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ABSTRACT  

Ecosystem structure, particularly the vertical structure of vegetation, is one of the 

six essential biodiversity variables, constituting an important aspect of habitat 

heterogeneity that influences species distribution and diversity. However, until 

relatively recently, measuring vegetation structure was extremely laborious and 

collecting such data was virtually impossible for large areas. However, this 

changed fundamentally with the advent of laser altimetry in the mid-1990s. In 

particular, airborne laser altimetry has seen an unprecedented boom in the last 

twenty years. As a result, we now have unique detailed data on vegetation 

structure in many countries around the world, particularly in Europe and North 

America. However, such data are lacking in the less developed countries, where 

most of the world's species diversity is found. Fortunately, recent years have 

favoured satellite-based laser altimeters that can fill in the gaps. Specifically, two 

devices were launched into Earth orbit in 2018: the Advanced Topographic Laser 

Altimeter System (ATLAS) onboard the ICESat-2 satellite and the Global 

Ecosystem Dynamics Investigation (GEDI) on the International Space Station. 

These devices provide, among other things, data on vegetation structure on a 

global scale, which can be used to improve our understanding of the distribution 

of species diversity on Earth. 

This dissertation focuses on monitoring terrain and vegetation structure by laser 

altimetry and on using these data to model the diversity and distribution of 

animals. The airborne laser scanning data were used to model the diversity and 

rarity of birds on the Radovesická spoil heap in northern Bohemia. The study 

showed a strong positive effect of vegetation structure on both bird diversity and 

rarity. The next two studies have focused on satellite laser altimetry data, and 

airborne laser scanning data was used only as a reference to evaluate acquisition 

and environmental characteristics that may affect the quality of satellite altimeter 

data. While the first of those two studies focused on ICESat-2 data, the other 

analyzed GEDI data. Both studies identified several characteristics that affect the 

accuracy of vegetation and terrain height measurements and made key 

recommendations regarding data filtering for subsequent analyses. The last study 

examined the accuracy of recently published high-resolution global vegetation 

height maps derived from GEDI and Sentinel/Landsat data. The results of this 

study showed the limitations in the accuracy of the global vegetation height maps. 



   

Typically, the height of low vegetation was overestimated and that of high 

vegetation was underestimated. Thus, their usefulness for modelling species 

diversity and distribution proved limited, distorting the true relationships between 

species diversity and environmental characteristics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

ABSTRAKT 

Struktura ekosystému, zejména vertikální struktura vegetace, je jednou ze šesti 

základních EBV (Essential biodiversity variables) tříd a je důležitým aspektem 

heterogenity stanovišť, která ovlivňuje rozšíření druhů a jejich rozmanitost. 

Nicméně ještě relativně nedávno bylo měření struktury vegetace nesmírně pracné 

a sběr takových dat pro rozsáhlé oblasti byl prakticky nemožný. To se nicméně 

zásadně změnilo s příchodem laserové altimetrie v polovině devadesátých let 

minulého století. Zejména letecká laserová altimetrie zaznamenala v posledních 

dvaceti letech nebývalý rozmach a díky tomu máme nyní v mnoha státech světa, 

zejména v Evropě a Severní Americe, jedinečná data detailně reprezentující 

strukturu vegetace. Nicméně v méně rozvinutých státech světa, kde se nachází 

většina světové druhové diverzity, taková data chybí. Poslední léta naštěstí přála 

satelitním laserovým altimetrům, které mohou chybějící data doplnit. Konkrétně 

byla na oběžnou dráhu Země v roce 2018 vypuštěna dvě zařízení: ATLAS 

(Advanced Topographic Laser Altimeter System) na palubě satelitu ICESat-2 a 

GEDI (Global Ecosystem Dynamics Investigation) umístěný na mezinárodní 

vesmírnou stanici. Obě tato zařízení poskytují, mimo jiné, data o struktuře 

vegetace v globálním rozsahu, s jejichž pomocí je možné lépe pochopit rozložení 

diverzity druhů na Zemi. 

Tato disertační práce se zaměřuje na sledování struktury vegetace metodou 

laserové altimetrie a na využití těchto dat pro modelování diverzity a distribuce 

živočichů. Data leteckého laserového skenování byla využita k modelování 

diverzity a rarity ptáků na Radovesické výsypce v severních Čechách. Studie 

prokázala silný pozitivní vliv struktury vegetace jak na diverzitu, tak raritu ptáků. 

Další dvě studie se již zaměřovaly na data ze satelitní laserové altimetrie a data 

leteckého laserového skenování byla využívána jen jako referenční pro 

vyhodnocení charakteristik měření a prostředí, které mohou ovlivňovat kvalitu dat 

ze satelitních altimetrů. Zatímco první z nich se zaměřila na data ze satelitu 

ICESat-2, druhá na data GEDI. Obě studie určily několik charakteristik ovlivňujících 

přesnost měření výšky vegetace a terénu a přinesly zásadní doporučení stran 

filtrace dat pro následné analýzy. Poslední studie zkoumala přesnost nedávno 

publikovaných globálních map výšky vegetace s vysokým rozlišením, které byly 

odvozeny z dat GEDI a Sentinel/Landsat. Výsledky této studie ukázaly, že globální 

mapy výšky vegetace mají velmi omezenou přesnost. Typicky docházelo 



   

k nadhodnocování výšky nízké vegetace a podhodnocování výšky vysoké 

vegetace. Tudíž i jejich využitelnost pro modelování diverzity a distribuce druhů se 

ukázala jako omezená, snadno zkreslující skutečné vztahy mezi diverzitou druhů 

a charakteristikou prostředí.  
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1. INTRODUCTION 

The fine-grain global mapping of the canopy vertical structure and understanding 

its relationship with biodiversity patterns are among the main goals of ecological 

and biogeographical research (Herold et al. 2019). It is well recognised that the 

vertical structure of the vegetation canopy, including its height, is linked to the 

biodiversity of various taxa (Davies and Asner 2014; Cazzola Gatti et al. 2017). 

The observed positive association between the vegetation structure and species 

richness can be explained by two mechanisms with opposite directions. The first 

explanation assumes that higher and structurally more complex vegetation leads 

to a higher heterogeneity in temperature, relative humidity, and/or in the amount 

of light reaching the lower layers and hence provides more habitats for plants and 

animals to occupy (Davies and Asner 2014; Cazzolla Gatti et al. 2017). Besides, 

the vegetation structure affects habitat selection, movement, and other behaviours 

of animals (Russo et al. 2023). The other explanation assumes the opposite, i.e., 

that structural complexity is rather a consequence of plant and animal species 

diversity. Combinations of plant species with varying morphological traits, such as 

growth habit, size and crown shape, can lead to structurally denser and more 

complex canopies (Pretzsch 2014; Coverdale and Davies 2023), which results in 

an observed positive correlation between vegetation structure and tree species 

richness. The current view is that both mechanisms play a role and that structural 

complexity simultaneously facilitates species diversity as well as arises from it 

(Davies and Asner 2014; Hakkenberg et al. 2023; Russo et al. 2023). However, 

the causal mechanisms behind these relationships are not fully understood 

(Marselis et al. 2022). In addition, vegetation structure is modified by animals, 

which can, for example, consume and destroy the vegetation or disperse seeds 

(Russo et al. 2023). Furthermore, the availability of soil nutrients and 

disturbances, such as fire, storms, and human activities, may also influence 

vegetation structure (Hansen et al. 2014).  

For a long time, the canopy vertical structure was difficult to measure and due to 

labour-intensive field inventory campaigns, such measurements were limited to 

small areas. This has changed over the past three decades with the significant 

improvement and expansion of laser altimetry, a.k.a. Light Detection And Ranging 

(LiDAR), an active remote sensing method for the acquisition of information on the 

terrain and canopy structure over large geographical extents (Lefsky et al. 2002; 
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Bergen et al. 2009). Airborne laser scanning (ALS), i.e., a LiDAR sensor onboard 

an airplane, has now become the primary method for collecting accurate terrain 

and vegetation structure over large areas (e.g., Wehr and Lohr 1999; Hudak et al. 

2009). In addition, ALS data availability has increased continuously, particularly 

due to direct investments in data acquisition by international, national, or regional 

agencies (for example, many European countries provide their ALS data for free; 

see Melin et al. 2017; Kakoulaki et al. 2021). The increasing availability of LiDAR 

data resulted in their numerous applications in ecological research, and LiDAR has 

significantly contributed to our understanding of species-environment associations 

(see reviews by Davies and Asner 2014 and Bakx et al. 2019). However, ALS 

surveys are still relatively expensive, and such data are, therefore, lacking in the 

less developed countries where most of the world's species diversity is found. 

Consequently, we lack comprehensive global data on the spatial patterns of 

vegetation structure, which prevented us from analysing the relationship between 

vegetation structure and biodiversity patterns in some of the most diverse places 

on Earth, and little is also known about it at global and continental scales (but see 

Marselis et al. 2022 on global analysis). 

Space-based remote sensing methods have a great potential to map forests 

globally (Herold et al. 2019; Marselis et al. 2022; Mulverhill et al. 2022). Until 

recently, however, these were mainly represented by passive sensors or radars, 

which are less suitable for mapping vegetation structure than LiDAR. Passive 

sensors could not provide information on the vertical structure of vegetation as 

they only record photons reflected from the top of the canopy (Hansen et al. 2013). 

Although radars are sensitive to the vertical vegetation structure, their backscatter 

signals are also influenced by other factors such as soil moisture, plant water 

content, and scan angle and direction, and disentangling all these factors from 

each other is difficult (Bae et al. 2019). In 2018, NASA launched two LiDAR sensors 

into the Earth's orbit: the Advanced Topographic Laser Altimeter System (ATLAS) 

onboard the ICESat-2 satellite and the Global Ecosystem Dynamics Investigation 

(GEDI) on the International Space Station (Markus et al. 2017; Dubayah et al. 

2020). Both missions provide, among other things, data on vegetation structure 

on a global scale. Although LiDAR is a more suitable technology for mapping 

vertical vegetation structure than passive remote sensing or radar, the accuracy 

of retrieved data is still affected by many factors, such as atmospheric conditions, 



  

19 
 

solar background photons from sunlight, laser pulse energy level, canopy cover, 

or terrain slope. Evaluating the accuracy of ATLAS and GEDI retrievals will provide 

important insights into the usability of this novel data. 

2. OBJECTIVES OF THE THESIS 

The vegetation structure is a fundamental physical element of habitat, which is 

essential for ecological research. The availability of global vegetation structure 

data can, in many ways, be the key to protecting the world's diversity. The main 

aim of this thesis is to explore the quality and usability of newly available data 

from spaceborne laser altimeters and to show their potential for modelling species-

environment relationships.  

The individual goals of the dissertation were: 1)  to illustrate the role of vegetation 

structure derived from laser altimetry in species diversity and rarity on a reclaimed 

site; 2) to assess the effects of acquisition and environmental conditions on 

ICESat-2 terrain and canopy height retrievals and suggest an approach for filtering 

out data with low accuracy; 3) to evaluate the effects of acquisition and 

environmental characteristics on GEDI observations and quantify the success of 

various filtering criteria in eliminating inaccurate measurements; and 4) to assess 

the accuracy of fine-grain global canopy height maps derived from GEDI and their 

usability for modelling species-environment relationships. 
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3. THEORETICAL BACKGROUND  

3.1 REMOTE SENSING OF VEGETATION STRUCTURE 

Vegetation structure can be estimated using various types of remote sensing 

techniques. The most common include synthetic aperture radar (SAR), digital 

aerial photogrammetry (DAP), or Light Detection And Ranging (LiDAR). All three 

types of sensors (radar, camera, or laser) can be mounted on various mapping 

platforms (tripod, drone, airplane, or satellite) (Bergen et al. 2009; Valbuena et 

al. 2020). Here, I will focus only on LiDAR. A key advantage of LiDAR (in 

comparison to DAP and SAR) lies in its ability to capture the terrain under the 

vegetation canopy (i.e., LiDAR pulses can penetrate gaps in the vegetation 

canopies; Lefsky et al. 2002). In addition, I will concentrate only on airborne and 

spaceborne LiDAR as possible platforms. Although drones and terrestrial (tripod) 

laser scanning provide greater detail and have been successfully used for 

modelling species-environment relationships (Shokirov et al. 2024), they can only 

cover small areas (e.g. Calders et al. 2020). Using an airplane or satellite as a 

laser sensor carrier provides coverage of relatively large study areas, which is 

crucial for modelling species-environment relationships, and most such studies 

have relied on them (Davies and Asner 2014; Bakx et al. 2019). 

3.1.1 Laser altimetry (LiDAR) 

Laser altimetry is an active remote sensing method that uses laser beams to 

measure distances between the sensor and a target surface and thus determine 

the positions of objects in three-dimensional space (Wehr and Lohr 1999). Lasers 

are used for measuring distances due to their unique properties, such as coherence 

and the ability to emit a large number of photons in a defined direction in very 

short pulses at a predefined wavelength (Shan and Toth 2018). The pulse length 

is typically around 5-10 ns (Wagner et al. 2004) and the distance from the device 

to the object is determined from the time difference between sending and receiving 

the pulse (Wehr and Lohr 1999). 

The available LiDAR sensors can be distinguished based on the way the received 

signal is recorded (discrete return, full waveform, or single photon), platform type 

(e.g., airborne, or spaceborne), the size of the laser footprint (small or large) and 

sample scanning pattern (profiling or scanning). The most commonly used LiDAR 

systems have been small-footprint discrete return LiDAR and large-footprint full 
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waveform LIDAR. A relatively new system, single photon sensitive LiDAR, is 

currently gaining in popularity and competing with the two above-mentioned laser 

scanning systems. Its advantage lies in the potentially higher area coverage 

performance, which, however, comes at the price of a lower ranging accuracy and 

an increased outlier rate (Mandlburger et al. 2019). 

Small-footprint LiDAR scanners have footprints smaller than 1 meter in diameter 

and record 1-5 discrete heights at peak returns of each pulse of the laser. These 

are typically mounted on airborne platforms (Wehr and Lohr 1999). Note, however, 

that modern small-footprint LiDAR can record full waveform as well. Large-

footprint full waveform LiDAR sensors have footprints ranging from 10 to 100 m in 

diameter and record a full digitised reflected waveform (i.e. continuous height 

distribution of surfaces illuminated by each laser pulse). These are found mainly 

on spaceborne platforms (Dubayah et al. 2020). Small-footprint LiDAR systems 

operating on airborne platforms are characterised by high pulse repetition 

frequency, creating a very dense point cloud (i.e. irregular distribution of the 

returns in three-dimensional space). In vegetated areas, the laser beams are 

usually reflected by several layers of vegetation (Lefsky et al. 2002). The 

interaction of the laser beam with the canopy is then characterised by multiple 

returns from different depths in the vegetation. The first return usually comes from 

the vegetation canopy surface, followed by the intermediate returns from leaves 

and branches, with the last return indicating ideally a return from the ground 

(Figure 1). On the other hand, large-footprint systems operating on spaceborne 

platforms are characterised by a lower pulse repetition frequency. Therefore, 

spaceborne laser altimeters, such as ICESat, ICESat-2, or GEDI provide greater 

coverage, but sparse discrete measurements compared to ALS (Markus et al. 

2017; Dubayah et al. 2020). 
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Figure 1. Example of point cloud. Profile (top) and 3D view (bottom) Dark blue 

indicates terrain, red indicates high vegetation. 

3.1.2 Spaceborne LiDAR missions 

Ice, Cloud, and land Elevation Satellite (ICESat) 

The first global three-dimensional data characterising vegetation structure based 

on satellite laser altimeter measurements was obtained from the Geoscience Laser 

Altimeter System (GLAS) onboard the ICESat satellite, which was in operation 

between 2003 and 2009. The GLAS laser altimeter transmitted short pulses (4 

nanoseconds) of infrared light (1,064 nanometres wavelength) and visible green 

light (532 nanometres). The laser pulses had a repetition frequency of 40 pulses 

per second, with footprints approximately 70 meters in diameter, spaced 170 

meters apart along the Earth's surface. The horizontal accuracy of the ground 

footprints is about 6 m, and the vertical accuracy is below 3 cm (Abshire et al. 

2005). However, the relatively low vertical accuracy in topographically complex 

terrain where there were problems distinguishing terrain from vegetation was a 

drawback of the measurements (Chen 2010). Although the main objective of the 

mission was to measure polar ice caps, a total of 15 datasets were produced, 

overlapping across scientific disciplines and also including data on ground elevation 

and vegetation structure (Schutz et al. 2005). The knowledge gained during the 
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ICESat mission was essential in the preparation of two other recently launched 

missions. 

Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) 

In 2018, NASA launched the Ice, Cloud and land Elevation Satellite-2 (ICESat-2) 

mission. ICESat-2 operates in a 91-day exact repeat orbit, with 1,387 orbits per 

cycle. The ATLAS instrument onboard the ICESat-2 satellite is a single-photon 

counting laser altimeter that uses green laser beams (wavelength of 532 nm) to 

measure the distance to the surface (Markus et al. 2017). The benefit of using a 

single-photon approach is that the laser can operate at a much higher repetition 

rate. In the case of ATLAS, the pulse repetition frequency is 10 kHz (compare it 

with 40Hz of its predecessor GLAS), which allows along-track sampling at 0.7 m 

intervals, with overlapping footprints of ~12 m. The ATLAS instrument splits the 

output laser pulse into three pairs of beams that are arranged to produce ground 

tracks with a distance of 3.3 km between the pairs and of 90 m between the tracks 

of each pair. The pairs consist of one weak and one strong beam with an energy 

ratio of approximately 1:4 (Neumann et al. 2019). Theoretically, ATLAS can detect 

up to 16 photons (4 × 4 detector array) per outgoing shot (a negligible fraction of 

all emitted photons; Markus et al. 2017; Neumann et al. 2019). 

The low-level data products include ATL01 and 02 (where photon times of flight 

are computed) and end with ATL03, which provides a latitude, longitude and 

elevation for each photon. The ATL03 serves as a single source of all photon data 

and ancillary information needed by surface-specific higher-level products such as 

land ice, sea ice, the atmosphere, vegetation and land, oceans and inland water. 

The terrain and canopy heights are provided as a part of the land and vegetation 

height product (ATL08; Neuenschwander et al. 2021). This information is 

subsequently used to produce gridded datasets, such as gridded ground surface 

height, canopy height and canopy cover estimates (ATL18).  

Global Ecosystem Dynamics Investigation (GEDI) 

The Global Ecosystem Dynamics Investigation (GEDI) mission aimed to measure 

forest structure and biomass in tropical and temperate regions. It was the first 

spaceborne LiDAR mission specifically designed for such a purpose (Dubayah et al. 

2020). The GEDI started operations on March 25, 2019, and collected data until 

March 2023, much longer than the originally planned two years. In addition, 
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instead of being decommissioned and destined to burn in the Earth's atmosphere 

as originally planned, GEDI is stored on ISS for up to 18 months and its reinstalling 

at a later point to continue the vegetation mapping is planned. 

The instrument was composed of three full-waveform lasers, each with a 15.6 ns 

pulse and a 242 Hz pulse repetition rate in the near-infrared region (1,064 nm). 

Two of these were used at full power (15 mJ/pulse), while the third one was split 

into two coverage beams of lower energy (4.5 mJ/pulse). The laser pulses were 

subjected to dithering, which resulted in a total of eight tracks separated by 600 

m. Each pulse had a 25 m footprint, and along the track, the footprints were 

separated by 60 m. GEDI was limited to the area between 51.6° N and 51.6° S 

(Dubayah et al. 2020). 

The geolocated waveforms of received energy (i.e. the number of photons) as a 

function of time (GEDI L1B product) are the fundamental observations made by 

the GEDI instrument. The returned waveform is typically multimodal with the 

lowest mode representing ground elevation. The accuracy of ground elevation is 

crucial for the estimation of canopy height metrics, as the ground serves as an 

elevation baseline for the canopy height estimation (Hofton and Blair 2020). The 

geolocated waveforms are further processed to provide products at the footprint 

level: the L2A and L2B data products. The L2A product provides ground elevation, 

canopy height, and relative height metrics representing the height at which a 

particular quantile of energy (i.e., the 1st−100th quantile) was returned, relative to 

the elevation of the lowest waveform mode representing the ground (Hofton and 

Blair 2020). The L2B product provides canopy cover and plant area index. This 

information is subsequently used to produce gridded datasets: the L3 (mean 

canopy height map and the standard deviation of canopy height map), and L4B 

(gridded above-ground biomass) datasets, at a 1 km2 resolution; the best detail 

that has ever been produced at the near-global extent (Dubayah et al. 2020). 

3.1.3 GEDI and ICESat-2 data limitations 

The GEDI and ICESat-2 measurements are not without errors, and the presence 

of invalid or outlaying measurements has been reported for both missions (Adam 

et al. 2020; Tian and Shan 2021). Despite some construction differences between 

the two instruments (single photon vs. full waveform LiDAR), the factors affecting 

measurement accuracy are the same: (i) The presence of clouds affects the signal 
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strength and the number of photons returning from the surface. (ii) Atmospheric 

layers such as clouds can cause multiple scattering, which increases the photon 

path length (Winker 2003). Consequently, the quality of data acquired under 

several layers of clouds may be insufficient for terrain and vegetation 

characterisation (Queinnec et al. 2021). This limitation is particularly pronounced 

in regions with persisting cloud cover such as the tropics (Potapov et al. 2021). 

(iii) In temperate forests, data accuracy is affected by snow cover, which hinders 

the detection of the actual surface and results in underestimation of canopy height 

(Neuenschwander et al. 2020). (iv) The accuracy is also affected by terrain slope 

(Tian and Shan 2021; Liu et al. 2021), particularly in combination with (v) a high 

canopy cover (Malambo and Popescu 2021). (vi) Night acquisitions have higher 

accuracy due to the lower concentration of background noise photons from sunlight 

reflected off the surface (Neuenschwander et al. 2020; Adam et al. 2020). (vii) 

Finally, both instruments split the laser pulse into several beams of different 

energies, with the higher energy beams typically providing more accurate data 

(Liu et al. 2021). Despite the clear need for appropriate filtering of the laser 

altimetry data before their further use (Carabajal and Boy 2020), there is still no 

consensus about how such filtering should be performed to minimise the error 

while maximising the amount of usable data.  

ICESat-2 and GEDI products provide several flags derived from auxiliary data that 

describe the target (e.g. surface reflectance) and acquisition (e.g. atmospheric 

scattering) characteristics and inform users about the conditions under which the 

data were acquired. We will use these auxiliary data together with external 

reference data (e.g., land cover, canopy cover, terrain slope) to assess lidar-

environment interactions. An improved understanding of LiDAR-environment 

interactions will facilitate the selection of accurate data for subsequent analyses. 
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3.2 SPECIES DISTRIBUTION MODELLING  

Understanding the interactions of species with their environment is fundamental 

to predicting species distribution patterns and habitat use, and thus to improving 

biodiversity conservation and management. Species distribution modelling (SDM) 

is a rapidly evolving field in biogeography and spatial ecology used for such 

purposes (Araújo et al. 2019). SDM encompasses two quite distinct lines of 

research (Ferrier et al. 2017). The first, 'explanatory modelling', aims to explain 

the relationships between a biodiversity-related response variable (such as the 

distribution of individual species) and the explanatory variables. Particularly, early 

studies of species–environment relationships focused on measuring environmental 

variables at species observation points. From this, relationships were inferred that 

could, however, not be used to predict species occurrence at other locations where 

these explanatory variables were not available. The other line of research is 

'predictive modelling', which aims to predict unknown values of the biodiversity 

response variable based on pre-specified relationships. The use of predictive 

models has increased markedly with the availability of remote sensing data (e.g., 

Cord et al. 2013). Predictive SDM is especially useful in supporting conservation 

decision-making, such as in selecting protected areas; identifying critical habitats 

that contain essential features for endangered species conservation; or predicting 

the impacts of climate or land use change on biodiversity (Guisan et al. 2013). 

3.2.1 Vegetation Structure as the key habitat characteristic 

The selection of appropriate explanatory variables is a crucial part of SDM. The 

chosen variables should adequately represent the main factors affecting species' 

distributions, such as climate, land cover, or topography (Gardner et al. 2019; 

Santini et al. 2021) and should be tailored to the species' ecology and habitat 

requirements.  

Habitat heterogeneity is one of the most important factors affecting species 

distributions and diversity. It is determined by the variability of environmental 

conditions (e.g., habitat types, species dominance and composition, vegetation 

density, soil types, or topographic variability). According to the habitat 

heterogeneity hypothesis, more complex environments can provide more niches 

and, thus, increase species diversity (see reviews by Tews et al. 2004; Stein et al. 

2014). A fundamental physical element of habitat heterogeneity is vegetation 
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structure (i.e., the vertical distribution of biomass in ecosystems; MacArthur and 

MacArthur 1961), which is one of the 20 essential biodiversity variables (EBVs) 

defined by GEO BON (Group on Earth Observations Biodiversity Observation 

Network) and belongs under the EBV class Ecosystem Structure 

(https://geobon.org/ebvs/what-are-ebvs/).  

Several studies have shown that vegetation structure derived from laser altimetry 

data can serve as a useful proxy for habitat heterogeneity (Lefsky et al. 2002; 

Vierling et al. 2008; Davies and Asner 2014; Vogeler and Cohen 2016; Bakx et al. 

2019). The pioneering studies mainly focused on investigating (i.e., 

demonstrating) the effectiveness of laser altimetry-derived variables in describing 

species–environment associations (Hinsley et al. 2002; Hill et al. 2004; Bradbury 

et al. 2005; Goetz et al. 2007). Since then, the focus of exploratory studies has 

shifted to assessing relationships between vegetation structure and the distribution 

of individual species (e.g., Graf et al. 2009; Sillero and Goncalves-Seco 2014), and 

species diversity (e.g., Clawges et al. 2008; Lesak et al. 2011). Several studies 

explored differences in the applicability of laser altimetry-derived variables with 

respect to different functional guilds (e.g., nesting, foraging, and habitat), showing 

that the importance of individual variables as well as the predictability of species 

occurrence using vegetation structure differ between guilds (e.g., Goetz et al. 

2007; Weisberg et al. 2014; Cooper et al. 2020).  

3.2.2 Vegetation structure variables used in SDM 

Countless variables can be derived from LiDAR data, and it would be pointless to 

try to introduce them all. However, I can introduce the major ones repeatedly used 

in many studies (Figure 2; see also reviews by Davies and Asner 2014 and Bakx 

et al. 2019).  

 

Figure 2. Example of a LiDAR point cloud profile showing common variables used 

to describe the vertical structure of vegetation. 

https://geobon.org/ebvs/what-are-ebvs/
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The maximum, mean, and standard deviation of vegetation returns are among the 

simplest metrics for describing the vertical structure of vegetation. Tree height is 

a useful indicator of tree diameter and, to some extent, of tree age, which are 

important factors for species diversity. Hence, maximum height should be 

particularly useful in predicting the occurrence of species associated with mature, 

old-growth forests. For example, a positive relationship between the maximum 

canopy height and species richness has been reported for birds (Flaspohler et al. 

2010; Lesak et al. 2011) as well as vascular plants (Mao et al. 2018). The mean 

height of vegetation returns is particularly useful in combination with variability in 

return heights. For example, Vogeler et al. (2013) found a positive relationship 

between the mean height, vertical variability of vegetation, and Brown Creeper 

(Certhia americana) occupancy. Similarly, Aguirre-Gutiérrez et al. (2017) found 

that butterfly diversity increased with average vegetation height and vertical 

variability of vegetation. Together with vegetation height, vertical height variability 

reflects key structural differences between land cover and habitat types and is 

important for their differentiation (Koma et al. 2021). For example, lower mean 

height and high vertical variability could indicate forests with sparse canopy and 

dense understorey vegetation. 

Vertical height variability is often characterised by a single variable (e.g., the 

standard deviation of vegetation returns or foliage height diversity index based on 

the Shannon-Wiener index; MacArthur and MacArthur, 1961). For example, 

Weisberg et al. (2014) reported positive associations between bird species richness 

and foliage height diversity. On the other hand, Vogeler et al. (2014) found that 

foliage height diversity was not a strong predictor of bird species richness. This 

could be due to the fact that these individual variables may not fully capture the 

complex layering of vegetation. Characterising the vertical vegetation profile by 

multiple characteristics at different vegetation layers may be more useful. For 

example, height percentiles and density proportions describe vertical vegetation 

structure in more detail. Height percentiles indicate the height (in meters) below 

which a certain percentage of returns has been recorded (e.g., Eldegard et al. 

2014). For instance, if the 70th height percentile is 10 m, it means that the lowest 

70% of the vegetation returns are below 10 m. Density proportions reflect the 

proportion of points within a certain height bin to the total number of returns (e.g., 

Lesak et al. 2011). This can be calculated as fixed height bins (e.g. 5 m) between 
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the minimum and maximum height or within different vegetation layers (e.g., 

understorey, mid-storey, canopy). Such vertical stratification describes the 

presence of different age classes or life forms existing at certain heights (e.g., 

herbs, shrubs, and trees). In particular, understorey vegetation in forests (Clawges 

et al. 2008; Vogeler et al. 2014) and shrub vegetation such as hedgerows in 

agricultural landscapes (Pelletier-Guittier et al. 2020) are often considered 

important factors for species richness, as they provide nesting and foraging 

habitats, affect visibility and prey abundance, and alter the near-surface 

microclimate (Stickley and Fraterrigo, 2021). On the other hand, vegetation can 

also act as an obstacle, and it has been shown that forest-dwelling aerial 

insectivores, such as some bird species or bats, prefer forests without a shrub 

layer as an optimal foraging habitat (Lesak et al. 2011; Rauchenstein et al. 2022). 

Similarly, Torre et al. (2022) have shown that the diversity of Mediterranean small 

mammal communities is negatively affected by the structural complexity of 

vegetation. On the other hand, herbaceous and shrub vegetation serve as 

important refuge for wildlife in landscapes heavily influenced by humans, such as 

agricultural and urban areas (Choi et al. 2021; Melin et al. 2018). Canopy cover 

can serve as a proxy for light availability on the ground. Open canopy stands are 

often associated with dense understorey layers. Closed canopies, on the other 

hand, buffer microclimatic conditions such as temperature and moisture content 

(Davis et al. 2019; De Frenne et al. 2019). 
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3.3 GLOBAL CANOPY HEIGHT MAPS 

An important principal limitation of spaceborne LiDAR sensors is that they collect 

data along discrete transects and, hence, only provide discrete samples of 

vegetation height and structure. For example, the GEDI mission's expected 

coverage of the Earth's surface is only around 4%. Relatively sparse data limit the 

detail at which vegetation characteristics can be provided on a global scale. 

Consequently, the produced global maps of vegetation structure are of coarse 

resolution. Just for the record, Hancock et al. (2021) estimated that with the 

current in-orbit technology, twelve satellites would be required to produce a 

continuous map of the canopy structure at a 30 m resolution every 5 years.  

The density of GEDI sampling enables the production of a mean canopy height 

map and standard deviation of canopy height map at a 1 km resolution almost 

globally within -52° and 52° latitude directly from the measurements (Figure 3).  

 

Figure 3. Near global canopy height at 1 km resolution – GEDI L3 Gridded Land 

Surface Metrics, Version 2.  

While the spaceborne laser altimetry missions do not provide continuous coverage, 

their data can still be used to model canopy height in greater detail and over larger 

areas. Statistical techniques and machine learning algorithms can be used to 

interpolate and extrapolate GEDI data to create wall-to-wall estimates of canopy 

height and other related parameters. The currently common approach to produce 

continuous global maps of vegetation structure at a finer resolution (e.g. 10 m or 

30 m) is to train models that combine direct measurements (e.g. ICESat, GEDI, 

ICESat-2) with spatially continuous ancillary data (e.g. Sentinel-2, Landsat) 
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enabling the estimation of the desired variable at locations not directly measured 

by GEDI or ICESat (Bergen et al. 2009; Lefsky, 2010). In this manner, Lefsky 

(2010) combined canopy heights derived from GLAS (Geoscience Laser Altimeter 

System instrument on board the first ICESat mission) with MODIS data to produce 

a global patch-based canopy height map. Similarly, Simard et al. (2011) used 

relationships between GLAS-derived canopy heights and multiple environmental 

variables (e.g., tree cover, climate, altitude) to derive a global map of canopy 

height at a 1 km spatial resolution. GLAS data were also used for global mapping 

of other important structural variables, such as canopy cover and leaf area index 

(Tang et al. 2014; Tang et al. 2019). More recently, Potapov et al. (2021) and 

Lang et al. (2023) used optical data (Landsat, Sentinel-2) to extrapolate the GEDI 

measurements, creating global canopy height maps at 30 m and 10 m spatial 

resolutions, respectively. Despite its unprecedented resolution, however, these 

products may suffer from low accuracy. Obviously, predictions are not as accurate 

as the directly measured data. 
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4. RESULTS AND DISCUSSION 

Thanks to the continuous development in remote sensing technologies, vegetation 

structure data has become readily available, particularly as point clouds from 

airborne laser scanning data in developed countries (e.g., Europe, North America, 

Australia, New Zealand; Kakoulaki et al. 2021). In addition, global data from 

satellite laser altimetry missions, such as ICESat-2 (Markus et al. 2017) and GEDI 

(Dubayah et al. 2020) became available in recent years. Furthermore, recent 

improvements in machine and deep learning methods enabled the creation of 

predictive models to produce global maps of various environmental variables, 

including vegetation structure metrics (e.g., Lang et al. 2023). These maps are 

usually readily available as open data, allowing other researchers to use them as 

input data for calculation indicators of all kinds or as input data for mapping other 

variables. However, the reliability of predicted global maps is increasingly 

questioned, particularly with respect to the often non-realistically high accuracy 

estimates provided by the authors resulting, for example, from the use of 

inappropriate validation strategies or non-representative reference data 

(Duncanson et al. 2019; Meyer & Pebesma 2022).  

