐷𝑖𝑗 (𝐮,𝐩)

)
(𝑢𝑗 − 𝑢𝑖) = −1

2

𝑀∑
𝑖,𝑗=1

𝐵𝑖𝑗 (𝑢𝑖 − 𝑢𝑗 )2 ≥ 0 ,

since the matrix (𝐵𝑖𝑗 )𝑀𝑖,𝑗=1 is symmetric and has non-positive off-diagonal entries. Therefore, one again obtains (4.14) where the 
constants 𝐶1, 𝐶2 are the same as in the proof of Theorem 4.5 and

𝐶3 = ‖𝐠‖𝑀 + ‖(𝕄− (1 − 𝜃) 𝜏𝑛+1𝔸𝑛)𝐮𝑛‖𝑀 ,

where

𝑔𝑖 =
𝑀∑
𝑗=1

|𝑚𝑖𝑗 + (1 − 𝜃) 𝜏𝑛+1 𝑑𝑛𝑖𝑗 | |𝑢𝑛𝑗 − 𝑢𝑛𝑖 | , 𝑖 = 1,… ,𝑀 .

Thus, in the same way as in the proof of Theorem 4.5, one concludes that there exists a solution 𝐔 of the equation 𝑃 𝐔 = 0 and hence 
also a solution 𝐮𝑛+1, 𝐜𝑛+1, 𝐩𝑛+1 of (4.17), (4.6), and (3.13).

To prove the positivity preservation, we write (4.17) in the form (4.18)–(4.20). Since 𝕄L − (1 − 𝜃) 𝜏𝑛+1 𝕃𝑛 ≥ 0 according to 
Lemma 4.1, one has 𝐮≥ 0. Applying (4.21), one gets 𝐮̃ ≥ 0. Since 0 ≤ 𝐜𝑛+1 ≤ 1 due to (4.6), it follows from Lemma 4.1 and Remark 4.3

that the matrix 𝕄L + 𝜃 𝜏𝑛+1 𝕃𝑛+1 is an M-matrix. Consequently, 𝐮𝑛+1 ≥ 0 in view of (4.20). Since (3.13) is equivalent to (3.11), one 
also has 𝐩𝑛+1 ≥ 0 and hence (3.12) is satisfied as well. □
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5. Iterative solution of the FCT discretization

To compute a solution of the nonlinear problem (4.17), (3.12), (3.13) at time 𝑡𝑛+1, we will proceed similarly as for the Galerkin 
discretization in Section 3. Thus, given approximations 𝐮𝑛+1𝑘−1, 𝐜𝑛+1𝑘−1, 𝐩𝑛+1𝑘−1 (with some 𝑘 > 0) of 𝐮𝑛+1, 𝐜𝑛+1, 𝐩𝑛+1, respectively, we 
compute 𝐜𝑛+1𝑘 , 𝐩𝑛+1𝑘 using (3.14), (3.15). The iterate 𝐮𝑛+1𝑘 is computed by solving the linear system

(𝕄L + 𝜃 𝜏𝑛+1 𝕃𝑛+1𝑘−1)𝐮
𝑛+1
𝑘 = (𝕄L − (1 − 𝜃) 𝜏𝑛+1 𝕃𝑛)𝐮𝑛 +

( 𝑀∑
𝑗=1

𝛼𝑛+1𝑖𝑗,𝑘−1 𝑓
𝑛+1
𝑖𝑗,𝑘−1

)𝑀

𝑖=1

, (5.1)

where 𝕃𝑛+1𝑘−1 =𝔸𝑛+1
𝑘−1 +𝔻𝑛+1

𝑘−1 with the matrix 𝔸𝑛+1
𝑘−1 defined in (3.17) and the artificial diffusion matrix 𝔻𝑛+1

𝑘−1 defined by

𝑑𝑛+1𝑖𝑗,𝑘−1 = −max{𝑎𝑛+1𝑖𝑗,𝑘−1,0, 𝑎
𝑛+1
𝑗𝑖,𝑘−1} for 𝑖 ≠ 𝑗 , 𝑑𝑛+1𝑖𝑖,𝑘−1 = −

𝑀∑
𝑗=1,𝑗≠𝑖

𝑑𝑛+1𝑖𝑗,𝑘−1 . (5.2)

The algebraic fluxes 𝑓𝑛+1
𝑖𝑗,𝑘−1 are given by

𝑓𝑛+1
𝑖𝑗,𝑘−1 =

(
−𝑚𝑖𝑗 + 𝜃 𝜏𝑛+1 𝑑

𝑛+1
𝑖𝑗,𝑘−1

)
(𝑢𝑛+1𝑗,𝑘−1 − 𝑢𝑛+1𝑖,𝑘−1) +

(
𝑚𝑖𝑗 + (1 − 𝜃) 𝜏𝑛+1 𝑑𝑛𝑖𝑗

)
(𝑢𝑛𝑗 − 𝑢𝑛𝑖 ) (5.3)

and we again consider the prelimiting step

𝑓𝑛+1
𝑖𝑗,𝑘−1 ∶= 0 if 𝑓𝑛+1

𝑖𝑗,𝑘−1 (𝑢𝑗 − 𝑢𝑖) > 0 , (5.4)

with 𝐮 from (4.18). The limiters 𝛼𝑛+1𝑖𝑗,𝑘−1 are computed from the fluxes 𝑓𝑛+1
𝑖𝑗,𝑘−1 using the Zalesak algorithm (4.23)–(4.26). The fol-

lowing result shows that, under suitable time step restrictions, the above-defined iterates are uniquely determined and preserve 
non-negativity. This is important since, in practice, the fixed-point iterations are usually terminated when a stopping criterion is met, 
i.e., typically before reaching the solution of the nonlinear problem (4.17), (3.12), (3.13).

Theorem 5.1. Consider any 𝑛 ∈ {0, … , 𝑁 − 1} and 𝑘 ∈ ℕ and let 𝐮𝑛, 𝐜𝑛, 𝐩𝑛 ∈ ℝ𝑀 and 𝐮𝑛+1𝑘−1, 𝐩
𝑛+1
𝑘−1 ∈ ℝ𝑀 be arbitrary vectors satisfying 

𝐮𝑛 ≥ 0, 1 ≥ 𝐜𝑛 ≥ 0, 𝐩𝑛 ≥ 0, and 𝐮𝑛+1𝑘−1 ≥ 0, 𝐩𝑛+1𝑘−1 ≥ 0. Let 𝐜𝑛+1𝑘 , 𝐩𝑛+1𝑘 be given by (3.14), (3.15). Let the time step 𝜏𝑛+1 satisfy the conditions

(1 − 𝜃) 𝜏𝑛+1 𝑙𝑛𝑖𝑖 ≤𝑚𝑖 , 𝜃 𝜏𝑛+1
(
𝜇
(
1 − 𝜋ℎ𝐮𝑛+1𝑘−1, 𝜙𝑖

)
+ 𝜒

(
∇(𝜋ℎ𝐜𝑛+1𝑘 ),∇𝜙𝑖

))
<𝑚𝑖 , 𝑖 = 1,… ,𝑀 . (5.5)

Then the linear system (5.1) has a unique solution 𝐮𝑛+1𝑘 and one has 𝐮𝑛+1𝑘 ≥ 0, 1 ≥ 𝐜𝑛+1𝑘 ≥ 0, and 𝐩𝑛+1𝑘 ≥ 0.

Proof. The formula (3.14) immediately implies that 1 ≥ 𝐜𝑛+1𝑘 ≥ 0. Since (3.15) can be written in the form (3.11) with 𝑢ℎ,𝜏 and 𝑐ℎ,𝜏
defined using 𝐮𝑛+1𝑘−1 and 𝐜𝑛+1𝑘 , respectively, at time 𝑡𝑛+1, one has 𝐩𝑛+1𝑘 ≥ 0. Since 𝕄L − (1 − 𝜃) 𝜏𝑛+1 𝕃𝑛 ≥ 0 according to Lemma 4.1, the 
solution of (4.18) satisfies 𝐮 ≥ 0. Then (4.21) implies 𝐮̃ ≥ 0 for the solution of

𝕄L 𝐮̃ =𝕄L 𝐮+
( 𝑀∑

𝑗=1
𝛼𝑛+1𝑖𝑗,𝑘−1 𝑓

𝑛+1
𝑖𝑗,𝑘−1

)𝑀

𝑖=1

.

Finally, we use the fact that 𝐮𝑛+1𝑘 satisfies

(𝕄L + 𝜃 𝜏𝑛+1 𝕃𝑛+1𝑘−1)𝐮
𝑛+1
𝑘 =𝕄L 𝐮̃ . (5.6)

It follows from the proof of Lemma 4.1 that, under the second condition in (5.5), the matrix (𝕄L + 𝜃 𝜏𝑛+1 𝕃𝑛+1𝑘−1) is an M-matrix and 
hence 𝐮𝑛+1𝑘 is uniquely determined and satisfies 𝐮𝑛+1𝑘 ≥ 0. □

Remark 5.2. From the physical point of view, the quantities 𝑢, 𝑐, and 𝑝 should be not only non-negative but also bounded by 1 from 
above. We have proved that this is the case for the approximations of 𝑐. Moreover, if this would be true also for the approximations 
of 𝑢, the integral form (3.9) would provide this property also for the approximations of 𝑝. Unfortunately, a proof of the upper bound 
for the approximations of 𝑢 is not available and numerical results suggest that this bound can be violated. Note that a standard 
proof of upper bounds for FCT discretizations relies on the decomposition (4.18)–(4.20). Then, in particular, one would need that 
the solution of (4.18) satisfies 𝐮 ≤ 1 if 𝐮𝑛 ≤ 1. Choosing 𝐮𝑛 = 𝟏 (a vector with all components equal to 1), this requirement implies 
that (1 − 𝜃) 𝔸𝑛 𝟏 = (1 − 𝜃) 𝕃𝑛 𝟏 ≥ 0, i.e., the row sums of the matrix (1 − 𝜃) 𝔸𝑛 have to be non-negative. Similarly, to derive an upper 
bound from (5.6), one would need that 𝜃𝔸𝑛+1

𝑘−1 𝟏 ≥ 0. It is clear that the validity of these row sum conditions cannot be expected.

Remark 5.3. The second condition on 𝜏𝑛+1 in (5.5) depends on 𝐜𝑛+1𝑘 which itself depends on 𝜏𝑛+1. Consequently, in general, one has 
to proceed iteratively to find 𝜏𝑛+1 which satisfies (5.5). To avoid this and also the dependence of 𝜏𝑛+1 on the fixed-point iteration 
index 𝑘, it is possible to replace (5.5) by (4.5), cf. Remark 4.3.
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We summarize the procedure for obtaining a high-resolution positivity preserving scheme for solving (2.1)–(2.5) in Algorithm 5.1.

Algorithm 5.1 Iterative scheme for computing an approximation of the solution to the nonlinear FCT discretization.

1: Choose a tolerance Tol> 0 and a damping factor 𝛽 ∈ (0, 1].
2: Compute the initial values 𝐜0 , 𝐩0 , and 𝐮0 by (3.5).

3: Compute the mass matrix 𝕄 and the lumped mass matrix 𝕄L .

4: for 𝑛 = 0, 1, … , 𝑁 − 1 do

5: Compute the stiffness matrix 𝔸𝑛 and the artificial diffusion matrix 𝔻𝑛 and set 𝕃𝑛 =𝔸𝑛 +𝔻𝑛 .

6: Choose 𝜏𝑛+1 satisfying (4.5).

7: Compute the intermediate solution 𝐮 from (4.18).

8: Set 𝐜𝑛+10 = 𝐜𝑛 , 𝐩𝑛+10 = 𝐩𝑛 , and 𝐮𝑛+10 = 𝐮𝑛 .
9: for 𝑘 = 1, 2, … do

10: Compute 𝐜𝑛+1𝑘 from (3.14) using 𝐜𝑛, 𝐩𝑛 and 𝐩𝑛+1𝑘−1 .

11: Compute 𝐩𝑛+1𝑘 from (3.15) using 𝐩𝑛, 𝐜𝑛, 𝐮𝑛 , 𝐜𝑛+1𝑘 , and 𝐮𝑛+1𝑘−1 .

12: Compute the stiffness matrix 𝔸𝑛+1
𝑘−1 from (3.17) using 𝐜𝑛+1𝑘 and 𝐮𝑛+1𝑘−1 .

13: Compute the artificial diffusion matrix 𝔻𝑛+1
𝑘−1 from (5.2) and set 𝕃𝑛+1𝑘−1 =𝔸𝑛+1

𝑘−1 +𝔻𝑛+1
𝑘−1 .

14: Compute the algebraic fluxes 𝑓𝑛+1
𝑖𝑗,𝑘−1 from (5.3) and (5.4).

15: Compute the limiters 𝛼𝑛+1𝑖𝑗,𝑘−1 by the Zalesak algorithm (4.23)–(4.26) using the fluxes 𝑓𝑛+1
𝑖𝑗,𝑘−1 and the intermediate solution 𝐮.

16: Compute 𝐮𝑛+1𝑘 by solving the linear system (5.1).

17: if max
{‖𝐜𝑛+1𝑘 − 𝐜𝑛+1𝑘−1‖𝑀,‖𝐩𝑛+1𝑘 − 𝐩𝑛+1𝑘−1‖𝑀,‖𝐮𝑛+1𝑘 − 𝐮𝑛+1𝑘−1‖𝑀

}
< Tol then

18: Go to line 23.

19: else

20: Set 𝐜𝑛+1𝑘 ∶= 𝛽 𝐜𝑛+1𝑘 + (1 − 𝛽) 𝐜𝑛+1𝑘−1 , 𝐩𝑛+1𝑘 ∶= 𝛽 𝐩𝑛+1𝑘 + (1 − 𝛽) 𝐩𝑛+1𝑘−1 , 𝐮𝑛+1𝑘 ∶= 𝛽 𝐮𝑛+1𝑘 + (1 − 𝛽) 𝐮𝑛+1𝑘−1 .

21: end if

22: end for

23: Set 𝐜𝑛+1 = 𝐜𝑛+1𝑘 , 𝐩𝑛+1 = 𝐩𝑛+1𝑘 , 𝐮𝑛+1 = 𝐮𝑛+1𝑘 .

24: end for

6. Numerical results

In the following, we present several numerical experiments to verify the positivity preserving properties of the proposed scheme 
for the model (2.1)–(2.5).

The computations are performed on a square domain Ω = (0, 20)2 which is decomposed into quadrilateral mesh cells obtained 
by uniform refinements. Precisely, after 𝑟 refinements, the triangulation ℎ consists of 22 𝑟 equal squares. If not otherwise stated, we 
consider five refinements, i.e., ℎ consists of 32 × 32 mesh cells. As explained above, conforming bilinear finite elements are used 
for approximating all unknown variables. The final time is 𝑇 = 50 and the parameter 𝜖 = 0.2 is used. The values of the remaining 
parameters of the model will be specified for the particular computations. The initial conditions are defined by

𝑢0(𝑥) = e−|𝑥|2 , 𝑐0(𝑥) = 1 − 1
2
e−|𝑥|2 , 𝑝0(𝑥) = 1

2
e−|𝑥|2 .

If not otherwise stated, we apply the A-stable Crank-Nicolson method corresponding to 𝜃 = 0.5 for the time discretization. In one 
case, we will also discuss the application of the unconditionally stable backward Euler method corresponding to 𝜃 = 1. Algorithm 5.1

is used with the tolerance Tol = 10−8 and the damping factor 𝛽 = 0.5. The linear system (5.1) is solved using the sparse direct solver 
UMFPACK [59]. Our newly developed algorithms are implemented in the open-source finite element library deal.II [50,51]. The code 
enables to perform computations also in the 3D case, which we demonstrated in [45] for a Galerkin discretization. Since the results 
for 2D and 3D were qualitatively similar, we omit the 3D case in the present paper. Of course, 3D is interesting from the application 
viewpoint, which is further ongoing work with FCT, but conceptionally 3D does not add new insight to our proposed FCT scheme.

6.1. Comparison between the standard Galerkin FEM and the FEM-FCT scheme in presence of diffusion

To begin with, in the first example we consider the modified model subjected to an extra diffusion term in the equation (2.1) with 
diffusion coefficient 𝛼−1, as considered in [45], i.e., the equation (2.1) is replaced by (2.6). We consider 𝛼 = 10, 𝜒 = 1, and 𝜇 = 1. 
As can be seen from Figs. 1 and 3, the FEM-FCT scheme introduces slightly more artificial diffusion than the standard Galerkin FEM. 
One can observe that the cancer cells invade the extracellular matrix and occupy the whole domain completely at the final time. 
Next, we decrease the amount of the diffusion by setting 𝛼 = 1000 and keep the proliferation and haptotaxis rate as before. As can be 
seen from Figs. 5 and 6, the standard Galerkin FEM shows some oscillations in the front layer and the numerical simulation breaks 
down when the solution reaches the boundary of the computational domain, whereas applying the FEM-FCT removes the oscillations 
and keeps the solution positive at all times (Fig. 7). The corresponding snapshots of the cancer cell density, extracellular matrix, and 
protease are plotted along the line 𝑦 = 𝑥 in Figs. 2, 4, 6, and 8.

6.2. The FEM-FCT scheme in absence of diffusion for 𝜒 = 1, 𝜇 = 1

In this section, we consider the case without the diffusion term, i.e., utilizing (2.1) now, and again set 𝜒 = 𝜇 = 1. This case 
was studied in [47,46], where the authors applied nonstandard finite difference (NSFD) schemes using Mickens rules. The proposed 

85



Journal of Computational Physics 499 (2024) 112711

13

S. Heydari, P. Knobloch and T. Wick

Fig. 1. Cancer cell invasion 𝑢 at different time instants 𝑡 = 0, 10, 20, 30, obtained with the standard Galerkin FEM for 𝛼 = 10, 𝜇 = 1 and 𝜒 = 1. (For interpretation of 
the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 2. Cancer cell invasion 𝑢, connective tissue 𝑐, and protease 𝑝 at different time instants 𝑡 = 0, 10, 20, 30, obtained with the standard Galerkin FEM for 𝛼 = 10, 𝜇 = 1
and 𝜒 = 1.

Fig. 3. Cancer cell invasion 𝑢 at different time instants 𝑡 = 0,10,20,30, obtained with the FEM-FCT scheme for 𝛼 = 10, 𝜇 = 1 and 𝜒 = 1.

Fig. 4. Cancer cell invasion 𝑢, connective tissue 𝑐, and protease 𝑝 at different time instants 𝑡 = 0, 10, 20, 30, obtained with the FEM-FCT scheme for 𝛼 = 10, 𝜇 = 1 and 
𝜒 = 1.

86



Journal of Computational Physics 499 (2024) 112711

14

S. Heydari, P. Knobloch and T. Wick

Fig. 5. Cancer cell invasion 𝑢 at different time instants 𝑡 = 0,10,20,30, obtained with the standard Galerkin FEM for 𝛼 = 1000, 𝜇 = 1 and 𝜒 = 1.

Fig. 6. Cancer cell invasion 𝑢, connective tissue 𝑐, and protease 𝑝 at different time instants 𝑡 = 0, 10, 20, 30, obtained with the standard Galerkin FEM for 𝛼 = 1000, 
𝜇 = 1 and 𝜒 = 1.

Fig. 7. Cancer cell invasion 𝑢 at different time instants 𝑡 = 0,10,20,30, obtained with the FEM-FCT scheme for 𝛼 = 1000, 𝜇 = 1 and 𝜒 = 1.

Fig. 8. Cancer cell invasion 𝑢, connective tissue 𝑐, and protease 𝑝 at different time instants 𝑡 = 0, 10, 20, 30, obtained with the FEM-FCT scheme for 𝛼 = 1000, 𝜇 = 1
and 𝜒 = 1.
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Fig. 9. Cancer cell invasion 𝑢 at different time instants 𝑡 = 0,10,20,30, obtained with the FEM-FCT scheme for 𝜇 = 1 and 𝜒 = 1.

Fig. 10. Decay of the extracellular matrix 𝑐 at different time instants 𝑡 = 0,10,20,30, computed using the FEM-FCT scheme for 𝜇 = 1 and 𝜒 = 1.

Table 1

Convergence of the mean values with respect to global mesh refinement at the last time instant 𝑡 = 50.

# of refinements 3 4 5 6 7

# DOF 81 289 1089 4225 16641

∫Ω 𝑐ℎ(𝑥) d𝑥 0.02362193 0.02670467 0.03284535 0.03042843 0.03680451∫Ω 𝑝ℎ(𝑥) d𝑥 0.02373726 0.02685417 0.03308441 0.03062835 0.03712137∫Ω 𝑢ℎ(𝑥) d𝑥 0.99999999 0.99999998 0.99999976 0.99999943 0.99999889

Table 2

Convergence of the solutions at the point (20, 20) with respect to the time step 𝜏 at the last time instant 
𝑡 = 50.

𝜏 𝑐𝑛+1𝑘 ‖𝑐𝑛+1𝑘 − 𝑐𝑛+1𝑘−1‖ 𝑝𝑛+1𝑘 ‖𝑝𝑛+1𝑘 − 𝑝𝑛+1𝑘−1‖ 𝑢𝑛+1𝑘 ‖𝑢𝑛+1𝑘 − 𝑢𝑛+1𝑘−1‖
1.0 0.03331 4.64077e-09 0.03356 5.03212e-09 1.00046 6.91815e-11

0.1 0.03884 5.57720e-09 0.03918 5.77532e-09 1.00079 4.47103e-11

0.01 0.03875 9.08222e-09 0.03909 9.21976e-09 1.00070 1.44008e-10

0.001 0.03875 7.27756e-09 0.03909 7.37382e-09 1.00079 1.21648e-10

0.0001 0.03875 5.82277e-09 0.03909 5.89891e-09 1.00079 9.77287e-11

methods were successful in comparison to standard finite difference methods at obtaining positive solutions, however, some wiggles 
still remained in the vicinity of the front layer. On the other hand, deriving an efficient NSFD scheme heavily depends on the type 
of the system and the discretization of different terms. Therefore, in this work, we applied the FEM-FCT methodology to remove 
the oscillations in the front layer while keeping the solutions positive at all times, see Figs. 9 and 10. Next, we check numerically 
whether the approximate solutions converge. To this end, we computed the integrals of the solutions at the final time 𝑡 = 50 for 
different numbers of global refinements, see Table 1. The results correspond to the situation where the tumor is completely malignant 
and invades the whole extracellular matrix. In Table 2, we study the values of the solutions at the point (20, 20) and the differences 
between two consecutive iterative solutions. Moreover, the numbers of fixed-point iterations for various time steps and time instants 
are shown in Table 3. In particular, we observe that the proposed scheme is convergent with respect to the time step size. The 
convergence of the cancer cell invasion 𝑢 with respect to the time step and the mesh width at two different time instants is also 
studied in Fig. 11 by means of solution graphs along the line 𝑦 = 𝑥.
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Table 3

Numbers of fixed-point iterations for various time steps at time instants 𝑡 =
1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50.

𝜏 # of iterations at time instants

1 5 10 15 20 25 30 35 40 45 50

1.0 30 31 31 32 30 23 23 22 21 21 21

0.1 25 25 26 26 26 25 21 20 19 18 18

0.01 19 20 21 21 21 20 18 16 16 15 14

0.001 15 16 18 18 18 17 14 13 12 12 11

0.0001 13 14 14 15 15 14 12 11 10 9 8

Fig. 11. Cancer cell invasion 𝑢 computed using the FEM-FCT scheme at time instants 𝑡 = 10 and 𝑡 = 20 for different time steps (first two pictures) and for different 
numbers of global refinements (last two pictures).

