
DOCTORAL THESIS

Petr Vacek

Multigrid methods for large-scale
problems: approximate coarsest-level

solves and mixed precision computation

Department of Numerical Mathematics

Supervisor of the doctoral thesis: Erin Claire Carson, Ph.D.
Study programme: Computational Mathematics

Prague 2024

I declare that I carried out this doctoral thesis on my own, and only with the
cited sources, literature and other professional sources. I understand that my
work relates to the rights and obligations under the Act No. 121/2000 Sb., the
Copyright Act, as amended, in particular the fact that the Charles University has
the right to conclude a license agreement on the use of this work as a school work
pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

I would like to start by thanking my supervisor Dr. Erin Carson. Her guidance
and support during my PhD studies helped me become a better mathematician
and researcher. I also appreciate her patience, kindness and optimism. I am happy
that I could be a member of your group.

I am also grateful to prof. Zdeněk Strakoš and Dr. Jan Papež, for their
mentoring and continuous help since my bachelor studies.

I would like to further thank professors Kirk Soodhalter, Ulrich Rüde, and
Hartwig Anzt for giving me the opportunity to visit their research groups in
Ireland and Germany. All these stays were really valuable experiences for me from
both a professional and a personal standpoint.

This thesis concludes not only my PhD studies but also my time at Charles
University, where I have started eleven years ago. Throughout this time many
people at the Department of Numerical Mathematics have helped me to learn and
overcome many challenges. I was fortunate enough to share this time with my
fellow PhD students, to whom I am grateful.

Most of all, I would like to thank my family, my girlfriend and my friends for
being a part of my life, for always believing in me, supporting me and for making
my life happier.

This work was supported by Charles University PRIMUS project PRIMUS/19/
SCI/11, grant SVV-2023-260711, grant SVV-2023-260711, Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy
Office of Science and the National Nuclear Security Administration, and by the
European Union (ERC, inEXASCALE, 101075632). Views and opinions expressed
are those of the authors only and do not necessarily reflect those of the European
Union or the European Research Council. Neither the European Union nor the
granting authority can be held responsible for them.

Title: Multigrid methods for large-scale problems: approximate coarsest-level
solves and mixed precision computation

Author: Petr Vacek

Department: Department of Numerical Mathematics

Supervisor: Erin Claire Carson, Ph.D., Department of Numerical Mathematics

Abstract: The development of new computational hardware components opens
possibilities to solve larger and larger problems. It, however, also brings new
challenges. In this thesis we study multigrid methods for solving large-scale
systems of linear equations. The multigrid approach relies on having a hierarchy of
problems, ranging from the smallest (coarsest-level) problem to the original (finest-
level) problem. We focus on settings where even the problem on the coarsest-level
is large and can be solved only approximately. Such hierarchies arise, for example,
when solving problems on domains with complicated geometry or when computing
in parallel. We present an approach for analyzing the effects of approximate
coarsest-level solves on the convergence of the multigrid V-cycle scheme and
derive new coarsest-level stopping criteria tailored to multigrid methods. The
multigrid hierarchy can be also used to construct residual-based a posteriori error
estimates. We present a new approximation of the term associated with the
coarsest level, which results in effective and robust estimates. Finally, we present
a new formulation of a mixed precision V-cycle method and provide its finite
precision analysis. We apply the analysis to understand how to choose the finite
precisions inside a V-cycle scheme with smoothing based on incomplete Cholesky
factorization.

Keywords: multigrid, coarsest-level stopping criteria, multilevel residual-based
error estimator, mixed precision, smoother based on incomplete Cholesky factor-
ization

Název práce: Víceúrovňové metody pro řešení velkých problémů: přibližné řešení
na nejhrubší síti, počítání ve smíšené přesnosti

Autor: Petr Vacek

Katedra: Katedra numerické matematiky

Vedoucí disertační práce: Erin Claire Carson, Ph.D., Katedra numerické matem-
atiky

Abstrakt: Vývoj nového výpočetního hardwaru otevírá možnosti řešení větších
a větších problémů. Přináší ale také nové výzvy. V této práci se zabýváme
víceúrovňovými metodami pro řešení velkých soustav lineárních rovnic. Více-
úrovňové metody využívají hierarchii problémů s různými velikostmi, od nej-
menšího problému (nejhrubší úroveň) až po původní problém (nejjemnější úroveň).
V této práci uvažujeme hierarchie, kde i problém na nejhrubší úrovni je velký
a jeho řešení lze spočítat pouze přibližně. Takové hierarchie vznikají napřík-
lad při řešení problémů na oblastech se složitou geometrií nebo při paralelních
výpočtech. Jedním z hlavních výsledků této práce je nový přístup k analýze
vlivu přibližného řešení na nejhrubší úrovni na konvergenci V-cycle schématu a
odvození nového zastavovacího kritéria pro řešení problému na nejhrubší úrovni.
Víceúrovňovou hierarchii je možné využít také ke konstrukci a posteriori odhadu
chyby na základě rezidua. Dalším hlavním výsledkem této práce je nový postup
aproximace členu odpovídajícímu nejhrubší úrovni, který vede k efektivním a
robustním odhadům. Na závěr formulujeme V-cycle schéma využívající počítání v
aritmetikách s různými konečnými přesnostmi a odvodíme odhad na chybu způ-
sobenou počítáním v aritmetikách s konečnou přesností. Tyto výsledky následně
používáme, abychom zjistili, jak volit aritmetiky s konečnou přesností ve V-cycle
schématu se zhlazováním založeným na neúplném Choleského rozkladu.

Klíčová slova: víceúrovňové metody, zastavovací kritérium na nejhrubší síti,
víceúrovňový odhad chyby založený na residuu, počítání ve smíšené přesnosti,
zhlazovač založený na neúplném Choleského rozkladu

Contents

List of Publications 8

Introduction 9

1 The effect of approximate coarsest-level solves on the convergence
of multigrid V-cycle methods 13
1.1 Introduction . 13
1.2 Notation and motivating experiments 15

1.2.1 Motivating experiments 16
1.3 Convergence analysis of inV-cycle method 19

1.3.1 Relative coarsest-level accuracy 22
1.3.2 Absolute coarsest-level accuracy 23

1.4 Effects of the choice of the tolerance in relative residual stopping
criterion . 25

1.5 Absolute coarsest-level stopping criteria 26
1.6 Numerical experiments . 28

1.6.1 inV-cycle method satisfying the relative coarsest-level accu-
racy assumption . 28

1.6.2 Accuracy of the estimates for inV-cycle methods with a
relative residual coarsest-level stopping criterion 31

1.6.3 inV-cycle method satisfying the absolute coarsest-level ac-
curacy assumption . 32

1.6.4 inV-cycle method with absolute coarsest-level stopping criteria 34
1.6.5 Performance of inV-cycle methods with absolute coarsest-

level stopping criteria . 36
1.7 Conclusions and open problems 37
1.8 Appendix . 39

1.8.1 Numerical approximation of ∥E∥A 39
1.8.2 Derivation of inequalities (1.24) and (1.25) 39

2 A posteriori error estimates based on multilevel decompositions
with large problems on the coarsest level 42
2.1 Introduction . 42
2.2 Model problem, setting, and notation 43

2.2.1 Notation for a single level 44
2.2.2 Multilevel framework . 45
2.2.3 Discretization, approximate solution, and residuals 45

2.3 Residual-based error estimates . 46
2.3.1 Estimates of Becker, Johnson & Rannacher 47
2.3.2 Estimates of Rüde & Huber 49
2.3.3 Estimates of Harbrecht & Schneider 50
2.3.4 New estimate derived using stable splitting 51

2.4 Efficiency of the estimates . 53
2.4.1 Efficiency of the estimates on the algebraic error 54
2.4.2 Efficiency of estimates on total error 55

6

2.5 Computability of the error estimates 55
2.5.1 Algebraic formulation of the problem, residual vectors . . 56
2.5.2 The terms associated with fine levels 56
2.5.3 The term associated with the coarsest level 58
2.5.4 Adaptive approximation of the coarsest-level term 59

2.6 Numerical experiments . 61
2.6.1 Robustness with respect to the number of levels 61
2.6.2 Robustness with respect to the size of the coarsest-level

problem . 63
2.7 Conclusions . 65
2.8 Appendix . 66

2.8.1 Auxiliary results from the theory of PDEs and FEM . . . 66
2.8.2 Quasi-interpolation operators 67
2.8.3 Stable splitting . 72

3 Mixed precision multigrid with smoothing based on incomplete
Cholesky factorization 88
3.1 Introduction . 88
3.2 Model problem, notation, finite precision arithmetic and standard

rounding model . 91
3.3 Iterative refinement . 92
3.4 Two-grid correction scheme . 93
3.5 V-cycle correction scheme . 101
3.6 Smoothing based on incomplete Cholesky factorization 104

3.6.1 Finite precision error analysis of solving sparse perturbed
triangular system via substitution 105

3.6.2 Finite precision error analysis of mixed precision IC smoother107
3.6.3 V-cycle correction scheme with IC smoothing 108

3.7 Scaling system matrices and right-hand sides 108
3.8 Numerical experiments . 109

3.8.1 Model problems, discretization, and data generation . . . 109
3.8.2 Experiment 1: Finding the lowest precisions for the inner

V-cycle solver while preserving the IR double precision
convergence rate . 111

3.8.3 Experiment 2: solving 3D elliptic PDEs with high
anisotropy on GPUs using the Ginkgo library 114

3.9 Conclusions . 118
3.10 Appendix . 120

3.10.1 Relations between Euclidean and A vector norms 120
3.10.2 Derivation of bounds on finite precision errors of certain

basic routines . 120
3.10.3 Derivation of multigrid related bounds 121
3.10.4 Proof of Lemma 3.1 . 122

Conclusion 126

7

List of Publications
Journals
[J1] P. Vacek, E. Carson, and K.M. Soodhalter. “The Effect of Approximate

Coarsest-Level Solves on the Convergence of Multigrid V-Cycle Methods”,
In: SIAM Journal on Scientific Computing, 46:4 (2024), pp. A2634-A2659,
https://doi.org/10.1137/23M1578255.

8

https://doi.org/10.1137/23M1578255

Introduction
Numerical simulations play an important role in many areas of scientific

research and in many industrial applications, such as medicine, weather forecasting,
physics, and engineering design optimization. The continuous development of
more powerful hardware components opens possibilities to run simulations of
larger and larger sizes. Utilizing the full potential of the new hardware is, however,
not always straightforward nor easy. Existing numerical methods have to be
redesigned or optimized to better exploit the hardware characteristics.

Numerical simulations frequently involve models described using partial dif-
ferential equations (PDEs). Solving PDEs typically consists of a discretization
of the continuous problem and the subsequent solution of a discrete algebraic
problem. The associated algebraic problem may be large and hard to solve, espe-
cially when an accurate approximation to the continuous solution of the PDEs
is needed. Successful design and implementation of numerical methods requires
understanding of all stages of the computational process and their interactions.
The individual components thus should not be studied separately, but rather as
parts of the whole process.

In this thesis we study multigrid methods for solving systems of linear equations.
Our primary focus is on systems coming from the discretization of PDEs, but
some of the presented results are valid in more general cases. For an introduction
to multigrid methods we refer to, e.g., [3, 16], or the author’s master’s thesis
[18]. The multigrid approach relies on having a hierarchy of problems. The
hierarchy can be constructed in two ways: in geometric multigrid a continuous
problem is discretized on multiple nested meshes, whereas in algebraic multigrid
the construction is based on the properties of the system matrix. The levels in
a multigrid hierarchy are referred to as coarse or fine, with the coarsest level
containing the problem of the smallest size, and the finest level containing the
original problem we aim to solve. The approximate solution is computed using
so called smoothing on fine levels and by solving a system of linear equations on
the coarsest level. The intermediate results are transferred between the levels
using prolongation and restriction operators. There are various multigrid schemes
(V-cycle, W-cycle, full multigrid) differing in the pattern in which the individual
levels are visited during the computation.

Smoothing typically consists of applying few iterations of a stationary iterative
method such as the Richardson, Jacobi, or Gauss-Seidel methods. The solver on
the coarsest-level is chosen based on the size and difficulty of the coarsest-level
problem. If the size permits, direct methods based on Cholesky or LU factorization
are usually applied. Multigrid methods are in practice also used with hierarchies
where the coarsest-level problem is large and can be solved only approximately;
see e.g., [4, 8]. This arises, for example, when solving problems on complicated
domains or when running large-scale simulations on parallel computers. Frequently
used approximate coarsest-level solvers are iterative Krylov subspace methods or
direct methods based on block-low rank (BLR) approximation. Application of
these solvers requires additional specifications, e.g., choosing a stopping criteria
for the iterative solvers or setting a value of the low-rank threshold parameter for
the BLR solver. The accuracy of the computed approximation then depends on

9

the concrete setting, which is usually chosen based on the experience of the users
with the problems and multigrid methods.

Convergence analysis of multigrid methods is typically done under the assump-
tion that the coarsest-level problem is solved exactly; see, e.g., [23, 21]. This
assumption is, however, not satisfied in practical computation either due to the
use of approximate solvers, or due to the finite precision errors, or both. There
are papers (e.g., [12, 22]) allowing more general coarsest-level solvers, but they do
not cover some of the frequently used solvers in practice, for example a Krylov
subspace method stopped with a residual-based criterion. This leads to the first
two research questions considered in this thesis:

a) Can we analytically describe how the accuracy of the coarsest-level solver
affects the convergence behavior of the multigrid method?

b) Can we design effective stopping criteria for an iterative coarsest-level solver
such that the multigrid method converges in nearly the same number of
iterations as its variant with an exact coarsest-level solver?

We focus on these questions in Chapter 1, which is based on the paper [19].
The multigrid hierarchy can also be used to construct residual-based a posteriori

error estimates on total and algebraic errors; see, e.g., [2, 6], [13, Section 2.6],
and [8, Sections 4.1–4.3]. The estimates presented in the literature, however,
require the computation of an error term associated with the coarsest-level. When
using multigrid hierarchies with large coarsest-level problems, this term can be in
practice computed only approximately. This leads to our next research question:

c) Consider the residual-based multilevel a posteriori error estimates such as
in [13, Section 2.6]. Is it possible to compute the term associated with the
coarsest-level approximately while preserving the efficiency and accuracy of
the estimate?

We address this question in Chapter 2, which is based on the paper [20].
Modern parallel computers support computing in multiple precisions; see,

e.g., the list of 500 most powerful commercially available computer systems
https://top500.org/. There is extensive ongoing research on numerical methods
exploiting this hardware feature; see, e.g., the surveys [1, 7]. Some methods
utilizing computation in multiple precisions are able to achieve the same overall
accuracy as their uniform precision counterparts, in a smaller amount of time,
requiring less memory and consuming less energy.

Mixed precision variants of multigrid methods have been implemented and
tested on various problems; see, e.g., [17, 24]. Finite precision error analysis of
multigrid method was presented in the series of papers [10, 14, 11]. In these works,
the authors present a formulation of the multigrid V-cycle method allowing using
up to three different precisions on the finest level and a different precision on
each coarse level. They assume that the application of a smoothing routine on
a concrete level is done in one precision associated with the level. The authors
discuss basic smoothing routines, such as routines based on the Richardson and
Jacobi methods.

In practice, more computationally intensive smoothers are also used. Examples
of these are methods based on incomplete Cholesky (IC) or LU factorizations,

10

https://top500.org/

used, e.g., when solving PDEs with high anisotropy; see, e.g., [9, 5, 15]. Using IC
smoothing requires precomputing the IC factorization once, and solving triangular
systems with the IC factor and its transpose when the smoother is applied. These
operations may be computationally intensive in comparison to other parts of the
V-cycle scheme. This leads us to our fourth research question:

d) Can the execution time of the mixed precision V-cycle method with IC
smoothers be reduced by introducing additional precisions for the applica-
tions of the smoothers? For example, using different precisions for storing
the IC factors or solving the triangular systems. Can we analytically describe
the requirements on these individual precisions?

We focus on this in Chapter 3.
The thesis closes with a conclusion including the formulation of open problems.

We note that each chapter introduces its own notation.

Bibliography
[1] A. Abdelfattah et al. “A survey of numerical linear algebra methods uti-

lizing mixed-precision arithmetic”. In: The International Journal of High
Performance Computing Applications 35.4 (2021), pp. 344–369. doi: 10.
1177/10943420211003313.

[2] R. Becker, C. Johnson, and R. Rannacher. “Adaptive error control for
multigrid finite element methods”. In: Computing 55.4 (1995), pp. 271–288.
doi: 10.1007/BF02238483.

[3] W. L. Briggs, V. E. Henson, and S. F. McCormick. A Multigrid Tutorial.
Second. Philadelphia, PA: SIAM, 2000, pp. xii+193. doi: 10.1137/1.
9780898719505.

[4] A. Buttari et al. “Block low-rank single precision coarse grid solvers for
extreme scale multigrid methods”. In: Numerical Linear Algebra with Appli-
cations 29.1 (2022), e2407. doi: 10.1002/nla.2407.

[5] D. Drzisga, A. Wagner, and B. Wohlmuth. “A Matrix-Free ILU Realization
Based on Surrogates”. In: SIAM Journal on Scientific Computing 45.6 (2023),
pp. C304–C329. doi: 10.1137/22M1529415.

[6] H. Harbrecht and R. Schneider. “A note on multilevel based error estimation”.
In: Comput. Methods Appl. Math. 16.3 (2016), pp. 447–458. doi: 10.1515/
cmam-2016-0013.

[7] N. J. Higham and T. Mary. “Mixed precision algorithms in numerical
linear algebra”. In: Acta Numerica 31 (2022), pp. 347–414. doi: 10.1017/
S0962492922000022.

[8] M. Huber. “Massively parallel and fault-tolerant multigrid solvers on peta-
scale systems”. PhD thesis. Technical University of Munich, Germany, 2019.
url: http://www.dr.hut-verlag.de/978-3-8439-3917-1.html.

[9] R. Kettler and P. Wesseling. “Aspects of multigrid methods for problems in
three dimensions”. In: Applied Mathematics and Computation 19.1 (1986),
pp. 159–168. doi: 10.1016/0096-3003(86)90102-5.

11

https://doi.org/10.1177/10943420211003313
https://doi.org/10.1177/10943420211003313
https://doi.org/10.1007/BF02238483
https://doi.org/10.1137/1.9780898719505
https://doi.org/10.1137/1.9780898719505
https://doi.org/10.1002/nla.2407
https://doi.org/10.1137/22M1529415
https://doi.org/10.1515/cmam-2016-0013
https://doi.org/10.1515/cmam-2016-0013
https://doi.org/10.1017/S0962492922000022
https://doi.org/10.1017/S0962492922000022
http://www.dr.hut-verlag.de/978-3-8439-3917-1.html
https://doi.org/10.1016/0096-3003(86)90102-5

[10] S. F. McCormick, J. Benzaken, and R. Tamstorf. “Algebraic Error Analysis
for Mixed-Precision Multigrid Solvers”. In: SIAM Journal on Scientific
Computing 43.5 (2021), S392–S419. doi: 10.1137/20M1348571.

[11] S. F. McCormick and R. Tamstorf. “Rounding-Error Analysis of Multigrid
V -Cycles”. In: SIAM Journal on Scientific Computing (2024), S88–S95. doi:
10.1137/23M1582898.

[12] Y. Notay. “Convergence analysis of perturbed two-grid and multigrid meth-
ods”. In: SIAM Journal on Numerical Analysis 45.3 (2007), pp. 1035–1044.
doi: 10.1137/060652312.

[13] U. Rüde. Mathematical and computational techniques for multilevel adaptive
methods. Philadelphia, PA: SIAM, 1993.

[14] R. Tamstorf, J. Benzaken, and S. F. McCormick. “Discretization -Error-
Accurate Mixed-Precision Multigrid Solvers”. In: SIAM Journal on Scientific
Computing 43.5 (2021), S420–S447. doi: 10.1137/20M1349230.

[15] S. Thomas et al. “Scaled ILU smoothers for Navier–Stokes pressure pro-
jection”. In: International Journal for Numerical Methods in Fluids 96.4
(2024), pp. 537–560. doi: 10.1002/fld.5254.

[16] U. Trottenberg, C. W. Oosterlee, and A. Schuller. Multigrid. London: Aca-
demic Press, 2001.

[17] Y.-H. M. Tsai, N. Beams, and H. Anzt. “Mixed Precision Algebraic Multigrid
on GPUs”. In: Parallel Processing and Applied Mathematics. Ed. by R.
Wyrzykowski et al. Cham: Springer International Publishing, 2023, pp. 113–
125. doi: 10.1007/978-3-031-30442-2_9.

[18] P. Vacek. “Multilevel methods”. Master’s thesis. Charles University, 2020.
url: http://hdl.handle.net/20.500.11956/116819.

[19] P. Vacek, E. Carson, and K. M. Soodhalter. “The Effect of Approximate
Coarsest-Level Solves on the Convergence of Multigrid V-Cycle Methods”.
In: SIAM Journal on Scientific Computing 46.4 (2024), A2634–A2659. doi:
10.1137/23M1578255.

[20] P. Vacek, J. Papež, and Z. Strakoš. A posteriori error estimates based on
multilevel decompositions with large problems on the coarsest level. 2024.
arXiv: 2405.06532 [math.NA].

[21] J. Xu. “Iterative methods by space decomposition and subspace correction”.
In: SIAM Review 34.4 (1992), pp. 581–613. doi: 10.1137/1034116.

[22] X. Xu and C.-S. Zhang. “Convergence Analysis of Inexact Two-Grid Methods:
A Theoretical Framework”. In: SIAM Journal on Numerical Analysis 60.1
(2022), pp. 133–156. doi: 10.1137/20M1356075.

[23] H. Yserentant. “Old and new convergence proofs for multigrid methods”. In:
Acta Numerica 2 (1993), pp. 285–326.

[24] Y. Zong et al. “FP16 Acceleration in Structured Multigrid Preconditioner
for Real-World Applications”. In: Proceedings of the 53rd International Con-
ference on Parallel Processing. ICPP ’24. Gotland, Sweden: Association for
Computing Machinery, 2024, pp. 52–62. doi: 10.1145/3673038.3673040.

12

https://doi.org/10.1137/20M1348571
https://doi.org/10.1137/23M1582898
https://doi.org/10.1137/060652312
https://doi.org/10.1137/20M1349230
https://doi.org/10.1002/fld.5254
https://doi.org/10.1007/978-3-031-30442-2_9
http://hdl.handle.net/20.500.11956/116819
https://doi.org/10.1137/23M1578255
https://arxiv.org/abs/2405.06532
https://doi.org/10.1137/1034116
https://doi.org/10.1137/20M1356075
https://doi.org/10.1145/3673038.3673040

1 The effect of approximate
coarsest-level solves on the
convergence of multigrid V-cycle
methods

In this chapter, we focus on the first two questions stated in the introduction:

a) Can we analytically describe how the accuracy of the coarsest-level solver
affects the convergence behavior of the multigrid method?

b) Can we design effective stopping criteria for an iterative coarsest-level solver
such that the multigrid method converges in nearly the same number of
iterations as its variant with an exact coarsest-level solver?

Motivated by these questions, we propose an approach to algebraically analyze
the effect of approximate coarsest-level solves in the multigrid V-cycle method
for symmetric positive definite (SPD) problems. We design new coarsest-level
stopping criteria tailored to multigrid methods and discuss the convergence of
methods with frequently used criteria in practice, e.g., criteria based on the
Euclidean norm of the relative residual.

This chapter contains a pre-copyedited version of the paper: P. Vacek, E.
Carson, and K.M. Soodhalter. “The Effect of Approximate Coarsest-Level Solves
on the Convergence of Multigrid V-Cycle Methods”, In: SIAM Journal on Sci-
entific Computing, 46:4 (2024), pp. A2634-A2659, https://doi.org/10.1137/
23M1578255.

1.1 Introduction
Multigrid methods [3, 4, 21, 10] are frequently used when solving systems of

linear equations, and can be applied either as standalone solvers or as precondi-
tioners for iterative methods. There are two types of multigrid; geometric: wherein
the hierarchy of systems is obtained by discretizations of an infinite dimensional
problem on a sequence of nested meshes; and algebraic: wherein the coarse sys-
tems are assembled based on the algebraic properties of the matrix. Within each
multigrid cycle, the approximation is computed using smoothing on fine levels
and solving a system of linear equations on the coarsest level. Smoothing on the
fine levels is typically done via a few iterations of a stationary iterative method.
The particular solver used for the problem on the coarsest level depends on its
size and difficulty. If the size of the problem permits, it is typical to use a direct
solver based on LU or Cholesky decomposition.

In this text, we focus on settings where the problem on the coarsest level is
large and the use of direct solvers based on LU or Cholesky decomposition may
be ineffective or impossible to realize. Such settings may arise, for example, when
using geometric multigrid methods to solve problems on complicated domains.
The mesh associated with the coarsest level must resolve the domain with certain

13

https://doi.org/10.1137/23M1578255
https://doi.org/10.1137/23M1578255

accuracy. This can yield a large number of degrees of freedom. One possible
solution to this issue is to solve the coarsest-level problem using algebraic multigrid,
which can introduce additional coarse levels that are not related to the geometry
of the problem.

Another setting where large coarsest-level problems may be present is when we
use multigrid methods on parallel computers. In parallel computing, the degrees
of freedom are assigned to different processors or accelerators. The computation
is done in parallel on the individual processors and the results are communicated
between them. A challenge for effective parallel implementation of multigrid
methods is that the amount of computation on coarse levels decreases at a faster
rate than the amount of communication; see e.g., the discussion in the introduction
of [5]. One possible solution is to treat this issue by redistribution of the coarse-
level problems to a smaller number of processors; see e.g., [8, 14, 20]. Another
solution may be to use communication-avoiding methods on the coarse levels; see
e.g., [22].

In this paper, we instead consider treating the still large-scale coarsest-level
problem by solving inexactly. Frequently used solvers for large scale coarsest-
level problems include Krylov subspace methods and direct approximate solvers;
see, e.g., [12], where the author considers the preconditioned conjugate gradient
method, or [5], where the authors study the use of a block low-rank (BLR) low
precision direct solver. These solvers approximate the coarsest-level solution to an
accuracy which is determined by the choice of a stopping criteria or affected by the
choice of the low-rank threshold and finite precision. These parameters are often
chosen in practice based on the experience of the user with concrete problems and
methods with the goal of balancing the cost of the coarsest-level solve and the
total number of V-cycles required for convergence. In Section 1.2.1 we present a
motivating numerical experiments, which illustrate how the choice of the accuracy
of the coarsest-level solver may affect the convergence of the multigrid V-cycle
method.

A general analysis of the effects of the accuracy of the coarsest-level solver
on the convergence behaviour of multilevel methods is, to our knowledge, not
present in the literature. Multigrid methods are typically analyzed under the
assumption that the problem on the coarsest level is solved exactly; see, e.g., [25,
23]. An algebraic analysis of perturbed two grids methods and its application to
the analysis of other multigrid schemes with approximate coarsest-level solvers can
be found in [19, 24]. The authors derive estimates of the worst-case convergence
rate of the methods. The results are, however, obtained under the assumption that
the action of the solver on the coarsest level can be expressed using a symmetric
positive definite matrix. This is not true for frequently used solvers, e.g., for
a Krylov subspace method stopped using a relative residual stopping criterion.
A more general setting is considered in the paper [15], which presents the first
analysis of mixed precision multigrid solvers. The authors assume that the action
of the solver on the coarsest level can be expressed using a non-singular matrix.

In this paper, we propose an approach to algebraically analyze the effect of
approximate coarsest-level solves in the multigrid V-cycle method for symmetric
positive definite (SPD) problems. The main methodology of our approach is
to view the inexact V-cycle (inV-cycle) method as a perturbation of the exact
V-cycle (exV-cycle) method in the following sense. We express the error of

14

the approximation computed by one V-cycle with an approximate coarsest-level
solver as the error of the approximation computed by one V-cycle with an exact
coarsest-level solver plus the difference of the two approximations. We show that
the difference can be expressed as a matrix times the error of the coarsest-level
solver. The matrix describes how the error from the coarsest level is propagated
to the finest level. Moreover, we consider two assumptions on the accuracy of the
coarsest-level solver: a relative assumption, where the error of the coarsest-level
solver is less than a factor of the error of the previous finest-level approximation,
and an absolute assumption, where the error of the coarsest-level solver is less than
a certain constant. Based on the relative assumption we derive an estimate on
the convergence rate of the inV-cycle method and discuss its uniform convergence.
Utilizing the absolute assumption we get an estimate on the difference between the
approximation computed by the inV-cycle method and the exV-cycle method after
a number of V-cycle iterations. The analysis is done assuming exact arithmetic
computations, aside from the computation of the coarsest level solutions. The
model is agnostic about what coarsest-level solver is used; we only assume that
the error on the coarsest level satisfies certain assumptions.

The paper is organized as follows. In Section 1.2 we establish the notation,
state the V-cycle method and present a motivating numerical experiments, which
illustrate that the choice of the accuracy of the coarsest-level solver can significantly
affect the convergence of the V-cycle method. In Section 1.3 we present an analysis
of the V-cycle method with an approximate coarsest-level solver. The results
are applied to describe the possible effects of the choice of the tolerance in a
coarsest-level relative residual stopping criterion in Section 1.4. New stopping
criteria based on the absolute coarsest-level accuracy assumption are derived in
Section 1.5. Finally, we present a series of numerical experiments illustrating the
obtained results in Section 1.6. The text closes with conclusions and discussion of
open problems in Section 1.7.

1.2 Notation and motivating experiments
We study the multigrid V-cycle method for finding an approximate solution of

the following problem. Given an SPD matrix A ∈ Rn×n and a right-hand side
vector b ∈ Rn find the vector x ∈ Rn such that

Ax = b.

We consider a hierarchy of J+1 levels numbered from zero to J , where level zero is
the coarsest level and level J the finest level. Each level contains a system matrix
Aj ∈ Rnj×nj , with AJ = A. Information is transferred between the (j − 1)th level
and the jth level using a full rank prolongation matrix Pj ∈ Rnj×nj−1 , respectively
its transpose. We assume that the system matrices and the prolongation matrices
satisfy the so called Galerkin condition, i.e.,

Aj−1 = P⊤
j AjPj, j = 1 . . . , J. (1.1)

We use the notation A0:j , for the sequence of matrices A0, . . . ,Aj . Let ∥ · ∥ denote
the Euclidean vector norm and let ∥ · ∥Aj

= ∥A
1
2
j · ∥ denote the Aj vector norm,

also called the energy norm. We use the same notation for the matrix norms

15

generated by the associated vector norms. Let Ij ∈ Rnj×nj denote the identity
matrix on the jth level.

We assume that the pre- and post- smoothing on levels j = 1, . . . , J can be
expressed in the form

vj = vj + Mj(fj − Ajvj) and vj = vj + Nj(fj − Ajvj),

respectively, where vj and fj are an approximation and a right-hand side on the
jth level and Mj ∈ Rnj×nj and Nj ∈ Rnj×nj are non-singular matrices satisfying

∥Ij − MjAj∥Aj
< 1 and ∥Ij − NjAj∥Aj

< 1. (1.2)

This assumption yields monotone convergence of the smoothers as standalone
solvers in the Aj-norms. Frequently used smoothers, e.g., a few iterations of
a classic stationary iterative method such as damped Jacobi or Gauss-Seidel,
typically satisfy these assumptions; see, e.g., the discussion in [25, p. 293] or [23].
We also consider multilevel schemes, where either pre- or post- smoothing is not
used, i.e., where formally either Mj, j = 1, . . . , J or Nj, j = 1, . . . , J , are zero
matrices.

Given an approximation xprev to the solution x, the approximation after one
iteration of the V-cycle method is computed by calling Algorithm 1.1 as (see, e.g.,
[21, pp. 47–48])

xnew = V(A0:J ,M1:J ,N1:J ,P1:J ,b,xprev, J).

We distinguish between the exV-cycle method and the inV-cycle method based on
whether the coarsest-level problem is solved exactly or not.

Algorithm 1.1 V-cycle scheme, V(A0:j , M1:j , N1:j , P1:j , fj , v[0]
j , j).

if j ̸= 0 then
v[1]
j = v[0]

j + Mj(fj − Ajv[0]
j) {pre-smoothing}

fj−1 = P⊤
j (fj − Ajv[1]

j) {restriction}
v[2]
j−1 = V(A0:j−1,M1:j−1,N1:j−1,P1:j−1, fj−1, 0, j − 1)

v[3]
j = v[1]

j + Pjv[2]
j−1 {coarse grid correction}

v[4]
j = v[3]

j + Nj(fj − Ajv[3]
j) {post-smoothing}

return v[4]
j

else
return (approximate) solution of the problem A0v0 = f0

end if

1.2.1 Motivating experiments
We illustrate the relevance of the forthcoming analysis with numerical exper-

iments, which demonstrate how the choice of the accuracy of the coarsest-level
solve affects the convergence of the V-cycle method.

We consider a second order elliptic PDE of the form

−∇ · (k(x)∇u) = f in Ω, u = 0 on ∂Ω,

16

where f ≡ 1 and Ω = (0, 1)×(0, 1). We consider two variants of the problem based
on the coefficient function k : Ω → R, “Poisson” with k ≡ 1 and “jump-1024”
with

k(x) =

⎧⎨⎩1024, x ∈
(︂
0, 1

2

)︂
×
(︂
0, 1

2

)︂
∪
(︂

1
2 , 1

)︂
×
(︂

1
2 , 1

)︂
,

1, x ∈
(︂
0, 1

2

)︂
×
(︂

1
2 , 1

)︂
∪
(︂

1
2 , 1

)︂
×
(︂
0, 1

2

)︂
.

The problems are discretized using the Galerkin finite element (FE) method
with continuous piecewise affine functions on a hierarchy of nested triangulations
obtained from the initial triangulation by uniform refinement. The triangulations
are aligned with the line segments where the jumps in the coefficients take place.

We consider a geometric multigrid V-cycle method with 6 levels to solve the
discrete problems on the finest level. We generate the sequence of stiffness matrices
A0:J , by discretizing the problems on each level of the hierarchy. The sizes of the
stiffness matrices are the same for both the Poisson and the jump-1024 problems.
The size of the finest-level problems is 1.64 · 106 degrees of freedom (DoF). The
size of the coarsest level problems is 1521 DoF. We use the standard prolongation
matrices associated with the finite element spaces. The restriction matrices are
transposes of the prolongation matrices.

The stiffness and prolongation matrices are generated in the FE software
FEniCS (version 2019.1.0) [2, 13]. In FEniCS the stiffness matrix is assembled
using all nodes of the mesh. The homogeneous Dirichlet boundary condition is
then applied by setting to zero all non-diagonal elements in rows and columns
which correspond to nodes on the boundary and setting to zero the corresponding
elements in the right-hand side vector. We modify the stiffness matrices, the
prolongation matrices and the right-hand side vector so that the Galerkin condition
(1.1) is satisfied. The computation is done in MATLAB 2023a. The codes for all
experiments presented in this paper can be found at https://doi.org/10.5281/
zenodo.11178544.

Pre-smoothing and post-smoothing in the V-cycle method are each accom-
plished via one iteration of the symmetric Gauss-Seidel method. We consider the
symmetric Gauss-Seidel smoother in the experiments in this paper since we are
able to numerically approximate the convergence rate of the exV-cycle method in
the A-norm in this setting; see the discussion Section 1.6.1 and Appendix 1.8.1.
The theoretical results stated in the paper, however, does not assume symmetry
of the smoothing operators.