This dissertation offers novel insights into the quality and usability of several such 

datasets. It includes research on the role of vegetation structure in species 

diversity and rarity, the accuracy of vegetation height retrievals from two recent 

spaceborne laser altimetry missions, and the usability of predicted global canopy 

height maps for modelling species diversity and distribution. Specifically, the titles 

of the studies are as follows: 

Study I - The role of the vegetation structure, primary productivity and 

senescence derived from airborne LiDAR and hyperspectral data for birds diversity 

and rarity on a restored site 

Study II - Effects of environmental conditions on ICESat-2 terrain and canopy 

heights retrievals in Central European mountains 

Study III - How to find accurate terrain and canopy height GEDI footprints in 

temperate forests and grasslands? 

Study IV - Comparison of three global canopy height maps and their applicability 

to biodiversity modeling: Accuracy issues revealed. 
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As full discussion is included in the respective studies, they will not be repeated 

here. Instead, this part aims to provide what did not fit in the articles, links among 

the individual presented studies, major points worth highlighting, and suggestions 

for future research. 

4.1 Usability of vegetation structure metrics for environmental 

monitoring 

The importance of vegetation structure for species diversity has been repeatedly 

assessed and acknowledged, particularly for birds (see reviews by Davies and 

Asner 2014 and Bakx et al. 2019). However, to the best of my knowledge, Study 

I is the first to do such an assessment at a reclaimed site, which was highlighted 

also by one of the reviewers. One of the most useful aspects of this study is that 

we combined LiDAR with field data and showed the usability of LiDAR data for 

assessing restoration success. In addition, we suggested that combining forest 

restoration with sites left to spontaneous succession appears to be the best 

strategy to increase bird species richness and rarity in newly restored sites after 

coal mining. Someone may object that such a result is not groundbreaking, and 

several studies have reached similar conclusions, even without sophisticated 

remote sensing techniques (e.g., Šálek 2012; Vojar et al. 2016; Korejs et al. 

2023). However, our study's value is in identifying vegetation structure metrics 

that can be easily derived from ALS data and used as a more elegant and more 

precisely measurable alternative to simple and subjective field surveys, which can 

be very useful in future assessments of restoration success.  

Not long ago, the use of remote sensing for restoration success assessment was 

considered less developed than in other disciplines (Cordell et al. 2017). Remote 

sensing technologies represent efficient and cost-effective sources for developing 

indicators relevant to large-scale decision-making. Their indispensability is 

particularly evident if we need to monitor the change of the environment over time 

and, therefore, require repeated measurements. Although a direct field survey of 

habitat attributes can provide valuable information, such studies are rare (but see 

Korejs et al. 2023) as repeated monitoring is labour-intensive. In addition, data 

from field surveys are typically used for a single study and then, if not lost, stored 

in some local computer. Although this has been improving in recent years thanks 

to the push for open science, and much of the data is now available through various 

open repositories (e.g. Powers and Hampton 2019), navigating someone else's 
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data, the structure of which is not standardized (i.e., not fully following FAIR 

principles), is often as challenging as the data collection itself.  

Remote sensing data is usually available to all through online repositories and 

adheres to FAIR principles, providing a standardized, and permanent record of the 

state of the environment. Repeated data collection by means of remote sensing 

can provide crucial insights into the dynamics of restored ecosystems. In my future 

research, I would like to concentrate on monitoring the temporal changes in 

vegetation structure on spoil heaps and other areas of interest, such as national 

parks. As airborne laser scanning data availability increases, so does availability 

from different time points. For example, scanning of selected spoil heaps in 

northern Bohemia was carried out in the years 2011 and 2017 and is planned for 

2024. Spaceborne laser altimetry missions may constitute another interesting 

input in this respect. For example, Milenković et al. (2022) used GEDI and ICESat-

2 data to assess forest regrowth in the Amazon rainforest. Similarly, Guerra-

Hernández and Pascual (2021) and Parra and Simard (2023) combined GEDI with 

ALS data to estimate forest height growth dynamics in Spain and Québec, 

respectively. We, however, warn against using predicted global canopy height 

maps at fine resolution for such purposes. In Study IV, we tested the accuracy 

and applicability of such data for species-environment relationship assessment. 

We found that their accuracy is low, and their use in local scale modelling leads to 

erroneous results, especially when horizontal habitat heterogeneity is of concern. 

Until these models are improved, we recommend that such studies use original 

measured data at relatively coarse resolution rather than predicted fine-resolution 

maps. 

4.2 Effect of environmental and acquisition characteristics on ICESat-2 

and GEDI retrievals 

Studies II and III mainly focused on environmental and acquisition 

characteristics that may affect the quality of ICESat-2 and GEDI retrievals. Here, 

by retrievals, I mean estimates of both terrain and canopy height. Although the 

factors affecting the accuracy of their measurements may vary slightly, the 

accuracy of vegetation height determination is primarily determined by the 

accuracy of the ground elevation. Therefore, it is possible to discuss the factors for 

both variables simultaneously. Despite some construction differences between 

GEDI and ICESat-2 instruments (single photon vs. full waveform LiDAR), the 
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factors potentially affecting the measurement accuracy are the same: atmospheric 

conditions (i.e., the presence of clouds affecting the strength of the signal), solar 

background photons (i.e., sunlight reflected off the Earth’s surface), and terrain 

slope, particularly in combination with a high canopy cover.  

For both sensors, the beam strength is the most important acquisition 

characteristic. Studies II and III showed that the beams with higher energy (i.e. 

strong and power beams in the case of ICESat-2 and GEDI, respectively) are more 

likely to return, providing higher accuracy estimates of terrain and canopy cover. 

In addition, the results of Study II show that the number of returned photons 

from ICESat-2 declines considerably with increasing cloud cover. Furthermore, the 

scattering of photons in dense clouds increases the photon path length, making 

the surface appear lower than it actually is (Winkler 2003). We did not evaluate 

atmospheric effects on GEDI retrievals in Study III, as it was shown earlier that 

atmospheric conditions considerably impact GEDI data quality. For example, Fayad 

et al. (2021) showed that GEDI footprints acquired in the presence of clouds 

resulted in as much as 69% of acquired footprints being unusable. The accuracy 

of the retrievals also depends on whether they are taken during the daytime or at 

nighttime. In Study II, we showed that the accuracy of ICESat-2 acquisitions was 

higher during the nighttime than daytime, but we did not find any effect of time of 

acquisition (day or night) on GEDI data accuracy (Study III). Similarly, Liu et al. 

(2021) concluded that the accuracy of the GEDI data acquired during the day and 

at night is almost identical, whereas the accuracy of ICESat-2 data acquired during 

the day is lower than that of the nighttime data. This difference is due to the 

different technology used for the two missions. The single-photon laser used for 

ICESat-2 uses a Hamamatsu photomultiplier detector, which is very sensitive and, 

hence, also sensitive to solar background noise. The full waveform LiDAR used for 

GEDI uses the Si:APD detector, which has a higher noise threshold than the solar 

background noise and is, therefore, less sensitive to day/night differences. 

The slope is another environmental parameter with a considerable impact on the 

accuracy of both ICESat-2 and GEDI retrievals. Results of Study II show that in 

the case of ICESat-2, the magnitude of this negative effect increases with the 

decreasing number of signal photons, while in the case of GEDI, this error is related 

to a relatively large footprint and tendency to identify a higher number of modes 

with increasing slope (Study III). In addition, horizontal displacement (i.e., 
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geolocation accuracy) may further amplify the error in the accuracy of retrievals 

caused by the effect of slope itself. The horizontal displacement reported for 

ICESAT-2 tends to be 0-3 m (Neuenschwander et al. 2020; Malambo and Popescu 

2021), while for GEDI, it is up to 10 m (Quiros et al. 2021; Tang et al. 2023). 

The accuracy of terrain and canopy height retrievals was also affected by canopy 

cover. Study II showed that the best accuracy of the canopy height from ICESat-

2 was observed for the canopy cover ranging from 40% to 60%. Higher canopy 

cover leads to a decreased number of ground photons; hence, the accuracy of 

terrain estimates is low and, consequently, so are the canopy height estimates. 

On the other hand, when the canopy cover is low, photons are likely reflected from 

its lower parts or not reflected from the canopy at all, and the canopy height is 

underestimated. In the case of GEDI, only footprints with sensitivities ranging from 

0.9 to 1 are considered valid waveforms and used. The sensitivity of an acquired 

beam is a signal detection performance metric that indicates the probability that 

the LiDAR beam was able to penetrate through a given canopy cover (i.e. 0.9 – 1) 

and reach the terrain. However, in Study III, we showed that footprints with 

lower sensitivity values may also be used for areas with low canopy cover, such as 

grasslands. 

4.3 Availability of large-scale canopy height maps  

The availability of globally consistent data on vegetation structure and height, such 

as products from the GEDI mission, is crucial for ecological research. The 

availability of GEDI data greatly improves the detail of information on vertical and 

horizontal vegetation structure, allowing studying questions regarding species-

environment relationships on a near-global scale and at much finer resolutions 

than has been possible to date. Integrating vegetation structure with data on 

biodiversity opens unprecedented opportunities for groundbreaking research on 

underlying mechanisms driving biodiversity patterns and forest functioning (e.g., 

Russo et al. 2023). Although GEDI data are still novel with few applications in 

biogeography, their availability has already sparked important research that 

showed GEDI's potential as well the fact that there is an important knowledge gap 

on the role of vegetation structure for biodiversity (Marselis et al. 2022). The GEDI 

data have been, for example, used to assess the role of forest structure in 

biodiversity patterns (Torresani et al. 2023), to improve models of animal-

environment relationships (Smith et al. 2022), or assess protected area's 
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effectiveness in conserving vegetation structure and carbon stocks (Ceccherini et 

al. 2023; Liang et al. 2023). 

My original intention was to use machine learning methods to develop a continuous 

canopy height model at fine resolution for the Czech Republic. However, the first 

experiments were not very successful and, meanwhile, several other authors 

developed relatively useful local or global models (e.g., Potapov et al. 2021). 

Therefore, rather than developing my own model, I decided to evaluate the quality 

and usability of existing models in Study IV. On the one hand, increasing data 

availability facilitates ecological research; on the other hand, however, the 

increasing availability of datasets of varying quality also brings pitfalls as their 

users will be confused about which of the available datasets to use. Unfortunately, 

most users do not have the capacity to verify the dataset accuracy independently. 

Even worse, many will not even think about it and use the first product they come 

across. As an example, Lewis et al. (2022) calculated the mean and variance of 

canopy height from the 2019 Global Canopy Forest Height database (Potapov et 

al., 2021), even though more accurate airborne laser scanning data for Georgia 

were available for the same period (opentopography.org). This example underlines 

the importance of providing independent validations. As more global products for 

forest height and biomass are becoming available to users, more independent 

evaluations are needed to assess the suitability of CHM products for given purposes 

(e.g., Pascual et al. 2022). In Study IV, we evaluated the accuracy of three global 

canopy height maps and assessed their suitability for modelling species 

distribution. Our results showed the presence of large errors in the predicted global 

canopy height maps and, therefore, proved that their usability for modelling 

species-environment relationships is limited.  

Despite these criticisms, some recent studies have been able to achieve better 

results in predicting vegetation height at local scales. For example, Schwartz et al. 

(2023) developed canopy height models using GEDI and Sentinel data for France. 

They showed that their model considerably outperformed available global canopy 

height maps, which might be thanks to the improved ability of their approach to 

filter out unsuitable GEDI footprints. Future studies using predictive models to 

generate canopy height maps should combine GEDI and ICESat-2 data, and use 

filtering approaches proposed in Studies II and III to select high-quality 

retrievals.  
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Finally, I call for improved availability of accurate canopy height maps from 

airborne laser scanning data. While the 3DEP programme is underway in the United 

States (Stoker and Miller 2022) and vegetation height will soon be readily available 

for the whole of that country, the data in Europe are fragmented between different 

national providers, in different coordinate systems, and its use for the whole 

continent is practically impossible at the moment. To realise its full potential, data 

must be easily available in a form that can be accessed by users with average GIS 

experience. 

  

5. CONCLUSIONS 

In this thesis, I explored the accuracy of newly available data from spaceborne 

laser altimeters and their potential for modelling species-environment 

relationships. Data from ICESat-2 and GEDI missions are now intensively used for 

large-scale canopy height mapping, and my findings can considerably improve the 

selection of accurate data for such purposes. Using machine or deep learning 

methods that combine spaceborne laser altimeters and optical remote sensing data 

to produce fine-resolution canopy height maps is a popular approach. These 

experiments resulted, among others, in three global canopy height maps (A high-

resolution canopy height model of the Earth; Global Forest Canopy Height; Global 

Map of Tree Canopy Height). I assessed the accuracy of these maps and showed 

that their accuracy is poor, considerably limiting their usability for modelling 

species-environment relationships. I emphasize that their use in local scale 

modelling and biodiversity studies may lead to erroneous results, especially when 

horizontal habitat heterogeneity is of concern. Nevertheless, because these models 

are readily available in a raster format, I am concerned that there is a risk that 

even in areas where more accurate ALS data are available, users will prefer global 

products to the tedious processing of much more accurate ALS data. It is, 

therefore, advisable that in states with ALS data available, authoritative 

institutions should take responsibility for the provision of vegetation structural 

variables in a raster format. However, I believe that more accurate models will 

replace the current ones and that vegetation structure variables will have a major 

positive impact on ecological modelling, just like bioclimatic variables have had in 

the past. 
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d Department of Landscape and Urban Planning, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha – Suchdol, 165 00, 
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H I G H L I G H T S  

" We tested the role of vegetation structure, NDVI and PSRI for bird diversity. 
" Shrub cover and tree cover had strong positive effects on bird richness. 
" The PSRI, shrub cover and herbaceous cover had positive effects on bird rarity. 
" Heterogeneous vertical vegetation structure promotes bird richness and rarity. 
" Combining forests with spontaneous succession will balance richness and rarity.  
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A B S T R A C T   

Management of restored areas requires ecologically meaningful spatial data providing objective measures of 
restoration success. Understanding relationships between species diversity on the one hand and habitat het-
erogeneity and productivity on the other can help establish such measures and prioritize restoration manage-
ment. We used airborne LiDAR and hyperspectral data to derive characteristics of vegetation structure, primary 
productivity and senescent vegetation (i.e. old dead vegetation) for prediction of richness and rarity of bird 
communities colonizing newly available habitats restored after coal mining. In addition, we analysed, which type 
of restoration (i.e. agricultural, forest, or spontaneous succession) results in more favourable conditions. The 
boosted regression trees explained 52% and 12% of deviance of overall species richness and rarity, respectively. 
We found that the overall species richness was strongly affected by the variance in vegetation structure, while the 
rarity was also affected by the presence of senescent vegetation. The relative importance of variables differed 
between the richness and rarity. The shrub cover had a strong positive effect on both, while the tree cover had a 
strong positive effect on species richness. The herbaceous cover and presence of senescent vegetation had pos-
itive effects on species rarity. This study, therefore, supports the necessity to create a mosaic of habitats with 
heterogeneous vertical structure including all layers of vegetation and highlights the importance of senescent 
vegetation. Combination of forests restoration with sites left to spontaneous succession appears to be the best 
strategy to increase both bird species richness and rarity in newly restored sites after coal mining.  
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1. Introduction 

The mining of various raw materials has expanded globally in the last 
few decades with the growing demands for various commodities and 
their increasing consumption (Kung et al., 2020; Lèbre et al., 2020). On 
the one side, economic bene昀椀ts and wealth generated by the resource 
industry are substantial (Svobodova, Owen, Harris, & Worden, 2020); 
on the other side, areas under mining lease are subject to signi昀椀cant 
landscape changes (Worlanyo & Jiangfeng, 2020). The changes are often 
associated with negative environmental impacts, including irreversible 
land degradation and biodiversity loss (Giam, Olden, & Simberloff, 
2018; Osenberg, 2018). However, under certain circumstances, mining 
and related activities can bring about also positive changes enhancing 
conservation value of the landscape (ÇSálek, Hendrychová, & ÇRehoÇr, 
2010; Schulz & Wiegleb, 2000; Vanhée & Devigne, 2018). 

Minimization of the negative effects of mining is typically ensured by 
ecological restoration, i.e. a process of assisting the recovery of an 
ecosystem that has been degraded, damaged, or destroyed (Clewell & 
Aronson, 2013; Martins et al., 2020). Monitoring of restored sites is 
required to gather ecologically meaningful data that can provide 
objective and quantitative measures of the restoration success. In prac-
tice, among other ecological measures, species diversity of various taxa 
is frequently used and many studies evaluated the effect of habitat 
heterogeneity on the diversity of species on restored sites (Crouzeilles, 
Ferreira, Chazdon, Lindenmayer, Sansevero, Monteiro, & Strassburg, 
2017; Martins et al., 2020). To model relationships between the species 
diversity and the heterogeneity of restored sites, however, the envi-
ronment is usually represented by semiquantitative or categorical 
measures only (e.g. by rough subjective estimates of vegetation cover). 
Moreover, even these measures are usually spatially and temporarily 
limited as 昀椀eld surveys traditionally used by ecologists are extremely 
labour-intensive, especially over larger areas (BejÇcek, 1988; Gould & 
Mackey, 2015; Hagger, Wilson, England, & Dwyer, 2019; KoláÇr, Ticha-
nek, & Tropek, 2017; Vojar et al., 2016). Although a direct 昀椀eld survey 
of habitat attributes can provide valuable information, it is unsuitable 
for repeated monitoring due to both labour intensiveness and limited 
informative value of subjective estimates, especially where detailed 
habitat characteristics are concerned. 

In this study, we aim to identify measures that can be easily derived 
from airborne remote sensing data and used as a more elegant and more 
precisely measurable alternative to simple and subjective 昀椀eld surveys. 
Airborne remote sensing data are increasingly available from national or 
regional scanning campagins (Melin, Shapiro, & Glover-Kapfer, 2017; 
Stereńczak et al., 2020). Such technologies represent ef昀椀cient and cost- 
effective sources for developing indicators relevant to the large-scale 
decision making, to the understanding of continuous processes of site 
restoration, and developing effective management tools that will 
maintain high biodiversity of restored sites (e.g., Cordell et al., 2017; 
Laurin et al., 2020; ProÇsek et al., 2020; Urban, ÇStroner, KÇremen, Braun, 
& Möeser, 2018). In addition, conservation strategies for post-industrial 
sites are highly debated in connection with restoration approaches 
(Hendrychová, Svobodova, & Kabrna, 2020), including the adopted 
restoration method (Tropek et al., 2010; Vicentini, Hendrychova, 
Tajovský, PiÇzl, & Frouz, 2020; Vymazal & Sklenicka, 2012). Therefore, 
we relate evaluated indicators to the individual restoration methods and 
provide recommendations for restoration practice. 

In the next chapter, the theoretical background of the research and 
ecological explanation for the selection of environmental variables 
derived from airborne remote sensing data will be discussed and the 
aims of this study will be clearly expressed. Chapter 3 introduces the 
study area, the data and its preprocessing, the environmental variables 
and statistical analyses including models evaluation. Chapters 4 and 5 
then present the obtained results followed by their discussion with 
respect to restoration goals and informing on possible limitations. 
Finally, the Chapter 6 contains conclusions and recommendations for 
resoration practice. 

2. State of the art 

Birds with their high dispersal ability play an important role in the 
early colonization of restored sites and therefore comprise one of the 
best indicators for the assessment of the restoration success (BejÇcek & 
ÇSÇtastný, 1984; Cardoso da Silva & Vickery, 2002; Martins et al., 2020). 
One of the important factors affecting bird species richness is the habitat 
heterogeneity. Habitat heterogeneity is determined by the variability of 
environmental conditions (e.g. habitat type, dominant vegetation spe-
cies, soil types, topography) and it is assumed that more complex en-
vironments may provide more niches and thus increase species diversity 
(so-called habitat heterogeneity hypothesis; see review by Tews et al., 
2004). 

A common approach of indicating heterogeneity of the habitat is to 
use the variability in its physical structure (physiognomy) (Davies & 
Asner, 2014). Physiognomy of the habitat is generally determined by 
plants and the debate whether bird species diversity is more affected by 
vegetation structure or by plant composition is still ongoing (Adams & 
Matthews, 2019; MacArthur & MacArthur, 1961; Müller, Stadler, & 
Brandl, 2010). Although some studies have shown the importance of 
plant composition and it is clear that it should not be ignored (Adams & 
Matthews, 2019), the vegetation structure has been traditionally 
considered the primary driver of bird diversity (Müller et al., 2010). This 
may be partly due to intensive research addressing relationships be-
tween bird richness and vegetation structure, which has been triggered 
by advances in the measurement of the vegetation structure by airborne 
LiDAR (see reviews by Davies & Asner, 2014; Bakx, Koma, Seijmons-
bergen, & Kissling, 2019). 

Soon after the 昀椀rst studies showed the potential of LiDAR-derived 
vegetation structure for explaining species-environment associations, 
attempts begun to integrate LiDAR with variables derived using other 
complementary remote sensing data (e.g. multispectral or hyper-
spectral) assessing their relative importance and complementarity (Bae 
et al., 2018; Cooper, McShea, Forrester, & Luther, 2020; Goetz, Stein-
berg, Dubayah, & Blair, 2007; Vogeler et al., 2014). Such variables 
include, for example, the normalized difference vegetation index (NDVI; 
Tucker, 1979). The use of NDVI to model bird species richness is based 
on species-energy theory. According to that theory, species richness is 
limited by the quantity of available energy (Brown, 1981; Wright, 1983) 
and energy available to consumers is dependent on primary productivity 
(Evans, Warren, & Gaston, 2005). It is assumed that greater primary 
productivity of plants (i.e. biomass) supports higher animal species 
richness and NDVI is commonly used as a measure of vegetation pro-
ductivity (Bailey et al., 2004; Hobi et al., 2017; Leyequien et al., 2007; 
Youngentob, Yoon, Stein, Lindenmayer, & Held, 2015). 

On the other hand, however, many species including birds are spe-
cialists and/or poor competitors, preferring speci昀椀c habitats with rela-
tively lower habitat heterogeneity or low primary productivity (Reif, 
HoÇrák, KriÇstín, Kopsová, & Devictor, 2016). The occurrence of these 
species can be associated with early stages of spontaneous succession, 
which are rare in the cultural landscape but relatively common on 
restored sites (ÇSálek, 2012). These early successional habitats can, 
therefore, represent valuable refuges for rare and unique bird specialists 
and/or poor competitors. 

For the early successional habitats in areas after coal mining, 
growths with old dead vegetation from previous vegetation season are 
typical (Hendrychová et al., 2020). This is particularly true for aquatic 
vegetation in areas left to spontaneous succession (e.g. Phragmites aus-
tralis and Typha latifolia) but a similar representation of such old (dead) 
vegetation can be also observed in low steppe vegetation in agricultur-
ally restored areas (e.g. Calamagrostis epigejos and Arrhenatherum ela-
tius). For birds, the dead vegetation provides shelter, nesting, and 
foraging opportunities at the time when green vegetation is at minimal 
heights. It is, therefore, an important component of habitat heteroge-
neity not only in the autumn and winter but possibly even more so in the 
spring. The amount of old dead vegetation (i.e. senescent vegetation) 
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can be estimated using the plant senescing re昀氀ectance index (PSRI), 
which was developed as a quantitative measure of leaf senescence 
(Merzlyak, Gitelson, Chivkunova, & Rakitin, 1999) and used as a po-
tential predictor of species occurrence in studies published previously 
(e.g. Soto, Pérez-Hernández, Hahn, Rodewald, & Vergara, 2017). 

Determining the attributes of the habitat heterogeneity and primary 
productivity of restored sites and their association with species diversity 
and/or rarity can help to identify ecologically valuable areas on large 
landscape scales. Therefore, in this study, we examined how the vege-
tation structure, primary productivity (i.e. NDVI) and old senescent 
vegetation from the previous season (i.e. PSRI) derived from airborne 
laser scanning and hyperspectral data predict species richness and rarity 
of bird communities colonizing newly available (restored) habitats after 
coal mining. Speci昀椀cally, we focused on the following questions: (i) Is 
there a detectable relationship between the 昀椀ne-scale habitat attributes 
of early succession stages obtained by airborne remote sensing and the 
occurrence of birds? (ii) Which is of greater importance for the occur-
rence of birds – the primary productivity, presence of old vegetation, or 
vegetation structure? And (iii) which type of restoration (i.e. agricul-
tural, forest, or spontaneous succession) results in the development of 
more favourable habitats for bird species richness and rarity? 

3. Data and methods 

3.1. Study area, type of reclamation and habitats 

The study was carried out on the Radovesická spoil heap (Fig. 1) 
located in the North Bohemian Brown Coal Basin, Czechia, one of the 
largest active brown coal mining regions in Europe. The study area was 
subject to various methods of restoration (i.e. agricultural, forestry, and 

spontaneous succession; Fig. 2). Agricultural reclamations typically 
include the establishment of permanent grasslands with initial sowing of 
a species-poor grasses mixture (Festuca, Dactylis, Phleum, Poa, Cynosurus, 
Agrostis) mixed with about 10% of legumes (Trifolium, Coronilla, Lotus, 
Medicago). Such areas are mowed twice a year even after the reclama-
tion is completed. Afforestation includes predominantly homogenous 
plantations of even-aged stand combining autochtonous and allochth-
onous trees (Acer, Pupulus, Quercus, Fraxinus, Tilia, Carpinus, Larix) 
supplemented with shrubs (Eonymus, Padus, Lingustrum, Cornus, Sym-
phoricarpos, Spiraea, Lonicera, Viburnum). Successional sites in our study 
area are characterized by structurally diversi昀椀ed bare ground with 
sparse annuals and biennials, followed by perennials (Tanacetum, Arte-
misia, Cirsium) and grasses (especially Calamagrostis epigejos and Arrhe-
natherum elatius) with scattered authochtonous shrubs (Sambucus, Rosa, 
Betula, Crataegus). The tree growths on the successional sites are domi-
nated by birch (Betula pendula), mixed with other deciduous trees (Salix, 
Populus). See Fig. S1 in the Supplementary material for examples of 
vegetation structure. 

3.2. Bird survey, richness and rarity calculation 

Bird data were collected in 2012 by 昀椀ve experienced ornithologists 
(co-authors of this study). Each of the 153 survey points was visited 
twice during the season (5–6 and 28–29 May) to increase the likelihood 
of detecting the earlier and later breeding species. The survey points 
form a grid spaced at 300 m intervals. At each survey point, all bird 
individuals identi昀椀ed by sight or sound within a 100 m distance from the 
survey point were recorded. The results from both visits were pooled 
together and the bird diversity (species richness) for each survey point 
was calculated as the number of species detected on the survey point. In 

Fig. 1. Study area; (A) Location of survey points and adopted restoration method (forestry, agriculture, and naturally regenerating systems called “spontaneous 
succession”). The survey points represent a 100 m buffer; (B) Location of the study area in the Czech Republic; (C) Canopy height model (meters). 
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addition, we calculated an index of species rarity for each survey point 
re昀氀ecting the scarcity of species throughout the Czech Republic based on 
the large-scale quadrat mapping of birds (ÇSÇtastný, BejÇcek, & Hudec, 
2006). For each species, the rarity index was calculated using the for-
mula 1-N/628 where N represents the number of quadrats occupied by 
the species from 628 in total (ÇSálek, 2012; Table S2 in Supplementary 
material). The overall rarity for each survey point was then calculated as 
the sum of index values for all species recorded at a point. Individuals 
recorded while 昀氀ying over the site or beyond the de昀椀ned distance were 
excluded from the analysis. 

3.3. Airborne data collection and pre-processing 

The airborne LiDAR and hyperspectral data were acquired simulta-
neously on 18th May 2017 using a remote sensing platform FLIS (The 
Flying Laboratory of Imaging Spectroscopy; HanuÇs, Fabiánek, & Fajmon, 
2016). Flights for data collection were conducted at 1030 m above 
ground at 110 knots (ground speed). Data from the hyperspectral 
(Visible Near Infrared, VNIR, CASI-1500), and LiDAR sensor (Riegl LMS 
Q-780) were used in this study. Although there was a time lag between 
the 昀椀eld survey and LiDAR and hyperspectral data campaign, we assume 
that data were still useful for describing birds’ habitats in terms of 
vegetation structure, vegetation productivity and presence of old dead 
vegetation as it has not changed substantially over the 昀椀ve years (but see 
more on this topic in Discussion). 

3.3.1. Hyperspectral data 
The hyperspectral imagery consisted of 48 bands covering the visible 

near-infrared range from 380 to 1050 nm (CASI-1500) with a bandwidth 
of 7.2 nm. Pre-processing of the hyperspectral images (i.e., radiometric 
correction, georeferencing and atmospheric corrections) were all carried 
out by the provider (CzechGlobe). Radiometric corrections were per-
formed in the RadCorr software by converting spectral radiances to 
physical radiance units based on calibration parameters from the 
CzechGlobe spectroscopic laboratory (HanuÇs et al., 2016). Radiance 
images were geometrically corrected, orthorecti昀椀ed using a digital 

terrain model (DTM), and georeferenced to the local Datum of Uniform 
Trigonometric Cadastral Network (EPSG: 5514). Data were corrected for 
atmospheric conditions using a radiative model MODTRAN and the 
BREFCOR method was used for correcting the bidirectional re昀氀ectance 
distribution function (BRDF) effect (ATCOR-4 software; Richter & 
Schläpfer, 2016). 

3.3.2. LiDAR data 
Airborne LiDAR data were acquired with a Riegl LMS Q-780 laser 

scanner. The scanner has a rotating polygon mirror and scans in parallel 
lines. The scan 昀椀eld of view is 60ç and the wavelength is 1064 nm. The 
LiDAR data were provided in LAZ format with an average point density 
of 8 points per square meter. The LiDAR point cloud was processed using 
a proprietary software by the Global Change Research Institute CAS and 
referenced to the local Datum of Uniform Trigonometric Cadastral 
Network (EPSG: 5514) and Baltic Vertical Datum – After Adjustment 
(EPSG: 5705). We further processed the point cloud using LAStools 
(http://lastools.org) and classi昀椀ed the point cloud into ground and 
vegetation classes (KlápÇstÇe et al., 2020; Moudrý et al., 2020). We divided 
the study area into 36 tiles and classi昀椀ed each tile separately to allow 
different settings and thus a better identi昀椀cation of ground and vege-
tation returns. In addition, we identi昀椀ed noise returns (e.g. returns from 
birds) and within the distance of 100 m from the grid survey points, we 
manually checked and edited point clouds for obvious errors (e.g. high 
voltage poles classi昀椀ed as vegetation). Returns other than vegetation 
and ground were removed from subsequent analyses. Prior to the 
calculation of vegetation structure variables, we height-normalized the 
LiDAR point cloud (i.e. the returns’ height above the DTM was 
calculated). 

3.4. Primary productivity and habitat heterogeneity variables 

To investigate the importance of primary productivity and habitat 
heterogeneity, we derived two vegetation indices from the hyperspectral 
data and six variables from the LiDAR data; all these indices and vari-
ables bear a potential relevance to the bird diversity (Table 1). The two 

Fig. 2. Aerial photos of the study area. The two photos in the top row were taken on the 10th of May 2020 and show the two areas left to spontaneous succession 
surrounded mostly by agriculturally restored areas. The three bottom images were taken on 25th of April 2020 and show the areas after agricultural restoration (left), 
forest restoration (middle), and the area left to spontaneous succession (right). Note the presence of old dead vegetation even at this time of the year, particularly in 
areas left to spontaneous succession, near water bodies and other terrain depressions. 
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calculated vegetation indices included 1) NDVI (R862 R662)/(R862 
R662), which corresponds to plant chlorophyll content and hence in-
creases with vegetation productivity (i.e. the green component of 
biomass), and 2) PSRI (R678 R500)/R750, which is a measure of the leaf 
senescence and is sensitive to the carotenoid/chlorophyll ratio. PSRI is 
in this study used as an estimate of the amount of old dead (senescent) 
vegetation from the previous vegetation season, which is present in the 
study area even in May when both bird and airborne data were collected 
(see Fig. 2). The old dead vegetation from the previous season is mainly 
present in the aquatic vegetation (e.g. Phragmites australis and Typha 
latifolia) and, to a somewhat lesser extent, in low steppe vegetation (e.g. 
Calamagrostis epigejos and Arrhenatherum elatius). 