Fig. 12. The effect of the haptotactic rate on the cancer cell invasion 𝑢 at different time instants 𝑡 = 0, 5, 15, computed using the standard Galerkin FEM for 𝜇 = 0.0001
and 𝜒 = 1.

6.3. Effect of haptotactic domination

In this section, we investigate the effect of directional movement of cancer cells inside the domain. This is a very important 
property in cancer modeling which can lead to metastasis. In metastasis, the cancer cells are moving to the other parts of the body 
and start proliferate, forming a new tumor in the new part, and invade the surrounding tissues. In this case, it is very difficult to 
detect the location of cancerous cells and this is one of the predominant causes of most deaths due to cancer. In the following, we only 
study a very simple case of haptotactic dominating mechanism of the cancer cell motion. In addition to the absence of the diffusion 
effect in the system, there is only a small amount of the proliferation rate: we set 𝜇 = 0.0001 and 𝜒 = 1 in the computations. As a 
result of the haptotactic migration domination, a small cluster of cancer cells builds up at the beginning and this initial amount is 
expected to move along the direction of the gradient of the extracellular matrix. As Fig. 12 indicates, the numerical simulation by the 
standard Galerkin FEM breaks down in a very short amount of time after the time instant 𝑡 = 15. Next, we apply the FEM-FCT scheme 
and the low-order method, see Figs. 13 and 14, respectively. We observe that, in both cases, the stabilization prevents the blow-up 
in the system and leads to non-negative solutions. However, some oscillations still remain in the interior layer. These oscillations 
could be suppressed by adaptive mesh refinement, which is however out of the scope of this paper. As expected, the low-order 
method provides a more diffusive solution than the FEM-FCT scheme. It is interesting that, combining the FEM-FCT scheme with the 
backward Euler method (𝜃 = 1), oscillation-free solutions are obtained, see Fig. 15.
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Fig. 13. The effect of the haptotactic rate on the cancer cell invasion 𝑢 at different time instants 𝑡 = 10, 20, 30, 40, computed using the FEM-FCT scheme for 𝜇 = 0.0001
and 𝜒 = 1.

Fig. 14. The effect of the haptotactic rate on the cancer cell invasion 𝑢 at different time instants 𝑡 = 10, 20, 30, 40, computed using the low-order method for 𝜇 = 0.0001
and 𝜒 = 1.

Fig. 15. The effect of the haptotactic rate on the cancer cell invasion 𝑢 at different time instants 𝑡 = 10, 20, 30, 40, computed using the FEM-FCT scheme with 𝜃 = 1 for 
𝜇 = 0.0001 and 𝜒 = 1.

7. Conclusions

In this paper, we proposed a fully discrete nonlinear high-resolution positivity preserving FEM-FCT scheme for haptotaxis equa-

tions without self-diffusion term describing a model of cancer invasion. We proved the solvability and positivity preservation of both 
the nonlinear discrete problem and the linear problems appearing in fixed-point iterations. A series of numerical experiments are 
shown to verify the robustness of the proposed method. Derivation of error estimates is left to future work.
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3.2 Solvability and numerical solution of a
cross-diffusion cancer invasion model

In this paper we mainly focused on the idea behind the modeling of the cancer
invasion system studied so far in the preceding and summarized the main results.
Moreover, we presented new numerical experiments to provide further insight
into the behavior of the model utilizing different variations of the parameters
appearing in the system and also using the different choices of the limiters for the
proposed flux-corrected transport approach.
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Abstract We consider a model of the invasion of healthy tissue by cancer cells which
is described by a system of nonlinear PDEs consisting of a cross-diffusion-reaction
equation and two additional nonlinear ordinary differential equations. We discuss
the existence of global classical solutions and formulate a positivity preserving
finite element discretization stabilized by the flux-corrected transport approach.
Moreover, we present a result on the solvability of this nonlinear discrete problem.
The properties of both the model and its discretization are illustrated by numerical
results computed using the deal.II library.

1 Introduction

Mathematical modelling and numerical simulations of cancer invasion are important
for a better understanding of the mechanisms governing the growth of malignant
tumours and for developing strategies to cure this dangerous disease. In this work, we
focus on a nonlinear cancer-invasion model developed in [7] that models the motion
of cancer cells, degradation of extracellular matrix, and production of protease. The
aim of the paper is to provide a concise description of various aspects of cancer
growth modelling: from ideas behind the model, over its analytical investigations,
application of various discretization techniques and investigations of the discrete
problems, till numerical simulations. We will both review our recent theoretical
achievements published in [2, 3] and present new numerical results providing further
insight into the behaviour of the model and the proposed discretization.
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2 Shahin Heydari and Petr Knobloch

The plan of the paper is as follows. In Section 2, we introduce the mathematical
model and thoroughly explain its background. Section 3 discusses the existence of
global classical solutions to the model and presents the main ideas of the proof in the
case when a diffusion term is present. Section 4 is devoted to the discretization of
the model. The time derivatives are approximated using finite differences whereas a
Galerkin finite element scheme is considered for spatial discretization. To guarantee
positivity preservation, an algebraic stabilization is introduced, which finally leads to
a high-resolution flux-corrected transport (FCT) scheme. A result on the solvability
of this nonlinear discrete problem is formulated and main ideas of the proof are
explained. Finally, numerical results are presented in Section 5.

2 Mathematical Model

In [7], Perumpanani et al. proposed a model for malignant cancer invasion consider-
ing proteolysis and haptotaxis as the main mechanisms. The model was formulated
for one spatial coordinate in the direction of the invasion. In more space dimensions,
and with a particular choice of the functions describing the considered effects, the
model can be written in the form

𝑢𝑡 = 𝜇 𝑢(1 − 𝑢) − 𝜒 ∇ · (𝑢∇𝑐) in Ω × (0, 𝑇] , (1)
𝑐𝑡 = −𝑝𝑐 in Ω × (0, 𝑇] , (2)

𝑝𝑡 = 𝜖
−1 (𝑢𝑐 − 𝑝) in Ω × (0, 𝑇] , (3)

where Ω is a bounded domain in R𝑑 , 𝑑 ∈ {1, 2, 3}, [0, 𝑇] is a time interval, and 𝜇,
𝜒, 𝜖 are positive constants. The functions 𝑢, 𝑐, and 𝑝 depend on 𝑥 ∈ Ω and 𝑡 ∈ [0, 𝑇]
and represent concentrations of the invasive cells, extracellular matrix, and protease,
respectively.

Let us explain the background of the model and the ideas considered in [7] to
derive it. The extracellular matrix is the non-cellular component present within a
connective tissue. It contains collagen in the form of interlacing protein fibers. The
extracellular matrix is invaded by tumour cells which produce proteases. Proteases
are enzymes that hydrolyze proteins, i.e., they help to digest the surrounding extracel-
lular matrix. The production of proteases is tightly confined to the interface between
the invading tumour and the receding connective tissue. Therefore, no protease dif-
fusion is included in the model. This is a difference to many other models which
complicates the theoretical investigations. The protease production is modelled by
the term 𝜖−1𝑢𝑐, whereas −𝜖−1𝑝 describes the natural decay of the protease. The
decrease of the extracellular matrix 𝑐 is modelled as a simple passive degradation by
the activity of the tissue proteases. It is described by the term−𝑝𝑐 since it depends on
the amount of collagen still present as well as the protease 𝑝. Finally, in the equation
for the concentration 𝑢 of the invasive cells, the first term on the right-hand side
describes their proliferation whereas the second one describes the spatial movement
of the cells due to the gradient of the extracellular matrix. Since the flux of the cancer

95



Solvability and Numerical Solution of a Cross-diffusion Cancer Invasion Model 3

cells is proportional to the gradient of the non-diffusible concentration 𝑐, the corre-
sponding effect is called haptotaxis. A similar effect is chemotaxis which occurs in
response to a diffusible substrate. Note also that the phenomenon in which a gradient
in the concentration of one quantity induces a flux of another quantity is called
cross-diffusion. Therefore, the haptotaxis term in (1) describes the cross-diffusion
mentioned in the title of this paper.

It is argued in [7] that diffusion of the cancer cell concentration 𝑢 can be ne-
glected since the chemokinetic movement was reported to be minimal. Nevertheless,
although this diffusion is negligible in numerical simulations, it is important for
studying analytical properties of the model. Therefore, we will also consider the
case when (1) is replaced by the equation

𝑢𝑡 = 𝜇 𝑢(1 − 𝑢) − 𝜒 ∇ · (𝑢∇𝑐) + 𝛼−1Δ𝑢 in Ω × (0, 𝑇] (4)

with a positive constant 𝛼. Thus, the equation (1) corresponds to the limit case of
(4) for 𝛼 → ∞.

When using (4) instead of (1) in the above model, an appropriate boundary
condition leading to a solvable problem (see Section 3) reads

𝛼−1 𝑢𝑛 = 𝜒 𝑢 𝑐𝑛 on 𝜕Ω × [0, 𝑇] , (5)

where the index 𝑛 indicates the derivative in the direction of the outward normal
vector on 𝜕Ω. For 𝛼 → ∞ this boundary condition reduces to

𝑢 𝑐𝑛 = 0 on 𝜕Ω × [0, 𝑇] , (6)

which will be used for the model (1)–(3). Finally, let us mention that both models
are endowed with the initial conditions

𝑢(·, 0) = 𝑢0 , 𝑐(·, 0) = 𝑐0 , 𝑝(·, 0) = 𝑝0 in Ω , (7)

where 𝑢0, 𝑐0, 𝑝0 : Ω → [0, 1] are given functions.

3 Global Existence of Classical Solutions

In this section, we discuss the classical solvability of the models introduced above.
We start with the system consisting of (4), (2), (3), (5), and (7). In order to construct
global classical solutions, it is necessary to control the haptotaxis term −𝜒∇ · (𝑢∇𝑐)
in (4) and thus, in particular, to gain information on the spatial derivatives of 𝑐. For
similar models including a diffusion termΔ𝑝 in (3), this has already been achieved in
earlier works by applying parabolic regularity theory to (3), first yielding estimates
for the spatial derivatives of 𝑝 and then also of 𝑐. However, the absence of any
spatial regularization in both (2) and (3) makes the corresponding analysis much
more difficult.
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In our recent paper [2], the lack of regularity estimates was circumvented by
transforming the problem under consideration into the equivalent form

𝑤𝑡 = (𝛼𝑝𝑐 + 𝜇 − 𝜇e𝛼𝑐𝑤)𝑤 + ∇𝑐 · ∇𝑤 + 𝛼−1Δ𝑤 in Ω × (0, 𝑇] , (8)
𝑐𝑡 = −𝑝𝑐 in Ω × (0, 𝑇] , (9)
𝑝𝑡 = 𝑤e𝛼𝑐𝑐 − 𝑝 in Ω × (0, 𝑇] , (10)
𝑤𝑛 = 0 on 𝜕Ω × [0, 𝑇] , (11)

𝑤(·, 0) = 𝑤0 , 𝑐(·, 0) = 𝑐0 , 𝑝(·, 0) = 𝑝0 in Ω , (12)

where
𝑤(𝑥, 𝑡) = 𝑢(𝑥, 𝑡)e−𝛼𝑐 (𝑥,𝑡 ) , 𝑥 ∈ Ω, 𝑡 ≥ 0. (13)

Moreover, to obtain (8)–(12), we set 𝜒 = 𝜖 = 1, which can be done without loss of
generality since the general case follows by a simple rescaling of 𝑥, 𝑡, 𝑐, and 𝑝 (see
[2]). To get rid of the nonlinear dependence on 𝑤 and to decouple the equations for
𝑐 and 𝑝 from the first equation, the problem

𝑣𝑡 = (𝛼𝑝𝑐 + 𝜇 − 𝜇e𝛼𝑐𝑤)𝑣 + ∇𝑐 · ∇𝑣 + 𝛼−1Δ𝑣 in Ω × (0, 𝑇) , (14)
𝑐𝑡 = −𝑝𝑐 in Ω × (0, 𝑇) , (15)
𝑝𝑡 = 𝑤e𝛼𝑐𝑐 − 𝑝 in Ω × (0, 𝑇) , (16)
𝑣𝑛 = 0 on 𝜕Ω × (0, 𝑇) , (17)

𝑣(·, 0) = 𝑤0 , 𝑐(·, 0) = 𝑐0 , 𝑝(·, 0) = 𝑝0 in Ω (18)

is considered for any fixed 𝑤 ∈ 𝐶0 ( [0, 𝑇];𝐶1 (Ω)). Note that, for (14)–(18), the
solvability and regularity are easier to investigate than for (8)–(12).

For 𝑇 > 0 and 𝑀 > 0, we introduce the set

𝑆𝑀,𝑇 =
n
𝑤 ∈ 𝐶0 ( [0, 𝑇];𝐶1 (Ω)) ; 0 ≤ 𝑤, sup

𝑡∈[0,𝑇 ]
∥𝑤(·, 𝑡)∥𝐶1 (Ω) ≤ 𝑀

o

and we introduce a mapping Φ such that Φ(𝑤) is the unique function 𝑣 satisfying
the above problem for a given 𝑤 ∈ 𝑆𝑀,𝑇 . If 𝑀 is sufficiently large and 𝑇 sufficiently
small, thenΦmaps 𝑆𝑀,𝑇 to itself and has a compact image. Thus,Φ has a fixed point
due to Schauder’s fixed point theorem, which implies the solvability (and regularity)
of the problem (8)–(12). Finally, a priori estimates allow to extend the local solution
onto the interval (0,∞), see [2] for details. This leads to the following result.

Theorem 1 Suppose that 𝛼, 𝜒, 𝜇, 𝜖 are positive constants, that Ω is a smooth
bounded domain in R𝑑 , 𝑑 ∈ {1, 2, 3}, and that 𝑢0, 𝑐0, 𝑝0 ∈ Ð

𝛾∈ (0,1) 𝐶2,𝛾 (Ω) are
nonnegative functions satisfying 𝛼−1 𝑢0

𝑛 = 𝜒 𝑢0 𝑐0
𝑛 on 𝜕Ω. Then, for any 𝑇 > 0,

there exists a unique global classical solution (𝑢, 𝑐, 𝑝) of (4), (2), (3), (5), and (7)
with regularity (𝑢, 𝑐, 𝑝) ∈ (𝐶2,1 (Ω × (0, 𝑇]) ∩ 𝐶1 (Ω × [0, 𝑇]))3, which, moreover,
is nonnegative.
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Obviously, when the problem consisting of (1)–(3), (6), and (7) is considered, i.e.,
if no diffusion term is present, then the technique presented above cannot be applied
since the transformation (13) does not make sense in the limit case for 𝛼 → ∞. In
this case, the solvability of the model is an open problem.

4 A Positivity Preserving Discretization

Denoting by (·, ·) the inner product in 𝐿2 (Ω) or 𝐿2 (Ω)𝑑 , the solution of our model
(1)–(3), (6), (7) satisfies

(𝑢𝑡 , 𝑣) = 𝜇 𝑢(1 − 𝑢), 𝑣� + 𝜒 𝑢∇𝑐,∇𝑣� in (0, 𝑇] and for 𝑣 ∈ 𝐻1 (Ω) (19)

and

𝑐(𝑥, 𝑡) = 𝑐0 (𝑥) e−
∫ 𝑡

0 𝑝 (𝑥,𝑠) d𝑠 , (20)

𝑝(𝑥, 𝑡) = e−𝑡/𝜖
�
𝑝0 (𝑥) + 1

𝜖

∫ 𝑡

0
𝑢(𝑥, 𝑠) 𝑐(𝑥, 𝑠) e𝑠/𝜖 d𝑠

�
(21)

for any (𝑥, 𝑡) ∈ Ω × [0, 𝑇]. These relations will be used to define an approximate
solution of our model. First, we introduce a triangulation Tℎ of Ω consisting of
simplicial (for 𝑑 = 1, 2, 3), quadrilateral (for 𝑑 = 2) or hexahedral (for 𝑑 = 3) shape-
regular cells possessing the usual compatibility properties. For any cell 𝐾 ∈ Tℎ,
we denote by ℎ𝐾 the diameter of 𝐾 and assume that ℎ𝐾 ≤ ℎ. We denote by
𝑉ℎ ⊂ 𝐻1 (Ω) the usual conforming 𝑃1 or 𝑄1 finite element space constructed using
the triangulation Tℎ. Let 𝜙1, . . . , 𝜙𝑀 be the standard basis functions of𝑉ℎ associated
with the vertices 𝑥1, . . . , 𝑥𝑀 of Tℎ. Next, the time interval [0, 𝑇] is decomposed by
0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑁 = 𝑇 and we set 𝜏𝑛 = 𝑡𝑛 − 𝑡𝑛−1, 𝑛 = 1, . . . , 𝑁 . At each time
level 𝑡𝑛, the solution of our model will be approximated by functions 𝑢𝑛ℎ, 𝑐

𝑛
ℎ, 𝑝

𝑛
ℎ ∈ 𝑉ℎ.

These functions can be identified with coefficient vectors u𝑛 = (𝑢𝑛𝑖 )𝑀𝑖=1, c𝑛 = (𝑐𝑛𝑖 )𝑀𝑖=1,
p𝑛 = (𝑝𝑛𝑖 )𝑀𝑖=1, respectively, satisfying 𝑢𝑛𝑖 = 𝑢𝑛ℎ (𝑥𝑖), 𝑐𝑛𝑖 = 𝑐𝑛ℎ (𝑥𝑖), and 𝑝𝑛𝑖 = 𝑝𝑛ℎ (𝑥𝑖) for
𝑖 = 1, . . . , 𝑀 . We set 𝑢0

𝑖 = 𝑢
0 (𝑥𝑖), 𝑐0

𝑖 = 𝑐
0 (𝑥𝑖), and 𝑝0

𝑖 = 𝑝
0 (𝑥𝑖) for 𝑖 = 1, . . . , 𝑀 .

Replacing the space 𝐻1 (Ω) in (19) by 𝑉ℎ and applying the 𝜃-method for dis-
cretization in time (with 𝜃 ∈ [0, 1]), one obtains a discrete variational problem
which can be equivalently written in the matrix form

(M + 𝜃 𝜏𝑛+1 A
𝑛+1) u𝑛+1 = (M − (1 − 𝜃) 𝜏𝑛+1 A

𝑛) u𝑛 , 𝑛 = 0, . . . , 𝑁 − 1 , (22)

where the matricesM = (𝑚𝑖 𝑗 )𝑀𝑖, 𝑗=1 and A𝑛 = (𝑎𝑛𝑖 𝑗 )𝑀𝑖, 𝑗=1 are defined by

𝑚𝑖 𝑗 = (𝜙 𝑗 , 𝜙𝑖) , 𝑎𝑛𝑖 𝑗 = −𝜇 𝜙 𝑗 (1 − 𝑢𝑛ℎ), 𝜙𝑖
� − 𝜒 𝜙 𝑗∇𝑐𝑛ℎ,∇𝜙𝑖

�
.

The relation (20) suggests to define the coefficients of 𝑐𝑛ℎ by
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𝑐𝑛𝑖 = 𝑐
0 (𝑥𝑖) e−

∫ 𝑡𝑛
0 𝑝ℎ,𝜏 (𝑥𝑖 ,𝑠) d𝑠 , 𝑖 = 1, . . . , 𝑀 , 𝑛 = 0, . . . , 𝑁 , (23)

where 𝑝ℎ,𝜏 (·, 𝑡𝑛) = 𝑝𝑛ℎ for all 𝑛 = 0, . . . , 𝑁 and 𝑝ℎ,𝜏 (𝑥, ·) is piecewise linear with
respect to the decomposition of [0, 𝑇] for any 𝑥 ∈ Ω. Similarly, (21) leads to

𝑝𝑛𝑖 = e−𝑡𝑛/𝜖
�
𝑝0 (𝑥𝑖) + 1

𝜖

∫ 𝑡𝑛

0
𝑢ℎ,𝜏 (𝑥𝑖 , 𝑠) 𝑐ℎ,𝜏 (𝑥𝑖 , 𝑠) e𝑠/𝜖 d𝑠

�
. (24)

A direct computation gives

𝑐𝑛+1
𝑖 = 𝑐𝑛𝑖 e−𝜏𝑛+1 (𝑝𝑛+1

𝑖 +𝑝𝑛𝑖 )/2 , (25)

𝑝𝑛+1
𝑖 = e−𝜏𝑛+1/𝜖 𝑝𝑛𝑖 +

1
𝜏2
𝑛+1

(�
𝑢𝑛+1
𝑖 (𝜖 − 𝜏𝑛+1) − 𝑢𝑛𝑖 𝜖

� �
𝑐𝑛+1
𝑖 (𝜖 − 𝜏𝑛+1) − 𝑐𝑛𝑖 𝜖

�

−
�
𝑢𝑛+1
𝑖 𝜖 − 𝑢𝑛𝑖 (𝜖 + 𝜏𝑛+1)

� �
𝑐𝑛+1
𝑖 𝜖 − 𝑐𝑛𝑖 (𝜖 + 𝜏𝑛+1)

�
e−𝜏𝑛+1/𝜖

+ (𝑢𝑛+1
𝑖 − 𝑢𝑛𝑖 ) (𝑐𝑛+1

𝑖 − 𝑐𝑛𝑖 ) 𝜖2
�
1 − e−𝜏𝑛+1/𝜖

� )
. (26)

In general, the discretization formulated above does not provide nonnegative solu-
tions. To guarantee the positivity preservation property, we will modify the Galerkin
discretization (22) using the diagonal lumped mass matrixML = diag(𝑚1, . . . , 𝑚𝑀 )
and the symmetric artificial diffusion matrix D𝑛 = (𝑑𝑛𝑖 𝑗 )𝑀𝑖, 𝑗=1 defined by

𝑚𝑖 =
𝑀∑︁
𝑗=1

𝑚𝑖 𝑗 , 𝑑𝑛𝑖 𝑗 = −max{𝑎𝑛𝑖 𝑗 , 0, 𝑎𝑛𝑗𝑖} for 𝑖 ≠ 𝑗 , 𝑑𝑛𝑖𝑖 = −
𝑀∑︁

𝑗=1, 𝑗≠𝑖
𝑑𝑛𝑖 𝑗 ,

and we setL𝑛 = A𝑛+D𝑛. Then the simplest way to enforce the positivity preservation
is to replace (22) by

(ML + 𝜃 𝜏𝑛+1 L
𝑛+1) u𝑛+1 = (ML − (1 − 𝜃) 𝜏𝑛+1 L

𝑛) u𝑛 , 𝑛 = 0, . . . , 𝑁 − 1 . (27)

Note that the matrix L𝑛+1 depends on u𝑛+1 and c𝑛+1 so that (27) is again nonlinear. In
contrast to the Galerkin discretization (22), it is now possible to assure the positivity
preservation for sufficiently small time steps (i.e., u𝑛 ≥ 0 implies u𝑛+1 ≥ 0, see [3]).
Then (23) and (24) imply that also 𝑐𝑛ℎ and 𝑝𝑛ℎ will be nonnegative.