We consider two variants of the coarsest-level solver: the MATLAB backslash
operator and the conjugate gradient method (CG) [11]. CG is stopped using a
relative residual stopping criterion; i.e., for a chosen tolerance τ it is stopped when
∥f0 − A0v0,in∥/∥f0∥ ≤ τ . We consider various choices of the tolerance τ = 2−i,
i = 1, . . . , 20.

We run the V-cycle methods starting with a zero initial approximation and
stop when the A-norm of the error is (approximately) lower than a tolerance θ,
i.e., ∥x − x(n)

in ∥A ≤ θ. We consider two choices of the tolerance θ = 10−4 and
θ = 10−11. To approximate the A-norm of the error on the finest level, we compute
the solution using the MATLAB backslash operator.

For both problems the variant with MATLAB backslash operator as the
coarsest-level solver requires 2 and 9 V-cycle iterations to reach the desired finest-
level accuracy 10−4 and 10−11, respectively. The results of the variants with CG
as the coarsest-level solver are summarized in Figure 1.1.

17

https://doi.org/10.5281/zenodo.11178544
https://doi.org/10.5281/zenodo.11178544

V
-c

yc
le

s

to
ta

l C
G

it
.

V
-c

yc
le

s

to
ta

l C
G

it
.

V
-c

yc
le

s

to
ta

l C
G

it
.

V
-c

yc
le

s

to
ta

l C
G

it
.

5.00E-01 5 68 14 226 3 544 31 2319

2.50E-01 3 62 11 234 3 708 28 2506

1.25E-01 3 71 10 231 2 537 28 2694

6.25E-02 2 63 9 240 2 615 23 3008

3.13E-02 2 71 9 251 2 724 26 3328

1.56E-02 2 79 9 294 2 787 25 3956

7.81E-03 2 88 9 352 2 843 27 4199

3.91E-03 2 96 9 390 2 975 19 4415

1.95E-03 2 100 9 412 2 996 19 5113

9.77E-04 2 106 9 445 2 1032 17 5727

4.88E-04 2 110 9 472 2 1083 16 6249

2.44E-04 2 115 9 543 2 1107 16 6963

1.22E-04 2 120 9 579 2 1194 15 7541

6.10E-05 2 125 9 638 2 1312 9 6391

3.05E-05 2 129 9 671 2 1385 12 7936

1.53E-05 2 132 9 711 2 1428 9 6982

7.63E-06 2 135 9 741 2 1491 9 7220

3.81E-06 2 139 9 773 2 1537 10 8197

1.91E-06 2 152 9 815 2 1621 9 7664

9.54E-07 2 158 9 843 2 1688 9 7900

Poisson problem jump-1024 problem

 condition number of the coarsest-level matrix

6.48E+02 1.66E+05

finest level tolerance 𝜃 finest level tolerance 𝜃

1.00E-04 1.00E-11 1.00E-04 1.00E-11

𝜏

Figure 1.1 Comparison of inV-cycle methods with CG as the coarsest-level solver
with various choices of relative residual tolerance τ . The bright yellow and green color
highlight variants that converge in the same number of V-cycles as the variant with
MATLAB backslash operator on the coarsest-level. The bright yellow variants achieve
this in the least total number of CG iterations on the coarsest-level.

18

Let us first focus on the results for the Poisson problem and finest-level
tolerance θ = 10−4. The variants with CG with high coarsest-level tolerances
τ = 2−i (i = 1, 2, 3) converge in a higher number of V-cycles than the variant with
MATLAB backslash operator. The stricter the tolerance τ is the smaller the delay.
The variants with tolerances τ = 6.25 · 10−2 and smaller converge in the same
number of V-cycles as the method with MATLAB backslash. The variant with
tolerance τ = 6.25 ·10−2 achieves this in the least total number of CG iterations on
the coarsest level; this variant is in the figure highlighted by a bright yellow color.
Using stricter tolerance than τ = 6.25 · 10−2 is in this setting not beneficial since
it does not yield a lower number of V-cycles but it requires more computational
work on the coarsest level. We see analogous behavior for the Poisson problem
and finest-level tolerance θ = 10−11. The bright yellow highlighted variant has the
same coarsest-level tolerance.

Let us now focus on the results for the jump-1024 problem. The coarsest-
level problem used when solving the jump-1024 problem has higher condition
number than the one used for solving the Poisson problem. The total number
of coarsest-level CG iterations is for all variants significantly higher than for the
corresponding variants for the Poisson problem. We again see that the variants
with high tolerances converge in a higher number of V-cycles than the variants
with MATLAB backslash operator and that this delay becomes smaller for a lower
coarsest-level tolerances and eventually vanishes if the tolerance is sufficiently
small. It, however, does not strictly hold that lowering the tolerance results in
faster converge. This can be seen for example when comparing the variants with
tolerance τ = 3.05 · 10−5 and τ = 6.10 · 10−5 in the setting with θ = 10−11. In
contrast to the methods for the Poisson problem (where the values of the tolerance
of the bright yellow highlighted variants are the same for the two different finest-
level tolerances θ) in the setting with the jump-1024 problem these values changes
significantly - in order to reach the higher finest-level accuracy in the same number
of V-cycles as the variant with MATLAB backslash solver the coarsest-level
tolerance has to be significantly lower.

These experiments demonstrate that the choice of coarsest-level solver accuracy
can significantly affect the convergence behavior of the V-cycle method and the
overall amount of work that has to be done. This relationship is not yet well
understood. This leads us to pose the following questions, which drive the work
in this paper.

1. Can we analytically describe how the accuracy of the solver on the coarsest
level affects the convergence behavior of the V-cycle method?

2. Can we define coarsest-level stopping criteria that would yield a computed
V-cycle approximation “close” to the V-cycle approximation which would
be obtained by solving the coarsest-level problems exactly?

1.3 Convergence analysis of inV-cycle method
We start by stating a few results and assumptions on the convergence of the

exV-cycle method. Let xnew
ex be an approximation computed by one iteration of

the exV-cycle method starting with an approximation xprev. The error of the

19

approximation xnew
ex can be written as the error of the previous approximation

xprev times the error propagation matrix1 E, i.e.,

x − xnew
ex = E(x − xprev).

We assume that the error propagation matrix E corresponds to an operator which
is a contraction with respect to the A-norm, i.e., ∥E∥A < 1. Proofs of this
property for geometric multigrid methods can be found, e.g., in [23], [25]. The
contraction property implies that each iteration of the exV-cycle method reduces
the A-norm of the error by at least a factor ∥E∥A, i.e.,

∥x − xnew
ex ∥A ≤ ∥E∥A∥x − xprev∥A ∀xprev.

We remark that this is a worst-case scenario analysis. The actual rate of conver-
gence depends on the right-hand side and the current approximation and cannot
be accurately described by a one-number characteristic.

In contrast to the exV-cycle method, the error of the approximation computed
after one iteration of the inV-cycle method might not be able to be written as
an error propagation matrix times the previous error. This is due to the fact
that we consider a general solver on the coarsest level, whose application might
not be able to be expressed as a matrix times vector. To obtain insight into the
convergence behavior of the inV-cycle method, we view it as a perturbation of the
exV-cycle method.

Let xnew
in denote the approximation computed after one iteration of the inV-

cycle method starting with xprev. The error of the inV-cycle approximation can
be written as the error of the approximation xnew

ex computed after one iteration of
the exV-cycle method starting with the same xprev plus the difference of the two
approximations, i.e.,

x − xnew
in = x − xnew

ex + xnew
ex − xnew

in = E(x − xprev) + xnew
ex − xnew

in . (1.3)

Taking A-norms on the left and right sides, using the triangle inequality and the
norm of E yields

∥x − xnew
in ∥A ≤ ∥E∥A∥x − xprev∥A + ∥xnew

ex − xnew
in ∥A. (1.4)

We turn our focus to the difference xnew
ex − xnew

in . When applying one step of
the inV-cycle method or one step of the exV-cycle method, all intermediate results
v[1]
j , j = 1, . . . , J , fj, j = 0, . . . , J are the same until the coarsest level is reached.

In the exV-cycle method, the exact solution v0 of the problem on the coarsest level
is used, while in the inV-cycle method its computed approximation v0,in is used.
Writing down the difference xnew

ex −xnew
in using the individual steps in Algorithm 1.1

yields (the subscripts “ex” and “in” indicate that the term corresponds to the
1The error propagation matrix for a two-level exV-cycle method can be expressed as

E = (I1 − N1A1)(I1 − P1A−1
0 P⊤

1 A1)(I1 − M1A1).

A recursive expression for the error propagation matrix for an exV-cycle method with a higher
number of levels can be found, e.g., in [21, Theorem 2.4.1].

20

exV-cycle method and the inV-cycle method, respectively)

xnew
ex − xnew

in = v[4]
J,ex − v[4]

J,in

= v[3]
J,ex + NJ(fJ − AJv[3]

J,ex) − (v[3]
J,in + NJ(fJ − AJv[3]

J,in))
= (IJ − NJAJ)(v[3]

J,ex − v[3]
J,in)

= (IJ − NJAJ)(v[1]
J + PJv[2]

J−1,ex − (v[1]
J + PJv[2]

J−1,in))
= (IJ − NJAJ)PJ(v[2]

J−1,ex − v[2]
J−1,in)

= (IJ − NJAJ)PJ(v[4]
J−1,ex − v[4]

J−1,in)
= (IJ − NJAJ)PJ . . . (I1 − N1A1)P1(v0 − v0,in).

Denoting by S the matrix

S = (IJ − NJAJ)PJ . . . (I1 − N1A1)P1 ∈ RnJ ×n0 (1.5)

gives
xnew

ex − xnew
in = S(v0 − v0,in). (1.6)

We have expressed the difference of the inV-cycle and exV-cycle approximation as
a matrix S times the error of the coarsest-level solver. The matrix S describes
how the error is propagated to the finest level. Let ∥S∥A0,A denote the norm of S
generated by the vector norms ∥ · ∥A0 and ∥ · ∥A, i.e.,

∥S∥A0,A = max
v∈Rn0 ,v ̸=0

∥Sv∥A

∥v∥A0

. (1.7)

We derive a bound on the norm ∥S∥A0,A. Denoting by Sj, j = 2, . . . , J − 1,
the matrix

Sj = (Ij − NjAj)Pj . . . (I1 − N1A1)P1 ∈ Rnj×n0 ,

and using the definition of ∥S∥A0,A leads to

∥S∥A0,A = max
v∈Rn0 ,v ̸=0

∥(IJ − NJAJ)PJSJ−1v∥A

∥v∥A0

= max
v∈Rn0 ,v ̸=0

∥(IJ − NJAJ)PJSJ−1v∥A

∥PJSJ−1v∥A

∥PJSJ−1v∥A

∥v∥A0

≤ max
v∈Rn0 ,v ̸=0

∥IJ − NJAJ∥A
∥PJSJ−1v∥A

∥v∥A0

= ∥IJ − NJAJ∥A max
v∈Rn0 ,v ̸=0

∥SJ−1v∥AJ−1

∥v∥A0

(1.8)

≤
J∏︂
j=1

∥Ij − NjAj∥Aj
max

v∈Rn0 ,v ̸=0

∥I0v∥A0

∥v∥A0

=
J∏︂
j=1

∥Ij − NjAj∥Aj
,

where we have used the Galerkin condition (1.1) to obtain (1.8). The monotone
convergence of the post-smoothers (1.2) in the Aj-norms implies that ∥S∥A0,A < 1.
If post-smoothing is not used, i.e., Nj = 0, then ∥S∥A0,A = 1.

21

The relation (1.6) implies

∥xnew
ex − xnew

in ∥A ≤ ∥S∥A0,A∥v0 − v0,in∥A0 . (1.9)

Returning back to the estimate of the A-norm of the error of the inV-cycle
approximation, using (1.4) and (1.9) we have

∥x − xnew
in ∥A ≤ ∥E∥A∥x − xprev∥A + ∥S∥A0,A∥v0 − v0,in∥A0 , ∀xprev. (1.10)

We consider two different assumptions on the A0-norm of the error of the
approximate coarsest-level solver ∥v0 − v0,in∥A0 :

• A relative assumption, where the A0-norm of the error of the coarsest-level
solver is less than a factor of the A-norm of the error of the previous
approximation on the finest level, i.e., there is a constant γ > 0 such that

∥v0 − v0,in∥A0 ≤ γ∥x − xprev∥A, ∀xprev. (1.11)

• An absolute assumption, where the A0-norm of the error of the coarsest-level
solver is less than a constant, i.e., there is a constant ϵ > 0 such that

∥v0 − v0,in∥A0 ≤ ϵ, ∀xprev. (1.12)

We first analyze the inV-cycle method under the relative assumption and then
under the absolute assumption. We comment on verification of the assumptions
later in Sections 1.4 and 1.5.

1.3.1 Relative coarsest-level accuracy
Combining (1.9) and (1.11) yields an estimate on the A-norm of the relative

difference of the exV-cycle and inV-cycle approximations after one V-cycle iteration

∥xnew
ex − xnew

in ∥A

∥x − xprev∥A
≤ ∥S∥A0,Aγ.

For the A-norm of the error of the inV-cycle approximation, we have using (1.10)
and (1.11)

∥x − xnew
in ∥A ≤ (∥E∥A + ∥S∥A0,Aγ) ∥x − xprev∥A. (1.13)

Assuming that the error of the coarsest-level solver satisfies estimate (1.11) with
γ such that

∥E∥A + ∥S∥A0,Aγ < 1,
the inV-cycle method converges and we have a bound on its convergence rate
in terms of the bound on the rate of convergence of the exV-cycle method and
∥S∥A0,Aγ.

We summarize the results in the following theorem.

Theorem 1.1. Let xnew
ex be the approximation of x = A−1b computed after one

iteration of the exV-cycle method with error propagation matrix E, ∥E∥A < 1,
starting with an approximation xprev. Let xnew

in be an approximation of x = A−1b
computed after one iteration of the inV-cycle method starting with the same

22

approximation xprev, and assume the error of the coarsest-level solver v0 − v0,in
satisfies

∥v0 − v0,in∥A0 ≤ γ∥x − xprev∥A, (1.14)

for some constant γ > 0. Then the following estimate on the A-norm of the
relative difference of the exV-cycle and inV-cycle approximations after one V-cycle
iteration holds:

∥xnew
ex − xnew

in ∥A

∥x − xprev∥A
≤ ∥S∥A0,Aγ, (1.15)

where S is the matrix defined in (1.5) satisfying ∥S∥A0,A ≤ 1. Moreover,

∥x − xnew
in ∥A ≤ (∥E∥A + ∥S∥A0,Aγ) ∥x − xprev∥A, (1.16)

and if the error of the coarsest-level solver satisfies (1.14) with γ such that

∥E∥A + ∥S∥A0,Aγ < 1,

the inV-cycle method converges.

A multigrid method is said to be uniformly convergent if there exist a bound
on the rate of convergence which is independent of the number of levels and of the
size of the problem on the coarsest level; see e.g., [23, 25]. If we assume that the
exV-cycle method converges uniformly and the error of the coarsest-level solver in
the inV-cycle method satisfies (1.14) with γ such that ∥E∥A + γ < 1 holds and γ
is independent of the number of levels and the size of the problem on the coarsest
level, inequality (1.16) and the fact that ∥S∥A0,A < 1 yield that the inV-cycle
method converges uniformly.

We use the results presented in this section to discuss what may be the effect
of the choice of tolerance in a relative residual coarsest-level stopping criterion
on the convergence of the V-cycle method in Section 1.4. We present numerical
experiments testing the accuracy of the estimates (1.15) and (1.16) in Section 1.6.1.

1.3.2 Absolute coarsest-level accuracy
We further focus on the analysis of the inV-cycle method under the assumption

on the absolute coarsest-level accuracy (1.12). The following development is
inspired by [7, Section 4], where the authors analyze the inexact Richarson
method.

Let x(n)
in be an approximation computed after n iterations of the inV-cycle

method, starting with an initial approximation x(0), and assume the errors of the
coarsest-level solver satisfy (1.12) with a constant ϵ > 0. Using (1.3) and (1.6),
the error of the kth approximation x(k)

in , k = 1, . . . , n, can be written as

x − x(k)
in = E(x − x(k−1)

in) + g(k), k = 1, . . . , n,

where g(k) = S(v(k)
0 − v(k)

0,in) and v(k)
0 − v(k)

0,in is the error of the coarsest-level solver
when computing x(k)

in . Let x(n)
ex be an approximation computed after n iterations

of the exV-cycle method starting with the same initial approximation x(0). The

23

difference x(n)
ex − x(n)

in can be rewritten using the terms g(k) as

x(n)
ex − x(n)

in = (x − x(n)
in) − (x − x(n)

ex)
= E(x − x(n−1)

in) + g(n) − En(x − x(0))
= E(E(x − x(n−2)

in) + g(n−1)) + g(n) − En(x − x(0))
= E2(x − x(n−2)

in) + Eg(n−1) + g(n) − En(x − x(0))

= En(x − x(0)) +
n∑︂
k=1

En−kg(k) − En(x − x(0))

=
n∑︂
k=1

En−kg(k).

Taking the A-norm of both sides, using the triangle inequality and the multiplica-
tivity of the matrix norm ∥ · ∥A we obtain

∥x(n)
ex − x(n)

in ∥A = ∥
n∑︂
k=1

En−kg(k)∥A ≤
n∑︂
k=1

∥E∥n−k
A ∥g(k)∥A. (1.17)

Using that g(k) = S(v(k)
0 − v(k)

0,in) and the norm of S (1.7) leads to

∥x(n)
ex − x(n)

in ∥A ≤
n∑︂
k=1

∥E∥n−k
A ∥S(v(k)

0 − v(k)
0,in)∥A

≤
n∑︂
k=1

∥E∥n−k
A ∥S∥A0,A∥v(k)

0 − v(k)
0,in∥A0 .

This bound provides information on how the accuracy of the solver on the coarsest
level during the individual solves affects the A-norm of the difference of the
approximations x(n)

ex and x(n)
in .

Using the assumption (1.12) and the bound for a sum of a geometric series we
have

∥x(n)
ex − x(n)

in ∥A ≤
n∑︂
k=1

∥E∥n−k
A ∥S∥A0,Aϵ < ∥S∥A0,Aϵ

+∞∑︂
ℓ=0

∥E∥ℓA ≤ ϵ∥S∥A0,A

1 − ∥E∥A
.

Using the triangle inequality yields

∥x − x(n)
in ∥A ≤ ∥x − x(n)

ex ∥A + ϵ∥S∥A0,A

1 − ∥E∥A
;

i.e., the A-norm of the error after n V-cycle iterations is less than the A-norm of
the error of the exV-cycle approximation computed after n V-cycles plus the term
ϵ∥S∥A0,A
1−∥E∥A

.
We summarize the results of this section in the following theorem.

Theorem 1.2. Let x(n)
ex be the approximation of x = A−1b computed after n

iterations of the exV-cycle method with error propagation matrix E, ∥E∥A < 1,
starting with an approximation x(0). Let x(n)

in be an approximation of x = A−1b
computed after n iterations of the inV-cycle method, starting with the same
approximation, and assume the errors of the coarsest-level solver v(k)

0 −v(k)
0,in satisfy

∥v(k)
0 − v(k)

0,in∥A0 ≤ ϵ, k = 1, . . . , n, (1.18)

24

for a constant ϵ > 0. Then the following estimate on the A-norm of the difference
of x(n)

ex and x(n)
in holds:

∥x(n)
ex − x(n)

in ∥A ≤ ϵ∥S∥A0,A

1 − ∥E∥A
, (1.19)

where S is the matrix defined in (1.5) and ∥S∥A0,A ≤ 1. Moreover,

∥x − x(n)
in ∥A ≤ ∥x − x(n)

ex ∥A + ϵ∥S∥A0,A

1 − ∥E∥A
.

We derive a coarsest-level stopping criteria based on these results in Section 1.5
and perform numerical experiments studying the behavior of an inV-cycle method
with the assumption on an absolute coarsest-level accuracy in Section 1.6.3.

1.4 Effects of the choice of the tolerance in rela-
tive residual stopping criterion

Stopping an iterative coarsest-level solver based on the size of the relative
residual is frequently done both in the literature and in practice. One chooses a
tolerance τ and stops the solver when

∥f0 − A0v0,in∥
∥f0∥

≤ τ. (1.20)

In this section we use the results from Section 1.3.1 to analyze the effect of the
choice of the tolerance τ on the convergence of the inV-cycle method. We show that
if inequality (1.20) holds then inequality (1.14) holds with a certain γ depending
on the tolerance τ , and consequently we may use the results from Theorem 1.1.

We start by showing that the Euclidean norm of the right-hand side on the
coarsest level can be bounded by the Euclidean norm of the residual of the
previous approximation on the finest level. Rewriting f0 using the individual steps
in Algorithm 1.1, we have (note that v[0]

j = 0, j = 1, . . . , J − 1)

f0 = P⊤
1 (f1 − A1v[1]

1) = P⊤
1 (f1 − A1(v[0]

1 + M1(f1 − A1v[0]
1))

= P⊤
1 (I1 − A1M1)f1 =

J−1∏︂
j=1

P⊤
j (Ij − AjMj)fJ−1.

(1.21)

The vector fJ−1 can be expressed as

fJ−1 = P⊤
J (b − Av[1]

J) = P⊤
J (b − A(xprev + MJ(b − Axprev)))

= P⊤
J (IJ − AMJ)(b − Axprev).

(1.22)

Denoting by T the matrix

T =
J∏︂
j=1

P⊤
j (Ij − AjMj),

25

and combining (1.21) and (1.22), we have f0 = T (b − Axprev). The matrix T
describes how the residual from the finest level is propagated to the coarsest level.
Based on this relation, we can estimate the Euclidean norm of f0 as

∥f0∥ ≤ ∥T∥∥b − Axprev∥. (1.23)

The norm of T can be bounded as

∥T∥ ≤
J∏︂
j=1

∥P⊤
j ∥∥Ij − AjMj∥,

by a procedure analogous to that used in bounding the norm of ∥S∥A0,A; see
Section 1.3.

Utilizing (1.23) to bound the term ∥f0∥ in (1.20), we obtain

∥f0 − A0v0,in∥
∥T∥∥b − Axprev∥

≤ τ.

Using that the Euclidean norm of the coarsest-level residual can be bounded from
below by the A0-norm of the coarsest-level error as (see Appendix 1.8.2)

∥A−1
0 ∥− 1

2 ∥v0 − v0,in∥A0 ≤ ∥f0 − A0v0,in∥, (1.24)

and that the Euclidean norm of the finest-level residual can be bounded from
above by A-norm of the error as (see Appendix 1.8.2)

∥b − Axprev∥ ≤ ∥A∥
1
2 ∥x − xprev∥A, (1.25)

we get
∥A−1

0 ∥− 1
2 ∥v0 − v0,in∥A0

∥T∥∥A∥ 1
2 ∥x − xprev∥A

≤ τ, (1.26)

i.e., the inequality (1.14) holds with γ = τ∥T∥∥A∥ 1
2 ∥A−1

0 ∥ 1
2 . Using the results

from Theorem 1.1, we have an answer to the question of how the choice of the
tolerance in the relative residual stopping criterion for the coarsest-level solver
affects the convergence of the V-cycle method.

We note that since (1.26) was derived using the estimates (1.24)-(1.25), which
may be a large overestimate, the resulting estimates may be loose and the actual
quantities much smaller. We carry out numerical experiments investigating the
accuracy of the estimates for the methods used in the motivating numerical
experiment in Section 1.6.2.

1.5 Absolute coarsest-level stopping criteria
In this section, we focus on the second question formulated after the motiva-

tional experiment; that is:

“Can we define coarsest-level stopping criteria that would yield a
computed V-cycle approximation “close” to the V-cycle approxima-
tion which would be obtained by solving the coarsest-level problems
exactly?”

26

We present a new stopping criteria motivated by the assumption on an absolute
accuracy of the coarsest-level solver and the results in Theorem 1.2. The inequality
(1.18) in the assumption on an absolute accuracy of the coarsest-level solver can
not be directly used in practice as a coarsest-level stopping criterion since it
involves the A0-norm of the coarsest-level error, which is not available. We may,
however, formulate coarsest-level stopping criteria using estimates of the A0-norm
of the error. Let η(v(k)

0,in) be an upper bound on the A0-norm of the error of the
coarsest-level solver in the kth V-cycle iteration, i.e.,

∥v(k)
0 − v(k)

0,in∥A0 ≤ η(v(k)
0,in), k = 1, . . . , n. (1.27)

We formulate a stopping criterion with a parameter ϵ > 0, which is chosen by the
user, as

η(v(k)
0,in) ≤ ϵ, k = 1, . . . , n. (1.28)

If (1.28) holds then (1.18) holds and from Theorem 1.2 we know that the A-norm
of the difference of the inV-cycle and exV-cycle approximations after n V-cycle
iterations is bounded according to

∥x(n)
ex − x(n)

in ∥A ≤ ϵ

1 − ∥E∥A
; (1.29)

here we have bounded ∥S∥A0,A by one from above. We note that the accuracy of
this estimate is influenced by the accuracy of the estimates (1.27). The term ∥E∥A
is in general unknown. It is, however, included here in the form 1/(1 − ∥E∥A). If
we assume that ∥E∥A < α, (where, e.g., α = 1/2 or α = 2/3) we get

∥x(n)
ex − x(n)

in ∥A ≤ ϵ

1 − α
. (1.30)

Due to the structure of the term 1/(1−∥E∥A) this is not a significant overestimation
even if the actual value of ∥E∥A is much smaller than α. We note that assuming
that ∥E∥A < 1/2 or ∥E∥A < 2/3 is a valid assumption for a well set up V-cycle
methods.

The stopping criterion (1.28) thus enable us to control the difference of the
inV-cycle and exV-cycle approximations after n V-cycles and consequently also
the accuracy of the inV-cycle approximation. If we want to compute an inV-cycle
approximation whose A-norm of the error is approximately at the level θ (where
e.g., θ = 10−4 or θ = 10−11) we may set ϵ as ϵ = (1 − α)θ. Using the triangle
inequality and (1.30) the A-norm of the error of the inV-cycle approximation is
bounded as

∥x − x(n)
in ∥A ≤ ∥x − x(n)

ex ∥A + ∥x(n)
ex − x(n)

in ∥A ≤ ∥x − x(n)
ex ∥A + θ.

If we perform sufficiently many V-cycle iterations such that the A-norm of the
exV-cycle approximation (i.e., ∥x − x(n)

ex ∥A) would be approximately at the level
of θ, than the error of the inV-cycle approximation, ∥x − x(n)

in ∥A, is approximately
at the level of θ.

The coarsest-level stopping criterion does not provide a finest-level stopping
criterion for the inV-cycle method. We comment on a heuristic finest-level stopping
indicator when discussing the results of numerical experiments in Sections 1.6.3
and 1.6.4.

27

We further comment on the choice of the estimate η on the A0-norm of the error
on the coarsest-level. We may use the residual based estimate on the A0-norm of
the error (1.24); i.e.,

η(v0,in) = ∥A−1
0 ∥− 1

2 ∥f0 − A0v0,in∥. (1.31)

The term ∥A−1
0 ∥, i.e., the reciprocal value of the smallest eigenvalue of A0, has to

be in practical computations estimated or computed approximately.
When we are using the conjugate gradient method or the preconditioned

conjugate gradient method, we may use some of the upper bounds on the A0-norm
of the error described e.g., in [9] and the references therein, as well as in [6, 17, 16,
18]. Most of these estimates are derived based on the interpretation of CG as a
procedure for computing a Gauss quadrature approximation to a Riemann-Stieltjes
integral.

We test the accuracy of estimate (1.30) and the performance of the stopping
criterion in numerical experiments in Section 1.6.4.

1.6 Numerical experiments
In this section we present numerical experiments illustrating some of the

key results derived in this paper. We consider the same model problems and
analogous V-cycle methods as in the motivating experiments in Section 1.2.1. To
approximate the errors on the finest and coarsest level we compute the solutions
using the MATLAB backslash operator. We simulate the exV-cycle method by
using MATLAB backslash operator as the solver on the coarsest level.

1.6.1 inV-cycle method satisfying the relative coarsest-level
accuracy assumption

In this experiment, we study the behavior of the inV-cycle method with a
coarsest-level solver which is stopped when the assumption on a relative coarsest-
level accuracy is satisfied and examine the accuracy of the estimates presented in
Theorem 1.1.

We consider the same problems and analogous V-cycle methods as in the
motivational experiments in Section 1.2.1. The only difference is that we stop CG
on the coarsest level when inequality (1.14) (approximately) holds, i.e., when

∥v0 − v0,in∥A0 ≤ γ∥x − xprev∥A.

We consider three choices of the constant γ, γ = 0.3, γ = 10−3, and γ = 10−4. We
run the V-cycle method starting with a zero initial approximate solution and stop
when the A-norm of the error on the finest-level is (approximately) lower than
10−11.

The results are summarized in Figure 1.2. After each V-cycle iteration we
compute the A-norms of the relative difference of the exV-cycle and inV-cycle
approximations after one V-cycle iteration, i.e.,

∥xnew
ex − xnew

in ∥A

∥x − xprev∥A
, (1.32)

28

0 5 10 15
10−4
10−3

0.3

V-cycle iter.

∥x
ne

w
ex

−
xne

w
in

∥ A
∥x

−
xp

re
v
∥ A

Poisson problem, 6 levels

0 10 20 30
10−4
10−3

0.3

V-cycle iter.

∥x
ne

w
ex

−
xne

w
in

∥ A
∥x

−
xp

re
v
∥ A

jump-1024 problem, 6 levels

0 5 10 15
0

0.15
0.3

0.45

V-cycle iter.

∥x
−

x(n
) ∥

A
∥x

−
x(

n
−

1)
∥ A

Poisson problem, 6 levels

0 10 20 30

0.15
0.3

0.62
0.92

V-cycle iter.

∥x
−

x(n
) ∥

A
∥x

−
x(

n
−

1)
∥ A

jump-1024 problem, 6 levels

0 5 10 15
10−11

10−6

100

V-cycle iter.

∥x
−

x(n
) ∥

A

Poisson problem, 6 levels

0 10 20 30
10−11

10−6

100

V-cycle iter.

∥x
−

x(n
) ∥

A

jump-1024 problem, 6 levels

0 5 10 15

20
40
60

V-cycle iter.

nu
m

be
r

of
C

G
ite

r. Poisson problem, 6 levels

0 10 20 30

200
400
600

V-cycle iter.

nu
m

be
r

of
C

G
ite

r. jump-1024 problem, 6 levels

Figure 1.2 Properties of inV-cycle methods with CG as the solver on the coarsest
level, which is stopped when the assumption on the relative coarsest-level accuracy
(1.14) is satisfied with γ = 0.3 (), γ = 10−3 (), or γ = 10−4 (). The dashed
lines corresponds to the estimates ∥E∥A + γ. For comparison we also include results of
the exV-cycle method ().

29

0 20 40
10−13
10−11

10−4

100

V-cycle iter.

∥x
−

x(n
) ∥

A

Poisson problem, 6 levels

0 20 40
10−1310−11

10−4

100

V-cycle iter.

∥x
−

x(n
) ∥

A

jump-1024 problem, 6 levels

Figure 1.3 A-norm of the error of the inV-cycle methods with CG as the solver on
the coarsest level, which is stopped when the assumption on the relative coarsest-level
accuracy (1.14) is satisfied with γ = 0.3 (), γ = 10−3 (), or γ = 10−4 (). For
comparison we also include the A-norm of the error of the exV-cycle method ().
Every third point is marked.

for xprev = x(k)
in , k = 0, 1, According to the estimate (1.15) from Theorem 1.1,

the relative difference (1.32) should be less than γ∥S∥A0,A, where ∥S∥A0,A ≤ 1.
Looking at the results we see that all values (1.32) are slightly less than γ besides
the ones computed after the last few V-cycle iterations of the variants with
γ = 10−4. We strongly believe that these outlier are caused by the effects of finite
precision arithmetic. Dividing the computed values (1.32) (besides the mentioned
outliers) by γ and finding the maximum we get a lower bound on ∥S∥A0,A, which
is 0.95 and 0.97 for the variant with the Poisson and the jump-1024 problem,
respectively.

We also compute the convergence rate in the A-norm, after each V-cycle
iteration, i.e.,

∥x − x(n)∥A

∥x − x(n−1)∥A
, n = 1, 2, . . . , . (1.33)

According to the estimate (1.16), the convergence rate (1.33) is bounded by
∥E∥A + γ; we have used that ∥S∥A0,A ≤ 1. We approximate the term ∥E∥A by
a procedure described in Appendix 1.8.1. It is approximately 0.15 and 0.62 for
the variant with the Poisson and the jump-1024 problem, respectively. Looking
at the results we see that all the computed values of (1.33) are less than the
corresponding bounds.

Let us first comment on the result for the Poisson problem. The convergence
rates of the variants with γ = 10−3 and γ = 10−4 are approximately the same as
the convergence rate of the exV-cycle method. The rates are significantly lower
than its bounds in the first few V-cycle iterations, but they gradually deteriorate
to approximately the value of the bound in the last V-cycle iterations. The
convergence rate of the variant with γ = 0.3 is approximately constant 0.3. Here
we don’t see the usual deterioration of the convergence rate after the first V-cycle
iterations. The bound for this variant is approximately 0.45.

Let us focus on the results for the jump-1024 problem. The convergence
rate of the exV-cycle method doesn’t deteriorate to the value of its approximate
bound 0.62, but it stays under 0.15. This is an interesting behaviour since 0.15 is
approximately the value of the bound on the rate of convergence of the exV-cycle
method for the Poisson problem. The convergence rates of the variants with

30

γ = 10−3, γ = 10−4, are in the first V-cycle iterations approximately the same as
the rate of the exV-cycle method. They, however, eventually deteriorate to the
expected bounds. The deterioration happens sooner for the variant with γ = 10−3.

The convergence rate of the variant with γ = 0.3 is approximately 0.3 in
the first few iterations then it deteriorates to 0.62. This is another interesting
behaviour since 0.62 is the value of the bound on the convergence rate of the
exV-cycle method. The bound on the convergence rate of the inV-cycle method
with γ = 0.3 is 0.92.

In these experiments we see that the estimate of the rate of convergence of the
inV-cycle method with the assumption on a relative coarsest level accuracy is an
accurate estimate of the worst-case convergence rate if γ is smaller than ∥E∥A.

We also plot the A-norm of the error and the number of CG iterations on the
coarsest level. We see that the number of CG iterations performed in the variants
with the jump-1024 problem is significantly higher than in the variants with the
Poisson problem.

To find out whether the inV-cycle methods reach the same level of attainable
accuracy as the exV-cycle methods, we perform an experiment, where we stop
the V-cycle method on the finest level after 50 V-cycle iterations. The results are
summarized in Figure 1.3. We see that the considered inV-cycle methods reach
the same level of attainable accuracy as the exV-cycle methods.

1.6.2 Accuracy of the estimates for inV-cycle methods with
a relative residual coarsest-level stopping criterion

In this experiment, we study the accuracy of the results for a inV-cycle methods
with a relative residual coarsest-level stopping criterion discussed in Section 1.4.