In order to assess the effect of habitat heterogeneity on bird species 
richness and rarity, we described habitat heterogeneity using the vari-
ance in vegetation structure. We used vegetation structure variables 
adopted in the previous bird diversity studies (see Bakx et al., 2018 for 
the conceptual categorization of LiDAR-derived vegetation metrics). To 
describe the total vegetation (sensu Bakx et al., 2018) we used the mean, 
standard deviation of vegetation returns, and canopy cover (Table 1). 
We calculated these metrics to describe the structural variability of the 
vegetation directly from the point cloud (e.g. Bae et al., 2018); but note 
that some other studies calculated these metrics from the rasterized 
canopy height model (CHM) to describe a horizontal variation in the 
canopy cover (e.g. Müller, Moning, Baessler, Heurich, & Brandl, 2009; 
2010). In addition, we used variables characterising the individual 
vegetation layers (single layer sensu Bakx et al., 2018). Three layers of 
vegetation are typically recognized; the herbaceous layer, the shrub 
layer, and the tree layer (e.g. Lesak et al., 2011; Jones, Arcese, Sharma, 
& Coops, 2013). The same vegetation layers are typically assessed 
during 昀椀eld inspections on postmining sites (e.g. ÇSálek, 2012). There-
fore, we calculated the cover for three vegetation layers: 昀椀rst, we 
counted the number of points between 0.1 m and 1 m and divided this 
number by the sum of all points to estimate the cover of the herbaceous 
layer. Second, we counted the number of points between 1 m and 3 m 
and divided the result by the sum of all points to estimate the cover of 
the shrub layer. In the same way, the number of points between 3 m and 
40 m was divided by the sum of all points to estimate the cover of the 
tree layer (in our study area, there are no trees higher than 40 m). It 
should be noted that the heights of these vegetation layers are selected 
arbitrarily based on our 昀椀eld experience (e.g. ÇSálek, 2012) and can thus 
greatly vary among different areas (e.g. Lesak et al., 2011). All primary 
productivity and habitat heterogeneity metrics were calculated within a 
100 m radius of grid survey points using ENVI (version 5.5) and LAStools 

(version 200112), respectively. 

3.5. Statistical analyses 

We used boosted regression trees (BRT) implemented in the R 
package gbm version 2.1.5 (Greenwell, Boehmke, Cunningham, De-
velopers, & Greenwell, 2019) and some additional features available in 
the package dismo version 1.1–4 (Hijmans, Phillips, Leathwick, Elith, & 
Hijmans, 2017) to assess how primary productivity and habitat het-
erogeneity were associated with species richness and rarity. First, we 
examined the collinearity among all variables to reduce the number of 
input variables (Fig. S3 in Supplementary material). Canopy cover and 
mean height were highly correlated with vertical vegetation structure 
metrics. As it has been highlighted that birds show a higher preference 
for the structural variability of the vegetation than for canopy cover 
(Davies & Asner, 2014) and as the vertical vegetation variability was of 
our primary concern, we retained the three vertical layers (i.e. herba-
ceous, shrub and tree cover) and excluded the canopy cover and mean 
vegetation height from further analyses. Another highly correlated pair 
of variables were NDVI and PSRI; however, as they represent unique 
components of the aboveground biomass and were essential for our 
study, we decided to retain both variables in the model. However, to 
evaluate whether retaining both NDVI and PSRI affected our results, we 
ran the models also individually with PSRI and NDVI, respectively (see 
the Supplementary material, Figs. S5–S8). Therefore, our 昀椀nal set of 
variables consisted of four variables representing the habitat heteroge-
neity and two variables representing the primary productivity (Table 1). 

Two most important parameters that need to be speci昀椀ed for BRT are 
the tree complexity (which controls whether interactions are 昀椀tted) and 
learning rate (shrinkage) as they determine the number of trees required 
for the prediction. As a rule of thumb, a combination of tree complexity 
and learning rate that results in a model with at least 1000 trees is 
recommended. For models with less than 500 records, it is preferred to 
model simple trees (i.e. tree complexity 1–3) with a small learning rate 
to allow the model to grow enough trees. We 昀椀ne-tuned the settings in 
preliminary testing and used models with tree complexity (the number 
of splits in a tree) of 1 (i.e. without interaction terms, as allowing in-
teractions did not lead to a model improvement), shrinkage (learning 
rate) of 0.001, bag fraction (the proportion of data used when selecting 
optimal tree number) of 0.5, and the maximum number of trees of 5000. 
To estimate the optimal number of trees, we used 10-fold cross- 
validation. At each iteration, the residual deviance was calculated and 
the number of trees giving the best model (i.e. lowest deviance) was 

Table 1 
Overview of 8 potential explanatory variables derived from LiDAR and hyperspectral data within a 100 m vicinity of survey points. Rx denotes the re昀氀ectance at the 
wavelength of x nm. We excluded areas of water bodies from calculations of NDVI and PSRI. Variables in bold were used in our 昀椀nal models (i.e. after excluding 
collinear variables).  

Hyperspectral and LiDAR derived metrics Description Category according to Bakx et al. 
(2020) 

Primary 
productivity     

Normalized Difference Vegetation Index 
(NDVI) 

(R862 R662)/(R862 R662); sensitive to vegetation greenness – 

Old dead vegetation from the previous vegetation season   
Plant senescing re昀氀ectance index (PSRI) (R678 R500)/R750; sensitive to senescent vegetation – 

Vegetation structure (Total vegetation)   
Mean height Average height of vegetation returns Total vegetation - Height  
Standard deviation of height Standard deviation of vegetation returns heights above 1 m Total vegetation - Vertical 

variability  
Canopy cover Number of 昀椀rst returns above 1 m divided by the sum of all 昀椀rst 

returns 
Total vegetation - Cover 

Vegetation structure (Single layers)   
Cover of the herbaceous layer Number of points between 0.1 m and 1 m divided by the total number 

of points 
Single layer (Understorey) - Cover  

Cover of the shrub layer Number of points between 1 m and 3 m divided by the total number 
of points 

Single layer (Understorey) - Cover  

Cover of the tree layer Number of points > 3 m divided by the total number of points Single layer (Canopy) - Cover  
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identi昀椀ed (Elith, Leathwick, & Hastie, 2008; Hastie, Tibshirani, & 
Friedman, 2001; Leathwick, Elith, Francis, Hastie, & Taylor, 2006). 
Species richness and rarity were modelled specifying the Poisson and 
Gaussian error distribution, respectively. All models were 昀椀tted in R, 
version 3.6.0 (R Development Core Team, 2019) 

3.6. Assessment of model performance 

The identi昀椀ed best models were 昀椀tted to the entire dataset and used 
to produce partial dependency plots that show the effect of each variable 
after accounting for the average effects of all other variables (De’Ath, 

2007; Elith et al., 2008). In addition, we assessed the relative importance 
of each variable (i.e. the contribution of each variable to the model 昀椀t 
scaled so that the sum adds to 100) using formulae developed by 
Friedman (2001) and implemented in the gbm package (Greenwell 
et al., 2019). The overall performance of BRT models was evaluated 
using the total deviance explained, which was calculated by dividing the 
difference between the mean total deviance and the estimated 10-fold 
cross-validated residual deviance by the mean total deviance. The 
cross-validated residual deviance is a measure of the deviance left un-
explained by the model. Because results from the k-fold cross-validation 
can vary depending on the random selection of points for the folds, this 

Fig. 3. Spatial distribution of species richness (upper images) and rarity (lower images) along with the four most in昀氀uential explanatory variables (Standard de-
viation of height, Tree cover, PSRI, and Shrub cover). 
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procedure was repeated 5 times for each model, and overall means were 
calculated for the relative importance of each variable and total devi-
ance explained by the models (Leathwick et al., 2006). 

4. Results 

4.1. Bird richness 

We observed 83 bird species from a total of 1340 individual bird 
records. The overall bird species richness ranged from 1 to 17 species per 
survey point with a median of 6 species (Fig. 3). The BRT model of 
overall species richness explained 52% of deviance. The overall species 
richness was strongly affected by the habitat heterogeneity while pri-
mary productivity had only a minimal effect (Table S4 in Supplementary 
material). The effects of the midstory density and canopy density were 
the strongest and jointly accounted for most of the explained variability. 
The standard deviation of height had a moderate effect, and the effects 
of herbaceous cover, NDVI and PSRI were weak (Fig. 4). The partial 
dependency plots of the individual variables showed a rapid increase of 
species richness at relatively low values of the shrub cover and tree cover 
with only a minimal change as these variables continued to increase. The 
ranges of the shrub cover and herbaceous cover associated with the 
steepest increase in the bird richness were 0–5% and 0–20%, respec-
tively. The standard deviation of height had a positive effect with an 
increase in overall richness for values between 2 m and 3 m and no effect 
above that value (Fig. 4). 

4.2. Bird rarity 

The bird rarity index ranged from 0.04 to 3.81 per survey point with 
a median rarity of 1 (Fig. 3). The BRT model of bird rarity explained 12% 
of deviance and the rarity was strongly affected by both habitat het-
erogeneity and primary productivity (Table S4 in Supplementary ma-
terial). The shrub cover, herbaceous cover and PSRI had the strongest 
effects and jointly accounted for most of the explained variability. The 
effects of the standard deviation of height and NDVI were moderate, and 
the canopy density had a weak effect (Fig. 5). The partial dependency 

plots of the single variables showed a rapid increase in rarity for PSRI 
values above 0.10. A rapid increase in rarity was also shown at relatively 
low values of shrub cover and herbaceous cover with a minimal change 
as these variables continued to increase. The ranges of the shrub cover 
and herbaceous cover associated with the steepest increase of the bird 
rarity were 0–5% and 10–15%, respectively (Fig. 5). 

4.3. Heterogeneity and productivity with respect to the restoration 
technique 

Our results show a clear effect of the adopted restoration technique 
on habitat heterogeneity and primary productivity (Fig. 6). Most 
importantly, the spontaneous succession considerably differs from other 
sites when looking at primary productivity. The values of NDVI (i.e. 
vegetation greenness) and PSRI (i.e. senescent vegetation) were rela-
tively similar for the agricultural and forest restoration but compared to 
them, the sites left to spontaneous succession had much lower values of 
NDVI and clearly higher values of PSRI (Fig. 6). The structural measures 
show a distribution of values commensurate with the individual habitat 
types. Note that the sites with unspeci昀椀ed restoration method were 
similar to agricultural restoration and mostly consisted of low 
vegetation. 

5. Discussion 

In this study, we evaluated the effect of the variance in vegetation 
structure, primary productivity and senescent vegetation on bird com-
munities colonizing newly available (restored) habitats after coal min-
ing (Fig. 3). We found a detectable relationship between 昀椀ne-scale 
habitat attributes of early succession stages derived from airborne 
LiDAR and hyperspectral data and the occurrence of birds. The models 
with six variables representing the vegetation structure, primary pro-
ductivity and the presence of senescent vegetation explained 52% and 
12% of the variability in species richness and rarity, respectively, which 
is comparable to prior studies. The previous studies combining LiDAR 
data with the indices derived from passive optical sensors (e.g. NDVI) 
typically explained the variability in species richness between 15% and 

Fig. 4. Partial dependency plots for boosted tree analyses of overall species richness. The partial plots show the modelled relationships between species richness and 
standard deviations of height, herbaceous cover, shrub cover, tree cover, NDVI, and PSRI. The relative importance of the variable in the model is given in 
parentheses. 
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55% (Goetz et al., 2007; Jones et al., 2013; Vogeler et al., 2014). 

5.1. Importance of vegetation structure, NDVI and PSRI for bird species 
richness 

Variance in vegetation structure had a positive effect on species 
richness and explained most of the explained variablity (Fig. 4). While 
NDVI and PSRI showed almost no effect on species richness, shrub cover 
(i.e. the cover of shrubs and saplings between 1 m and 3 m high) and tree 
cover (i.e. cover of vegetation >3 m high) exhibited a strong positive 
effect on species richness. The standard deviation of height and herba-
ceous cover (cover of vegetation up to 1 m high) had minor effects on 
species richness. Species richness climbed steeply at low values of shrub 
cover (0%–5%), low values of tree cover (0%–20%), and the standard 
deviation of height between 2 m and 3 m (Fig. 4). Such conditions are 
typical of forest restoration and sites left to spontaneous succession 
(Fig. 5). These 昀椀ndings are in accordance with prior studies such as 
Goetz et al. (2007) and Vogeler et al. (2014) who combined LiDAR with 
NDVI and more recently Melin, Hill, Bellamy, and Hinsley (2019) who 
combined LiDAR with variables derived from hyperspectral data and 
showed that the vegetation structure (i.e. LiDAR derived variables) is 
more important for the assessment of bird species richness at local scales 
than variables derived from passive remote sensing. 

5.2. Importance of vegetation structure, NDVI and PSRI for bird species 
rarity 

In contrast to species richness, our results show that combining in-
formation from LiDAR and passive optical sensors might be important 
when species rarity is of concern. We found a positive effect of both 
habitat heterogeneity and primary productivity on species rarity 
(Fig. 5). PSRI (i.e. old dead vegetation from the previous vegetation 
season) was the most important predictor with a strong positive effect on 
species rarity, followed by shrub and herbaceous cover. The greatest 
increase in rarity was associated with PSRI values higher than 0.10, 
above 2% for the shrub cover, and above 10% for the herbaceous cover 
(Fig. 5); above these values, the rarity remained more or less constant. 
This is likely because the senescent vegetation and relatively high 

herbaceous and shrub covers provide shelter and enhance the diversity 
of insect communities and hence food availability for birds (e.g. Müller, 
Bae, Röder, Chao, & Didham, 2014; Soto et al., 2017; Vergara et al., 
2017). 

It is, however, important to note that the model of bird rarity 
explained only 12% of deviance. This is likely related to the fact that 
typical rare species that occur in our study area are ground-nesting or 
foraging birds. Such species include, for example, Wheatear Oenanthe 
oenanthe, Montagús Harrier Circus pygargus, Bluethroat Luscinia svecica 
cyanecula, Whinchat Saxicola rubetra, Stonechat Saxicola torquata, Great 
Reed Warbler Acrocephalus arundinaceus or Meadow Pipit Anthus pra-
tensis. These specialists require speci昀椀c and mutually different condi-
tions such as bare grounds (Wheatear), unmanaged grassy patches 
(Montagús Harrier, Whinchat, Stonechat, Meadow Pipit) or reedbeds 
(Bluethroat, Great Reed Warbler) that are neither adequately repre-
sented by the variance in the vegetation structure nor by NDVI and PSRI 
indices, respectively. Indeed, ground-nesting or foraging species are 
typically reported to be poorly modelled using habitat heterogeneity and 
productivity variables (Cooper et al., 2020; Weisberg et al., 2014). The 
昀椀ve-year time lag between the data acquisitions and dif昀椀culties to 
distinguish old dead vegetation from bare surfaces might represent 
alternative explanations for the relatively low deviance explained by 
these factors (see Chapter 5.4. below). 

5.3. Which type of restoration results in the development of more 
favourable habitats? 

It is evident that all vertical levels of habitat heterogeneity (i.e. 
herbaceous, shrub and tree covers) are important either for species 
richness or rarity. This supports the necessity to create the mosaic of 
habitats with heterogeneous vertical structure during restoration to 
support high species richness as suggested e.g. by HarabiÇs, Tichanek, 
and Tropek (2013). However, the high variance in vegetation structure 
alone is not suf昀椀cient to support rare species. Indeed, management and 
restoration goals can change considerably depending on whether the 
aim is to support high species richness or rare species (Cooper et al., 
2020). It seems that a high herbaceous and shrub cover combined with 
the presence of old dead vegetation promote rarity. However, this 

Fig. 5. Partial dependency plots for boosted tree analyses of species rarity. The partial plots show the modelled relationships between the species rarity and standard 
deviations of height, herbaceous cover, shrub cover, tree cover, NDVI, and PSRI. The relative importance of the variable in the model is given in parentheses. 
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combination is rare on technically reclaimed sites, i.e. after agricultural 
and forest restoration. In contrast, this study shows that such conditions 
are typically present on sites left to spontaneous succession (Fig. 5). This 
is a likely explanation for the fact that the spontaneous succession sites 
are particularly favoured by rare vertebrates (ÇSálek, 2012; Vojar et al., 
2016). 

5.4. Use and limitations of airborne remote sensing data in restoration 
practice 

We have shown that the measurement of the habitat heterogeneity 
derived from airborne laser scanning point clouds can provide ecologi-
cally meaningful variables. As 昀椀eld-based estimates of vegetation 
structure are used as a rapid and ef昀椀cient way of assessing the condition 
of restored sites (Gibbons & Freudenberger, 2006), LiDAR can become 

an alternative to such 昀椀eld surveys. Compared to 昀椀eld surveys, however, 
LiDAR has a higher potential for providing information that can lead to 
management action. As LiDAR data availability is increasing continu-
ously due to national or regional scanning campaigns (see Melin et al., 
2017; Stereńczak et al., 2020 for the list of countries and regions with 
LiDAR data available) and thanks to the more common adoption of open 
data policies (Rocchini et al., 2017), there is a high potential to use it in 
restoration ecology, especially for assessment of vegetation structure 
(Guo et al., 2017; Koska et al., 2017; Moudrý, Gdulová, et al., 2019; 
Moudrý, Urban, et al., 2019; Szostak, Pietrzykowski, & Likus-Cieślik, 
2020). Therefore, we suggest that such data should be increasingly 
utilized by managing authorities for optimizing the restoration success 
assessment and enhancing the ecological value of reclaimed areas. 

It should be, however, noted that despite the increase of LiDAR data 
availability, acquisitions for the same area (e.g. state) have, due to high 

Fig. 6. Comparison of the vegetation structure (LiDAR variables), NDVI and PSRI indices depending on the adopted restoration techniques. The central horizontal 
line in the box marks the median. The boxes show the interquartile range (25th to 75th percentile) and the whiskers indicate 1.5 times the interquartile range. 
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acquisition costs, long repetition times. Therefore, studies such as the 
presented one are often being done under suboptimal conditions and the 
time lag between 昀椀eld surveys and LiDAR data acquisition is common 
(Lesak et al., 2011). For example, Goetz et al. (2007) – 6 years; Wallis 
et al. (2016) – 10 years. Huber, Kienast, Ginzler, and Pasinelli (2016) – 

10 years. It has been shown that several years time lag is not a funda-
mental source of error in mature woodland ecosystems as the changes in 
vegetation structure are usually relatively slow (Hill & Hinsley, 2015; 
Vierling, Swift, Hudak, Vogeler, & Vierling, 2014). This is, however, not 
the case of our study area that consists of agricultural, forest, and suc-
cessional sites and the time lag between remotely sensed and bird data 
collection might be a potential source of error. While this is certainly not 
a problem for agriculturally restored sites, differences in vegetation 
structure might have arisen during the 5 years at sites restored through 
forestry and those left to spontaneous succession. On the other hand, the 
two sites left to spontaneous succession in our study area are 16 and 26 
years old, respectively, and the current rate of changes in the vegetation 
structure is relatively slower than during the early stages of succession. 
Moreover, the spontaneous succession is often blocked by sandy soils 
and dense grass cover (e.g. Calamagrostis epigejos). Therefore, the main 
differences can be expected in vegetation within the 1 – 3 m height range 
that could have grown over 3 m. 

It is even more important to minimize the time lag when hyper-
spectral data are used. This is especially true when indices related to the 
vegetation biochemistry (which can change in a matter of weeks across a 
vegetation season) are used, it is much preferable if the hyperspectral 
data collection and bird survey are performed at the same time (e.g. 
Melin et al., 2019). Whit this in mind, we did not use any indices related 
directly to vegetation biochemistry and concentrated only on indices 
that are positively correlated to the characteristics that should have 
remained relatively stable over the 昀椀ve years (i.e. NDVI for vegetation 
productivity and PSRI for the amount of old dead vegetation). Besides, 
the bird occurrences and remotely sensed data were both collected in 
May, which was particularly important for the ecological relevance as 
this allowed accurate estimates of the amount of old dead vegetation 
present during the breeding season. The old dead vegetation is typical 
for terrain depressions (e.g. Phragmites australis and Typha latifolia) and 
agriculturally restored areas (e.g. Calamagrostis epigejos and Arrhena-
therum elatius) and its detectability is changing more within a year than 
between years due to the pronounced seasonality (see also the note 
above on blocked succession). The amount of old dead vegetation is 
actually constantly growing and such sites might have become even 
more favourable for rare species as Whinchat, Stonechat, Montagús 
Harrier or Bluethroat in 2017 (the year of remote sensing data acquisi-
tion) than they were in 2012 (the year of bird data collection). 

There is, however, another potential source of error, which might 
possibly also have been the reason why the model of bird rarity 
explained only 12% of deviance, namely the fact that the PSRI is high 
also in areas completely without vegetation, such as roads (Fig. 2). On 
the other hand, however, old dead vegetation, which forms an important 
habitat for Whinchat or Stonechat, is often present in the ditches along 
the roads (e.g. Arrhenatherum elatius) and it is, therefore, dif昀椀cult to 
separate their effects. 

For future studies and especially for monitoring practice, it would be 
bene昀椀cial to agree on several LiDAR-derived metrics proven to be 
effective for explaining species diversity and to recommend them as 
standard structural indicators. To facilitate comparisons, Bakx et al. 
(2019) recently grouped LiDAR-derived variables into 24 classes de昀椀ned 
by six categories of vegetation (total vegetation, single trees, canopy, 
understorey, other single layers, and multi-layer) and four categories of 
the structural type (cover, height, horizontal variability and vertical 
variability). Our results show that the total vegetation vertical vari-
ability (i.e. standard deviation of returns height) and canopy and un-
derstory cover (i.e. herbaceous, shrub and tree covers) are potentially 
relevant for the assessment of conditions on early successional restored 
sites. 

6. Conclusions 

Understanding drivers of species distributions across restored land-
scapes and identifying areas that have the potential for supporting high 
species richness, vulnerable or rare species, is important for successful 
management of restored sites. Overall, our results show that both habitat 
heterogeneity and primary productivity play an important role in bird 
species diversity on restored sites. Shrub cover had a strong positive 
effect on both species richness and rarity, while tree cover had a strong 
positive effect on species richness. Herbaceous cover and the presence of 
senescent vegetation had both positive effects on species rarity. This 
highlights the necessity of creating a mosaic of habitats with heteroge-
neous vertical structure during restoration or to design the vegetation 
structure in a way supporting preferred species. To support this, we 
suggest to reduce intensive mowing of agriculturally restored areas (e.g. 
by creating unmowed strips of vegetation), preserve naturally formed 
waterlogged areas, plant trees with different growth rates and combine 
them with shrub vegetation. Sites left to spontaneous succession play an 
important role in creating restored ecosystems of high ecological value 
as they represent a unique combination of vegetation density and 
presence of senescent vegetation that, in combination, promote high 
species rarity. 

In our opinion, airborne remote sensing, particularly laser scanning, 
should constitute an integral part of restoration success assessment and 
should be acquired with reasonable repetition rate (e.g. 5–10 years) over 
the restored areas, as the information derived from such data can be 
more easily implemented in management actions than subjective semi-
quantitative or categorical measures collected during intensive 昀椀eld-
work. We suggest a wider use of vegetation structure and productivity 
indices derived from remotely sensed data in restoration success 
assessment. Our results show that the total vegetation vertical vari-
ability (i.e. standard deviation of returns height) and various vertical 
layers of vegetation cover (i.e. herbaceous, shrub and tree cover) in 
combination with senescent vegetation (i.e. PSRI) are potentially rele-
vant for monitoring of early successional restored sites. 
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Kung, A., Svobodova, K., Lèbre, E., Valenta, R., Kemp, D., & Owen, J. R. (2020). 
Governing deep sea mining in the face of uncertainty. Journal of Environmental 
Management, 111593. 

Laurin, G. V., Puletti, N., Grotti, M., Stereńczak, K., Modzelewska, A., Lisiewicz, M., & 
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Stereńczak, K., Laurin, G. V., Chirici, G., Coomes, D. A., Dalponte, M., Lati昀椀, H., & 
Puletti, N. (2020). Global Airborne Laser Scanning Data Providers Database 
(GlobALS)—A New Tool for Monitoring Ecosystems and Biodiversity. Remote 
Sensing, 12(11), 1877. 

Svobodova, K., Owen, J. R., Harris, J., & Worden, S. (2020). Complexities and 
contradictions in the global energy transition: A re-evaluation of country-level 
factors and dependencies. Applied Energy, 265. 

Szostak, M., Pietrzykowski, M., & Likus-Cieślik, J. (2020). reclaimed area land cover 
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A B S T R A C T   

The ICESat-2 ATL08 land and vegetation product includes several 昀氀ags that can be used for the assessment of 
LiDAR-environment interactions and can help select data of the highest quality. However, the usability of these 
昀氀ags has not been suf昀椀ciently studied to date. Here, we aimed to evaluate the effects of atmospheric scattering, 
the presence of snow, canopy cover, terrain slope, beam strength, and solar angle on the accuracy of terrain and 
canopy height of the ATL08 product as well as on providing recommendations on how to 昀椀lter data in order to 
minimize errors. We evaluated the vertical accuracy of ATL08 terrain and canopy height in European mountains 
by comparing them with the digital terrain model and canopy height model derived from airborne laser scanning 
data. Our results indicate that the assessment of atmospheric effects using the cloud con昀椀dence 昀氀ag (cloud_-
昀氀ag_atm; i.e. number of cloud layers) is better than the previously used multiple scattering warning 昀氀ag 
(msw_昀氀ag). Day acquisitions with more than one layer of clouds yielded a terrain elevation RMSE of 3.22 m in 
forests while night acquisitions with no more than a single layer of clouds resulted in RMSE of 1.73 m. The 
increasing atmospheric scattering effects increased the photons’ path length, resulting in terrain height under-
estimation. The presence of snow had a strong positive effect on the number of identi昀椀ed ground photons, 
independently of the canopy cover, but resulted in an overestimation of terrain height in higher altitudes. 
Accordingly, the presence of snow cover resulted in a signi昀椀cant underestimation of canopy height in forests. The 
canopy height in broadleaf/mixed as well as coniferous forests was in summer underestimated on average by 2.1 
m (%ME of 15.3%) and 1.2 m (%ME of 8.2%), respectively; in winter, however, the underestimation 
increased to 8.5 m (%ME of 56.8%) and 5.7 m (%ME of 38.3%), respectively. Canopy height estimates had 
better accuracy for the strong beam (RMSE of 5.09 m; %RMSE of 35.4%) than for the weak beam (RMSE of 7.03 
m; %RMSE of 51.3%). Our results show that the ATL08 terrain height accuracy decreases with uneven distri-
bution of signal photons within individual segments and further deteriorates with increasing terrain slope. 
Filtering out segments with poor distribution of photons, more than one layer of clouds during the day, and snow 
cover in high altitudes is the best approach for minimizing the error while maximizing the number of segments 
left for subsequent analysis.   

1. Introduction 

Forests cover >4.1 billion hectares of the Earth’s surface and store 
considerable amounts of carbon, acting as an important global carbon 
sink (Pan et al., 2011). Forest carbon stock is an essential component of 
climate action plans increasingly made by many states to implement the 

Paris Agreement on Climate Change and the 2030 Agenda for Sustain-
able Development (Hein et al., 2018). However, estimates of forest 
carbon stocks and rates of change remain uncertain due to data limita-
tions and availability (Goetz and Dubayah, 2011; Pugh et al., 2019). 
Field inventory campaigns are labor-intensive and airborne laser scan-
ning (ALS) surveys are too expensive; in effect, both provide estimates 
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from limited samples in space and time (although many developed 
countries provide ALS point clouds free of charge, the renewal frequency 
is usually low). On the other hand, space-based remote sensing methods 
have a great potential to map forests on a global scale (Herold et al., 
2019; Marselis et al., 2022; Mulverhill et al., 2022). 

NASA’s Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) is a 
space-based laser altimetry mission launched in September 2018 (Mar-
kus et al., 2017). The ICESat-2 mission is primarily designed for mapping 
changes in Earth’s cryosphere (Brunt et al., 2019; Farrell et al., 2020), 
but it also provides data for other geophysical applications such as 
mapping forest height and above-ground biomass (Nandy et al., 2021). 
Onboard, the ICESat-2 satellite carries the Advanced Topographic Laser 
Altimeter System (ATLAS), a single-photon counting laser altimeter that 
allows the determination of the time of 昀氀ight of individual photons 
(Degnan, 2002; Neumann et al., 2019). The ATLAS instrument splits the 
output laser pulse into three pairs of beams, each of which consists of a 
weak and a strong beam with an energy ratio of approximately 1:4 
(Neumann et al., 2019). The single-photon approach differs from the 
conventional discrete laser ranging systems that require the acquisition 
of thousands of backscattered photons to trigger a detection (Harding 
et al., 2011). It also differs from full-waveform systems such as GLAS 
(Geoscience Laser Altimeter System), ATLAS’s predecessor on board the 
昀椀rst ICESat satellite (2003–2009; Schutz et al., 2005). GLAS produced 
large footprints (diameter of 65 m) with poor vertical resolution causing 
problems when disentangling terrain and vegetation signal (i.e. forest 
canopy height) in mountain environment (Chen, 2010; Hilbert and 
Schmullius, 2012; Bolton et al., 2013). ICESat-2 allows the detection of 
both terrain and canopy surface even in high relief areas and can 
considerably improve our ability to monitor global forest biomass 
(Nandy et al., 2021). 

ICESat-2 mission generates geophysical products over various types 
of surface, one of which is the land and vegetation product (ATL08). 
Several studies have already contributed to the validation of ATL08 
accuracy. In general, studies reported higher accuracy for terrain than 
canopy heights. In their evaluation of ATL08 in Finland, Neuensch-
wander and Magruder (2019) and Neuenschwander et al. (2020) 
determined the terrain accuracy – in terms of root mean square error 
(RMSE) – to be <1 m and that of the canopy height to be approximately 
3 m. Slightly worse estimates were found for the United States by Liu 
et al. (2021), with the RMSE of the terrain height of about 2 m and that 
of canopy height of approximately 7 m. In their validation over several 
ecozones in the United States, Malambo and Popescu (2021) reported 
the mean absolute deviations (MAE) between terrain elevations and 
canopy heights acquired from ATL08 and by ALS to be 1.2 m and 3.5 m, 
respectively. 

The ATL08 accuracy is positively affected by the number of retrieved 
ground photons as the higher density of photons re昀氀ected from a surface 
facilitates the correct identi昀椀cation of signal photons. A laser beam 
propagating through the atmosphere is affected by atmospheric layers 
such as clouds that can cause multiple scattering, thus increasing photon 
path length (Winker, 2003). Furthermore, the presence of clouds affects 
the number of photon returns from the surface; in addition, returns from 
low clouds may be misclassi昀椀ed as ground photons (Smith et al., 2019). 
Consequently, the precision of ground detected under several layers of 
clouds may be limited and render ATL08 data unsuitable for terrain and 
vegetation characterization. Therefore, segments acquired under 
adverse atmospheric conditions are typically 昀椀ltered out at the begin-
ning of data processing (Neuenschwander et al., 2020; Queinnec et al., 
2021). 

Besides the signal photons, ICESat-2 geolocated photon data (ATL03) 
also contain solar background photons (i.e., noise photons) resulting 
from sunlight re昀氀ected off the Earth’s surface (Swatantran et al., 2016; 
Neumann et al., 2019). It is, therefore, necessary to perform quite 
extensive processing to 昀椀lter out the background noise before the pro-
duction of any higher-level ICESat-2 products. Indeed, it has been shown 
that night acquisitions (with a lower amount of solar background noise 

photons) have RMSE of terrain height approximately 0.15 m lower than 
daytime acquisitions (Liu et al., 2021). The laser pulse energy level has 
similar effects. The strong beam results in more detected signal photons 
and hence simpli昀椀es the solar background noise 昀椀ltering (Neuensch-
wander et al., 2020); however, it has been shown previously that weak 
beams may provide data of equivalent quality (Malambo and Popescu, 
2021). 