The solution of (25)–(27) is usually inaccurate since too much artificial diffusion is
introduced by the modifications leading to (27). To limit the amount of the artificial
diffusion, we will apply the FCT approach following [6]. First, we note that the
Galerkin discretization (27) can be written in the form

(ML + 𝜃 𝜏𝑛+1 L
𝑛+1) u𝑛+1 = (ML − (1 − 𝜃) 𝜏𝑛+1 L

𝑛) u𝑛 +
 
𝑀∑︁
𝑗=1

𝑓 𝑛+1
𝑖 𝑗

!𝑀
𝑖=1
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with algebraic fluxes 𝑓 𝑛+1
𝑖 𝑗 given by

𝑓 𝑛+1
𝑖 𝑗 = − 𝑚𝑖 𝑗 (𝑢𝑛+1

𝑗 − 𝑢𝑛+1
𝑖 ) + 𝑚𝑖 𝑗 (𝑢𝑛𝑗 − 𝑢𝑛𝑖 )

+ 𝜃 𝜏𝑛+1 𝑑
𝑛+1
𝑖 𝑗 (𝑢𝑛+1

𝑗 − 𝑢𝑛+1
𝑖 ) + (1 − 𝜃) 𝜏𝑛+1 𝑑

𝑛
𝑖 𝑗 (𝑢𝑛𝑗 − 𝑢𝑛𝑖 ) .

Now, the idea of the FCT approach is to limit the fluxes 𝑓 𝑛+1
𝑖 𝑗 by solution dependent

correction factors 𝛼𝑛+1
𝑖 𝑗 ∈ [0, 1] called limiters so that the nonnegativity of the

approximate solution can be guaranteed but less artificial diffusion is introduced
than in case of (27). This leads to the discrete problem

(ML + 𝜃 𝜏𝑛+1 L
𝑛+1) u𝑛+1 = (ML − (1 − 𝜃) 𝜏𝑛+1 L

𝑛) u𝑛 +
 
𝑀∑︁
𝑗=1

𝛼𝑛+1
𝑖 𝑗 𝑓 𝑛+1

𝑖 𝑗

!𝑀
𝑖=1

. (28)

The correction factors have to depend on the fluxes 𝑓 𝑛+1
𝑖 𝑗 , which introduces an

additional nonlinearity. Since the underlying problem is already nonlinear, both
nonlinearities can be treated simultaneously.

A popular choice is the limiter proposed by Zalesak [9]. Given algebraic fluxes
𝑓𝑖 𝑗 and u ∈ R𝑀 , the Zalesak algorithm defines corrections factors 𝛼𝑖 𝑗 in such a way
that the components of ũ ∈ R𝑀 solving the problem

ML ũ = ML u +
 
𝑀∑︁
𝑗=1

𝛼𝑖 𝑗 𝑓𝑖 𝑗

!𝑀
𝑖=1

are bounded from below (above) by local minima (maxima) of u. Thus, in particular,
one gets ũ ≥ 0 if u ≥ 0. We refer to [3] for details. We have the following result.

Theorem 2 Consider any 𝑛 ∈ {0, . . . , 𝑁−1} and let u𝑛, c𝑛, p𝑛 ∈ R𝑀 satisfy u𝑛 ≥ 0,
1 ≥ c𝑛 ≥ 0, p𝑛 ≥ 0. Let the time step 𝜏𝑛+1 satisfy the conditions

(1 − 𝜃) 𝜏𝑛+1 𝑙
𝑛
𝑖𝑖 ≤ 𝑚𝑖 , 𝜃 𝜏𝑛+1

 
𝜇 𝑚𝑖 + 𝜒 𝑛v 𝜅

2
∑︁
𝐾∋𝑥𝑖

ℎ𝑑−2
𝐾

!
< 𝑚𝑖 , 𝑖 = 1, . . . , 𝑀 ,

where (𝑙𝑛𝑖𝑖)𝑀𝑖=1 is the diagonal of L𝑛, 𝑛v is the number of vertices of a cell in Tℎ, and
𝜅 is a constant satisfying ∥∇𝜙𝑖 ∥𝐿2 (𝐾 ) ≤ 𝜅 ℎ𝑑/2−1

𝐾 for any 𝐾 ∈ Tℎ and 𝑖 = 1, . . . , 𝑀 .
Then there exist vectors u𝑛+1, c𝑛+1, p𝑛+1 ∈ R𝑀 satisfying (28), (25), (26) where
the limiters 𝛼𝑛+1

𝑖 𝑗 are computed using the Zalesak algorithm from the fluxes 𝑓 𝑛+1
𝑖 𝑗 .

Moreover, these vectors satisfy u𝑛+1 ≥ 0, 1 ≥ c𝑛+1 ≥ 0, and p𝑛+1 ≥ 0.

Proof. We mention only the main ideas of the proof and refer to [3] for details. To
guarantee that c𝑛+1 ≤ 1 and to prove coercivity, we first change the definitions of
𝑐𝑛+1
𝑖 and 𝑎𝑛+1

𝑖 𝑗 by introducing absolute values of 𝑝𝑛+1
𝑖 and 𝑢𝑛+1

ℎ :

𝑐𝑛+1
𝑖 = 𝑐𝑛𝑖 e−𝜏𝑛+1 ( | 𝑝𝑛+1

𝑖 |+𝑝𝑛𝑖 )/2 , 𝑎𝑛+1
𝑖 𝑗 = −𝜇 𝜙 𝑗 (1 − |𝑢𝑛+1

ℎ |), 𝜙𝑖
� − 𝜒 𝜙 𝑗∇𝑐𝑛+1

ℎ ,∇𝜙𝑖
�
.
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Substituting c𝑛+1 into (26) and (28), one can introduce an operator 𝑃 : R2𝑀 → R2𝑀

such that U = (u𝑛+1, p𝑛+1) solves the operator equation 𝑃U = 0. This operator
is continuous and satisfies (𝑃U,U) ≥ ∥U∥2 − 𝐶 for any U ∈ R2𝑀 , where 𝐶 is a
positive constant and (·, ·) and ∥ · ∥ are the Euclidean inner product and norm inR2𝑀 ,
respectively. Therefore, due to Brouwer’s fixed-point theorem, the equation 𝑃U = 0
possesses a solution (cf. [8], p. 164, Lemma 1.4). The assumed time step restrictions
and the properties of the Zalesak limiter imply that the solution is nonnegative.
Therefore, all results hold also for the original system (28), (25), (26). ⊓⊔

Note that the use of the discretizations (23)–(24) based on the analytical expres-
sions (20)–(21) was essential for proving the above theoretical results. Discretizing
(2)–(3) in a variational form like in [2], we were not able to show the nonnegativity
of the approximation of 𝑝.

5 Numerical Results

In this section, we present a few numerical results obtained for the discrete problem
(28), (25), (26) with 𝜃 = 0.5 (Crank-Nicolson method). This nonlinear problem is
solved by fixed-point iterations in the following way. Having an approximation u𝑛+1

𝑘 ,
c𝑛+1
𝑘 , p𝑛+1

𝑘 of u𝑛+1, c𝑛+1, p𝑛+1 (using u𝑛, c𝑛, p𝑛 as the initial guess), we compute a
new approximation c𝑛+1

𝑘+1 from (25), then p𝑛+1
𝑘+1 from (26), and finally u𝑛+1

𝑘+1 from (28)
where L𝑛+1 and 𝑓 𝑛+1

𝑖 𝑗 are computed using u𝑛+1
𝑘 instead of u𝑛+1. Moreover, a damping

is used to improve the convergence behaviour. Under the time step restrictions from
Theorem 2, it can be proved that all the iterates are uniquely determined and satisfy
u𝑛+1
𝑘 ≥ 0, 1 ≥ c𝑛+1

𝑘 ≥ 0, and p𝑛+1
𝑘 ≥ 0, see [3]. This is important since, in practice,

the fixed-point iterations are usually terminated when a stopping criterion is met,
i.e., typically before reaching the solution of the nonlinear problem (28), (25), (26).
The described algorithm is implemented in the open-source finite element library
deal.II and the linear systems are solved using the sparse direct solver UMFPACK.

The computations were performed on a uniform quadrilateral mesh of the square
domain Ω = (0, 20)2 and conforming bilinear finite elements were used for approx-
imating all unknown variables. The initial conditions were defined by

𝑢0 (𝑥) = e−|𝑥 |
2
, 𝑐0 (𝑥) = 1 − 1

2
e−|𝑥 |

2
, 𝑝0 (𝑥) = 1

2
e−|𝑥 |

2

and the parameter 𝜖 = 0.2 was used. We present the numerical results along the
diagonal of the square Ω connecting the origin with the point (20, 20). Note that
more complicated domains Ω could be used without any additional difficulties.

Fig. 1 shows the influence of different values of the proliferation rate 𝜇 on the
densities of cancer cells 𝑢 and of extracellular matrix (ECM) 𝑐 for a fixed haptotactic
rate 𝜒 = 1.0. For a small growth rate 𝜇 = 0.1, a small cluster of cancer cells is created
and migrates over the domain during the time. However, for higher proliferation rates
the density of the cancer cells increases considerably and invades the ECM domain

101



Solvability and Numerical Solution of a Cross-diffusion Cancer Invasion Model 9

Fig. 1 Approximations of 𝑢 (top) and 𝑐 (bottom) for 𝜒 = 1.0 and 𝜇 = 0.1, 0.5, 1.0, 1.5, 2.0 at
time instants 𝑡 = 0, 𝑡 = 5, 𝑡 = 15, and 𝑡 = 35 (left to right)

Fig. 2 Approximations of 𝑢 (top) and 𝑐 (bottom) for 𝜇 = 0.001 and 𝜒 = 0.1, 0.5, 1.0, 1.5, 2.0,
2.5, 3.0 at time instants 𝑡 = 0, 𝑡 = 5, 𝑡 = 25, and 𝑡 = 45 (left to right)

more rapidly. Next, we investigate the influence of the haptotactic rate on the cancer
cells invasion by varying 𝜒 and set 𝜇 = 0.001 to be fixed, see Fig. 2. We observe that
a small cluster is created at the beginning and migrates through the domain during
the time. It can be seen that the migration accelerates by increasing 𝜒 and degrades
the ECM more rapidly.

In Fig. 3, we investigate the influence of the choice of the limiters in (28) on the
computed approximations of the solution for parameter choices 𝜇 = 𝜒 = 1.0 and
𝜇 = 0.1, 𝜒 = 1.0. Apart from the Zalesak limiter [9] considered in the previous
section, we use the Kuzmin limiter [5], BJK limiter [1], and MUAS limiter [4]. We
observe that, for the Kuzmin limiter, the approximate solutions evolve in time faster
than for the other three choices. The results for the Zalesak and MUAS limiters almost
coincide whereas, for the BJK limiter, we observe a slightly faster time evolution in
the case 𝜇 = 𝜒 = 1.0.
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10 Shahin Heydari and Petr Knobloch

Fig. 3 Approximations of 𝑐 and 𝑢 obtained using the Zalesak, Kuzmin, BJK, and MUAS limiters
for 𝜇 = 𝜒 = 1.0 (first two plots) at 𝑡 = 5 and 𝑡 = 25 and for 𝜇 = 0.1, 𝜒 = 1.0 (last two plots) at
𝑡 = 25 and 𝑡 = 45

It is important to stress that all the presented numerical results clearly demonstrate
that the considered methods are positivity preserving as predicted by our theory.
Moreover, the concentrations are also bounded by 1 from above.
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4. Paper IV
This chapter is based on the paper entitled ”A cross-diffusion system modeling
rivaling gangs: global existence of bounded solutions and FCT stabilization for
numerical simulation”, published in Mathematical Models and Methods in Ap-
plied Sciences, DOI: 10.1142/S0218202524500349.

4.1 A cross-diffusion system modeling rivaling
gangs: global existence of bounded
solutions and FCT stabilization for numeri-
cal simulation

In this paper, we considered a system consisting of two parabolic and two ordinary
differential equations describing rivaling gangs interaction [243], as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = Du∆u+ χu∇ · (u∇w) in Ω × (0,∞),
vt = Dv∆v + χv∇ · (v∇z) in Ω × (0,∞),
wt = −w + f(v) in Ω × (0,∞),
zt = −z + g(u) in Ω × (0,∞),
Du∂νu+ χuu∂νw = Dv∂νv + χvv∂νz = 0 on ∂Ω × (0,∞),
(u, v, w, z)(·, 0) = (u0, v0, w0, z0) in Ω,

(4.1)

where Du, Dv, χu, χv are positive parameters, u0, v0, w0, z0 are smooth initial data,
f, g are given sprays rate, and u, v are the densities of two rivaling gangs which
mark their territory by spraying graffiti with densities z and w, respectively. Let
us summarize which modeling consideration leads to which terms in the system:

• The gangs move around randomly: terms Du∆u and Dv∆v,

• The gangs move away from high hostile graffiti concentrations: terms
+χu∇ · (u∇w), +χv∇ · (v∇z); the signs of +χu and +χv indicate that the
gangs are indeed repelled and not attracted by the graffiti,

• The gangs stay in the domain: no-flux boundary conditions
Du∂νu+ χuu∂νw = Dv∂νv + χvv∂νz = 0 on ∂Ω × (0,∞),

• Gang members spray their graffiti at their current locations: terms +f(v)
and +g(u),

• The total amount of members of each gang remains constant throughout
the time: absence of any zeroth order or external force terms in the first
two equations,

• The graffiti decay over time: terms −w and −z,

• The graffiti do not diffuse, i.e., they are immobile: absence of terms Dw∆w
and Dz∆z for positive Dw, Dz in the third and fourth equation.
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From analytical point of view, we show that under the requirement

f, g ∈ C1([0,∞)) ∩ L∞((0,∞)) are nonnegative, (4.2)

and for any reasonable smooth initial data, there is a unique, global, non-negative
classical solution of (4.1).

Theorem. Let

Ω ⊂ Rn, n ∈ {1, 2, 3}, be a smooth, bounded domain, (4.3)

Du, Dv, χu, χv > 0, f, g be as in (4.2), α ∈ (0, 1) and w0, z0 ∈ C2+α(Ω̄; [0,∞)).
Then there exists C > 0 such that for all M > 0 and all nonnegative u0, v0 ∈
C2+α(Ω̄) with⎧⎨⎩Du∂νu0 + χuu0∂νw0 = Dv∂νv0 + χvv0∂νz0 = 0 on ∂Ω and

∥u0∥∞ + ∥v0∥∞ ≤ M,
(4.4)

there exists a unique, global, nonnegative classical solution (u, v, w, z) of (4.1),
which satisfies the estimates⎧⎨⎩∥u(·, t)∥∞ + ∥v(·, t)∥∞ ≤ CMand

∥w(·, t)∥∞ + ∥z(·, t)∥∞ ≤ C,
(4.5)

for all t ≥ 0.

After having established global existence of a solution to (4.1), a natural next
question was whether the first two components of these solutions separate. An-
swering this question analytically appeared to be a very difficult task, we showed
that for small initial data the solutions converge towards homogeneous equilib-
ria, however, for large data it seemed to be very challenging to show any results.
Hence, in the next step, we used a numerical scheme to obtain the solution of
(4.1), this allowed us to address the asymptotic behavior of large-time solutions
and also to illustrate the evolution of gang densities throughout the time for var-
ious parameters (mainly diffusion- and convection-dominated regime). To this
end, we employed a high-resolution nonlinear finite element flux-corrected trans-
port method altogether with θ-method for time discretization and fixed-point
iteration to treat the nonlinearities in the proposed scheme. We next proved that
under CFL-like conditions, the resulting method is positivity-preserving, we also
showed that if certain assumptions on the matrices from the algebraic system
hold, the resulting scheme satisfies the DMP. For the last part, we performed
several numerical experiments and showed that for small values of χ (diffusion-
dominated regime), gang populations stay completely mixed and the approxi-
mated solutions converge toward constant steady states, however, both partial
and complete separation is observed for large values of χ (convection-dominated
regime).
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1. Introduction

Graffiti, the artful wall writing usually on public property and in open view, is

sprayed by urban gang members not only to express themselves, convey their atti-

tudes and communicate with fellow gang members but also to mark their area of

control, i.e. the gang’s territory.14, 46 In order to describe the interaction of two

rivaling gangs attempting to establish or defend territories by spraying intimidating

graffiti, Alsenafi and Barbaro2 introduce the model





ut = Du∆u+ χu∇ · (u∇w) in Ω× (0,∞),

vt = Dv∆v + χv∇ · (v∇z) in Ω× (0,∞),

wt = −w + f(v) in Ω× (0,∞),

zt = −z + g(u) in Ω× (0,∞),

Du∂νu+ χuu∂νw = Dv∂νv + χvv∂νz = 0 on ∂Ω× (0,∞),

(u, v, w, z)(·, 0) = (u0, v0, w0, z0) in Ω,

(1.1)

where positive parameters Du, Dv, χu, χv, suitably smooth initial data u0, v0, w0, z0

and spray rates f, g (the choice f = g = id is proposed in Ref. 2) are given.

Here, u and v denote the densities of two rivaling gangs which mark their territory

by spraying graffiti with densities z and w, respectively. Let us summarize which

modeling considerations lead to which terms in the system.

• The gangs move around randomly: terms Du∆u and Dv∆v.

• The gangs move away from high hostile graffiti concentrations: terms +χu∇ ·
(u∇w), +χv∇ · (v∇z); the signs of +χu and +χv indicate that the gangs are

indeed repelled and not attracted by the graffiti.

• The gangs stay in the domain: no-flux boundary conditions Du∂νu+ χuu∂νw =

Dv∂νv + χvv∂νz = 0 on ∂Ω× (0,∞).

• Gang members spray their graffiti at their current locations: terms +f(v) and

+g(u).

• The total amount of members of each gang remains constant throughout time:

absence of any zeroth order or external force terms in the first two equations.

• The graffiti decay over time: terms −w and −z.
• The graffiti do not diffuse, i.e. they are immobile: absence of terms Dw∆w and

Dz∆z for positive Dw, Dz in the third and fourth equation.

In fact, Alsenafi and Barbaro2 first design a discrete agent-based model based

on similar considerations (see Sec. 2 in Ref. 2) and then obtain (1.1) as the formal

limit when both the time step and the grid spacing converge to zero (see Subsec. 3.2

in Ref. 2). For related modeling considerations, we refer to Ref. 8 for an overview

of biological phenomena modeled by active particles, to Ref. 10 for a discussion

of complex models incorporating a taxis term and to Ref. 9 for the mathematical
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modeling of human crowds. Especially, the last two of these surveys examine how

such models can be derived by a multiscale approach.

Mathematically related systems. In this paper, we study (1.1) both analytically

and numerically. Before presenting our results, we compare (1.1) to related prob-

lems, namely double cross-diffusion and haptotaxis systems. Under the assumption

that the graffiti densities equilibrate instantly (and that f = g = id), Ref. 6 reduces

(1.1) to the two-component system
(
ut = Du∆u+ χu∇ · (u∇v),

vt = Dv∆v + χv∇ · (v∇u),
(1.2)

(with positive parameters), which can also be interpreted as a model for gangs

directly repelling each other, and proves a weak-stability result as well as conver-

gence of weak solutions (if they exist) to constant steady states under a smallness

condition. A key difficulty in establishing even a local solution theory for (1.2) for

large data consists of the nonpositive definiteness of the diffusion matrix
�
Du χuu
χvv Dv

�

whenever uv > DuDv
χuχv

. Nonetheless, global existence results have recently been

obtained which, however, either need to require a certain regularization20 or can

only guarantee solution properties within the parabolic regime.65

The problem that a diffusion matrix is not positive definite can be overcome in

multiple ways, for instance by replacing linear diffusion with porous medium-type

diffusion, e.g. ∆u and ∆v by ∇· (u∇u) and ∇· (v∇v), respectively. Indeed, for such

a system, global, locally bounded weak solutions exist as long as DuDv > χuχv,

see Ref. 44 and also its precedent Ref. 45. Moreover, one can also consider (1.2)

with χuχv < 0, which then models pursuit–evasion dynamics.62 Again the diffu-

sion matrix is positive definite as long as both components are non-negative but in

contrast to the repulsion–repulsion problem with degenerate diffusion above, appar-

ently there only exists a single quasi-energy functional and the a priori estimates

thereby gained only suffice to construct global weak solutions in the one-dimensional

setting60, 61; in the higher-dimensional case, global weak solutions are only known

to exist if the diffusion is sufficiently enhanced or the taxis is saturated.28 Further-

more, homogeneous steady states of (1.2) with χuχv < 0 are asymptotically stable

in the sense that global classical solutions emanating from nearby initial data (exist

and) converge to these equilibria.27

Another way of regularizing (1.2) consists in replacing the cross-diffusive con-

tributions with smoother functions; that is, in considering
(
ut = Du∆u+ χu∇ · (u∇(K ∗ v)),

vt = Dv∆v + χv∇ · (v∇(K ∗ u)),
(1.3)

where K denotes a spatial averaging kernel, for instance. (If K is the Dirac

delta distribution, one again obtains (1.2).) The system (1.3) can inter alia be

used to describe territorial formations of various animals which remember direct
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encounters52; for existence results we refer to Refs. 31, 38 and references therein.

Moreover, for the case when K is Green’s function for −∆ + 1 with Neumann

boundary conditions, i.e. when K ∗ ϕ is the solution ψ of the elliptic equation

−∆ψ + ψ = ϕ in Ω with ∂νψ = 0 on ∂Ω, and when χuχv < 0, global classical

solutions of (1.3) are constructed in Ref. 47. For related systems where the signal

equations are parabolic, see for instance Refs. 51 or 64.

In contrast, while the indirect mechanism in (1.1) entails for instance that space–

time bounds for f(v) and g(u) imply uniform-in-time a priori estimates for w and

z, the third and fourth equations in (1.1) do not regularize in space at all. Thus,

mathematically, (1.1) is related to haptotaxis problem such as
(
ut = Du∆u−∇ · (uχu(v)∇v),

vt = −uv,

studied for instance in Refs. 17 and 18. These systems share the challenge of con-

trolling cross-diffusion terms involving spatial derivatives of the signal(s) without

relying on spatial regularity gained due to diffusion terms in the signal equation(s).

Main analytical results. For our global existence result regarding (1.1), we need

to require that

f, g ∈ C1([0,∞)) ∩ L∞((0,∞)) are non-negative. (1.4)

(However, Corollary 1.1 and Theorem 1.2 below also apply to unbounded f, g such

as f = g = id.) A prototypical choice is given by f(s) = g(s) = s
1+s for s ≥ 0, which

not only satisfies (1.4) but also guarantees that no graffiti come into existence out

of nowhere by fulfilling f(0) = g(0) = 0. For this example, the amount of sprayed

graffiti increases roughly proportionally to the corresponding gang density at that

point as long as the latter is rather small but is then limited by some positive

constant. Such a saturation effect appears to be reasonable: For large gang densities,

the amount of additional wall writings in an area may be limited by available space

rather than by the amount of gang members willing to spray graffiti.

For any such choice of graffiti production terms and any reasonably smooth

initial data, we can construct globally bounded classical solutions of (1.1).

Theorem 1.1. Let

Ω ⊂ Rn, n ∈ {1, 2, 3}, be a smooth, bounded domain, (1.5)

Du, Dv, χu, χv > 0, f, g be as in (1.4), α ∈ (0, 1) and w0, z0 ∈ C2+α(Ω; [0,∞)).