We consider the same problems and analogous V-cycle methods as in the
motivational experiments in Section 1.2.1. We stop CG on the coarsest level using
the relative residual stopping criterion (1.20), i.e., when

∥f0 − A0v0,in∥
∥f0∥

≤ τ,

and choose τ = 10−4∥T∥−1∥A∥− 1
2 ∥A−1

0 ∥− 1
2 . We approximate the terms ∥T∥, ∥A∥,

∥A−1
0 ∥ using MATLAB function eigs.
We run the V-cycle method starting with a zero initial approximate solution

and stop when the A-norm of the error on the finest level is (approximately) lower
than 10−11. In order to find out whether the results are substantially affected by
the use of the finite precision arithmetic, we run the computation both in the
standard MATLAB double precision and also in a simulated quad precision using
the Advanpix toolbox [1].

After each V-cycle iteration we compute the A-norm of the relative difference
of the exV-cycle and inV-cycle approximations after one V-cycle iteration (1.32).
The V-cycle methods for both problems reach the desired accuracy in 9 V-cycle
iterations. The results are summarized in Figure 1.4. According to the discussion
in Section 1.4 the relative difference (1.32) should be less than

τ∥T∥∥A∥
1
2 ∥A−1

0 ∥
1
2 ∥S∥A0,A.

31

0 2 4 6 8

10−4

10−6

10−8

V-cycle iter.

∥x
ne

w
ex

−
xne

w
in

∥ A
∥x

−
xp

re
v
∥ A

Poisson problem, 6 levels

0 2 4 6 8

10−4

10−6

10−8

V-cycle iter.

∥x
ne

w
ex

−
xne

w
in

∥ A
∥x

−
xp

re
v
∥ A

jump-1024 problem, 6 levels

Figure 1.4 Testing accuracy of the estimate discussed in Section 1.4. We consider the
V-cycle method with CG as the solver on the coarsest level. CG is stopped using the
relative residual stopping criterion (1.20) with τ = 10−4∥T∥−1∥A∥− 1

2 ∥A−1
0 ∥− 1

2 . The
computation is done in standard MATLAB double precision () and in simulated
quad precision using the Advapix toolbox ().

Bounding ∥S∥A0,A by one from above and considering our choice of τ , we get that
the relative difference (1.32) should be less than 10−4. We see that this is true for
all of the computed values. The computed values are however significantly smaller
than the estimate. This may be a consequence of the usage of the estimates (1.24)
and (1.25) in the derivation of the estimates in Section 1.4.

We see that the relative difference (1.32) for the variant computed in double
precision starts increasing after the 5th V-cycle iterations, whereas the relative
difference for the variant computed in the simulated quad precision stay approxi-
mately at the same level. We thus strongly believe that the increase of the values
computed in double is caused by the use of the finite precision arithmetic.

1.6.3 inV-cycle method satisfying the absolute coarsest-
level accuracy assumption

In this experiment we study the behavior of the inV-cycle method with a
coarsest-level solver that is stopped when the assumption on an absolute coarsest-
level accuracy is satisfied and examine the accuracy of estimates presented in
Theorem 1.2.

We consider the same problems and analogous V-cycle methods as in the
motivational experiments in Section 1.2.1. The only difference is that we stop CG
on the coarsest level when inequality (1.18) (approximately) holds, i.e., when

∥v0 − v0,in∥A0 ≤ ϵ.

We choose ϵ = θ(1 − ∥E∥A), where θ = 10−4 or θ = 10−11. We approximate ∥E∥A
as in the experiments in Section 1.6.1. We run the V-cycle method starting with
a zero initial approximate solution and stop after 15 V-cycle iterations.

The results are summarized in Figure 1.5. After each V-cycle iteration we com-
pute the A-norm of the difference of the exV-cycle and inV-cycle approximations
after n V-cycle iterations, i.e.,

∥x(n)
ex − x(n)

in ∥A, n = 1, 2, . . . , . (1.34)

32

0 2 10 15

10−4

10−11

V-cycle iter.

∥x
(n

)
ex

−
x(n

)
in

∥ A

Poisson problem, 6 levels

0 2 9 15

10−4

10−11

V-cycle iter.

∥x
(n

)
ex

−
x(n

)
in

∥ A

jump-1024 problem, 6 levels

0 2 10 15

100

10−4

10−11

10−13

V-cycle iter.

∥x
−

x(n
) ∥

A

Poisson problem, 6 levels

0 2 10 15
0

50

100

V-cycle iter.

nu
m

be
r

of
C

G
ite

r. Poisson problem, 6 levels

0 2 9 15

100

10−4

10−11

10−13

V-cycle iter.

∥x
−

x(n
) ∥

A
jump-1024 problem, 6 levels

0 2 9 15
0

500

1,000

V-cycle iter.

nu
m

be
r

of
C

G
ite

r. jump-1024 problem, 6 levels

Figure 1.5 Properties of inV-cycle methods with CG as the solver on the coarsest
level, which is stopped when the assumption on the absolute coarsest-level accuracy
(1.18) (approximately) holds with ϵ = θ(1 − ∥E∥A), where θ = 10−4 () or θ = 10−11

(). For comparison we also include the A-norm of the error of the exV-cycle method
().

33

According to estimate (1.19) from Theorem 1.2, the norm of the difference (1.34)
should be less than

ϵ∥S∥A0,A

1 − ∥E∥A
.

Bounding ∥S∥A0,A from above by one and considering our choice of ϵ, we get that
the difference (1.34) should be less than θ. Looking at the results, we see that the
computed values (1.34) are slightly less than θ. The estimate (1.19) is accurate
for these numerical experiments.

The convergence of the inV-cycle and exV-cycle methods are approximately
the same until they reach the level θ. The A-norm of the error of the inV-cycle
method then starts decreasing with a significantly slower rate. At this point
the stopping criterion on the coarsest-level is automatically satisfied and the
coarsest-level solver is not used. The method perform only smoothing on the fine
levels.

We see that the choice of ϵ, respectively θ, determines the finest-level accuracy
of the inV-cycle approximation. If we look at the number of coarsest-level solver
iterations they are decreasing with each V-cycle iteration until they reach zero. The
number of CG iterations performed for the variant with θ = 10−4 is significantly
smaller than for the variant with θ = 10−11.

The behaviour is analogous for the two problems, the method for the jump-1024
requires significantly more coarsest-level iterations.

1.6.4 inV-cycle method with absolute coarsest-level stop-
ping criteria

In this experiment we study the behaviour of inV-cycle methods with an
absolute coarsest-level stopping criteria based on upper bounds of the A0-norm of
the errors.

We run analogous numerical experiments as in Section 1.6.3. The only differ-
ence is that we stop CG on the coarsest-level using the stopping criterion (1.28),
i.e., when

η(v0,in) ≤ ϵ,

where η is an upper bound on the A0-norm of the error of the coarsest-level solver.
We again choose ϵ = θ(1 − ∥E∥A), where θ = 10−4 or θ = 10−11. We consider two
choices of η. First, the residual based upper bound (1.31). We label this variant as
RES. We approximate the term ∥A−1

0 ∥ using the MATLAB function eigs. Second,
the Gauss-Radau upper bound on the A0-norm of the error in CG stated in [18,
second inequality in (3.5) with updating formula for a coefficient (3.3)]. This
upper bound is based on the interpretation of CG as a procedure for computing
a Gauss-Radau quadrature approximation to a Riemann-Stieltjes integral. To
compute this upper bound we need an lower bound on the smallest eigenvalue of
the matrix A0. We approximate the smallest eigenvalue of A0 using the MATLAB
eigs function and use its 1 − 10−3 multiple as the lower bound. We label this
variant as GR. For comparison we include in the plots the results computed in
Section 1.6.3 where CG is stopped on the coarsest-level when inequality (1.18)
(approximately) holds. We label this variant as ERR.

We run the V-cycle method starting with a zero initial approximate solution
and stop after 15 V-cycle iterations. The results are summarized in Figure 1.6.

34

0 5 10 15

10−4
10−5

10−11
10−12

V-cycle iter.

∥x
(n

)
ex

−
x(n

)
in

∥ A

Poisson problem, 6 levels

0 5 10 15

100

10−4

10−11

10−13

V-cycle iter.

∥x
−

x(n
) ∥

A

Poisson problem, 6 levels

0 5 10 15

100

10−7

10−13

V-cycle iter.

∥b
−

A
x(n

) ∥

Poisson problem, 6 levels

0 5 10 150

50

100

V-cycle iter.

nu
m

be
r

of
C

G
ite

r.

Poisson problem, 6 levels

0 5 10 15

10−4
10−5

10−11
10−12

V-cycle iter.

∥x
(n

)
ex

−
x(n

)
in

∥ A

jump-1024 problem, 6 levels

0 5 10 15

100

10−4

10−11

10−13

V-cycle iter.

∥x
−

x(n
) ∥

A

jump-1024 problem, 6 levels

0 5 10 15

100

10−7

10−13

V-cycle iter.

∥b
−

A
x(n

) ∥

jump-1024 problem, 6 levels

0 5 10 150

500

1,000

V-cycle iter.

nu
m

be
r

of
C

G
ite

r.

jump-1024 problem, 6 levels

Figure 1.6 Properties of inV-cycle methods with CG as the solver on the coarsest
level, which is stopped by an absolute criterion based on upper bounds of the A0-norm
of the errors; variant ERR with θ = 10−4 () or θ = 10−11 (), variant GR with
θ = 10−4 () or θ = 10−11 (), variant RES with θ = 10−4 () or θ = 10−11

(). For comparison we also include the A-norm of the error and Euclidean norm of
residual of the exV-cycle method ().

35

After each V-cycle iteration we compute the A-norm of the difference of the exV-
cycle and inV-cycle approximations after n V-cycle iterations (1.34). According to
the discussion in Section 1.5 and the choice of ϵ, the norm of the difference (1.34)
should be less than θ. Looking at the results we see that all values (1.34) are
lower than the corresponding θ. We see that estimate (1.29) is the most accurate
for the variant ERR and the loosest for the variants RES. When performing the
experiments we observed that the Gauss-Radau upper bound on the A0-norm
of the error used in the GR variants is more accurate than the residual based
estimate (1.31) used in the RES variants. The more accurate the upper bound on
the A0-norm of the error on the coarsest-level is used in the stopping criterion the
more accurate estimate (1.29) is and the less CG iterations on the coarsest-level
are performed.

Looking at the A-norms of the error, we see that the variants GR and RES with
stopping criteria based on the upper bounds of the A0-norm of the coarsest-level
errors have analogous convergence behavior as the variant ERR with stopping
criteria based on the A0-norm of the coarsest-level errors.

Based on these experiments, we believe that automatic satisfaction of the
coarsest-level criteria can be used as a heuristic indicator that the A-norm of the
error on the finest level is at the level of θ. Another heuristic indicator that we
reached the desired finest-level accuracy might be a stagnation of the norm of the
finest-level residual.

1.6.5 Performance of inV-cycle methods with absolute
coarsest-level stopping criteria

In this experiment, we evaluate the performance of inV-cycle methods with an
absolute coarsest-level stopping criteria considered in Section 1.6.4.

We consider the same problems and analogous V-cycle methods. The only
difference is that we don’t use a computed approximation of ∥E∥A but assume
that ∥E∥A < 2/3 for both problems. The assumption ∥E∥A < 2/3 should be
a valid assumption for most of the well set up V-cycle methods. For difficult
problems it may be safer to consider it closer to one. Our goal is to compute
approximations whose A-norm of the error is approximately at the level of 10−4

and 10−11, respectively. According to the discussion in Section 1.5 we choose
ϵ = (1 − 2/3)θ, where θ = 10−4 and θ = 10−11.

We run the V-cycle method starting with a zero initial approximate solution
and stop when the A-norm of the error is (approximately) lower than 10−4 and
10−11 for the variants with θ = 10−4 and θ = 10−11, respectively. For both
problems the exV-cycle method requires 2 and 9 V-cycle iterations to reach the
desired finest-level accuracy 10−4 and 10−11, respectively. The results of the
inV-cycle methods are summarized in Figure 1.7.

We see that the inV-cycle methods converge to the desired accuracy in the
same number of V-cycle iterations as the exV-cycle methods. The goal of the
coarsest-level stopping strategy is thus satisfied. The methods works well for both
problems with the same choice of the parameter ϵ. The variants RES, require
more CG iterations on the coarsest level than the variants GR.

We may compare the total number of CG iterations in the variants GR and
RES with the total number of CG iterations in the variants with a relative residual

36

V
-c

yc
le

s

to
ta

l C
G

it
.

V
-c

yc
le

s

to
ta

l C
G

it
.

V
-c

yc
le

s

to
ta

l C
G

it
.

V
-c

yc
le

s

to
ta

l C
G

it
.

GR 2 82 9 674 2 743 9 6489

RES 2 96 9 726 2 934 9 7174

Poisson problem, 6 levels jump-1024 problem, 6 levels

 condition number of the coarsest-level matrix

6.48E+02 1.66E+05

finest level tolerance 𝜃 finest level tolerance 𝜃

1.00E-04 1.00E-11 1.00E-04 1.00E-11

Figure 1.7 Properties of inV-cycle methods with CG as the solver on the coarsest
level, which is stopped by the absolute criteria based on upper bounds of the A0-norm
of the errors.

stopping criterion in Figure 1.1. We see that the number of total CG iterations
in the GR and RES variants are not the lowest possible, such that an inV-cycle
method converges to the desired accuracy in the same number of V-cycles as the
exV-cycle method, but they also aren’t substantially high.

To see how the coarsest-level stopping strategy may be affected by the change
of the size of the coarsest-level problem and the change of the number of levels in
the V-cycle method we run experiments where we consider the same problem on
the finest level, but just three level V-cycle methods. The size of the coarsest-level
problems is 101761 DoFs. The results are summarized in Figure 1.8.

We see analogous behavior as in the experiment with six level V-cycle methods.
The variants GR and RES converge to the desired accuracy in the same number
of V-cycle iterations as the exV-cycle methods.

The main benefit of the stopping strategy is that we don’t have to try different
parameters for different problems or when we want to reach different finest-level
tolerances or when the size of the coarsest-level problem changes. The parameter
θ is chosen the same as the finest-level tolerance we are aiming for.

1.7 Conclusions and open problems
In this paper we present an approach to analyzing the effects of approximate

coarsest-level solves on the convergence of the V-cycle method for SPD problems.
We use the results to give an answer to the question of how the choice of tolerance
in the relative residual stopping criterion for the coarsest-level solver may affect
the convergence of the V-cycle method. We present novel coarsest-level stopping
criterion which we may use to control the difference between the computed
approximation and the approximation which would be computed by the exV-cycle
method. This coarsest-level stopping criterion may thus be set up such that the
method converges to a chosen finest-level accuracy in (nearly) the same number
of V-cycle iterations as the exV-cycle method. The stopping strategy achieves
this goal in various numerical experiments. In a future work we would like to test
this coarsest-level stopping strategy within the algebraic multigrid methods.

In this work we focus on the use of multigrid methods as a standalone solver.
Multigrid methods are, however, also frequently used as a preconditioner for a
Krylov subspace method. It would be interesting to investigate how the results

37

V
-c

yc
le

s

to
ta

l C
G

it
.

V
-c

yc
le

s

to
ta

l C
G

it
.

V
-c

yc
le

s

to
ta

l C
G

it
.

V
-c

yc
le

s

to
ta

l C
G

it
.

5.00E-01 4 433 15 2103 3 5950 18 34932

2.50E-01 3 454 10 1819 2 5642 16 30633

1.25E-01 2 365 9 1599 2 7646 15 33928

6.25E-02 2 423 8 1563 1 4955 14 32306

3.13E-02 2 461 8 1708 1 5229 12 32638

1.56E-02 2 510 7 1513 1 5512 9 29494

7.81E-03 1 350 7 1816 1 6044 9 30272

3.91E-03 1 367 7 1830 1 7130 9 34152

1.95E-03 1 382 7 1843 1 7249 8 37433

9.77E-04 1 395 7 2014 1 7459 7 40062

4.88E-04 1 407 7 2165 1 8404 8 44876

2.44E-04 1 419 7 2341 1 9034 7 46047

1.22E-04 1 435 7 2565 1 9459 7 50572

6.10E-05 1 444 7 2712 1 10129 7 53086

3.05E-05 1 456 7 2839 1 10353 7 58490

1.53E-05 1 469 7 3077 1 10748 7 61281

7.63E-06 1 480 7 3302 1 11469 7 65745

3.81E-06 1 491 7 3613 1 11825 7 69213

1.91E-06 1 502 7 3709 1 12073 7 71871

9.54E-07 1 513 7 3945 1 12633 7 75234

GR 1 408 7 2847 1 6707 7 54646

RES 1 430 7 3417 1 8901 7 67373

Poisson problem, 3 levels jump-1024 problem, 3 levels

 condition number of the coarsest-level matrix

4.15E+04 1.06E+07

1.00E-04 1.00E-11 1.00E-04 1.00E-11

finest level tolerance 𝜃 finest level tolerance 𝜃

𝜏

Figure 1.8 Properties of inV-cycle methods with CG as the solver on the coarsest
level, which is stopped by a relative residual criterion with various tolerance τ , or by an
absolute criterion based on upper bounds of the A0-norm of the errors; variants GR
and RES. The bright yellow and green color highlight variants that converge in the
same number of V-cycles as the exV-cycle method. The bright yellow variants achieve
this in the least total number of CG iterations on the coarsest-level.

38

obtained in this paper could be utilized in this setting. In general an inV-cycle
method would have to be applied as a flexible preconditioner.

Other open problems include the generalization to non-symmetric problems
or to other multigrid schemes such as the W-cycle scheme or the full multigrid
scheme.

1.8 Appendix

1.8.1 Numerical approximation of ∥E∥A

In this section we describe a procedure for numerical approximation of the
A-norm of the error propagation matrix E of the exV-cycle scheme. We consider
an exV-cycle scheme where the pre- and post- smoothing is each accomplished by
one iteration of the symmetric Gauss-Seidel method. Thanks to the use of the
symmetric Gauss-Seidel smoother the matrix E is symmetric and there exist a
symmetric matrix B such that E = I − B−1A; see, e.g., [23]. Then

∥E∥A = ∥I − B−1A∥A = ∥A
1
2 (I − B−1A)A− 1

2 ∥ = ∥I − A
1
2 B−1A

1
2 ∥.

Since the matrices A 1
2 B−1A 1

2 and B−1A have the same eigenvalues there holds

∥I − A
1
2 B−1A

1
2 ∥ = ∥I − B−1A∥,

and consequently ∥E∥A = ∥E∥. We compute it using MATLAB function eigs
(with the largest eigenvalue option) applied to the function

x ↦→ x − V(A0:J ,M1:J ,N1:J ,P1:J ,Ax,0, J).

1.8.2 Derivation of inequalities (1.24) and (1.25)
In this section we present derivations of inequalities (1.24) and (1.25) used in

Section 1.4, i.e.,

∥A−1
0 ∥− 1

2 ∥v0 − v0,in∥A0 ≤ ∥f0 − A0v0,in∥,
∥b − Axprev∥ ≤ ∥A∥

1
2 ∥x − xprev∥A.

Using that A0v0 = f0 and that A0 is SPD we have

∥v0 − v0,in∥2
A0 = (v0 − v0,in)⊤A0(v0 − v0,in)

= (A−1
0 (f0 − A0v0,in))⊤A0(A−1

0 (f0 − A0v0,in))
= (f0 − A0v0,in)⊤A−1

0 A0A−1
0 (f0 − A0v0,in)

= (f0 − A0v0,in)⊤A−1
0 (f0 − A0v0,in) ≤ ∥A−1

0 ∥∥f0 − A0v0,in∥2,

which yields the first inequality. The second inequality can be derived using that
Ax = b and that A is SPD

∥b − Axprev∥2 = (b − Axprev)⊤(b − Axprev) = (A(x − xprev))⊤((A(x − xprev))
= (x − xprev)⊤A

1
2 AA

1
2 (x − xprev)

≤ ∥A∥(x − xprev)⊤A(x − xprev) = ∥A∥∥x − xprev∥2
A.

39

Acknowledgments
The authors wish to thank Petr Tichý for his useful comments on error

estimation in CG and Jaroslav Hron for his suggestions when generating the
system matrices in FEniCS. The authors acknowledge the support of the Erasmus+
program that enabled Petr Vacek to spend the Winter semester 2021-2022 at
Trinity College Dublin. During this visit the basis of the paper was developed.

Bibliography
[1] Advanpix Multiprecision Computing Toolbox for MATLAB ver. 5.1.0.15432.

Yokohama, Japan: Advanpix LLC. url: https://www.advanpix.com/.
[2] M. S. Alnaes, J. Blechta, J. Hake, et al. “The FEniCS Project Version 1.5”.

In: Archive of Numerical Software 3 (2015). doi: 10.11588/ans.2015.100.
20553.

[3] A. Brandt. Multigrid Techniques 1984 Guide with Applications to Fluid
Dynamics Revised Edition. Philadelphia, PA: SIAM, 2011. doi: 10.1137/1.
9781611970753.

[4] W. L. Briggs, V. E. Henson, and S. F. McCormick. A Multigrid Tutorial.
Second. Philadelphia, PA: SIAM, 2000, pp. xii+193. doi: 10.1137/1.
9780898719505.

[5] A. Buttari et al. “Block low-rank single precision coarse grid solvers for
extreme scale multigrid methods”. In: Numerical Linear Algebra with Appli-
cations 29.1 (2022), e2407. doi: 10.1002/nla.2407.

[6] D. Calvetti et al. “Computable error bounds and estimates for the conjugate
gradient method”. In: Numerical Algorithms 25.1-4 (2000), pp. 75–88. doi:
10.1023/A:1016661024093.

[7] J. van den Eshof and G. L. G. Sleijpen. “Inexact Krylov subspace methods for
linear systems”. eng. In: SIAM Journal on Matrix Analysis and Applications
26.1 (2004), pp. 125–153. doi: 10.1137/S0895479802403459.

[8] H. Gahvari et al. “Systematic Reduction of Data Movement in Algebraic
Multigrid Solvers”. In: 2013 IEEE International Symposium on Parallel &
Distributed Processing, Workshops and Phd Forum. 2013, pp. 1675–1682.
doi: 10.1109/IPDPSW.2013.164.

[9] G. H. Golub and G. Meurant. Matrices, moments and quadrature with
applications. USA: Princeton University Press, 2010, pp. xxx+698.

[10] W. Hackbusch. Iterative solution of large sparse systems of equations. Second.
Vol. 95. Applied Mathematical Sciences. Cham: Springer, 2016, pp. xxiii+509.
doi: 10.1007/978-3-319-28483-5.

[11] M. R. Hestenes and E. Stiefel. “Methods of conjugate gradients for solving
linear systems”. In: Journal of Research of the National Bureau of Standards
49.6 (1952), pp. 409–436. doi: 10.6028/jres.049.044.

[12] M. Huber. “Massively parallel and fault-tolerant multigrid solvers on peta-
scale systems”. PhD thesis. Technical University of Munich, Germany, 2019.
url: http://www.dr.hut-verlag.de/978-3-8439-3917-1.html.

40

https://www.advanpix.com/
https://doi.org/10.11588/ans.2015.100.20553
https://doi.org/10.11588/ans.2015.100.20553
https://doi.org/10.1137/1.9781611970753
https://doi.org/10.1137/1.9781611970753
https://doi.org/10.1137/1.9780898719505
https://doi.org/10.1137/1.9780898719505
https://doi.org/10.1002/nla.2407
https://doi.org/10.1023/A:1016661024093
https://doi.org/10.1137/S0895479802403459
https://doi.org/10.1109/IPDPSW.2013.164
https://doi.org/10.1007/978-3-319-28483-5
https://doi.org/10.6028/jres.049.044
http://www.dr.hut-verlag.de/978-3-8439-3917-1.html

[13] A. Logg et al. Automated Solution of Differential Equations by the Finite
Element Method. Springer, 2012. doi: 10.1007/978-3-642-23099-8.

[14] D. A. May et al. “Extreme-scale multigrid components within PETSc”. In:
Proceedings of the Platform for Advanced Scientific Computing Conference.
2016, pp. 1–12.

[15] S. F. McCormick, J. Benzaken, and R. Tamstorf. “Algebraic Error Analysis
for Mixed-Precision Multigrid Solvers”. In: SIAM Journal on Scientific
Computing 43.5 (2021), S392–S419. doi: 10.1137/20M1348571.

[16] G. Meurant, J. Papež, and P. Tichý. “Accurate error estimation in CG”. In:
Numerical Algorithms 88.3 (2021), pp. 1337–1359. doi: 10.1007/s11075-
021-01078-w.

[17] G. Meurant and P. Tichý. “Approximating the extreme Ritz values and
upper bounds for the A-norm of the error in CG”. In: Numerical Algorithms
82.3 (2019), pp. 937–968. doi: 10.1007/s11075-018-0634-8.

[18] G. Meurant and P. Tichý. “The behaviour of the Gauss-Radau upper bound
of the error norm in CG”. In: Numerical Algorithms 94 (2023), pp. 847–876.
doi: 10.1007/s11075-023-01522-z.

[19] Y. Notay. “Convergence analysis of perturbed two-grid and multigrid meth-
ods”. In: SIAM Journal on Numerical Analysis 45.3 (2007), pp. 1035–1044.
doi: 10.1137/060652312.

[20] A. Reisner, L. N. Olson, and J. D. Moulton. “Scaling structured multigrid
to 500k+ cores through coarse-grid redistribution”. In: SIAM Journal on
Scientific Computing 40.4 (2018), pp. C581–C604.

[21] U. Trottenberg, C. W. Oosterlee, and A. Schuller. Multigrid. London: Aca-
demic Press, 2001.

[22] S. Williams et al. “s-Step Krylov Subspace Methods as Bottom Solvers
for Geometric Multigrid”. In: 2014 IEEE 28th International Parallel and
Distributed Processing Symposium. 2014, pp. 1149–1158. doi: 10.1109/
IPDPS.2014.119.

[23] J. Xu. “Iterative methods by space decomposition and subspace correction”.
In: SIAM Review 34.4 (1992), pp. 581–613. doi: 10.1137/1034116.

[24] X. Xu and C.-S. Zhang. “Convergence Analysis of Inexact Two-Grid Methods:
A Theoretical Framework”. In: SIAM Journal on Numerical Analysis 60.1
(2022), pp. 133–156. doi: 10.1137/20M1356075.

[25] H. Yserentant. “Old and new convergence proofs for multigrid methods”. In:
Acta Numerica 2 (1993), pp. 285–326.

41

https://doi.org/10.1007/978-3-642-23099-8
https://doi.org/10.1137/20M1348571
https://doi.org/10.1007/s11075-021-01078-w
https://doi.org/10.1007/s11075-021-01078-w
https://doi.org/10.1007/s11075-018-0634-8
https://doi.org/10.1007/s11075-023-01522-z
https://doi.org/10.1137/060652312
https://doi.org/10.1109/IPDPS.2014.119
https://doi.org/10.1109/IPDPS.2014.119
https://doi.org/10.1137/1034116
https://doi.org/10.1137/20M1356075

2 A posteriori error estimates
based on multilevel
decompositions with large
problems on the coarsest level

In the previous chapter we studied the effects of approximate coarsest-level
solves on the convergence of a V-cycle method. In this chapter, we focus on a
related question formulated in the introduction regarding multilevel a posteriori
error estimates:

c) Consider the residual-based multilevel a posteriori error estimates such as
in [33, Section 2.6]. Is it possible to compute the term associated with the
coarsest-level approximately while preserving the efficiency and accuracy of
the estimate?

We show that the way in which the term associated with the coarsest level
is approximated is substantial. It can affect both the efficiency and accuracy of
the overall error estimates and their robustness with respect to the size of the
coarsest-level problem. We propose a new approximation of the coarsest-level
term, based on using the conjugate gradient method with an appropriate stopping
criterion. We prove that the resulting estimates still have the desired properties,
even though we use approximate computation on the coarsest-level.

This chapter contains a version of the paper: P. Vacek, J. Papež and Z.
Strakoš, “A posteriori error estimates based on multilevel decompositions with large
problems on the coarsest level”, https://arxiv.org/abs/2405.06532, which was
submitted to a peer-reviewed journal in May 2024.

2.1 Introduction
Multilevel methods [6, 19, 9, 39] are frequently used for solving systems of

linear equations obtained from the discretization of partial differential equations
(PDEs). They are applied either as standalone iterative solvers or as precondi-
tioners. In geometric multigrid methods the hierarchy of systems is obtained by
discretizations of an infinite dimensional problem on a sequence of nested meshes.
In algebraic multigrid methods the coarse systems are constructed using algebraic
properties of the matrix. Each multigrid cycle contains smoothing on fine levels,
prolongation, restriction, and solving a system of linear equations on the coarsest
level. Smoothing is typically done by a few iterations of a stationary iterative
method. If the size permits, it is typical to solve the coarsest-level problem using
a direct method based on LU or Cholesky decomposition. Although this does not
provide a computed result with a zero error, many theoretical results on multigrid
methods are proved under the assumption that the coarsest-level problem is solved
exactly; see, e.g., [43, 45].

Multilevel methods can in practice also use hierarchies where the problem on
the coarsest level is large and can only be solved approximately to a properly

42

https://arxiv.org/abs/2405.06532

chosen accuracy, e.g., by Krylov subspace methods, or direct methods based on
low-rank matrix approximations. This arises for problems on complicated domains
or for large-scale problems solved on modern parallel computers; see, e.g., [10].
Effects of approximate coarsest-level solves on convergence of multigrid method
were analysed, e.g., in [28, 44, 41].

The multilevel structure can also be used to construct estimates of total and
algebraic errors; see, e.g., [4, 33, 20, 23, 31, 27]. The estimates of [4, 33, 20,
23, 31, 27] are, however, not suited for multilevel hierarchies with large coarsest-
level problems, which are being used for complicated domains and/or in parallel
implementations. They either assume that the coarsest-level problem is solved
exactly [4, 31, 27], or they require computation of the term r∗

0A−1
0 r0 associated

with the coarsest level, where A0 is the coarsest-level system matrix and r0 a
projection of a finest-level residual to the coarsest level, [33, 20, 23]. The term
r∗

0A−1
0 r0 can be approximated, e.g., using the conjugate gradient method (CG) as

in [23], or by replacing the system matrix with a diagonal matrix as in [20]. Then
proving efficiency and robustness of estimates becomes an important challenge.

In this text, we discuss properties of the error estimates in multilevel settings
where the system matrix on the coarsest level is large and the associated terms
are only approximated. We consider several a posteriori estimates on total and
algebraic errors based on decomposing the error into a sequence of finite element
subspaces and using either approximation properties of quasi-interpolation opera-
tors [4], stable splittings [33, 23], or so-called frames [20]. The main contribution
of this paper is a new procedure for approximating the term associated with
the coarsest level that is based on using the conjugate gradient method with an
appropriate stopping criterion. We prove that the resulting estimates are efficient
and robust with respect to the size of the coarsest-level problem.

The text is organized as follows. First, we present a model problem, its
discretization, and the notation used in the text. Derivations of error estimates
for total and algebraic errors are presented in Section 2.3. In Section 2.4, we
comment on the efficiency of the bounds. Main results are presented in Section 2.5
where we describe how to replace the (uncomputable) terms in the estimates by a
computable approximation and present an adaptive procedure for approximating
the coarsest-level term r∗

0A−1
0 r0. Numerical illustrations are given in Section 2.6

and conclusions in Section 2.7. Not to interrupt the presentation, we present
detailed theoretical results, which are used in the derivation of the estimates, in
Appendices. Appendix 2.8.1 recalls some standard results from PDE and finite
element method (FEM) analyses. Appendix 2.8.2 presents properties of the quasi-
interpolation operator, and Appendix 2.8.3 recalls results on stable-splittings and
frames. This enables an easy comparison of different results that are presented
separately in literature.

2.2 Model problem, setting, and notation
The estimates will be studied for a standard model problem, a prototype for

elliptic equations, the Poisson’s problem with homogeneous Dirichlet boundary
conditions. Let Ω ⊂ Rd, d = 2, 3, be an open bounded polytope with a Lipschitz-
continuous boundary. Given f ∈ L2(Ω), the weak form reads: find u ∈ H1

0 (Ω)

43

such that ∫︂
Ω

∇u · ∇v =
∫︂

Ω
fv ∀v ∈ H1

0 (Ω). (2.1)

In this section, we introduce notation for meshes and finite element spaces,
and the multilevel framework. Further, we present the Galerkin finite element
discretization of the model problem on a particular level, define its approximate
solution, the error, and (scaled) residuals associated with individual levels of the
multilevel hierarchy.

Similarly to a standard literature, we introduce some simplifying assumptions,
e.g., on the model problem or mesh hierarchies. This is done in order to reduce
the complexity of proofs (that are already quite technical) and to allow us to refer
to particular results in the literature. We use a standard notation for Lebesgue
and Sobolev (Hilbert) spaces, norms, and seminorms; see, e.g., [8].

2.2.1 Notation for a single level
Throughout the paper, we consider simplicial meshes of Ω, matching in the

sense that for two distinct elements of a mesh T (triangles in 2D, or tetrahedra in
3D), their intersection is either an empty set or a common node (vertex), edge,
or face. By ET and NT we denote the set of (d− 1)-dimensional faces and set of
nodes in the mesh T , respectively. By ET ,int we denote the set of all faces that are
not on the boundary ∂Ω. By KT ⊂ NT we denote the set of all nodes in the mesh
T , which are not on the boundary, i.e., free nodes. For any element (simplex)
K ∈ T , EK ⊂ ET denotes the set of faces of the element K, NK ⊂ NT denotes
the set of nodes of the element K, EK,int = EK ∩ ET ,int, and KK = NK ∩ KT . We
use hash to denote the cardinality of a set, for example #KT denotes the number
of free nodes in the mesh T . For the ease of presentation, we will assume that the
nodes in NT are ordered such that nodes 1, . . . ,#KT belong to KT , i.e., we first
have the free nodes and then the nodes on the boundary.

By hK we denote the diameter of K ∈ T and define a mesh-size hT ∈ L∞(Ω)
as

hT (x) = hK , x ∈ K, ∀K ∈ T .

Similarly hω denotes the diameter of a domain ω. We in particular use hΩ, the
diameter of the domain Ω. By |ω| we denote the Lebesgue measure of a domain ω.

For any element K ∈ T , ωK denotes the patch of elements that share at least
one common vertex with K, i.e.,

ωK =
⋃︂

K′∈T ;K′∩K ̸=∅
K ′.

By ρK we denote the diameter of the largest ball inscribed in the element K.
For every node z ∈ NT , let φz be the continuous piecewise linear function (hat

function) that has a value one at node z and vanishes at all the other nodes in
NT . Let ST denote the space of continuous, piecewise linear functions,

ST = {v ∈ H1(Ω), v|K ∈ P1(K), ∀K ∈ T } = span{φz, z ∈ NT }

and VT ⊂ ST the subspace of functions vanishing on the boundary ∂Ω,

VT = {v ∈ H1
0 (Ω), v|K ∈ P1(K), ∀K ∈ T } = span{φz, z ∈ KT }.

44

We write the basis of VT as ΦT = (φ1, . . . , φ#KT).
One of the key properties of a mesh that affects the size of the constants in

the estimates derived below in this text is the so-called shape regularity of the
mesh. This can be quantified by the shape-regularity constant, i.e., the smallest
γT > 0 satisfying

hK
ρK

≤ γT , ∀K ∈ T ; (2.2)

see, e.g., [34, p. 484].