Furthermore, the accuracy of the retrieved canopy and terrain height 
may be affected by the presence of snow-cover. The ATLAS laser energy 
level is set to detect approximately 10 photons per strong beam shot on a 
snow-covered surface (Neuenschwander et al., 2020). However, for land 
and vegetation, the number of re昀氀ected photons is considerably lower 
due to the lower surface re昀氀ectance. Neuenschwander et al. (2020) re-
ported detection of approximately one photon per shot from terrain for a 
strong beam under no-snow conditions. Therefore, the presence of snow 
can considerably improve the number of detected ground photons and, 
hence, the accuracy of terrain height estimates compared to snow-free 
segments (Neuenschwander et al., 2020). On the other hand, the pres-
ence of snow cover hinders the detection of the actual surface. 
Depending on its thickness, the snow cover may result in an over-
estimation of the terrain height in the ATL08 product (Deems et al., 
2013). Furthermore, the ATL08 accuracy is also considerably affected by 
the terrain characteristics (Tian and Shan, 2021; Liu et al., 2021), 
particularly in combination with canopy cover characteristics (Malambo 
and Popescu, 2021). Dense and tall canopies reduce the number of 
photons that reach the ground and are re昀氀ected back to the satellite and, 
consequently, complicate the terrain height retrieval (e.g. Liu et al., 
2021). Conversely, sparse canopy poses a challenge for the estimates of 
vegetation height because relatively few photons are re昀氀ected from 
sparse vegetation and, as a consequence, are dif昀椀cult to distinguish from 
the solar background noise (Neuenschwander and Pitts, 2019). 

Here, we use ATL08 昀氀ags derived from auxiliary data that describe 
the conditions under which the data were acquired and terrain and 
vegetation characteristics derived form ALS and Corine land cover data 
to study the in昀氀uence of the (i) atmospheric conditions, (ii) snow cover, 
(iii) the distribution of detected photons along the ground track, (iv) 
solar background noise, (v) laser pulse energy level, (vi) canopy cover, 
and (vii) terrain slope, on the accuracy of the ATL08 (version 4) terrain 
and canopy height retrievals in the mountain environment. In addition, 
we evaluated the effects of some of these characteristics on the number 
of detected photons. Besides being useful for the assessment of LiDAR- 
environment interactions, these 昀氀ags are expected to provide informa-
tion on data usability and have great potential to facilitate data 昀椀ltering. 
Therefore, we also aim to provide users with the best approach for the 
identi昀椀cation of problematic measurements. This should, in turn, allow 
the accurate detection and improve the selection of high accuracy data 
necessary for the generation of higher-level products such as ATL18 
gridded ground surface height, canopy height, and canopy cover 
estimates. 

2. Data and methods 

2.1. Study area 

The study area covers about 4500 km2 and consists of three Central 
European mountain ranges and their surrounding areas situated in 
Germany, Czech Republic, and Poland (Fig. 1): the Ore mountains, the 
Giant mountains, and the Bohemian Forest. The altitudes range between 
300 and 1600 m a.m.s.l. and the terrain slopes are highly variable (0ç- 
50ç). The tree line traverses the altitudinal range of 1200–1350 m a.m.s. 
l. and the vegetation consists of croplands and pastures, natural grass-
lands, spruce monocultures, and remnants of original deciduous and 
mixed mountain forests. 
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2.2. Reference airborne laser scanning data 

The airborne LiDAR data for the study area were collected between 
2012 and 2017. The data in all study areas were acquired during the 
leaf-on period. The LiDAR point cloud density is between 4 and 55 
points per m2 (Table 1). For the complete description of airborne laser 
scanning reference data processing, see Gdulová et al. (2021). The 
classi昀椀ed point clouds were processed in LAStools (version 210720). 
Digital terrain models (DTM) and canopy height models (CHM) for the 
Giant mountains and the Bohemian Forest were generated at a 1 m 
resolution, and the DTM and CHM for the Ore mountains were provided 
by “Staatsbetrieb Geobasisinformation und Vermessung Sachsen 
(GeoSN)” at a 2 m resolution. In order to match the horizontal datum, we 
used the bilinear resampling method to transform the reference ALS data 
into WGS84 UTM33N. 

2.3. ICESat-2 ATL08 data 

ICESat-2 operates in a 91-day exact repeat orbit, with 1387 orbits per 
cycle. The ATLAS instrument onboard the ICESat-2 satellite is a single- 
photon counting laser altimeter that uses green laser beams (wave-
length of 532 nm) to measure the distance to the surface (Markus et al., 
2017). The bene昀椀t of using a single-photon approach is that the laser can 
operate at a much higher repetition rate. In the case of ATLAS, the pulse 

repetition frequency is 10 kHz, which allows along-track sampling at 
0.7 m intervals, with overlapping footprints of ~12 m. The ATLAS in-
strument splits the output laser pulse into three pairs of beams that are 
arranged to produce ground tracks with the distance of 3.3 km between 
the pairs and of 90 m between the tracks of each pair. The pairs consist of 
one weak and one strong beam with an energy ratio of approximately 
1:4 (Neumann et al., 2019). Theoretically, ATLAS can detect up to 16 
photons (4 × 4 detector array) per outgoing shot (a negligible fraction of 
all emitted photons; Markus et al., 2017; Neumann et al., 2019). 

Here, we evaluated the accuracy of the terrain and canopy heights 
that are provided as a part of the land and vegetation height product 
(ATL08; Neuenschwander et al., 2021). ATL08 is derived from the global 
geolocated photon data product (ATL03) that serves as a single source of 
all photon data and ancillary information needed by higher-level 
products. The critical step for the development of the ATL08 product 
lies in the correct detection of the signal photons (i.e., photons emitted 
by the instrument) and 昀椀ltering out the solar background noise (i.e., the 
photons originating from sunlight re昀氀ected off the Earth’s surface; 
Neumann et al., 2019; Neuenschwander et al., 2021). 

The 昀椀ltering utilizes two signal-昀椀nding methods (i.e., histogramming 
approach and Differential, Regressive, and Gaussian Adaptive Nearest 
Neighbor) that aim to discriminate signal photons from the noise pho-
tons originating from the solar background. Subsequently, a series of 
iterative 昀椀lters of the signal photons is adopted to capture the ground 
and top of canopy surface. The individual photons are then classi昀椀ed as 
ground, canopy, or noise based on their distance from the estimated 
canopy and ground surfaces and metrics for canopy and terrain surfaces 
are then provided at a segments of 100 m × 12 m (along the ground track 
× cross the ground track). The segment size was chosen so that a suf昀椀-
cient number of photons re昀氀ecting from both the terrain and canopy 
surfaces were available for terrain and canopy metrics estimation 
(Popescu et al., 2018; Neuenschwander and Pitts, 2019; Neuensch-
wander et al., 2021). 

The terrain metrics within each segment include mean (h_te_mean) 
and median (h_te_median) heights of all ground photons within a 

Fig. 1. Land cover derived from pan-European Corine Landcover 2018 data (Feranec et al., 2016) and location of the study areas: Ore mountains, Giant mountains, 
Bohemian Forest. 

Table 1 
LiDAR data characteristics.  

Study area Area 
(km2) 

Year Reference system 
(EPSG) 

Point cloud 
density 

Bohemian Forest 680 2017 31468 55 p/m2 

Ore mountains 2640 2015–2017 25833 4 p/m2 

Giant mountains 
(Czechia) 

480 2012 5514 5 p/m2 

Giant mountains 
(Poland) 

720 2012 2180 4 p/m2  
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segment, and also two estimates of terrain height at the location of the 
mid-point of a segment (h_te_interp and h_te_best昀椀t). The canopy metrics 
within each segment include minimum, mean, maximum height, and 
several percentile heights. Previous studies mostly concentrated on 
evaluating the relative canopy height at the 98th percentile (Neu-
enschwander et al., 2020; Liu et al., 2021); mean vegetation height, 
however, can provide important supplementary information character-
izing vegetation structure (Chen, 2010; Malambo and Popescu, 2021). 
Therefore, in this study, we concentrated on the mean values (h_te_mean 
and h_mean_canopy). 

We downloaded ATL08 version 4 containing data acquired between 
October 2018 and September 2021 using the Earthdata portal (accessed 
September 2021). The ICESat-2 mean terrain height is given as ellip-
soidal height while the vertical datum of ALS data is given as normal 
height. Therefore, to match the heights of ICESat-2 and the reference 
ALS data, we used a quasigeoid of Czechia. We 昀椀rst interpolated the 
height of the quasigeoid of Czechia and surrounding areas from 53,550 
positions (latitude, longitude) at a resolution of 12 x 1.52, and, subse-
quently, subtracted it from the ICESat-2 mean terrain height. Note that 
we used canopy heights represented as relative heights above the terrain 
and, thus, there was no need to match their vertical datum. In order to 
match the horizontal datum with ALS data, we projected the centroids of 
ICESat-2 ATL08 segments into WGS84 UTM33N. We did not apply any 
horizontal geolocation offset corrections as we are interested in the ac-
curacy from the perspective of users who typically do not have necessary 
data (e.g. high-resolution ALS-DTM) to assess horizontal offsets and 
perform the corrections. Besides, studies that performed such assess-
ment reported that horizontal geolocation offset tended to be relatively 
low (between 0 and 3 m, which is much lower than the mission 
requirement of 6.5 m; Neuenschwander et al., 2020; Malambo and 
Popescu, 2021). 

The ATL08 product includes several 昀氀ags that describe target (e.g. 
surface re昀氀ectance) and acquisition (e.g. atmospheric scattering) char-
acteristics and inform the user on segment data quality and usability. We 
combined these 昀氀ags with external data sources describing the target 
characteristics (e.g. landcover) to identify the usability of these 昀氀ags as 
well as the causes of bias in terrain and canopy height retrievals. 

2.3.1. Atmospheric effects and surface re昀氀ectance 
The atmospheric layers and cloud interferences are identi昀椀ed using 

the density-dimension algorithm, and besides providing data for atmo-
spheric sciences (as part of the ATL09 product; Herzfeld et al., 2021), 
they are also delivered as a part of the ATL08 product (Neuenschwander 
et al., 2021). There are three 昀氀ags that represent atmospheric condi-
tions: Cloud con昀椀dence 昀氀ag (cloud_昀氀ag_atm), Multiple scattering warn-
ing 昀氀ag (msw_昀氀ag), and layer 昀氀ag (layer_昀氀ag). The cloud con昀椀dence 昀氀ag 
indicates the number of aerosols or cloud layers identi昀椀ed in the at-
mosphere (i.e., 0 means no clouds, 1 corresponds to the presence of one 
layer of clouds, 2 corresponds to two layers, etc.). Note that the cloud 
con昀椀dence 昀氀ag (cloud_昀氀ag_atm) replaced the original parameter 
(cloud_昀氀ag_asr), which was found unsuitable for cloud cover detection 
over dry land due to varying surface re昀氀ectance (Neuenschwander et al., 
2021). The multiple scattering warning 昀氀ag is estimated based on the 
height, thickness, and optical depth of the layer and can range from 0 to 
5 where zero means no multiple scattering (i.e. no layers were detected) 
and 5 the greatest scattering (i.e., an atmospheric layer that touches the 
ground, such as fog, blowing snow, or dust storm, was detected). Finally, 
the layer 昀氀ag simply indicates the presence or absence of clouds. Note 
that all above 昀氀ags are observed only for strong beams, assuming the 
cloud condition for the corresponding weak beams is the same. 

The presence of snow can signi昀椀cantly increase the number of 
detected ground photons compared to snow-free segments due to the 
high re昀氀ectance of the snow surface at the wavelength of 532 nm. 
Therefore, we also used the snow cover mask (segment_snowcover) that 
indicates a likely presence of snow within a segment (Neuenschwander 
et al., 2020). This 昀氀ag is extracted from the National Oceanic and 

Atmospheric Administration (NOAA) daily snow cover product. Ac-
cording to the snow cover 昀氀ag, snow cover was present from November 
through April in the study area and the median number of ground 
photons per 100 m segment for snow-covered surface increased more 
than three times compared to the snow-free surface; in non-forested 
areas, the values increased from 83 to 254 and in forests from 31 to 
113 when snow was present. 

2.3.2. Distribution of photons within a segment 
Almost all negative effects affecting signal detection are bound to 

昀椀nally manifest themselves in the distribution of signal photons within a 
segment. The variability in ground photons distribution can be assessed 
using the subset terrain 昀氀ag (subset_te_昀氀ag) re昀氀ecting the distribution of 
ground photons within each 100 m segment (each of these is divided 
into 昀椀ve 20 m sub-segments). This 昀氀ag provides the user with infor-
mation on whether the signal photons used to estimate the terrain height 
within the segment are evenly distributed or not (Neuenschwander 
et al., 2021). 

2.3.3. Laser pulse energy, solar background noise, terrain slope, and 
canopy cover 

We also evaluated the effect of signal strength (i.e. strong/weak 
beams), solar background noise (i.e., day/night acquisitions), slope, and 
canopy cover on terrain and canopy height retrievals. Canopy cover was 
estimated from ALS-CHM within each 100 m segment as the proportion 
of cells with canopy height greater than two meters. Note that in some 
analyses, we use a simple binary representation of canopy cover – forests 
and non-forested areas. We derived the terrain slope from an ALS DTM. 
We used Horn’s algorithm with a 3 × 3 cell neighborhood implemented 
in the Slope tool of ArcGIS (version 10.8.1). To distinguish landcover 
categories, we used the Corine Landcover 2018 data rather than the 
segment landcover 昀氀ag available as a part of ATL08 as the latter is based 
on relatively coarse MODIS land cover data. 

2.4. Data pre-processing and sample selection 

We limited our evaluation to the following categories of landcover: 
Croplands and pastures, Broadleaf and mixed forest, Coniferous forest, 
Transitional woodlands and shrub, and Natural grasslands (Fig. 1). We 
used pan-European Corine Landcover 2018 data at a 100 × 100 m res-
olution (Feranec et al., 2016). We used the uncertainty of ground height 
estimates (h_te_uncertainty) 昀氀ag to remove invalid segments from the 
evaluation (Neuenschwander et al., 2021). If the number of ground 
photons within a segment is below the limit (50 photons), this 昀氀ag shows 
an invalid value (3.4028E+38) for the particular segment. In addition, 
we noticed that some of the differences between the ATL08 terrain 
height and ALS-derived DTM were extremely large (i.e. outliers with 
height errors of hundreds of meters that may be, for example, caused by 
the background noise or some instrumental errors that have been 
incorrectly classi昀椀ed as ground) and should not be used for a reliable 
assessment. Such extremely incorrect values were often consecutive 
observations within a single beam, which only supports the notion of the 
instrumentation error being the likely cause. We limited the effect of 
such data by removing outliers (i.e., 1% of segments with the greatest 
error, segments that are in the 昀椀rst 0.5% and the last 0.5% of differences 
between ATL08 terrain height and ALS-derived DTM). This resulted in a 
total of 69,624 segments retained for the assessment of the terrain height 
(Fig. 2a). There was no further removal of segments for any of the ATL08 
terrain height accuracy analyses (i.e. all analyses use all segments, 
which were strati昀椀ed according to evaluated 昀氀ags). For assessment of 
the canopy height, only segments associated with forest landcover types 
Broadleaf and mixed forest, and Coniferous forest were used. Besides, 
we only used segments where >5% of classi昀椀ed photons were classi昀椀ed 
as canopy (Neuenschwander et al., 2021). This reduced the number to 
28,658 segments retained for the assessment of canopy height (Fig. 2b). 
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2.5. Assessment of accuracy and relative importance 

We calculated vertical differences between the mean terrain height 
and mean canopy height derived from the ATL08 (h_te_mean and 
h_mean_canopy) and those derived from ALS-based DTM and CHM, 
respectively, using pairwise combinations on a segment basis. To 
generate segments of 100 m × 12 m, the centroids of the 昀椀rst and last 
segments were used to calculate the track inclination, and subsequently, 
a rectangular buffer was generated. We used the height differences to 
calculate several error metrics; namely, we calculated the mean error 
(ME) and root mean square error (RMSE), expressed as: 

ME =
1

n

3

n

i=1

(hATL08i hREFi)

RMSE =

���������������������������������������������

1

n

3

n

i=1

(hATL08i hREFi)
2

:

where hATL08i is the ith elevation from ATL08, hREFi is the corresponding 
“true” elevation from ALS DTM or ALS CHM, and n is the number of 
samples. In addition, for the canopy height estimates, we calculated 
percent mean error (%ME) and percent root mean square error (% 
RMSE) as follows: 

%ME =
ME

hREF

× 100  

%RMSE =
RMSE

hREF

× 100  

where hREF is the mean of the reference values. We strati昀椀ed the error 
metrics with respect to the aforementioned 昀氀ags (see the previous 
section). 

In addition, we assessed the overall importance of the 昀氀ags on both 
the number of retrieved photons and the ATL08 height accuracy. This 
assessment was performed both for the ground and the canopy photons. 
We used 昀氀ags described in Section 2.3 with binary variables (the pres-
ence of snow, beam strength, and solar angle), categorical (landcover, 
photons distribution in sub-segments, and cloud 昀氀ag), and continuous 
(canopy cover, slope, and the number of terrain and canopy photons, 
respectively) variables. We investigated the relative contribution of each 
of the 昀氀ags to the ME of terrain (h_te_mean) and canopy height 
(h_mean_canopy), respectively, and to the number of photons retrieved 
using Random Forest (Breiman, 2001). The hyperparameters that need 
to be speci昀椀ed for Random Forest are the minimal size for allowing node 
splitting (nodesize), the structure and size of the forest (i.e., the number 
of trees), and the number of variables considered as candidate splitting 
variables at each split (mtry). We used models with minimal size of a 
node of 5, 150 trees, and mtry set to one-third of the total number of 
predictors (昀氀ags). The performance of the models was evaluated by 
calculating the OOB coef昀椀cient of determination (R2). To show the effect 
of each variable, we assessed their relative importance and produced 
partial dependency plots. Random Forest model provides the impor-
tance of predictors by calculating their increases in the predictive error 
by randomly permuting each predictor through out-of-bag observations 
of each tree and calculating the subsequent decrease in out-of-bag (OOB) 
accuracy (we scaled the relative importance of each variable so that the 
sum adds to 100). Random forest models were conducted in R pro-
gramming language version 4.1.1. using the ranger package version 
0.13.1 (Wright et al., 2020). 

3. Results 

We observed excellent agreement between the ATL08 mean terrain 
height and ALS-DTM. The overall ME of ATL08 mean terrain height with 
respect to ALS-DTM was 0.27 m. The RMSE of ATL08 with respect to 
ALS-DTM was estimated to be 1.84 m. The fact that ATL08 mean terrain 
height is very close to ALS-DTM is also evident from the scatterplot 
showing a nearly one-to-one relationship (Fig. 3a). The agreement be-
tween the ATL08 mean canopy height and ALS-CHM was considerably 
weaker compared to the terrain (Fig. 3b). Although most points cumu-
lated in the vicinity of the one-to-one line, many others tend to over-
estimate or underestimate the mean canopy height. Overall, ATL08 
underestimated ALS canopy height by an average of 2.30 m representing 
%ME of 16.2%. The overall RMSE was 5.67 m representing %RMSE of 
39.8%. 

3.1. Terrain height 

3.1.1. Clouds and day/night 
From the distributions, we observed a trend showing that an 

increasing number of cloud or aerosol layers (cloud con昀椀dence 昀氀ag; 
cloud_昀氀ag_atm) resulted in larger terrain elevation errors. RMSE for 
daytime acquisitions increased from 1.82 m (cloud-free acquisitions) to 
2.74 m (cloud con昀椀dence 昀氀ag equal to two). In addition, our results 
show a slight increase in the underestimation of terrain with the growing 
cloud con昀椀dence 昀氀ag. ME for daytime acquisitions increased from 

0.33 m (no clouds) to 0.56 m (cloud con昀椀dence 昀氀ag equal to two), 
likely due to the increased photon path length caused by multiple 
scattering in clouds. However, the number of segments available for 
cloud con昀椀dence 昀氀ag three and, especially, four was very low. There-
fore, it is dif昀椀cult to infer whether such high number of cloud layers 
further decreases the accuracy (Table 2). The density plots of the ATL08 
terrain mean error show a unimodal distribution symmetric around zero 
for all levels of the cloud con昀椀dence 昀氀ag and both daytime and night-
time acquisitions (Fig. 4). The nighttime acquisitions have a higher ac-
curacy than daytime acquisitions and this positive effect is evident for all 
levels of cloud con昀椀dence 昀氀ag except for the highest level with very few 
segments available (Table 2). 

Fig. 2. Numbers of segments containing (a) terrain and (b) canopy height in-
formation grouped by beam strength (light grey – weak; dark grey – strong) and 
cloud con昀椀dence 昀氀ag. 
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3.1.2. Snow cover and land cover 
The presence of snow cover hinders the detection of the actual sur-

face, resulting in terrain height overestimation and, consequently, in 
canopy height underestimation. Our results show that snow-free seg-
ments of ATL08 tend to underestimate the terrain height by lower tens of 
centimeters, but snow-covered segments in high altitudes overestimate 
it (Table 3). In low altitudes, the density plots of the ATL08 terrain mean 
error show a unimodal distribution symmetric around zero for both 
snow-covered and snow-free segments. In higher altitudes, the distri-
bution of height differences for snow-covered segments is shifted into 
positive values, while for snow-free segments, it remains symmetric 

around zero (Fig. 5). At altitudes above 1000 m, the presence of snow 
resulted in an average overestimation of the terrain by almost 50 cm 
(Table 3). The largest terrain overestimation due to the presence of snow 
was observed for transitional woodlands and shrubs as well as for 
grasslands, which is a landcover predominating in the study area at high 
altitudes (Table 4; Fig. 5). On the other hand, the RMSEs for snow-free 
and snow-covered segments are relatively similar (Table 3), but 
considerably higher for forests than for grasslands and pastures 
(Table 4). 

Fig. 3. Scatterplots of (a) ATL08 mean terrain height versus ALS-DTM mean terrain height and (b) ATL08 mean canopy height versus ALS-CHM mean canopy height. 
The solid line indicates y = x. 

Table 2 
The terrain height accuracy measures for increasing cloud cover (Cloud con昀椀-
dence 昀氀ag) in relation to the solar angle (day/night).  

Cloud 
con昀椀dence 
昀氀ag 

Day Night 
Number of 
segments 

ME 
(m) 

RMSE 
(m) 

Number of 
segments 

ME 
(m) 

RMSE 
(m) 

0 22,555 0.33 1.82 12,240 0.10 1.46 
1 12,274 0.46 2.22 14,888 0.16 1.75 
2 2002 0.56 2.74 4904 0.17 1.59 
3 216 0.24 2.05 462 0.22 1.82 
4 4 0.33 0.51 79 0.44 1.31  

Fig. 4. Density plots illustrating the distribution of mean terrain height differences (ATL08 mean terrain height - mean DTM height), in meters, according to the 
cloud con昀椀dence 昀氀ag grouped by the solar angle (day/night). 

Table 3 
Terrain accuracy measures for increasing altitudes in relation to the presence/ 
absence of snow cover.  

Elevation 
(m a.m.s.l.) 

Snow-free segments Snow-covered segments 
Number of 
segments 

ME 
(m) 

RMSE 
(m) 

Number of 
segments 

ME 
(m) 

RMSE 
(m) 

200–500 13,560 0.37 1.94 2424 0.35 1.85 
500–800 27,253 0.31 1.78 6738 0.23 1.61 
800–1000 8550 0.28 1.95 1884 0.03 2.04 
1000–1200 5196 0.24 1.90 2086 0.45 1.66 
1200–1600 1334 0.24 2.22 599 0.43 2.10  
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3.1.3. Interaction of the effect of clouds, snow cover, day/night, and land 
cover type 

We examined the distribution of the vertical accuracy of ATL08 
terrain height measurements grouped by cloud con昀椀dence 昀氀ag for snow- 
covered and snow-free segments, further grouped by the solar angle 
(daytime vs nighttime acquisitions) and land cover type (forest/non- 
forest). From the distributions, we observed a trend showing that the 
increasing number of cloud layers resulted in considerably larger terrain 

elevation errors, which were particularly evident for segments with the 
cloud con昀椀dence 昀氀ag values g2 (Table 5; Fig. 6); the error variability 
further increased for daytime acquisitions and snow- and/or forest- 
covered segments. In addition, weak beams appeared to be slightly 
more sensitive to atmospheric attenuation (Fig. 6). This shows that the 
cloud con昀椀dence 昀氀ag (cloud_昀氀ag_atm) is a useful indicator of ATL08 
terrain height accuracy. 

3.1.4. Distribution of photons along ground track and slope 
Almost all parameters in昀氀uencing signal detection, both positive 

(snow cover, beam strength) and negative (signal attenuation by canopy 
or cloud cover), inevitably affect the distribution of ground returns 
within a segment. This, in turn, can greatly affect the estimated terrain 
accuracy, especially in rough terrain such as the mountain environment. 
Indeed, our results show that ATL08 terrain height accuracy consider-
ably deteriorates with the lower number of 20 m sub-segments con-
taining signal photons (Table 6; Fig. 7). In addition, the accuracy 
deteriorates as the slope of the terrain increases. 

3.1.5. Optimal selection of segments 
Based on the above analysis, we propose an optimal approach for the 

selection of ATL08 segments with the highest terrain accuracy as fol-
lows: (i) only data with photons in all 昀椀ve sub-segments should be kept 
(subset_te_昀氀ag); (ii) daytime acquisitions (night_昀氀ag) that have two or 
more layers of clouds (cloud_昀氀ag_atm) should be removed; and snow- 
covered segments (segment_snowcover) in high altitudes should also be 
removed (here, we removed snow-covered segments at altitudes above 

Fig. 5. Density plots illustrating the distribution of mean terrain height differences (ATL08 mean terrain height - mean DTM height), in meters, according to a) 
altitude and b) landcover type grouped by the snow cover 昀氀ag ( covered, free). 

Table 4 
Terrain height accuracy measures for main landcover types in relation to the 
presence/absence of snow cover.  

Landcover Snow-free segments Snow-covered segments 
Number 
of 
segments 

ME 
(m) 

RMSE 
(m) 

Number 
of 
segments 

ME 
(m) 

RMSE 
(m) 

Croplands and 
pastures 

27,464 0.24 1.43 5480 0.10 1.18 

Broadleaf and 
mixed 
forest 

3186 0.55 2.76 948 0.48 2.40 

Coniferous 
forest 

20,520 0.40 2.22 5837 0.15 2.07 

Transitional 
woodland 
and shrub 

4261 0.27 1.69 1319 0.51 1.68 

Natural 
grasslands 

462 0.15 1.39 147 0.38 1.40  
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1000 m). Such 昀椀ltering removed 28% of available segments in our study 
area and resulted in a considerable improvement in accuracy (Fig. 8). 
The RMSE of removed segments was 3.02 m while the RMSE of segments 
left for the analysis was 1.1 m. In contrast, removal of all segments with 
snow cover or having cloud cover 昀氀ag higher than zero (which is the 
commonly used approach; Neuenschwander et al., 2020; Queinnec 
et al., 2021) would result in the removal of 61% of data and only min-
imal improvement in accuracy (RMSE of 1.89 m and 1.78 of removed 
segments and segments left for the analysis, respectively). See Fig. 8 for 
density plots of the height differences between the ATL08 terrain and 
LiDAR ALS DTM for removed segments and segments left for the 
analysis. 

3.2. Canopy height estimates 

The error in the canopy height estimates is generally larger than that 
of terrain height estimates. From the distributions, we observed a trend 
showing that an increasing number of cloud or aerosol layers (cloud 
con昀椀dence 昀氀ag; cloud_昀氀ag_atm) resulted in larger errors in canopy height 
estimates, especially for daytime acquisitions (Table 7). For nighttime 
acquisitions, the effect of cloud cover became evident for cloud con昀椀-
dence 昀氀ag higher than two. The accuracy of nighttime acquisitions was 
higher than that of daytime acquisitions and this positive effect is 
evident for all levels of cloud con昀椀dence 昀氀ag, for both strong and weak 
beams, and regardless of the presence/absence of snow (Table 8). 

The most notable error was observed in the underestimation of the 
mean forest canopy height, resulting from the presence of snow on the 
terrain (Fig. 9). The canopy height of snow-free segments in broadleaf/ 
mixed and in coniferous forests was on average underestimated by 2.1 m 
(%ME of 15.3%) and 1.2 m (%ME of 8.2%), respectively. The un-
derestimation of snow-covered segments increased to 8.5 m (%ME of 

56.8%) and 5.7 m (%ME of 38.3%), respectively; see Fig. 10 for 
density plots showing the distribution of the height error of ATL08 
canopy height in relation to the presence/absence of snow in forests. The 
accuracy of the ATL08 mean canopy height also deteriorated with 
decreasing canopy cover and with increasing terrain slope (Fig. 11). 

An examination of the agreement between ATL08 and ALS-CHM 
mean canopy heights by beam strength showed a lower accuracy for 
the weak than for the strong beam. For the weak beam, the canopy 
height was on average underestimated by 3.5 m representing %ME of 

25.7%, while for the strong beam, the underestimation was 1.86 m, 
representing %ME of 12.9%. The overall RMSEs were 7.03 m (%RMSE 
of 51.3%) and 5.09 m (%RMSE of 35.4%) for the weak and strong 
beams, respectively. 

3.3. Random forest variable importance 

The RF models of the number of ground and canopy photons showed 
R2 of 0.67 and 0.54, respectively (Fig. 12). The overall number of ground 
photons was strongly affected by the snow cover, beam strength, and 
canopy cover. The photons distribution in sub-segments, slope, cloud 

cover, and landcover had a moderate effect, and the effect of the solar 
angle was weak. Where canopy photons are concerned, the effect of 
slope and cloud 昀氀ags on the number of photons was slightly stronger 
than on ground photons while the effect of canopy cover and photons 
distribution in sub-segments on this number was lower (Fig. 12; see 
Fig. S8-S9 for partial dependency plots). The RF models of ATL08 terrain 
and canopy height accuracy showed R2 of 0.12 and 0.42, respectively 
(Fig. 12). The accuracy of ATL08 mean terrain height was particularly 
affected by the number of ground photons, their distribution within sub- 
segments, and canopy cover. The accuracy of the ATL08 mean canopy 
height was strongly affected by the canopy cover, presence of snow, the 
number of canopy photons, terrain slope, and beam strength. The effects 
of the remaining variables were considerably smaller (Fig. 12; see 
Fig. S10-S11 for partial dependency plots). 

4. Discussion 

4.1. Effect of atmospheric scattering on terrain and canopy height 
retrievals 

One of the goals of our study was to examine the effect of photons 
attenuation in the atmosphere on the vertical accuracy of ATL08 terrain 
and canopy height estimates and to determine, which of the available 
昀氀ags is the best suited for this purpose. Our results show that cloud-free 
acquisitions have the best accuracy (Table 5; Fig. 6). However, the 
increasing number of cloud or aerosol layers alone has only a relatively 
low effect on the terrain and canopy height estimates accuracy. This, 
however, assumes that the surface was successfully detected even when 
cloud layers are present, which is rarely true, especially for ground 
photons. The increasing number of cloud or aerosol layers was associ-
ated with a decrease in the number of ground photons within individual 
segments (Fig. S1) as well as of the number of segments containing 
terrain information (Fig. 2). The number of ground photons steeply 
declined with cloud con昀椀dence 昀氀ag values higher than one (Fig. S1). 

Nighttime acquisitions over non-forested areas on snow-covered 
surfaces are ideal for the illustration of multiple scattering in clouds as 
there is no interference of other effects such as the solar background 
noise or canopy cover (Fig. 6). While segments acquired under the clear 
sky (cloud con昀椀dence 昀氀ag f1) generally tend to overestimate the terrain 
height due to the presence of snow, segments acquired under a cloud 
cover (cloud con昀椀dence 昀氀ag >1) tend, on average, to underestimate the 
terrain despite the presence of snow. Multiple scattering of photons in 
the dense clouds increases the photon path length, making the surface 
appear lower than it actually is. The magnitude of the error caused by 
the multiple-scattered signal depends on the height, thickness, and op-
tical depth of the scattering layer (Winker, 2003). 