Then there exists C > 0 such that for all M > 0 and all non-negative u0, v0 ∈
C2+α(Ω) with

(
Du∂νu0 + χuu0∂νw0 = Dv∂νv0 + χvv0∂νz0 = 0 on ∂Ω, and

ku0kL∞(Ω) + kv0kL∞(Ω) ≤M,
(1.6)
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there exists a unique, global, non-negative classical solution (u, v, w, z) of (1.1),

which satisfies the estimates

(
ku(·, t)kL∞(Ω) + kv(·, t)kL∞(Ω) ≤ CM, and

kw(·, t)kL∞(Ω) + kz(·, t)kL∞(Ω) ≤ C,
(1.7)

for all t ≥ 0.

A direct consequence of this theorem, especially of the bound (1.7), is the exis-

tence of global small data solutions of the original system proposed in Ref. 2.

Corollary 1.1. Assume (1.5), let Du, Dv, χu, χv > 0, let f(s) = g(s) = s for

s ≥ 0, α ∈ (0, 1) and let w0, z0 ∈ C2+α(Ω; [0,∞)). Then there exists M > 0 such

that for all non-negative u0, v0 ∈ C2+α(Ω) fulfilling (1.6), there exists a unique,

global, bounded, non-negative classical solution (u, v, w, z) of (1.1).

Having established global existence of solutions to (1.1), a natural next question

is whether the first two components of these solutions separate. We first give a

negative answer for small initial data and show that the solutions converge toward

homogeneous equilibria. A corresponding result for the two-component system (1.2)

(with χ1, χ2 > 0) has already been observed for global weak solutions (whose exis-

tence, however, is not known yet) in Theorem 5.1 in Ref. 6 and also numerically in

Sec. 6 in Ref. 6.

Theorem 1.2. Assume (1.5), let Du, Dv, χu, χv > 0, suppose that f, g ∈
C1([0,∞)) are non-negative and let w0, z0 ∈ C2+α(Ω) for some α ∈ (0, 1)

also be non-negative. Then there exists M > 0 such that for all non-negative

u0, v0 ∈ C2+α(Ω) fulfilling (1.6), there is a global classical solution (u, v, w, z) of

(1.1) fulfilling

u(·, t)→ u0 and v(·, t)→ v0 in Lp(Ω), (1.8)

w(·, t)→ f(v0) and z(·, t)→ g(u0) in W 1,2(Ω) and in Lp(Ω), (1.9)

as t→∞ for all p ∈ [1,∞). (Here, we have set ϕ := 1
|Ω|
R

Ω
ϕ for ϕ ∈ L1(Ω).)

While Theorem 1.2 settles the asymptotic behavior of small data solutions,

it does not address the situation for large data; in particular, nontrivial large-

time stabilization leading to some kind of segregation may still be possible. Usu-

ally, such questions are linked to the stability of heterogeneous steady states:

For instance, related systems modeling other types of segregation such as the

Shigesada–Kawasaki–Teramoto model54 or the Cahn–Hilliard equation16 feature a

rich structure of heterogeneous steady states which may attract various solutions,

see for instance Refs. 39 and 48 for the former and Refs. 53 and 63 for the latter

model as well as references therein. For (1.1), however, the situation is entirely
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different: Convergence toward nonconstant smooth steady states is impossible sim-

ply because there are no such equilibria; that is, all smooth solutions of




0 = Du∆u+ χu∇ · (u∇w) in Ω,

0 = Dv∆v + χv∇ · (v∇z) in Ω,

0 = −w + f(v) in Ω,

0 = −z + g(u) in Ω,

Du∂νu+ χuu∂νw = Dv∂νv + χvv∂νz = 0 on ∂Ω,

(1.10)

are constant. In Proposition 4.2 in Ref. 6, this has already been shown in the two-

dimensional setting for f(s) = g(s) = s, s ≥ 0. (In fact, there even the existence of

heterogeneous weak solutions to (1.10) fulfilling an entropy estimate is ruled out.)

We show that for many natural choices of f and g, no nontrivial smooth steady

states exist.

Proposition 1.1. Let Ω ⊂ Rn, n ∈ N, be a smooth, bounded domain, let f, g be

non-negative, real analytic functions on (−ε,∞) for some ε > 0 and suppose that

(u, v, w, z) ∈ (C2(Ω))4 is a non-negative classical solution of (1.10). Then u, v, w

and z are constant.

This leaves open the question whether separation may occur at all. However,

Proposition 1.1 does not rule out the most drastic way of separation, namely

convergence toward multiples of characteristic functions of disjoint sets. Likewise,

other forms of large-time behavior involving infinite time gradient blow up are not

excluded either.

Numerical simulations. As answering the question whether the gangs may sep-

arate analytically appears to be very difficult, we instead perform numerical exper-

iments which not only address the asymptotic behavior of large-time solutions but

also generally illustrate the evolution of gang densities throughout time for various

parameter regimes.

Cross-diffusion systems such as (1.1) can be considered as representatives of

diffusion–convection–reaction equations (DCR) in computational fluid dynamics

and often standard discretization methods for approximating the numerical solu-

tions of DCR equations produce spuriously oscillating solutions whenever the

convection is much larger than diffusion or reaction. Consequently, a vast vari-

ety of stabilization techniques has been introduced over the years to overcome

these problems. The most popular among them is the streamline upwind/Petrov–

Galerkin (SUPG) method introduced in Ref. 13, for which another stabilization

acting in crosswind direction has been added by nonlinear so-called spurious oscil-

lations at layers diminishing (SOLD) methods.35 Local-projection stabilization

(LPS) schemes,30 unusual stabilized finite element methods,23 Mizukami–Hughes

method,49 Galerkin-Least-Square methods34 are among the other methods which

have also been developed for stabilizing DCR problems in the convection-dominated
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regime. While all the aforementioned approaches attempt to stabilize the finite

element method by adding additional terms to the Galerkin finite element dis-

cretization, flux-corrected transport (FCT) schemes have been developed11, 40–42 as

a different technique which is a nonlinear scheme working on the algebraic level by

modifying the algebraic equation obtained from the Galerkin finite element method.

Stabilization methods were further investigated and developed for time-dependent

DCR models, see for instance Refs. 15, 24, 36 and 37, to just mention a few. How-

ever, most of these finite element stabilization techniques deal with the cases where

the convection terms are linear and their implementation to nonlinear convection

terms still calls for further investigation. To this end, applications of finite element

flux-corrected transport method (FEM-FCT) have been studied in Refs. 55–57 for

Keller–Segel models; Ref. 33 considered a different model containing chemotaxis–

Stokes equations and analyzed the error in Ref. 21, and the analysis of the solvability

and positivity preservation of the FEM-FCT for a model of cancer invasion has

been studied recently.32

Accordingly, it is not surprising that also for the double cross-diffusion sys-

tem (1.1) studied in this paper, standard discretization schemes such as Galerkin

finite element method give rise to nonphysical oscillations leading to negative val-

ues in the approximate solutions when the sensitivity magnitudes χu and χv of

the strongly nonlinear convection terms are large. Thus as a remedy, we employ

a high-resolution nonlinear FEM-FCT to reduce the oscillations and preserve the

positivity of the solution. Moreover, we deal with strong nonlinear coupling in the

system and nonlinearity of the proposed scheme simultaneously using a fixed-point

iteration.

To answer the question whether the gangs’ populations separate from each other

or not, we perform a series of numerical experiments using our newly designed algo-

rithm which is implemented in finite element library deal.II.4, 5 We show that for

small values of χ, gang populations stay completely mixed and that the approx-

imate solutions converge toward constant steady states, see Sec. 6.1.1. However,

both partial and complete separation is observed for large values of χ, see Secs. 6.1.2

and 6.1.3. Moreover, we compare our outcome with the reported results for the

two-component version of (1.1) (see Ref. 6) and a related agent-based model.2, 3

Plan of the paper. This paper is organized as follows. Following a brief local exis-

tence result in Sec. 2, Sec. 3 establishes various a priori bounds which eventually

allow us to prove global existence of solutions, i.e. Theorem 1.1 and Corollary 1.1.

Next, Theorem 1.2 and Proposition 1.1, that is, statements on the asymptotical

stability and existence of steady states, are derived in Sec. 4. In Sec. 5, we first dis-

cretize the system using the θ-method in time and a Galerkin finite element scheme

in space and then enforce the positivity using the FEM-FCT scheme whenever the

Galerkin method fails. We demonstrate the numerical results for different choices

of parameters and study the convergence of our proposed method with respect to

time step and mesh in Sec. 6.
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2. Local Existence of Classical Solutions to a Transformed System

As the third and fourth equations in (1.1) do not regularize in space, the graffito-

taxis terms in the first two equations are particularly challenging to deal with. To

overcome this issue, we introduce the transformations

a := ueξuw and b := veξvz, where ξu :=
χu

Du
and ξv :=

χv

Dv
,

variations of which have been already used for the analysis of several haptotaxis

systems (cf. Refs. 22 and 25 for early examples). Indeed, as

at = ute
ξuw + ξuwtueξuw

= eξuw∇ · (Du∇(ae−ξuw) + χuae−ξuw∇w) + ξuwta

= Dueξuw∇ · (e−ξuw∇a)− ξuaw + ξuaf(v),

and likewise

bt = Dveξvz∇ · (e−ξvz∇b)− ξvbz + ξvbg(u),

in Ω×(0,∞) whenever (u, v, w, z) is a global (classical) solution of (1.1), the system

(1.1) is equivalent to





at = Dueξuw∇ · (e−ξuw∇a)− ξuaw + ξuaf(be−ξvz) in Ω× (0,∞),

bt = Dveξvz∇ · (e−ξvz∇b)− ξubz + ξvbg(ae−ξuw) in Ω× (0,∞),

wt = −w + f(be−ξvz) in Ω× (0,∞),

zt = −z + g(ae−ξuw) in Ω× (0,∞),

∂νa = ∂νb = 0 on ∂Ω× (0,∞),

(a, b, w, z)(·, 0) = (a0, b0, w0, z0) in Ω,

(2.1)

where a0 = u0eξuw0 and b0 := v0eξvz0 . For this transformed system we have the

following local existence result.

Lemma 2.1. Let Ω ⊂ Rn, n ∈ {1, 2, 3}, be a smooth, bounded domain, let f, g be

as in (1.4), α ∈ (0, 1) and

a0, b0, w0, z0 ∈ C2+α(Ω) with ∂νa0 = ∂νb0 = 0 on ∂Ω. (2.2)

Then there exists Tmax ∈ (0,∞] and a unique quadruple of non-negative functions

(a, b, w, z) ∈ (C2+α,1+α
2 (Ω× (0, Tmax)) ∩ C1(Ω× [0, Tmax)))4,

with

(∇a,∇b,∇w,∇z) ∈ (C1(Ω× [0, Tmax)))4,
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solving (2.1) classically with the property that if Tmax <∞, then

lim sup
t%Tmax

(ka(·, t)kC1+α̃(Ω) + kb(·, t)kC1+α̃(Ω)) =∞, (2.3)

for all α̃ ∈ (0, 1).

Proof. This can be shown by means of a fixed-point argument and parabolic reg-

ularity theory, see for instance Lemma 2.5 in Ref. 29 or Lemmata 2.1 and 2.2 in

Ref. 59 for details.

3. Global Existence and Boundedness

In this section, we always assume that

Ω is a smooth bounded domain in Rn, n ∈ {1, 2, 3} and f, g are as in (1.4).

(3.1)

In order to prove that the solution constructed in Lemma 2.1 is global in time,

we need to show that (2.3) does not hold for some α̃ ∈ (0, 1); that is, that all solution

components remain bounded in C2+α̃(Ω). This is achieved by a series of a priori

estimates, which in part rely on previously established bounds. In particular, in

Lemma 3.5 we apply Lemma 3.4 (and hence indirectly also Lemmata 3.1–3.3) to the

solution of (2.1) with initial data (a, b, z, w)(·, t0) for some t0 ∈ (0, Tmax). Therefore,

we need to carefully track the dependency of the constants in the estimates below

on the initial data and thus introduce the condition

a0, b0, w0, z0 fulfill (2.2) for some α ∈ (0, 1) and





ka0kL∞(Ω) ≤M,

kb0kL∞(Ω) ≤M,

kw0kL∞(Ω) ≤ L,
kz0kL∞(Ω) ≤ L,

(3.2)

for M,L > 0. That is, for fixed M,L > 0, the constants given by Lemmas 3.1–3.4

do not depend on the precise form of the initial data, provided those fulfill (3.2).

Also, the constants in the former three lemmata may not depend on M .

3.1. L∞ estimates

We start with two rather basic estimates, namely L∞ bounds for the last two and

L1 bounds for the first two equations in (1.1). Already at this point we make use

of the fact that (1.4) contains boundedness of f and g.

Lemma 3.1. Assume (3.1) and let L > 0. Then there exists C1 > 0 such that for

all M > 0 and all initial data satisfying (3.2), the corresponding solution (a, b, w, z)

of (2.1) given by Lemma 2.1 fulfills

kw(·, t)kL∞(Ω) ≤ C1 and kz(·, t)kL∞(Ω) ≤ C1 for all t ∈ (0, Tmax). (3.3)
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Proof. The functions w := max{kw0kL∞(Ω), kfkL∞((0,∞))} and z :=

max{kz0kL∞(Ω), kgkL∞((0,∞))} are bounded supersolutions of the third and fourth

subproblems in (2.1), respectively. Moreover, both w and z are non-negative by

Lemma 2.1.

Lemma 3.2. Assume (3.1) and let L > 0. Then there exists C2 > 0 such that for

all M > 0 and all initial data satisfying (3.2), the corresponding solution (a, b, w, z)

of (2.1) given by Lemma 2.1 fulfills

ka(·, t)kL1(Ω) ≤ C2M and kb(·, t)kL1(Ω) ≤ C2M for all t ∈ (0, Tmax).

Proof. Integrating the first equation in (1.1) shows that
R

Ω
u(·, t) =

R
Ω
u0 for

t ∈ (0, Tmax). With C1 as given by Lemma 3.1, the definition of a thus implies

Z

Ω

a(·, t) =

Z

Ω

(ueξuw)(·, t) ≤ eξuC1

Z

Ω

u0 ≤M |Ω|eξuC1 for all t ∈ (0, Tmax).

The bound for b can be derived analogously.

As to L∞ bounds of a and b, we note that

a(x, t) := ka0kL∞(Ω)e
ξutkfkL∞((0,∞)) and b(x, t) := kb0kL∞(Ω)e

ξvtkgkL∞((0,∞)) ,

(x, t) ∈ Ω × [0, Tmax), are supersolutions of the first two subproblems in (2.1) and

that accordingly a and b are bounded locally in time. However, by employing testing

procedures and a Moser-type iteration (following Refs. 1 and 58), we are also able

to obtain L∞ bounds which are not only time-independent but which additionally

depend favorably on M as well.

Lemma 3.3. Assume (3.1) and let L > 0. Then there exists C3 > 0 such that for

all M > 0 and all initial data satisfying (3.2), the corresponding solution (a, b, w, z)

of (2.1) given by Lemma 2.1 fulfills

ka(·, t)kL∞(Ω) ≤ C3M and kb(·, t)kL∞(Ω) ≤ C3M, (3.4)

for all t ∈ (0, Tmax).

Proof. We fix initial data satisfying (3.2) and the corresponding solution (a, b, w, z)

of (2.1) given by Lemma 2.1.

Moreover, by a quantitative version of Ehrling’s lemma proved in Lemma 2.5 in

Ref. 26, there exist c1 > 0 and µ > 0 such that

c2p

Z

Ω

ϕ2 ≤ 2Due−ξuC1

p

Z

Ω

|∇ϕ|2 + c1p
µ

�Z

Ω

|ϕ|
�2

,
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for all ϕ ∈W 1,2(Ω) and all p ≥ 2, where c2 := ξukfkL∞((0,∞)) + 1 and where C1 is

given by Lemma 3.1. For p ≥ 2 and T ∈ (0, Tmax), we can thus calculate

d

dt

Z

Ω

e−ξuwap

= p

Z

Ω

e−ξuwap−1at − ξu
Z

Ω

e−ξuwapwt

= −Dup

Z

Ω

e−ξuw∇a · ∇ap−1 + ξu(p− 1)

Z

Ω

e−ξuwap(−w + f(be−ξvz))

≤ −4Du(p− 1)e−ξuC1

p2

Z

Ω

|∇a p2 |2 + c2(p− 1)

Z

Ω

e−ξuwap

≤ −c2
Z

Ω

e−ξuwap − 2Due−ξuC1

p

Z

Ω

|∇a p2 |2 + c2p

Z

Ω

(a
p
2 )2

≤ −c2
Z

Ω

e−ξuwap + c1p
µ

�Z

Ω

a
p
2

�2

≤ −c2
Z

Ω

e−ξuwap + c1p
µ sup

s∈(0,T )

�Z

Ω

a
p
2 (·, s)

�2

in (0, T ),

which in combination with an ordinary differential equation (ODE) comparison

argument implies

Z

Ω

(e−ξuwap)(·, t) ≤ max

(Z

Ω

e−ξuw0ap0,
c1p

µ

c2
sup

s∈(0,T )

�Z

Ω

a
p
2 (·, s)

�2
)
,

for all T ∈ (0, Tmax), all t ∈ (0, T ) and all p ≥ 2. Setting c3 := eξuC1 max{1, c1c2 }, we

thus obtain
Z

Ω

ap(·, t) ≤ c3 max

(Z

Ω

ap0, p
µ sup

s∈(0,T )

�Z

Ω

a
p
2 (·, s)

�2
)
, (3.5)

for all T ∈ (0, Tmax), all t ∈ (0, T ) and all p ≥ 2. We next set

pj := 2j and Aj(T ) := sup
s∈(0,T )

ka(·, s)kLpj (Ω) for j ∈ N0 and T ∈ (0, Tmax),

so that with c4 := c3 max{1, |Ω|} and as the condition ka0kL∞(Ω) ≤ M in (3.2)

implies ka0kLpj (Ω) ≤ |Ω|
1
pjM ≤ max{1, |Ω|}M , we further infer from (3.5) that

Aj(T ) ≤ max{c4M, (c3p
µ
j )

1
pj Aj−1(T )} for all j ∈ N and T ∈ (0, Tmax).

We now fix T ∈ (0, Tmax). If there are infinitely many j ∈ N0 with Aj(T ) ≤ c4M ,

then

kakL∞(Ω×(0,T )) = lim inf
j→∞

Aj(T ) ≤ c4M. (3.6)
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Else there exists j0 ∈ N0 such that

Aj(T ) ≤ (c3p
µ
j )

1
pj Aj−1(T ) for all j > j0. (3.7)

(We note that while j0 may depend on the initial data, the constant C3 defined

below will not.) Choosing j0 minimal, we can moreover assume that

Aj0(T ) ≤ max{C2, c4}M, (3.8)

where C2 is as in Lemma 3.2. (That lemma guaranteesA0(T ) ≤ C2M .) By induction

and as pj = 2j for j ∈ N, (3.7) implies

Aj(T ) ≤




jY

k=j0+1

(c3p
µ
k)

1
pk


Aj0 = c3

Pj
k=j0+1 2−k · 2µ

Pj
k=j0+1 k2−k ·Aj0 ,

for all j > j0. In combination with (3.8), we arrive at

kakL∞(Ω×(0,T )) = lim
j→∞

Aj(T ) ≤ c3
P∞
k=j0+1 2−k · 2µ

P∞
k=j0+1 k2−k ·Aj0

≤ c3
P∞
k=0 2−k · 2µ

P∞
k=0 k2−k ·max{C2, c4}M =: c5M.

Together with (3.6) this implies kakL∞(Ω×(0,T )) ≤ C3M for all T ∈ (0, Tmax), where

C3 := max{c4, c5}. Letting T % Tmax, we obtain the first statement in (3.4), while

the second one follows upon an analogous computation for the second solution

component of (2.1), possibly after enlarging C3.

3.2. Gradient estimates

Our next step toward showing that (2.3) cannot hold consists in deriving uniform-

in-time L4 estimates for ∇w and ∇z. To that end, we follow a technique introduced

in Lemmata 3.13–3.15 in Ref. 59 for a haptotaxis system. As a preparation, we first

note that the time regularization in the third and fourth equation in (2.1) implies

that space–time gradient estimates for a and b imply uniform-in-time gradient esti-

mates for w and z.

Lemma 3.4. Assume (3.1) and let L,M > 0. Moreover, let T0 > 0 and p ∈
(1,∞). Then there exists C4 > 0 such that for all initial data satisfying (3.2), the

corresponding solution (a, b, w, z) of (2.1) given by Lemma 2.1 fulfills
Z

Ω

|∇w(·, t)|p +

Z

Ω

|∇z(·, t)|p

≤ C4

�Z

Ω

wp
0 +

Z

Ω

zp0 +

Z t

0

Z

Ω

|∇a|p +

Z t

0

Z

Ω

|∇b|p
�
, (3.9)

for all t ∈ (0, T ), where T := min{T0, Tmax}.
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Proof. We again fix initial data satisfying (3.2) and the solution (a, b, w, z) of (2.1)

given by Lemma 2.1. By Lemma 3.3, we can find C3 > 0 such that a, b ≤ C3M

in Ω × (0, T ). Since according to the variation-of-constants formula we may write

w(x, t) = e−tw0(x)+
R t

0
e−(t−s)f((be−ξvz)(x, s))ds for (x, t) ∈ Ω×(0, Tmax), we have

Z

Ω

|∇w(·, t)|p ≤ 2p−1

Z

Ω

|e−t∇w0|p + 2p−1

Z

Ω

Z t

0

e−(t−s)|∇(f((be−ξvz)(·, s)))|p ds

≤ 2p−1

Z

Ω

|∇w0|p + 2p−1kf 0kC0([0,C3M ])

Z t

0

Z

Ω

|∇(be−ξvz)|p,

for t ∈ (0, T ). As

|∇(be−ξvz)|p ≤ 2p−1e−ξvpz|∇b|p + 2p−1ξpvb
pe−ξvpz|∇z|p

≤ 2p−1|∇b|p + 2p−1ξpvC
p
3M

p|∇z|p in Ω× (0, T ),

and together with an analogous argumentation for
R

Ω
|∇z(·, t)|p, we can conclude

Z

Ω

|∇w(·, t)|p +

Z

Ω

|∇z(·, t)|p

≤ c1
�Z

Ω

|∇w0|p +

Z

Ω

|∇z0|p +

Z t

0

Z

Ω

|∇a|p +

Z t

0

Z

Ω

|∇b|p
�

+ c2

Z t

0

�Z

Ω

|∇w|p +

Z

Ω

|∇z|p
�
,

for t ∈ (0, T ), where

c1 := max{2p−1, 22p−2kf 0kC0([0,C3M ]), 2
2p−2kg0kC0([0,C3M ])},

and

c2 := 22p−2Cp
3M

p max{ξpvkf 0kC0([0,C3M ]), ξ
p
ukg0kC0([0,C3M ])}.

Thus, Grönwall’s inequality asserts the statement for C4 := c1ec2T0 .

In order to show that the right-hand side in (3.9) is bounded for p = 4, we con-

sider the evolution of the function 1
2 (
R

Ω
|∇a|2 +

R
Ω
|∇b|2). As it turns out, however,

we can only control its time derivative on small timescales and thus aim to derive

estimates in (t0, Tmax) for t0 close to Tmax (which may be assumed to be finite for

the sake of contradiction) only. To that end, it is crucial that Lemma 3.3 provides

L∞ estimates for a and b in terms of the L∞(Ω) norm of a0 and b0, as we then may

apply Lemma 3.4 to the solution with initial data (a, b, w, z)(·, t0) without worrying

about the dependency of the constant C4 thereby obtained on t0.