2.2.2 Multilevel framework
As the title of the paper suggests, we will work with a sequence of levels

j = 0, 1, . . . , J . For some parts of the theory, we will consider also infinite
sequences of levels j = 0, 1, . . . , J, To simplify the previously introduced
notation, we will replace in the subscripts Tj by j to denote objects associated
with the mesh Tj on the jth level.

Let T0 be an initial mesh of Ω. We consider a sequence of meshes T1, T2, . . .
obtained by successive uniform dyadic refinements of T0, i.e., each element is
refined into 2d elements (congruent triangles in 2D, for a proper nondegenerating
3D mesh refinement; see, e.g., [46]). We recall that Sj and Vj , j = 0, 1, . . ., are the
finite element spaces of continuous piecewise linear functions on Tj, respectively
spaces of continuous piecewise linear functions on Tj that vanish on the boundary
∂Ω. These spaces are nested, i.e.,

S0 ⊂ S1 ⊂ · · · ⊂ H1(Ω), V0 ⊂ V1 ⊂ · · · ⊂ H1
0 (Ω).

On each level j, we consider a quasi-interpolation operator

IVj
: L1(Ω) → Vj

with the definition and properties described in detail in Appendix 2.8.2.
Due to the uniform refinement, the mesh sizes hj of Tj , j ≥ 0, satisfy hj = 2−jh0.

Moreover, the uniform refinement assures that the shape-regularity constants γj
of the meshes are the same on all levels in 2D, i.e., γ0 = γj , j ∈ N, and that in 3D
there exists a constant C3D > 0 such that γj ≤ C3Dγ0, j ∈ N; see [46].

2.2.3 Discretization, approximate solution, and residuals
Discretizing the model problem (2.1) on the subspace VJ , for some J ≥ 0,

using the Galerkin method reads as: find uJ ∈ VJ such that∫︂
Ω

∇uJ · ∇wJ =
∫︂

Ω
fwJ , ∀wJ ∈ VJ . (2.3)

Let vJ ∈ VJ be a (computed) approximation of the discrete solution uJ . Our
goal is to bound the energy norm of the total error e = u− vJ using computable
quantities involving vJ and f . The squared energy norm of the error ∥∇e∥2 can
be expressed as

∥∇e∥2 = ∥∇(u−vJ)∥2 =
∫︂

Ω
∇(u−vJ) ·∇(u−vJ) =

∫︂
Ω
f(u−vJ)−∇vJ ·∇(u−vJ).

45

Denote by (H1
0 (Ω))# the dual space to H1

0 (Ω) and define the residual r ∈ (H1
0 (Ω))#

as
⟨r, w⟩ =

∫︂
Ω
fw − ∇vJ · ∇w, ∀w ∈ H1

0 (Ω). (2.4)

Then (2.4) yields the so-called residual equation

∥∇e∥2 = ⟨r, e⟩, (2.5)

which is the key formula for the development of error bounds presented below.
Moreover, it can be shown (see, e.g., [42, Section 1.4.1]) that

∥∇e∥ = ∥r∥(︁
H1

0 (Ω)
)︁# .

In order to derive computable estimates we consider Riesz representations of
the infinite-dimensional residual r in the finite-dimensional spaces Vj , j = 0, 1,
In particular, let rj ∈ Vj, j = 1, . . ., be the Riesz representation of r in the space
Vj with the scaled L2-inner product, i.e.,

⟨r, wj⟩ =
∫︂

Ω
h−2
j rjwj, ∀wj ∈ Vj, (2.6)

and let r0 ∈ V0 be the Riesz representation of the residual r in the space V0 with
the H1

0 -inner product, i.e.,

⟨r, w0⟩ =
∫︂

Ω
∇r0 · ∇w0, ∀w0 ∈ V0. (2.7)

These definitions are used in [33, Section 2.6] where rj are called scaled residuals.
In [4, Section 5] the authors use Riesz representations of r in the spaces Vj,
j = 1, . . . , J , with the classical L2-inner products and call them discrete residuals.
The different definition we use results in a slightly different form of the estimates
below in comparison to [4, Section 5].

2.3 Residual-based error estimates
In this section we recall several published error estimates with their derivation.

We first recall the standard residual-based error estimator for the discretization
error in a single-level setting assuming exact algebraic computations or to steer
an adaptive mesh refinement.

Consider the model problem (2.1) discretized on a level J ≥ 0 of a multilevel
hierarchy as in Section 2.2.2. The classical residual-based estimator (see, e.g., [1,
Section 3], [42, Section 1.4]) is for a (computed) approximation vJ ∈ VJ defined as

η2
J =

(︂
ηRHS
J

)︂2
+
(︂
ηJUMP
J

)︂2
+ (oscJ)2 ,(︂

ηRHS
J

)︂2
=

∑︂
K∈TJ

h2
K∥fK∥2

K ,

(︂
ηJUMP
J

)︂2
= 1

2
∑︂
K∈TJ

hK
∑︂

E∈EK,int

∥ [∇vJ] ∥2
E,

(oscJ)2 =
∑︂
K∈TJ

h2
K∥f − fK∥2

K ,

46

where [·] denotes the jump of a piecewise constant function over the (d − 1)-
dimensional faces (faces in 3D and edges in 2D) and fK is the mean value of f
on K. Other choices of fK are also possible; see, e.g., [20].

The following result (see, e.g., [4, Lemma 3], [35, Section 4], or [42, Section 1.4])
will be useful below. There exists a constant Ccls > 0 depending only on the
dimension d and the shape-regularity parameter γ0 such that

⟨r, w − IVJ
w⟩ ≤ CclsηJ∥∇w∥, ∀w ∈ H1

0 (Ω). (2.8)

Note that if vJ is equal to the Galerkin solution uJ , the associated residual
r = r(uJ) satisfies the Galerkin orthogonality on the finest level, i.e.,

⟨r, wJ⟩ = 0, ∀wJ ∈ VJ . (2.9)

Then
∥∇(u− uJ)∥2 = ⟨r, (u− uJ) − IVJ

(u− uJ)⟩,

and using (2.8) for w = u− uJ yields the standard bound on the discretization
error

∥∇(u− uJ)∥ ≤ CclsηJ(uJ).

2.3.1 Estimates of Becker, Johnson & Rannacher
The following derivation is motivated by [4] and uses decomposition of the

error via quasi-interpolation operators. Considering the residual equation (2.5)
and writing the error e = u− vJ as

e = e− IVJ
e+

J∑︂
j=1

(︂
IVj
e− IVj−1e

)︂
+ IV0e, (2.10)

yields

∥∇e∥2 = ⟨r, e⟩ = ⟨r, e− IVJ
e⟩ +

J∑︂
j=1

⟨r, IVj
e− IVj−1e⟩ + ⟨r, IV0e⟩. (2.11)

The first term on the right-hand side of (2.11) can be bounded using (2.8) as

⟨r, e− IVJ
e⟩ ≤ CclsηJ∥∇e∥. (2.12)

The second and the third term on the right-hand side of (2.11) can be rewritten
using the scaled residuals (2.6), (2.7) and subsequently bounded as

J∑︂
j=1

⟨r, IVj
e− IVj−1e⟩ + ⟨r, IV0e⟩ =

J∑︂
j=1

∫︂
Ω
h−2
j rj(IVj

e− IVj−1e) +
∫︂

Ω
∇r0 · ∇IV0e

≤
J∑︂
j=1

∥h−1
j rj∥ · ∥h−1

j (IVj
e− IVj−1e)∥ + ∥∇r0∥ · ∥∇IV0e∥.

(2.13)

47

Further, using the bound on the difference of the quasi-interpolants on two
consecutive levels (Appendix 2.8.2, Theorem 2.6) and the stability of the quasi-
interpolation operator on the coarsest level in the H1

0 (Ω)-norm (Appendix 2.8.2,
Theorem 2.5, inequality (2.88)), we get

J∑︂
j=1

∥h−1
j rj∥ · ∥h−1

j (IVj
e− IVj−1e)∥ + ∥∇r0∥ · ∥∇IV0e∥

≤ CI,2lvl

⎛⎝ J∑︂
j=1

∥h−1
j rj∥

⎞⎠ ∥∇e∥ + ∥∇r0∥ · CIV0 ,4 · ∥∇e∥.
(2.14)

Combining (2.11)–(2.14) yields

Estimate on total error 1.

∥∇e∥ ≤ CclsηJ + CI,2lvl

J∑︂
j=1

∥h−1
j rj∥ + CIV0 ,4∥∇r0∥. (2.15)

In [4] the authors assume that the approximation vJ is computed by a multigrid
scheme without post-smoothing and with the exact solution of the problem on the
coarsest level. This yields the Galerkin orthogonality on the coarsest level, i.e.,

⟨r, w0⟩ = 0, ∀w0 ∈ V0. (2.16)

As a consequence, their estimate on the energy norm of the error (see [4, Theo-
rem 1]) does not contain the term corresponding to the coarsest level. Another
difference between (2.15) and the estimate in [4, Theorem 1] is due to the difference
in the definitions of the scaled/discrete residuals described in Section 2.2.3.

Instead of using the bound on the difference of the quasi-interpolants on
two consecutive levels (Appendix 2.8.2, Theorem 2.6), and the stability of the
quasi-interpolation operator on the coarsest level (Appendix 2.8.2, Theorem 2.5,
inequality (2.88)), we can use the stability of the decomposition of the space
H1

0 (Ω) via the quasi-interpolation operators IVj
(Appendix 2.8.2, Theorem 2.9).

In particular,

J∑︂
j=1

∥h−1
j rj∥ · ∥h−1

j (IVj
e− IVj−1e)∥ + ∥∇r0∥ · ∥∇IV0e∥

≤

⎛⎝ J∑︂
j=1

∥h−1
j rj∥2 + ∥∇r0∥2

⎞⎠ 1
2
⎛⎝ J∑︂
j=1

∥h−1
j (IVj

e− IVj−1e)∥2 + ∥∇IV0e∥2

⎞⎠ 1
2

≤

⎛⎝ J∑︂
j=1

∥h−1
j rj∥2 + ∥∇r0∥2

⎞⎠ 1
2

CS,IV

1
2 ∥∇e∥.

Combining this inequality with (2.11)–(2.13) and using
√
a +

√
b ≤

√
2
√
a+ b

leads to

48

Estimate on total error 2.

∥∇e∥ ≤
√

2
⎛⎝C2

clsη
2
J + CS,IV

⎛⎝ J∑︂
j=1

∥h−1
j rj∥2 + ∥∇r0∥2

⎞⎠⎞⎠ 1
2

. (2.17)

As we will see in Section 2.4, this estimate is efficient with an efficiency constant
independent of the number of levels in the hierarchy, i.e., independent of J .

Observing that

∥∇(uJ − vJ)∥2 =
∫︂

Ω
f(uJ − vJ) −

∫︂
Ω

∇vJ · ∇(uJ − vJ) = ⟨r, uJ − vJ⟩

=
J∑︂
j=1

⟨r, IVj
(uJ − vJ) − IVj−1(uJ − vJ)⟩ + ⟨r, IV0(uJ − vJ)⟩,

analogous steps can be applied to show that the following “algebraic parts” of the
presented estimates provide upper bounds on the algebraic error,

Estimate on algebraic error 1.

∥∇(uJ − vJ)∥ ≤ CI,2lvl

J∑︂
j=1

∥h−1
j rj∥ + CI0,3∥∇r0∥, (2.18)

Estimate on algebraic error 2.

∥∇(uJ − vJ)∥ ≤ CS,IV

1
2

⎛⎝ J∑︂
j=1

∥h−1
j rj∥2 + ∥∇r0∥2

⎞⎠ 1
2

. (2.19)

2.3.2 Estimates of Rüde & Huber
The following derivation is motivated by [33, Section 2.6] and [23, Sec-

tions 4.1–4.3]. Considering the residual equation (2.5) and decomposing the
error using the quasi-interpolation operator on the finest level IVJ

yields

∥∇e∥2 = ⟨r, e− IVJ
e⟩ + ⟨r, IVJ

e⟩. (2.20)

The first term can be bounded as in (2.12). Rewriting the second term using the
exact solution of the discrete problem uJ gives

⟨r, IVJ
e⟩ =

∫︂
Ω

∇(u− vJ)∇IVJ
e

=
∫︂

Ω
∇(u− uJ)∇IVJ

e+
∫︂

Ω
∇(uJ − vJ)∇IVJ

e.

The Galerkin orthogonality on the finest level yields that
∫︁

Ω ∇(u − uJ)∇IVJ
e

vanishes and thus

⟨r, IVJ
e⟩ =

∫︂
Ω

∇(uJ − vJ)∇IVJ
e ≤ ∥∇(uJ − vJ)∥ ∥∇IVJ

e∥. (2.21)

49

After bounding the term ∥∇IVJ
e∥ using the stability property of the quasi-

interpolation operator (Appendix 2.8.2, Theorem 2.5, inequality (2.88)) as

∥∇IVJ
e∥ ≤ CIVJ

,4∥∇e∥, (2.22)

it remains to bound the energy norm of the algebraic error ∥∇(uJ −vJ)∥. This can
be done using stable splitting of piecewise linear function space, see Appendix 2.8.3,
Theorem 2.12 or [33, Theorem 2.6.2]. Consider an arbitrary decomposition of the
algebraic error uJ − vJ into the subspaces Vj, i.e.,

uJ − vJ =
J∑︂
j=0

ej, ej ∈ Vj, j = 0, 1, . . . , J. (2.23)

Then

∥∇(uJ − vJ)∥2 = ⟨r, uJ − vJ⟩ =
J∑︂
j=0

⟨r, ej⟩

≤ ∥∇r0∥ · ∥∇e0∥ +
J∑︂
j=1

∥h−1
j rj∥ · ∥h−1

j ej∥

≤

⎛⎝∥∇r0∥2 +
J∑︂
j=1

∥h−1
j rj∥2

⎞⎠ 1
2

·

⎛⎝∥∇e0∥2 +
J∑︂
j=1

∥h−1
j ej∥2

⎞⎠ 1
2

.

Taking the infimum over all possible decompositions (2.23) and using Appendix
2.8.3, Theorem 2.12 yields

Estimate on algebraic error 3.

∥∇(uJ − vJ)∥ ≤ C
1
2
S

⎛⎝ J∑︂
j=1

∥h−1
j rj∥2 + ∥∇r0∥2

⎞⎠ 1
2

. (2.24)

Combining (2.20)–(2.22), the estimate (2.24) on the algebraic error, and using
the inequality

√
a+

√
b ≤

√
2
√
a+ b, we have

Estimate on total error 3.

∥∇e∥ ≤
√

2
⎛⎝C2

clsη
2
J + C2

IVJ
,4CS

⎛⎝ J∑︂
j=0

∥h−1
j rj∥2 + ∥∇r0∥2

⎞⎠⎞⎠ 1
2

. (2.25)

2.3.3 Estimates of Harbrecht & Schneider
In this section we present a derivation motivated by [20], which is based on

the fact that the basis functions provide a frame in (H1
0 (Ω))#; see Appendix 2.8.3,

Theorem 2.14. Recall that (H1
0 (Ω))# is the dual space to H1

0 (Ω). Using the upper

50

bound for the residual yields

∥∇e∥ = ∥r∥(︁
H1

0 (Ω)
)︁# ≤ C

1
2
SC

1
2
B

⎛⎝∥∇r0∥2 +
+∞∑︂
j=1

#Kj∑︂
i=1

⟨r, φ(j)
i ⟩2

∥∇φ(j)
i ∥2

⎞⎠ 1
2

. (2.26)

Following the derivation in [20, Proof of Theorem 5.1], it can be shown that the
sum of the terms corresponding to levels j > J , i.e.,

+∞∑︂
j=J+1

#Kj∑︂
i=1

⟨r, φ(j)
i ⟩2

∥∇φ(j)
i ∥2

,

can be bounded by the classic residual based estimator on the Jth level up to a
constant CHS > 0 depending only on d and γ0, i.e.,

+∞∑︂
j=J+1

#Kj∑︂
i=1

⟨r, φ(j)
i ⟩2

∥∇φ(j)
i ∥2

≤ CHSη
2
J . (2.27)

Combining (2.26) and (2.27) yields

Estimate on total error 4.

∥∇e∥ ≤ C
1
2
SC

1
2
B

⎛⎝CHSη
2
J +

J∑︂
j=1

#Kj∑︂
i=1

⟨r, φ(j)
i ⟩2

∥∇φ(j)
i ∥2

+ ∥∇r0∥2

⎞⎠ 1
2

. (2.28)

Considering the residual r as a functional on VJ , which is possible since
(H1

0 (Ω))# ⊂ V #
J , one can show that

∥∇(uJ − vJ)∥ = ∥r∥V #
J
.

From Appendix 2.8.3, Theorem 2.15, it yields that a part of the total error
estimator (2.28) is an upper bound on the algebraic error,

Estimate on algebraic error 4.

∥∇(uJ − vJ)∥ ≤ C
1
2
SC

1
2
B

⎛⎝ J∑︂
j=1

#Kj∑︂
i=1

⟨r, φ(j)
i ⟩2

∥∇φ(j)
i ∥2

+ ∥∇r0∥2

⎞⎠ 1
2

. (2.29)

2.3.4 New estimate derived using stable splitting
The approach from [20] can also be modified in the following way. Consider the

residual equation (2.5) and an arbitrary decomposition of the error e = ∑︁+∞
j=0 ej,

ej ∈ Vj, j ∈ N0. Using the definition of scaled residuals (2.6) and (2.7), and the
Cauchy–Schwarz inequality, we have

∥∇e∥2 = ⟨r, e⟩ =
+∞∑︂
j=0

⟨r, ej⟩ ≤ ∥∇r0∥ · ∥∇e0∥ +
J∑︂
j=1

∥h−1
j rj∥ · ∥h−1

j ej∥ +
+∞∑︂

j=J+1
⟨r, ej⟩.

(2.30)

51

Consider first the terms ⟨r, ej⟩, for j > J . Using the definition of r, Green’s
theorem on elements K ∈ TJ , and the definition of jump leads to

⟨r, ej⟩ =
∫︂

Ω
fej −

∫︂
Ω

∇vJ · ∇ej

=
∑︂
K∈TJ

⎛⎝∫︂
K

(f + ∆vJ)ej − 1
2

∑︂
E∈EK,int

∫︂
E

[∇vJ] ej

⎞⎠ .
Since vJ is a piecewise affine function, the term ∆vJ vanishes. Adding and
subtracting fJ yields

⟨r, ej⟩ =
∑︂
K∈TJ

⎛⎝∫︂
K
fJej +

∫︂
K

(f − fJ)ej − 1
2

∑︂
E∈EK,int

∫︂
E

[∇vJ] ej

⎞⎠ .
Inserting hKh−1

K and h
1/2
K h

−1/2
K , respectively, and using the Cauchy–Schwarz in-

equality for integrals and subsequently for sums leads to

⟨r, ej⟩ ≤

⎛⎜⎝∑︂
Kj∈Tj

h2
Kj

∥fJ∥2
Kj

+
∑︂
Kj∈Tj

h2
Kj

∥f − fJ∥2
Kj

+ 1
2
∑︂
Kj∈Tj

hKj

∑︂
E∈EKj ,int

∥ [∇vJ] ∥2
E

⎞⎟⎠
1
2

·

⎛⎝2
∑︂
Kj∈Tj

h−2
Kj

∥ej∥2
Kj

+
∑︂
Kj∈Tj

h−1
Kj

∥ej∥2
∂Kj

⎞⎠ 1
2

.

Since hj = 2J−jhJ , we have∑︂
Kj∈Tj

h2
Kj

∥fJ∥2
Kj

= 22(J−j) ∑︂
KJ ∈TJ

h2
KJ

∥fJ∥2
KJ

= 22(J−j)(ηRHS
J)2,

∑︂
Kj∈Tj

h2
Kj

∥f − fJ∥2
Kj

= 22(J−j) ∑︂
KJ ∈TJ

h2
KJ

∥f − fJ∥2
KJ

= 22(J−j)(oscJ)2.

Using that ∇vJ is constant on elements in TJ gives

∑︂
Kj∈Tj

∑︂
E∈EKj ,int

hKj

2 ∥ [∇v] ∥2
E = 2J−j ∑︂

KJ ∈TJ

hKJ

2
∑︂

E∈EKJ ,int

∥ [∇vJ] ∥2
E = 2J−j(ηJUMP

J)2.

The sum ∑︁
Kj∈Tj

h−1
Kj

∥ej∥2
∂Kj

can be bounded using Appendix 2.8.1, Lemma 2.5 as
∑︂
Kj∈Tj

h−1
Kj

∥ej∥2
∂Kj

≤ CTI
∑︂
Kj∈Tj

h−2
Kj

∥ej∥2
Kj
.

Thus we get

⟨r, ej⟩ ≤ (2 + CTI)
1
2

(︃
22(J−j)

(︃(︂
ηRHS
J

)︂2
+ (oscJ)2

)︃
+ 2J−j

(︂
ηJUMP
J

)︂2
)︃ 1

2

⏞ ⏟⏟ ⏞
θj

∥h−1
j ej∥.

(2.31)

52

Combining (2.30) and (2.31) yields

∥∇e∥2 ≤ ∥∇r0∥ · ∥∇e0∥ +
J∑︂
j=1

∥h−1
j rj∥ · ∥h−1

j ej∥ +
+∞∑︂

j=J+1
θj∥h−1

j ej∥

≤

⎛⎝∥∇r0∥2 +
J∑︂
j=1

∥h−1
j rj∥2 +

+∞∑︂
j=J+1

θ2
j

⎞⎠ 1
2

·

⎛⎝∥∇e0∥2 +
J∑︂
j=1

∥h−1
j ej∥2 +

+∞∑︂
j=J+1

∥h−1
j ej∥2

⎞⎠ 1
2

.

Since the decomposition of e = ∑︁+∞
j=0 ej, ej ∈ Vj, j ∈ N0 is arbitrary, the stability

of the splitting (Appendix 2.8.3, Theorem 2.10) gives

∥∇e∥ ≤

⎛⎝∥∇r0∥2 +
J∑︂
j=1

∥h−1
j rj∥2 +

+∞∑︂
j=J+1

θ2
j

⎞⎠ 1
2

.

Using
+∞∑︂

j=J+1
22(J−j) = 1

3 and
+∞∑︂

j=J+1
2J−j = 1,

the infinite sum can be bounded as
+∞∑︂

j=J+1
θ2
j ≤ Cθη

2
J ,

where Cθ > 0 is a constant depending only on the dimension d and the shape-
regularity parameter γ0. This results in the following estimate.

Estimate on total error 5.

∥∇e∥ ≤ C
1
2
S

⎛⎝Cθη2
J +

J∑︂
j=1

∥h−1
j rj∥2 + ∥∇r0∥2

⎞⎠ 1
2

. (2.32)

The fact that C
1
2
S

(︂∑︁J
j=1 ∥h−1

j rj∥2 + ∥∇r0∥2
)︂ 1

2 provides an upper bound on the
algebraic error has already been shown in Section 2.3.2; see (2.24).

2.4 Efficiency of the estimates
Efficiency of the estimates is described by the constant Ceff , such that

estimate ≤ Ceff · ∥error∥.

Here we in particular focus on whether Ceff depends on the number of levels J ,
quasi-uniformity of the coarsest mesh, and/or on the ratio hΩ/minK∈T0 hK , which
is related to the size of the coarsest-level problem.

53

2.4.1 Efficiency of the estimates on the algebraic error
We will first discuss the estimates in the form

∥∇(uJ − vJ)∥ ≤ C

⎛⎝ J∑︂
j=1

∥h−1
j rj∥2 + ∥∇r0∥2

⎞⎠1/2

, (2.33)

where either C = CS,IV

1
2 , or C = CS

1
2 is a constant depending only on the

dimension d and the shape-regularity parameter γ0; see (2.19) and (2.24). Using
the definition of scaled residuals (2.6)–(2.7), the Cauchy–Schwarz inequality and
the lower bound from Appendix 2.8.3, Theorem 2.12 we have (see also the proof
of Theorem 2.6.2 in [33])

J∑︂
j=1

∥h−1
j rj∥2 + ∥∇r0∥2 =

J∑︂
j=0

⟨r, rj⟩

=
∫︂

Ω
∇(uJ − vJ) · ∇

⎛⎝ J∑︂
j=0

rj

⎞⎠
≤ ∥∇(uJ − vJ)∥ ·

⃦⃦⃦⃦
⃦⃦∇

⎛⎝ J∑︂
j=0

rj

⎞⎠⃦⃦⃦⃦⃦⃦
≤ ∥∇(uJ − vJ)∥ · cS− 1

2

⎛⎝ J∑︂
j=1

∥h−2
j rj∥2 + ∥∇r0∥2

⎞⎠1/2

.

Consequently, ⎛⎝ J∑︂
j=1

∥h−1
j rj∥2 + ∥∇r0∥2

⎞⎠1/2

≤ cS
− 1

2 ∥∇(uJ − vJ)∥, (2.34)

i.e., the efficiency constant depends only on the dimension d and the shape-
regularity parameter γ0.

The efficiency of the estimate (2.29)

∥∇(uJ − vJ)∥ ≤ C
1
2
SC

1
2
B

⎛⎝ J∑︂
j=1

#Kj∑︂
i=1

⟨r, φ(j)
i ⟩2

∥∇φ(j)
i ∥2

+ ∥∇r0∥2

⎞⎠1/2

,

can be shown by using ∥∇(uJ − vJ)∥ = ∥r∥(VJ)# and the lower bound from
Appendix 2.8.3, Theorem 2.15, giving⎛⎝ J∑︂

j=1

#Kj∑︂
i=1

⟨r, φ(j)
i ⟩2

∥∇φ(j)
i ∥2

+ ∥∇r0∥2

⎞⎠1/2

≤ c
− 1

2
S c

− 1
2

B ∥∇(uJ − vJ)∥.

The efficiency constant depends only on the dimension d and the shape-regularity
parameter γ0.

Finally, for the estimate (2.18)

∥∇(uJ − vJ)∥ ≤ CI,2lvl

J∑︂
j=1

∥h−1
j rj∥ + CI0,3∥∇r0∥,

54

the equivalence of the Euclidean and ℓ1-norm,

J∑︂
j=1

∥h−1
j rj∥ + ∥∇r0∥ ≤

√
J

⎛⎝ J∑︂
j=1

∥h−1
j rj∥2 + ∥∇r0∥2

⎞⎠1/2

,

and (2.34) yield

CI,2lvl

J∑︂
j=1

∥h−1
j rj∥ + CI0,3∥∇r0∥ ≤

√
J max{CI,2lvl, CI0,3} c

− 1
2

S ∥∇(uJ − vJ)∥.

This shows the efficiency of (2.18) with Ceff =
√
J ˜︁Ceff , where ˜︁Ceff depends only

on d and γ0. This result does not necessarily imply a dependence of (2.18) on
the number of levels J . However, we present below in Section 2.6.1 a numerical
experiment indicating such behaviour.

2.4.2 Efficiency of estimates on total error
The efficiency of the total error estimates follows from the standard result on

the efficiency of the classical (one-level) residual-based error estimator. There
exists a positive constant Ceff depending on the shape regularity of TJ such that(︃(︂

ηRHS
J

)︂2
+
(︂
ηJUMP
J

)︂2
)︃ 1

2
≤ Ceff (∥∇e∥ + oscJ) ; (2.35)

see, e.g., [42, Section 1.4]. Since ∥∇(uJ − vJ)∥ ≤ ∥∇e∥, we can use the efficiency
of the algebraic error estimates together with (2.35) to show the efficiency of
the estimates on the total error (up to the oscillation term). The resulting
efficiency constants depend on the same quantities as the efficiency constants for
the algebraic error estimates.

For example, for the estimate (2.25) associated with the algebraic error estimate
(2.24),

√
2
⎛⎝C2

clsη
2
J + C2

IVJ
,4CS

⎛⎝ J∑︂
j=0

∥h−1
j rj∥2 + ∥∇r0∥2

⎞⎠⎞⎠ 1
2

≤ C (∥∇e∥ + oscJ) ,

with C2 = 2(C2
cls(C

2
eff + 1) + C2

IVJ
,4CSc

−1
S).

2.5 Computability of the error estimates
In this section we address several ways in which the scaled residual norms

from the estimates presented in Section 2.3 can be evaluated or bounded. When
the scaled residual norms are replaced by their bounds, proving the efficiency of
the estimates from Section 2.3 becomes a nontrivial task.

We first state an algebraic formulation of the problem (2.3). Then we present
the algebraic representation of the scaled residual norms and some of their bounds
from the literature. As the main contribution of this paper, we present in
Section 2.5.4 a new approach for approximating the scaled residual norm on the
coarsest level using adaptive number of conjugate gradient iterations. This yields
total and algebraic error estimates which are provably efficient and robust with
respect to the size of the coarsest-level problem.

55

2.5.1 Algebraic formulation of the problem, residual vec-
tors

Given a basis ΦJ of VJ , the problem (2.3) can be algebraically formulated as
finding the vector of coefficients uJ ∈ R#KJ of the function uJ in the basis ΦJ

such that
AJuJ = fJ , (2.36)

where AJ is the stiffness matrix on the finest level J ,

[AJ]mn =
∫︂

Ω
∇φ(J)

n · ∇φ(J)
m ,

and
[fJ]m =

∫︂
Ω
fφ(J)

m , m, n = 1, . . . ,#KJ .

Recall that #KJ is the cardinality of the basis ΦJ . We use the standard assumption
that the right-hand side vector fJ can be computed exactly using a numerical
quadrature. If fJ is only known approximately, an additional term must be added
to the error bounds presented above; see e.g., the discussion in [35, Section 6].

Let vJ be an approximation of the solution uJ of (2.3) and vJ be the vector
of coefficients of vJ in the basis ΦJ . Let r be the residual (2.4) associated with vJ .
Consider the residual vectors rj ∈ R#Kj , j = 0, . . . , J ,

[rj]m = ⟨r, φ(j)
m ⟩, m = 1, . . . ,#Kj. (2.37)

The vector rJ corresponding to the finest level can be computed as

rJ = fJ − AJvJ . (2.38)

The residual vectors corresponding to coarser levels can be computed from rJ by
restriction. For the prolongation matrices PJ

j ∈ R#KJ ×#Kj associated with the
(nested) finite element spaces Vj, VJ and the bases Φj, ΦJ ,

rj = (PJ
j)⊤rJ ; (2.39)

see, e.g., [33, Section 3.2], or [40, Section 2.4] for a more detailed explanation.

2.5.2 The terms associated with fine levels
In this section we present an algebraic form of the term ∥h−1

j rj∥2, j = 1, . . . , J ,
and several ways of bounding it by computable quantities presented in literature.

Let cj be the vector of coefficients of rj in the basis Φj . The definitions (2.37)
of rj and (2.6) of rj give

[rj]m = ⟨r, φ(j)
m ⟩ =

∫︂
Ω
h−2
j rjφ

(j)
m =

∑︂
n

∫︂
Ω
h−2
j [cj]n φ

(j)
n φ(j)

m , ∀m = 1, . . . ,#Kj.

(2.40)
Let MS

j be a scaled mass matrix defined as
[︂
MS

j

]︂
m,n

=
∫︂

Ω
h−2
j φ(j)

n φ(j)
m , ∀m,n = 1, . . . ,#Kj.

56

The equation (2.40) can then be expressed as rj = MS
jcj and therefore

∥h−1
j rj∥2 =

∫︂
Ω
h−2
j Φjcj · Φjcj = c∗

jMS
jcj = r∗

j(MS
j)−1rj. (2.41)

The evaluation of the term (2.41) thus involves the solution of a system with a
possibly large matrix MS

j . Instead of computing this quantity, one can seek a
computable upper bound.

Let Dj be a diagonal matrix [Dj]m,m =
∫︁

Ω ∇φ(j)
m · ∇φ(j)

m , m = 1, . . . ,#Kj . The
stability of basis functions (Appendix 2.8.3, Lemma 2.12) and (2.123) give

cBr∗
jD−1

j rj ≤ ∥h−1
j rj∥2 = r∗

j(MS
j)−1rj ≤ CBr∗

jD−1
j rj. (2.42)

The upper bound in (2.42) is used in [33, 23] to bound the algebraic error as

∥∇(uJ − vJ)∥ ≤ C
1
2
S

(︃
CB

J∑︂
j=1

r∗
jD−1

j rj + ∥∇r0∥2
)︃ 1

2

≤ C
1
2
SC

1
2
B

(︃ J∑︂
j=1

r∗
jD−1

j rj + ∥∇r0∥2
)︃ 1

2
, (2.43)

where CB = max{1, CB}. For cB = min{1, cB}, using the lower bound in (2.42)
and (2.34)

(︃ J∑︂
j=1

r∗
jD−1

j rj+∥∇r0∥2
)︃ 1

2
≤
(︃
c−1
B

J∑︂
j=1

∥h−1
j rj∥2+∥∇r0∥2

)︃ 1
2

≤ c
− 1

2
B c

− 1
2

S ∥∇(uJ−vJ)∥,

(2.44)
which proves the efficiency of the bound (2.43). Recall that cB, CB, cS, and CS
only depend on d and γ0.

Noting that

r∗
jD−1

j rj =
#Kj∑︂
i=1

⟨r, φ(j)
i ⟩2

∥∇φ(j)
i ∥2

, (2.45)

we see that the algebraic error bounds (2.29) and (2.43) are identical.
The term (2.41) can also be bounded using other techniques, e.g., using the

so-called mass lumping (suggested in [4, Section 4]) or the multigrid smoothing
routines (see the discussion in [23, Section 4.5.2]). By using these techniques,
however, we introduce another unknown constant into the overall estimate and
possibly weaken its efficiency.

In order to get a fully computable bound on (2.41) (i.e., a bound without
any unknown constant) and to avoid solving an algebraic problem with a large
matrix, we can proceed similarly to [30]. Define r̄j ∈ L2(Ω) to be (discontinuous)
piecewise affine functions on Tj such that for all K ∈ Tj,∫︂

K
h−2
j r̄jφ

(j)
m = [rj]m · 1

#
{︂
K̄ ∈ Tj;m is vertex of K̄

}︂ =: [rj,K]m ∀φ(j)
m . (2.46)

This ensures that ∫︂
Ω
h−2
j r̄jφ

(j)
m = [rj]m = ⟨r, φ(j)

m ⟩. (2.47)

57

Since r̄j is piecewise affine on elements, the norms ∥h−1
j r̄j∥2

K can be computed
using the solutions of systems with local scaled mass matrices, i.e., ∥h−1

j r̄j∥2
K =

r∗
j,K(MS

j,K)−1rj,K , where
[︂
MS

j,K

]︂
m,n

=
∫︂
K
h−2
j φ(j)

n φ(j)
m , ∀m,n ∈ NK .

For the whole term ∥h−1
j rj∥ we have

∥h−1
j rj∥2 ≤ ∥h−1

j r̄j∥2 =
∑︂
K∈Tj

r∗
j,K(MS

j,K)−1rj,K ; (2.48)

cf. [30, Eq. (5.9)].