Such effects are the reason why prior studies typically 昀椀ltered out the 
segments acquired under adverse atmospheric conditions and did not 
evaluate their accuracy at all. For example, Neuenschwander et al. 
(2020) used only cloud-free data in their analysis. Similarly, Queinnec 
et al. (2021) removed all segments with multiple scattering warning 昀氀ag 

Table 5 
Root mean squared error (RMSE) of ATL08 terrain height in meters with respect to the cloud 
cover 昀氀ag, presence of snow, landcover, and solar angle (green – lowest error; purple – 

highest error). 
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(msw_昀氀ag) higher than zero. However, this can lead to a signi昀椀cant 
reduction in the number of segments available for further analysis 
(Carabajal and Boy, 2020). For example, in our study area, such brute- 
force 昀椀ltering would result in a 50% reduction in the number of avail-
able segments (Fig. 2), which could signi昀椀cantly affect the generation of 
higher-level products such as ATL18 gridded ground-surface height, 
canopy height, and canopy cover estimates. Note, however, that in other 

situations, where accuracy is much more important than the number of 
available segments, the removal of any potentially inaccurate segments 
might be a legitimate approach. In addition, it is not clear, which 昀氀ag is 
the most useful for such 昀椀ltering. Some studies use the multiple scat-
tering warning 昀氀ag (Queinnec et al., 2021) while others the cloud 
con昀椀dence 昀氀ag (Li et al., 2021). Our results show that from three 
available 昀氀ags (cloud con昀椀dence 昀氀ag, multiple scattering warning 昀氀ag, 
and layer 昀氀ag), the cloud con昀椀dence 昀氀ag is the most useful for the 
assessment of atmospheric effects (Fig. 6, Fig. S1 – S7). It was previously 
recommended to use the cloud con昀椀dence 昀氀ag (cloud_昀氀ag_atm) only for 
daytime acquisitions (Palm et al., 2020), which corresponds with our 
results as daytime acquisitions with a high con昀椀dence 昀氀ag were asso-
ciated with greater error than nighttime ones (Fig. 6). For nighttime 
acquisitions, it was recommended to use the multiple scattering warning 
昀氀ag (msw_昀氀ag; Palm et al., 2020). However, we did not observe any 
patterns that would suggest that the multiple scattering warning 昀氀ag is 
more appropriate for nighttime acquisitions; in fact, we did not observe 
any relationship between the number of ground photons or terrain ac-
curacy and the multiple scattering warning 昀氀ag or layer 昀氀ag (layer_昀氀ag) 
at all (Fig. S1 – S7). Note, however, that we have relatively few multiple 
scattering warning 昀氀ag records with values of 4 and, especially, 5 (i.e., 
the atmospheric layer that touches the ground), which, therefore, re-
quires further exploration. 

4.2. Effects of the evaluated factors on terrain accuracy 

Besides atmospheric attenuation, the density of detected photons can 
be affected by landcover (canopy cover) and surface re昀氀ectance. Indeed, 
our results show that the decrease in the number of ground photons 
caused by attenuation in the atmosphere further deteriorated in forests 
due to the capture of photons by vegetation canopy (Fig. S1). The same 
effect of reduced photon penetration through the canopy cover was 
recently observed by Liu et al. (2021) and Malambo and Popescu (2021). 
In contrast, the presence of snow signi昀椀cantly increased the number of 
detected ground photons (Fig. S1). Similar seasonal variation in the 
average number of detected ground photons due to the presence of snow 
with an approximately 50% reduction in photon count when there was 
no snow cover was recently observed by Tian and Shan (2021). The high 
density of signal photons is especially important from the perspective of 
algorithms used for 昀椀ltering as the higher density of photons re昀氀ected 
from a surface makes the detection of ground photons easier. Noise 
昀椀ltering is a critical step for accurate terrain and canopy height 
estimates. 

It is expected that strong beams will provide products of better ac-
curacy – given the higher density of photons, which facilitates 昀椀ltering – 

than weak beams (Neuenschwander et al., 2020). In general, strong 
beams indeed resulted in more segments and more signal photons within 
a segment than weak beams (Fig. 2). However, we did not observe any 
major differences in the accuracy of segments acquired using strong and 
weak beams. This is in agreement with a recent study by Malambo and 
Popescu (2021) who have shown that weak beams may provide data of 

Fig. 6. Box plots showing the accuracy of ATL08 terrain height estimates (i.e., 
the elevation difference between ATL08 and reference DTM) considering also 
the cloud con昀椀dence 昀氀ag (i.e. number of cloud layers), the solar angle (i.e., day 
and night), presence of snow (i.e., summer and winter season), landcover (i.e., 
forests and non-forested areas) and beam strength (strong beam; weak beam). 
The central horizontal line in the box indicates the median, boxes interquartile 
range (25th to 75th percentile), and the whiskers 1.5 times the inter-
quartile range. 

Table 6 
Root mean squared error (RMSE) of ATL08 mean terrain height in meters in 
relation to the number of subsegments with ground points and terrain slope 
(green – lowest error; purple – highest error). 
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similar quality as strong beams. 
The distribution of points within a segment is a better indicator of the 

accuracy of terrain estimates than beam strength. Almost all effects 
affecting signal detection, including beam strength, are re昀氀ected in the 
distribution of ground returns within a segment. According to Random 
Forest model, the accuracy of ATL08 mean terrain height was particu-
larly affected by the number of ground photons and their distribution 
within sub-segments, terrain slope, and canopy cover (Fig. 12). It is, 
however, important to note that R2 of this particular model was only 
12%, which is relatively low and the relative importance of 昀氀ags from 
this model has to be interpreted with caution. 

Our results show that ATL08 terrain height accuracy considerably 
deteriorates with the decreasing number of sub-segments containing 
signal (ground) photons and that the magnitude of this deterioration 
increases with the terrain slope (Fig. 7). In 昀氀at terrain, the effect of 
missing ground points in sub-segments is less severe than in steep terrain 
as the effect of missing sub-segments on the mean terrain height esti-
mates in the entire segment is minimal. This corresponds with the results 
of previous research showing that slope is the parameter with the 
greatest impact on the accuracy of terrain retrieval (Liu et al., 2021). The 
observed effect of slope may be due to the horizontal displacements of 
the ICESat-2 ATL08 segments relative to the reference data as the effect 
of horizontal displacement on vertical accuracy increases with steep 
slope terrain (horizontal error reported for ICESAT-2 tends to be 0–3 m; 
Neuenschwander et al., 2020; Malambo and Popescu, 2021). 

Ground 昀椀ltering is particularly complicated by solar background 
noise, which is especially high in daytime acquisitions (Magruder et al., 
2012; Popescu et al., 2018). Indeed, our results as well as results of 

previous studies show that the accuracy of daytime acquisitions is worse 
than that of nighttime acquisitions (Neuenschwander et al., 2020; Tian 
and Shan, 2021). In view of this, the presence of snow cover (causing a 
higher density of photons re昀氀ected from the ground), can, in a way, be 
considered bene昀椀cial. For example, Neuenschwander et al. (2020) 
suggested that the presence of snow had a greater impact on terrain 
accuracy than beam strength or acquisition time. In addition, they 
suggested that a high density of ground photons from snow-covered 
ground can in turn improve the results of the ground 昀椀ltering algo-
rithm as it becomes less vulnerable to background noise photons. 
However, our results show this is true only for data acquired under 
favorable weather conditions. Note that Neuenschwander et al. (2020) 
used only cloud-free data in their analysis; in our study, the greatest 
error variance in the terrain quality was observed in snow-covered 
segments acquired during the day and under clouds (Fig. 6). It is 
likely that the combination of the overestimation of terrain due to the 
snow layer, and its underestimation due to the increased photon path 
length (caused by multiple scattering of photons in clouds) made the 
ground photon 昀椀ltering even more complicated and led to the observed 
decrease in terrain accuracy. 

On the other hand, in high altitudes, the presence of snow cover 
resulted in terrain overestimation and, in turn, canopy height underes-
timation. We observed an approximately 45 cm overestimation of the 
terrain height caused by the presence of snow in altitudes higher than 
1000 m. For example, Neuenschwander et al. (2020) observed an 
average terrain overestimation of 33 cm caused by snow cover in 
Finland. Again, this is a reason why some studies remove snow-covered 
segments from their analysis (e.g. Queinnec et al., 2021). This would, 

Fig. 7. Violin plots showing the ATL08 terrain height error in relation to the distribution of photons within segments (i.e. number of sub-segments containing ground 
photons; subset_te_昀氀ag), landcover (forest vs non-forest), and slope in degrees. The central horizontal line in the box indicates the median, boxes interquartile range 
(25th to 75th percentile), and the whiskers 1.5 times the interquartile range. 
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however, result in a 20% reduction in the number of segments in our 
study area. Still, as explained above, not all snow-covered segments are 
necessarily erroneous and we recommend combining the 昀氀ag (seg-
ment_snowcover) with some others (e.g., altitude, time of the year), 
which can serve as a proxy for the likely presence of thick snow cover. 

4.3. Effects of evaluated factors on canopy accuracy 

The error of canopy height estimates is considerably larger than that 
of terrain height and in summer, the ATL08 mean canopy height was in 
general underestimated by a few meters. The mean error for snow-free 
conditions in broadleaf/mixed forests and in coniferous forests was 

2.1 m and 1.2 m, respectively, which corresponds to the 

Fig. 8. Density plots illustrating the accuracy of ATL08 segments suggested for removal (orange) and segments with the highest terrain accuracy (green) left for 
analysis in three study areas. Two approaches for the removal of low accuracy segments are compared. The top 昀椀gure (a) represents the removal of segments using 
the criteria suggested in this study (we removed segments with photons in less than 昀椀ve sub-segments; daytime acquisitions that have two or more layers of clouds; 
and snow-covered segments at altitudes above 1000 m ASL), while the bottom 昀椀gure (b) is based on the removal of all segments with snow cover or having a cloud 
cover 昀氀ag higher than zero, which is a common approach used in existing studies. (For interpretation of the references to colour in this 昀椀gure legend, the reader is 
referred to the web version of this article.) 

Table 7 
Canopy height accuracy measures for increasing cloud cover (Cloud con昀椀dence 
昀氀ag) in relation to solar angle (day/night).  

Cloud 
con昀椀dence 
昀氀ag 

Day Night 
Number 
of 
segments 

%ME 
(%) 

% 
RMSE 
(%) 

Number 
of 
segments 

%ME 
(%) 

% 
RMSE 
(%) 

0 8025 21.8 43.2 5233 9.8 33.9 
1 4992 23.7 49.9 6963 11.6 31.8 
2 880 23.0 60.9 2194 6.3 30.9 
3 97 10.0 74.9 239 24.2 44.1 
4 0   35 3.6 17.7  

Table 8 
Percent root mean square error (%RMSE) of ATL08 canopy height with respect to the cloud 
cover 昀氀ag, presence of snow, beam strength, and solar angle (green – lowest error; purple – 

highest error). 
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underestimation reported by prior studies (e.g., Liu et al., 2021; Neu-
enschwander et al., 2020). In winter, however, the underestimation 
considerably increased due to the presence of snow and seasonal 
changes in tree foliage (Fig. 10; i.e., the reference ALS data were ac-
quired in summer). Besides, errors in canopy height estimation were 
larger for the weak beam than for the strong beam. Neuenschwander 
et al. (2020) recommended not to use the weak beam for canopy height 
estimation. Our results are in line with this recommendation, particu-
larly where daytime acquisitions are concerned (Table 8). According to 
the Random Forest models, the accuracy of the ATL08 mean canopy 
height was considerably affected by the number of retrieved canopy 
photons, presence of snow, and the beam strength (Fig. 12). It is, 
therefore, evident that the number of retrieved photons is important in 
estimating the canopy height. In addition, canopy cover and terrain 

slope also play an important role. Our results show that the accuracy of 
ATL08 mean canopy height depends on the extent of canopy cover and 
deteriorates with the increasing terrain slope (Fig. 11). This 昀椀nding 
corresponds to the results by Liu et al. (2021) who observed deteriora-
tion in the accuracy of canopy height estimates with the extent of canopy 
cover and, similarly to us, also reported slope to be an important error- 
forming factor. The best accuracy of the mean canopy height was 
observed for the canopy cover ranging from 40% to 60%. Below that 
range, the mean height is overestimated but the error variance is rela-
tively low. Above that range, on the other hand, canopy height is 
underestimated and the error variance is high, particularly on high 
slopes (Fig. 11). Similarly, Neuenschwander et al. (2020) reported the 
highest accuracy of canopy height estimates within the 40–80% canopy 
cover range. This is likely due to the fact that in areas with low canopy 

Fig. 9. Box plots showing the relationship between the accuracy of the ATL08 forest canopy height (i.e., the elevation difference between ATL08 and reference CHM) 
and the cloud con昀椀dence 昀氀ag (i.e., number of cloud layers) with respect to the solar angle (i.e., day and night), presence of snow (i.e., summer and winter season), 
and beam strength (strong vs weak) beam. The central horizontal line in the box indicates the median, boxes interquartile range (25th to 75th percentile), and the 
whiskers 1.5 times the interquartile range. 

Fig. 10. Density plots showing the distribution of the absolute height error of the ATL08 mean canopy height in relation to the presence of snow according to the 
snow cover 昀氀ag (blue and brown colors represent segments with snow and without snow, respectively) and forest type (broadleaf/mixed forest vs coniferous forest). 
(For interpretation of the references to colour in this 昀椀gure legend, the reader is referred to the web version of this article.) 
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Fig. 11. Violin plots showing the ATL08 canopy height error in association with canopy cover and slope in degrees. Only segments without snow cover were used for 
this evaluation. The central horizontal line in the box indicates the median, boxes interquartile range (25th to 75th percentile), and the whiskers 1.5 times the 
interquartile range. 

Fig. 12. Relative importance (estimated using permutation importance) of individual 昀氀ags on ATL08 mean terrain and canopy height accuracy. The relative 
importance of each variable is scaled so that the sum adds to 100. Flags marked with an asterisk show a signi昀椀cant effect on the response variable. The p-values were 
computed using the Altmann et al. (2010) method with 100 permutations and the variable is considered signi昀椀cant if the permutation p-value is <0.05. 
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cover, the chance of a photon being re昀氀ected from the canopy is low. In 
contrast, with high canopy cover, fewer photons are returned from the 
ground, leading to its lower accuracy, especially on steep slopes, and 
consequently to poor estimates of canopy height (Pang et al., 2022). 

4.4. Selection of segments with the highest accuracy 

We suggest that, so far, practices for data 昀椀ltering have been, on the 
one hand, unnecessarily strict (e.g. removing all segments with non-zero 
multiple scattering warning 昀氀ag or all segments with snow cover), but, 
on the other hand, naïve and potentially resulting in keeping inaccurate 
records (but see Carabajal and Boy (2020) for selection of data that meet 
high accuracy requirements). Although this might be reasonable for 
exploratory studies, we need to develop more rigorous methods to 
minimize error while maximizing the number of segments left for sub-
sequent analysis, such as the generation of higher-level products or the 
correction of global DTMs (Magruder et al., 2021). We suggest that 
ATL08 segments should be 昀椀rst 昀椀ltered according to the distribution of 
ground photons in the segment (subset_te_昀氀ag; i.e., only data with pho-
tons in all 昀椀ve sub-segments should be kept). Although Liu et al. (2021) 
recently proposed that it is unnecessary to 昀椀lter terrain data according to 
acquisition time, we suggest that it is reasonable to remove daytime 
acquisitions that have two or more layers of clouds (cloud_昀氀ag_atm) due 
to the synergic effect of solar background noise and increased photon 
path length due to atmospheric scattering. Finally, to minimize the 
negative effect of snow cover on terrain height estimation, we suggest 
removing snow-covered segments (segment_snowcover) in high altitudes, 
the combination of which serves as a substitute for the likely presence of 
a thick snow cover. As far as canopy height is concerned, in addition to 
above, we recommend removing all snow-covered segments (or even 
better would be removal of acquisitions in leaf-off period) and also 
removing weak beam acquisitions during the daytime (Table 8). This 
corresponds with a study by Liu et al. (2021) who recommend using 
strong-beam and nighttime acquisitions for canopy height estimates. 
Note, however, that most important in昀氀uence on the accuracy of canopy 
height estimates has the density of canopy cover itself (Fig. 12) and the 
accuracy of canopy height estimates using ICESat-2 is limited (see Liu 
et al. (2021), for a comparison with GEDI). 

5. Conclusions 

We showed that atmospheric attenuation, surface re昀氀ectance, laser 
pulse energy level, solar background noise, canopy cover, and terrain 
slope are interlinked effects that affect the number of detected photons 
as well as the accuracy of ATL08 terrain and canopy height estimates. 
Generally, the error of canopy height estimates is considerably larger 
than that of terrain height. Results show that the accuracy of nighttime 
acquisitions is better than that of daytime acquisitions and that the 
increasing number of cloud layers causes a lower number of photons in a 
segment and greater error variability, especially of terrain estimates. 
This decrease was quite abrupt for the cloud con昀椀dence 昀氀ag higher than 
one (i.e., data having less than two layers of clouds were of very good 
quality). Consequently, the accuracy of the ground detected under 
several layers of clouds may be limited and ATL08 segments unsuitable 
for terrain characterization. In general, ATL08 mean terrain estimates 
tend to underestimate the terrain (reference DTM) by a few tens of 
centimeters in summer (i.e., no snow cover), but overestimate it in 
winter, particularly in altitudes higher than 1000 m due to the presence 
of thick snow cover. Congruently, the canopy height is underestimated 
by a few meters in summer, and this underestimation considerably 
increased due to the presence of snow and seasonal loss of tree foliage in 
winter. The accuracy of the canopy height estimates depends on the 
extent of canopy cover and deteriorates with the increasing slope of the 
terrain. Almost all parameters affecting signal detection are re昀氀ected in 
the distribution of ground returns within a segment. The ATL08 terrain 
height accuracy deteriorates with the lower number of sub-segments 

containing signal photons and the magnitude of this decline increases 
for steep slopes. The presence of snow was associated with the strongest 
positive effect on the number of detected ground photons, the number of 
ground photons detected over snow-covered surfaces increased three 
times compared to snow-free surfaces. Removing segments with the 
poor distribution of photons, more than one layer of clouds during the 
day, and snow cover in high altitudes is the best approach for data 
昀椀ltering that minimizes errors while maximizing the number of seg-
ments left for subsequent analysis. 
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Abstract  32 

Filtering approaches on GEDI data differ considerably across existing studies and it is yet unclear which 33 

method is the most effective. We conducted an in-depth analysis of GEDI's vertical accuracy in mapping 34 

terrain and canopy heights across three study sites in temperate forests and grasslands in Spain, 35 

California, and New Zealand. We started with unfiltered data (2,081,108 footprints) and describe a 36 

workflow for data filtering using Level 2A parameters and for geolocation error mitigation. We found 37 

that retaining observations with at least one detected mode eliminates noise more effectively than 38 

sensitivity. The accuracy of terrain and canopy height observations depended considerably on the 39 

number of modes, beam sensitivity, landcover, and terrain slope. In dense forests, a minimum 40 

sensitivity of 0.9 was required, while in areas with sparse vegetation, sensitivity of 0.5 sufficed. 41 

Sensitivity greater than 0.9 resulted in an overestimation of canopy height in grasslands, especially on 42 

steep slopes, where high sensitivity led to the detection of multiple modes. We suggest excluding 43 

observations with more than five modes in grasslands. We found that the most effective strategy for 44 

filtering low-quality observations was to combine the quality flag and difference from TanDEM-X, 45 

striking an optimal balance between eliminating poor-quality data and preserving a maximum number 46 

of high-quality observations. Positional shifts improved the accuracy of GEDI terrain estimates but not 47 

of vegetation height estimates. Our findings guide users to an easy way of processing of GEDI 48 

footprints, enabling the use of the most accurate data and leading to more reliable applications. 49 

Plain language summary 50 

The Global Ecosystem Dynamics Investigation (GEDI) collected terrain and canopy observations using 51 

laser altimetry. The quality of terrain and canopy observations is influenced by acquisition conditions 52 

and land(cover) characteristics. Consequently, a considerable amount of GEDI observations is 53 

discarded as noise, and further filtering is necessary to retain only high-quality observations. Our 54 

objective was to assess how environmental and acquisition characteristics influence the accuracy of 55 

terrain and canopy height of GEDI observations. Although the main objective of the GEDI mission was 56 

to map forests, we also focused on grasslands. GEDI serves not only as an essential source of 57 

information on canopy height but also provides accurate terrain observations. Furthermore, it is 58 

important to know that GEDI does not overestimate the height of low vegetation as this can result in 59 

an overestimation of carbon storage. We distinguished four steps in the GEDI data processing: (1) 60 

removal of noise observations, (2) removal of low-quality data, (3) effect of additional acquisition 61 

characteristics, and (4) mitigation of geolocation error. We found that the accuracy of terrain and 62 

canopy height observations depended considerably on the number of detected modes, beam 63 

sensitivity, landcover, and terrain slope. 64 
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Keywords: error, filtering, geolocation, height, terrain, vegetation 65 

1. Introduction 66 

Forests play a key role in biodiversity conservation and regulation of the global carbon cycle (Mo et al., 67 

2023; Pan et al., 2011). It is well recognized that the vertical and horizontal structure of forests, 68 

including their height, are important indicators of biodiversity (Cazzolla Gatti et al., 2017; Davies & 69 

Asner, 2014) and vegetation structure is, therefore, considered one of the six essential classes of 70 

biodiversity variables (Moudrý et al., 2023; Skidmore et al., 2021;). Furthermore, vegetation structure 71 

is directly linked to the above-ground biomass and primary productivity, both being critical 72 

components of carbon stock and flux (Fisher et al., 2019). Vegetation structure measurements are, 73 

therefore, essential for creating climate action plans, the preparation of which is underway in many 74 

countries (Grassi et al., 2017; Hoover & Smith, 2021). 75 

However, until recently, we lacked comprehensive global data on the spatial patterns of forest 76 

structure and available estimates remained uncertain due to data limitations and availability (Herold 77 

et al., 2019). This has changed with the two recent space-based laser altimetry missions launched in 78 

2018 that have mapped the forest structure with unprecedented accuracy on a global scale (Dubayah 79 

et al., 2022; Neuenschwander & Pits, 2019). These two missions, GEDI (Global Ecosystem Dynamics 80 

Investigation) and ICESat-2 (Ice, Cloud, and Land Elevation Satellite-2), provide direct measurements 81 

of the terrain and canopy heights, and, therefore, considerably improve our ability to monitor forests 82 

globally (Dubayah et al., 2020; Liu et al., 2021; Markus et al., 2017). The GEDI mission specifically aims 83 

to measure forest structure and biomass in tropical and temperate regions. It is the first spaceborne 84 

lidar mission specifically designed for such a purpose (Dubayah et al., 2020). The GEDI data have been, 85 

for example, used to assess the role of forest structure in biodiversity patterns (Marselis et al., 2022; 86 

Torresani et al., 2023), to improve models of animal-environment relationships (Smith et al., 2022), or 87 

to assess the effectiveness of protected areas in conserving vegetation structure and carbon stocks 88 

(Ceccherini et al., 2023; Liang et al., 2023). 89 

The GEDI instrument was mounted on the International Space Station (ISS) and collected data between 90 

April 2019 and March 2023. GEDI fired 16 billion laser pulses at the Earth's surface each year. 91 

Compared to ICESat-2, it had a higher sampling density in temperate and tropical forests, but its spatial 92 

coverage was limited to the latitude range of 51.6°S to 51.6°N (ISS inclination angle). GEDI has a 25 m 93 

diameter footprint, which is recommended for measuring canopy height using spaceborne lidar for 94 

biodiversity and habitat science (Bergen et al., 2009). The location of each GEDI footprint is computed 95 

using the observed range combined with the instrument pointing and position (derived from star 96 

tracker and GPS sensors; Beck et al., 2021). The horizontal geolocation error of GEDI footprints is 10 ± 97 
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2 m (V002) and is expected to improve in upcoming data versions (Beck et al., 2021). An empirical 98 

vertical accuracy of GEDI canopy height estimates is approximately 2–3 m (Hakkenberg et al., 2023a), 99 

which more or less meets the recommended vertical accuracy for measuring canopy height using 100 

spaceborne lidar (Bergen et al., 2009). Such accuracy, however, assumes ideal measurement 101 

conditions, which are rarely met; the actual accuracy is, therefore, degraded due to environmental 102 

conditions during the data acquisition (e.g. Dorado-Roda et al., 2021; Li et al., 2023; Liu et al., 2021). 103 

GEDI's lasers operate at a 1,064 nm wavelength (near-infrared), thus unable to penetrate dense cloud 104 

cover (Dubayah et al., 2020). Therefore, only approximately 50% of pulses were expected to provide a 105 

useful signal, while the remaining 50% were expected to be lost or degraded (eoPortal, 2016; Dubayah 106 

et al., 2020; Fayad et al., 2021). Further, degraded accuracy may have resulted from the interaction of 107 

the laser with the Earth's atmosphere, solar background noise, and/or processes (algorithms) used to 108 

determine the height metrics (Adam et al., 2020; Liu et al., 2021; Quiros et al., 2021; Wang et al., 2022).  109 

Due to the low accuracy of some of the GEDI observations, they must be filtered before being used to 110 

estimate terrain or vegetation structure. Indeed, the selection of accurate GEDI footprints is crucial for 111 

the preparation of downstream GEDI data products, such as gridded mean canopy height (Dubayah et 112 

al., 2021a) and above-ground biomass density (Kellner et al., 2022), or any other analysis using GEDI 113 

data (e.g. Hoffrén et al., 2023; Potapov et al., 2021). In this work, we focused on GEDI acquisitions over 114 

temperate forests. However, it is equally important to tackle the issue of the overestimation of low 115 

vegetation (such as grasslands) as this can result in an overestimation of carbon storage. Moreover, 116 

such data are important for mapping landcover types (Dwiputra et al., 2023) and the generation of 117 

global canopy height maps (i.e., both areas of high and low vegetation are needed to fit the models; 118 

Potapov et al., 2021). In addition, GEDI is not only an important source of information on canopy 119 

height, but also of accurate terrain observations that are used to validate existing and create new 120 

global digital elevation models (Narin & Gullu, 2023; Narin et al., 2024; Pronk et al., 2023). Therefore, 121 

in this study, we focus on both terrain and canopy height in both forests and grasslands. 122 

However, identifying usable (i.e., high-quality) observations can be challenging. To select high-quality 123 

data, the GEDI user guide (Beck et al., 2021) recommends the use of power beams only for the 124 

description of dense forests, GEDI footprints acquired at night to avoid the negative effects of solar 125 

background illumination on waveform quality, and, finally, assessing footprint sensitivity. The easiest 126 

way of data filtering lies in the use of the quality_flag parameter as suggested by the GEDI user guide 127 

(Beck et al., 2021). Many studies using GEDI data use this flag for data filtering (see Figure 1), but it has 128 

also been suggested that the flag tends to remove usable footprints (Geremew et al., 2023). In 129 

addition, other approaches have been adopted in existing studies, including, for example, comparing 130 

the data to some existing global DEMs (e.g., TanDEM-X DEM or SRTM; Lahssini et al., 2022; Urbazaev 131 
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et al., 2022) or filtering according to the results acquired using six different algorithm setting groups 132 

and keeping only observations where all these results are similar (e.g. Potapov et al., 2021). Terrain 133 

slope is another factor contributing to the canopy height estimation error (Chen, 2010; Wang et al., 134 

2022). It is, therefore, potentially reasonable to keep only footprints located on relatively flat terrain 135 

(e.g. Simard et al., 2011). GEDI data filtering, on the one hand, ensures the use of high-quality data, 136 

but, on the other hand, considerably reduces the number of available GEDI footprints (Figure 1). For 137 

example, in the study by Hoffrén et al. (2023), filtering resulted in the use of only 16% of all footprints 138 

available in their study area. Similarly, Cobb et al. (2023) flagged only 14% of footprints as high-quality. 139 

For inexperienced users, it may be difficult to properly apply available filtering approaches and 140 

parameters, which can lead to an unnecessary loss of accurate data, or, vice versa, to an inclusion of 141 

inaccurate data. In this study, we evaluate three study sites in temperate forests and grasslands in 142 

Spain, California, and New Zealand as examples to show how the individual parameters used for 143 

filtering (Figure 1) complement each other. We aim (i) to evaluate the usability of the number of 144 

detected modes (i.e., of waveform maxima in the return signal) and sensitivity for removal of noise 145 

observations, (ii) to quantify the success of three filtering methods in preserving accurate 146 

measurements and eliminating inaccurate ones, (iii) to evaluate the effects of acquisition (e.g., degrade 147 

flag, beam strength, acquisition time) and environmental (landcover, slope) characteristics on GEDI 148 

observations, and (iv) to assess the geolocation error of footprints. In contrast to prior studies (Figure 149 

1), we start with unfiltered data and outline the whole process of high-quality data selection. 150 
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 151 

Figure 1. Overview of parameters used for filtering GEDI footprints in existing studies. ASG: algorithm 152 

setting groups; DEM: digital elevation model. M: millions. 153 

 154 

 155 

2. Data and Methods 156 

2.1. Study areas  157 

We selected three study areas in the temperate biome (Olson et al., 2001) in Spain, New Zealand, and 158 

California (USA; Figure 2) based on the availability of airborne laser scanning (ALS) data from the period 159 
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overlapping with the GEDI data acquisition. We used discrete return ALS data as a reference to analyze 160 

errors in terrain elevation and maximum vegetation height of GEDI footprints.  161 

 162 

 163 

Figure 2. Location of the study areas and distribution of forest canopy height therein. Canopy height 164 

retrieved from ALS data. 165 

Cantabrian Mountain Range (Spain) 166 

The Cantabrian mixed forests are a transitional zone between the Eurosiberian and the Mediterranean 167 

regions of Europe. The study area comprises mainly the Principality of Asturias and small parts of 168 

Cantabria and Castilla y León (Spain), including the highest areas of the Cantabrian mountains range at 169 

the Picos de Europa National Park with elevations ranging from 0 to 2,648 m (Figure 2). It covers an 170 

area of almost 400,000 ha. The average annual temperature is 8-14°C, and average rainfall is 900-1,800 171 

mm. The Cantabrian Range is rich in floral diversity and includes a wide range of forest types. The 172 
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forests are relatively low, with a typical height of 20 m or less (Figure 2). The lowlands are characterized 173 

by broadleaf deciduous forests with English oak (Quercus robur), European ash (Fraxinus excelsior), 174 

sweet chestnut (Castanea sativa), and lindens (Tilia platyphyllos, Tilia cordata). Forests at higher 175 

elevations are characterized by deciduous oaks (Quercus pyrenaica, Quercus petraea) with European 176 

beech (Fagus sylvatica). Subalpine plant communities, such as low shrubs and grasses, are found above 177 

the tree line.  178 

Marlborough Richmond Range (New Zealand)  179 

The study area comprises mainly the northern part of the Marlborough region (South Island of New 180 

Zealand), including the Mount Richmond Forest Park and the valley of the Wairau river with elevations 181 

ranging from 0 to 1,760 m (Figure 2). The average annual temperature is 7-17°C, and the average 182 

rainfall is around 650 mm distributed more or less evenly across the year. Mount Richmond Forest 183 

park, located north of Wairau river, was established in 1977 and covers an area of almost 166,000 ha. 184 

It is a mountainous landscape that consists of relatively unmodified vegetation and pastures. The 185 

height of the forests differs between native manuka (Leptospermum scoparium) and kanuka 186 

(Leptospermum ericoides) trees. Manuka can grow up to 10 m in height, whereas kanuka trees reach 187 

heights of up to 25 m (Figure 2). The higher stands, up to 45 m in height, include native beech and 188 

plantation forests (Nothofagus spp.). South of the Wairau river, grassland is the main vegetation cover. 189 

Trinity Alps Wilderness (California) 190 

The Trinity Alps Wilderness is the second largest wilderness area in California, with over 200,000 ha of 191 

land (Figure 2). The Trinity Alps are a subrange of the Klamath Mountains and are characterized by 192 

rugged subalpine topography with elevations ranging from 600 m to 2,750 m. Rainfall varies between 193 

740 mm and 2,720 mm of precipitation annually. This area is a transitional zone between the 194 

Mediterranean climate of the south and the Northwestern coastal climate, resulting in high plant 195 

diversity (e.g., with the second highest number of conifer species worldwide). The typical height of the 196 

forest is between 20 m and 35 m, but in relatively large parts of the study area, the forest height 197 

exceeds 45 m (Figure 2). Trinity Alps are covered by mixed conifer forests (Pinus ponderosa, Pinus 198 

contorta, Pinus lambertiana, Pseudotsuga menziesii, Abies concolor, Calocedrus decurrens), red fir 199 

forests (Abies magnifica, Pinus jeffreyi, Pinus monticola), and subalpine forests (Pinus balfouriana, 200 

Pinus albicaulis, Tsuga mertensiana) (Ferlatte, 1974).  201 

 202 

 203 

 204 
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2.2. Reference data  205 

The airborne lidar data for the study areas were collected between 2018 and 2021, with the point 206 

cloud densities between 1 and 9 points per m2 (Table 1). The ALS data for the Cantabrian Mountain 207 

Range were collected as a part of the PNOA (Plan Nacional de Ortofotografía Aérea) project (2nd 208 

coverage flights). The project aims to capture three-dimensional information using airborne lidar 209 

sensors of the entire territory of Spain (https://pnoa.ign.es/). The reported planimetric and altimetric 210 

accuracies in terms of RMSE are 30 cm and 15 cm, respectively. The ALS data for the Marlborough 211 