Lemma 3.5. Assume (3.1) as well as (3.2) for some L,M > 0 and denote the

solution of (2.1) given by Lemma 2.1 by (a, b, w, z). Moreover, let T ∈ (0, Tmax] ∩
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(0,∞). Then there exists C5 > 0 such that
Z

Ω

|∇w(·, t)|4 +

Z

Ω

|∇z(·, t)|4 ≤ C5 for t ∈ (0, T ). (3.10)

Proof. It follows from the Gagliardo–Nirenberg inequality (that is, from Ref. 50;

or, more directly, from Lemma A.3 in Ref. 27) that there is c1 > 0 such that

max{Du, Dv}
min{Du, Dv}

Z

Ω

|∇ϕ|4 ≤ c1
�Z

Ω

|∆ϕ|2
�
kϕk2L∞(Ω) + c1kϕk4L∞(Ω), (3.11)

for all ϕ ∈ C2(Ω) with ∂νϕ = 0 on ∂Ω. Moreover, we let C1 and C3 be as given by

Lemmas 3.1 and 3.3, respectively. Then (3.11) and Lemma 3.3 imply

Z

Ω

|∇a|4 +

Z

Ω

|∇b|4 ≤ C2
3M

2c1

�Z

Ω

|∆a|2 +

Z

Ω

|∆b|2
�

+ 2C4
3M

4c1. (3.12)

Next, we apply Lemma 3.4 (with M = C3M , L = C1, T0 = 1 and p = 4) to obtain
cC4 > 0 with the property that whenever a quadruple of functions ( ba0, bb0,cw0, bz0) sat-

isfies (3.2) withM replaced by C3M (and (a0, b0, w0, z0) replaced by ( ba0, bb0,cw0, bz0)),

then the corresponding solution (ba,bb, bw, bz) of (2.1) with maximal existence time
bTmax given by Lemma 2.1 fulfills

Z

Ω

|∇ bw(·, t)|4 +

Z

Ω

|∇bz(·, t)|4

≤ cC4

�Z

Ω

(cw0)4 +

Z

Ω

( bz0)4 +

Z t

0

Z

Ω

|∇ba|4 +

Z t

0

Z

Ω

|∇bb|4
�
,

for all t ∈ (0,max{1, bTmax}). Setting D := min{Du, Dv}, χ := max{χu, χv}, ξ := χ
D

t0 := max

(
0, T − 1

16ξ4C4
3
cC4M4c21

, T − 1

)
, (3.13)

as well as c2 := cC4(
R

Ω
w4(·, t0) +

R
Ω
z4(·, t0)) and recalling that classical solutions

of (2.1) are unique by Lemma 2.1, we can conclude

Z

Ω

|∇w(·, t)|4 +

Z

Ω

|∇z(·, t)|4 ≤ c2 + cC4

�Z t

t0

Z

Ω

|∇a|4 +

Z t

t0

Z

Ω

|∇b|4
�
, (3.14)

for all t ∈ (t0, T ). Since Dueξuw∇ · (e−ξuw∇a) = Du∆a − χu∇a · ∇w, testing the

equation for a with −∆a and applying Young’s inequality thrice gives

1

2

d

dt

Z

Ω

|∇a|2

= −Du

Z

Ω

|∆a|2 + χu

Z

Ω

(∇a · ∇w)∆a− ξu
Z

Ω

(−aw + af(be−ξvz))∆a
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≤ −Du

2

Z

Ω

|∆a|2 + χξ

Z

Ω

|∇a|2|∇w|2 +
ξ2

D

Z

Ω

a2(w + f(be−ξvz))2

≤ −Du

2

Z

Ω

|∆a|2 +
D

8C2
3M

2c1

Z

Ω

|∇a|4 + 2ξ4DC2
3M

2c1

Z

Ω

|∇w|4 + c3,

in (0, T ), where c3 :=
C2

3M
2ξ2

D (C1 + kfkL∞((0,∞)))
2|Ω|. By integrating in time from

t0 to t and noting that T − t0 ≤ 1, we obtain

Z

Ω

|∇a(·, t)|2 −
Z

Ω

|∇a(·, t0)|2 +Du

Z t

t0

Z

Ω

|∆a|2

≤ D

4C2
3M

2c1

Z t

t0

Z

Ω

|∇a|4 + 4ξ4DC2
3M

2c1(t− t0)

× sup
s∈(t0,t)

Z

Ω

|∇w(·, s)|4 + 2c3, (3.15)

for all t ∈ (t0, T ). Likewise, there is c4 > 0 such that

Z

Ω

|∇b(·, t)|2 −
Z

Ω

|∇b(·, t0)|2 +Dv

Z t

t0

Z

Ω

|∆b|2

≤ D

4C2
3M

2c1

Z t

t0

Z

Ω

|∇b|4 + 4ξ4DC2
3M

2c1(t− t0)

× sup
s∈(t0,t)

Z

Ω

|∇z(·, s)|4 + 2c4, (3.16)

for all t ∈ (t0, T ). By (3.15), (3.16), (3.14), (3.13) and (3.12), we therefore have
Z

Ω

|∇a(·, t)|2 +

Z

Ω

|∇b(·, t)|2 −
Z

Ω

|∇a(·, t0)|2 −
Z

Ω

|∇b(·, t0)|2

+Du

Z t

0

Z

Ω

|∆a|2 +Dv

Z t

0

Z

Ω

|∆b|2

≤ D

4C2
3M

2c1

�Z t

t0

Z

Ω

|∇a|4 +

Z t

t0

Z

Ω

|∇b|4
�

+ 4ξ4DC2
3M

2c1(t− t0)

× sup
s∈(t0,t)

�Z

Ω

|∇w(·, s)|4 +

Z

Ω

|∇z(·, s)|4
�

+ 2(c3 + c4)

≤
�

D

4C2
3M

2c1
+ 4ξ4DC2

3
cC4M

2c1(T − t0)

�

| {z }
≤D/(2C2

3M
2c1)

×
�Z t

t0

Z

Ω

|∇a|4 +

Z t

t0

Z

Ω

|∇b|4
�

+ c5
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≤ Du

Z t

t0

Z

Ω

|∆a|2 +Dv

Z t

t0

Z

Ω

|∆b|2

− D

2C2
3M

2c1

�Z t

t0

Z

Ω

|∇a|4 +

Z t

t0

Z

Ω

|∇b|4
�

+ c6,

for t ∈ (t0, T ), where c5 := 4ξ4DC2
3M

2c1c2 + 2c3 + 2c4 and c6 := c5 + 2DC2
3M

2.

By Beppo Levi’s theorem, this implies
Z T

t0

Z

Ω

|∇a|4 +

Z T

t0

Z

Ω

|∇b|4 ≤ 2C2
3M

2c1
D

�Z

Ω

|∇a(·, t0)|2 +

Z

Ω

|∇b(·, t0)|2 + c6

�
.

Another application of Lemma 3.4 then shows that the desired estimate (3.10) holds

for all t ∈ (t0, T ) and some C5 > 0, while the inclusions w, z ∈ C1(Ω × [0, t0])

trivially entail (3.10) also for t ∈ [0, t0] (possibly after enlarging C5).

3.3. Solutions are global in time: Proof of Theorem 1.1

and Corollary 1.1

With Lemma 3.5 at hand, globality in time can be shown as in Lemma 2.14 in

Ref. 29 (or Lemma 2.2 in Ref. 59): Parabolic regularity theory rapidly upgrades the

bounds implied by (3.3), (3.4) and (3.10) to Hölder estimates.

Lemma 3.6. Assume (3.1) as well as (3.2) for some L,M > 0. Then the solution

(a, b, w, z) given by Lemma 2.1 is global in time; that is, Tmax =∞.

Proof. Suppose Tmax <∞. We rewrite the first two equations in (2.1) as

at = Du∆a− χu∇a · ∇w + ψa and bt = Dv∆b− χv∇b · ∇z + ψb,

in Ω× (0,∞), where

ψa = −ξuaw + ξuaf(be−ξvz) and ψb = −ξvbz + ξvbg(ae−ξuw).

As a, b, w, z belong to L∞(Ω× (0, Tmax)) by Lemmas 3.3 and 3.1, so do ψ1, ψ2. Also

recalling (2.2) and Lemma 3.5, we may thus apply (a consequence of) maximal

Sobolev regularity (cf. Lemma 2.13 in Ref. 29) to obtain c1 > 0 such that

k∇akL12((0,Tmax);L∞(Ω)) + k∇bkL12((0,Tmax);L∞(Ω)) ≤ c1.
According to Lemma 3.4, there then exists c2 > 0 with

k∇wkL∞((0,Tmax);L12(Ω)) + k∇zkL∞((0,Tmax);L12(Ω)) ≤ c2.
This allows us to again invoke Lemma 2.13 in Ref. 29 to obtain c3 > 0 such that

katkL12(QT ) + k∆akL12(QT ) + kbtkL12(QT ) + k∆bkL12(QT ) ≤ c3,
where QT := Ω× (0, Tmax). Thus, by Lemma II.3.3 in Ref. 43 there is c4 > 0 such

that

kak
C

19
12
, 19
24 (Ω×[0,Tmax])

+ kbk
C

19
12
, 19
24 (Ω×[0,Tmax])

≤ c4,

which contradicts the extensibility criterion in Lemma 2.1.
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Theorem 1.1 follows now easily from the lemmata above.

Proof of Theorem 1.1. That the solution (a, b, w, z) of (2.1) constructed in

Lemma 2.1 is global in time has been asserted in Lemma 3.6. Upon setting

u := ae−ξuw and v := be−ξvz, we also obtain a global classical solution of (1.1)

which due to Lemma 3.3, the evident estimates u ≤ a, v ≤ b in Ω × [0,∞) and

Lemma 3.1 moreover fulfills (1.7) for some C > 0.

Finally, we show that Theorem 1.1 allows for a quick proof of Corollary 1.1;

that is, of the existence of small data solutions for (1.1) with f(s) = g(s) = s for

s ≥ 0.

Proof of Corollary 1.1. We let Ω, α and w0, z0 be as in the statement of Corol-

lary 1.1. Moreover, we fix a non-negative cutoff function ζ ∈ C∞([0,∞)) with

ζ(s) = s for s ∈ [0, 1] and ζ ≡ 2 in [2,∞). Then f̃ = g̃ = ζ fulfill (1.4), so that for

each M > 0, Theorem 1.1 provides us with a unique, global, bounded, non-negative

classical solution (u, v, w, z) of (1.1) (with f and g replaced by f̃ and g̃) and C > 0

such that (1.7) holds. In particular, if M ≤ 1
C , then u, v ≤ 1 so that in that case

(u, v, w, z) also solves (1.1) with f(s) = g(s) = s for s ≥ 0.

4. Smooth Steady States

While for all M1,M2 > 0 the tuple ((M1,M2, f(M2), g(M1)) forms a smooth steady

state of (1.1), the conservation of mass for the first two solution components implies

that these steady states may appear as limits only for the choices M1 = u0 and

M2 = v0. In Sec. 4.1, we prove Theorem 1.2; that is, that this equilibrium indeed

attracts solutions whenever the initial data are small.

The asymptotic behavior of solutions not covered by Theorem 1.2 will be a main

aspect of our numerical experiments performed in Sec. 6. Analytically, we can at

least rule out stabilization toward nonconstant smooth steady states: We show that

there are no such equilibria in Sec. 4.2.

4.1. Convergence to homogeneous steady states for small

data: Proof of Theorem 1.2

Theorem 1.1 already contains a key step of the convergence proof, namely the fact

that smallness of u0 and v0 implies smallness of u and v for all times. With these

estimates at hand, we can show that

y := c

Z

Ω

(u− u0)2 + c

Z

Ω

(v − v0)2

+

Z

Ω

(w − f(v0))2 +

Z

Ω

|∇w|2 +

Z

Ω

(z − g(u0))2 +

Z

Ω

|∇z|2,
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(for suitably chosen c > 0) is a subsolution of a homogeneous ODE of the form

y0 = −c0y for some c0 > 0 and hence converges exponentially fast to 0.

Proof of Theorem 1.2. We fix Ω, Du, Dv, χu, χv, f , g, α, w0 and z0 as in the

statement of Theorem 1.2. By the Poincaré inequality, there is c1 > 0 such that

Z

Ω

(ϕ− ϕ)2 ≤ c1
Z

Ω

|∇ϕ|2 for all ϕ ∈W 1,2(Ω), (4.1)

and due to the assumptions on f and g, there is c2 > 0 such that

kf 0kC0([0,1]) ≤ c2 and kg0kC0([0,1]) ≤ c2. (4.2)

As in the proof of Corollary 1.1 we fix ζ ∈ C∞([0,∞)) with ζ(s) = 1 for s ∈ [0, 1]

and ζ ≡ 2 in [2,∞). Since f̃ := ζf and g̃ := ζg fulfill (1.4), Theorem 1.1 asserts that

there exists c3 > 0 such that for all M > 0 the following holds: If u0, v0 ∈ C2+α(Ω)

are non-negative and satisfy (1.6) for some M > 0, there exists a global, non-

negative classical solution (u, v, w, z) of (1.1) (with f, g replaced by f̃ , g̃) with

kukL∞(Ω×(0,∞)) ≤Mc3 and kvkL∞(Ω×(0,∞)) ≤Mc3. (4.3)

We choose M > 0 so small that

M2c23 ≤ min

(
1

4c4 max{ χ2
u

Du
,
χ2
v

Dv
}
, 1

)
, where c4 :=

3c22 max{c1, 1}
min{Du, Dv}

, (4.4)

and fix non-negative u0, v0 ∈ C2+α(Ω) fulfilling (1.6) as well as the solution

(u, v, w, z) of (1.1) (with f, g replaced by f̃ , g̃) given by Theorem 1.1. We note that

(4.3) and the second estimate contained in (4.4) imply u, v ≤ 1 in Ω× [0,∞). Thus,

(f̃(u), g̃(v)) = (f(u), g(v)) in Ω× [0,∞) and (4.2) results in

max{|f 0(u)|, |g0(v)|} ≤ c2 in Ω× [0,∞). (4.5)

By testing the first equation in (1.1) with u − u0 and making use of Young’s

inequality, (4.3) and (4.1) (we note that integrating the first equation impliesR
Ω
u(·, t) =

R
Ω
u0 for all t ≥ 0, so that (4.1) is indeed applicable), we obtain

1

2

d

dt

Z

Ω

(u− u0)2 = −Du

Z

Ω

|∇u|2 − χu

Z

Ω

u∇u · ∇w

≤ −3Du

4

Z

Ω

|∇u|2 +
M2c23χ

2
u

Du

Z

Ω

|∇w|2

≤ −Du

2

Z

Ω

|∇u|2 − Du

4c1

Z

Ω

(u− u0)2 +
M2c23χ

2
u

Du

Z

Ω

|∇w|2,
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in (0,∞). Moreover, testing the third equation in (1.1), namely wt = −w+ f(v) =

−(w−f(v0))+f(v)−f(v0), with w−f(v0) and Young’s inequality, the mean value

theorem and (4.5) yield

1

2

d

dt

Z

Ω

(w − f(v0))2 = −
Z

Ω

(w − f(v0))2 +

Z

Ω

(f(v)− f(v0))(w − f(v0))

≤ −1

2

Z

Ω

(w − f(v0))2 +
c22
2

Z

Ω

(v − v0)2 in (0,∞),

while testing the same equation with −∆w gives

1

2

d

dt

Z

Ω

|∇w|2 = −
Z

Ω

|∇w|2 +

Z

Ω

f 0(v)∇v · ∇w ≤ −1

2

Z

Ω

|∇w|2 +
c22
2

Z

Ω

|∇v|2,

in (0,∞). Analogously

1

2

d

dt

Z

Ω

(v − v0)2 ≤ −Dv

2

Z

Ω

|∇v|2 − Dv

4c1

Z

Ω

(v − v0)2 +
M2c23χ

2
v

Dv

Z

Ω

|∇z|2,

and

1

2

d

dt

�Z

Ω

(z − g(u0))2 +

Z

Ω

|∇z|2
�
≤ −1

2

Z

Ω

(z − g(u0))2 +
c22
2

Z

Ω

(u− u0)2

− 1

2

Z

Ω

|∇z|2 +
c22
2

Z

Ω

|∇u|2,

hold in (0,∞). Recalling (4.4), we conclude that the function y : [0,∞) → [0,∞)

defined by

y(t) :=
c4
2

Z

Ω

(u− u0)2 +
c4
2

Z

Ω

(v − v0)2

+
1

2

Z

Ω

(w − f(v0))2 +
1

2

Z

Ω

(z − g(u0))2 +
1

2

Z

Ω

|∇w|2 +
1

2

Z

Ω

|∇z|2,

for t ≥ 0 fulfills

y0 ≤ −
�

min{Du, Dv}c4
4c1

− c22
2

��Z

Ω

(u− u0)2 +

Z

Ω

(v − v0)2

�

−
�

min{Du, Dv}c4
2

− c22
2

��Z

Ω

|∇u|2 +

Z

Ω

|∇v|2
�

− 1

2

�Z

Ω

(w − f(v0))2 +

Z

Ω

(z − g(u0))2

�

−
�

1

2
−M2c23c4 max

�
χ2
u

Du
,
χ2
v

Dv

���Z

Ω

|∇w|2 +

Z

Ω

|∇z|2
�

≤ −c5y in (0,∞),
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where c5 := min{ c22
2c4
, 1

2}. Thus, y(t) ≤ e−c5ty(0) → 0 for t → ∞. This entails

(1.8) and (1.9) for p = 2, upon which the claims for p ∈ (2,∞) follow from

(4.3) and the interpolation inequality kϕkLp(Ω) ≤ kϕk
p−2
p

L∞(Ω)kϕk
2
p

L2(Ω), valid for

all ϕ ∈ L∞(Ω).

4.2. Lack of smooth heterogeneous steady states

We now show that all smooth steady states of (1.1), that is, solutions to (1.10),

are spatially homogeneous, provided f and g belong to
S

ε>0 C
ω((−ε,∞); [0,∞)).

In a rather straightforward manner, this result can be extended to wider classes of

functions f and g, but as the prototypical choices mentioned in the introduction

are covered by Proposition 1.1, we confine ourselves to analytical functions f and

g, for which the proof is particularly short.

Proof of Proposition 1.1. Inserting the third and fourth equation in (1.10) into

the first two and the last equations therein yields




0 = ∆u+ ξu∇ · (u∇f(v)) in Ω,

0 = ∆v + ξv∇ · (v∇g(u)) in Ω,

∂νu+ ξuu∂νf(v) = 0 on ∂Ω,

∂νv + ξvv∂νg(u) = 0 on ∂Ω,

where we have again set ξu := χu
Du

and ξv := χv
Dv

. Due to the supposed regularity of

u and v, Lemma 4.1 in Ref. 12 asserts that there are α, β ∈ R such that

u = αe−ξuf(v) and v = βe−ξvg(u) in Ω, (4.6)

so that in particular

u = αe−ξuf(βe−ξvg(u)) in Ω. (4.7)

Both (−ε,∞) 3 s 7→ αe−ξuf(βe−ξvg(s)) and (−ε,∞) 3 s 7→ s are analytical functions

on (−ε,∞) for some ε > 0. As the former only vanishes at 0 (and then every-

where) if α = 0, these functions differ. Therefore, the set S = {s ∈ (−ε,∞) | s =

αe−ξuf(βe−ξvg(s))} is discrete by the identity theorem. According to (4.7), the image

of the continuous function u : Ω → R is contained in S, which is only possible if u

is constant. Recalling (4.6), we conclude that v is constant, whenceupon the third

and fourth equations in (1.10) direct imply that also w and z are constant.

5. Numerical Method

5.1. Galerkin approximation

In this section, we will give the details on the implicit finite element discretiza-

tion for solving the problem (1.1) numerically. A finite element discretization of

the system (1.1) is based on its weak formulation, which reads: Find u, v, w, z ∈
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L∞(0, T ;L2(Ω))∩L2(0, T ;H1(Ω)) with ut, vt, wt, zt ∈ L2(0, T ; (H1(Ω))?) for given

u0, v0, w0, z0 ∈ L2(Ω) such that a.e. in (0,∞) we have

hut, ψi = −Du

Z

Ω

∇u · ∇ψdx− χu

Z

Ω

u∇w · ∇ψdx,

hvt, ψi = −Dv

Z

Ω

∇v · ∇ψdx− χv

Z

Ω

v∇z · ∇ψdx,

hwt, ψi = −
Z

Ω

wψdx+

Z

Ω

f(v)ψdx,

hzt, ψi = −
Z

Ω

zψdx+

Z

Ω

g(u)ψdx,

(5.1)

for all ψ ∈ C∞(Ω). Here, h·, ·i represents the duality pairing between (H1(Ω))? and

H1(Ω).

To define a finite element discretization of problem (1.1), we first consider Th,

a uniformly regular triangulation of Ω with a mesh size h. Then we construct the

finite element space Xh consisting of continuous piecewise multi-linear functions

Xh = {φ ∈ H1(Ω);φ|K ∈ Q1(K),∀K ∈ Th}, Zh = Xh ∩H1
0 (Ω),

with basis functions ψj , j = 1, . . . ,M , such that Xh = span{ψj}, where M is the

number of degrees of freedom and Q1 is a space consisting of piecewise multi-linear

functions. Any function uh ∈ Xh can be written in a unique way with respect to

these basis functions as

uh =
MX

j=1

uj ψj ,

and hence it can be identified with the coefficient vector u = (u1, . . . , uM ); vh, wh,

and zh can be defined similarly. Next, let 0 = t0 < t1 < · · · < tN = T be an

equidistant decomposition of the time interval [0, T ] with ∆t = tn+1 − tn, n =

0, . . . , N − 1. We use unh, vnh , wn
h , znh ∈ Xh to denote the approximation of the

solutions at each time level tn. Furthermore, an important feature of the considered

system consists in the nonlinear terms and coupling between the equations, so that

a fully implicit discretization leads to a coupled nonlinear algebraic system. We

compute the solution of this nonlinear problem using fixed-point iterations. As a

result, after applying the usual approach for deriving a Galerkin finite element

scheme for space discretization, considering the θ-method for time discretization,

and using a fixed-point iteration to treat the nonlinear terms in the system the

linearized algebraic form corresponding to the system (5.1) reads as

(M + θ∆tAn+1,u
k−1 )un+1

k = (M− (1− θ)∆tAn,u)un, (5.2)

(M + θ∆tAn+1,v
k−1 )vn+1

k = (M− (1− θ)∆tAn,v)vn , (5.3)
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(1 + θ∆t)Mwn+1
k = (1− (1− θ)∆t)Mwn + ∆t (θ Gn+1,v

k + (1− θ)Gn,v),

(5.4)

(1 + θ∆t)M zn+1
k = (1− (1− θ)∆t)M zn + ∆t (θ Gn+1,u

k + (1− θ)Gn,u),

(5.5)

for θ ∈ [0, 1], where un+1
k = (un+1

j,k )Mj=1, vn+1
k = (vn+1

j,k )Mj=1, wn+1
k = (wn+1

j,k )Mj=1

and zn+1
k = (zn+1

j,k )Mj=1 denote the vectors of unknowns at time level tn+1 and

iteration step k, k = 1, . . . , and un = (unj )Mj=1, vn = (vnj )Mj=1, wn = (wn
j )Mj=1 and

zn = (znj )Mj=1 are the known solutions from the previous time level tn. Setting

un+1
0 = un, vn+1

0 = vn, wn+1
0 = wn and zn+1

0 = zn with u0 = u(x, 0), v0 = v(x, 0),

w0 = w(x, 0) and z0 = z(x, 0), the entries of the mass matrix, stiffness matrices

and vectors above are given by

Mij =

Z

Ω

ψj ψi,

An+1,u
ij,k−1 = Du

Z

Ω

∇ψj · ∇ψi + χu

Z

Ω

ψj∇wn+1
h,k−1 · ∇ψi,

An,u
ij = Du

Z

Ω

∇ψj · ∇ψi + χu

Z

Ω

ψj∇wn
h · ∇ψi,

An+1,v
ij,k−1 = Dv

Z

Ω

∇ψj · ∇ψi + χv

Z

Ω

ψj∇zn+1
h,k−1 · ∇ψi,

An,v
ij = Dv

Z

Ω

∇ψj · ∇ψi + χv

Z

Ω

ψj∇znh · ∇ψi,

Gn+1,v
i,k =

Z

Ω

f(vn+1
h,k )ψi,

Gn,v
i =

Z

Ω

f(vnh)ψi,

Gn+1,u
i,k =

Z

Ω

g(un+1
h,k )ψi,

Gn,u
i =

Z

Ω

g(unh)ψi

for i, j = 1, . . . ,M where ψi ∈ Zh and un+1
h,k , vn+1

h,k , wn+1
h,k , zn+1

h,k denote the fully

discrete solution functions at fixed-point step k = 1, 2, . . . .