2.5.3 The term associated with the coarsest level
In this section we present the algebraic form of the term ∥∇r0∥ and several

ways of bounding it adapted from literature.
Let c0 be the vector of coefficients of r0 in the basis Φ0. Analogously to (2.41),

using the definitions (2.37) of r0 and (2.7) of r0, we have

[r0]m = ⟨r, φ(0)
m ⟩ =

∫︂
Ω

∇r0 · ∇φ(0)
m =

∑︂
n

∫︂
Ω

[c0]n ∇φ(0)
n · ∇φ(0)

m , ∀m = 1, . . . ,#K0.

Let A0 be the stiffness matrix associated with the coarsest level

[A0]mn =
∫︂

Ω
∇φ(0)

n · ∇φ(0)
m , m, n = 1, . . . ,#K0.

The vector of coefficients c0 then satisfies A0c0 = r0. This leads to

∥∇r0∥2 = c∗
0A0c0 = r∗

0A−1
0 r0. (2.49)

The evaluation of the term ∥∇r0∥2 thus requires solution of the system with the
stiffness matrix associated with the coarsest level. For problems where the stiffness
matrix is large, this can be too costly and in some settings even unfeasible.

An approximate solution ˜︁c0 of A0c0 = r0 computed by the (preconditioned)
conjugate gradient method with a fixed number of iterations was used in [23,
Section 4.5.2]. The resulting term ˜︁c∗

0r0 might not be, however, an upper bound
on ∥∇r0∥2. Therefore, the resulting value may not led to an upper bound on the
algebraic nor the total error.

The term (2.49) can also be bounded using a quantity involving only the
inverse of a diagonal matrix. Friedrich’s inequality (Appendix 2.8.1, Lemma 2.2)
imply that

∥w0∥2 ≤ C2
Fh

2
Ω∥∇w0∥2, ∀w0 ∈ V0. (2.50)

Let M0 be the mass matrix associated with the coarsest level, i.e., [M0]mn =∫︁
Ω φ

(0)
n φ(0)

m , m,n = 1, . . . ,#K0. The inequality (2.50) can be equivalently expressed
algebraically as

w∗M0w ≤ C2
Fh

2
Ωw∗A0w, ∀w ∈ R#K0 .

Since A0 and M0 are symmetric positive definite matrices we have

w∗A−1
0 w ≤ C2

Fh
2
Ωw∗M−1

0 w, ∀w ∈ R#K0 .

58

This bound can be a possibly large overestimation; see the discussion in [30,
Sects. 3.1 and 5.2]. Define the diagonal matrix D0 as [D0]m,m =

∫︁
Ω ∇φ(0)

m · ∇φ(0)
m ,

m = 1, . . . ,#K0. The term on the right-hand side can be further simplified using
the spectral equivalence of the mass matrix M0 with D0; see inequality (2.124) in
Appendix 2.8.3. Altogether we have

∥∇r0∥2 = r∗
0A−1

0 r0 ≤ C2
Fh

2
Ωr∗

0M−1
0 r0 ≤ CMC

2
F

h2
Ω

minK∈T0 h
2
K

r∗
0D−1

0 r0. (2.51)

As for the efficiency, this allows to prove, using the Inverse inequality (Appendix
2.8.1, Lemma 2.4) and (2.124),

r∗
0D−1

0 r0 ≤ C2
INV
cM

maxK∈T0 h
2
K

minK∈T0 h
2
K

∥∇r0∥2,

which indicates that bound (2.51) may not be robust with respect to

h2
Ω

minK∈T0 h
2
K

.

Numerical experiments in Section 2.6 illustrate this deficiency.

2.5.4 Adaptive approximation of the coarsest-level term
In order to overcome the deficiencies described above, we now present a

new approach for approximating the term (2.49). It consists of applying the
preconditioned conjugate gradient method (PCG) to A0c0 = r0 and using lower
and upper bounds on the error in PCG. A number of PCG iterations is determined
adaptively in order to ensure the efficiency of the resulting bounds on total and
algebraic errors.

Let c(i)
0 be the approximation of c0 = A−1

0 r0 computed at the i-th iteration of
PCG a with zero initial guess. Let ∥ · ∥A0 be the norm generated by the matrix
A0, i.e., ∥v∥2

A0 = v∗A0v, for all v ∈ R#K0 . The term (2.49) can be expressed
using the following decomposition

c∗
0A0c0 =

i−1∑︂
m=0

∥c(m+1)
0 − c(m)

0 ∥2
A0⏞ ⏟⏟ ⏞

=:µ2
i

+∥c0 − c(i)
0 ∥2

A0 , (2.52)

which is a consequence of the local orthogonality in PCG. This formula was already
shown for CG in the seminal paper [22, Theorem 6:1, Eq. (6:2)]. The terms
∥c(m)

0 − c(m+1)
0 ∥2

A0 can be computed at a minimal cost from the scalars available
during the computations.

It is crucial to note that the local orthogonality is in CG computations
preserved proportionally to the machine precision. Therefore, (2.52) is valid, up
to a negligible error, also in finite-precision computations; see the derivation and
proofs in [37] (resp. in [36] for the preconditioned variant).

Let ζ2
i be an upper bound on the squared A0-norm of the error in the PCG

computation, i.e., on ∥c0 − c(i)
0 ∥2

A0 ; see, e.g., [18], [26] and the references therein1.
1Strictly speaking, numerical stability of the upper bounds to the A-norm of the error in CG

computations has not been rigorously proved. Well-justified heuristics supported by numerical
experiments however suggest their validity also in finite-precision computations; see [18], [26].

59

The derivation of such a bound is based on the interpretation of CG as a procedure
for computing the Gauss quadrature approximation to a Riemann–Stieltjes integral
and typically requires a lower bound on the smallest eigenvalue of A0. A simple
lower bound can be derived using [17, Theorem 3], as

λmin(A0) ≥ C−2
F h−2

Ω min
K∈T0

λmin(M0,K),

where CF is the constant from Friedrich’s inequality (Appendix 2.8.1, Lemma 2.2)
and M0,K is the local mass matrix corresponding to K ∈ T0. If an upper bound ζi
is not available, the A0-norm of the error ∥c0 − c(i)

0 ∥2
A0 can be bounded using the

ideas presented in Section 2.5.3; see also [30, Section 3.2].
The approach then consists of running PCG for the coarsest problem until

ζ2
i ≤ θ

⎛⎝ J∑︂
j=1

r∗
jD−1

j rj + µ2
i

⎞⎠ , (2.53)

where θ > 0 is a chosen parameter. Then we consider the bound

r∗
0A−1

0 r0 ≤ µ2
i + ζ2

i , (2.54)

which can be combined, e.g., with (2.43) to get an upper bound on the algebraic
error

∥∇(uJ − vJ)∥ ≤ C
1
2
SC

1
2
B

⎛⎝ J∑︂
j=1

r∗
jD−1

j rj + µ2
i + ζ2

i

⎞⎠ 1
2

. (2.55)

The criterion (2.53) guarantees that

r∗
0A−1

0 r0 ≤ µ2
i + ζ2

i ≤ θ
J∑︂
j=1

r∗
jD−1

j rj + (1 + θ)µ2
i , (2.56)

which allows us to prove the efficiency of (2.55). Indeed, using (2.56), µ2
i ≤ ∥∇r0∥2

(see (2.52)), and (2.44)
⎛⎝ J∑︂
j=1

r∗
jD−1

j rj + µ2
i + ζ2

i

⎞⎠ 1
2

≤ (1 + θ) 1
2

⎛⎝ J∑︂
j=1

r∗
jD−1

j rj + ∥∇r0∥2

⎞⎠ 1
2

≤ (1 + θ) 1
2 c

− 1
2

S c
− 1

2
B ∥∇(uJ − vJ)∥ .

The proposed strategy follows the ideas of [30, Section 3.2]. In principle, the
possible overestimation in ∥c0 − c(i)

0 ∥2
A0 ≤ ζ2

i is controlled by (2.53) and it is
compensated for within the procedure by performing extra iterations. This allows
us to prove the efficiency even if the estimate ζi is not very tight. However, in
such case the number of extra iterations might be quite large; see [30, Section 7.1].

Finally, we note that r∗
jD−1

j rj in (2.53) can be replaced by any (efficient)
bound on ∥h−1

j rj∥2. Then the algebraic error bound (2.55) should be changed
accordingly, replacing r∗

jD−1
j rj and CB.

60

2.6 Numerical experiments
The experiments focus on the efficiency of the error estimates on the algebraic

error. In particular, we consider the estimate

C
(︃ J∑︂
j=1

r∗
jD−1

j rj + r∗
0A−1

0 r0

)︃ 1
2

(2.57)

and variants where r∗
0A−1

0 r0 = ∥∇r0∥2 is replaced by computable approximations.
This prototype covers most of the algebraic error estimates from Section 2.3, where
the scaled residual norms ∥h−1

j rj∥2 on the fine levels are efficiently approximated
by r∗

jD−1
j rj using (2.42). As shown in the previous sections, approximating the

coarsest-level term ∥∇r0∥2 while preserving the efficiency is more subtle.
For the experiments, we consider a 3D Poisson problem on a unit cube,

Ω = (0, 1)3, with the exact solution

u(x, y, z) = x(x− 1)y(y − 1)z(z − 1)e−100((x− 1
2)2+(y− 1

2)2+(z− 1
2)2).

The problem is discretized by the standard Galerkin finite element method with
piecewise affine polynomials on a sequence of six uniformly refined meshes with
the same shape regularity (2.2). The associated matrices are generated in the FE
software FEniCS [2, 24], and the computations are done in MATLAB 2023a. The
codes for the experiments are available from https://github.com/vacek-petr/
inMLEstimate.

Given the mesh TJ (the finest mesh varies in the experiments), the associated
Galerkin solution uJ of (2.3) is for the purpose of the evaluation of the efficiency
of the estimates considered (with a negligible inaccuracy) as a result of using the
MATLAB backslash, or, for very large problems, using the multigrid V-cycle with
an excessive number (30) of V-cycle repetitions. The approximation vJ to uJ
is given by a multigrid solver starting with a zero approximation and repeating
V-cycles until the relative energy norm of the (algebraic) error uJ −vJ drops below
10−11. Each multigrid V-cycle uses 3 pre and 3 post Gauss–Seidel smoothing
iterations. The problem on the coarsest level is solved using CG where the
stopping criterion is based on the relative residual with the tolerance 10−1. In
order to monitor the efficiency for varying algebraic error, we will also plot below
intermediate results after completing each multigrid V-cycle.

We observed very similar results also for a set of two-dimensional problems
and a 3D problem with a more complicated geometry. These experiments can be
found in the repository https://github.com/vacek-petr/inMLEstimate where
also the data and codes are available.

2.6.1 Robustness with respect to the number of levels
The first experiment studies the efficiency of the estimates while varying the

number of levels J = 1, 2, . . . , 5 in the hierarchy. We fix the size of the problem
on the coarsest-level and, consequently, the size of the finest problem grows; see
Table 2.1.

61

https://github.com/vacek-petr/inMLEstimate
https://github.com/vacek-petr/inMLEstimate
https://github.com/vacek-petr/inMLEstimate

coarsest-level DoFs finest-level DoFs
125 1 331
125 12 167
125 103 823
125 857 375
125 6 967 871

Table 2.1 Size of the problems for the experiment in Section 2.6.1.

2 3 4 5 6
1

1.5

2

2.5

3

levels

effi
ci

en
cy

in
di

ce
s

Figure 2.1 Efficiency indices I1 () and I2 (), (2.58) and (2.59), for varying number of
levels J . We plot the efficiency for approximations vJ and for the associated intermediate
results after each V-cycle; each corresponds to a single mark.

For the prototype estimate (2.57), the efficiency index

I1 =
Cnumexp

(︂∑︁J
j=1 r∗

jD−1
j rj + r∗

0A−1
0 r0

)︂ 1
2

∥∇(uJ − vJ)∥ , (2.58)

is evaluated for every J , vJ , and also for intermediate results after each V-
cycle. The factor Cnumexp accounts for C

1
2
SC

1
2
B; see (2.43). For the purpose of the

experiment, it is chosen as the minimal value such that the efficiency indices I1
are for all J and in all V-cycle repetitions above or equal to one; Cnumexp = 1.28.
In order to examine the difference, we also evaluate the index

I2 =
Cnumexp

(︃∑︁J
j=1

(︂
r∗
jD−1

j rj
)︂ 1

2 +
(︂
r∗

0A−1
0 r0

)︂ 1
2
)︃

∥∇(uJ − vJ)∥ , (2.59)

which corresponds to the algebraic error bound (2.18).
The index I1 (2.58) corresponds to the estimate (2.43) that is proved to be

robust with respect to the number of levels J and consequently also to the size of
the finest problem; see Section 2.4.1 or the original papers [33, 20]. This is what
the experiment confirms; see Figure 2.1. Contrary to that, I2 (2.59) deteriorates
with increasing J . This is with alignment with the discussion at the end of
of Section 2.4.1, where we proved the efficiency of the estimate with a factor
depending on

√
J .

62

2.6.2 Robustness with respect to the size of the coarsest-
level problem

The second experiment describes the effect of the size of the coarsest-level
problem on the efficiency of the estimates. We fix the number of levels to two
(J = 1) and vary the coarse and fine level problems; see Table 2.2. For the
approximation v1 and intermediate results computed after each V-cycle, we plot
the efficiency index

I3 =
Cnumexp

(︃
r∗

1D−1
1 r1 + η

)︃ 1
2

∥∇(u1 − v1)∥
, (2.60)

where η denotes the following approximations to r∗
0A−1

0 r0 = ∥∇r0∥2:

(i) η = r∗
0c0, where c0 is computed using a direct solver for A0c0 = r0;

(ii) η = r∗
0c̃0, where c̃0 is computed by 4 iterations of CG on A0c0 = r0 with a

zero initial approximation;

(iii) η = h2
Ω

minK∈T0 h
2
K

r∗
0D−1

0 r0;

(iv) η = µ2
i + ζ2

i ; see (2.54) and the adaptive approach from Section 2.5.4
using PCG. Here ζ2

i is the upper bound on the A0-norm in PCG from [26,
second inequality in (3.5) with updating formula for a coefficient (3.3)]. For
evaluating ζ2

i , an estimate of the smallest eigenvalue of A0 is computed by
the MATLAB eigs function for the first four problems and extrapolated
for the largest problem. In (2.53) we set θ = 0.1 .

coarsest-level DoFs finest-level DoFs h2
Ω/minK∈T0 h

2
K

125 1 331 36
1 331 12 167 144

12 167 103 823 576
103 823 857 375 2 304
857 375 6 967 871 9 216

Table 2.2 Size of the problems for the experiment in Section 2.6.2. The table also gives
the squared ratios of the diameter of the computational domain and the coarsest-level
meshsize.

The factor Cnumexp = 1.28 accounts for C
1
2
SC

1
2
B; and was set as a minimal value

such that the efficiency index (2.60) for the variant (i) with the direct solver is
above or equal to one. The results are plotted in Figure 2.2.

The variant (i), where the coarsest-level term is computed using a direct solver,
exhibits only a very mild increase of the efficiency index I3 (2.60). Recall, however,
that using a direct solver is for large problems in practice unfeasible.

The variant (ii), which uses four iterations of CG to approximate the term on
the coarsest level, provides no longer an upper bound on the algebraic error. It is
not surprising that a fixed number of CG iterations is not sufficient for problems

63

102 103 104 105 1061
1.05

1.15

1.25

1.35

coarsest-level DoFs

effi
ci

en
cy

in
de

x

(i) direct solver

102 103 104 105 1061

10

20

30

coarsest-level DoFs

effi
ci

en
cy

in
de

x

(iii) diagonal approximation

102 103 104 105 1060.3

0.6

1

1.35

coarsest-level DoFs

effi
ci

en
cy

in
de

x

(ii) 4 iterations of CG

102 103 104 105 1061
1.05

1.15

1.25

1.35

coarsest-level DoFs

effi
ci

en
cy

in
de

x

(iv) adaptive CG approximation

Figure 2.2 Efficiency indices I3 (2.60) for the experiment in Section 2.6.2. The
estimates differ in the way of approximating the coarsest-level term ∥∇r0∥2 = r∗

0A−1
0 r0.

This term is: computed by a direct solver for the coarsest problem (i), approximated
using four iterations of the CG solver (ii), approximated by replacing the stiffness
matrix by its scaled diagonal approximation (iii), determined using the adaptive CG
approximation (iv).

1 2 3 4 5 6 7 8 9 10
0

10
20
30
40
50

#V-cycles

#
C

G
ite

ra
tio

ns

857 375
103 823
12 167
1 331
125

coarsest-level DoFs

Figure 2.3 Number of CG iterations determined by the adaptive approach described
in Section 2.5.4, which is used to estimate the residual norm ∥∇r0∥ associated with the
coarsest level. The horizontal axis indicates the number of V-cycles used in computing
the approximation vJ .

64

with increasing size. In the newly proposed adaptive approach, the number of CG
iteration varies and it is determined automatically.

For the variant (iii), where the stiffness matrix on the coarsest level is replaced
by its scaled diagonal (see (2.51)), the efficiency indices deteriorate with the
increasing ratio h2

Ω/minK∈T0 h
2
K ; see Table 2.2. The experiment illustrates that

the estimate is not robust with respect to this ratio; see the discussion at the end
of Section 2.5.3.

When the term ∥∇r0∥ is approximated using the adaptive computation (iv)
proposed in Section 2.5.4, the efficiency behaves as in the case (i). Unlike in (i),
the approximation in (iv) is computable even for very large problems on the
coarsest-level. The adaptively chosen number of CG iterations performed within
the new procedure is plotted in Figure 2.3.

2.7 Conclusions
This paper presents residual-based a posteriori error estimates on total and

algebraic errors in multilevel frameworks inspired by several derivations from the
literature. It starts with algebraic error estimates containing sum of the (scaled)
residual norms over the levels, including the coarsest one. Total error estimates
incorporate additionally the standard residual-based estimator evaluated on the
finest level. Efficiency and robustness with respect to the number of levels and
the size of the algebraic problem on the coarsest level were for several estimates of
this type proved in literature. However, the estimates containing residual norms
are not easily computable and applicable in practice.

Approximation of the scaled residual norms, i.e., the terms r∗
jX−1

j rj, where rj
is the algebraic residual associated with the level j on all but the coarsest level
does not represent a significant difficulty. Except for the coarsest level, Xj is the
scaled mass matrix denoted in the paper as MS

j and the term r∗
j(MS

j)−1rj can be
bounded from above by the simpler term r∗

j(Dj)−1rj, where Dj is an appropriate
diagonal matrix, without affecting the efficiency and robustness.

Evaluating the residual norm ∥∇r0∥2 = r∗
0A−1

0 r0 associated with the coarsest
level, where A0 is the stiffness matrix, is more subtle. When using bounds or
techniques to approximate r∗

0A−1
0 r0 presented in the literature, the resulting

(multilevel) estimates on the total and algebraic errors are no longer guaranteed
to be independent of the size of the coarsest-level problem. This behaviour is
illustrated by numerical experiments.

The approach proposed in this paper approximates the coarsest-level term
∥∇r0∥2 using the preconditioned conjugate gradient iterates. A number of PCG
iterations is determined adaptively such that the efficiency of the bound does not
deteriorate with increasing size of the coarsest-level problem, and the efficiency
and robustness of the multilevel error estimates is preserved. Numerical results
support the theoretical findings.

The estimates for total and algebraic errors involve some constants that must
be approximately determined, which involves heuristics. For residual-based error
estimates, the constants can be determined for smaller problems with the same or
analogous geometry where an approximation with very small algebraic error can
be computed; see, e.g., the discussion in [4, Section 7]. Since the new result in
Section 2.5.4 proves the robustness of the adaptive estimate with respect to the

65

size of the coarsest-level problem, it provides a justification for extrapolating the
estimated values of the constants from smaller to larger problems.

In view of a recent trend on using multiple precision in multigrid algorithms
(see, e.g., [25, 38]), it is worth considering extension of the presented results
to include effects of inexact (limited-precision) operations. This will require
substantial further analysis. We plan to address this topic in the future.

2.8 Appendix

2.8.1 Auxiliary results from the theory of PDEs and FEM
The following results are standard in PDE and FEM analysis. They are

presented in various forms and sometimes with different names. We provide them
in forms suitable for our development, with some standard references where the
proofs can be found.

Lemma 2.1 (Bramble–Hilbert lemma). There exists a constant CBH(T) > 0
depending only on d and γT such that for all K ∈ T

inf
c∈R

∥w − c∥ωK
≤ CBH(T)hK∥∇w∥ωK

∀w ∈ H1(ωK), (2.61)

inf
p∈P1(ωK)

∥w − p∥ωK
≤ CBH(T)h2

K |w|H2(ωK) ∀w ∈ H2(ωK). (2.62)

For the proof, see, e.g., [34, p. 490] and references therein.

Lemma 2.2 (Friedrich’s inequality). Let ω ⊂ Rd be a bounded domain. There
exists a constant CF (ω) > 0 such that for all w ∈ H1(ω) which have a zero trace
on a part of the boundary ∂ω of nonzero measure

∥w∥ω ≤ CF (ω)hω∥∇w∥ω. (2.63)

When using Friedrich’s inequality on patches associated with the elements of the
triangulation T , there exists a constant CF (T) depending only on d and γT such
that for all K ∈ T

CF (ωK) ≤ CF (T);
see, e.g., [32, Chapter 18].

Lemma 2.3 (Trace inequality). There exists a constant CTR(T) > 0 depending
only on d and γT such that for all K ∈ T and all w ∈ H1(K)

∥w∥2
∂K ≤ CTR(T)

(︂
h−1
K ∥w∥2

K + hK∥∇w∥2
K

)︂
. (2.64)

For the proof, see, e.g., [11, Proposition 4.1].

Lemma 2.4 (Inverse inequality). There exists a constant CINV(T) > 0 depending
only on d and γT such that for all K ∈ T and all wT ∈ ST

∥∇wT ∥K ≤ CINV(T)h−1
K ∥wT ∥K . (2.65)

For the proof, see, e.g., [16, Lemma 1.27].
The following lemma is a consequence of Lemma 2.3 and Lemma 2.4.

66

Lemma 2.5. There exists a constant CTI(T) > 0 depending only on d and γT
such that for all K ∈ T and all wT ∈ ST

∥wT ∥2
∂K ≤ CTI(T)h−1

K ∥wT ∥2
K . (2.66)

Proof. Bounding ∥wT ∥2
∂K using the trace inequality yields

∥wT ∥2
∂K ≤ CTR(T)

(︂
h−1
K ∥wT ∥2

K + hK∥∇wT ∥2
K

)︂
.

Applying the inverse inequality gives

∥wT ∥2
∂K ≤ CTR(T)

(︂
h−1
K ∥wT ∥2

K + h−1
K C2

INV(T)∥wT ∥K
)︂

= CTR(T)(1 + C2
INV(T))h−1

K ∥wT ∥2
K .

2.8.2 Quasi-interpolation operators
A quasi-interpolation operator is not explicitly used in the construction of

the estimators but it is a crucial tool for proving the bounds. In this section we
present a quasi-interpolation operator as a generalization of nodal interpolation
to integrable functions. We consider the quasi-interpolation operator used in
[29], which is closely related to the operator from [34]. Other, slightly different
quasi-interpolation operators can be found, e.g., in [13, 42, 11]. We list and
prove some of the properties of the operator to be used later. The proofs of the
properties are based on standard techniques. To keep the text self-contained and
formally accurate we provide most of the proofs below.

The results in this section are mostly derived for a single mesh T . We show
that the constants only depend on the dimension d and the shape-regularity γT
and therefore we can again use them in the mesh hierarchy with the dependence
on d and γ0.

Nodal interpolation and its generalization

For a node z ∈ NT , let Ψz : C(Ω) → R denote the linear functional evaluation
at point z, i.e.,

Ψz(w) = w(z) ∀w ∈ C(Ω).
The standard nodal interpolation operator I : C(Ω) → ST for continuous functions
is defined as (see, e.g., [12, 7])

Iw =
∑︂
z∈NT

Ψz(w)φz ∀w ∈ C(Ω).

In order to construct an analogy of the operator I for functions from L1(Ω),
the point evaluation is replaced by an appropriate average of the approximated
function. We will consider the quasi-interpolation operator defined in [29] and
[35].

For a node z ∈ NT , let Kz be a fixed element having z as its vertex, i.e.,
z ∈ Kz. Let P1(Kz) denote the space of linear polynomials on Kz and denote
by ˜︁Ψz the restriction of the linear functional Ψz to functions from P1(Kz). Since

67

P1(Kz) is a finite-dimensional space, the linear functional ˜︁Ψz is bounded and it
therefore belongs to the dual space (P1(Kz))#. Considering the space P1(Kz)
equipped with the L2-inner product, the Riesz representation theorem (see, e.g.,
[7, Sect. 2.4]) yields the existence of a function ψz ∈ P1(Kz) such that

˜︁Ψz(w) = w(z) =
∫︂
Kz

wψz, ∀w ∈ P1(Kz).

Since ψz is the Riesz representation of the point evaluation at z, it holds for all
z1, z2 ∈ NT (recall that φz2 is the hat function associated with z2) that

∫︂
Kz1

φz2ψz1 = φz2(z1) =

⎧⎨⎩1 z1 = z2,

0 z1 ̸= z2.
(2.67)

We will consider the quasi-interpolation operators defined as follows

IST : L1(Ω) → ST , IST w =
∑︂
z∈NT

(︃∫︂
Kz

wψz

)︃
φz, (2.68)

IVT : L1(Ω) → VT , IVT w =
∑︂
z∈KT

(︃∫︂
Kz

wψz

)︃
φz. (2.69)

These definitions and relation (2.67) imply that IST and IVT are projections
onto ST and VT , respectively. Further, IST preserves linear polynomials on Ω and
IVT preserves linear polynomials on ωK for any element K ∈ T whose patch ωK
does not intersect with the boundary of Ω, i.e., ωK ∩ ∂Ω = ∅.

Local estimates

We now present local (elementwise) bounds on an interpolant IST w and the
interpolation error w − IST w.

Theorem 2.1. There exist positive constants ˆ︁CIST ,ℓ
, ℓ = 1, 2, 3, 4, depending only

on d and γT such that for all elements K ∈ T ,

∥IST w∥K ≤ ˆ︁CIST ,1∥w∥ωK
∀w ∈ L2(ωK), (2.70)

∥w − IST w∥K ≤ ˆ︁CIST ,2hK∥∇w∥ωK
∀w ∈ H1(ωK), (2.71)

∥w − IST w∥K ≤ ˆ︁CIST ,3h
2
K |w|H2(ωK) ∀w ∈ H2(ωK), (2.72)

∥∇IST w∥K ≤ ˆ︁CIST ,4∥∇w∥ωK
∀w ∈ H1(ωK). (2.73)

Proof. The steps in the proof are inspired by [29, pp. 17–18] and [34, Sections 3–4].
Using standard affine transformation to a reference element it can be shown

that there exists a constant Cψ > 0 depending only on d and γT such that for all
z ∈ NT ,

∥ψz∥L∞(Kz) ≤ Cψ|Kz|−1, (2.74)

and that there exists a constant Cφ > 0 depending only on d and γT such that for
all K ∈ T and all z ∈ KK ,

∥∇φz∥L∞(K) ≤ Cφρ
−1
K ; (2.75)

see, e.g., [34, pp. 487–488].

68

Using Hölder’s inequality and (2.74) we can show that for all z ∈ NT and all
w ∈ L2(Kz)⃓⃓⃓⃓∫︂

Kz

wψz

⃓⃓⃓⃓2
≤ ∥ψz∥2

L∞(Kz)

(︃∫︂
Kz

|w|
)︃2

≤ C2
ψ|Kz|−2|Kz|∥w∥2

Kz
= C2

ψ|Kz|−1∥w∥2
Kz
.

(2.76)
We now proceed to prove the inequality (2.70). Using that 0 ≤ φz ≤ 1 gives

∥IST w∥2
K =

⃦⃦⃦⃦
⃦⃦ ∑︂
z∈NK

(︃∫︂
Kz

wψz

)︃
φz

⃦⃦⃦⃦
⃦⃦

2

K

≤

⃓⃓⃓⃓
⃓⃓ ∑︂
z∈NK

∫︂
Kz

wψz

⃓⃓⃓⃓
⃓⃓
2

|K|

≤ (#NK)|K|
∑︂
z∈NK

⃓⃓⃓⃓∫︂
Kz

wψz

⃓⃓⃓⃓2
.

The inequality (2.76) and the fact that #NK ≤ d+ 1 yields

∥IST w∥2
K ≤ (d+ 1)|K|

∑︂
z∈KK

C2
ψ|Kz|−1∥w∥2

Kz

≤ (d+ 1)|K|C2
ψ max
z∈NK

|Kz|−1∥w∥2
ωK

(2.77)

≤ (d+ 1)C2
ψ

|K|
minz∈NK

|Kz|
∥w∥2

ωK
. (2.78)

Since |K| and |Kz|, z ∈ NK , are comparable up to a constant depending on d
and γT (in a shape-regular mesh, we can compare the size of any neighboring
elements), inequality (2.70) follows.

To prove the inequalities (2.71) and (2.72), let p be a constant or linear
polynomial on ωK . Using the fact that IST reproduces linear polynomials and
(2.70) we get

∥w − IST w∥K = ∥w − p− IST (w − p)∥K
≤ ∥w − p∥K + ˆ︁CIST ,1∥w − p∥ωK

≤ (ˆ︁CIST ,1 + 1)∥w − p∥ωK
.

Using the Bramble–Hilbert lemma (Lemma 2.1) gives

∥w − IST w∥K ≤ (ˆ︁CIST ,1 + 1)CBH(T)hK∥∇w∥ωK

or
∥w − IST w∥K ≤ (ˆ︁CIST ,1 + 1)CBH(T)h2

K |w|H2(ωK).

It remains to verify the inequality (2.73). Using the fact that IST reproduces
constants, we have, for arbitrary c ∈ R,

∥∇IST w∥2
K = ∥∇IST (w − c)∥2

K =
∫︂
K

⃓⃓⃓⃓
⃓⃓ ∑︂
z∈NK

(︃∫︂
Kz

(w − c)ψz
)︃

∇φz

⃓⃓⃓⃓
⃓⃓
2

≤ (#NK)
∑︂
z∈NK

∥∇φz∥2
L∞(K)

∫︂
K

⃓⃓⃓⃓∫︂
Kz

(w − c)ψz
⃓⃓⃓⃓2

≤ (d+ 1)
∑︂
z∈NK

∥∇φz∥2
L∞(K)

⃓⃓⃓⃓∫︂
Kz

(w − c)ψz
⃓⃓⃓⃓2

|K|

≤ (d+ 1)C2
φρ

−2
K |K|

∑︂
z∈NK

⃓⃓⃓⃓∫︂
Kz

(w − c)ψz
⃓⃓⃓⃓2
,

69

where we also used (2.75). Then, from (2.76), we get

∥∇IST w∥2
K ≤ (d+ 1)C2

φρ
−2
K |K|C2

ψ max
z∈NK

|Kz|−1∥w − c∥2
ωK
.

Using the Bramble–Hilbert lemma (Lemma 2.1) and rearranging yields

∥∇IST w∥2
K ≤ (d+ 1)C2

φC
2
ψ

(︂
CBH(T)

)︂2 |K|
minz∈KK

|Kz|
· h

2
K

ρ2
K

∥∇w∥2
ωK
.

For the interpolation operator IVT , we can derive bounds analogous to those
of Theorem 2.1. For the “inner” elements, i.e., the elements K ∈ T such that
patch ωK does not intersect with the boundary of Ω, i.e., ωK ∩ ∂Ω = ∅, the forms
of the bounds and their proofs are analogous to Theorem 2.1, because IVT also
reproduces constants on ωK . For the elements whose patch intersects with the
boundary of Ω, one cannot use this property and the Bramble–Hilbert lemma
(Lemma 2.1) must be replaced by Friedrich’s inequality (Lemma 2.2) in the proofs.

Theorem 2.2. There exist positive constants ˆ︁CIVT ,ℓ
, ℓ = 1, 2, 4, depending only

on d and γT such that for all elements K ∈ T ,

∥IVT w∥K ≤ ˆ︁CIVT ,1∥w∥ωK
, ∀w ∈ L2(ωK), (2.79)

and for all w ∈ H1(ωK) if ωK ∩∂Ω = ∅, or for all w ∈ H1(ωK) ∩H1
0 (Ω) otherwise,

∥w − IVT w∥K ≤ ˆ︁CIVT ,2hK∥∇w∥ωK
, (2.80)

∥∇IVT w∥K ≤ ˆ︁CIVT ,4∥∇w∥ωK
. (2.81)

For the local interpolation error over the faces, we have the following bound.

Theorem 2.3. There exists a positive constant ˆ︁CIVT ,5 depending only on d and
γT such that for all elements K ∈ T ,

∥w − IVT w∥2
∂K ≤ ˆ︁CIVT ,5hK∥∇w∥2

ωK
. (2.82)

Proof. Using the trace inequality (Lemma 2.3) and the properties of IVT from
Theorem 2.2 yields

∥w − IVT w∥∂K ≤ CTR(T)[h−1
K ∥w − IVT w∥2

K + hK∥∇(w − IVT w)∥2
K]

≤ CTR(T)
[︂
h−1
K ∥w − IVT w∥2

K + hK · 2 ·
(︂
∥∇w∥2

K + ∥∇IVT w∥2
K

)︂]︂
≤ CTR(T)

[︃
h−1
K

(︂ ˆ︁CIVT ,2
)︂2
h2
K∥∇w∥2

ωK

+hK · 2
(︃

1 +
(︂ ˆ︁CIVT ,4

)︂2
)︃

∥∇w∥2
ωK

]︃
.

70

Global estimates

We now state global variants of estimates for quasi-interpolants and interpola-
tion errors.

For any K ∈ T , let Covrlp(K) denote the number of patches this element is
contained in, i.e.,

Covrlp(K) = # {K ′ ∈ T ;K ⊂ ωK′} .
The constant Covrlp(K) depends only on the geometry of the mesh T , i.e., d and
the shape regularity γT .

Theorem 2.4. There exist positive constants CIST ,ℓ
, ℓ = 1, 2, 4, depending only

on d and γT such that

∥IST w∥ ≤ CIST ,1∥w∥ ∀w ∈ L2(Ω),

(2.83)(︄∑︂
K∈T

h−2
K ∥w − IST w∥2

K

)︄ 1
2

= ∥h−1
T (w − IST w)∥ ≤ CIST ,2∥∇w∥ ∀w ∈ H1(Ω),

(2.84)
∥∇(IST w)∥ ≤ CIST ,4∥∇w∥ ∀w ∈ H1(Ω).

(2.85)

Proof. Using Theorem 2.1,

∥IST w∥2 =
∑︂
K∈T

∥IST w∥2
K ≤

∑︂
K∈T

(︂ ˆ︁CIST ,1
)︂2

∥w∥2
ωK

≤
(︂ ˆ︁CIST ,1

)︂2 ∑︂
K∈T

Covrlp(K)∥w∥2
K

≤
(︂ ˆ︁CIST ,1

)︂2
max
K∈T

Covrlp(K)
∑︂
K∈T

∥w∥2
K .

The proofs of the other three inequalities are analogous.