Richmond Range were collected as a part of an acquisition campaign to obtain the New Zealand 212 

National Elevation Model. The point cloud vertical accuracy at the 95% confidence level required for 213 

this campaign is 20 cm in non-vegetated terrain (i.e. 95% of observations have vertical error lower than 214 

20 cm, National Elevation Programme of New Zealand). The ALS data for the Trinity Alps Wilderness 215 

meet the requirements of the 3D Elevation Program (3DEP), which is designed to collect high-quality 216 

ALS data for the United States. The absolute vertical accuracies at the 95% confidence level required 217 

for 3DEP are 20 cm and 30 cm in non-vegetated and vegetated terrain, respectively (Stoker & Miller, 218 

2022). 219 

The already classified ALS point clouds were used to generate digital terrain models (DTM) and canopy 220 

height models (CHM) at a 2 m spatial resolution. We used points classified as ground to generate DTMs 221 

and the highest returns of normalized point clouds in individual cells to generate CHMs (LAStools 222 

version 230123). Noise points or points above a height threshold (60 m in Cantabria, and Marlborough, 223 

and 80 m in Trinity) were considered noise and not used for CHM generation. We used the DTMs as a 224 

reference for GEDI terrain validation and the CHMs as a reference for the validation of the GEDI top 225 

canopy height, in line with prior studies (e.g. Liu et al., 2021; Quirós et al., 2021; Zhu et al., 2022). We 226 

used landcover derived from the ESA world cover product at a 10 m resolution for the year 2020 227 

(https://esa-worldcover.org/en) to distinguish forests and grasslands.  228 

Table 1 Lidar data characteristics  

Study area 
Area 
(km2) 

Year  Horizontal datum / Projection 
Vertical 
datum 

Point 
density 

Cantabria 4,200 2018 - 2021 ETRS 1989 UTM Zone 30N RE-50 1-2 p/m2 

Marlborough 4,900 2020 - 2021 NZGD 2000 Transverse Mercator  NZVD2016 9 p/m2 

Trinity 2,400 2019 - 2020 NAD 1983 (2011) UTM zone 10N NAVD 88 8 p/m2 

 229 

2.3. GEDI instrument and data  230 

The GEDI lidar, multibeam laser altimeter was composed of three full-waveform Nd:YAG lasers, each 231 

with a 15.6 ns pulse and 242 Hz pulse repetition rate in the near-infrared region (1,064 nm). Two of 232 

https://pnoa.ign.es/
https://esa-worldcover.org/en
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these were used at full power (15 mJ/pulse), while the third one was split into two lower-energy 233 

coverage beams (4.5 mJ/pulse). The laser pulses were subjected to dithering, which resulted in a total 234 

of eight tracks separated by 600 m. Each pulse had a 25 m footprint, and along the track, the footprints 235 

were separated by 60 m (Dubayah et al., 2020). 236 

The geolocated waveforms of received energy (i.e. number of photons) as a function of time (GEDI L1B 237 

product; Luthcke et al., 2019) are the fundamental observations made by the GEDI instrument. These 238 

are further processed to provide products at the footprint level: the L2A (ground elevation, canopy 239 

height, and relative height metrics) and L2B (canopy cover, plant area index) data products. This 240 

information is subsequently used to produce gridded datasets; the L3 (mean canopy height map and 241 

standard deviation of canopy height map), and L4B (gridded above-ground biomass) datasets, at a 1 242 

km2 resolution; the best detail that has ever been produced at the near-global extent. 243 

We used version 2 of the GEDI L2A Elevation and Height Metrics product that provides ground 244 

elevation and canopy height metrics of individual footprints. The returned waveform is typically 245 

multimodal with the lowest mode (elev_lowestmode) representing the ground elevation. The accuracy 246 

of ground elevation is crucial for the estimation of canopy height metrics, as the ground serves as an 247 

elevation baseline for the canopy height estimation (Hofton & Blair, 2019). The GEDI L2A product 248 

provides the relative height (RH) metrics representing the height at which a particular quantile of 249 

energy (i.e., 1st−100th quantile) was returned, relative to the elevation of the lowest waveform mode 250 

representing the ground (Hofton & Blair, 2019). Here, we use RH98 to represent top canopy height as, 251 

for example, Milenković et al. (2022) and Li et al. (2023) regarded this as a robust metric less sensitive 252 

to noise than RH100. However, others also used RH95 (Zhu et al., 2022) or RH100 (Adam et al., 2020; 253 

Quiros et al., 2021).  254 

2.4. Target and acquisition characteristics usable for GEDI processing 255 

The L2A product includes several parameters that describe the target and acquisition characteristics 256 

and inform users about the footprint data usability, such as the number of modes 257 

(num_detectedmodes), sensitivity (sensitivity), quality flag (quality_flag), or degrade flag 258 

(degrade_flag). We integrated these parameters with other data sources (i.e. TanDEM-X DEM, ALS 259 

DTM, ESA world cover) outlining the target characteristics (i.e. terrain height, landcover, slope) to 260 

identify the causes of bias in terrain and canopy height observations as well as the usability of these 261 

characteristics for data filtering. We classified the data processing into four steps (Figure 3): (i) filtering 262 

based on parameters identifying noise observations (number of modes, sensitivity); (ii) filtering used 263 

to remove observations with low-quality (quality flag, difference to TanDEM-X DEM, low difference 264 

among results of the six algorithm setting groups); (iii) filtering based on additional parameters 265 
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potentially affecting observation accuracy (e.g. the degrade flag, laser pulse energy, time of 266 

acquisition, and slope); and (iv) mitigating geolocation error using a high-resolution DTM. 267 

 268 

Figure 3. Processing workflow. All footprints enter the first step (Noise filtering), in which GEDI 269 

observations containing no useful information are identified. Here, we compared the performance of 270 

both criteria (i.e., the Number of modes and Sensitivity) for noise filtering. Subsequently, all 271 

observations that failed in at least one of the criteria were removed. The remaining observations 272 

progressed into Step 2. In Step 2 (Low-quality data filtering), three approaches for low-quality data 273 

filtering were employed, compared, and observations identified as low-quality were removed. The 274 

remaining observations were used in Step 3, assessing whether acquisition parameters (Additional 275 

filters) were needed for additional filtering or if all low-quality data were already filtered in the prior 276 

steps. Finally, the remaining observations were used in Step 4, assessing and mitigating the geolocation 277 

error of observations. 278 

 279 

2.4.1. Noise filtering 280 

Number of modes 281 

The number of modes is an important parameter used for noise removal. The returned waveform can 282 

have a simple shape with only a single mode (similar to the transmitted output pulse), which is typical 283 

of bare ground, or it can be multimodal, which is typical for vegetation or rough terrain. Each mode 284 

represents a distinct reflecting surface within the laser footprint. The first mode detected above the 285 

noise is associated with the top of the canopy, the last one with the terrain (Beck et al., 2021). 286 

Waveforms without detected modes (i.e., waveforms consisting only of noise) correspond to poor 287 

observations and, as such, are typically removed from analyses (Figure 1). 288 

Beam Sensitivity 289 

The beam sensitivity is a signal detection performance metric that represents the maximum canopy 290 

cover that the GEDI can penetrate, correctly detecting the ground below (typically, with an estimated 291 

90% probability of correct identification and a 5% chance of a false positive result; Hancock et al., 292 
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2019). Beam sensitivity depends on multiple parameters (receiver efficiency, orbital altitude, telescope 293 

area, surface reflectivity, atmospheric transmission, background solar illumination, and laser pulse 294 

energy) and can be calculated using the lidar equation (Dubayah et al., 2020; Hancock et al., 2021). 295 

To select high-quality data, the GEDI user guide (Beck et al., 2021), among other characteristics, 296 

recommends using a sensitivity threshold of 0.9 over land; under certain conditions, it has been, 297 

however, suggested that using a higher threshold can be beneficial under certain circumstances (e.g. 298 

dense forest). Therefore, only footprints with sensitivities ranging from 0.9 to 1 are considered valid 299 

and typically used as a selection criterion for the removal of noise observations (Figure 1). In addition, 300 

beam sensitivity is one of the criteria used in the quality flag (see below).  301 

 302 

2.4.2. Low-quality data filtering 303 

Quality flag (QF) 304 

To facilitate filtering of the most useful high-quality observations, GEDI provides a quality flag 305 

(quality_flag). It is recommended only as general guidance by the GEDI user guide (Beck et al., 2021). 306 

However, for its simplicity and ease of use, it is the most commonly adopted criterion (Figure 1). The 307 

quality flag combines a set of conditions to indicate whether the waveform can be used for further 308 

analyses (1: valid waveform, 0: not valid waveform). The criteria for the quality flag include energy, 309 

amplitude, sensitivity, real-time surface tracking quality, and the difference from TanDEM-X DEM. The 310 

quality flag uses a beam sensitivity threshold of 0.9 as explained above (see section 2.4.1). Hereafter, 311 

we refer to the approach using the quality flag for filtering as QF. 312 

TanDEM-X (TDX) difference 313 

The GEDI L2A product includes the heights of two global digital elevation models (TanDEM-X and 314 

SRTM) that can be used for the assessment of the quality of GEDI observations. A large absolute 315 

difference between the GEDI ground elevation (elev_lowestmode) and elevation from an existing 316 

global digital elevation model (TanDEM-X is typically used for this purpose) can indicate erroneous 317 

observations. If the absolute difference exceeds a specified threshold, the observation is removed. The 318 

adopted thresholds differ among studies and range from 50 m (Urbazaev et al., 2022; Wang et al., 319 

2022) to 75 m (Ngo et al., 2023), 100 m (Geremew et al., 2023; Lahssini et al., 2022; Zhu et al., 2022), 320 

or even 150 m, which is used for the generation of GEDI L3 Gridded Land Surface Metrics (Dubayah et 321 

al., 2021a). Here, we tested the thresholds of 50 m and 100 m. Hereafter, we refer to this filtering 322 

approach as TDX. 323 

Algorithm setting groups (ASG) 324 
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The waveforms are processed using six possible algorithm setting groups to detect the ground and 325 

canopy height available in the L2A product. Each algorithm setting group uses a different combination 326 

of parameters to accommodate different acquisition scenarios (e.g. daytime, nighttime, low and high 327 

energy lowest modes; see Table 5 in Hofton & Blair, 2019). The most appropriate algorithm setting 328 

group for individual footprints is indicated in the GEDI (version 2) dataset, determined on the basis of 329 

the laser return energy, geographic region, and plant functional type (Beck et al., 2021).  330 

We used all six algorithm setting groups to filter out the low-quality observations. A narrow range of 331 

ground elevations predicted by the six algorithm setting groups (i.e., the similarity of their results) may 332 

indicate high-accuracy observations and can be used for their filtering (e.g. Potapov et al., 2021). 333 

Following Potapov et al. (2021), we used the threshold of the maximum difference between all six 334 

algorithm setting groups of 2 m. Observations with higher values were considered low-quality. 335 

Hereafter, we refer to this filtering approach as ASG. 336 

2.4.3. Additional filters 337 

A zero value of the “degrade flag” indicates non-degraded conditions. Non-zero degrade flag values 338 

indicate that the shot was taken during a degraded period of positioning and/or pointing information 339 

(i.e. degraded altitude or trajectory; Beck et al., 2021), and such footprints are often removed (Figure 340 

1). In addition, we also evaluated the effect of the signal strength (i.e. power/coverage beams) and 341 

time of acquisition (i.e., day/night acquisitions represented by solar elevation; positive values: day, 342 

negative values: night) on terrain and canopy height retrievals. These parameters are also often 343 

considered for GEDI data filtering (Figure 1). In addition, terrain slope is well known for its negative 344 

effect on space-borne lidar observations (e.g. Chen, 2010; Liu et al., 2021; Moudrý et al., 2022; Quiros 345 

et al., 2021). We derived rasters of slope from ALS DTMs and calculated the mean slope within a GEDI 346 

25 m diameter footprint. 347 

2.4.4 Assessment of geolocation error 348 

To test for the effect of geolocation error, following Quirós et al. (2021) and Kutchartt et al. (2022) we 349 

shifted the footprints by 10 meters and 5 meters in eight different directions: 0°, 45°, 90°, 135°, 180°, 350 

225°, 270°, and 315°, relative to the ISS orbit direction. The direction was determined from the 351 

progression of shot numbers in the GEDI data. This resulted in 17 possible positions (the original 352 

position plus sixteen alternative positions). For each position, terrain and canopy height were 353 

extracted from DTM and CHM, respectively. The optimal footprint location was determined by 354 

selecting the position with the lowest error, defined as the smallest difference between 355 

elev_lowestmode and the terrain height derived from DTM.  356 

 357 
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2.5. GEDI pre-processing and footprints selection  358 

We downloaded GEDI L2A version 2 data acquired between April 2019 and September 2022 using the 359 

Earthdata portal (accessed September 2022). The GEDI L2A elevation of the center of the lowest mode 360 

(elev_lowestmode) representing the terrain height is given as ellipsoidal height (above WGS84 361 

ellipsoid). In contrast, the vertical datum of the ALS data is given as orthometric (Spain, California) or 362 

normal (New Zealand) heights, respectively. Therefore, to match the elevation heights of the lowest 363 

mode and the reference ALS data, we subtracted relevant reference surfaces from the GEDI L2A terrain 364 

height. We used the EGM08-REDNAP geoid model for Spain (https://datos-geodesia.ign.es/geoide/), 365 

Geoid12B for California (https://geodesy.noaa.gov/), and  New Zealand Quasigeoid 2016 for New 366 

Zealand (https://data.linz.govt.nz/layer/53447-nz-quasigeoid-2016-raster/). In order to match the 367 

horizontal datum with ALS data, we projected the position of the footprints into the local coordinate 368 

system of each study area (Table 1). We limited our evaluation to two landcover categories (according 369 

to ESA world cover product): tree cover (hereafter forests) and grassland. This resulted in a total of 370 

740,779; 695,023; and 645,306 footprints in Cantabria, Marlborough, and Trinity, respectively. 371 

2.6. Assessment of GEDI observations filtering success and accuracy 372 

We first concentrated on the accuracy of the GEDI terrain estimates. In the first step, we compared 373 

the use of two acquisition parameters (number of modes and sensitivity) for the identification of noise 374 

observations, which were then removed before the next step. The second step was to identify low-375 

quality observations, which were subsequently removed, using three different approaches (QF, TDX, 376 

ASG). Finally, the remaining observations were analyzed with respect to additional characteristics that 377 

might affect GEDI observations, such as the degrade flag, laser pulse energy, time of acquisition, and 378 

slope.  379 

We defined the vertical error in GEDI terrain estimates as their deviation from the reference surface 380 

derived from the respective ALS lidar DTM. The vertical error in GEDI terrain estimates was evaluated 381 

on pairwise vertical differences between the elevation lowest mode (elev_lowestmode, i.e., the 382 

elevation estimated using the GEDI-indicated preferred algorithm setting group) of individual 383 

footprints and the lidar DTM. We used the mean elevation within a buffer with a 25 m diameter. The 384 

error distributions were summarized using two error metrics – specifically, the mean error (ME) and 385 

root mean square error (RMSE), represented as: 386 

𝑀𝐸 =
1

𝑛
∑(ℎ𝐺𝐸𝐷𝐼𝑖 − ℎ𝑅𝐸𝐹𝑖)

𝑛

𝑖=1

 387 

https://datos-geodesia.ign.es/geoide/
https://geodesy.noaa.gov/GEOID/GEOID12B/GEOID12B_CONUS.shtml
https://data.linz.govt.nz/layer/53447-nz-quasigeoid-2016-raster/
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𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(ℎ𝐺𝐸𝐷𝐼𝑖 − ℎ𝑅𝐸𝐹𝑖)2

𝑛

𝑖=1

 388 

where hGEDIi is the ith elevation from the GEDI L2A product, hREFi is the corresponding "true" elevation 389 

from a lidar DTM, and n is the number of samples.  390 

Our main goal was to study the effects of the acquisition and environmental characteristics on the 391 

quality of GEDI observations rather than to determine the absolute values of accuracy. We, therefore, 392 

focused on visualizing the distribution of vertical error using density plots and box plots because single-393 

value metrics, such as ME and RMSE are a simplification and can be misleading. To investigate the 394 

effect of acquisition and environmental characteristics, we stratified the graphs and error metrics 395 

concerning the acquisition and environmental (i.e., landcover and slope) parameters (see Section 2.4. 396 

and 2.5.). In addition to removing inaccurate measurements, it is also important that the used 397 

approaches do not remove accurate measurements. Therefore, we selected high-quality observations, 398 

i.e., GEDI footprints with the error in terrain estimate lower than 3 m, and evaluated the success of the 399 

noise filtering and low-quality data filtering criteria (Figure 3) in maintaining high-quality observations. 400 

We based the threshold for high-quality observations on the theoretical vertical accuracy of GEDI 401 

canopy height estimates, which is approximately 2–3 m (Hakkenberg et al., 2023a).  402 

Finally, we calculated pairwise vertical differences between the maximum canopy height (RH98) of 403 

individual GEDI footprints and canopy height models (CHM) derived from ALS and assessed the effect 404 

of error in GEDI terrain height estimates, slope, number of modes, and sensitivity on the accuracy of 405 

canopy height estimates. 406 

 407 

3. Results  408 

3.1. Accuracy of terrain estimates  409 

3.1.1. Noise filtering (number of modes and sensitivity) 410 

The number of detected modes increased with increasing sensitivity and had a profound effect on the 411 

observed terrain accuracy (Figure 4). The best terrain accuracy was recorded for observations with one 412 

to four modes. Further increase in the number of modes tended to underestimate the terrain; this 413 

effect was more pronounced in grasslands than in forests (Figure 4).  414 
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      415 

Figure 4. Density plots illustrate the distribution of elevation differences between GEDI 416 

(elev_lowestmode) and ALS DTM according to the number of modes classified by sensitivity and 417 

landcover type (grassland-top, forest-bottom). The number of detected modes increased with 418 

increasing sensitivity and had a profound effect on the observed terrain accuracy. Note the tendency 419 

of GEDI observations with a high number of modes in grasslands to considerably underestimate the 420 

terrain. In forests, this tendency is much lower. Observations with zero detected modes were clearly 421 

noise observations. The pattern was same for the all study areas; therefore, in this case, we merged 422 

them and the figure shows a combined result from all study areas. 423 

 424 

In each area, the two criteria (number of detected modes > 0 and sensitivity between 0.9 and 1) agreed 425 

in the identification of usable/noise observations in more than 85%. The number of detected modes 426 

criterion preserved more observations for the subsequent analysis than sensitivity (Figure 5). The 427 

sensitivity criterion tended to miss less than 1% of observations with zero detected modes. On the 428 

other hand, approximately 5% of the observations with at least one detected mode were removed due 429 

to the low sensitivity (i.e. sensitivity flag < 0.9). However, many such observations could be useful 430 

(Figure 6a). Observations with one detected mode in grasslands provide accurate terrain estimates. 431 

On the other hand, in forests, such observations may represent vegetation canopy and overestimate 432 

terrain height (Figure 6a).  433 
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We grouped the observations identified as noise according to landcover, time of acquisition 434 

(day/night), and beam strength to determine the characteristics most associated with the loss of signal 435 

(Table 2). The signal from the power beam was less often lost than that from the coverage beam (Table 436 

2). Only 20% of power beam observations were identified as noise compared to approximately 30% of 437 

the coverage beam observations. The signal from the power beam showed higher sensitivity values 438 

than the coverage beam (Figure 6b). The landcover and time of acquisition (day or night) had no effect 439 

on beam sensitivity (Figure 6b) and observations removal (Table 2). 440 

  441 

Figure 5. Venn diagram showing the percentage of observations filtered using the number of modes 442 

and sensitivity. Note that approximately 25% to 46% of GEDI footprints in our study areas are noise 443 

observations and do not provide any useful information. Between 48.5% and 69.5% of GEDI footprints 444 

passed both criteria (number of modes ≥ 1 and sensitivity ≥ 0.9).  445 

 446 

Table 2. Percentage of GEDI observations identified as noise in forests and grasslands with respect to 447 

the time of acquisition and beam strength. 448 

  Forest Grassland 

  Day  Night Day Night 

Power beam 20.0 19.7 19.6 19.6 

Coverage beam 31.0 29.3 33.2 27.7 

 449 

 450 

 451 

 452 
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 453 

Figure 6. (a) Box plots showing the relationships between the elevation error of GEDI terrain, 454 

sensitivity, landcover (forests and grasslands), and number of modes (observations with zero detected 455 

modes were clearly noise observations, see Figure 4, and were not used in this plot). Note that 456 

observations with one detected mode, especially in grasslands, provide accurate terrain estimates 457 

even for sensitivity values lower than 0.9 (such observations are typically removed as noise). In forests, 458 

however, observations with one detected mode and low sensitivity may represent vegetation canopy 459 
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and overestimate terrain height (e.g. in Marlborough). Note that in grasslands or forests of relatively 460 

low height and density (e.g. Cantabria) a combination of the sensitivity higher than 0.9 and a high 461 

number of detected modes can lead to considerable error in terrain estimates. (b) Box plots showing 462 

the relationships between sensitivity, beam strength, landcover, and time of acquisition. Note that 463 

strong beams have higher sensitivity than coverage beams.) 464 

3.1.2. Low-quality data filtering (QF, TDX, ASG) 465 

In the previous section, we clearly showed that observations with zero detected modes or sensitivities 466 

between 0.1 and 0.9 were mostly noise; they were, therefore, removed and only the remaining 467 

observations (1,195,259) were used in all comparisons in the second-tier analysis presented in this 468 

section. As shown in Figure 7a, the error distributions for observations with low differences between 469 

ASGs were considerably narrower than those for measurements with high differences between ASGs. 470 

Similarly, the difference from TDX lower than 50 m and, to some degree, also the difference from TDX 471 

lower than 100 m showed a narrow distribution of error symmetric around zero, while observations 472 

with differences from TDX higher than 100 m were erroneous in two out of the three study areas 473 

(Figure 7b). The density plots in Figure 7c illustrate the effect of the quality flag. A narrow distribution 474 

symmetric around zero was observed for the quality flag equal to one, while a multimodal distribution 475 

with high positive error was evident for the quality flag equal to zero. Note, however, that the quality 476 

flag equal to 0 may also include some accurate observations (Figure 7c). 477 
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478 

Figure 7. Density plots depicting the distribution of differences in terrain height (GEDI elevation – 479 

elevation derived from ALS DTM), in meters, according to: (a) the elevation difference between 480 

Algorithm setting groups; (b) the absolute difference between GEDI terrain elevation and TanDEM-X 481 

DEM; and (c) the quality flag (quality_flag).  482 

Only 4-25% of observations (depending on the study area) were identified as low-quality by all 483 

algorithms (QF = 1, TDX < 100 m, ASG < 2 m), which indicates low agreement among them. ASG was 484 

the most restrictive approach that removed most of the observations (75-80%). The QF and TDX 485 

approaches, on the other hand, were less stringent and their combination resulted in preserving 70-486 

90% of all non-noise observations (see Figure S1 in the Supplementary material). Combining ASG with 487 

TDX was, in terms of accuracy, the best approach (RMSEs ranging from 6.3 m to 11.1 m), followed by 488 

the combination of all methods, in which case RMSEs ranging from 7.1 m to 11.7 m were achieved 489 
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(Figure 8). Combining QF with TDX yielded slightly lower accuracy (RMSEs ranging from 11.2 m to 13.2 490 

m); however, only 10-30% of all observations were removed (compared to 75-80 % in the ASG+TDX 491 

approach). The use of only one of the conditions, no matter which one, performed poorly and led to 492 

the selection of observations with high RMSEs (Figure 8). 493 

494 

Figure 8. Venn diagrams of the performance of three approaches for filtering out low-quality data in 495 

the three study areas. The three approaches are: (QF) Quality flag equal to one; (TDX) absolute 496 

difference between the GEDI (elev_lowestmode) and elevation from TanDEM-X lower than 100 m; and 497 

(ASG) the range of ground elevations predicted by six algorithm setting groups is lower than 2 m. The 498 

values show performance metrics of individual or combined filtering approaches. We used the 499 

following performance metrics: Mean error (ME) and Root mean square error (RMSE). For more 500 

performance metrics see Figure S1 in the Supplementary material.  501 

3.1.3. Success in retaining high-quality observations 502 

We evaluated the success of the noise filtering and low-quality data filtering criteria in preserving high-503 

quality observations (i.e., with an absolute error of terrain estimates < 3 m). Only 19.5%, 24.5%, and 504 

30.8% of observations from the original unfiltered dataset met the high-quality criteria in Cantabria, 505 

Marlborough, and Trinity, respectively. In noise filtering, the number of detected modes criterion was 506 

more successful in keeping high-quality observations than sensitivity. The Number of detected modes 507 

criterion led to the removal of less than 1% of high-quality observations. In comparison, sensitivity 508 

removed between 9-15% of high-quality observations. In the low-quality data filtering, ASG was the 509 

most restrictive approach, removing approx. 60-65% of high-quality observations. The QF and TDX 510 

approaches, on the other hand, were less stringent and their combination resulted in the removal of 511 

less than 1% of high-quality observations (see Figure S1 in the Supplementary material). 512 

 513 
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3.1.4. Additional filters (Degrade flag, beam strength, time of acquisition, slope) 514 

In the previous section, we showed that the combination of QF + TDX approaches led to the successful 515 

removal of low-quality observations while keeping most of the observations available for further 516 

analysis. Therefore, we removed low-quality observations using the QF and TDX approach, and only 517 

the remaining observations (991,932) were used in all comparisons in this section. 518 

In both forests and grasslands, the accuracy of GEDI terrain estimates deteriorated with the increasing 519 

terrain slope (Figure 9a). In addition, GEDI tends to identify a higher number of modes with increasing 520 

slope (Figure 9b). Maneuvering or other ISS operations (stored in the degrade_flag) causing degraded 521 

positioning and/or pointing information also led to low accuracy of terrain observations. Importantly, 522 

it cannot be assumed that all problematic measurements caused by maneuvering would be removed 523 

by the low-quality filtering used in the previous section. In particular, degrade flag values 5, 50, and 85 524 

were not removed by low-quality data filtering in our study areas (Figure 10). We did not find any effect 525 

of the time of acquisition (day or night) on GEDI terrain accuracy (Figure 10).  526 

 527 
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Figure 9. (a) Boxplots showing the relationship between terrain accuracy, slope, and landcover. Note 528 

that the accuracy of GEDI terrain estimates decreases with increasing slope, which can be used as an 529 

additional filter if highly accurate data are needed. (b) Boxplots show the relationship between the 530 

number of modes, terrain slope, and landcover. Note that the number of detected modes considerably 531 

increases with terrain slope in both landcover types.   532 

 533 

Figure 10. Boxplots showing the accuracy of GEDI terrain estimates of power and coverage beams, also 534 

considering the degrade flag (a) and time of acquisition (b). Plots are after the removal of noise and 535 

low-quality observations. 536 

 537 

3.2. Accuracy of canopy height estimates 538 

3.2.1. Number of modes and sensitivity 539 

In this section, we illustrate the effect of the number of detected modes and sensitivity on the quality 540 

of canopy height estimates in forests and grasslands (we used only observations with the number of 541 

detected modes higher than zero). The observed canopy height accuracy was strongly related to the 542 

number of detected modes. The density plots of height differences between GEDI RH98 and lidar-543 

derived CHM (i.e. GEDI RH98 absolute vertical error) showed different patterns with respect to the 544 

number of detected modes, landcover, and study area (Figure 11). In Cantabria, the best accuracy of 545 

forest canopy height was achieved for observations with a relatively low number of detected modes 546 

(2-4 modes); in Marlborough, the best accuracy came with a slightly higher number (9-12 modes), and 547 

in Trinity, the highest number of modes (13-20 modes) performed best. This corresponds to the canopy 548 
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height in the respective study areas – the canopy height in study areas where more modes provided 549 

better accuracy is higher (Figure 1). In grasslands, on the other hand, GEDI tended to overestimate the 550 

canopy height and the overestimation increased with the number of detected modes (Figure 11), 551 

which likely resulted from incorrect classification of noise modes below the terrain as actual terrain 552 

(Figure 4). 553 

The sensitivity criterion (between 0.9 – 1.0) showed its importance for the removal of noise 554 

observations in forests where sensitivity values <0.9 led to an underestimation of canopy height (Figure 555 

12a). In Trinity and, to some degree, also in Marlborough, canopy height was on average 556 

underestimated even for sensitivity values >0.9 (Figure 12b). In grasslands, however, observations with 557 

sensitivity values <0.9 had high accuracy and were still usable, except for Trinity (Figure 12a). 558 

Moreover, in grasslands, sensitivity values >0.9 led to an increase in error and overestimation of 559 

canopy height, particularly in Marlborough and Cantabria (Figure 12b).  560 

 561 

Figure 11. Density plots depicting the distribution of canopy height differences between GEDI (RH98) 562 

and ALS-derived CHM according to the number of modes grouped by landcover type. The optimal 563 

number of modes in forests differs considerably with the study area. More modes provided better 564 

accuracy in the study areas with higher canopy height (e.g. Trinity). On the other hand, in Cantabria 565 

with relatively low forest canopy height, footprints with high numbers of modes provided clearly 566 

erroneous values. Note the tendency of GEDI observations to overestimate the canopy height in 567 

grasslands with the growing number of modes. 568 

  569 
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 570 
Figure 12. Box plots depicting the relationship between the error of GEDI canopy height estimates, 571 

landcover (forests and grasslands), beam strength, and sensitivity (a) from 0 to 1 and (b) only values 572 

higher than 0.9. Note the underestimation of forest canopy height for sensitivity values lower than 0.9. 573 

In dense forests (e.g. Marlborough, Trinity), sensitivity values even higher than 0.9 are needed to select 574 

high-accuracy observations. On the other hand, in grasslands, observations with high sensitivity may 575 

lead to the detection of multiple modes and, consequently, to the overestimation of canopy height. 576 

This is especially common on steep slopes (see also Figures 9 and 11). 577 

3.2.2. Effect of the terrain on the accuracy of canopy height estimates  578 

The accuracy of terrain estimates (see Section 3.1.) is crucial for estimates of canopy height. Therefore, 579 

we also demonstrate the role of accurate terrain observations in determining canopy height estimates. 580 

In this section, we used only observations with the number of detected modes higher than 0 and 581 

sensitivity between 0.9–1.0 (i.e. we removed noise observations). As expected, in forests, the 582 

underestimation of terrain elevation led to the overestimation of canopy height and vice versa. In 583 

grasslands, however, both overestimation and underestimation of the terrain led to the 584 

overestimation of canopy height (Figure 13a). The overestimation of canopy height increased with the 585 

increasing slope (Figure 13b). This is because GEDI tended to identify a higher number of modes with 586 

increasing slope (Figure 9b), which likely resulted in the detection of multiple modes incorrectly 587 

considered as vegetation and, therefore, resulting in an observed overestimation of canopy height 588 

(Figure 13b), particularly in grasslands (Figure 11). Observations with large terrain errors (> 50 m) were 589 
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an exception, not following these trends and causing large errors in canopy height observations (Figure 590 

13a).   591 

 592 

Figure 13. (a) Box plot showing the relationship between CHM accuracy and accuracy of terrain 593 

estimates. Note that in forests, an overestimation of terrain leads to the underestimation of canopy 594 

height and vice versa. (b) Box plot showing a relationship between the terrain slope and error in canopy 595 

height estimates. Note that the coverage and power beams are equally affected by the slope. 596 

 597 

3.3. Geolocation error 598 

We showed that maneuvering or other ISS operations causing degraded positioning and/or pointing 599 

information led to low accuracy of terrain observations. Therefore, we removed observations with a 600 

degrade flag equal to 5, 50, and 85, and only the remaining observations (963,709) were used in all 601 

comparisons in this section. 602 

We shifted footprints in eight directions by two different distances to determine the approximate 603 

direction and magnitude of the geolocational error and its effect on the accuracy of the terrain and 604 

canopy height estimates. The shift by 10 m led to improved accuracy in 70 % of the footprints, shift by 605 

5 m in another 26 % (no improvement after the shift was observed in the remaining 4 %, see Table 3). 606 

Neither direction was generally predominant, with the exception of Marlborough, where a 135° shift 607 

of footprints was the most common (Figure 14). The accuracy of GEDI terrain estimates improved with 608 
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locational shifts. However, this did not lead to a corresponding improvement in vegetation height 609 

estimates (Table 3, Figure 15). In addition, the success in minimizing the geolocation error depended 610 

on the number of modes and landcover (Figure 15). In forests, minimizing the geolocation error led to 611 

a notable improvement in the accuracy of terrain estimates. In grasslands, on the other hand, we 612 

observed much lower improvement in the accuracy of footprints with many modes, suggesting that 613 

these are more severely affected by the measurement characteristics other than the geolocational 614 

error.  615 

Table 3. Frequency of shifts, terrain and canopy height accuracy measures before and after shifting. 