5.2. Positivity-preserving FCT scheme

Since all components of the system (1.1) represent densities of populations or graf-

fiti, they should be non-negative, and Lemma 2.1 asserts that the analytical solu-

tions considered in the first part of this paper are indeed non-negative. Therefore,

the numerical solutions of the model problem must also be non-negative in order
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to satisfy the physics behind the system. Thus, the numerical methods should be

constructed in such a way that the qualitative properties of the exact solutions are

preserved. The standard Galerkin discretization described in the previous section

usually produces oscillatory nonpositive solutions, which leads to numerical insta-

bilities, especially when the convective part of the system is dominant. Therefore,

a stabilization has to be applied. One appropriate possibility is to modify the alge-

braic system resulting from the Galerkin discretization, which will be discussed in

the following.

The numerical behavior of the gang concentrations u and v heavily depends on

the properties of the matrices on the left- and right-hand sides of (5.2) and (5.3).

In the following, we will introduce a positivity-preserving FCT scheme following

the work of Kuzmin40–42 which can preserve the positivity of the concentrations

u at all times, the positivity of v can be obtained similarly by repeating the same

process.

Definition 5.1. A matrix A is called a Z-matrix if it has only nonpositive off-

diagonal entries, monotone if A−1 ≥ 0 and an M-matrix if it is a monotone Z-matrix.

Lemma 5.1. Consider a fully discrete system of the form

Bun+1 = Kun, (5.6)

and suppose that the coefficients of B = (bij)
M
i,j=1 and K = (kij)

M
i,j=1 satisfy

bii ≥ 0, kii ≥ 0, bij ≤ 0, kij ≥ 0, ∀ i, j = 1, . . . ,M, i 6= j.

If B is strictly or irreducibly diagonally dominant, then it is an M-matrix and

(1) the scheme (5.6) is globally positivity-preserving, i.e. un+1 ≥ 0 if un ≥ 0,

(2) the global discrete maximum principle (DMP) holds if
P

j bij =
P

j kij∀ i =

1, . . . ,M, i.e.

(min un)− ≤ un+1 ≤ (max un)+,

where (max un)+ = max{0,un} and (min un)− = min{0,un}, n = 0, . . . , N−1.

Proof. See Theorem 4 in Ref. 41.

For the system (5.2), which can be written as (5.6), the above properties do not

hold since the mass matrix M may contain some non-negative off-diagonal entries

and also some positive off-diagonal entries might appear in the stiffness matrices.

Therefore, as a remedy, following the work of Kuzmin,40–42 we not only replace the

mass matrix M by its diagonal counterpart, the lump matrix ML

ML = diag(m1, . . . ,mM ), mi =
MX

j=1

mij , i = 1, . . . ,M,
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but also add symmetric artificial diffusion matrices Dn+1,u
k−1 = (dn+1,u

ij,k−1)Mi,j=1 and

Dn,u = (dn,uij )Mi,j=1 to the stiffness matrices An+1,u
k−1 and An,u to eliminate their

non-negative off-diagonal entries as

dn+1,u
ij,k−1 = −max{an+1,u

ij,k−1, 0, a
n+1,u
ji,k−1} for i 6= j, dn+1,u

ii,k−1 = −
MX

j=1,j 6=i

dn+1,u
ij,k−1,

n = 0, . . . , N − 1, k = 1, 2, . . . and

dn,uij = −max{an,uij , 0, an,uji } for i 6= j, dn,uii = −
MX

j=1,j 6=i

dn,uij ,

n = 0, . . . , N − 1.

Denoting Ãn+1,u
k−1 = An+1,u

k−1 +Dn+1,u
k−1 and Ãn,u = An,u+Dn,u, the low-order form

of the (5.2) can be written as

(ML + θ∆t Ãn+1,u
k−1 )un+1

k = (ML − (1− θ)∆t Ãn,u)un, n = 0, . . . , N − 1. (5.7)

Lemma 5.2. Let the time step ∆t satisfy

mi − (1− θ)∆t ãn,uii ≥ 0, mi + θ∆t
MX

j=1

an+1,u
ij,k−1 > 0, (5.8)

n = 0, . . . , N − 1, k = 1, 2, . . . , then the low-order scheme (5.7) is positivity-

preserving.

Proof. Denoting K = (ML − (1 − θ)∆t Ãn,u), since ML is diagonal and Ãn,u is a

Z-matrix the off-diagonal entries of K are non-negative and it also has non-negative

diagonal entries if the first condition in (5.8) is satisfied, thus K ≥ 0. Now, set

B = (ML + θ∆t Ãn+1,u
k−1 ), since Dn+1,u

k−1 has zero row sum, if the second condition

in (5.8) holds we can conclude that B is strictly diagonally dominant and hence

nonsingular. Furthermore B is a matrix of non-negative type hence it is an M-

matrix, therefore according to Lemma 5.1, (5.7) is positivity-preserving.

Remark 5.1. The scheme (5.7) can be simplified as

Bun+1 = Kun,

where B,K ∈ RM×M and un+1,un ∈ RM . Assuming that

B−1 ≥ 0, K ≥ 0, B IM ≥ KIM ,

where IM denotes a vector with all entries equal to 1, one obtains with M =

(max un)+ and m = (min un)−, n = 0, . . . , N − 1 that

un+1 = B−1 Kun ≤M B−1 KIM ≤M B−1 B IM = M IM ,

un+1 = B−1 Kun ≥ mB−1 KIM ≥ mB−1 B IM = m IM ,
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thus that

(min un)− ≤ un+1 ≤ (max un)+, i = 1, . . . ,M,

i.e. that the DMP is satisfied. We would like to notice that due to the construc-

tion and following Lemma 5.2 the conditions B−1 ≥ 0 (B is an M-matrix and thus

invertible) and K ≥ 0 already hold. However, without further assumptions on the

matrices Ãn+1,u
k−1 and Ãn,u, proving the last assumption above (which is a replace-

ment of the row-sum property in Lemma 5.1) is very challenging, see Ref. 7 for

more information.

Although the solution of (5.7) suppresses the spurious oscillations and does not

produce negative solutions, it often becomes inaccurate since the amount of the

added artificial diffusion is usually too large. Therefore, the idea of FEM-FCT is

to modify the right-hand side of (5.7) in such a way that the solutions become

less diffusive in the smooth regions while their positivity is still conserved. By

construction, the difference between (5.2) and (5.7) reads

(ML −M)(un+1
k − un) + θ∆tDn+1,u

k−1 un+1
k + (1− θ)∆tDn,u un, (5.9)

n = 0, . . . , N − 1, k = 1, 2, . . . , which is nonlinear since it depends on the approx-

imate solution un+1
k . To be aligned with treating nonlinearities in Eq. (5.2) using

fixed-point iteration, we replace un+1
k by un+1

k−1 , which leads to

f
n+1,u

k−1 := (ML −M)(un+1
k−1 − un) + θ∆tDn+1,u

k−1 un+1
k−1 + (1− θ)∆tDn,u un,

n = 0, . . . , N − 1, which admits a decomposition into a sum of discrete internodal

fluxes

f
n+1,u

k−1 =
MX

j=1

fn+1,u
ij,k−1, fn+1,u

ij,k−1 = −fn+1,u
ji,k−1, i, j = 1, . . . ,M, (5.10)

since the matrices Dn+1,u
k−1 ,Dn,u and (ML −M) are symmetric and have zero row

sums. Moreover, the so-called algebraic fluxes fn+1,u
ij,k−1 are given by

fn+1,u
ij,k−1 = (−mij + θ∆t dn+1,u

ij,k−1)(un+1
j,k−1 − un+1

i,k−1)

+ (mij + (1− θ)∆t dn,uij )(unj − uni ).

Now, the amount of algebraic fluxes inserted into each node must be limited by

a limiter αn+1,u
ij,k−1 ∈ [0, 1] in such a way that in addition to keeping the numerical

solutions positive, it also controls the amount of added artificial diffusion especially

in the regions where the solutions are smooth and well resolved where αn+1,u
ij,k−1 = 1

is appropriate, therefore one replaces (5.10) by

fn+1,u
k−1 =

MX

j=1

αn+1,u
ij,k−1f

n+1,u
ij,k−1, αn+1,u

ij,k−1 = αn+1,u
ji,k−1, i, j = 1, . . . ,M,
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this leads to

(ML + θ∆t Ãn+1,u
k−1 )un+1

k = (ML − (1− θ)∆t Ãn,u)un + fn+1,u
k−1 , (5.11)

n = 0, . . . , N − 1, k = 1, 2, . . . and it can be rewritten in the form

ML u = (ML − (1− θ)∆t Ãn,u)un,

ML ũ = ML u + fn+1,u
k−1 ,

(ML + θ∆t Ãn+1,u
k−1 )un+1

k = ML ũ,

which is a high-resolution finite element scheme. Moreover, it is positivity-preserving

under the conditions (5.8) and for appropriate choice of flux limiters.32

We use the limiting strategy based on Zalesak’s algorithm66 to determine an

appropriate value of αn+1,u
ij,k−1. The limiting process begins with canceling all fluxes

that are diffusive in nature and tend to flatten the solutions profile.41 The required

modification is

fn+1,u
ij,k−1 := 0 if fn+1,u

ij,k−1 (uj − ui) > 0.

To define the limiter, we perform the following steps:

(1) Compute the sum of positive/negative antidiffusive fluxes into node i

P+
i =

X

j∈Ni
max{0, fn+1,u

ij,k−1}, P−
i =

X

j∈Ni
min{0, fn+1,u

ij,k−1}, (5.12)

where Ni is the set of the nearest neighbors of the node i.

(2) Compute the distance to a local extremum of the auxiliary solution u at the

neighboring nodes that share an edge with the node i

Q+
i = mi(u

max
i − ui), Q−

i = mi(u
min
i − ui), (5.13)

with umin
i = minj∈Ni∪{i} uj , u

max
i = maxj∈Ni∪{i} uj , i = 1, . . . ,M.

(3) Compute the nodal correction factors for the net increment at the node i

R+
i = min

�
1,
Q+

i

P+
i

�
, R−

i = min

�
1,
Q−

i

P−
i

�
, (5.14)

if P+
i or P−

i vanishes then set R+
i = 1 or R−

i = 1, respectively.

(4) Check the sign of the antidiffusive flux and apply the correction factor by

αij =





min{R+
i , R

−
j } if fn+1,u

ij,k−1 > 0,

1 if fn+1,u
ij,k−1 = 0,

min{R−
i , R

+
j } if fn+1,u

ij,k−1 < 0.

(5.15)

Another way how to derive (5.11) is to apply the FCT stabilization to the non-

linear problem obtained by applying the Galerkin discretization and the θ-method

before introducing the fixed-point iterations. The algebraic fluxes defined in this

way depend on the unknown solution u and hence the FCT stabilization intro-

duces an additional nonlinearity. However, since the problem at hand is already
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Algorithm 1. FEM-FCT.

for time step n← 0, . . . , N do

for iteration step k = 1, 2, . . . do

solve for un+1
k

Solve ML u = (ML − (1− θ)∆t Ãn,u)un

Compute fn+1,u
k−1 using Zalesak’s algorithm (5.12)–(5.15)

Solve ML ũ = ML u + fn+1,u
k−1

Solve (ML + θ∆t Ãn+1,u
k−1 )un+1

k = ML ũ

end solve

solve for vn+1
k

Solve ML v = (ML − (1− θ)∆t Ãn,v)vn

Compute fn+1,v
k−1 using Zalesak’s algorithm (5.12)–(5.15)

Solve ML ṽ = ML v + fn+1,v
k−1

Solve (ML + θ∆t Ãn+1,v
k−1 )vn+1

k = ML ṽ

end solve

solve for wn+1
k

Compute wn+1
k from (5.4)

end solve

solve for zn+1
k

Compute zn+1
k from (5.5)

end solve

end for

end for

nonlinear, both nonlinearities can be handled simultaneously using a fixed-point

iteration. Moreover, the procedure explained above can also be used to obtain a

high-resolution positivity-preserving approximation of v.

We summarize the procedure above in the following algorithm.

We iterate until the residual/difference between two successive solutions is less

than a prescribed tolerance or until the maximum number of the iterations is

reached, then set un+1 = un+1
k , vn+1 = vn+1

k , wn+1 = wn+1
k and zn+1 = zn+1

k

and advance to the next time level. The system of the algebraic equations was

solved using the direct solver UMFPACK19 and for the implementation of our newly

designed algorithm we used the deal.II library.

6. Numerical Simulations

In this section, we present numerical experiments for solving the model problem

(1.1) with f(v) = v
1+v and g(u) = u

1+u , and compare our results with results from

the literature2, 3, 6 pertaining to related systems. The numerical simulations are

computed on a square domain Ω = [−6, 6]2 that is discretized uniformly using

quadrilateral elements with five levels of refinements which creates 1089 degrees of
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freedom, i.e. 33 grid points in each direction. In addition, conforming bilinear finite

elements are used for all unknown variables. Furthermore, we use the time interval

[0, T ], T = 1000, with a time step ∆t = 1.0 in the Crank–Nicolson discretization

method (θ-scheme for θ = 0.5). The setting above is fixed through all computations,

unless otherwise mentioned.

6.1. Can the gangs separate?

In this section, we investigate the possibility of segregation for the model problem

(1.1). Thus, we consider different values of Du, Dv, χu and χv in our simulations.

The initial conditions used in the following examples are given by

u0(x, y) = 0.1 + e−(x−2)2−(y−2)2 , v0(x, y) = 0.1 + e−(x+2)2−(y+2)2 ,

w0(x, y) = 0, z0(x, y) = 0,
(6.1)

see for instance Fig. 1(a) for an illustration of u0, v0. In our figures, we use the color

red when the gang density u presented in the discrete domain is larger than the

gang density v by at least 10−6 and dark blue color when the opposite inequality

holds true. Locations where the difference between the gang densities is less than

10−6 are displayed in dark purple. Similarly and again with a cutoff of 10−6, we

use orange if the amount of graffiti density z is larger in a region, light blue for the

opposite situation and light purple if the graffiti densities z and w are roughly the

same.

Unlike as in the analytical part, we do not fix Du, Dv, χu, χv but on the contrary

are interested in their effect on the dynamics. However, if (u, v, w, z) is a solution of

(1.1) with f = g = id and initial data (u0, v0, w0, z0), then (Au,Bv,Bw,Az) solves

(1.1) with initial data (Au0, Bu0, Bw0, Az0) and (χu, χv) replaced by (χu
B , χvA ) for

any A,B > 0. That is, instead of considering larger initial data one may likewise

consider larger χu, χv, and one expects that for functions f and g with linear growth

near 0 these modifications have similar effects as well — at least as long as the solu-

tions remain comparatively small; if they become large this scaling argument may

no longer be applicable. In particular, Theorem 1.2 suggests convergence toward

homogeneous equilibria for small χu, χv (and is inconclusive for large χu, χv).

6.1.1. Convergence toward constant steady state

To begin with, we first consider a case where Du = Dv = χu = χv = 0.25. In the

top row of Fig. 1, we present the plot of the gang population densities u and v and

in the bottom row their corresponding graffiti densities z and w computed using

the standard Galerkin method (5.2)–(5.5) over time. Figure 1(a) corresponds to the

gangs’ initial conditions at t = 0; evolving the time, we observe that the gangs start

to spread inside the domain and mark their territories by spraying graffiti. By the

time t = 5, the whole upper triangle part of the domain is completely dominated

by the gang u and the lower triangle part is dominated by the gang v, this situation
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(a) t = 0 (b) t = 400 (c) t = 500 (d) t = 600 (e) t = 700 (f) t = 1000

(g) t = 0 (h) t = 400 (i) t = 500 (j) t = 600 (k) t = 700 (l) t = 1000

Fig. 1. (Color online) Numerical solutions for the model problem (1.1) obtained using the stan-

dard Galerkin method, at different time instant when Du = Dv = χu = χv = 0.25. For the choice
of colors, see the beginning of Sec. 6.1.

seems to continue till nearly t = 400, after that we can see that the dark purple

starts to merge from the middle section and continues to grow wider to the point

that covers the whole domain at t = 700 and remains the same by the end of the

time, which means that the same amount of the gang densities u and v are presented

in each location of the domain. The same happens for their corresponding graffiti

z and w in the bottom row, where there is no amount of graffiti at the beginning

(at = t0), then they gradually increase when the gangs start to mark their own

territories and by the time t = 700 each location is marked by the same amount of

graffiti from each gang. It is evident from Fig. 1 that segregation does not happen

in this case.

Before moving on to the next example, we examine this case more closely in

Figs. 2 and 3, by taking a snapshot along the line y = x over time. Figure 2(a)

shows the initial conditions at t = 0, when the time evolves it seems that the

approximate solutions converge toward constant steady states already at t = 400

in Fig. 2(c), but the close up in Figs. 3(a) and 3(b) shows that the gang density

u and its corresponding graffiti z are slightly larger in the first half of the domain

[−6, 0) and slightly smaller in the second half (0, 6] than the gang density v and

(a) t = 0 (b) t = 400 (c) t = 500 (d) t = 600 (e) t = 700 (f) t = 1000

Fig. 2. The size of gang populations u,v and the amount of their corresponding graffiti z and
w over time along the line y = x at different time instant t = 0, 400, 500, 600, 700, 1000 when

Du = Dv = χu = χv = 0.25.
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(a) t = 400 (b) t = 400 (c) t = 700 (d) t = 700 (e) t = 1000 (f) t = 1000

Fig. 3. Close up of populations densities along the line y = x at different time instant t =

400, 700, 1000 when Du = Dv = χu = χv = 0.25.

its corresponding graffiti w; however, they tend to stabilize at around 0.121817 and

0.108588, respectively, at time t = 700 and remain the same through the rest of the

time, which corresponds well to the results shown in Fig. 1.

This case has been studied for (1.2) in Ref. 6, where the authors also show that

the approximate solutions converge toward steady states; however they also report

that segregation might not happen for that problem, at least not in the considered

solution framework.

Next, we set Du = Dv = 3 and χu = χv = 0.25 and again use the standard

Galerkin method (5.2)–(5.5). Figure 4 shows that, when the time evolves gangs

start to spread inside the domain and no accumulation seems to happen, the dark

purple in the top row and light purple in the bottom row gradually cover the entire

domain by the time t = 200, i.e. the gangs are evenly distributed in each location

and produce the same amount of graffiti. It is clear from Fig. 4 that no separation

happens when the problem is diffusion-dominated.

The snapshots of the results are presented along the line y = x in Figs. 5 and 6,

where we observe that the gang densities and their corresponding graffiti converge

toward constant steady states and seem to stabilize around 0.121818 and 0.10858,

respectively, by the time t = 200.

(a) t = 0 (b) t = 50 (c) t = 75 (d) t = 100 (e) t = 200 (f) t = 1000

(g) t = 0 (h) t = 50 (i) t = 75 (j) t = 100 (k) t = 200 (l) t = 1000

Fig. 4. (Color online) Numerical solutions for the model problem (1.1) obtained using the stan-
dard Galerkin method, at different time instant t = 0, 50, 75, 100, 200, 1000 when Du = Dv = 3.0

and χu = χv = 0.25. For the choice of colors, see the beginning of Sec. 6.1.
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(a) t = 0 (b) t = 50 (c) t = 75 (d) t = 100 (e) t = 200 (f) t = 1000

Fig. 5. The amount of gang densities u,v and their corresponding graffiti z and w over time
along the line y = x at different time instant t = 0, 50, 75, 100, 200, 1000 when Du = Dv = 3.0

and χu = χv = 0.25.

(a) t = 100 (b) t = 100 (c) t = 200 (d) t = 200 (e) t = 1000 (f) t = 1000

Fig. 6. Close up of population densities along the line y = x at different time instant t =

100, 200, 1000 when Du = Dv = 3.0 and χu = χv = 0.25.

A similar behavior has been observed in Ref. 2 for an agent-based model: As

long as a system parameter β corresponding to χu, χv in (1.1) is sufficiently small,

the gangs completely mix inside the domain and the expected densities converge

toward constant steady states.

6.1.2. Nonhomogeneous limit functions

For our next example, we consider Du = Dv = 0.25 and χu = χv = 3. As shown

in Fig. 7, the standard Galerkin method (5.2)–(5.5) produces significant spurious

oscillation in the entire domain which leads to negative nonphysical approximate

solutions, and the simulation blows up at around t = 35. As explained in the previ-

ous section, as a remedy we apply the FEM-FCT scheme to reduce the oscillations

and preserve the positivity of the solutions at all time. The top row of Fig. 8 shows

the evolutionary movement of the gangs inside the domain. We observe that after

a certain amount of time, red and blue clusters start to form, featuring some sym-

metries which track back to the symmetry of the initial data and the fact that

the parameters are the same for both gangs. The same kind of pattern for graffiti

densities emerge in the bottom row as each gang marks their own territory. The

population densities seem to almost stabilize around t = 500 and remain the same

till the end of the time interval T = 1000.

Keeping the diffusion coefficient as before and changing the amount of convec-

tion coefficient to χu = χv = 10, a different segregation pattern can be seen in

Fig. 10. Therefore, we conclude that larger amount of convection in the model leads

to directional movement of the gangs and creates partially separated regions. The
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(a) t = 0 (b) t = 5 (c) t = 0 (d) t = 5 (e) t = 0 (f) t = 5 (g) t = 35

Fig. 7. (Colour online) Numerical solutions and their snapshots for the model problem (1.1)

obtained using the standard Galerkin method, at different time instant t = 0, 5, 35 when Du =

Dv = 0.25 and χu = χv = 3.0.

(a) t = 0 (b) t = 5 (c) t = 50 (d) t = 100 (e) t = 500 (f) t = 1000

(g) t = 0 (h) t = 5 (i) t = 50 (j) t = 100 (k) t = 500 (l) t = 1000

Fig. 8. (Color online) Numerical solutions for the model problem (1.1) obtained using the FEM-

FCT method, at different time instant t = 0, 5, 50, 100, 500, 1000 when Du = Dv = 0.25 and
χu = χv = 3.0. For the choice of colors, see the beginning of Sec. 6.1.