Theorem 2.5. There exist positive constants CIVT ,ℓ
, ℓ = 1, 2, 4, 5, depending only

on d and the shape-regularity constant γT such that

∥IVT w∥ ≤ CIVT ,1∥w∥ ∀w ∈ L2(Ω),

(2.86)(︄∑︂
K∈T

h−2
K ∥w − IVT w∥2

K

)︄ 1
2

= ∥h−1
T (w − IVT w)∥ ≤ CIVT ,2∥∇w∥ ∀w ∈ H1

0 (Ω),

(2.87)
∥∇(IVT w)∥ ≤ CIVT ,4∥∇w∥ ∀w ∈ H1

0 (Ω),
(2.88)(︄∑︂

K∈T
h−1
K ∥w − IVT w∥2

∂K

)︄ 1
2

≤ CIVT ,5∥∇w∥ ∀w ∈ H1
0 (Ω).

(2.89)

Let us now consider the mesh hierarchy as in Section 2.2.2. Since the constants
CISj

,ℓ and CIVj
,ℓ depend only on d and γj , they can be bounded by constants CIS ,ℓ

and CIV ,ℓ depending only on d and the shape regularity γ0 of the initial mesh T0.
Finally, we bound the difference of quasi-interpolates on two consecutive levels.

71

Theorem 2.6. There exists a constant CI,2lvl > 0 depending only on d and γ0
such that for all j ≥ 1 and all w ∈ H1

0 (Ω),

∥h−1
j (IVj

w − IVj−1w)∥ ≤ CI,2lvl∥∇w∥. (2.90)

Proof. Using the fact that h−1
j = 2h−1

j−1 and the estimate (2.87) from Theorem 2.5,

∥h−1
j (IVj

w − IVj−1w)∥ ≤ ∥h−1
j (w − IVj

w)∥ + ∥h−1
j (w − IVj−1w)∥

= ∥h−1
j (w − IVj

w)∥ + 2∥h−1
j−1(w − IVj−1w)∥

≤ (CIV ,2 + 2CIV ,2)∥∇w∥.

Taking CI,2lvl as CI,2lvl = CIV ,2 + 2CIV ,2 finishes the proof.

2.8.3 Stable splitting
This section presents several results on splitting (decomposing) a H1

0 (Ω)-
function or a piecewise polynomial function into a sum of piecewise polynomial
functions. Let a sequence of uniformly refined meshes Tj, j = 0, 1, . . . as in
Section 2.2.2 be given.

Splitting of H1
0 (Ω) into subspaces of piecewise linear functions

To make the text easier to follow we first state the main result of this section
and subsequently provide auxiliary results and proofs. We will show that any
function w ∈ H1

0 (Ω) can be uniquely decomposed using the quasi-interpolation
operators IVj

, j ∈ N0, as

w = IV0w +
+∞∑︂
j=1

(IVj
− IVj−1)w;

the convergence of the sum is understood in the space H1
0 (Ω) with the norm

∥∇ · ∥. This decomposition is stable, meaning that there exist positive constants
cS,IV

, CS,IV
such that for all w ∈ H1

0 (Ω),

cS,IV
∥∇w∥2 ≤ ∥∇IV0w∥2 +

+∞∑︂
j=1

∥h−1
j (IVj

w − IVj−1w)∥2 ≤ CS,IV
∥∇w∥2. (2.91)

We will also show that the splitting of the space H1
0 (Ω) into subspaces Vj , j ∈ N0,

is stable in the sense that there exist positive constants cS, CS such that for all
w ∈ H1

0 (Ω),

cS∥∇w∥2 ≤ inf
wj∈Vj ; w=

∑︁+∞
j=0 wj

∥∇w0∥2 +
+∞∑︂
j=1

∥h−1
j wj∥2 ≤ CS∥∇w∥2; (2.92)

the infimum is taken over all (H1
0 (Ω), ∥∇ · ∥)-convergent decompositions.

We will show that the stability constants cS,IV
, CS,IV

and cS, CS depend only
on d and the shape regularity γ0 of the initial mesh. In particular, the constants do
not depend on the quasi-uniformity of the initial mesh or the ratio hΩ/minK∈T0 hK .
This result is important when considering settings where the problem associated

72

with the coarsest level is difficult to solve and in practice can only be solved
approximately.

Variants of these results can be found, e.g., in [29, 33, 15, 14, 5] and references
therein. Our form is, however, to the best of our knowledge, not presented in the
literature. The results in [29, 33, 15, 14] are derived under the assumption that
the initial mesh is quasi-uniform, and the authors do not track the dependence
of the constants on hΩ/minK∈T0 hK . The results of [5] are derived without the
assumption on the quasi-uniformity of the initial mesh. The authors however
consider only the splitting of piecewise linear functions.

We combine the approaches from [29] and [5]. We first focus on showing the
upper bound from (2.91), then continue with the lower bound, and later generalize
it to show (2.92).

First, consider the K-functional in analogy to [5, Section 7, eq. (7.4)]. For
ω ⊂ Rd, w ∈ L2(ω), it is defined as

K(t, w, ω) = inf
g∈H2(ω)

{︂
∥w − g∥2

L2(ω) + t2|g|2H2(ω)

}︂ 1
2 , t > 0. (2.93)

Lemma 2.6. There exists a constant C > 0 such that for all w ∈ H1(Rd) that
have compact support in Rd, it holds that

+∞∑︂
j=0

22jK(2−2j, w,Rd)2 ≤ C∥∇w∥2
L2(Rd). (2.94)

Proof. A brief proof for d = 2 is given in [5, Lemma 7.3]. We present its key
part in more detail and for d = 2, 3. We will show that the K-functional can be
expressed in terms of the Fourier transform (here denoted by F [·]) as

K(t, w,Rd)2 = 1
(2π) d

2

∫︂
Rd

t2|ξ|4

1 + t2|ξ|4
⃓⃓⃓
F [w](ξ)

⃓⃓⃓2
dξ. (2.95)

For w ∈ H1(Rd), g ∈ H2(Rd), using the properties of the Fourier transform,

∥w − g∥2
L2(Rd) + t2|g|2H2(Rd)

= 1
(2π) d

2

∫︂
Rd

t2|ξ|4

1 + t2|ξ|4
⃓⃓⃓
F [w](ξ)

⃓⃓⃓2
+ (1 + t2|ξ|4)

(︄
F [g](ξ) − F [w](ξ)

1 + t2|ξ|4

)︄2

dξ.

(2.96)

By simple manipulations, one can show that the minimum is attained for

˜︁g(x) = w(x) ∗ F−1
[︄

1
1 + t2|ξ|4

]︄
(x), (2.97)

and it remains to show that ˜︁g ∈ H2(Rd). First, note that∫︂
Rd

(1 + |ξ|)2
(︂ 1

1 + t2|ξ|4
)︂2
< ∞,

and therefore, due to the characterization of Sobolev spaces using Fourier trans-
formations (see, e.g., [29, Section 3.1.1]), F−1[(1 + t2|ξ|4)−1](x) ∈ H2(Rd). Then

73

use Young’s inequality for convolution (recall that by assumption, w is compactly
supported and therefore w ∈ L1(Rd)) and the fact that ∂/∂ξi(f ∗h) = (∂f/∂ξi ∗h)
to show that the H2-norm of ˜︁g is bounded.

The equality (2.95) then follows by plugging in the expression for ˜︁g into (2.96)
and performing algebraic manipulations. The rest of the proof of the lemma
follows as in [5, Lemma 7.3].

Lemma 2.7. Let ω ⊂ Rd be a domain with a Lipschitz-continuous boundary.
There exists a constant Cα(ω) > 0 depending on the shape of ω such that for all
w ∈ H1(ω),

+∞∑︂
j=0

22jK(2−2j, w, ω)2 ≤ Cα(ω)∥∇w∥2
L2(ω). (2.98)

Proof. The proof for d = 2 is given in [5, Lemma 7.4]. It is based on the use of
an extension operator and Lemma 2.6. For the three-dimensional case, the proof
is analogous as Lemma 2.6 is valid also for d = 3.

Lemma 2.8. There exists a constant Cβ > 0 depending only on d and γ0 such
that for all K ∈ T0 and all w ∈ H1

0 (Ω),

h−2
K

+∞∑︂
j=0

22j∥w − ISj
w∥2

K ≤ Cβ∥∇w∥2
ωK
. (2.99)

Proof. The steps in the proof are inspired by the development in [29, Section 2.3]
and [5, Section 7].

We will use a scaling argument to consider an element ˜︂K with h˜︁K = 1. This is
done by a transformation x = hK ˜︁x, where x ∈ K, ˜︁x ∈ ˜︂K. We denote ˜︁f(˜︁x) := f(x)
for any function f defined on ωK . Then

∥w − ISj
w∥2

K = hdK∥ ˜︁w − ˜︃ISj
w∥2˜︁K . (2.100)

From the definition of the interpolation operator one can write ˜︃ISj
w = ˜︃ISj

˜︁w.
In words, one can either consider the transformation of the interpolant ISj

w or
transform the function w to the element ˜︂K first and then consider the quasi-
interpolation ˜︃ISj

associated with the transformed mesh.
We will show that there exists a constant Cδ > 0 depending only on d and γ0

such that
∥ ˜︁w − ˜︃ISj

˜︁w∥2˜︁K ≤ Cδ ·
(︂
K(2−2j, ˜︁w, ω˜︁K)

)︂2
. (2.101)

Let ˜︁g ∈ H2(ω˜︁K). Then

∥ ˜︁w − ˜︃ISj
˜︁w∥˜︁K ≤ ∥ ˜︁w − ˜︁g∥˜︁K + ∥˜︁g − ˜︃ISj

˜︁g∥˜︁K + ∥˜︃ISj
(˜︁g − ˜︁w)∥˜︁K . (2.102)

Let ˜︂Kj ∈ ˜︁Tj such that ˜︂Kj ⊂ ˜︂K. Then (thanks to the uniform refinement and
h˜︁K = 1, h˜︁Kj

= 2−j) from Theorem 2.1 (inequalities (2.70) and (2.72)),

∥˜︃ISj
(˜︁g − ˜︁w)∥˜︁Kj

≤ ˆ︁C˜︂ISj
,1∥˜︁g − ˜︁w∥ω˜︁Kj

, (2.103)

∥˜︁g − ˜︃ISj
˜︁g∥˜︁Kj

≤ ˆ︁C˜︂ISj
,32

−2j|˜︁g|H2(ω˜︁Kj
). (2.104)

74

Define
U(˜︂K, j) =

{︂
∪ω˜︁Kj

; ˜︂Kj ∈ ˜︁Tj, ˜︂Kj ⊂ ˜︂K}︂ .
The term on the right hand side of (2.103) can be bounded as

∥˜︃ISj
(˜︁g − ˜︁w)∥˜︁K =

∑︂
˜︁Kj∈˜︁Tj ,˜︁Kj⊂˜︁K ∥˜︃ISj

(˜︁g − ˜︁w)∥˜︁Kj

≤
∑︂

˜︁Kj∈˜︁Tj ,˜︁Kj⊂˜︁K
ˆ︁C˜︂ISj

,1∥˜︁g − ˜︁w∥ω˜︁Kj

≤ ˆ︁C˜︂ISj
,1 max˜︁Kj∈˜︁Tj ;˜︁Kj∈U(˜︁K,j)Covrlp(˜︂Kj)∥˜︁g − ˜︁w∥

U(˜︁K,j)
≤ ˆ︁C˜︂ISj

,1 max˜︁Kj∈˜︁Tj ;˜︁Kj∈U(˜︁K,j)Covrlp(˜︂Kj)∥˜︁g − ˜︁w∥ω˜︁K
≤ CIS ,1∥˜︁g − ˜︁w∥ω˜︁K , (2.105)

where the last inequality follows from the fact that ˆ︁C˜︂ISj
,1 = ˆ︁CISj

,1 (scaling does
not change the geometry and shape regularity) and from the definition of CIS ,1.
The term on the right hand side of (2.104) can be bounded as

∥˜︁g − ˜︃ISj
˜︁g∥2˜︁K =

∑︂
˜︁Kj∈˜︁Tj ,˜︁Kj⊂˜︁K ∥˜︁g − ˜︃ISj

˜︁g∥2˜︁Kj

≤
∑︂

˜︁Kj∈˜︁Tj ,˜︁Kj⊂˜︁K
(︂ ˆ︁C˜︂ISj

,32
−2j|˜︁g|ω˜︁Kj

)︂2

≤
(︂ ˆ︁C˜︂ISj

,3

)︂2
max˜︁Kj∈˜︁Tj ,˜︁Kj∈U(˜︁K,j)Covrlp(˜︂Kj)2−4j|˜︁g|2

H2(U(˜︁K,j))
≤
(︂ ˆ︁C˜︂ISj

,3

)︂2
max˜︁Kj∈˜︁Tj ,˜︁Kj⊂˜︁K Covrlp(˜︂Kj)2−4j|˜︁g|2H2(ω˜︁K)

≤
(︂
CIS ,3 · 2−2j|˜︁g|H2(ω˜︁K)

)︂2
. (2.106)

Combining (2.102) - (2.106) yields

∥ ˜︁w − ˜︃ISj
˜︁w∥˜︁K ≤ max

ℓ=1,3
CIS ,ℓ

(︂
∥˜︁g − ˜︁w∥ω˜︁K + 2−2j|˜︁g|H2(ω˜︁K)

)︂
.

From the definition of the K-functional,

∥ ˜︁w − ˜︃ISj
˜︁w∥2˜︁K ≤ max

ℓ=1,3
C2
IS ,ℓ

(︂
∥˜︁g − ˜︁w∥ω˜︁K + 2−2j|˜︁g|H2(ω˜︁K)

)︂2

≤ 2 · max
ℓ=1,3

C2
IS ,ℓ

(︃
∥˜︁g − ˜︁w∥2

ω˜︁K +
(︂
2−2j

)︂2
|˜︁g|2H2(ω˜︁K)

)︃
= 2 · max

ℓ=1,3
C2
IS ,ℓ

·
(︂
K(2−2j, ˜︁w, ω˜︁K)

)︂2
.

In the notation introduced above, Cδ = 2 · maxℓ=1,3 C
2
IS ,ℓ

.
Using (2.100), (2.101) and Lemma 2.7 yields

+∞∑︂
j=0

22j∥w − ISj
w∥2

K ≤ hdKCδ
+∞∑︂
j=0

22j
(︂
K(2−2j, ˜︁w, ω˜︁K)

)︂2

≤ hdKCδCα(ω˜︁K)∥∇ ˜︁w∥2
ω˜︁K .

75

Re-scaling back to K,
+∞∑︂
j=0

22j∥w − ISj
w∥2

K ≤ hdKCδCα(ω˜︁K)h2
Kh

−d
K ∥∇w∥2

ωK
.

Finally, note that the shape of ω˜︁K depends on the shape regularity of the initial
mesh and therefore Cα(ω˜︁K) can be bounded, for all K ∈ T0, by a constant Cα
depending only on d and γ0.

Theorem 2.7. There exists a constant CS,IS
> 0 depending only on d and γ0,

such that for all w ∈ H1
0 (Ω),

∥∇IS0w∥2 +
+∞∑︂
j=1

∥h−1
j (ISj

w − ISj−1w)∥2 ≤ CS,IS
∥∇w∥2. (2.107)

Proof. From Theorem 2.4,

∥∇IS0w∥2 ≤ C2
IS0 ,4

∥∇w∥2.

For the rest of the sum,
+∞∑︂
j=1

∥h−1
j (ISj

− ISj−1)w∥2 =
+∞∑︂
j=1

∥h−1
j (ISj

w − w + w − ISj−1w)∥2

≤ 2
+∞∑︂
j=1

(︂
∥h−1

j (w − ISj
w)∥2 + ∥h−1

j (w − ISj−1w)∥2
)︂

≤ 2
+∞∑︂
j=1

(︂
∥h−1

j (w − ISj
w)∥2 + 4∥h−1

j−1(w − ISj−1w)∥2
)︂

≤ 2
⎛⎝+∞∑︂
j=1

∥h−1
j (w − ISj

w)∥2 + 4
+∞∑︂
j=0

∥h−1
j (w − ISj

w)∥2

⎞⎠
≤ 2 · 5

+∞∑︂
j=0

∥h−1
j (w − ISj

w)∥2

= 10
∑︂
K∈T0

+∞∑︂
j=0

22jh−2
K ∥w − ISj

w∥2
K

≤ 10
∑︂
K∈T0

Cβ∥∇w∥2
ωK

≤ 10 · Cβ · max
K∈T0

Covrlp(K)∥∇w∥2,

where we have used Lemma 2.8 in the second to last inequality.

Theorem 2.8. There exists a constant CS,IV
> 0 depending only on d and γ0

such that for all w ∈ H1
0 (Ω),

∥∇IV0w∥2 +
+∞∑︂
j=1

∥h−1
j (IVj

w − IVj−1w)∥2 ≤ CS,IV
∥∇w∥2. (2.108)

Proof. The key steps of the following proof of the upper bound were provided to
us by professor P. Oswald in personal communications. From Theorem 2.5,

∥∇IV0w∥2 ≤ C2
IV0 ,4

∥∇w∥2.

76

To bound ∑︁+∞
j=1

⃦⃦⃦
h−1
j (IVj

w − IVj−1w)
⃦⃦⃦2

, consider the sequence wj = (ISj
− ISj−1)w,

j ∈ N. Let K ∈ T0. We will first show that there exists a constant Cϵ > 0
depending only on d and γ0 such that

+∞∑︂
j=1

22j∥(IVj
− IVj−1)w∥2

K ≤ Cϵ
+∞∑︂
i=1

22i∥wi∥2
ωK
. (2.109)

Since IVj
are projections onto Vj, it holds that

(IVj
− IVj−1)wi = 0, j > i. (2.110)

Then for all j ≥ 1, using the Cauchy–Schwarz inequality for sums and Theorem 2.2,

∥(IVj
− IVj−1)w∥2

K =
∫︂
K

⎛⎝+∞∑︂
i=j

(IVj
− IVj−1)wi

⎞⎠2

≤
∫︂
K

⎛⎝+∞∑︂
i=j

2−i

⎞⎠⎛⎝+∞∑︂
i=j

2i
(︂
(IVj

− IVj−1)wi
)︂2
⎞⎠

≤ 2 · 2−j
+∞∑︂
i=j

2i∥(IVj
− IVj−1)wi∥2

K

≤ 2 · 2−j
+∞∑︂
i=j

2i · 2
(︂
∥IVj

wi∥2
K + ∥IVj−1wi∥2

K

)︂

≤ 2 · 2−j
+∞∑︂
i=j

2i · 2 · 2 ·
(︂ ˆ︁CIV ,1

)︂2
∥wi∥2

ωK
.

Consequently,
+∞∑︂
j=1

22j∥(IVj
− IVj−1)w∥2

K ≤ 8 ·
(︂ ˆ︁CIVT ,1

)︂2

⏞ ⏟⏟ ⏞
Cϵ

+∞∑︂
j=1

2j
+∞∑︂
i=j

2i∥wi∥2
ωK
.

Changing the order of summation,
+∞∑︂
j=1

2j
+∞∑︂
i=j

2i∥wi∥2
ωK

=
+∞∑︂
i=1

2i∥wi∥2
ωK

i−1∑︂
j=1

2j ≤
+∞∑︂
i=1

22i∥wi∥2
ωK
.

For the sum ∑︁+∞
j=1 ∥h−1

j (IVj
− IVj−1)w∥2, using (2.109),

+∞∑︂
j=1

∥h−1
j (IVj

− IVj−1)w∥2 =
∑︂
K∈T0

h−2
K

+∞∑︂
j=1

22j∥(IVj
− IVj−1)w∥2

K

≤ Cϵ
∑︂
K∈T0

h−2
K

+∞∑︂
i=1

22i∥wi∥2
ωK

≤ Cϵ
+∞∑︂
i=1

22i ∑︂
K∈T0

h−2
K ∥wi∥2

ωK

≤ Cϵ
+∞∑︂
i=1

22i ∑︂
K∈T0

Covrlp(K) max
K̄⊂ωK

h−2
K̄

∥wi∥2
K

≤Cϵmax
K∈T0

[︄
Covrlp(K)

maxK̄⊂ωK
h−2
K̄

h−2
K

]︄
⏞ ⏟⏟ ⏞

Cζ

+∞∑︂
i=1

22i∑︂
K∈T0

h−2
K ∥wi∥2

K .

77

Finally, Theorem 2.7 gives

+∞∑︂
j=1

∥h−1
j (IVj

− IVj−1)w∥2 ≤ CζCS,IS
∥∇w∥2.

Now proceed with bounding the norm of the splittings from below by a
H1-seminorm. We start with some auxiliary lemmas.

Lemma 2.9. There exists a constant cS > 0 depending only on d and γ0 such that
for any N ∈ N0 and any sequence (wj)Nj=0, wj ∈ Sj, j = 0, . . . , N , it holds that

⃦⃦⃦⃦
⃦⃦∇

⎛⎝ N∑︂
j=0

wj

⎞⎠⃦⃦⃦⃦⃦⃦
2

≤ 1
cS

⎛⎝∥∇w0∥2 +
N∑︂
j=1

∥h−1
j wj∥2

⎞⎠ . (2.111)

Proof. The proof for d = 2 is given in [5, Lemma 3.4]. It is based on the so-called
Strengthened Cauchy–Schwarz inequality. As the Strengthened Cauchy–Schwarz
inequality is valid also for d = 3 (see, e.g., [43, Lemma 6.1]), the proof of the
theorem in the three-dimensional case is analogous to the two-dimensional one.

Lemma 2.10. Let (wj)+∞
j=0, wj ∈ Vj, j ∈ N0, be a sequence which satisfies

∥∇w0∥2 +
+∞∑︂
j=1

∥h−1
j wj∥2 < +∞.

Then ∑︁+∞
j=0 wj converges in (H1

0 (Ω), ∥∇ · ∥).

Proof. We will use Lemma 2.9 to show that (∑︁N
j=0 wj)+∞

N=0 is a Cauchy sequence in
(H1

0 (Ω), ∥∇ · ∥). Let ϵ > 0. Since ∥∇w0∥2 +∑︁+∞
j=1 ∥h−1

j wj∥2 converges in R, there
exists M ∈ N such that for all m > n > M , it holds that

m∑︂
j=n

∥h−1
j wj∥2 < cSϵ

2.

Using Lemma 2.9 for wj, j = n, . . . ,m, and the previous inequality,⃦⃦⃦⃦
⃦⃦∇

⎛⎝ m∑︂
j=n

wj

⎞⎠⃦⃦⃦⃦⃦⃦
2

≤ 1
cS

m∑︂
j=n

∥h−1
j wj∥2 < ϵ2,

i.e., (∑︁N
j=0 wj)+∞

N=0 is a Cauchy sequence in (H1
0 (Ω), ∥∇ · ∥) and thus ∑︁+∞

j=0 wj
converges in (H1

0 (Ω), ∥∇ · ∥).

Lemma 2.11. Let cS be the constant from Lemma 2.9. Let (wj)+∞
j=0, wj ∈ Vj,

j ∈ N0, be a sequence such that ∑︁+∞
j=0 wj converges in (H1

0 (Ω), ∥∇ · ∥). Then
⃦⃦⃦⃦
⃦⃦∇

⎛⎝+∞∑︂
j=0

wj

⎞⎠⃦⃦⃦⃦⃦⃦
2

≤ 1
cS

⎛⎝∥∇w0∥2 +
+∞∑︂
j=1

∥h−1
j wj∥2

⎞⎠ .

78

Proof. For any N ∈ N0, Lemma 2.9 gives⃦⃦⃦⃦
⃦⃦∇

⎛⎝ N∑︂
j=0

wj

⎞⎠⃦⃦⃦⃦⃦⃦
2

≤ 1
cS

⎛⎝∥∇w0∥2 +
N∑︂
j=1

∥h−1
j wj∥2

⎞⎠ .
Since ∑︁+∞

j=0 wj converges in (H1
0 (Ω), ∥∇·∥), we may switch the following limit and

norm, giving⃦⃦⃦⃦
⃦⃦∇

⎛⎝ lim
N→+∞

N∑︂
j=0

wj

⎞⎠⃦⃦⃦⃦⃦⃦
2

= lim
N→+∞

⃦⃦⃦⃦
⃦⃦∇

⎛⎝ N∑︂
j=0

wj

⎞⎠⃦⃦⃦⃦⃦⃦
2

≤ lim
N→+∞

1
cS

⎛⎝∥∇w0∥2 +
N∑︂
j=1

∥h−1
j wj∥2

⎞⎠ = 1
cS

⎛⎝∥∇w0∥2 +
+∞∑︂
j=1

∥h−1
j wj∥2

⎞⎠ .

Theorem 2.9. Any function w ∈ H1
0 (Ω) can be uniquely decomposed as

w = IV0w +
+∞∑︂
j=1

(IVj
− IVj−1)w;

(the convergence of the sum is understood in the space (H1
0 (Ω), ∥∇ · ∥)). Let cS be

the constant from Lemma 2.9 and CS,IV
the constant from Theorem 2.8. Then for

all w ∈ H1
0 (Ω),

cS∥∇w∥2 ≤ ∥∇IV0w∥2 +
+∞∑︂
j=1

∥h−1
j (IVj

w − IVj−1w)∥2 ≤ CS,IV
∥∇w∥2. (2.112)

Proof. The upper bound is proven in Theorem 2.8. Now we will prove the lower
bound. Having the upper bound, we can use Lemma 2.10 to show that the sum
IV0w + ∑︁+∞

j=1(IVj
− IVj−1)w converges in (H1

0 (Ω), ∥∇ · ∥) and consequently, from
Lemma 2.11 with w0 := IV0w and wj := (IVj

− IVj−1)w,

cS

⃦⃦⃦⃦
⃦⃦∇

⎛⎝IV0w +
+∞∑︂
j=1

(IVj
− IVj−1)w

⎞⎠⃦⃦⃦⃦⃦⃦
2

≤ ∥∇IV0w∥2 +
+∞∑︂
j=1

∥h−1
j (IVj

w − IVj−1w)∥2.

It remains to show that IV0w + ∑︁+∞
j=0(IVj

− IVj−1)w = w in (H1
0 (Ω), ∥∇ · ∥).

Since, for arbitrary N ∈ N (see Theorem 2.5),⃦⃦⃦⃦
⃦⃦w −

⎛⎝IV0w +
N∑︂
j=1

(IVj
− IVj−1)w

⎞⎠⃦⃦⃦⃦⃦⃦ = ∥w − IVN
w∥ ≤ CIV ,2 max

K∈TN

hK∥∇w∥,

and maxK∈TN
hK → 0, IV0w + ∑︁+∞

j=1(IVj
− IVj−1)w = w in L2(Ω). We will show

by contradiction that IV0w +∑︁+∞
j=1(IVj

− IVj−1)w = w also in (H1
0 (Ω), ∥∇ · ∥). Let

the sequence IV0w + ∑︁N
j=1(IVj

− IVj−1)w converge in (H1
0 (Ω), ∥∇ · ∥) to w̄ ̸= w.

Then, thanks to Friedrich’s inequality (Lemma 2.2) the sequence converges to w̄
in L2(Ω), which is a contradiction with the uniqueness of the limit.

79

Theorem 2.10. Let cS be the constant from Lemma 2.11. There exists a constant
CS > 0 depending only on d and γ0 such that for all w ∈ H1

0 (Ω),

cS∥∇w∥2 ≤ inf
wj∈Vj ; w=

∑︁+∞
j=0 wj

∥∇w0∥2 +
+∞∑︂
j=1

∥h−1
j wj∥2 ≤ CS∥∇w∥2. (2.113)

Proof. From Theorem 2.9 we know that for any w ∈ H1
0 (Ω) there exists a decom-

position w = ∑︁+∞
j=0 wj , wj ∈ Vj , j ∈ N0, for which the upper bound holds with the

constant CS,IV
, so that we can take an infimum over all possible decompositions

giving CS ≤ CS,IV
. The lower bound in (2.113) follows from Lemma 2.11.

Splitting of H1
0 (Ω) into basis function spaces

This section presents a result on splitting a H1
0 (Ω)-function into basis function

spaces. Denote by Vj,i, j = 1, 2 . . ., i = 1, . . . ,#Kj, the space spanned by the
basis function φ

(j)
i , Vj,i ⊂ Vj.

First we will show that splitting a function wj ∈ Vj into the basis function
spaces Vj,i, i = 1, . . . ,#Kj is stable. This property is called stability of basis
functions in the literature; see, e.g., [33, Definition 2.5.5] and [29, Assumption (A1),
p. 17]. We present this property in a form which suits our further development.

Lemma 2.12 (Stability of basis functions). There exist positive constants cB and
CB depending only on d and γ0 such that for all j ∈ N0 and all

wj =
#Kj∑︂
i=1

wj,i ∈ Vj, wj,i ∈ Vj,i, i = 1, . . . ,#Kj,

it holds that

cB∥h−1
j wj∥2 ≤

#Kj∑︂
i=1

∥∇wj,i∥2 ≤ CB∥h−1
j wj∥2. (2.114)

Let MS
j be the so-called scaled mass matrix and Dj the diagonal matrix defined as[︂

MS
j

]︂
m,n

=
∫︂

Ω
h−2
j φ(j)

n φ(j)
m , [Dj]m,m =

∫︂
Ω

∇φ(j)
m · ∇φ(j)

m , ∀m,n = 1, . . . ,#Kj.

Let wj be the vector of coefficients of a function wj ∈ Vj in the basis Φj. Then
wj = ∑︁#Kj

i=1 wj,i, wj,i = [wj]iφ(j)
i and (2.114) is equivalent to

cBw∗
jMS

j wj ≤ w∗
jDjwj ≤ CBw∗

jMS
j wj. (2.115)

That is, the matrices MS
j and Dj are spectrally equivalent with constants cB and

CB.

Proof. The proof is inspired by [16, Proposition 1.30, Problem 1.35]; see also [17].
We prove the spectral equivalence of local matrices associated with a mesh element.
The assertion of the theorem for global matrices then follows by summing the
local inequalities over the elements and taking the overlap into account.

Let MS
j,K be a local scaled mass matrix corresponding to an element K ∈ Tj

defined as [︂
MS

j,K

]︂
m,n

=
∫︂
K
h−2
K φ(j)

n φ(j)
m , ∀m,n ∈ NK , (2.116)

80

and let MS
K̂

be the local scaled mass matrix on a reference element K̂, which does
not depend on j, K, or Tj. Using standard arguments of affine transformation to
a reference element, it holds that

MS
j,K = |K|

h2
K

MS
K̂
. (2.117)

If we denote by cK̂ and CK̂ the smallest and the largest eigenvalues of MS
K̂

,
respectively, the eigenvalues of MS

j,K can be bounded by cK̂ |K|/h2
K and CK̂ |K|/h2

K .
Consequently,

cK̂ |K|
h2
K

x∗x ≤ x∗MS
j,Kx ≤ CK̂ |K|

h2
K

x∗x, ∀x ∈ R(d+1). (2.118)

By choosing x as the mth column of the identity matrix of size d+ 1,
cK̂ |K|
h2
K

≤
[︂
MS

j,K

]︂
m,m

= ∥φ(j)
m ∥2

K

h2
K

≤ CK̂ |K|
h2
K

. (2.119)

Let Dj,K be the local variant of Dj, i.e.,

[Dj,K]m,m =
∫︂
K

∇φ(j)
m ∇φ(j)

m = ∥∇φ(j)
m ∥2

K . (2.120)

Using the inverse inequality (Lemma 2.4) and (2.119),

∥∇φ(j)
m ∥2

K ≤ C2
INVh

−2
K ∥φ(j)

m ∥2
K ≤ C2

INVCK̂
|K|
h2
K

. (2.121)

Similarly, using Friedrich’s inequality (Lemma 2.2),
cK̂ |K|
C2
Fh

2
K

≤ 1
C2
Fh

2
K

∥φ(j)
m ∥2

K ≤ ∥∇φ(j)
m ∥2

K . (2.122)

Thus the matrix Dj,K is spectrally equivalent to the identity matrix times |K|
h2

K
.

From (2.118), we conclude that Dj,K is also spectrally equivalent to MS
j,K with

the equivalency constants involving CINV, CF , cK̂ , and CK̂ , i.e., depending only
on d and the shape regularity γj.

Since MS
j and Dj are spectrally equivalent matrices and they are symmetric

positive definite, we can use the generalized Hermitian eigenvalue decomposition
(see, e.g., [3, Eq. (5.3)]) and algebraic manipulations to show that

(︂
MS

j

)︂−1
and

D−1
j are also spectrally equivalent, i.e.,

1
CB

w∗
(︂
MS

j

)︂−1
w ≤ w∗D−1

j w ≤ 1
cB

w∗
(︂
MS

j

)︂−1
w, ∀w ∈ R#Kj . (2.123)

Let Mj denote the mass matrix associated with the jth level, i.e., [Mj]mn =∫︁
Ω φ

(j)
n φ(j)

m , m,n = 1, . . . ,#Kj. Analogously to (2.115) we can show the spectral
equivalence of the mass matrix Mj with the diagonal matrix Dj in the following
form. There exist positive constants cM , CM depending only on d and γ0 such
that

cM min
K∈Tj

h−2
K w∗Mjw ≤ w∗Djw ≤ CM max

K∈Tj

h−2
K w∗Mjw, ∀w ∈ R#Kj . (2.124)

Combining Theorem 2.10 and Lemma 2.12 yields the following theorem on
splitting a H1

0 (Ω)-function into basis function spaces. It can be proven by the
same technique as in [33, Theorem 2.3.1].

81

Theorem 2.11. Let cS, CS be the constants from Theorem 2.10, cB, CB the
constants from Lemma 2.12, and let cB = min{1, cB} and CB = max{1, CB}.
Then for all w ∈ H1

0 (Ω),

cScB∥∇w∥2 ≤ inf
w0∈V0,wj,i∈Vj,i

w=w0+
∑︁+∞

j=1

∑︁#Kj
i=1 wj,i

∥∇w0∥2 +
+∞∑︂
j=1

#Kj∑︂
i=1

∥∇wj,i∥2 ≤ CSCB∥∇w∥2.

(2.125)

Splitting of spaces of piecewise linear functions

We now present consequences of the previous theorems for finite-dimensional
piecewise linear functions from VJ , J ≥ 0. The following theorems can be proven
by the same techniques as the results in [33, Section 2.4].

Theorem 2.12. Let cS and CS be the constants from Theorem 2.10. Let J ≥ 0.
For all wJ ∈ VJ ,

cS∥∇wJ∥2 ≤ inf
wj∈Vj ; wJ =

∑︁J

j=0 wj

∥∇w0∥2 +
J∑︂
j=1

∥h−1
j wj∥2 ≤ CS∥∇wJ∥2. (2.126)

Theorem 2.13. Let cS and CS be the constants from Theorem 2.10 and cB, CB

the constants from Theorem 2.11. Let J ≥ 0. For all wJ ∈ VJ ,

cScB∥∇wJ∥2 ≤ inf
w0∈V0,wj,i∈Vj,i

wJ =w0+
∑︁J

j=1

∑︁#Kj
i=1 wj,i

∥∇w0∥2 +
J∑︂
j=1

#Kj∑︂
i=1

∥∇wj,i∥2 ≤ CSCB∥∇wJ∥2.

(2.127)

Frame

Finally, we present a consequence of the stability of the splittings presented
in Theorem 2.11, which is closely related to the fact that the normalized basis
functions form a so-called frame in (H1

0 (Ω))#; see, e.g., [20, Section 3], [21].