 Frequency of 
shifts (%) 

Terrain Canopy 

 ME (m) RMSE (m) ME (m) RMSE (m) 
  0 m 5 m 10 m Original Shifted Original Shifted Original Shifted Original Shifted 
Cantabria 3.8 27.9 68.3 -2.0 -0.5 10.9 9.0 5.5 7.2 10.7 11.4 
Marlborough 3.2 24.2 72.6 0.2 0.5 12.7 9.4 0.9 1.3 8.3 8.2 
Trinity 3.5 25.9 70.6 -2.5 -0.9 11.3 8.3 -7.3 -6.6 13.8 13.3 

 616 

 617 

Figure 14. Percentage of shifts of GEDI footprints with respect to shift magnitude and direction. 618 

 619 

 620 

 621 

 622 
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 623 

Figure 15. Box plots illustrating the height differences between GEDI and ALS reference data for terrain 624 

(a) and canopy (b) height estimates before (original) and after (shifted) correction for geolocation 625 

error, categorized by the number of modes and landcover type. 626 

 627 

 628 

 629 

 630 
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4. Discussion 631 

In this study, we examined the effect of acquisition characteristics (such as number of detected modes, 632 

sensitivity, beam strength, solar background noise, slope) on the vertical accuracy of GEDI terrain 633 

(elev_lowestmode) and canopy (RH98) height estimates and determined their usability for identifying 634 

noise (e.g. when a beam could not reach the Earth's solid surface), and low-quality observations (e.g. 635 

when a return from canopy is identified as ground return). In this way, approximately 51.5%, 44.2%, 636 

and 30.5% of observations were identified as noise in the Cantabria, Marlborough, and Trinity regions, 637 

respectively (Figure 5). Additionally, 14.7%, 8.0%, and 6.0% of observations were categorized as low-638 

quality in the same regions. Consequently, after the removal of noise and low-quality data, the 639 

retained data yielded percentages of 33.8%, 47.8%, and 63.5% for Cantabria, Marlborough, and Trinity, 640 

respectively. 641 

 642 

4.1. Number of modes, sensitivity, and slope 643 

Our results show that using a non-zero number of detected modes is a useful first filter to identify 644 

noise observations while keeping high-quality observations. In addition, the number of detected modes 645 

profoundly affected the observed terrain and canopy height accuracy. In forests, there was an 646 

association between the true (ALS-determined) canopy height and the optimum number of modes; for 647 

example, 9-12 modes provided the best results in Marlborough, which is characterized by tall 648 

vegetation, but only 2-4 modes in Cantabria where low forests predominate (Figure 11). In grasslands, 649 

there was a tendency to underestimate the terrain with an increasing number of modes, which, in 650 

turn, led to an overestimation of the canopy height (Figure 4; Figure 11). This problem was most 651 

evident on steep slopes. The number of modes increases with increasing slope (Figure 9b), suggesting 652 

that the waveform on steep slopes (or in a rugged terrain) takes a bimodal (or even multimodal) shape. 653 

One mode is reflected by the bottom of the slope, while the other by the top of the slope, with the 654 

latter being treated as vegetation. On slopes greater than 45°, we observed median underestimation 655 

of terrain (Figure 9) and corresponding overestimation of canopy height of up to 10 m (Figure 13b). 656 

This finding corresponds with prior studies that reported considerable effect of terrain slope and/or 657 

number of modes on GEDI terrain and canopy height estimates in both forested and non-forested 658 

landscapes (Quirós et al., 2021; Urbazaev et al., 2022; Wang et al., 2022). 659 

Filtering using the sensitivity criterion must be applied with caution and the character of the landcover 660 

(e.g. height and density of vegetation) must be taken into account. The sensitivity criterion (sensitivity 661 

between 0.9 and 1) showed its importance for the removal of noise observations in forests where 662 

sensitivity values lower than 0.9 lead to an underestimation of canopy height (Figure 12a). Such a 663 
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threshold works well for forests of relatively low height and density, such as in Cantabria. However, in 664 

high and dense forests, such as Trinity and Marlborough (Figure 2), a higher sensitivity threshold, e.g. 665 

0.95, is needed, as also recommended by the GEDI user guide (Beck et al., 2021). In addition, it was 666 

recently shown by Fayad et al. (2022) that in densely vegetated areas, beams with high sensitivity (≥ 667 

0.98) have a higher chance of reaching the ground. On the other hand, in grasslands, a high sensitivity 668 

criterion tended to remove useful observations (Figure 6). However, observations in grasslands are 669 

equally important as those from forested areas for successful modeling of canopy height at fine 670 

resolutions (e.g. Lang et al., 2023; Potapov et al., 2021; Schwartz et al., 2023). Filtering them out using 671 

the sensitivity or quality flag criteria (Figure 1; quality flag uses a sensitivity threshold of 0.9) results in 672 

a reduced number of samples for model fitting. Approximately 5% of observations in each study area 673 

were removed this way (Figure 5). Therefore, we recommend using different sensitivity values for 674 

different landcover types to avoid unwanted removal of accurate observations. Over landcover types 675 

with low or sparse vegetation, such as grasslands, we recommend using a sensitivity higher than 0.5 676 

(Figure 12a; which is also used over the ocean; Beck et al., 2021) but lower than 0.9. Sensitivity greater 677 

than 0.9 resulted in an overestimation of canopy height in grasslands, especially on steep slopes, where 678 

high sensitivity led to the detection of multiple modes, causing an overestimation of canopy heights. 679 

Alternatively, this issue could be addressed by excluding observations in grassland areas, on steep 680 

slopes, and those with a high number of modes (e.g. higher than 5). 681 

4.2. Best filtering of low-quality observations (QF, ASG, TDX) 682 

Even if observations pass the first noise filter, they may still have low accuracy, which limits their use 683 

for further analysis. Indeed, our results show that only 20-31% of observations had an absolute vertical 684 

error of terrain estimates <3 m. However, the identification of low-quality observations is challenging, 685 

and studies use different approaches for low-quality data filtering (Figure 1). Only 4-25% of 686 

observations were identified as low-quality by all algorithms, which indicates low agreement among 687 

them (Figure 8). However, none of the approaches is superior. Using only one of the approaches may 688 

lead to the selection of observations with high RMSEs (Figure 8); therefore, we recommend combining 689 

at least two approaches. ASG was the most restrictive approach, and we do not recommend using it, 690 

as it removes a large number of high-quality observations (Figure 8). On the other hand, the 691 

combination of QF and TDX approaches was less stringent, kept most of the high-quality observations, 692 

and achieved similar accuracies in terms of RMSE as when ASG was used. Therefore, the combination 693 

of these two approaches could be recommended, especially when it is important to minimize the 694 

reduction of the number of observations.  695 
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Removing observations with high absolute differences from global DEMs is a common approach 696 

(Figure 1). In our study areas, the difference between TanDEM-X DEM and GEDI terrain observations 697 

higher than 100 m indicated mostly erroneous measurements (Figure 7). The absolute vertical accuracy 698 

of global DEMs, such as TanDEM-X, depends on terrain characteristics and canopy height and, hence, 699 

considerably differs among landcover types (Gdulová et al., 2020; Hawker et al., 2019). Therefore, care 700 

must be taken when selecting the threshold, and the landcover type and forest height should be 701 

considered. Low absolute difference thresholds (e.g., 50 m) can lead to removing useful observations 702 

(Urbazaev et al., 2022). In forests, such as in our study areas, we recommend a 100 m threshold; in 703 

grasslands, it is reasonable to use a 50 m threshold. Accurate terrain models from ALS data are 704 

available in the United States, Australia, New Zealand, and many countries in Europe (e.g., Moudrý et 705 

al., 2023; Stoker & Miller, 2022). In this case, using such models in combination with a more stringent 706 

threshold is more appropriate for the selection of accurate GEDI observations. 707 

4.3. Degrade flag, beam type, and time of acquisition  708 

Our results show that the degrade flag is an important parameter to consider when filtering GEDI 709 

observations, as degraded observations may not be removed by noise or low-quality filters. Degrade 710 

flags 5, 50, and 85 (see Beck et al., 2021 for the explanation of these values) were particularly 711 

problematic in our study areas. On the other hand, using the degrade flag considerably lowered the 712 

number of available observations. We observed an additional 19.5% decrease in number of 713 

observations. These results correspond with the recent study by Urbazaev et al. (2022), who showed 714 

that applying the GEDI degrade flag reduced the number of GEDI observations by more than 20%. 715 

Considering individual classes of the degrade flag and removing only classes that cause large errors 716 

(e.g., by comparing to TanDEM-X DEM) might minimize losses.  717 

The time of acquisition did not considerably affect the quality of observations in our study areas (Figure 718 

10). Similarly, Liu et al. (2021) concluded that the accuracy of the GEDI data acquired during the day 719 

and at night is almost identical, but some studies suggested otherwise (Adam et al., 2020).  The beam 720 

type did not affect the quality of retrieved terrain and canopy height observations, either (Figure 9, 721 

Figure 12), but the signal from the power beam was less often lost than that from the coverage beam 722 

(Table 2). Other studies, such as Liu et al. (2021) over multiple sites in the United States and, more 723 

recently, Rodda et al. (2023) in a tropical dry forest in India, however, typically reported that power 724 

beams were more accurate than coverage beams. Such differences might be, for example, related to 725 

forest types evaluated in individual studies. In addition, beam strength is an input for calculating 726 

sensitivity; therefore, if a sensitivity criterion is applied, coverage beams of potentially low accuracy 727 
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are removed in that step. We recommend using both power and coverage beams in temperate forests 728 

and grasslands, regardless of whether they were acquired during the day or night. 729 

 730 

4.4 Mitigation of geolocation error 731 

Our results show that locational shifts improved the accuracy of GEDI terrain estimates. All directions 732 

of data shifts were evenly presented, and none of them dominated (Figure 14). Although prior studies 733 

highlighted systematic shifts in locations of the first release of GEDI footprints (Quirós et al., 2021; 734 

Kutchartt et al., 2022), our results rather correspond to the more recent findings indicating that the 735 

second release of GEDI data, used in this study, achieved improved geolocation accuracy (Tang et al. 736 

2023). However, the ability to mitigate geolocation error using high-resolution DTM decreased with 737 

the increasing number of detected modes (Figure 15), which was consistent with the observation that 738 

the same issue was reported for slope (Quirós et al., 2021) and that the number of detected modes 739 

increased with increasing slope (Figure 9b). This suggests that geolocational error should be considered 740 

only together with other characteristics, such as slope or the number of modes, the impact of which 741 

on the GEDI accuracy can be much higher than that of the geolocation error itself. Furthermore, the 742 

improvement in the accuracy of terrain height estimates did not lead to a corresponding improvement 743 

in vegetation height estimates (Table 3). Similar results were reported by other studies (Schleich et al., 744 

2023; Tang et al., 2023). It is therefore possible that mitigating geolocation error using high-resolution 745 

DTM is insufficient and that approaches based on simulated waveforms are more appropriate (e.g., 746 

Roy et al., 2021). 747 

4.5 Limitations & Future research 748 

Here, we only tested filtering in temperate forests and grasslands. We do show that the filtering may 749 

need to be adjusted depending on the landcover types. Therefore, it would be important to also test 750 

filtering approaches across other biomes and landcover types. In tropical forests, for example, the 751 

optimal filtering may be different from temperate forests, as previously shown, e.g., by Fayad et al. 752 

(2022) and Lahssini et al. (2022). For example, in tropical forests, it might be reasonable to use only 753 

power beams and sensitivity higher than 0.98 (e.g., Ngo et al., 2023; Oliveira et al., 2023). Future 754 

research could focus on this knowledge gap to provide a more comprehensive overview of GEDI data 755 

filtering across all biomes (Figure 1). In addition, we considered only terrain and canopy height 756 

observations, but we did not look at the estimates of the vertical canopy structure in between that top 757 

canopy height and terrain. Future research could focus on the retrieval of such metrics as well, given 758 

that those are often used to assess forests. Here, we specifically focused on the filtering of the GEDI 759 

waveforms and we chose a value of absolute canopy height as the representative of ‘high-quality 760 
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observations’, we did not propagate errors of canopy height through to subsequent applications. This, 761 

and the effect of erroneous GEDI measurements on subsequent data applications (e.g. Marselis et al., 762 

2019, 2022) and products such as Foliage height diversity index (Hirschmugl et al., 2023), Leaf area 763 

index (Wang et al., 2023), or above ground biomass (Dorado-Roda et al., 2021), could be studied in the 764 

future to further establish what a high-quality observation entails.  765 

5. Conclusion 766 

In this study, we evaluated the most effective ways of identifying noise and low-quality observations 767 

from GEDI, while keeping high-quality observations among the non-noise waveforms. We conclude 768 

that to identify noise observations in temperate forests and grasslands, it is best to filter by the 769 

'number of modes' and remove all observations with less than 1 mode. The 'sensitivity' metric must 770 

be considered together with landcover. The recommended sensitivity threshold of 0.9 was sufficient 771 

in the forests of Cantabria, but higher values were required in the forests of Marlborough and Trinity. 772 

On the other hand, in areas with sparse tall vegetation, such as grasslands or low-density forests, 773 

sensitivity down to 0.5 can be considered. Importantly, sensitivity higher than 0.9 typically 774 

overestimates canopy height in grasslands. This can be avoided by removing observations with a high 775 

number of modes (e.g. higher than 5) in grasslands. We found that to filter out the low-quality 776 

observations (following the noise removal in the previous step), the combination of the quality flag 777 

(QF) and difference from TanDEM-X DEM was the most effective in terms of trade-off between 778 

removing incorrect observations and retaining as many high-quality observations as possible. 779 

Additional filters that are important to pay attention to include the degrade flag and the terrain slope. 780 

Beam type and time of acquisition (day/night) did not improve the retention of high-quality 781 

observations and are, therefore, not seen as essential in temperate forests and grasslands. 782 
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Figure S1. Venn diagrams of the performance of three approaches for filtering out low-quality data in 

the three study areas. The three approaches are: (QF) Quality flag equal to one; (TDX) absolute 

difference between the GEDI (elev_lowestmode) and elevation from TanDEM-X lower than 100 m; and 

(ASG) the range of ground elevations predicted by six algorithm setting groups is lower than 2 m. We 

used the following performance metrics: Percentage of all observations, Percentage of retained high-

quality observations (i.e., footprints with error in terrain estimate < 3 m), mean error (ME), root mean 

square error (RMSE), mean absolute error (MAE). The values within the diagrams show performance 

metrics of individual or combined filtering approaches. In all areas, the combination of QF and TDX 

resulted in most preserved observations, including those of high-quality and relatively low error values. 

The values outside the diagrams show the performance metric of low-quality footprints removed by 

all three approaches. The percentage of removed observations ranged from 4.5% to 25% and had high 

error values (e.g. RMSE values higher than 2000 m).  
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Abstract 42 

Global mapping of forest height is an extremely important task for estimating habitat quality and 43 

modeling biodiversity. Recently, three global canopy height maps have been released, the Global 44 

Forest Canopy Height Map (GFCH), the High-Resolution Canopy Height Model of the Earth (HRCH), 45 

and the Global Map of Tree Canopy Height (GMTCH). Here, we assessed their accuracy and usability 46 

for biodiversity modeling. We examined their accuracy by comparing them with the reference 47 

canopy height models derived from airborne laser scanning (ALS). Our results show considerable 48 

differences between the evaluated maps. The RMSE ranged between 10-18 m for GFCH, 9-11 m for 49 

HRCH, and 10-17 m for GMTCH respectively. GFCH and GMTCH consistently underestimated the 50 

height of all canopies regardless of their height, while HRCH tended to overestimate the height of 51 

low canopies and underestimate tall canopies. Biodiversity models using predicted global canopy 52 

height maps as input data are sufficient for estimating simple relationships between species 53 

occurrence and canopy height, but their use leads to a considerable decrease in the discrimination 54 

ability of the models and to mischaracterization of species niches where derived indices (e.g. canopy 55 

height heterogeneity) are concerned. We showed that canopy height heterogeneity is considerably 56 

underestimated in the evaluated global canopy height maps. We urge that for temperate areas rich 57 

in ALS data, activities should concentrate on harmonizing ALS canopy height maps rather than relying 58 

on modeled global products. 59 

 60 

Keywords: Canopy height, canopy structure, habitat, heterogeneity, niche, lidar, GEDI, SDM 61 
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INTRODUCTION 68 

Forest ecosystems cover more than 4.1 billion hectares of the Earth’s surface and provide a number 69 

of services, including the regulation of the global carbon cycle and acting as reservoirs of unique 70 

species and/or high biodiversity. It is well recognized that the vertical structure of the forest, 71 

including canopy height, is directly associated with aboveground biomass (Fischer et al. 2019), 72 

primary productivity (Dănescu et al. 2016), and animal (Davies & Asner 2014) and plant diversity 73 

(Cazzolla Gatti et al. 2017). This, together with the high level of forest ecosystem threat induced by 74 

climate change and human activity, places the fine-grain global mapping of forest height among the 75 

highest-priority variables to be monitored from space (Lefsky et al. 2005; Bergen et al. 2009; 76 

Skidmore et al. 2021). 77 

Until recently, we lacked comprehensive global data on the spatial patterns of canopy height. This 78 

changed with the rise of spaceborne laser altimetry: Light Detection And Ranging (LiDAR) missions. 79 

The Ice, Cloud, and land Elevation Satellite (ICESat) mission, operational between 2003 and 2009, 80 

collected over 250 million observations of forested areas globally (Schutz et al. 2005). In 2018, NASA 81 

launched two spaceborne LiDAR missions that have since continuously been providing data on the 3D 82 

structure of the Earth’s surface. Namely, the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) and 83 

the Global Ecosystem Dynamics Investigation (GEDI), onboard the International Space Station, the 84 

latter being specifically designed for vegetation mapping (Dubayah et al. 2020; Magruder et al. 2021). 85 

Spaceborne LiDAR sensors collect data along discrete transects. Hence, they only provide discrete 86 

samples of forest structure. Hancock et al. (2021) estimated that with the current in-orbit 87 

technology, twelve satellites would be required to produce a continuous map of canopy structure at 88 

a 30 m resolution every five years. Therefore, to produce continuous maps of global forest heights at 89 

fine resolution, the currently common approach is to train statistical or machine learning models that 90 

combine direct measurements (e.g. ICESat, GEDI, ICESat-2) with spatially continuous ancillary data 91 

(e.g. Sentinel-2, Landsat) enabling the estimation of the desired variable at locations not directly 92 

measured by GEDI or ICESat (Bergen et al. 2009; Lefsky, 2010). Simard et al. (2011) combined canopy 93 

heights collected by ICESat and multiple environmental variables (e.g., tree cover, climate, altitude) 94 

to derive a global map of canopy height at 1 km spatial resolution. That map was used e.g. to assess 95 

the association between canopy height and global water availability (Klein et al. 2015) and to test the 96 

hypothesis of a global relationship between plant species richness and canopy height (Cazzolla Gatti 97 

et al. 2017). 98 

Biodiversity modeling is one of the important use cases for global canopy height maps as they can be 99 

used to describe habitat heterogeneity (Bergen et al. 2009; Davies & Asner, 2014; Simonson et al. 100 
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2014; LaRue et al. 2023; Fischer et al. 2024). Habitat heterogeneity has long been recognized as a key 101 

landscape characteristic determining biodiversity patterns. It is assumed that more complex 102 

environments may provide more potential niches and, thus, harbor higher species diversity (so-called 103 

habitat heterogeneity and fractal biodiversity hypotheses; Tews et al. 2004 and Cazzolla Gatti 2016). 104 

For example, taller canopies with high structural heterogeneity may harbor higher biodiversity by 105 

providing more, and more varied, resources. Indeed, canopy height has been shown to play an 106 

important role in determining the diversity and distribution of various taxa (Seavy et al. 2009; Feng et 107 

al. 2020; Cooper et al. 2020; Walter et al. 2021; Marselis et al. 2019; 2022; Tew et al. 2022; 108 

Coddington et al. 2023; Gallerani et al. 2023). The same effect was observed for horizontal 109 

heterogeneity in canopy height (Wolf et al. 2012; Fricker et al. 2021; Torresani et al. 2020). 110 

Therefore, besides the accuracy of canopy height estimates, it is also essential to know the sensitivity 111 

of global canopy height maps to canopy height changes and how well they represent canopy 112 

heterogeneity, such as edges (i.e. transitions between forest and non-forest). 113 

According to Bergen et al. (2009), the requirements for canopy height accuracy for biodiversity and 114 

habitat science are ±2 m (but preferably ±1 m) and a resolution of 25-30 m considering the spatial 115 

scale of species’ relationships with habitat characteristics (Šímová et al. 2019; Moudrý et al. 2023a). 116 

For example, Potapov et al. (2021) and Lang et al. (2023) created global canopy height maps at 30 m 117 

and 10 m spatial resolutions, respectively. More recently, Meta and World Resources Institute 118 

developed a global canopy height map at a 1 m resolution (Tolan et al. 2024). Still, despite their 119 

unprecedented spatial resolutions, modeled global canopy height maps suffer from limited accuracy 120 

related to e.g. the quality of input data and the accuracy of modeling procedures. Such errors will 121 

propagate to any subsequent analyses using these data, therefore it is important to have a good 122 

understanding of the limitations of these data products (Bolton et al. 2013; Magruder et al. 2016; 123 

Atkins et al. 2023). In addition, the reliability of predicted global maps is increasingly questioned, 124 

particularly concerning often unreliably high accuracy estimates provided by the authors, for 125 

example, because of the use of inappropriate validation strategies or non-representative reference 126 

data (Duncanson et al. 2019; Meyer & Pebesma 2022).  127 

Therefore, in this study, we (1) evaluate the accuracy of three modeled global canopy height maps 128 

using airborne laser scanning data in Switzerland, New Zealand, and California; (2) assess the 129 

sensitivity of global canopy height maps to changes in canopy height (i.e. how well they represent 130 

canopy heterogeneity); (3) analyze the effects of environmental characteristics on the accuracy of 131 

canopy height estimates; and, finally, (4) assess the usability of the global canopy height maps for 132 

biodiversity modeling using a virtual species approach (See Figure 1 for the overall workflow of the 133 

study). 134 
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 135 

Figure 1. Workflow of the study. ALS: Airborne laser scanning, CHM: Canopy height model, DTM: 136 

Digital terrain model, GFCH: Global Forest Canopy Height (Potapov et al. 2021), HRCH: High-137 

Resolution Canopy Height Model of the Earth (Lang et al. 2023), GMTCH: Global Map of Tree Canopy 138 

Height (Tolan et al. 2024). 139 

 140 

MATERIALS AND METHODS 141 

Study areas  142 

We selected three study areas in the temperate biome (Olson et al. 2001) in California (USA), 143 

Switzerland, and New Zealand (Figure 2) based on airborne laser scanning (ALS) data availability 144 

between 2019 and 2021 (Table 1). All three sites are ecologically significant regions, each with unique 145 

ecosystems and biodiversity. Moreover, they are also renowned for their natural beauty and scenic 146 

landscapes. On the one hand, they share similarities in terms of diverse and complex topography; on 147 



6 
 

the other hand, however, these landscapes differ in several aspects of their characters. While Mount 148 

Richmond Forest includes hills and valleys, Entlebuch is a typical pre-alpine landscape with relatively 149 

gentle and undulating topography, and Trinity Alps represent a rugged mountain range with complex 150 

topography and high peaks. In terms of land cover, all these regions are forested and host a wide 151 

variety of ecosystems. Trinity Alps feature high-altitude landscapes with natural forests. This 152 

contrasts with the lower-lying terrain found in the Mount Richmond Forest, consisting of grasslands, 153 

native and plantation forests, and the cultural landscape of Entlebuch, which includes both cultivated 154 

lands, woodlands, and forests. 155 

 156 

Table 1. Study areas and LiDAR data characteristics 

Study area 
Area 
(km2) 

Altitude (m) 
LiDAR acquisition 

(Year) 
Horizontal 

datum 
Vertical 
datum 

Density 
(points·m-2) 

Trinity Alps 
Wilderness 

2,588 600 – 2,750  2019 - 2020 NAD 1983  NAVD 88 8  

Entlebuch 
Biosphere Reserve 

803 500 – 2,350  2019 LV95 LN02 5  

Mount Richmond 
Forest 

6,267 0 – 1,760 2020 - 2021 
NZGD 
2000 

NZVD2016 9  

 157 

 158 

 159 

Figure 2. Location, canopy height and land cover within the study areas. 160 

 161 

Trinity Alps Wilderness 162 

The Trinity Alps Wilderness is the second largest wilderness area in California with over 200,000 ha of 163 

land. The Trinity Alps are a subrange of the Klamath Mountains and are characterized by rugged 164 

subalpine topography. The Trinity Alps region has the second-greatest number of conifer species of 165 
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any place in the world. They form mixed conifer forests (Pinus ponderosa, Pinus lambertiana, Pinus 166 

contorta, Abies concolor, Pseudotsuga menziesii, Calocedrus decurrens), red fir forests (Abies 167 

magnifica, Pinus jeffreyi, Pinus monticola), or subalpine forests (Pinus balfouriana, Pinus albicaulis, 168 

Tsuga mertensiana) (Ferlatte 1974).  169 

Entlebuch Biosphere Reserve 170 

The cultural landscape of Entlebuch was endorsed as a UNESCO Biosphere Reserve in 2001. The 171 

Reserve encompasses almost 40,000 ha of mostly prealpine and alpine mountain chains, forests, 172 

agriculturally utilized meadows, and small settlements in the center of Switzerland. At lower altitudes 173 

beech (Fagus sylvatica) is often naturally dominant, whereas in mountain forests the dominant 174 

species are spruce (Picea abies) and larch (Larix decidua).   175 

Mount Richmond Forest 176 

The study area comprises mainly the northern part of the Marlborough region (South Island of New 177 

Zealand), including the Mount Richmond Forest Park and the valley of the Wairau River (Figure 2). 178 

Mount Richmond Forest is a forest park established in 1977 in the South Island of New Zealand. The 179 

park covers an area of almost 166,000 ha.  It is covered with relatively unmodified vegetation 180 

including native beech and plantation forests (Nothofagus spp.), dense native manuka 181 

(Leptospermum scoparium) and kanuka (Leptospermum ericoides) forests, and pastures. South of the 182 

Wairau river, grassland is the main vegetation cover.  183 

 184 

Reference airborne laser scanning data 185 

The ALS data for the Trinity Alps Wilderness meet the requirements of the 3D Elevation Program 186 

(3DEP), which is managed by the U.S. Geological Survey and designed to collect high-quality LiDAR 187 

data for the conterminous United States. The minimum absolute vertical accuracies at the 95% 188 

confidence level for 3DEP are 20 cm and 30 cm in non-vegetated and vegetated terrain, respectively 189 

(Stoker and Miller 2022). The ALS data for Entlebuch were collected as a part of an acquisition 190 

campaign to obtain Switzerland-wide LiDAR data. Their reported planimetric and altimetric 191 

accuracies are 20 cm and 10 cm (1 sigma), respectively (Federal Office of Topography in Switzerland). 192 

The ALS data for the Mount Richmond Forest were collected as a part of an acquisition campaign to 193 

obtain the New Zealand National Elevation Model. The minimum planimetric and altimetric 194 

accuracies for vegetated and non-vegetated areas are 50 cm and 10 cm, respectively (National 195 

Elevation Programme of New Zealand). 196 
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Data pre-processing  197 

The classified ALS point clouds were processed in LAStools (version 220613; academic license). The 198 

data was divided into 2 km tiles. A buffer of 10 m was assigned to each tile to avoid edge effects 199 

when generating Digital terrain models (DTM) and Canopy height models (CHM). DTMs were 200 

generated at a 1 m resolution from points classified as ground using the blast2dem function of 201 

LAStools. Subsequently, DTMs were aggregated (using mean cell values) to the resolution of 202 

evaluated global canopy height maps (i.e., at 10 m and 30 m). The point clouds were subsequently 203 

height-normalised using the lasheight function of LAStools, which calculates the height of each point 204 

above the terrain. Canopy height models (CHM) were generated at a 1 m resolution from the 205 

normalized point cloud using the lasgrid function of LAStools. To create the CHM, we used the 206 

highest returns in individual cells; each return was represented by a small circle (10 cm) to avoid 207 

creating pits in the CHMs (Khosravipour et al. 2014). Points classified as noise (class 7 and 18), 208 

buildings (class 6), water (class 9), or bridges (class 17) were not considered during CHM generation 209 

(LAS Specification 2019). CHMs were subsequently aggregated (using maximum height values within 210 

the cell) to the resolution of evaluated global canopy height maps (i.e., at 10 m and 30 m). In 211 

addition, cells with an estimated predictive uncertainty higher than 45 m (Lang et al. 2023) as well as 212 

cells with a canopy height above 60 meters (Entlebuch, Mount Richmond Forest), and 70 meters 213 

(Trinity Alps Wilderness) were removed, as these values are higher than maximum tree height in the 214 

respective study areas and were assumed to be outliers. Out of approximately 70.5 million cells, only 215 

421 were removed in this way.  216 

Global canopy height maps  217 

Global Forest Canopy Height (GFCH) 218 

Potapov et al. (2021) published a Global Forest Canopy Height (GFCH) map for the year 2019 with a 219 

spatial resolution of 30 m (https://glad.umd.edu/dataset/gedi/). They used Landsat and Shuttle 220 

Radar Topography Mission (SRTM) data and a regression tree algorithm to extrapolate GEDI 221 

Collection 1 canopy height measurements acquired between April and October 2019. They used the 222 

95th percentile of energy return height relative to the ground (RH95) as the estimate of canopy top 223 

height. To ensure high data quality they used only observations collected at night by GEDI’s power 224 

beams (Dubayah et al. 2020), with beam sensitivity ≥0.9 and with the agreement of the predicted 225 

ground elevations among the six algorithm setting groups within ≤2 m (see Table 5 in Hofton and 226 

Blair, 2020). In addition, they excluded observations collected during the leaf-off season in temperate 227 

and boreal forests. This resulted in a sample size of 372 million GEDI footprints, 10% of which were 228 

https://glad.umd.edu/dataset/gedi/
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used for validation. More recently, an updated version for the year 2020 using GEDI Collection 2 data 229 

with better geolocation accuracy has become available (https://glad.umd.edu/dataset/GLCLUC2020; 230 

Potapov et al. 2022). Here, however, we stick to using the 2019 version (see also Potapov et al. 2022 231 

and Table 2 for a comparison of the two versions).  232 

 233 

High-Resolution Canopy Height Model of the Earth (HRCH) 234 

Lang et al. (2023) created a High-Resolution Canopy Height Model of the Earth (HRCH) for the year 235 

2020 with a spatial resolution of 10 m (https://langnico.github.io/globalcanopyheight/). They used a 236 

deep convolutional neural network to integrate GEDI data acquired between April and August of 237 

both 2019 and 2020 with Sentinel-2 images of the lowest cloud coverage between May and 238 

September 2020. They defined the canopy top height as the relative height at which 98% of the 239 

energy was returned (RH98). They filtered out GEDI observations with clouds or snow-covered 240 

images. The sample size consisted of 600 million GEDI footprints, 20% of which were used for 241 

validation.  242 

Global Map of Tree Canopy Height (GMTCH) 243 

Meta and World Resources Institute created a Global Map of Tree Canopy Height (GMTCH). The map 244 

was generated in three steps: (i) the extraction of features from a self-supervised model trained on 245 

high resolution (approx. 1 m) imagery from WorldView-2, WorldView-3, and Quickbird II satellites, 246 

covering the years 2009 through 2020 (80% of the imagery is from the 2018 to 2020 period). The 247 

imagery consisted of 18 million „cloud free“ satellite images of Red, Green, and Blue (RGB) bands, 248 

with approx. 0.5 m resolution, from across the globe; (ii) supervised training of a dense prediction 249 

decoder using pairs of ALS CHM and RGB satellite images; and (iii) post-processing using a 250 

convolutional network trained on 13 million GEDI observations to correct a potential bias coming 251 

from a geographically limited source of supervision (Tolan et al. 2024). The dataset creates a global 252 

baseline of tree canopy height with a spatial resolution of approximately 1 m; however, for practical 253 

reasons, especially to improve visualizations (i.e. comparability with other models) and 254 

computational time, we have aggregated the GMTCH to the resolution of 10 meters (using maximum 255 

values). 256 

 257 

 258 

 259 

https://glad.umd.edu/dataset/GLCLUC2020
https://langnico.github.io/globalcanopyheight/
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Validation of global canopy height maps  260 

Overall accuracy 261 

We examined the accuracy of HRCH (Lang et al. 2023), GFCH (Potapov et al. 2021), and GMTCH 262 