(a) t = 0 (b) t = 5 (c) t = 50 (d) t = 100 (e) t = 500 (f) t = 1000

Fig. 9. The size of gang populations u,v and the amount of their corresponding graffiti z and
w over time along the line y = x at different time instant t = 0, 5, 50, 100, 500, 1000 when Du =

Dv = 0.25 χu = χv = 3.0.

snapshots of the results obtained with the FEM-FCT for both cases are displayed

in Figs. 9 and 11, respectively.

Comparing our results with the stochastic simulation in the agent-based model

in Ref. 2, we notice some similarities between our experiments’ outcome and their

reported results, namely that large values of β (the convection coefficient in their

model) lead to a well-segregated phase. However, in each patch dominated by red

or blue in Figs. 8 and 10, there is still some amount of the opposite group with

much smaller — but still positive — density present (cf. Figs. 9 and 11), illustrating

partial (as opposed to complete) segregation. Moreover, unlike as Ref. 2, we do not
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(a) t = 0 (b) t = 5 (c) t = 50 (d) t = 100 (e) t = 500 (f) t = 1000

(g) t = 0 (h) t = 5 (i) t = 50 (j) t = 100 (k) t = 500 (l) t = 1000

Fig. 10. (Color online) Numerical solutions for the model problem (1.1) obtained using the FEM-

FCT method, at different time instant t = 0, 5, 50, 100, 500, 1000 when Du = Dv = 0.25 and
χu = χv = 10. For the choice of colors, see the beginning of Sec. 6.1.

(a) t = 0 (b) t = 5 (c) t = 50 (d) t = 100 (e) t = 500 (f) t = 1000

Fig. 11. The size of gang populations u,v and the amount of their corresponding graffiti z and

w over time along the line y = x at different time instant t = 0, 5, 50, 100, 500, 1000 when Du =

Dv = 0.25 and χu = χv = 10.

observe any coarsening of the regions: Once territories are established, they are

rather stable.

Next, we consider fixed diffusion rates as in the previous examples, i.e. Du =

Dv = 0.25, but different convection coefficients χu = 2 and χv = 4, meaning that

the second gang’s movement is more affected by the first gang’s graffiti than vice

versa. As shown in Fig. 12, the gang with density v starts to cluster together very

tightly in small patches and partially separates from the opposite group at around

t = 200 while the other gangs dominates on larger regions. That is, we observe that

the segregation pattern for both groups is quite different here, in contrast to the

previous examples.

The snapshots of concentration densities over time along the line y = x are

displayed in Fig. 13. As it can be seen, the concentration density v and its cor-

responding graffiti w occupy less parts of the domain but with higher amount of

densities (almost around 0.4 and 0.3 in their dominated regions, respectively), how-

ever, the gang population u spreads more freely in the wider range but with less

density (nearly under 0.2). Of course, both gangs have the same total amount of

mass throughout evolution since there are no source or sink terms in the model.
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(a) t = 0 (b) t = 50 (c) t = 100 (d) t = 200 (e) t = 400 (f) t = 1000

(g) t = 0 (h) t = 50 (i) t = 100 (j) t = 200 (k) t = 400 (l) t = 1000

Fig. 12. (Color online) Numerical solutions for the model problem (1.1) obtained using the

FEM-FCT method, at different time instant t = 0, 50, 100, 200, 400, 1000 when Du = Dv = 0.25,
χu = 2.0 and χv = 4.0. For the choice of colors, see the beginning of Sec. 6.1.

(a) t = 0 (b) t = 50 (c) t = 100 (d) t = 200 (e) t = 400 (f) t = 1000

Fig. 13. The size of gang populations u,v and the amount of their corresponding graffiti z and
w over time along the line y = x at different time instant t = 0, 50, 100, 200, 400, 1000 when

Du = Dv = 0.25, χu = 2.0 and χv = 4.0.

In Sec. 5.1 in Ref. 3, a similar behavior, namely that the gang with the largest

graffiti avoidance rate concentrates on smaller regions, has been observed for an

agent-based model with three rivaling gangs.

6.1.3. An example of complete segregation

Finally, we turn to answer the question whether complete separation occurs at all or

not; that is, whether the supports of the gang densities can become disjoint in the

large-time limit. We show that this is at least possible in settings where the domain

is divided into two parts in each of which one gang density is extremely small

already at the initial time, and when additionally the diffusion rates are very low,

the former prevents mixed amount of population and their interaction in the same

regions at the beginning and the latter controls their spread inside the domain over

time. For this reason, we consider the case where Du = Dv = 0.01 and χu = χv = 3

and the initial conditions are given by

u0(x, y) = e−(x−3)2−(y−3)2 , v0(x, y) = e−(x+3)2−(y+3)2 ,

w0(x, y) = 0, z0(x, y) = 0,
(6.2)
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(a) t = 0 (b) t = 50 (c) t = 75 (d) t = 200 (e) t = 500 (f) t = 1000

(g) t = 0 (h) t = 50 (i) t = 75 (j) t = 200 (k) t = 500 (l) t = 1000

Fig. 14. (Color online) Numerical solutions for the model problem (1.1) obtained using the FEM-

FCT method, at different time instant t = 0, 50, 75, 200, 500, 1000 when Du = Dv = 0.01 and
χu = χv = 3.0. For the choice of colors, see the beginning of Sec. 6.1.

(a) t = 0 (b) t = 50 (c) t = 75 (d) t = 200 (e) t = 500 (f) t = 1000

Fig. 15. The size of gang populations u,v and the amount of their corresponding graffiti z and
w over time along the line y = x at different time instant t = 0, 50, 75, 200, 500, 1000 when

Du = Dv = 0.01 and χu = χv = 3.0.

which are displayed in Fig. 14(a). Compared to the initial data in (6.1), the functions

in (6.2) miss the additive constant 0.1 and their maxima are further apart from

each other. Therefore, the dark purple at the initial stage in Fig. 14(a) represents

not only that both concentrations are (roughly) equal but additionally that they

are both roughly zero.

From Fig. 14, we observe that the gangs stay totally separated over the time

and there is no interaction between the two groups from beginning to the end. The

snapshot of the result along the line y = x is displayed in Fig. 15. We also show the

close up of population densities at different time instants along the line y = x in

(a) t = 200 (b) t = 500 (c) t = 1000

Fig. 16. Close up of populations densities along the line y = x at different time instant t =

200, 500, 1000 when Du = Dv = 0.01 and χu = χv = 3.0.
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Fig. 16, as can be seen no size of gang densities u appears in the regions occupied

by the gang density v and vice versa.

6.2. Time step and mesh convergence study

Now, we examine the effect of time and mesh refinement, which is one of the stan-

dard numerical experiments used to validate approximate solutions. For this reason,

as in the first example in Sec. 6.1.2 (see Figs. 8 and 9) we consider Du = Dv = 0.25,

χu = χv = 3 and, the initial conditions (6.1) over the time interval [0, 500]. To begin

(a) 3 refinements (b) 4 refinements (c) 5 refinements (d) 6 refinements (e) 7 refinements

Fig. 17. (Color online) Numerical solutions u and v obtained using FEM-FCT scheme in different
refinement levels at final time T = 500 where Du = Dv = 0.25 and χu = χv = 3. For the choice

of colors, see the beginning of Sec. 6.1.

(a) t = 0.0 (b) t = 1 (c) t = 50

(d) t = 100 (e) t = 500

Fig. 18. The amount of gang concentration u, v and graffiti densities w and z along the line y = x
in different level of refinement at different time instants t = 0, 1, 50, 100, 500 whereDu = Dv = 0.25

and χu = χv = 3.
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with, we keep all of the setting fixed as before and only coarsen and refine the mesh.

Comparing the plots depicted in Fig. 17 for different levels of refinement at final

time T = 500, we observe that the segregation patterns are almost the same with

slight smoothness in the segregated patches boundaries when using the finer mesh.

Therefore, it is clear that the formation of blue and red cluster inside the domain

does not change significantly by changing the mesh size. The snapshots of the mesh

convergence results along the line y = x are also displayed in Fig. 18, which shows

the approximate solutions obtained at different refinement levels almost converge

toward the same segregation states.

Next, preserving the five level of refinements as in all the previous examples

and keep the other parameters fixed as before, we choose different time step sizes

in our computation. Figure 19 shows that the segregation patterns are similar and

(a) ∆t = 1.0 (b) ∆t = 0.5 (c) ∆t = 0.25 (d) ∆t = 0.125 (e) ∆t = 0.0625

Fig. 19. (Color online) Numerical solutions u and v obtained using FEM-FCT scheme with
different number of time steps ∆t = 1.0, 0.5, 0.25, 0.125, 0.0625 at final time T = 500 where

Du = Dv = 0.25 and χu = χv = 3. For the choice of colors, see the beginning of Sec. 6.1.

(a) t = 0 (b) t = 1.0 (c) t = 50

(d) t = 100 (e) t = 500

Fig. 20. The amount of gangs concentration u, v and graffiti densities z and w along the line y = x
with different time steps at different time instants t = 0, 1, 50, 100, 500 where Du = Dv = 0.25

and χu = χv = 3.
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the differences between the approximate solutions obtained using FEM-FCT with

different time steps ∆t = 1.0, 0.5, 0.25, 0.125, and 0.0625 are very small. The snap-

shots of the results along the line y = x are depicted in Fig. 20, which shows the

time convergence behavior.

We conclude that these convergence studies provide strong indication that our

numerical experiments are reliable and that hence indeed both partial and complete

separation may occur in (1.1).
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5. Paper V

5.1 Introduction: Nonstandard finite difference
scheme

In this chapter, we consider a nonstandard finite difference (NSFD) scheme, which
was introduced nearly four decades ago by Mickens [244, 245, 246] to deal with nu-
merical instabilities that occur when finite difference methods are used for solving
differential equations. Since then, these methods has been widely used to obtain
numerical solutions of vast variety of ordinary and partial differential equations
which appear in different problems in science and engineering [247, 248]. It was
shown that the NSFD schemes overpower the standard finite difference methods
even when dealing with numerically challenging equations, such as convection-
dominated transport problems with nonlinear reaction terms [249, 250, 251, 245],
or Maxwell’s equations [252, 245].

The basic idea behind these methods is as follows:

1. A nonlocal representation of the nonlinear terms should be used on compu-
tational grid instead of conventional local representation. Let us consider
the logistic equation du

dt
= u(1 − u), then the idea is to evaluate the non-

linear term u2 at two (or more) different grid points, e.g.,

u2 → uk+1uk,

where
lim
h→0

uk+1uk = lim
h→0

u2
k = u2,

or
u2 → 2(u2

k) − uk+1uk.

2. Replacing the denominator functions in the discrete derivatives by more
complicated functional forms than those used in the standard scheme. Con-
sidering again the logistic equation, the derivative is to be approximated
as

du

dt
→ uk+1 − uk

ψ(h) ,

where
ψ(h) = h+O(h2), h → 0,

or more generally as

du

dt
= lim

h→0

u[t+ ψ1(h)] − u(t)
ψ2(h) ,

where
ψi(h) = h+O(h2), h → 0, i = 1, 2,

examples of such functions that satisfy the assumptions above are: ψ(h) =
sin(h), ψ(h) = 1 − exp(−h).
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Using the preceding steps, it is obvious that there is a lot of freedom in the
construction of NSFD schemes, however, several important rules have been in-
troduced over the years which play an important rule in proper construction of
these methods:
Rule 1: The orders of discrete derivatives have to be equal to the orders of the

corresponding derivatives of the differential equations, violation of this rule
leads to spurious oscillations in the approximate solutions.

Rule 2: The solutions of the NSFD discretization should preserve the properties
of the solutions of the differential equations.

Rule 3: For differential equations with N ≥ 3 terms, it is useful to consider
various sub-equations composed of M < N terms, then construct the finite
difference schemes for each one of these sub-equations, and finally combine
all together in a consistent way.

Rule 4: In the discretization of partial differential equations, there may exist
functional relations between various space and time step-sizes, e.g., ∆t ∝
∆x.

Rule 5: In the discretization of partial differential equations, different types of
discrete derivatives may be required for the time and space variables.

Despite huge amount of practical applications of NSFD for numerical simulation
of ordinary and partial differential equations and their huge success to overcome
numerical instabilities over the years, the amount of theoretical studies to under-
stand why they work so well and when they do is considerably poor and calls for
further investigation.

5.2 A positive and elementary stable nonstan-
dard explicit scheme for a mathematical
model of the influenza disease

This section is based on the paper entitled ”A positive and elementary stable
nonstandard explicit scheme for a mathematical model of the influenza disease”,
published in the Journal of Mathematics and Computers in Simulation.

In this paper, we considered a system of four strongly coupled nonlinear ordi-
nary differential equations describing the spread of Influenza disease. The stud-
ied system is solved numerically using a method of nonstandard finite difference
scheme following the Mickens rules [245, 244, 246], which are briefly described in
Section 2. Given the description and the properties of the model in Section 3,
it was proved that for positive initial conditions the solution of the system stays
positive over time, which satisfies also the physics behind the model. Next, the
strategy and formulation of the nonstandard discretization for solving the stud-
ied system was proposed in Section 4, it was shown that the proposed method is
elementary stable and under certain assumption on the time-step function it is
also positivity preserving. The properties of the proposed scheme were verified
using some numerical results in Section 5.
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Abstract

In this paper, a nonstandard explicit discretization strategy is considered to construct a new nonstandard finite difference
scheme for solving a mathematical model of the influenza disease. The new proposed scheme has some interesting properties
such as high accuracy and ease of implementation, as well as some preserving properties of the exact theoretical solution of the
SIRC system, like positivity and elementary stability. These characteristics make it suitable for solving efficiently the propose
model. We provide some numerical comparisons to illustrate our results.
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1. Introduction

Ordinary differential equations (ODEs) are used extensively in the modeling of many biological and physical
applications. They constitute a central component in applied mathematics and their numerical simulations are of
fundamental importance in gaining the correct qualitative and quantitative information on the systems. Numerical
methods based on the finite difference approximations [3,4,9,28], Taylor series expansion [29], and interpolation,
such as Euler, Runge–Kutta and multistep methods [20–22,31], and some other methods [1,8,12,15,30–41], are
widely used. Traditionally, important requirements in this context are, the investigation of the consistency of the
discrete scheme with the original differential equation and linear stability analysis for problems with smooth
solutions. These requirements are formulated to guarantee the convergence of the discrete solution to the exact
one, but sometimes the essential qualitative properties of the solution are not transferred to the numerical solution.
One way to tackle with this issue is to employ finite difference schemes that are nonstandard in the sense of
Mickens’ definition [18,25,27]. Nonstandard finite difference methods (NSFDs) in addition to the usual properties
of the solutions such as consistency, stability and hence convergence, may also preserve essential properties of

∗ Corresponding author.
E-mail addresses: mehdizadeh@maragheh.ac.ir (M.M. Khalsaraei), shokri@maragheh.ac.ir (A. Shokri), higra@usal.es (H. Ramos),

sh1990.heydari@gmail.com (S. Heydari).

https://doi.org/10.1016/j.matcom.2020.11.013
0378-4754/ c⃝ 2020 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
reserved.

149



M.M. Khalsaraei, A. Shokri, H. Ramos et al. Mathematics and Computers in Simulation 182 (2021) 397–410

the solutions, like positivity, boundedness, monotonicity and total variation diminishing [2,6,7,16–19,23–25,27]. In
this paper, we propose a new NSFD scheme for approximating the solution of the influenza disease system. The
proposed scheme enables us to solve the examined problem accurately. An important feature of the new scheme is
the positivity preservation of the produced solutions, which is an essential property in this context. We also prove
that the new scheme is elementary stable.

The rest of the paper is organized as follows. In Section 2, we provide some preliminaries and definitions,
including that of non-standard finite difference methods for ODEs, and a review of the general influenza disease
model. [14]. In Section 3, we propose the new scheme and investigate its positivity and elementary stability. In
Section 4, we compare the results obtained from the new scheme with the ones obtained from the classical fourth
order Runge–Kutta method (we call it RK4), ode45, ode15s, the NSFD scheme in [13] and the NSFD scheme
in [26]. Finally, we end the paper with some conclusions in Section 5.

2. Preliminaries and definitions

In this section, we give a brief summary of the NSFD methods for the numerical solution of initial value problems
for systems of ODEs that can be written in the autonomous form

d
dt

y(t) = F(y(t)), (t ≥ 0), y(t0) = y0, (2.1)

where y(t) may be a single function or a vector function of length k mapping [t0, T ] → Rk and F is a single
function or a vector function of length k mapping Rk

→ Rk . By defining tn = t0 + n∆t , where ∆t is a positive
step size, the continuous differential equation (2.1) can be discretized as

D∆t yn = Fn(F, yn), (2.2)

where yn ≈ y(tn), D∆t yn represents the discretized version of d
dt y(t) and Fn(F, yn) approximates F(y(t)) at time

tn . In the sequel, we will consider the definition of the nonstandard finite-difference methods given in [2].

Definition 2.1 ([2]). The method given in (2.2) is called a nonstandard finite-difference method if at least one of
the following conditions is met:

• In the discrete derivatives D∆t yn , the traditional denominator ∆t is replaced by a nonnegative function ϕ(∆t)
such that

ϕ(∆t) = ∆t + O(∆t2) as 0 < ∆t → 0, (2.3)

for example:

ϕ(∆t) = 1 − exp(−∆t), ϕ(∆t) = tanh(∆t).

• F(y(t)) is approximated in a nonlocal way, i.e., by a suitable function of several points of the mesh. For
instance, the terms y, y2 and y3 can be modeled as follows:

y ≈ ayk + (1 − a)yk+1; y ≈ a(yk+1 + yk−1) + (1 − 2a)yk, a ∈ R;

y2
≈ ay2

k + byk yk+1, a + b = 1, a, b ∈ R; y2
≈ yk(

yk+1 + yk−1

2
);

y3
≈ ay3

k + (1 − a)y2
k yk+1, a ∈ R,

where yk+ j denotes an approximation of the true solution y
(
tk+ j

)
.

Definition 2.2. Any constant value ỹ0 satisfying F(ỹ0) = 0 is called an equilibrium point (a fixed-point or a critical
point) of the differential equation given in (2.1). The constant solutions of the discretized system are also called
equilibrium points.

Definition 2.3. The finite difference method given in (2.2) is called elementary stable, if for any value of the step
size ∆t , the only equilibrium points are those of the differential system (2.1), and the linear stability property of
each one is the same for both, the differential system and its discretized version.
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Table 1
Descriptions and values of the parameters used in the system (3.1).

Description Parameter Value

Cross-immune period γ −1 2
Infectious period α−1 5

365
Total immune period δ−1 1
Per capita birth rate µ 1

50
Fraction of the exposed cross-immune individuals σ 0.05

Definition 2.4. An equilibrium point ỹ0 of (2.1) is linearly

(i) stable iff |Reλ j | < 1 for all j ,
(ii) unstable iff |Reλ j | > 1 for at least one j ,

where the λ j ’s are the eigenvalues of the Jacobian matrix of the system (2.1) evaluated at ỹ0.

3. A mathematical model of the influenza disease

In this section, we consider the mathematical model of the influenza disease, completely analyzed in [13,14,26],
given in the form

d S(t)
dt

= µ − µS(t) − βS(t)I (t) + γ C(t),

d I (t)
dt

= βS(t)I (t) + σβC(t)I (t) − (µ + α)I (t),

d R(t)
dt

= (1 − σ )βC(t)I (t) + α I (t) − (µ + δ)R(t), (3.1)

dC(t)
dt

= δR(t) − βC(t)I (t) − (µ + γ )C(t),

S(0) = S0, I (0) = I0, R(0) = R0, C(0) = C0,

where S, I , R and C represent the proportion of susceptible, infective, recovered and cross-immune individuals at
time t , respectively and β is the contact rate. The definitions of the other parameters present in the system (3.1)
and the values used for them in this article can be found in Table 1. One of the main assumptions of this model
is that the per capita birth rate is a constant µ > 0 and the birth rate is the same as death rate. It implies that
S′(t) + I ′(t) + R′(t) + C ′(t) = 0 (conservation law).

Theorem 3.1. The solution (S(t), E(t), I (t), R(t)) of system (3.1) with positive initial condition is positive on
[0, ∞).

Proof. Assume the solution (S(t), I (t), R(t), C(t)) with a positive initial condition exists and is unique on [0, b),
where 0 < b ≤ ∞ (see [11]). Since

I ′(t) = [βS(t) + σβC(t) − (µ + α)] I (t),

then

I (t) = I (0) exp
[∫ t

0
[βS(θ ) + σβC(θ ) − (µ + α)] dθ

]
> 0.

So, for all t ∈ [0, b) we have I (t) > 0. Now, for all t ∈ [0, b), one must have C(t) > 0. Otherwise, there will exist
a t1 ∈ (0, b) such that C(t1) = 0 and C(t) > 0 in (0, t1). Thus, for any t ∈ [0, t1),

S′(t) = µ − µS(t) − βS(t)I (t) + γ C(t)
≥ µ − µS(t) − βS(t)I (t)
≥ −(µ + β I (t))S(t).
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Hence, for all t ∈ (0, t1),

S(t) ≥ S(0) exp
[∫ t

0
−(µ + β I (θ ))dθ

]
> 0.

Now since 1 − σ ≥ 0, for all t ∈ [0, t1] we have

R′(t) = (1 − σ )βC(t)I (t) + α I (t) − (µ + δ)R(t)

≥ α I (t) − (µ + δ)R(t)

≥ −(µ + δ)R(t).

Then, for all t ∈ (0, t1),

R(t) ≥ R(0) exp
[∫ t

0
−(µ + δ)dθ

]
> 0.

Therefore, for t ∈ [0, t1] we can write

C ′(t) = δR(t) − βC(t)I (t) − (µ + γ )C(t) ≥ −(β I (t) + (µ + γ ))C(t).

Hence, by using a comparison argument we obtain that

C(t) ≥ C(0) exp
[
−

∫ t

0
(β I (θ ) + (µ + γ ))dθ

]
> 0,

and in particular, for t = t1 we get

C(t1) ≥ C(0) exp
[
−

∫ t1

0
(β I (θ ) + (µ + γ ))dθ

]
> 0

which is a contradiction to C(t1) = 0. So, for all t ∈ [0, b), C(t) > 0. Using similar procedures, one can show that
R(t) > 0 and S(t) > 0 for all t ∈ [0, b). On the other hand, we have

d N
dt

= µ − µN (t), N (t) = S(t) + I (t) + R(t) + C(t), (3.2)

whose exact solution is

N (t) = 1 + (N (0) − 1) e−µt
= 1 − e−µt

+ N (0)e−µt , (3.3)

where N (0) = S(0) + I (0) + R(0) + C(0) > 0. We have that for t ∈ [0, b) it is

N (t) < 1 + N (0)e−µt < 1 + N (0).

Thus, S(t), I (t), R(t), C(t) are bounded on [0, b) and we have that b = ∞. This completes the proof. □

Following Definition 2.2, the system (3.1) has the equilibrium points [5]:

• the disease-free equilibrium (DFE), E0 = (1, 0, 0, 0),
• the positive endemic equilibrium (EE), E∗

= (S∗, I ∗, R∗, C∗).