Theorem 2.14. Let cS and CS be the constants from Theorem 2.10 and cB, CB

the constants from Theorem 2.11. For all g ∈ (H1
0 (Ω))#,

cScB

⎛⎝∥∇g0∥2 +
+∞∑︂
j=1

#Kj∑︂
i=1

⟨g, φ(j)
i ⟩2

∥∇φ(j)
i ∥2

⎞⎠ ≤ ∥g∥2(︁
H1

0 (Ω)
)︁#

≤ CSCB

⎛⎝∥∇g0∥2 +
+∞∑︂
j=1

#Kj∑︂
i=1

⟨g, φ(j)
i ⟩2

∥∇φ(j)
i ∥2

⎞⎠,
where g0 ∈ V0 is the Riesz representation of the functional g in the space V0 with
respect to the inner product (u0, v0)0 =

∫︁
Ω ∇v0 · ∇u0, ∀u0, v0 ∈ V0.

Proof. The proof is inspired by the proof of [33, Theorem 2.6.2].
We will start with the upper bound. Let w ∈ H1

0 (Ω) and consider an arbitrary
decomposition w = w0 +∑︁+∞

j=1
∑︁#Kj

i=1 wj,i, w0 ∈ V0, wj,i ∈ Vj,i. Using the fact that

wi,j = sign(wi,j) ∥∇wi,j∥
∥∇φ(j)

i ∥
φ

(j)
i ,

82

we have

|⟨g, w⟩| ≤ |⟨g, w0⟩| +
+∞∑︂
j=1

#Kj∑︂
i=1

|⟨g, wi,j⟩|

≤ ∥g0∥ · ∥∇w0∥ +
+∞∑︂
j=1

#Kj∑︂
i=1

⃓⃓⃓⃓
⃓⃓
⟨︄
g,

φ
(j)
i

∥∇φ(j)
i ∥

⟩︄⃓⃓⃓⃓
⃓⃓ · ∥∇wi,j∥

≤

⎛⎝∥∇g0∥2 +
+∞∑︂
j=1

#Kj∑︂
i=1

⟨g, φ(j)
i ⟩2

∥∇φ(j)
i ∥2

⎞⎠ 1
2

·

⎛⎝∥∇w0∥2 +
+∞∑︂
j=1

#Kj∑︂
i=1

∥∇wj,i∥2

⎞⎠ 1
2

.

Taking the infimum over all decompositions w = w0 + ∑︁+∞
j=1

∑︁#Kj

i=1 wj,i, w0 ∈
V0, wj,i ∈ Vj,i and using the stability of the decomposition into spaces defined by
basis functions (Theorem 2.11) yields

|⟨g, w⟩| ≤

⎛⎝∥∇g0∥2 +
+∞∑︂
j=1

#Kj∑︂
i=1

⟨g, φ(j)
i ⟩2

∥∇φ(j)
i ∥2

⎞⎠ 1
2

· C
1
2
SC

1
2
B∥∇w∥.

Taking the supremum over all w ∈ H1
0 (Ω) such that ∥∇w∥ = 1 gives the upper

bound.
Proving the lower bound is more subtle. We will first show that for any N ∈ N,

∥∇g0∥2 +
N∑︂
j=1

#Kj∑︂
i=1

⟨g, φ(j)
i ⟩2

∥∇φ(j)
i ∥2

≤ 1
cScB

∥g∥2(︁
H1

0 (Ω)
)︁# . (2.128)

First, it holds that

∥∇g0∥2 +
N∑︂
j=1

#Kj∑︂
i=1

⟨g, φ(j)
i ⟩2

∥∇φ(j)
i ∥2

= ⟨g, g0⟩ +
N∑︂
j=1

#Kj∑︂
i=1

⟨︄
g,

⟨g, φ(j)
i ⟩

∥∇φ(j)
i ∥2

φ
(j)
i

⟩︄

=
⟨︄
g, g0 +

N∑︂
j=1

#Kj∑︂
i=1

⟨g, φ(j)
i ⟩

∥∇φ(j)
i ∥2

φ
(j)
i

⟩︄
.

Let gj,i = ⟨g,φ(j)
i ⟩

∥∇φ(j)
i ∥2φ

(j)
i ∈ Vj,i. Then using Theorem 2.13,

⟨︄
g, g0 +

N∑︂
j=1

#Kj∑︂
i=1

gj,i

⟩︄
= ∥g∥(︁

H1
0 (Ω)

)︁#

⃦⃦⃦⃦
⃦⃦∇

⎛⎝g0 +
N∑︂
j=1

#Kj∑︂
i=1

gj,i

⎞⎠⃦⃦⃦⃦⃦⃦
≤ ∥g∥(︁

H1
0 (Ω)

)︁#
1

c
1
2
Sc

1
2
B

⎛⎝∥∇g0∥2 +
N∑︂
j=1

#Kj∑︂
i=1

∥∇gj,i∥2

⎞⎠ 1
2

= ∥g∥(︁
H1

0 (Ω)
)︁#

1
c

1
2
Sc

1
2
B

⎛⎝∥∇g0∥2 +
N∑︂
j=1

#Kj∑︂
i=1

⟨g, φ(j)
i ⟩2

∥∇φ(j)
i ∥2

⎞⎠ 1
2

.

This yields (2.128). Taking N to infinity in (2.128) finishes the proof.

83

Theorem 2.15. Let cS and CS be the constants from Theorem 2.10 and cB, CB

the constants from Theorem 2.11. Let J ≥ 0 and consider the space VJ with the
norm ∥∇ · ∥. For all gJ ∈ V #

J ,

cScB

⎛⎝∥∇g0∥2 +
J∑︂
j=1

#Kj∑︂
i=1

⟨g, φ(j)
i ⟩2

∥∇φ(j)
i ∥2

⎞⎠ ≤ ∥gJ∥2
V #

J

≤ CSCB

⎛⎝∥∇g0∥2 +
J∑︂
j=1

#Kj∑︂
i=1

⟨g, φ(j)
i ⟩2

∥∇φ(j)
i ∥2

⎞⎠ ,
where g0 ∈ V0 is the Riesz representation function of the functional g in the space
V0 with respect to the inner product (u0, v0) =

∫︁
Ω ∇v0 · ∇u0, ∀u0, v0 ∈ V0.

Proof. The proof is analogous to the proof of Theorem 2.14.

Acknowledgments
The authors wish to thank to Peter Oswald for his help on proving Theorem 2.8

and to Erin C. Carson for valuable comments, which improved the text.

Bibliography
[1] M. Ainsworth and J. T. Oden. “A posteriori error estimation in finite element

analysis”. In: Computer methods in applied mechanics and engineering 142.1-2
(1997), pp. 1–88. doi: https://doi.org/10.1016/S0045-7825(96)01107-
3.

[2] M. S. Alnaes, J. Blechta, J. Hake, et al. “The FEniCS Project Version 1.5”.
In: Archive of Numerical Software 3 (2015). doi: 10.11588/ans.2015.100.
20553.

[3] Z. Bai et al., eds. Templates for the solution of algebraic eigenvalue problems.
Vol. 11. Software, Environments, and Tools. Philadelphia, PA: SIAM, 2000,
pp. xxx+410. doi: 10.1137/1.9780898719581.

[4] R. Becker, C. Johnson, and R. Rannacher. “Adaptive error control for
multigrid finite element methods”. In: Computing 55.4 (1995), pp. 271–288.
doi: 10.1007/BF02238483.

[5] F. Bornemann and H. Yserentant. “A basic norm equivalence for the theory
of multilevel methods”. In: Numerische Mathematik 64.1 (1993), pp. 455–
476.

[6] A. Brandt. Multigrid Techniques 1984 Guide with Applications to Fluid
Dynamics Revised Edition. Philadelphia, PA: SIAM, 2011. doi: 10.1137/1.
9781611970753.

[7] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element
Methods. third. Vol. 15. Texts in Applied Mathematics. New York: Springer-
Verlag, 2007.

[8] H. Brezis. Functional analysis, Sobolev spaces and partial differential equa-
tions. Universitext. New York: Springer, 2011.

84

https://doi.org/https://doi.org/10.1016/S0045-7825(96)01107-3
https://doi.org/https://doi.org/10.1016/S0045-7825(96)01107-3
https://doi.org/10.11588/ans.2015.100.20553
https://doi.org/10.11588/ans.2015.100.20553
https://doi.org/10.1137/1.9780898719581
https://doi.org/10.1007/BF02238483
https://doi.org/10.1137/1.9781611970753
https://doi.org/10.1137/1.9781611970753

[9] W. L. Briggs, V. E. Henson, and S. F. McCormick. A Multigrid Tutorial.
Second. Philadelphia, PA: SIAM, 2000, pp. xii+193. doi: 10.1137/1.
9780898719505.

[10] A. Buttari et al. “Block low-rank single precision coarse grid solvers for
extreme scale multigrid methods”. In: Numerical Linear Algebra with Appli-
cations 29.1 (2022), e2407. doi: 10.1002/nla.2407.

[11] C. Carstensen. “Quasi-interpolation and a posteriori error analysis in finite
element methods”. In: M2AN Math. Model. Numer. Anal. 33.6 (1999),
pp. 1187–1202. doi: 10.1051/m2an:1999140.

[12] P. G. Ciarlet. The Finite Element Method for Elliptic Problems. Amsterdam:
North-Holland, 1978.

[13] P. Clément. “Approximation by finite element functions using local regu-
larization”. In: RAIRO Analyse Numérique 9.R2 (1975), pp. 77–84. doi:
10.1051/m2an/197509R200771.

[14] W. Dahmen. “Wavelet and multiscale methods for operator equations”. In:
Acta Numerica 6 (1997), pp. 55–228. doi: 10.1017/S0962492900002713.

[15] W. Dahmen and A. Kunoth. “Multilevel preconditioning”. In: Numerische
Mathematik 63.3 (1992), pp. 315–344. issn: 0029-599X. doi: 10.1007/
BF01385864. url: https://doi.org/10.1007/BF01385864.

[16] H. C. Elman, D. J. Silvester, and A. J. Wathen. Finite elements and fast
iterative solvers: with applications in incompressible fluid dynamics. Nu-
merical mathematics and scientific computation. Oxford: Oxford University
Press, 2005.

[17] I. Fried. “Bounds on the extremal eigenvalues of the finite element stiffness
and mass matrices and their spectral condition number”. In: Journal of Sound
and Vibration 22.4 (1972), pp. 407–418. doi: 10.1016/0022-460X(72)
90452-X.

[18] G. H. Golub and Z. Strakoš. “Estimates in quadratic formulas”. In: Numer.
Algorithms 8.2-4 (1994), pp. 241–268. doi: 10.1007/BF02142693.

[19] W. Hackbusch. Iterative solution of large sparse systems of equations. Second.
Vol. 95. Applied Mathematical Sciences. Cham: Springer, 2016, pp. xxiii+509.
doi: 10.1007/978-3-319-28483-5.

[20] H. Harbrecht and R. Schneider. “A note on multilevel based error estimation”.
In: Comput. Methods Appl. Math. 16.3 (2016), pp. 447–458. doi: 10.1515/
cmam-2016-0013.

[21] H. Harbrecht, R. Schneider, and C. Schwab. “Multilevel frames for sparse
tensor product spaces”. In: Numerische Mathematik 110.2 (2008), p. 199.

[22] M. R. Hestenes and E. Stiefel. “Methods of conjugate gradients for solving
linear systems”. In: Journal of Research of the National Bureau of Standards
49.6 (1952), pp. 409–436. doi: 10.6028/jres.049.044.

[23] M. Huber. “Massively parallel and fault-tolerant multigrid solvers on peta-
scale systems”. PhD thesis. Technical University of Munich, Germany, 2019.
url: http://www.dr.hut-verlag.de/978-3-8439-3917-1.html.

85

https://doi.org/10.1137/1.9780898719505
https://doi.org/10.1137/1.9780898719505
https://doi.org/10.1002/nla.2407
https://doi.org/10.1051/m2an:1999140
https://doi.org/10.1051/m2an/197509R200771
https://doi.org/10.1017/S0962492900002713
https://doi.org/10.1007/BF01385864
https://doi.org/10.1007/BF01385864
https://doi.org/10.1007/BF01385864
https://doi.org/10.1016/0022-460X(72)90452-X
https://doi.org/10.1016/0022-460X(72)90452-X
https://doi.org/10.1007/BF02142693
https://doi.org/10.1007/978-3-319-28483-5
https://doi.org/10.1515/cmam-2016-0013
https://doi.org/10.1515/cmam-2016-0013
https://doi.org/10.6028/jres.049.044
http://www.dr.hut-verlag.de/978-3-8439-3917-1.html

[24] A. Logg et al. Automated Solution of Differential Equations by the Finite
Element Method. Springer, 2012. doi: 10.1007/978-3-642-23099-8.

[25] S. F. McCormick, J. Benzaken, and R. Tamstorf. “Algebraic Error Analysis
for Mixed-Precision Multigrid Solvers”. In: SIAM Journal on Scientific
Computing 43.5 (2021), S392–S419. doi: 10.1137/20M1348571.

[26] G. Meurant and P. Tichý. “The behaviour of the Gauss-Radau upper bound
of the error norm in CG”. In: Numerical Algorithms 94 (2023), pp. 847–876.
doi: 10.1007/s11075-023-01522-z.

[27] A. Miraçi, J. Papež, and M. Vohralík. “A-posteriori-steered p-robust multi-
grid with optimal step-sizes and adaptive number of smoothing steps”.
In: SIAM Journal on Scientific Computing 43.5 (2021), S117–S145. doi:
10.1137/20M1349503.

[28] Y. Notay. “Convergence analysis of perturbed two-grid and multigrid meth-
ods”. In: SIAM Journal on Numerical Analysis 45.3 (2007), pp. 1035–1044.
doi: 10.1137/060652312.

[29] P. Oswald. Multilevel finite element approximation. Teubner Skripten zur
Numerik. Theory and applications. Stuttgart: B. G. Teubner, 1994, p. 160.
doi: 10.1007/978-3-322-91215-2.

[30] J. Papež, Z. Strakoš, and M. Vohralík. “Estimating and localizing the alge-
braic and total numerical errors using flux reconstructions”. In: Numerische
Mathematik 138.3 (2018), pp. 681–721. doi: 10.1007/s00211-017-0915-5.

[31] J. Papež et al. “Sharp algebraic and total a posteriori error bounds for h and
p finite elements via a multilevel approach: recovering mass balance in any
situation”. In: Comput. Methods Appl. Mech. Engrg. 371 (2020), pp. 113243,
39. doi: 10.1016/j.cma.2020.113243.

[32] K. Rektorys. Variational methods in mathematics, science and engineering.
Second. Translated from the Czech by Michael Basch. Dordrecht-Holland,
Boston, USA: D. Reidel Publishing Co., 1980, p. 571.

[33] U. Rüde. Mathematical and computational techniques for multilevel adaptive
methods. Philadelphia, PA: SIAM, 1993.

[34] L. R. Scott and S. Zhang. “Finite element interpolation of nonsmooth
functions satisfying boundary conditions”. In: Mathematics of Computation
54.190 (1990), pp. 483–493.

[35] R. Stevenson. “Optimality of a standard adaptive finite element method”.
In: Foundations of Computational Mathematics 7.2 (2007), pp. 245–269.

[36] Z. Strakoš and P. Tichý. “Error estimation in preconditioned conjugate
gradients”. In: BIT 45.4 (2005), pp. 789–817.

[37] Z. Strakoš and P. Tichý. “On error estimation in the conjugate gradient
method and why it works in finite precision computations.” eng. In: Electronic
Transactions on Numerical Analysis 13 (2002), pp. 56–80. url: http://
eudml.org/doc/123075.

[38] R. Tamstorf, J. Benzaken, and S. F. McCormick. “Discretization -Error-
Accurate Mixed-Precision Multigrid Solvers”. In: SIAM Journal on Scientific
Computing 43.5 (2021), S420–S447. doi: 10.1137/20M1349230.

86

https://doi.org/10.1007/978-3-642-23099-8
https://doi.org/10.1137/20M1348571
https://doi.org/10.1007/s11075-023-01522-z
https://doi.org/10.1137/20M1349503
https://doi.org/10.1137/060652312
https://doi.org/10.1007/978-3-322-91215-2
https://doi.org/10.1007/s00211-017-0915-5
https://doi.org/10.1016/j.cma.2020.113243
http://eudml.org/doc/123075
http://eudml.org/doc/123075
https://doi.org/10.1137/20M1349230

[39] U. Trottenberg, C. W. Oosterlee, and A. Schuller. Multigrid. London: Aca-
demic Press, 2001.

[40] P. Vacek. “Multilevel methods”. Master’s thesis. Charles University, 2020.
url: http://hdl.handle.net/20.500.11956/116819.

[41] P. Vacek, E. Carson, and K. M. Soodhalter. “The Effect of Approximate
Coarsest-Level Solves on the Convergence of Multigrid V-Cycle Methods”.
In: SIAM Journal on Scientific Computing 46.4 (2024), A2634–A2659. doi:
10.1137/23M1578255.

[42] R. Verfürth. A Posteriori Error Estimation Techniques for Finite Element
Methods. Numerical Mathematics and Scientific Computation. Oxford: Ox-
ford University Press, 2013. doi: 10.1093/acprof:oso/9780199679423.
001.0001.

[43] J. Xu. “Iterative methods by space decomposition and subspace correction”.
In: SIAM Review 34.4 (1992), pp. 581–613. doi: 10.1137/1034116.

[44] X. Xu and C.-S. Zhang. “Convergence Analysis of Inexact Two-Grid Methods:
A Theoretical Framework”. In: SIAM Journal on Numerical Analysis 60.1
(2022), pp. 133–156. doi: 10.1137/20M1356075.

[45] H. Yserentant. “Old and new convergence proofs for multigrid methods”. In:
Acta Numerica 2 (1993), pp. 285–326.

[46] S. Zhang. “Successive subdivisions of tetrahedra and multigrid methods
on tetrahedral meshes”. In: Houston Journal of Mathematics 21.3 (1995),
pp. 541–556.

87

http://hdl.handle.net/20.500.11956/116819
https://doi.org/10.1137/23M1578255
https://doi.org/10.1093/acprof:oso/9780199679423.001.0001
https://doi.org/10.1093/acprof:oso/9780199679423.001.0001
https://doi.org/10.1137/1034116
https://doi.org/10.1137/20M1356075

3 Mixed precision multigrid with
smoothing based on incomplete
Cholesky factorization

In the first two chapters we studied the effects of approximate computation
on the coarsest-level on the convergence of the V-cycle method or on properties of
multilevel a posteriori error estimates. For simplicity of the analysis, we assumed
that the computation was done in infinite precision arithmetic.

In this chapter we focus on the effects of finite precision errors. In particular,
we study a mixed precision V-cycle method with smoothing based on incomplete
Cholesky (IC) factorizarion. Our effort is motivated by the fourth question stated
in the introduction:

d) Can the execution time of the mixed precision V-cycle method with IC
smoothers be reduced by introducing additional precisions for the applica-
tions of the smoothers? For example, using different precisions for storing
the IC factors or solving the triangular systems. Can we analytically describe
the requirements on these individual precisions?

We present a mixed precision formulation of the V-cycle scheme. Instead of
assuming that a smoother or the coarsest-level solver is applied in a precision
with certain unit roundoff, we impose an assumption on the finite precision error
resulting from its application. This allow us to consider also mixed precision
smoothers or coarsest-level solvers. We derive a bound on the finite precision error
of the V-cycle scheme which gives insight into how the finite precision errors from
the individual parts of the V-cycle scheme may affect the overall finite precision
error. Further, we present a mixed precision formulation of the IC smoother and
derive a bound on the finite precision error of its application. The theoretical
results indicate that in some settings (depending on the properties of the IC
factors) the IC smoother on a concrete level may be applied in a precision lower
than the precision used for computing the residual, restriction, prolongation, and
addition on the level.

We test the theoretical results on a series of numerical experiments, where we
solve elliptic PDEs discretized using the finite element method. We run experi-
ments with simulated floating point arithmetics in MATLAB and experiments on
GPUs using the Ginkgo library. The results show that applying the IC smoother
in low precision can yield a significant speed up in the computational time of the
V-cycle method in comparison to its uniform double precision variant.

The text presented in this chapter is a result of a collaboration with H. Anzt,
E. Carson, N. Kohl, U. Rüde and Y.-H. Tsai.

3.1 Introduction
Running large scale simulations on modern supercomputers requires significant

energy and time resources. Research focused on reducing the energy footprint and
optimizing the computation process ranges from manufacturing new hardware

88

components to designing novel numerical methods. The two mentioned directions
are heavily interconnected. Even though hardware is usually manufactured for a
specific task, the introduction of a powerful hardware component can also influence
the design of new mathematical methods capable of fully exploiting its potential.
The introduction and availability of GPUs and subsequent effort on designing
parallel numerical algorithms utilizing multiple floating point arithmetics is a good
example. Many classic methods in numerical linear algebra can be redesigned to
employ mixed precision approach by running parts of the computation in higher
precisions and parts in a low precisions. In some cases it is possible to achieve the
same overall accuracy in a smaller amount of time, requiring less memory and
consuming less energy; see, e.g., the surveys [12, 1]. The improvements can be
accomplished by both using low-precision computational units, which can perform
more floating point operations per second, and by storing data in low precision
formats, which enables faster memory movements.

In this text we study mixed precision variants of multigrid methods [27, 6]
which are frequently used when solving systems of linear equations. Multigrid
methods are applied both as a standalone solver and as a preconditioner for an
iterative method. Even though they were historically introduced as a method for
solving systems coming from discretization of elliptic PDEs they are nowadays
being used in various settings. The computation relies on having a hierarchy
of problems, which can be obtained either by discretizing a continuous problem
on a multiple nested meshes (geometric multigrid) or constructed based on the
properties of the system matrix (algebraic multigrid). The approximate solution
is computed using so called smoothing on fine levels and by solving a system
of linear equations on the coarsest-level. There are different multigrid schemes
(V-cycle, W-cycle, full multigrid) varying in the pattern in which the individual
levels are visited during the computation.

Implementations of multigrid methods employing different precision formats for
different parts of the method are being developed and tested on various problems,
see e.g., [29, 30, 28, 35]. A first finite precision error analysis of mixed precision
multigrid methods was presented in [17] and further extended in [18]. The results
were used by the authors in a paper focusing on achieving discretization error
accuracy when solving elliptic PDEs [25] and adapted also when studying multigrid
methods with block floating point arithmetic in [16].

The finite precision error analysis of the multigrid V-cycle method presented
in [17, 18] is based on viewing the method as an iterative refinement method on
the finest level with restarted V-cycle method as the inner solver. This point of
view enables using three different finite precisions on the finest level. The authors
further introduce “progressive” finite precisions associated with individual levels
of the V-cycle method. They derive bound on the finite precision error of the
V-cycle scheme and discuss requirements on the individual precisions based on the
properties of the system and prolongation matrices and smoothing routines on the
associated levels. The approach assumes that the smoothing routine on a concrete
fine level or the coarsest-level solver is applied in one finite precision associated
with the level. The authors discuss analysis of smoothing routines based on the
Richardson and Jacobi methods within this framework.

Multigrid methods are in practice also applied with more computationally
intensive smoothers. Smoothing routines based on incomplete Cholesky (IC) fac-

89

torization are, for example, used when solving elliptic PDEs with large anisotropy;
see e.g. early papers [15, 32, 31, 14] or [9, 26]. To use the IC smoothing, the
IC factorization has to be precomputed. Its application then requires solving
triangular systems with the IC factor and its transpose. Using the IC smoother
may thus require more computational resources than other simpler smoothers
such as smoothers based on the Richardson or Jacobi methods.

It is therefore a valid question to ask whether the mixed precision approach
could be used to speed up the application of the IC smoothers, by computing the
IC factorization in low precision, and/or storing the IC factor in low-precision,
and/or by solving the triangular systems in low-precision. This opens a series
of questions. What precisions should be used in the mentioned stages of the IC
smoother? How should these precisions be chosen with respect to the application
of the smoother inside the V-cycle method?

Motivated by these questions, we present a formulation of the V-cycle scheme
with general assumptions on the smoothers and the coarsest-level solver. Rather
than assuming that the smoothers and the coarsest-level solver are applied in a
certain precision, we impose assumptions on the finite precision errors resulting
from their applications. Inspired by the papers [17, 18], we present a finite precision
analysis of the formulated V-cycle correction schemes. Our approach enables
the analysis of multigrid methods with general (mixed precision) smoothers and
coarsest-level solvers.

We further formulate a mixed precision IC smoothing routine and present
a bound on the finite precision error on its application. We assume that the
triangular problems are solved using substitution. We do not take into account
the finite precision error coming from computing the IC factorization in finite
precision.

We test the theoretical results and performance of the presented methods
through a series of numerical experiments. We solve systems coming from finite
element (FE) discretization of elliptic PDEs. We run experiments with simulated
floating point arithmetics in MATLAB using the Advanpix toolbox [2] as well as
experiments performed on GPUs using the Ginkgo library [5, 8].

The paper is organized as follows. In Section 3.2, we establish the notation,
present the standard rounding model, and state bounds on the finite precision
errors in basic vector and matrix operations. Section 3.3 contains the description
of the mixed precision iterative refinement method and a summary of results on its
convergence in the energy norm. The mixed precision two-grid correction scheme
is presented in Section 3.4 together with its finite precision error analysis. These
results are generalized to a multigrid V-cycle correction scheme in Section 3.5. In
Section 3.6, we present a mixed precision smoothing routine based on incomplete
Cholesky factorization and derive a bound on finite precision errors occurring in
its application. Section 3.7 contains simple strategies for scaling the matrices and
right-hand side vectors to help avoid out of range results when using low precision
formats. We illustrate the theoretical results on a series of numerical experiments
in Section 3.8. The text closes with conclusions and a summary of related open
problems in Section 3.9.

90

3.2 Model problem, notation, finite precision
arithmetic and standard rounding model

We consider all vectors and matrices in this paper to be real. We denote the
Euclidean inner product as ⟨·, ·⟩, and the Euclidean vector or matrix norm as ∥ · ∥.
For a symmetric positive definite (SPD) matrix A, we denote the A vector norm
of a vector v as ∥v∥A =

√︂
⟨Av,v⟩; we use the same notation for the associated

matrix norm. Throughout the text we use the following relations between the
Euclidean vector norm and the A vector norm without explicitly commenting on
their use. For any vector v it holds that (see Appendix 3.10.1)

∥v∥A ≤ ∥A∥
1
2 ∥v∥,

∥v∥ ≤ ∥A−1∥
1
2 ∥v∥A,

∥Av∥ ≤ ∥A∥
1
2 ∥v∥A,

∥A−1v∥A ≤ ∥A−1∥
1
2 ∥v∥.

Let K be an invertible matrix and let |K| denote the matrix with the
component-wise absolute values of the entries of matrix K. By κK we denote the
condition number of K and by κK a variant of the condition number containing
∥|K|∥ instead of ∥K∥, i.e.,

κK = ∥K−1∥∥K∥, κK = ∥K−1∥∥|K|∥.

We consider the standard model for accounting for finite precision errors, which
is also used in the existing finite precision analysis of multigrid methods in [17, 18].
For an introduction to the analysis of finite precision errors in numerical methods,
see, e.g., [11].

Consider a floating point arithmetic with unit roundoff ε. Instead of saying
that a computation was done in a floating point arithmetic with unit roundoff ε
or that a vector or a matrix was rounded to a floating point arithmetic with unit
roundoff ε, for simplicity we write computed in, or rounded to ε-precision. Let x
be a number within the range of the ε-precision. We assume that rounding x to
ε-precision results in

x+ δ, |δ| ≤ ε|x|.
Let ◦ denote one of the basic scalar operations, i.e., addition, subtraction, multi-
plication, or division. Let x and y be two numbers in the ε-precision arithmetic.
Assuming that x ◦ y is in the range of the ε-precision arithmetic, we assume that
computing x ◦ y in ε-precision results in

x ◦ y + δ, |δ| ≤ ε|x ◦ y|.

Further, when using this model, we always assume that the inputs and outputs are
within the range of the considered finite precision arithmetic, i.e., the computation
does not break down due to overflow or underflow, which is a standard assumption
in the literature. We comment on practical issues regarding underflow and overflow
later in Section 3.7. In the text we use the hat symbol to highlight that a term is
computed in finite precision arithmetic; for example, for s = x ◦ y computed in
ε-precision, we write ŝ = s+ δ, |δ| ≤ ε|s|.

91

Based on the model the following results, which will be used below, can be
shown; see, e.g., [18, Section 2] and [17, Section 2]. Let v and w be two vectors
and let K be a matrix. Let mK denote the maximum number of nonzero entries
in a row of K and let mK denote the maximum number of nonzero entries in a
row or a column of K. The constants mK,ε and mK,ε are defined as

mK,ε = mK

1 −mKε
, mK,ε = mK

1 −mKε
.

Rounding the vector v to ε-precision arithmetic results in

v + δ, ∥δ∥ ≤ ε∥v∥. (3.1)

Rounding the matrix K to ε-precision results in

K + ∆K, |∆K| ≤ ε|K|, (3.2)

where the inequality is understood entry by entry.
Assuming the entries of v and w and K belong to the ε-precision arithmetic,

computing v + w and Kw both in ε-precision results in, respectively,

v + w + δ, ∥δ∥ ≤ ε∥v + w∥, (3.3)
Kw + δ, ∥δ∥ ≤ εmK,ε∥|K|∥∥w∥. (3.4)

Assume that v and w belong to the ε-precision arithmetic. Let K + ∆K
be the matrix obtained by rounding matrix K to ε-precision, i.e., |∆K| ≤ ε|K|.
Computing (K + ∆K)w and v − (K + ∆K)w both in ε-precision results in (see
Appendix 3.10.2), respectively,

Kw + δ, ∥δ∥ ≤ (ε(mK,ε + 1) + ε2mK,ε)∥|K|∥∥w∥, (3.5)
v − Kw + δ, ∥δ∥ ≤ (ε(mK,ε + 2) + ε2(2mK,ε + 1 + εmK,ε)))(∥v∥ + ∥|K|∥∥w∥).

(3.6)

3.3 Iterative refinement
In this section, we present the mixed precision iterative refinement (IR) method

(see, e.g., [7, 17]) for computing an approximate solution to the problem

Ax = b,

where A ∈ Rn×n is a sparse SPD matrix with a maximum of mA nonzero elements
per row, and b ∈ Rn. We have in mind that the matrix A may be coming from a
discretization of an elliptic PDE. In such a case, the matrix is rounded to a floating
point arithmetic. We assume that both A and b are rounded to a floating point
arithmetic with unit roundoff ε̌, resulting in Ǎ = A + ∆̌A, where |∆̌A| ≤ ε̌|A|
and b̌ = b + ∆̌b, where |∆̌b| ≤ ε̌|b|.

We consider the IR method described in Algorithm 3.1, cf. [17, 25]. We assume
that the residual is computed in a precision with a unit roundoff ε̄, where ε̄ ≤ ε̌.
We assume that the application of the inner solver in finite precision reduces the
A-norm of the error by a least a factor ρ < 1, i.e., for any right-hand side r the

92

approximate solution ŷin of Ay = r computed using the inner solver in finite
precision satisfies

∥y − ŷin∥A ≤ ρ∥y∥A.

We assume that the computed approximation ŷin belongs a precision with a unit
roundoff ε, where ε ≥ ε̄. Note that there are no explicit assumptions on the finite
precision arithmetic used inside the inner solver. The requirements on the finite
precision are implicitly included in the assumption on the reduction of the A-norm
of the error. In order to use Algorithm 3.1 we also need to specify a number of
iterations N and a stopping criterion.

Algorithm 3.1 Iterative refinement, IR(b̌, x̂(0), N).
1: for i = 0, 1, . . . , N − 1 do
2: r̂ = b̌ − Ǎx̂(i) {Compute residual in ε̄-precision.}
3: if stopping criterion is satisfied then
4: return x̂(i)

5: end if
6: ŷin = InnerSolver(r̂) {Approximately solve Ay = r.}
7: x̂(i+1) = x̂(i) + ŷin {Correct the approximation in ε-precision.}
8: end for
9: % the stopping criterion was not satisfied after N iterations

The convergence of the IR method in the A-norm including finite precision
errors was studied in [17, 25]. The convergence result derived in [25, Theorem 4.5]
reads as follows; we refer also to the discussion in [17, Remark 4.2]. Let x̂new be the
approximate solution of Ax = b computed after one iteration of the IR method
Algorithm 3.1 using finite precision computation starting with an approximation
xprev belonging to the ε̄-precision arithmetic. One iteration of the IR method
reduces the relative A-norm of the error by a least a factor, ρ + δIR, up to an
absolute additional limiting factor χ, i.e.,

∥x − x̂new∥A

∥x∥A
≤ (ρ+ δIR)∥x − xprev∥A

∥x∥A
+ χ.

The term δIR can be seen as a bound on a potential delay in the rate of convergence
occurring due to finite precision errors and the term χ as the bound on the limiting
accuracy. Assuming that κA and κA are approximately the same and that ε̌ and
ε̄ are small enough such that ε̌κA ≪ 1 and mAε̄κA ≪ 1, the bound on the delay
of convergence δIR and the bound on the limiting accuracy χ are on the order of
εκ

1
2
A.

3.4 Two-grid correction scheme
In this section, we present a mixed precision formulation of the two-grid (TG)

correction scheme and its rounding error analysis. For an introduction to multigrid
methods we refer to, e.g., [6, 27].

We consider the TG correction scheme for computing an approximate solution
of Ay = f , where f ∈ Rn. The TG correction scheme is based on having

93

two formulations of the problem, the original problem with matrix A which is
called the fine-grid problem and a projection of the original problem to a smaller
dimensional subspace called the coarse-grid problem. The approximate solution is
computed using so-called smoothing on the fine grid and a so-called coarse-grid
correction. We describe the mentioned routines, state assumptions on their parts,
and subsequently formulate the TG correction scheme.

Smoothing usually consists of applying few iterations of a stationary iterative
method. One iteration of such a method consists of computing the residual, solving
an error equation with a simple approximation of the matrix A, and correcting
the previous approximation. For simplicity of the forthcoming rounding error
analysis, we consider only one smoothing iteration starting with a zero initial
approximation. The smoothing thus reduces to solving an error equation where
the matrix A is replaced by its simple approximation.

We assume that the application of smoothing in infinite precision can be for any
vector f written as Mf , where M ∈ Rn×n is a non-singular matrix approximating
the inverse of A in the sense

∥I − MA∥A < 1, (3.7)

where I denotes the identity matrix. This is a standard assumption in the multigrid
literature; see, e.g., [17, Section 5], [34, p. 293] or [33].

We assume that before the application of the smoother, the right-hand side is
rounded to a finite precision with unit roundoff ε̇. Rather than assuming that the
smoothing is applied in finite precision with a certain unit roundoff, we assume
that there exists a positive constant ΛM such that the application of the smoother
in finite precision for any vector f results in

Mf + δM , ∥δM∥ ≤ ΛM∥f∥. (3.8)

We assume that the resulting vector belongs to the ε̇-precision arithmetic. This
modular approach allows us to also analyze mixed precision smoothers.

The coarse-grid correction consists of computing the residual, restricting it to
the coarse-grid, applying the coarse-grid solver to an error equation on the coarse-
grid, prolongation of the computed correction to the fine-grid, and correcting the
previous approximation. We consider that the residual is computed in ε̇-precision
and that the matrix A is rounded to ε̇-precision for the residual computation,
resulting in Ȧ = A + ∆̇A, where |∆̇A| ≤ ε̇|A|.