(Tolan et al. 2024) by comparing them with the reference ALS CHMs. The ALS CHMs are considerably 263 

more accurate compared to global canopy height maps and can thus be used as the reference 264 

dataset (true canopy height). As all global maps represent canopy top height, we used maximum 265 

canopy height at 10 m and 30 m resolutions, respectively (i.e. we aggregated ALS CHMs using focal 266 

statistics type maximum). Subsequently, we calculated vertical differences between the modeled 267 

global canopy height maps and CHMs, using pairwise combinations on a cell-by-cell basis. We used 268 

the differences to calculate error metrics for each study area; namely, we calculated the mean error 269 

(ME) and root mean square error (RMSE), expressed as: 270 

𝑀𝐸 =
1

𝑛
∑(ℎ𝐺𝐶𝐻𝑀𝑖 − ℎ𝑅𝐸𝐹𝑖)

𝑛

𝑖=1

 271 

 272 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(ℎ𝐺𝐶𝐻𝑀𝑖 − ℎ𝑅𝐸𝐹𝑖)2

𝑛

𝑖=1

 273 

 274 

where hGCHMi is the ith canopy height from the global canopy height map, hREFi is the corresponding 275 

“true” canopy height from the reference ALS CHM, and n is the number of samples. 276 

 277 

Horizontal heterogeneity 278 

Canopy height models (CHMs) provide a representation of habitat heterogeneity. We used the 279 

standard deviation of canopy height to estimate horizontal heterogeneity from the modeled global 280 

canopy height maps (HRCH, GFCH, GMTCH) and from ALS data. Selecting the appropriate resolution 281 

is an important aspect in evaluating the effects of fine-scale habitat heterogeneity on biodiversity. 282 

The resolution should be as close as possible to the ecological scale at which a focal species is 283 

expected to respond to habitat heterogeneity (see the review by Moudrý et al. 2023a). Prior studies 284 

evaluating the effects of fine-scale habitat heterogeneity on biodiversity, for example in birds, have 285 

shown that resolutions ranging from hundreds of meters to a few kilometers are appropriate for 286 

modeling (Moudrý et al. 2021; Suárez‐Castro et al. 2022; Hunt et al. 2023; Roilo et al. 2023). Besides, 287 
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the resolution of all datasets is relatively fine (i.e., 1 m, 10 m and 30 m, respectively), and it is, 288 

therefore, likely that studies adopting this data will aim for fine resolution. Therefore, we evaluated 289 

the accuracy of canopy height horizontal heterogeneity at a 300 m resolution rather than a coarser 290 

one. 291 

Use of global CHMs in biodiversity modeling 292 

Understanding the interactions between species and their environment is crucial for predicting 293 

species distribution patterns and habitat use, which in turn enhances biodiversity conservation and 294 

management. Species distribution models (SDMs) are extensively used to assess species-295 

environment relationships and to predict species distributions across spatial and temporal scales. 296 

However, despite their widespread use, SDMs face significant challenges associated in particular with 297 

the quality of input data (Rocchini et al. 2011; Fourcade et al. 2018; Araújo et al. 2019; Gábor et al. 298 

2024). 299 

Simulation of virtual species  300 

The virtual species approach is widely used to exemplify the effect of input data (in this case global 301 

canopy height datasets) error on SDMs (e.g. Zurell et al. 2010; Meynard & Kaplan 2013; Moudrý 302 

2015). We used a simulated virtual species to ensure the complete knowledge of species distribution 303 

in order to enable a proper assessment of model performance without confounding effects of real 304 

data, such as positional uncertainty of occurrence data, species response grain, or shape of the 305 

response curve (e.g. Zarzo-Arias et al. 2022; Gábor et al. 2022; 2023). The simulated species' niche 306 

preference is an indirect way to illustrate the potential errors that could arise when predicting 307 

species' habitat preferences using global CHMs. 308 

We first defined the response of virtual species to the canopy characteristics using the ALS CHM. As 309 

mentioned, canopy height and horizontal heterogeneity in canopy height are important 310 

determinants of the diversity and distribution of various taxa (e.g. Fricker et al. 2015; Feng et al. 311 

2020). Therefore, we simulated two distinct relationships (response functions) between species 312 

occurrence and an environmental variable to generate environmental suitability. In the first scenario, 313 

we defined a virtual species with specific habitat requirements in terms of canopy height. The 314 

response to canopy height was defined as the logistic response function with the following 315 

parameters: alpha = -7, beta = 20. Alpha drives the slope of the curve, while beta controls its 316 

inflection point. Hence, this virtual species might represent a forest species (e.g. bird) preferring 317 

higher canopies. As mentioned in the Introduction, habitat heterogeneity is one of the most 318 

important factors affecting species distributions and diversity. Therefore, in the second scenario, we 319 
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defined a virtual species habitat requirements in terms of horizontal heterogeneity in canopy height 320 

using the standard deviation of the canopy height. The response function was defined as Gaussian. 321 

The parameters of the response differed slightly for each study area according to canopy height 322 

heterogeneity in respective areas: Trinity Alps Wilderness (mean 10 m, standard deviation 2 m), 323 

Mount Richmond Forest (mean 7 m, standard deviation 3 m), Entlebuch Reserve (mean 7 m, 324 

standard deviation 3 m). Hence, this virtual species represents a species preferring moderate canopy 325 

height heterogeneity.  326 

We adopted a probabilistic approach (logistic function with alpha=−0.15 and beta=0.65) to convert 327 

the environmental suitability raster into the probability of occurrence, which is subsequently used to 328 

randomly sample presences and absences. We simulated the sampling of equal numbers of 329 

presences and absences – namely, 800 samples for the first scenario and 400 for the second, 330 

respectively. We always used data of the same resolution to generate the virtual species and to fit 331 

the model. This approach assumes that each species interacts with the environment at a single scale 332 

(McGarigal et al. 2016; Moudrý et al. 2023a) defined by the resolution of canopy height models used 333 

to generate the virtual species. All simulations were undertaken in R v.3.4.3, using the virtualspecies 334 

package (Leroy et al. 2016). 335 

Virtual species model fitting and evaluation 336 

It is customary to fit the Gaussian response with a polynomial model. We used generalized linear 337 

models (GLMs) with binomial error distribution and logit link function. For the first scenario, we 338 

included only linear terms. For the second scenario, both linear and quadratic terms of habitat 339 

heterogeneity were included because of the known Gaussian shape of the response functions. We 340 

modeled the species distribution using the canopy heights derived from ALS data (same as used for 341 

the virtual species generation) as well as using both modeled global canopy height maps.  342 

To evaluate the models, we split the sampled presences-absences into test (50%) and training (50%) 343 

datasets. We ran the entire process from species generation to model evaluation 25 times. Each 344 

repetition provided a different presence-absence distribution (Leroy et al., 2016). We evaluated the 345 

model calibration by plotting the estimated environmental relationships. We assessed the model 346 

discrimination capacity by the area under the curve (AUC) of the receiver operating characteristic 347 

plot (Fielding and Bell, 1997). 348 

 349 

 350 
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RESULTS 351 

Overall accuracy  352 

The mean error of HRCH shows a positive vertical offset when compared to the maximum canopy 353 

height derived from ALS CHMs in all areas. On the other hand, the mean error of GFCH and GMTCH 354 

show a negative vertical offset (Table 2). The RMSEs of all models are below 12 m except for GFCH 355 

and GMTCH in Trinity Alps Wilderness where the RMSE is greater than 16 m. Canopies taller than 40 356 

m are considerably underestimated by all models, however HRCH outperforms the GFCH and GMTCH 357 

in estimating their height. GFCH and GMTCH consistently underestimate the height of all canopies 358 

regardless of their height, while HRCH tends to overestimate the height of lower canopies and 359 

underestimate taller canopies (Table 3, Figure 3). The vegetation of low height (i.e. below 10 m) is 360 

considerably overestimated by HRCH, with GFCH and GMTCH providing better accuracy (Table 3, 361 

Figure 3). The BRT models of HRCH, GFCH and GMTCH error explained between 58.2% - 73.1% of 362 

variability. All maps underestimated the horizontal heterogeneity of canopy height in all study areas 363 

(Figure 4). This coincides with an impaired ability to respond to changes in canopy height, as 364 

observed in the canopy height profiles, especially in the case of HRCH (Figure 5). Finally, the canopy 365 

height accounted for most of the variability in the global CHMs error, while the effects of slope and 366 

orientation were relatively weak (Appendix S1: Table S1). The accuracy of global canopy height maps 367 

deteriorated with the increasing slope and the relationship between the accuracy and terrain 368 

orientation seemed increasingly evident for greater slopes (Appendix S1: Figure S1).  369 

 370 

Table 2. Accuracy measures of the High-resolution canopy height model of the Earth (HRCH), the Global 
Forest Canopy Height (GFCH) version for the years 2019 and 2020, and the Global Map of Tree Canopy 
Height (GMTCH) for individual study areas based on comparison with ALS-derived CHMs 

Locality 
HRCH   GFCH 2019 (2020)   GMTCH 

ME (m) 
RMSE 

(m)  
ME (m) RMSE (m) 

 

ME 
(m) 

RMSE 
(m) 

Trinity Alps Wilderness 4.2 11.2  -14.3 (-14.1) 18.3 (18.0)  -12.6 16.7 

Entlebuch Biosphere Reserve 5.9 10.5  -7.1 (-7.6) 11.8 (12.2)  -6.8 10.9 

Mount Richmond Forest 4.8 8.8  -4.4 (-4.6) 9.7 (9.6)  -7.2 10.2 

Reported by Potapov et al. (2021)    -3.8 9.1    
Reported by Lang et al. (2023)  -4.8 – 5.9 2.8 – 9.6  -7.9 – -1.0 5.2 – 12.0    
Reported by Tolan et al. (2024)      

 0.6 4.4 

 371 
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Table 3. Accuracy measures of the High-resolution canopy height model 
of the Earth (HRCH), the Global Forest Canopy Height (GFCH), and the 
Global Map of Tree Canopy Height (GMTCH) with respect to canopy 
height derived from ALS reference data. 

Locality 
Canopy 
height (m) 

HRCH   GFCH   GMTCH 

ME 
(m) 

RMSE 
(m) 

  
ME 
(m) 

RMSE 
(m)   

ME 
(m) 

RMSE 
(m) 

Tr
in

it
y 

A
lp

s 
   

 
W

ild
er

n
es

s 

0–5 12 15   2 6   -2 3 

5–10 12 15  -1 6  -5 6 

10–20 9 12  -6 9  -8 10 

20–30 5 9  -10 13  -12 14 

30–40 0 7  -15 17  -17 19 

40–50 -5 8  -20 22  -24 25 

>50 -13 15   -27 29   -33 35 

En
tl

eb
u

ch
 B

io
sp

h
er

e 
R

es
e

rv
e 

0–5 12 13   2 4   0 2 

5–10 10 12  -4 7  -5 6 

10–20 7 9  -7 11  -9 10 

20–30 1 5  -11 14  -12 14 

30–40 -5 7  -13 15  -17 18 

40–50 -11 12  -18 19  -24 25 

>50 -23 24   -31 32   -41 42 

M
o

u
n

t 
R

ic
h

m
o

n
d

 
Fo

re
st

 

0–5 10 11   0 4   -1 3 

5–10 11 11  0 8  -3 5 

10–20 7 9  -2 9  -6 7 

20–30 1 5  -5 9  -11 12 

30–40 -6 8  -11 13  -18 18 

40–50 -15 15  -20 21  -26 27 

>50 -25 25   -31 32   -38 38 

 372 
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 373 

Figure 3. Density plots illustrate the distribution of canopy height differences between global maps 374 

and ALS-derived data, categorized by canopy height. GFCH: Global Forest Canopy Height (Potapov et 375 

al. 2021), HRCH: High-Resolution Canopy Height Model of the Earth (Lang et al. 2023), GMTCH: 376 

Global Map of Tree Canopy Height (Tolan et al. 2024). 377 
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 378 

Figure 4. Standard deviation of canopy height derived from global canopy height models versus ALS-379 

derived standard deviation of canopy height. The solid line indicates y = x. Note that all maps 380 

considerably underestimate the horizontal heterogeneity of canopy height in all study areas. 381 

 382 
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 383 

Figure 5. Representative canopy height profiles: Trinity Alp Wilderness (top); Entlebuch Biosphere 384 

Reserve (center); Mount Richmond Forest (bottom). The profiles are 10 m wide. Note the impaired 385 

ability (particularly for HRCH map) to respond to changes in the canopy height (i.e. the transition 386 

between forest and non-forest is unclear). For example, the mosaic of pastures and forests in the 387 

Entlebuch study area (bottom) looks like a forest with height ranging between 15 and 25 m in the 388 

HRCH map. In contrast, the GMTCH map performs relatively well in distinguishing between forest 389 

and non-forest areas. This is due to the considerably better resolution of the input data used to 390 

generate this map. However, the biggest underestimation of vegetation height was observed for the 391 

GMTCH. The data and code used to plot the canopy height profiles is available on Github (see the 392 

Data availability statement). ALS: Airborne laser scanning, CHM: Canopy height model, DTM: Digital 393 

terrain model, GFCH: Global Forest Canopy Height (Potapov et al. 2021), HRCH: High-Resolution 394 

Canopy Height Model of the Earth (Lang et al. 2023), GMTCH: Global Map of Tree Canopy Height 395 

(Tolan et al. 2024). 396 

 397 

 398 

 399 
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Biodiversity modeling accuracy 400 

Our results show a decrease in the discrimination ability of the models (i.e. AUC values) when the 401 

models are fitted using the global canopy height maps compared to the reference ALS data for both 402 

scenarios (Figure 6). For the first scenario (i.e. increasing probability of occurrence with increasing 403 

canopy height), the drop was relatively low, and the global models performed well in capturing these 404 

relationships. Notably, the HRCH map demonstrated good performance (Figure 6). However, for the 405 

second scenario (i.e. species preferring moderate canopy height heterogeneity), the drop in 406 

discrimination ability was high and the global models failed to estimate the true relationship (Figure 407 

6). In this scenario, the shape of the estimated environmental relationship was slightly closer to the 408 

virtual reality for GMTCH than for HRCH and GFCH. However, none of the models correctly identified 409 

the virtual species optimum, which led to the misidentification of the species' optimal niche by 410 

several meters.  411 

 412 

Figure 6. Modeled probability of species occurrence with respect to canopy height (top) and habitat 413 

heterogeneity (bottom) estimated with generalized linear models using ALS CHM, GFCH, GMTCH, 414 

and HRCH maps. The shaded areas represent the regions delimited by the 5th–95th percentiles of 415 

the estimated probability of occurrence obtained from 25 simulations. Black lines show the “true” 416 

relationships. Points represent presences and absences used for model training (black) and testing 417 

(red). The area under the curve (AUC) of the receiver operating characteristic plot characterizes the 418 
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discrimination ability of the models. ALS: Airborne laser scanning, CHM: Canopy height model, DTM: 419 

Digital terrain model, GFCH: Global Forest Canopy Height (Potapov et al. 2021), HRCH: High-420 

Resolution Canopy Height Model of the Earth (Lang et al. 2023), GMTCH: Global Map of Tree Canopy 421 

Height (Tolan et al. 2024). 422 

 423 

DISCUSSION 424 

Global CHMs accuracy 425 

Our results show similar RMSEs as independent validation of GFCH and HRCH provided by Lang et al. 426 

(2023) in Mount Richmond Forest (Table 2). The RMSEs in the Entlebuch Biosphere Reserve and in 427 

Trinity Alps Wilderness are slightly higher - below 12 m for both maps, with GFCH in Trinity Alps 428 

Wilderness being the only exception. In that area, the RMSE of GFCH is greater than 18 m, which is 429 

likely related to the presence of large areas with tall canopies (Figure 2). The ME values of HRCH and 430 

GFCH found by us are consistent with those reported by Lang et al. (2023) (Table 2). Our results also 431 

support the recommendation by Lang et al. (2023) to filter out inaccurate predictions using the 432 

estimated predictive uncertainty map. Indeed, the estimated predictive uncertainty correlates well 433 

with the absolute canopy height error of the HRCH map, at least as far as errors up to 12 meters are 434 

concerned, and can be used as a reliable estimate for the canopy height error (Appendix S1: Figure 435 

S2). 436 

Estimation of canopy height using satellite images is typically hampered by the underestimation of 437 

tall canopies, with the height estimates saturating at around 30 meters (Potapov et al. 2021; Healey 438 

et al. 2020). Our results show that GMTCH and GFCH consistently underestimate the height of all 439 

canopies regardless of their height. This is consistent with independent validation of GFCH provided 440 

by Lang et al. (2023) who showed that the GFCH map tends to underestimate canopy height in areas 441 

where HRCH only slightly overestimates it (see Extended Data Table 1 in Lang et al. 2023). Indeed, 442 

HRCH outperforms the GMTCH and GFCH in estimating the height of tall canopies (taller than 30 m; 443 

Table 3), consistent with the results of Lang et al. (2023) who highlighted that their approach reduces 444 

the saturation effect. However, Lang et al. (2023) reported that the ‘price they paid’ for improving 445 

the performance of tall canopies was a slight overestimation of low canopy heights. According to our 446 

results, however, this ‘price’ is quite high, as the overestimation of low canopies in temperate biome 447 

can reach considerably high values (Table 3, Figure 3). HRCH overestimated the height of low 448 

canopies (up to 10 m high) on average by 10 m (Table 3). This is well illustrated in the canopy height 449 

profiles (Figure 5). For example, the mosaic of pastures and forests in the Entlebuch study area 450 
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(Switzerland) appears as a continuous forest in the HRCH map (i.e., the transition between forest and 451 

non-forest is unclear), while the GMTCH and GFCH maps correctly show zero canopy height in 452 

grasslands (Figure 5). The sensitivity of the GMTCH map to canopy height changes (i.e., transitions 453 

between forest and grasslands) is considerably improved compared to the HRCH and GFCH maps due 454 

to its finer resolution (Figure 5). In this context, Schwartz et al. (2023) reported that the resolution of 455 

HRCH appears to be coarser than 10 meters. This could also be partly related to the fact that the 456 

effective spatial resolution of HRCH is coarser than the nominal 10 m ground sampling distance (Lang 457 

et al. 2023). This is a consequence of the GEDI footprint (~25 m diameter) and its misalignments 458 

caused by geolocation error (Roy et al. 2021). Surprisingly, according to Lang et al. (2023), this should 459 

not severely limit the usefulness of the map. However, in our opinion, overestimating data quality 460 

increases the risk of incorrect implications derived from its use, which can in effect lead to incorrect 461 

management decisions. For this reason, we believe that it should be the producer’s responsibility not 462 

to overvalue their data product. 463 

Biodiversity modeling  464 

Our results clearly show that the use of global tree canopy height maps for biodiversity modeling 465 

allows the estimation of simple relationships between species occurrence and canopy height (Figure 466 

6). However, when derived indices such as canopy height heterogeneity are used, it leads to a 467 

considerable decrease in the discriminatory ability of the models and mischaracterization of species 468 

niches (but see Torresani et al. 2023 who showed the opposite). When using global canopy height 469 

maps, it is extremely important to take the accuracy of the maps and particularly of the derived 470 

indices (e.g. habitat heterogeneity and complexity) into consideration before including them in the 471 

modeling process. 472 

In this study, we used a simplistic example that utilized a single predictor at a resolution 473 

corresponding to the known response grain of a virtual species, which was perfectly sampled without 474 

any deficiencies in occurrence data. This is, however, a very unlikely (if not impossible) combination. 475 

For example, multiple resolutions are typically tested when developing SDMs and this can 476 

considerably affect the propagation of errors from global CHMs (McGarigal et al. 2016; Gábor et al. 477 

2022; Moudrý et al. 2018). Furthermore, deficiencies in species occurrence data, including positional 478 

accuracy (Gábor et al. 2023) and sampling bias (Rocchini et al. 2023), must also be taken into 479 

account. Failure to account for errors and their interaction can lead to misinterpretation of species-480 

environment relationships and misidentification of areas important for species conservation. 481 

Nevertheless, the interaction of errors in species occurrences and environmental predictors remains 482 

understudied (but see Standfuß et al. 2024). 483 
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Given the poor performance of global CHMs, we attempted to replace global CHMs with Normalized 484 

Difference Vegetation Index (NDVI) in the models to evaluate whether their use would be justified at 485 

all (see Appendix S1 for details on the methods). The NDVI is generally positively correlated with 486 

canopy structure, including its height (Gamon et al. 1995; Pascual et al. 2010). However, models 487 

using NDVI performed worse than those using global CHMs in both scenarios. In the first scenario, 488 

AUC values were 0.74, 0.67 and 0.74 for Trinity Alps Wilderness, Entlebuch Biosphere Reserve and 489 

Mount Richmond Forest, respectively. This is considerably worse than the the performance of global 490 

CHMs (Figure 6). In the second scenario, AUC values were below 0.60 in all study areas, which is 491 

again worse than the performance of the best global canopy height model. This suggests that the 492 

CHMs could have merit compared to indices derived more directly from the spectral data. However, 493 

further analyses involving “real” species and a combination of multiple variables (not just one, as in 494 

our simplifying case) are needed to validate this. 495 

We showed that vertical bias in global CHMs can prevent researchers from getting the appropriate 496 

niche estimate. Local high-accuracy CHMs, such as those derived from ALS data, which are 497 

increasingly available through governmental agencies in Europe as well as in other parts of the 498 

World, should thus be favored (e.g. Melin et al. 2017; Assmann et al. 2022; Stoker and Miller 2022; 499 

Kissling et al. 2023; Moudrý et al. 2023b). 500 

Way forward 501 

Estimating forest characteristics, such as canopy height, using optical images is a challenging task 502 

because optical remote sensing is not designed to capture the vertical structure of vegetation and 503 

the physical associations between spectral signatures and vertical forest structure are still poorly 504 

understood (Goetz & Dubayah 2011; Lang et al. 2023; Rodríguez-Veiga et al. 2017). Models could be 505 

improved by using large training datasets (Schwartz et al. 2022) and including additional suitable 506 

predictors that are known to affect canopy height, such as climatic and topographic variables (Klein 507 

et al. 2015; Simard et al. 2011; Tao et al. 2016; Wang et al. 2019). In addition, it might be valuable to 508 

train models with respect to land cover (Healey et al. 2020). For example, Lefsky (2010) developed 509 

models independently for broadleaf and needleleaf forests, and Simard et al. (2011) considered 12 510 

land cover classes. Furthermore, it might be valuable to train models at a local scale. For example, 511 

Kacic et al. (2023) and Schwartz et al. (2023) developed canopy height models using GEDI and 512 

Sentinel data for Germany and France, respectively. Schwartz et al. (2023) showed that their model 513 

considerably outperforms both HRCH and GFCH. This might be thanks to the improved ability of their 514 

approach to filter out unsuitable GEDI footprints. Furthermore, the models can be improved by 515 

removing GEDI footprints on steep terrain (Simard et al. 2011; Bolton et al. 2013), which was not 516 
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considered in either HRCH or GFCH. The terrain slope is an important factor known to cause bias in 517 

canopy height estimates from space-borne LiDAR (Liu et al. 2021; Moudrý et al. 2022; Quirós et al. 518 

2021). It is particularly problematic for full waveform large footprint LiDAR such as the Geoscience 519 

Laser Altimeter System (GLAS) onboard the ICESat satellite (e.g. Simard et al. 2011). The GEDI 520 

footprint size is considerably smaller, which reduces the effect of slope on canopy height estimates 521 

(Dubayah et al. 2020). However, our results still show an effect of slope and aspect on the accuracy 522 

of all maps (Appendix S1: Figure S1). If not accommodated for, such errors can propagate through 523 

the modeling and negatively affect canopy height predictions. 524 

CONCLUSION 525 

In this study, we investigated the agreement between three global canopy height maps and canopy 526 

height estimates derived from airborne LiDAR in temperate biomes. Our results show that there are 527 

large errors in the evaluated global maps. Tall canopies are underestimated by all models, however 528 

HRCH map (Lang et al. 2023) outperforms the GFCH (Potapov et al. 2021) and GMTCH (Tolan et al. 529 

2023) maps in estimating their height. On the other hand, HRCH map appeared to be less sensitive to 530 

spatial heterogeneity in canopy height, resulting in more uniform canopy height predictions, than the 531 

GFCH and GMTCH maps which provided a better estimate of horizontal heterogeneity in canopy 532 

height.  533 

Existing errors propagate through to subsequent analyses, which is particularly important for 534 

applications in biodiversity modeling as habitat heterogeneity is a key characteristic determining 535 

biodiversity patterns. Our virtual species experiments showed that biodiversity models using 536 

modeled global canopy height maps perform well for simple relationships, but lead to the 537 

mischaracterization of species niches when using derived indices (e.g. standard deviation of canopy 538 

height). The modeled global canopy height maps are readily available in raster format, increasing the 539 

risk that users would prefer global products to the tedious processing of more accurate ALS data. It 540 

is, therefore, particularly important that users are aware of the errors and their impact on 541 

biodiversity modeling so they can make informed decisions. We suggest that for temperate areas rich 542 

in ALS data (e.g. Europe, USA) activities should concentrate on harmonizing ALS canopy height maps 543 

rather than relying on modeled global products.  544 
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Comparison of three high-resolution global canopy height maps and 

their applicability to biodiversity modeling: Accuracy issues revealed 
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Effects of environmental characteristics on CHM accuracy 

The accuracy of GEDI canopy heights computed from full waveforms depends, among other things, on 

the ground target characteristics such as terrain slope, canopy height, and land cover (Liu et al. 2021; 

Urbazaev et al. 2022). In addition, visual inspection of the error of predicted CHMs revealed that terrain 

orientation may play a role, likely due to the effects of shadows on the reflectance values of satellite 

images used in the prediction. The accuracy of the modeled global canopy height maps may, among 

other things, also depend on these characteristics. Terrain aspect and slope were derived from ALS 

DTMs and resampled to the resolution of the corresponding global canopy height map using Horn’s 

algorithm with a 3 × 3 cell neighborhood implemented in ArcGIS (version 10.8.1) to calculate terrain 

aspect and slope (Moudrý et al. 2019). Land cover was derived from the ESA world cover product at a 

10 m resolution for the year 2020 (https://esa-worldcover.org/en; Zanaga et al. 2022).  Canopy height 

was derived from ALS and aggregated (using maximum height values within each cell) to the 10 m and 

30 m resolution, respectively. 

We used Boosted Regression Trees (BRT) to investigate the relative contribution of terrain slope, 

aspect, land cover, and canopy height to the error of the canopy height map. BRT is an advanced 

algorithm of machine learning that combines multiple regression tree models iteratively to enhance 

predictive accuracy (Elith, Leathwick, & Hastie, 2008). This method has been used extensively in various 

disciplines (e.g., Moudrý et al. 2021; Naghibi et al. 2022; Wu et al. 2022) and is at least equally efficient 

as other computationally intensive techniques like random forests (Valavi et al. 2022).  

Two important parameters that have to be specified for BRT are the tree complexity (which controls 

whether interactions are incorporated) and shrinkage (learning rate). The shrinkage parameter is used 

to control the contribution of each individual tree to the final model. A smaller value (e.g., 0.01) means 

that the contribution of each tree is more modest, and the algorithm learns slowly. Conversely, a larger 

value (e.g., 0.1) allows each tree to have a more substantial effect on the model, leading to faster 

learning. Tree complexity and shrinkage parameters determine the number of trees needed for the 

prediction. As a rule of thumb, a combination leading to a model with a minimum of 1000 trees is 

recommended. We initialized the models with the following characteristics:  a shrinkage of 0.01, a bag 

fraction (the proportion of data used when selecting the optimal tree number) of 0.5, and tree 

complexity of 2 (i.e. model with up to two-way interactions). We used a 5-fold cross-validation to 

estimate the optimal number of trees. At each iteration, the residual deviance was calculated and the 

number of trees giving the best model (i.e. lowest deviance) was identified (Elith, Leathwick, & Hastie, 

2008). Canopy height error was modeled specifying the Gaussian error distribution. We assessed the 

relative importance of each variable using formulae developed by Friedman (2001). All models were 

fitted using the package gbm (version 2.1.5; Greenwell et al. 2019) and dismo (version 3.6.0; Hijmans 

et al. 2017) in R. 

https://esa-worldcover.org/en


TABLE S1. The relative importance of environmental conditions for the accuracy of global 
canopy height models, and the variability in canopy height error explained by the models. 

Locality   Model 
Canopy 
height 

[%] 

Landcover 
[%] 

Aspect 
[%] 

Slope 
[%] 

  
Mean 
total 

deviance 

Variability 
explained 

(%) 

Trinity Alps 
Wilderness 

H
R

C
H

 

86.1 8.4 5.4 0.1  107.268 58.2 

Entlebuch 
Biosphere Reserve 

91.3 4.1 2.1 2.5  74.922 70.3 

Mount Richmond 
Forest 

94.4 2.6 2.2 0.8   53.029 72.4 

Trinity Alps 
Wilderness 

G
FC

H
 

86.1 3.5 10.2 0.2   127.994 60.0 

Entlebuch 
Biosphere Reserve 

86.8 4.6 7.2 1.5  87.14 62.6 

Mount Richmond 
Forest 

85.8 6.1 3.8 4.3  73.667 48.7 

Trinity Alps 
Wilderness 

G
M

TC
H

 

97.6 1.2 0.8 0.4 
 

119.0 61.0 

Entlebuch 
Biosphere Reserve 

98.4 1.1 0.4 0.1 
 

72.7 70.7 

Mount Richmond 
Forest 

95.3 0.7 3.6 0.4 
  

52.5 73.1 

 



 

Figure S1. Boxplots showing the accuracy of the modeled global canopy height maps considering the 

terrain slope and orientation (aspect). 

 

Estimates of High-Resolution Canopy Height Model of the Earth uncertainty  

Lang et al. (2023) provide a map that estimates the predictive uncertainty for every cell of their High-

Resolution Canopy Height Model of the Earth (HRCH). We investigated the relationship between the 

absolute height differences (HRCH minus LiDAR CHM) and the theoretical error represented by the 



uncertainty estimates to evaluate the usability of theoretical error for filtering out inaccurate 

predictions (Lang et al. 2023). 

The theoretical height error of HRCH, represented as the estimated predictive uncertainty, exhibits a 

unimodal distribution with a peak around 9 meters in all study areas. Most of the values fall within the 

range of approximately 6 to 14 meters (Figure S2). In the Entlebuch Biosphere Reserve and Mount 

Richmond Forest, the estimated predictive uncertainty accurately reflects the median of the absolute 

canopy height error for most of the cells.  The median of the absolute canopy height error for the HRCH 

map increases linearly with estimated predictive uncertainty. A linear relationship is observed up to 

the value of approximately eight to fourteen meters, depending on the study area (Figure S2). After 

this value, uncertainty estimates tend to overestimate the absolute canopy height error (Figure S2). 

However, in the Trinity Alps Wilderness, the estimated predictive uncertainty is an unreliable estimate 

of the absolute canopy height error.  

 

Figure S2.  The theoretical height error of the HRCH map represented as the estimated predictive 

uncertainty versus the measured absolute canopy height error (calculated as a difference between 

HRCH and ALS CHM). The dashed line indicates a hypothetical perfect agreement of estimated 

uncertainty and observed vertical errors. Histograms show the distribution of estimated and calculated 

vertical error.  

 

Calculation of Normalized Difference Vegetation Index (NDVI) 

Given the limited accuracy of global CHMs, one of the reviewers suggested testing whether their use 

in SDMs is justified at all. Therefore, we attempted to replace global CHMs with Normalized Difference 

Vegetation Index (NDVI) in SDMs. We used Sentinel-2 Level-2A multispectral images to calculate 

(NDVI). We analyzed surface reflectance images from the Sentinel-2 satellite, covering the vegetation 

seasons at our study areas from 2019 to the present. For the regions in California and Switzerland, this 

corresponds to the months from May to September, and for New Zealand, from October to May. The 

Sentinel-2 platform provides spectral resolution from the visible spectrum to the shortwave infrared, 

with 4 visible and near-infrared bands and 2 shortwave infrared bands. The spatial resolution of the 



images is 10 meters per cell for used visible and near-infrared spectrum. Level-2A processing, including 

native atmospheric corrections performed by the European Space Agency (ESA). Our data pre-

processing included filtering for clouds, shadows, and snow. We utilized the global cloud filtering based 

on the Sentinel-2 Cloud Probability product with a threshold setting of 25% probability. Additionally, 

individual cells (pixels) were filtered to exclude cloudy, shaded, and snow-covered pixels based on the 

Copernicus Sentinel-2 'cloud mask' and 'QA60' quality bands. After filtration and masking, we retained 

3,610 images for New Zealand, 1,080 images for California, and 1,722 images for Switzerland. We 

combined the individual corrected and masked satellite images into 5-year composites (seamless 

mosaics), based on the median values of overlapping pixels within the vegetation season. The entire 

remote sensing data processing was conducted using the Google Earth Engine cloud computing 

platform. 
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