The stability of the these points is often described in terms of the reproductive number of the system. The
reproductive number represents the number of secondary infections a primary infection generates on average over
the course of its infectious period. The reproductive number for system (3.1) is,

R0 =
β

α + µ
,

and the stability of the equilibrium points is as follows:

• the disease free equilibrium, E0, is asymptotically stable if R0 < 1 and is unstable if R0 > 1,
• the endemic equilibrium, E∗, is asymptotically stable if R0 > 1.
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4. Description and properties of the numerical scheme

By using the strategy of the nonstandard discretizations, we propose a new scheme for (3.1) given by:

Si+1 − Si

ϕ(∆t)
= µ − µ(2Si+1 − Si ) − βSi+1 Ii + γ Ci ,

Ii+1 − Ii

ϕ(∆t)
= βSi+1 Ii + σβCi Ii − µ(2Ii+1 − Ii ) − α Ii+1,

Ri+1 − Ri

ϕ(∆t)
= (1 − σ )βCi Ii + α Ii+1 − µ(2Ri+1 − Ri ) − δRi+1, (4.1)

Ci+1 − Ci

ϕ(∆t)
= δRi+1 − βCi Ii − µ(2Ci+1 − Ci ) − γ Ci .

The explicit form of (4.1) can be written as

Si+1 =
(1 + ϕ(∆t)µ)Si + ϕ(∆t)µ + ϕ(∆t)γ Ci

1 + 2ϕ(∆t)µ + ϕ(∆t)β Ii
, (4.2)

Ii+1 =
(1 + ϕ(∆t)βSi+1 + ϕ(∆t)σβCi + ϕ(∆t)µ)Ii

1 + 2ϕ(∆t)µ + ϕ(∆t)α
, (4.3)

Ri+1 =
(1 + ϕ(∆t)µ)Ri + ϕ(∆t)(1 − σ )βCi Ii + ϕ(∆t)α Ii+1

1 + 2ϕ(∆t)µ + ϕ(∆t)δ
, (4.4)

Ci+1 =
(1 + ϕ(∆t)µ − ϕ(∆t)β Ii − ϕ(∆t)γ )Ci + ϕ(∆t)δRi+1

1 + 2ϕ(∆t)µ
. (4.5)

Proposition 4.1. The new scheme (4.1) preserves the conservation law.

Proof. It can be obtained by using induction. You have that S + I + R + C = 1, and thus for the initial values it
is S0 + I0 + R0 + C0 = 1. Using the above after summing the left hand sides, and the right hand sides in (4.1) for
i = 0 you get S1 + I1 + R1 + C1 − 1 = 2ϕµ(1 − S1 + I1 + R1 + C1), and thus S1 + I1 + R1 + C1 = 1. The inductive
procedure results in Si+1 + Ii+1 + Ri+1 + Ci+1 = 1, therefore the new scheme (4.1) preserves the conservation
law. □

In the following, when ϕ(∆t) = ∆t , the new method will be referred as NSFD-∆t , and if ϕ(∆t) is different
from ∆t , the method will be referred as NSFD-ϕ(∆t).

Theorem 4.2. The new proposed scheme (4.2)–(4.5) is elementary stable and for a chosen ϕ(∆t), the sufficient
condition for positivity is

ϕ(∆t) ≥
1

β + γ − µ
.

Proof. Elementary stability: The equilibrium points for the new proposed scheme are exactly the points E0 and
E∗ of the system (3.1). The Jacobian J of the scheme (4.1) has the form J (Si , Ii , Ri , Ci ) = [ jmn(Si , Ii , Ri , Ci )]4×4,
where

j11(Si , Ii , Ri , Ci ) =
1 + ϕ(∆t)µ

1 + 2ϕ(∆t)µ + ϕ(∆t)β Ii
,

j12(Si , Ii , Ri , Ci ) =
−ϕ(∆t)β[(1 + ϕ(∆t)µ)Si + ϕ(∆t)µ + ϕ(∆t)γ Ci ]

(1 + 2ϕ(∆t)µ + ϕ(∆t)β Ii )2 ,

j13(Si , Ii , Ri , Ci ) = 0,

j14(Si , Ii , Ri , Ci ) =
ϕ(∆t)γ

1 + 2ϕ(∆t)µ + ϕ(∆t)β Ii
,

j21(Si , Ii , Ri , Ci ) =
ϕ(∆t)β Ii j11

1 + 2ϕ(∆t)µ + ϕ(∆t)α
,
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j22(Si , Ii , Ri , Ci ) =
1 + ϕ(∆t)βSi+1 + ϕ(∆t)β Ii j12 + ϕ(∆t)σβCi + ϕ(∆t)µ

1 + 2ϕ(∆t)µ + ϕ(∆t)α
,

j23(Si , Ii , Ri , Ci ) = 0,

j24(Si , Ii , Ri , Ci ) =
ϕ(∆t)βσ Ii + ϕ(∆t)β Ii j11

1 + 2ϕ(∆t)µ + ϕ(∆t)α
,

j31(Si , Ii , Ri , Ci ) =
ϕ(∆t)α j21

1 + ϕ(∆t)δ + 2ϕ(∆t)µ
,

j32(Si , Ii , Ri , Ci ) =
ϕ(∆t)(1 − σ )βCi + ϕ(∆t)α j22

1 + ϕ(∆t)δ + 2ϕ(∆t)µ
,

j33(Si , Ii , Ri , Ci ) =
ϕ(∆t)(1 − σ )β Ii + ϕ(∆t)α j23

1 + ϕ(∆t)δ + 2ϕ(∆t)µ
,

j34(Si , Ii , Ri , Ci ) =
1 + ϕ(∆t)µ + ϕ(∆t)α j24

1 + ϕ(∆t)δ + 2ϕ(∆t)µ
,

j41(Si , Ii , Ri , Ci ) =
ϕ(∆t)δ j31

1 + 2ϕ(∆t)µ
,

j42(Si , Ii , Ri , Ci ) =
−ϕ(∆t)βCi + ϕ(∆t)δ j32

1 + 2ϕ(∆t)µ
,

j43(Si , Ii , Ri , Ci ) =
1 + ϕ(∆t)µ − ϕ(∆t)γ − ϕ(∆t)β Ii + ϕ(∆t)δ j33

1 + 2ϕ(∆t)µ
,

j44(Si , Ii , Ri , Ci ) =
ϕ(∆t)δ j34

1 + 2ϕ(∆t)µ
.

By substituting (S0, I0, R0, C0) = (1, 0, 0, 0) = E0, we have

J (E0) =

⎛⎜⎜⎝
a1 a2 a3 a4
a5 a6 a7 a8
a9 a10 a11 a12
a13 a14 a15 a16

⎞⎟⎟⎠ ,

where

a1 =
1 + ϕ(∆t)µ
1 + 2ϕ(∆t)µ

, a2 =
−ϕ(∆t)β

1 + 2ϕ(∆t)µ
, a3 = 0,

a4 =
ϕ(∆t)γ

1 + 2ϕ(∆t)µ
, a5 = 0, a6 =

1 + ϕ(∆t)(µ + β)
1 + ϕ(∆t)(2µ + α)

,

a7 = 0, a8 = 0, a9 = 0,

a10 =
ϕ(∆t)α(1 + ϕ(∆t)(µ + β))

(1 + ϕ(∆t)(2µ + δ))(1 + ϕ(∆t)(2µ + α))
,

a11 =
1 + ϕ(∆t)µ

1 + ϕ(∆t)(2µ + δ)
, a12 = 0, a13 = 0,

a14 =
ϕ(∆t)2δα(1 + ϕ(∆t)(µ + β))

(1 + ϕ(∆t)(2µ + α))(1 + ϕ(∆t)(2µ + δ))(1 + 2ϕ(∆t)µ)
,

a15 =
ϕ(∆t)δ(1 + ϕ(∆t)µ)

(1 + ϕ(∆t)(2µ + δ))(1 + 2ϕ(∆t)µ)
,

a16 =
1 + ϕ(∆t)(µ − γ )

1 + 2ϕ(∆t)µ
.

The eigenvalues of J (E0) are

λ1 =
1 + ϕ(∆t)µ
1 + 2ϕ(∆t)µ

, λ2 =
1 + ϕ(∆t)µ + ϕ(∆t)β
1 + 2ϕ(∆t)µ + ϕ(∆t)α

,

λ3 =
1 + ϕ(∆t)µ

1 + 2ϕ(∆t)µ + ϕ(∆t)δ
, λ4 =

1 + ϕ(∆t)µ − ϕ(∆t)γ
1 + 2ϕ(∆t)µ

.
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Table 2
Qualitative behavior with respect to E0 of the schemes considered on the problem (3.1) with β = 50 and different step sizes
∆t , T = 60.

∆t ode45 RK 4 Euler N SF D − ∆t N SF D − ϕ(∆t)

0.01 Convergence Convergence Convergence Convergence Convergence
0.1 Convergence Convergence Divergence Convergence Convergence
1 Divergence Divergence Divergence Convergence Convergence
2 Divergence Divergence Divergence Convergence Convergence
3 Divergence Divergence Divergence Convergence Convergence
4 Divergence Divergence Divergence Divergence Convergence
5 Divergence Divergence Divergence Divergence Convergence
10 Divergence Divergence Divergence Divergence Convergence
50 Divergence Divergence Divergence Divergence Convergence
100 Divergence Divergence Divergence Divergence Convergence

It is clear that |λ1| < 1, |λ3| < 1, |λ4| < 1 and if R0 < 1 then |λ2| < 1 too, and therefore E0 = (1, 0, 0, 0) is
stable.

It is fair to say that for E∗ we have no formal proof. But, the numerical results obtained by using the Math
Toolbox software of MATLAB show that for any step-size ∆t > 0 the equilibrium point (S∗, I ∗, R∗, C∗) is stable
(see Figs. 1–3 and Tables 3–4). These results guarantee the dynamical consistency between system (3.1) and the
numerical scheme (4.1) around all the equilibrium points. Therefore, the new proposed scheme (4.1) is elementary
stable.

Positivity: With positivity, we mean that the component-wise non-negativity of the initial vector is preserved in
time for the approximated solution. Assuming (S0, I0, R0, C0) ≥ 0, since all of the parameters are positive then
Si+1 > 0 and Ii+1 > 0. Also if σ < 1, then from (4.4) we have Ri+1 > 0. Now for the positivity of Ci+1, it is
sufficient to have

1 + ϕ(∆t)µ − ϕ(∆t)β Ii − ϕ(∆t)γ ≥ 0.

Since Ii ≤ 1 it is sufficient to have

1 + ϕ(∆t)µ − ϕ(∆t)β − ϕ(∆t)γ ≥ 0,

which is equivalent to

1 + ϕ(∆t)(µ − β − γ ) ≥ 0,

and

ϕ(∆t) ≥
1

β + γ − µ
, µ ≤ β + γ.

Therefore the new proposed scheme is positive and elementary stable and this completes the proof. □

5. Numerical results

In this section, we present some numerical results to verify the properties of the proposed scheme and compare
its performance with other methods available in the literature, namely, the RK4 method, ode45, ode15s, the NSFD
method presented in [13] and the NSFD method presented in [26]. All the parameter values used in these simulations
have been taken from [26] and we have considered ϕ(∆t) = tanh(∆t). For each experiment, the final value of the
integration interval [t0, T ] is specified on the graphs or the corresponding table.

It can be seen in Fig. 1 that the proposed scheme and the RK4 method with ∆t = 0.01 preserve the stability of
the equilibrium E0. Furthermore, our new scheme converges to E0 for large step-sizes, as can be seen in Figs. 2–5.
By increasing the step-size, we can observe that ode45, the RK4 and Euler methods diverge, whereas NSFD-∆t
converges for larger moderate values of ∆t (until ∆t = 4) and the NSFD-ϕ(∆t) scheme converges for all step
sizes. Table 2 shows the qualitative behavior of the considered schemes for different values of the step size.
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Fig. 1. Numerical results of the problem (3.1) by ode15s and the new scheme taking ∆t = 0.01 and initial values (S(0), I (0), C(0), R(0)) =

(0.75, 0.095, 0.005, 0.15) with β = 50 (R0 < 1).

Fig. 2. Numerical results of the problem (3.1) by the new scheme taking ∆t = 0.1 and initial values (S(0), I (0), C(0), R(0)) =

(0.75, 0.095, 0.005, 0.15) with β = 50 (R0 < 1).

Fig. 3. Numerical results of the problem (3.1) by the new scheme taking ∆t = 1 and initial values (S(0), I (0), C(0), R(0)) =

(0.75, 0.095, 0.005, 0.15) with β = 50 (R0 < 1).
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Table 3
Qualitative behavior with respect to E∗ of the schemes considered on the problem (3.1) for different step sizes with β = 100,
T = 45.

∆t ode45 RK 4 Euler N SF D − ∆t N SF D − ϕ(∆t)

0.01 Divergence Divergence Divergence Convergence Convergence
0.1 Divergence Divergence Divergence Convergence Convergence
1 Divergence Divergence Divergence Convergence Convergence
2 Divergence Divergence Divergence Convergence Convergence
3 Divergence Divergence Divergence Convergence Convergence
4 Divergence Divergence Divergence Divergence Convergence
5 Divergence Divergence Divergence Divergence Convergence
10 Divergence Divergence Divergence Divergence Convergence
50 Divergence Divergence Divergence Divergence Convergence
100 Divergence Divergence Divergence Divergence Convergence

Table 4
Spectral radius of the Jacobian matrix with respect to E∗ with β = 100 and the parameter values in Table 1.

∆t ρ − N SF D − ∆t ρ − N SF D − ϕ(∆t)

0.001 0.9999-Convergence 0.9999-Convergence
0.01 0.9997-Convergence 0.9997-Convergence
0.05 0.9989-Convergence 0.9989-Convergence
0.1 0.9979-Convergence 0.9980-Convergence
0.5 0.9901-Convergence 0.9921-Convergence
1 0.9806-Convergence 0.9875-Convergence
2 0.9628-Convergence 0.9831-Convergence
4 0.9308-Convergence 0.9831-Convergence
10 0.8567-Divergence 0.9806-Convergence
20 0.7771-Divergence 0.9806-Convergence
100 0.6760-Divergence 0.9806-Convergence

Fig. 4. Numerical results of the problem (3.1) by the new scheme taking ∆t = 5 and initial values (S(0), I (0), C(0), R(0)) =

(0.75, 0.095, 0.005, 0.15) with β = 50 (R0 < 1).

In the previous examples we have only emphasized the qualitative behavior of the solutions. It is obvious that
the smaller the step size, the smaller the errors involved. In what follows we will show this aspect with respect to
the equilibrium point E∗.

Fig. 6 shows that the new method preserves the stability of E∗ for small step sizes. Similar behavior occurs for
the NSFD method presented in [26] with ∆t = 0.01, but when increasing the step size the scheme (4.1) converges to
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Fig. 5. Numerical results of the problem (3.1) by the new scheme taking ∆t = 10 and initial values (S(0), I (0), C(0), R(0)) =

(0.75, 0.095, 0.005, 0.15) with β = 50 (R0 < 1).

Fig. 6. Oscillatory behavior of the solution of problem (3.1) by ode15s (green line) taking ∆t = 0.01, which is used as a reference solution.
The proposed method in [13] (blue dashed line) and the new scheme (red line) present also this oscillatory behavior taking ∆t = 0.1. The
initial values are (S(0), I (0), C(0), R(0)) = (0.72, 0.001, 0.17, 0.109) with β = 100 (R0 > 1). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

the equilibrium E∗ more accurately than the other methods. This can be seen in Fig. 7. Furthermore, the qualitative
behavior of the considered schemes for different step sizes with respect to E∗ is presented in Table 3. It can be
seen that ode45, the RK4 and Euler methods diverge for all step-sizes but NSFD-ϕ(∆t) is convergent. In Table 4
we observe that the spectral radius of the Jacobian matrix associated to the new scheme with respect to E∗ are
less than one showing that the scheme (4.1) is stable. Since we do not have an analytic solution for the nonlinear
problem in (3.1), we use as a reference solution the one calculated with ODE15s method to represent our true
solution. Figs. 8–11 include the absolute errors for different schemes and different values of ∆t , showing that the
proposed scheme is more accurate than the other methods.

Numerical simulations were developed for different representative values of R0 which can cover most of the
possible realistic values. In Tables 3–4 we present some qualitative results and it can be observed that Scheme
NSFD-ϕ(∆t) converges to the equilibrium point for all the numerical simulations.
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Fig. 7. Oscillatory behavior of the problem (3.1) by ode15s (green line) with ∆t = 0.01, which is used as a reference solution. The
proposed method in [13] (red dashed line) and the new scheme (blue line) present also this oscillatory behavior taking ∆t = 2 and initial
values (S(0), I (0), C(0), R(0)) = (0.72, 0.001, 0.17, 0.109) with β = 100 (R0 > 1). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 8. Absolute errors for the problem (3.1) with ∆t = 0.01 by the new scheme (blue line), the proposed method in [13] (red line) and
the proposed method in [26] (green line) taking ∆t = 2 and initial values (S(0), I (0), C(0), R(0)) = (0.72, 0.001, 0.17, 0.109) with β = 100
(R0 > 1), using ode15s as a reference solution. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

As in the work of Gumel et al. [10], convergence of the proposed scheme has not been proved but based on all
the developed numerical simulations, it seems to be unconditionally convergent to the equilibrium E∗ of the SIRC
model.

Conclusion

In this article, a nonstandard discretization approach is applied to solve numerically the influenza disease model
analyzed in [26]. The new proposed scheme preserves the stability of all equilibrium points and the positivity of
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Fig. 9. Absolute errors of the problem (3.1) by the new scheme and the NSFD presented in [13] with ∆t = 10, using ode15s as a reference
solution with the initial values (S(0), I (0), C(0), R(0)) = (0.72, 0.001, 0.17, 0.109) and β = 100.

Fig. 10. Absolute errors of the problem (3.1) by the new scheme and the NSFD presented in [13] with ∆t = 15, using ode15s as a reference
solution with the initial values (S(0), I (0), C(0), R(0)) = (0.72, 0.001, 0.17, 0.109) and β = 100.

solutions. Compared with the RK4, ode15s, the NSFD method presented in [26] and the NSFD method presented
in [13], we show that the proposed scheme improves the accuracy and presents a better qualitative behavior for
large step-sizes.
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Fig. 11. Absolute errors of the problem (3.1) by the new scheme and the NSFD presented in [13] with ∆t = 100, using ode15s as a
reference solution with the initial values (S(0), I (0), C(0), R(0)) = (0.72, 0.001, 0.17, 0.109) and β = 100.
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Conclusion and outlook
Conclusion

In this thesis we mainly presented our results on investigating various cross-
diffusion systems from both theoretical and numerical point of view. A very im-
portant aspect of these type of the systems is the presence of the cross-diffusion
term(s), which often complicates the analytical and numerical investigations. We
started this work with a brief introduction to the definition and some studied
background for the cross-diffusion systems. Next, we mentioned that the strength
of the cross-diffusion term(s) in the system can strongly affect the behavior of their
approximate solutions, which usually leads to spurious oscillations or even blow-
up in the discrete solutions whenever the cross-diffusion term(s) are dominant
and standard non-adaptive discretization techniques are used. Since, this process
resembles the convection-dominated regime in the convection-diffusion-reaction
equations for which a huge amount of the stabilization methods are available,
hence we briefly recalled some of these methods in Chapter 1. Next, we studied a
chemotaxis-type cross-diffusion system modeling a cancer invasion in Chapter 2,
for which we established theoretical proofs, numerical algorithms and numerical
simulations. The main aspect of the considered system was lack of spatial regu-
larity in both second and third equations which made the considered system more
challenging to deal with both from the theoretical and numerical view points. In
the theoretical part, making use of parabolic regularity theory, the existence of
global classical solutions was shown in two- and three- dimensional bounded do-
mains. The proof was established provided that the second and third equations in
the system were at least regularized in time. In the numerical part, the numerical
stability of the system was investigated. It was shown that, spurious oscillation
and numerical blow-up occurs in the cross-diffusion-dominated regime whenever
the standard Galerkin finite element method is used along with θ-scheme for dis-
cretization in space and time, respectively. Lastly, the theoretical results were
supported by various numerical experiments in two- and three-dimensions uti-
lizing finite element library Deal.II. In Chapter 3, we considered the haptotaxis
counterpart of the aforementioned system for which the techniques considered
in the previous chapter were no longer applicable and proving the existence of
the solution from theoretical point of view is still an open question and calls
for further investigation. Hence, we addressed this point by means of numeri-
cal schemes. In this regard, a high-resolution nonlinear stabilized finite element
flux-corrected transport method was employed for spatial discretization combined
with θ-method for temporal discretization. Making use of Brouwer’s fixed point
theorem it was proved that both the nonlinear scheme and the linearized system
used in the fixed-point iterations are solvable and positivity-preserving. Several
numerical simulations were carried out in two dimensions to demonstrate the
performance of the proposed methods, where it was observed that the usage of
high-resolution scheme simply allows high-accuracy for smooth regions and good
oscillation diminishing in non-regular regime. In the next chapter, Chapter 4, we
considered a system consisting of a double cross-diffusion terms modeling two ri-
valing gangs. The main feature of this system was the presence of cross-diffusion

163



term in two different equations in the system which made the analytical and nu-
merical investigations even more challenging. From the analytical point of view,
we proved that there exist a global, bounded classical solution. Moreover, we
showed that for sufficiently small initial data these solutions converge toward ho-
mogeneous steady states, however, it was shown that obtaining such a results
for large date seemed to be very difficult theoretically. Once again we addressed
this difficulty by means of numerical methods. In this regard, we employed sta-
bilized finite element flux-corrected transport method along with θ-scheme for
spatial and temporal discretization, respectively. We proved that the proposed
method is positivity preserving and satisfies the discrete maximum principle un-
der certain assumptions. Utilizing finite element library Deal.II, we presented
various numerical experiments to support our theoretical and numerical results.
Lastly, we finished this thesis in Chapter 5 by investigating a strongly coupled
nonlinear ordinary differential equation modeling influenza disease, where a new
nonstandard finite difference method was employed to solve the system under
consideration. It was proved that the proposed method is positivity-preserving
and also elementary stable. The results were supported by providing some nu-
merical simulations utilizing MATLAB.

Outlook

As mentioned in the introduction numerical analysis and simulation of cross-
diffusion systems are considerably rare compared to the theoretical analysis.
Thus, in the following we present several ideas that are not addressed in this
work and can naturally be considered for possible future developments in this
regard:

• Studying more complicated model problems such as: systems which are
consist of not only one cross-diffusion term in a single equation in the system
but several cross-diffusion terms appearing in the same equation, systems
consisting of cross-diffusion terms along with compressible/incompressible
Navier-Stokes equations, or systems that combine fluid-structure interaction
and cross-diffusion,

• Considering more complicated domains with moving boundaries,

• Exploring and developing numerical analysis and theory in more details for
various model problems,

• Estimate the errors of the approximate solutions to cross-diffusion systems
and derive a refinement process in cross-diffusion-dominated regime. De-
sirably developing robust a posteriori error estimators for the nonlinear
finite element flux-corrected transport method in the FCT norm which are
preferably independent of the choice of the limiter,

• Software development and implementation, for example, parallelization pro-
gramming for the goal of efficient computation in the higher dimensional
domain,

• Examining other iteration methods to treat the nonlinearities in the system,
for example, Newton-like methods or a combination of Newton and fixed-
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point approaches in order to be able to switch between the two schemes
whenever it is necessary,

• Employing high-order stable time integrators such as multi-step or strong
stability preserving Runge-Kutta methods. Utilizing adaptive time stepping
techniques instead of uniform time stepping used in this work.
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