We assume that there exists an SPD coarse-grid matrix AC ∈ RnC×nC , and
a full rank prolongation matrix P ∈ Rn×nC , such that the Galerkin condition is
satisfied, i.e.,

AC = P⊤AP. (3.9)
We assume that the restriction matrix is transpose of the prolongation matrix,
and that both the restriction and prolongation are performed in ε̇-precision. We
further assume that when computing with the prolongation matrix, it is rounded
to ε̇-precision, resulting in Ṗ = P + ∆̇P, where |∆̇P| ≤ ε̇|P|. Note that in
geometric multigrid, the Galerkin condition may hold only in infinite precision.

We assume that for any vector fC, the application of the coarse-grid solver
in infinite precision can be written as MCfC, where MC is a non-singular matrix
approximating the inverse of AC in the sense that

∥IC − MCAC∥AC < 1, (3.10)

94

where IC denotes the identity matrix on the coarse level. We note that the standard
TG correction scheme assumes an exact coarse-grid solve, i.e., MC = A−1

C , for
which the assumption (3.10) is automatically satisfied. The formulation here
allows for using approximate linear solvers. The TG scheme is generalized to the
multilevel V-cycle scheme in the next section.

To take into account the finite precision errors which may occur during the
coarse-level solve, we assume that there exists a positive constant ΛC such that
the application of the coarse-grid solver in finite precision for any vector fC results
in

MCfC + δC, ∥δC∥AC ≤ ΛC∥A−1
C fC∥AC . (3.11)

We assume that the computed approximation belongs to the ε̇-precision arithmetic
and that the addition of the prolonged correction is done in ε̇-precision.

The TG correction scheme is formulated in Algorithm 3.2. For simplicity, we
consider a version where smoothing is done only before the coarse-level correction.
This version is called a TG correction scheme with pre-smoothing in the literature.
There are other versions where smoothing is done both before and after the
coarse-level correction (TG scheme with pre- and post-smoothing) or just after
the coarse-level correction (TG scheme with post-smoothing); see, e.g., [6, 27].

Algorithm 3.2 Two-grid correction scheme, TG(f).
1: f̂ = Round(f , ε̇) {Round the right-hand side f to ε̇-precision.}
2: v̂[1] = Mf̂ {Apply smoothing.}
3: r̂[1] = f̂ − Ȧv̂[1] {Compute residual in ε̇-precision.}
4: r̂[1]

C = Ṗ⊤r̂[1] {Restrict the residual to the coarse grid in ε̇-precision.}
5: v̂[2]

C = MCr̂[1]
C {Approximately solve ACvC = r[1]

C .}
6: v̂[2] = Ṗv̂[2]

C {Prolongate the correction to the fine level in ε̇-precision.}
7: v̂[3] = v̂[1] + v̂[2] {Correct the previous approximation in ε̇-precision.}
8: return ŷTG = v̂[3]

Let yTG be the approximation computed by Algorithm 3.2 in infinite precision,
by which we mean that all computations are done exactly without rounding errors
and the matrices A and P and vector f are not rounded. We assume that the
two-grid correction scheme applied in infinite precision reduces the A-norm of the
error, i.e., there exists a constant ρTG < 1 such that

∥y − yTG∥A ≤ ρTG∥y∥A. (3.12)

For convergence analysis of multigrid methods in infinite precision see, e.g., [34,
27, 20, 19].

We present the following result on the effects of finite precision errors on the
convergence of the TG correction scheme. Its proof can be found below.

Theorem 3.1. Let yTG and ŷTG be the approximate solution of Ay = f computed
using the TG correction scheme applied in infinite and finite precision, respectively.
Then

∥yTG − ŷTG∥A ≤ δTG∥y∥A, (3.13)
∥y − ŷTG∥A ≤ (ρTG + δTG)∥y∥A, (3.14)

95

and δTG can be expressed as

δTG =ΛC + 3∥A∥ΛM + ε̇κ
1
2
A(C1∥|A|∥∥M∥ + C2) + 3ε̇∥A∥∥M∥ +R,

where C1 and C2 are positive constants depending only on ∥P∥, ∥|P|∥, mA,ε̇, mP,ε̇

and the ratio ∥A−1
C ∥ 1

2/∥A−1∥ 1
2 . The quantity R contains higher order terms, i.e.,

terms which involve at least second powers of at least one of ε̇, ΛC, ΛM , or a
product of at least two of them. The TG correction scheme reduces the A-norm
of the error if ρTG + δTG < 1.

We intentionally present this theorem without any additional assumptions on
the individual terms in the estimates so that it can be used in various different
settings. An even more detailed expression with explicit formulas for C1 and C2
can be found inside the proof if needed.

An important feature of the estimate is that it provides insight into how the
finite precision errors coming from applying the smoother or the coarse-level solver
may affect the overall finite precision error. In particular, we see that the bound
on the relative finite precision error of the coarsest-level solver ΛC is present as a
standalone term. The bound on the relative finite precision error of the smoother
is present multiplied by 3∥A∥, but not for example by ∥A−1∥ 1

2 or κ
1
2
A. Another

useful observation is that the choice of the smoother may affect the requirements
on the ε̇-precision through the term ∥M∥. The larger the term ∥M∥ is, the smaller
ε̇ may have to be in order to have a sufficiently small finite precision error.

We generalize the result of this theorem to a multigrid V-cycle correction
scheme in the next section.

Proof of Theorem 3.1. The proof is inspired by the proofs of [18, Theorem 1], [17,
Theorem 7.2], and [25, Theorem 4.5].

We let v[1], r[1], r[1]
C , v[2]

C , v[2], and v[3] denote the infinite-precision counterparts
of the terms in Algorithm 3.2, i.e., the terms that result when all computations
are done exactly without finite precision errors and the matrices A and P and
the vector f are not rounded.

We first present a series of bounds which are used below. For any fine-level
vector v, it holds that

∥A−1
C P⊤v∥AC ≤ ∥A−1v∥A. (3.15)

This is a key inequality for the derivation below. As we will see, it is a consequence
of the orthogonality of a certain projection. If we consider v to be a right-hand side
vector on the fine level, the above inequality can be interpreted as the AC-norm
of the approximation to the solution computed on the coarse level being less than
the A-norm of the solution.

We will also make use of the following bound involving the matrix representing
the coarse-level solver:

∥MCAC∥AC < 2, (3.16)

96

and the following bounds of the norms of intermediate results in Algorithm 3.2:

∥v[3]∥A ≤ 2∥y∥A, (3.17)
∥A−1r[1]∥A ≤ ∥y∥A, (3.18)

∥r[1]∥ ≤ ∥A∥
1
2 ∥y∥A, (3.19)

∥A−1
C r[1]

C ∥AC ≤ ∥y∥A, (3.20)
∥v[2]

C ∥AC ≤ 2∥y∥A. (3.21)

Variants of the bounds (3.15)-(3.21) can be found, e.g., in [18]. We include their
derivation in Appendix 3.10.3 for self consistency of the text.

We focus on deriving a bound on the A-norm of the error caused by computa-
tion in finite precision arithmetic in the TG correction scheme (3.13), i.e.,

∥yTG − ŷTG∥A ≤ δTG∥y∥A.

Analogously as in the proof of [18, Theorem 1], we go line by line in Algorithm 3.2
and bound the finite precision errors. Our goal is to derive a bound on the relative
error in the A-norm. Since some of the assumptions or bounds we use contain
the Euclidean norm and some the A-norm, we switch between these norms in the
derivation.

Line 1: Rounding f to ε̇-precision results in f̂ = f + δf , where, using (3.1),

∥δf∥ ≤ ε̇∥f∥ = ε̇∥Ay∥ ≤ ε̇∥A∥
1
2⏞ ⏟⏟ ⏞

K0

∥y∥A. (3.22)

Line 2: Applying the smoothing to f̂ = f + δf in finite precision results in
M(f + δf) + δv[1] , where, using the assumption (3.8) and (3.22),

∥δv[1]∥ ≤ ΛM(∥f∥ + ∥δf∥) ≤ (ΛM∥A∥
1
2 + ΛMK0)⏞ ⏟⏟ ⏞
K1

∥y∥A. (3.23)

The computed term v̂[1] can be written as v̂[1] = v[1] + ∆v[1] , where ∆v[1] =
Mδf + δv[1] is the accumulated error and, using (3.22) and (3.23),

∥∆v[1]∥ ≤ ∥Mδf∥ + ∥δv[1]∥ ≤ (∥M∥K0 +K1)⏞ ⏟⏟ ⏞
K2

∥y∥A. (3.24)

Line 3: Computing (f + δf) − (A + ∆̇A)(v[1] + ∆v[1]) in ε̇-precision results in
f + δf − A(v[1] + ∆v[1]) + δr[1] , where, using (3.6), v[1] = Mf , (3.22), and (3.24),

∥δr[1]∥ ≤ (ε̇(mA,ε̇ + 2) + ε̇2 (2mA,ε̇ + 1 + ε̇mA,ε̇)⏞ ⏟⏟ ⏞
Kα

)(∥f + δf∥ + ∥|A|∥ · ∥v[1] + ∆v[1]∥)

≤ (ε̇(mA,ε̇ + 2) + ε̇2Kα)(∥f∥ + ∥δf∥ + ∥|A|∥(∥v[1]∥ + ∥∆v[1]∥))
≤ (ε̇(mA,ε̇ + 2) + ε̇2Kα)(∥A∥

1
2 +K0 + ∥|A|∥(∥M∥∥A∥

1
2 +K2))⏞ ⏟⏟ ⏞

K3

∥y∥A.

(3.25)

97

The computed term r̂[1] can be written as r̂[1] = r[1] + ∆r[1] , where
∆r[1] = δf − A∆v[1] + δr[1]

is the accumulated error, and using (3.22), (3.24), and (3.25),
∥∆r[1]∥ = ∥δf − A∆v[1] + δr[1]∥ ≤ ∥δf∥ + ∥A∥∥∆v[1]∥ + ∥δr[1]∥

≤ (K0 + ∥A∥K2 +K3)⏞ ⏟⏟ ⏞
K4

∥y∥A. (3.26)

Line 4: Computing (P + ∆̇P)⊤(r[1] + ∆r[1]) in ε̇-precision results in P⊤(r[1] +
∆r[1]) + δ

r
[1]
C

, where, using (3.5), (3.19), and (3.26),

∥δ
r

[1]
C

∥ ≤ (ε̇(mP,ε̇ + 1) + ε̇2mP,ε̇)∥|P|∥(∥r[1]∥ + ∥∆r[1]∥)

≤ (ε̇(mP,ε̇ + 1) + ε̇2mP,ε̇)∥|P|∥(∥A∥
1
2 +K4)⏞ ⏟⏟ ⏞

K5

∥y∥A. (3.27)

The computed term r̂[1]
C can be written as r̂[1]

C = r[1]
C + ∆

r
[1]
C

, where ∆
r

[1]
C

=
P⊤∆r[1] + δ

r
[1]
C

is the accumulated error and, using (3.15), (3.24), (3.22), (3.25),
and (3.27),

∥A−1
C ∆

r
[1]
C

∥AC = ∥A−1
C (P⊤∆r[1] + δ

r
[1]
C

)∥AC

= ∥A−1
C (P⊤(δf − A∆v[1] + δr[1]) + δ

r
[1]
C

)∥AC

≤ ∥A−1
C P⊤A∆v[1]∥AC + ∥A−1

C (P⊤(δf + δr[1]) + δ
r

[1]
C

)∥AC

≤ ∥∆v[1]∥A + ∥A−1
C ∥

1
2 ∥P⊤(δf + δr[1]) + δ

r
[1]
C

∥

≤ ∥∆v[1]∥A + ∥A−1
C ∥

1
2 (∥P∥(∥δf∥ + ∥δr[1]∥) + ∥δ

r
[1]
C

∥)

≤ (∥A∥
1
2K2 + ∥A−1

C ∥
1
2 (∥P∥(K0 +K3) +K5))⏞ ⏟⏟ ⏞
K6

∥y∥A. (3.28)

Line 5: Applying the coarse-level solver to r[1]
C + ∆

r
[1]
C

in finite precision results
in

MC(r[1]
C + ∆

r
[1]
C

) + δ
v

[2]
C
,

where, using the assumption (3.11) and the estimates (3.20) and (3.28),

∥δ
v

[2]
C

∥AC ≤ ΛC∥A−1
C (r[1]

C + ∆
r

[1]
C

)∥AC

≤ ΛC(∥A−1
C r[1]

C ∥AC + ∥A−1
C ∆

r
[1]
C

∥AC)

≤ ΛC(1 +K6)⏞ ⏟⏟ ⏞
K7

∥y∥A. (3.29)

The computed term v̂[2]
C can be written as v̂[2]

C = v[2]
C + ∆

v
[2]
C

, where ∆
v

[2]
C

=
MC∆

r
[1]
C

+ δ
v

[2]
C

is the accumulated error and, using (3.16), (3.28), and (3.29),

∥∆
v

[2]
C

∥AC ≤ ∥MCACA−1
C ∆

r
[1]
C

∥AC + ∥δ
v

[2]
C

∥AC

≤ ∥MCAC∥AC · ∥A−1
C ∆

r
[1]
C

∥AC + ∥δ
v

[2]
C

∥AC

≤ (2K6 +K7)⏞ ⏟⏟ ⏞
K8

∥y∥A. (3.30)

98

Line 6: Computing (P + ∆̇P)(v[2]
C + ∆

v
[2]
C

) in ε̇-precision results in P(v[2]
C +

∆
v

[2]
C

) + δv[2] , where, using (3.5), (3.21), and (3.30),

∥δv[2]∥A ≤ ∥A∥
1
2 ∥δv[2]∥

≤ ∥A∥
1
2 (ε̇(mP,ε̇ + 1) + ε̇2mP,ε̇)∥|P|∥ · ∥v[2]

C + ∆
v

[2]
C

∥

≤ ∥A∥
1
2 (ε̇(mP,ε̇ + 1) + ε̇2mP,ε̇)∥|P|∥ · ∥A−1

C ∥
1
2 ∥v[2]

C + ∆
v

[2]
C

∥AC

≤ ∥A∥
1
2 (ε̇(mP,ε̇ + 1) + ε̇2mP,ε̇)∥|P|∥ · ∥A−1

C ∥
1
2 (∥v[2]

C ∥AC + ∥∆
v

[2]
C

∥AC)

≤ ∥A∥
1
2 (ε̇(mP,ε̇ + 1) + ε̇2mP,ε̇)∥|P|∥ · ∥A−1

C ∥
1
2 (2∥y∥A + ∥∆

v
[2]
C

∥AC)

≤ ∥A∥
1
2 (ε̇(mP,ε̇ + 1) + ε̇2mP,ε̇)∥|P|∥ · ∥A−1

C ∥
1
2 (2 +K8)⏞ ⏟⏟ ⏞

K9

∥y∥A. (3.31)

The computed term v̂[2] can be written as v̂[2] = v[2] + ∆v[2] , where

∆v[2] = P∆
v

[2]
C

+ δv[2]

is the accumulated error, and using (3.9), (3.30), and (3.31),

∥∆v[2]∥A ≤ ∥P∆
v

[2]
C

+ δv[2]∥A ≤ ∥P∆
v

[2]
C

∥A + ∥δv[2]∥A = ∥∆
v

[2]
C

∥AC + ∥δv[2]∥A

≤ (K8 +K9)⏞ ⏟⏟ ⏞
K10

∥y∥A. (3.32)

Line 7: Computing v[1] + ∆v[1] + v[2] + ∆v[2] in ε̇-precision result in

v[1] + ∆v[1] + v[2] + ∆v[2] + δv[3] ,

where, using (3.3), v[3] = v[1] + v[2], (3.17), (3.24), and (3.32),

∥δv[3]∥ ≤ ε̇∥v[1] + ∆v[1] + v[2] + ∆v[2]∥
≤ ε̇(∥v[3]∥ + ∥∆v[1]∥ + ∥∆v[2]∥)
≤ ε̇(∥A−1∥

1
2 ∥v[3]∥A + ∥∆v[1]∥ + ∥A−1∥

1
2 ∥∆v[2]∥A)

≤ ε̇(2∥A−1∥
1
2 +K2 + ∥A−1∥

1
2K10)⏞ ⏟⏟ ⏞

K11

∥y∥A. (3.33)

Finally the computed approximation v̂[3] can be written as v̂[3] = v[3] + ∆v[3] ,
where

∆v[3] = ∆v[1] + ∆v[2] + δv[3]

is the accumulated error and using (3.24), (3.32), and (3.33),

∥∆v[3]∥A ≤ ∥∆v[1]∥A + ∥∆v[2]∥A + ∥δv[3]∥A

≤ (∥A∥
1
2K2 +K10 + ∥A∥

1
2K11)⏞ ⏟⏟ ⏞

δTG

∥y∥A.

Since v̂[3] = ŷTG and v[3] = yTG, we have ∆v[3] = ŷTG − yTG, and

∥yTG − ŷTG∥A ≤ δTG∥y∥A.

99

Consequently,

∥y − ŷTG∥A ≤ ∥y − yTG∥A + ∥yTG − ŷTG∥A ≤ (ρTG + δTG)∥y∥A.

We simplify the expression for δTG by grouping higher order terms in a
remainder R. We say that a term is of higher order when it involves at least
second powers of at least one of ε̇, ΛC, ΛM , or a product of at least two of them.
All remainder terms Rk, k = 1, . . . , 6 defined below contain only high order terms.

Listing and rewriting the constants K0, K1, K2, Kα, and K3 leads to

K0 = ε̇∥A∥
1
2 ,

K1 = (ΛM∥A∥
1
2 + ΛMK0) = (ΛM + ΛM ε̇)∥A∥

1
2 ,

K2 = ∥M∥K0 +K1 = (∥M∥ε̇+ ΛM + ΛM ε̇)∥A∥
1
2 ,

Kα = (2mA,ε̇ + 1 + ε̇mA,ε̇),
K3 = (ε̇(mA,ε̇ + 2) + ε̇2Kα)(∥A∥

1
2 +K0 + ∥|A|∥(∥M∥∥A∥

1
2 +K2))

= ε̇(mA,ε̇ + 2)(∥A∥
1
2 +K0 + ∥|A|∥(∥M∥∥A∥

1
2 +K2))

+ ε̇2Kα(∥A∥
1
2 +K0 + ∥|A|∥(∥M∥∥A∥

1
2 +K2))

= ε̇(mA,ε̇ + 2)∥A∥
1
2 (1 + ∥|A|∥∥M∥)

+ ε̇(mA,ε̇ + 2)(K0 + ∥|A|∥K2) + ε̇2Kα(∥A∥
1
2 +K0 + ∥|A|∥(∥M∥∥A∥

1
2 +K2))⏞ ⏟⏟ ⏞

R1

.

The constants K4 and K6 can be rewritten as

K4 = K0 + ∥A∥K2 +K3

= (ε̇+ ∥A∥(∥M∥ε̇+ ΛM + ΛM ε̇))∥A∥
1
2

+ ε̇(mA,ε̇ + 2)∥A∥
1
2 (1 + ∥|A|∥∥M∥) +R1,

K5 = (ε̇(mP,ε̇ + 1) + ε̇2mP,ε̇)∥|P|∥(∥A∥
1
2 +K4)

= ε̇(mP,ε̇ + 1)∥|P|∥(∥A∥
1
2 +K4) + ε̇2mP,ε̇∥|P|∥(∥A∥

1
2 +K4)

= ε̇(mP,ε̇ + 1)∥|P|∥∥A∥
1
2 + ε̇(mP,ε̇ + 1)∥|P|∥K4 + ε̇2mP,ε̇∥|P|∥(∥A∥

1
2 +K4)⏞ ⏟⏟ ⏞

R2

.

Let ξ denote the ratio ∥A−1
C ∥ 1

2/∥A−1∥ 1
2 . The constant K6 can be rewritten as

K6 = ∥A∥
1
2K2 + ∥A−1

C ∥
1
2 (∥P∥(K0 +K3) +K5)

= ∥A∥(∥M∥ε̇+ ΛM)

+ ε̇κ
1
2
Aξ(∥P∥(1 + (mA,ε̇ + 2)(1 + ∥|A|∥∥M∥)) + (mP,ε̇ + 1)∥|P|∥)

+ ∥A∥ΛM ε̇+ ∥A−1
C ∥

1
2 ∥P∥R1 + ∥A−1

C ∥
1
2R2⏞ ⏟⏟ ⏞

R3

.

The constant K7 can be expressed as

K7 = ΛC(1 +K6) = ΛC + ΛCK6⏞ ⏟⏟ ⏞
R4

.

100

Rewriting the constants K8 and K9 yields

K8 = 2K6 +K7 = 2K6 + ΛC +R4,

K9 = ∥A∥
1
2 (ε̇(mP,ε̇ + 1) + ε̇2mP,ε̇)∥|P|∥ · ∥A−1

C ∥
1
2 (2 +K8)

= 2ε̇(mP,ε̇ + 1)κ
1
2
Aξ∥|P|∥

+ ε̇(mP,ε̇ + 1)κ
1
2
Aξ∥|P|∥K8 + ε̇2mP,ε̇κ

1
2
Aξ∥|P|∥(2 +K8)⏞ ⏟⏟ ⏞

R5

.

The constants K10 and K11 can be expressed as

K10 = K8 +K9

K11 = ε̇(2∥A−1∥
1
2 +K2 + ∥A−1∥

1
2K10)

= 2ε̇∥A−1∥
1
2 + ε̇K2 + ε̇∥A−1∥

1
2K10⏞ ⏟⏟ ⏞

R6

.

Finally, δTG can be simplified as

δTG = ∥A∥
1
2K2 +K10 + ∥A∥

1
2K11

= ∥A∥(∥M∥ε̇+ ΛM) + 2K6 + ΛC +R4 + 2(mP,ε̇ + 1)ε̇κ
1
2
Aξ∥|P|∥

+R5 + 2ε̇κ
1
2
A + ∥A∥

1
2R6

= 3∥A∥(∥M∥ε̇+ ΛM) + ε̇κ
1
2
Aξ(2∥P∥(1 + (mA,ε̇ + 2)(1 + ∥|A|∥∥M∥))

+ 4(mP,ε̇ + 1)∥|P|∥) + ΛC + 2ε̇κ
1
2
A + 2R3 +R4 +R5 + ∥A∥

1
2R6⏞ ⏟⏟ ⏞

R

,

where R is a remainder containing higher order terms.

3.5 V-cycle correction scheme
In this section, we present a mixed precision formulation of the V-cycle

correction scheme and its finite precision error analysis. The V-cycle correction
scheme can be seen as a generalization of the two-grid correction scheme to
multiple levels.

We consider using the V-cycle correction scheme for computing an approximate
solution of Ay = f , where f ∈ Rn. The approximate solution is computed using a
hierarchy of J + 1 levels numbered from 0 to J . Each level contains a stiffness
matrix Aj ∈ Rnj×nj , j = 0, . . . , J , with AJ = A. The information is transferred
between the (j − 1)th and jth levels using the full-rank prolongation matrix
Pj ∈ Rnj×nj−1 , j = 1, . . . , J , and its transpose. We assume that the stiffness
matrices satisfy the Galerkin condition i.e., Aj−1 = P⊤

j AjPj, j = 1, . . . , J . We
denote by Ij the identity matrix on level j.

The computation consists of smoothing on fine levels and solving a system of
linear equations on the coarsest-level. We assume that all operations on a fine
level j, j = 1, . . . , J , besides the smoothing, are done in finite precision arithmetic
with unit roundoff ε̇j . We consider that the precision used on level j, j = 2, . . . , J ,
is higher or equal to the precision used on the coarser level j − 1, i.e., ε̇j ≤ ε̇j−1.

101

We assume that the matrices Aj and Pj on level j are rounded to the ε̇-precision
for the residual computation and for computing the restriction and prolongation,
resulting in Ȧj = Aj + ∆̇Aj, where |∆̇Aj| ≤ ε̇j|Aj|, and Ṗj = Pj + ∆̇Pj, where
|∆̇Pj| ≤ ε̇j|Pj|.

Analogously, as in the TG correction scheme, we assume that the application
of smoothing in infinite precision on level j, j = 1, . . . , J , can, for any vector fj,
be expressed as Mjfj , where Mj ∈ Rnj×nj is a non-singular matrix approximating
the inverse of Aj in the sense

∥Ij − MjAj∥Aj
< 1. (3.34)

We assume that there exists a positive constant ΛMj
such that for any vector fj,

the application of smoothing in finite precision on the jth level results in

Mjfj + δMj
, ∥δMj

∥ ≤ ΛMj
∥fj∥, (3.35)

and the result belongs to the ε̇j-precision arithmetic.
For any vector f0, we assume that we can write the application of the coarsest-

level solver in infinite precision as M0f0, where M0 is a non-singular matrix
satisfying

∥I0 − M0A0∥A0 < 1. (3.36)

We consider that there exists a positive constant Λ0 such that the application of
the coarsest-level solver in finite precision for any vector f0 results in

M0f0 + δ0, ∥δ0∥A0 ≤ Λ0∥A−1
0 f0∥A0 , (3.37)

and the result belongs to the ε̇1-precision arithmetic.
The V-cycle correction scheme is described in Algorithm 3.3; variants in which

the smoothing is applied after the recursive call or both before and after the
recursive call can be found in the literature; see, e.g., [6, 27].

Algorithm 3.3 V-cycle correction scheme, V(fj, j).
1: if j ̸= 0 then
2: f̂ j = Round(fj, εj̇) {Round the right-hand side fj to εj̇-precision.}
3: v̂[1]

j = Mj f̂ j {Apply smoothing.}
4: r̂[1]

j = f̂ j − Ȧjv̂[1]
j {Compute residual in εj̇-precision.}

5: r̂[1]
j−1 = Ṗ⊤

j r̂[1]
j {Restrict the residual to level j in εj̇-precision.}

6: v̂[2]
j−1 = V(r̂[1]

j−1, j − 1) {Recursive call.}
7: v̂[2]

j = Ṗjv̂[2]
j−1 {Prolongate the correction to level j in εj̇-precision.}

8: v̂[3]
j = v̂[1]

j + v̂[2]
j {Correct the previous approximation in εj̇-precision.}

9: return ŷV,j = v̂[3]
j .

10: else
11: return M0f0 {Approximately solve A0v0 = f0.}
12: end if

We assume that the V-cycle correction scheme converges uniformly in the
following sense. Let fj, j = 1, . . . , J , be the right-hand side vector on the jth

102

level and let yj, j = 1, . . . , J , be the solution of Ajyj = fj. We assume that the
V-cycle correction scheme with j + 1 levels, 0, . . . , j, in infinite precision reduces
the Aj-norm of the error by at least a factor ρV < 1, which is independent of j,
i.e.,

∥yj − yV,j∥Aj
≤ ρV∥yj∥Aj

, (3.38)

where yV,j is the approximation computed using the V-cycle correction scheme
with j + 1 levels, 0, . . . , j.

We present the following result on the effects of finite precision errors on the
convergence of the V-cycle correction scheme. Its proof, based on consecutive
usage of Theorem 3.1, is presented below.

Theorem 3.2. Let yV and ŷV be the approximate solution of Ay = f computed
using the V-cycle correction scheme, Algorithm 3.3, with J + 1 levels, applied in
infinite and in finite precision, respectively. Then

∥yV − ŷV∥A ≤
J∑︂
j=0

δV,j∥y∥A,

∥y − ŷV∥A ≤

⎛⎝ρV +
J∑︂
j=0

δV,j

⎞⎠ ∥y∥A,

where δV,0 = Λ0 and for j = 1, . . . , J , δV,j is expressed as

δV,j = 3∥Aj∥ΛMj
+ ε̇j(C1,jκ

1
2
Aj

∥|Aj|∥∥Mj∥ + C2,j) + 3ε̇j∥Aj∥∥Mj∥ +Rj,

where C1,j and C2,j are constants depending only on ∥Pj∥, ∥|Pj|∥, mAj ,ε̇j
, mPj ,ε̇j

and the ratio ∥A−1
j−1∥

1
2/∥A−1

j ∥ 1
2 . The remainder Rj contains higher order terms,

i.e., terms which involve at least second powers of at least one of ε̇j, Λj = ∑︁j−1
i=0 δV,i,

ΛMj
, or a product of at least two of them. The V-cycle correction scheme reduces

the A-norm of the error if ρV +∑︁J
j=0 δV,j < 1.

This theorem provides insight into how the finite precision errors coming
from the coarsest-level solver, the smoothers and the error term resulting from
computing the residual, restriction, prolongation and correction in ε̇j-precision on
the individual levels may affect the overall finite precision error. We see that the
requirement on the ε̇j-precision as well as the finite precision error of the smoother
may differ on each fine level based on the properties of the corresponding system
and prolongation matrices and the chosen smoother.

In Section 3.6 we present a mixed precision IC smoothing routine and its finite
precision error analysis with bounds on the corresponding ΛM and ∥M∥. We
utilize the result of Theorem 3.2 in Section 3.8, when discussing requirements on
the finite precisions used in the V-cycle scheme with IC smoothers for solving
systems obtained by FE discretization of elliptic PDEs.

Proof of Theorem 3.2. We prove the theorem using induction on the number of
levels. The V-cycle correction scheme with two levels can be seen as the TG
correction scheme with M = M1 and MC = M0. Since the assumptions of
Theorem 3.1 are satisfied, the statement holds for j = 1.

103

Let Vj, j = 1, . . . , J , be the matrix corresponding to applying the V-cycle
correction scheme in infinite precision with j + 1 levels 0, . . . , j. Such a matrix
exists; see e.g., [27, Theorem 2.4.1]. The assumption (3.38) yields

∥Ij − VjAj∥Aj
= max

yj

∥(Ij − VjAj)yj∥Aj

∥yj∥Aj

≤ ρV < 1. (3.39)

We assume that the statement of the theorem holds for the V-cycle correction
scheme with j levels. We can view the V-cycle correction scheme with j+1 levels as
a two-grid correction scheme where the coarse-grid solver is the V-cycle correction
scheme with j levels, i.e., M = Mj and MC = Vj−1. Since the smoothing routine
on level j and the coarse-grid solver satisfy the assumptions of Theorem 3.1, in
particular,

∥IC − MCAC∥AC = ∥Ij−1 − Vj−1Aj−1∥Aj−1 < 1,

ΛC = Λj−1 =
j−1∑︂
i=0

δV,i,

the result also holds for the V-cycle correction scheme with j + 1 levels.

3.6 Smoothing based on incomplete Cholesky
factorization

In this section, we formulate a mixed precision smoothing routine based
on incomplete Cholesky factorization (IC) and present its finite precision error
analysis.

A smoothing routine computes an approximate solution of Ay = f , where
f ∈ Rn. In this text, we for simplicity, consider only one smoothing iteration
starting with a zero initial approximation. The smoothing thus reduces to solving
an error equation where the matrix A is replaced by its approximation. We consider
that the matrix A is approximated by an incomplete Cholesky factorization LL⊤,
where L is a lower triangular matrix; see, e.g., [22, Chapter 10], [23, Chapter 10].
There are many variants of incomplete Cholesky factorization, e.g., variants with
dropping based on a given tolerance, dropping based on the degree of fill-in and
others. In this paper, we do not study which variant is the most effective. We
rather assume that the selected variant works well and we focus on the finite
precision error analysis of the corresponding smoothing routine.

The application of the smoother consists of solving two triangular systems
with the matrix L and its transpose. We consider that the right-hand side f is
first rounded to a precision with unit roundoff εS. We assume that the factor L is
rounded to a precision1 with unit roundoff εR, εR ≥ εS, resulting in LR = L+∆RL,
where |∆RL| ≤ εR|L|. We consider that the triangular problems are solved using
substitution (see, e.g., [11, Chapter 8]) performed in εS-precision. We include here
the rounding to a lower εR-precision, since the factor L may be in practice stored

1The subscripts S and R here stand for Solve and stoRe, respectively. They indicate that the
corresponding εS- and εR-precision are used for solving the triangular systems and for storing
the matrix, respectively.

104

in a lower precision than which is used for solving the triangular systems. This
may yield to faster memory movements and thus to a faster runtime.

The smoothing routine based on incomplete Cholesky factorization is described
in Algorithm 3.4.

Algorithm 3.4 IC smoother, ICS(f).
1: f̂ = Round(f , εS) {Round the right-hand side f to εS-precision.}
2: v̂ = Substitution(LR, f̂ , εS) {Apply substitution in εS-precision.}
3: ŵ = Substitution((LR)⊤, v̂, εS) {Apply substitution in εS-precision.}
4: return ŵIC = ŵ.

Further we present finite precision analysis of the smoothing routine. As
previously mentioned, we do not take into account the finite precision errors
occurring when computing the factor L. To our knowledge there is no finite
precision error analysis of incomplete Cholesky factorization for general SPD
matrices in the literature.

We first present a bound on the finite precision error of a general perturbed
triangular solve via substitution.

3.6.1 Finite precision error analysis of solving sparse per-
turbed triangular system via substitution

Let T ∈ Rn×n be a sparse invertible triangular matrix with maximum mT

nonzero entries in any of its rows and b ∈ Rn a right-hand side vector. We
consider computing an approximate solution of the problem

Tx = b (3.40)

using substitution in finite precision. By modifying the proof of [11, Theorem 8.5],
using that there are maximum mT nonzero entries in a row of T, we can get the
following result; we present its proof in Appendix 3.10.4.

Lemma 3.1. Assume that the entries of matrix T belong to the εS-precision arith-
metic. Let x̂ be the approximate solution of Tx = b computed using substitution
in finite precision with unit roundoff εS. There exists a matrix E such that the
computed solution x̂ satisfies

(T + E)x̂ = b, |E| ≤ εSmT,εS |T|. (3.41)

We use this result to prove the following lemma containing a bound on the finite
precision error of an approximate solution of Tx = b computed via substitution
applied to a problem with matrix T rounded to a lower precision and perturbed
right-hand side.

Lemma 3.2. Let TR be the matrix obtained from rounding matrix T to precision
with unit roundoff εR. Let ∆b be a perturbation of the right-hand side b satisfying
∥∆b∥ ≤ δb∥b∥ for a positive constant δb. Let x̂ be the approximate solution of
Tx = b computed using substitution in finite precision with an unit roundoff εS,
εS ≤ εR, applied to

TRx̃ = b + ∆b. (3.42)

105

Let δT,R,S = εR + εSmT,εS + εRεSmT,εS. Assuming that δT,R,S ·κT < 1, the following
bounds hold:

∥x − x̂∥
∥x∥

≤ δbκT + δT,R,S · κT
1 − δT,R,S · κT

, (3.43)

∥x − x̂∥ ≤ δb∥T−1∥∥b∥ + δT,R,S · κT∥x∥
1 − δT,R,S · κT

. (3.44)

Proof. The proof goes as follows. We first use the bound on the error when
rounding a matrix to a lower precision and Lemma 3.1 to write down a perturbed
equation which the computed approximation x̂ satisfies. Further we use this
equation to derive the bounds (3.43) and (3.44).

Using (3.2) we get that TR = T + ∆T, |∆T| ≤ εR|T|. Using Lemma 3.1 for
the perturbed problem (3.42), we get that there exist a matrix F,

|F| ≤ εSmT+∆T,εS |T + ∆T|, (3.45)

such that the approximate solution x̂ computed using substitution satisfies

(T + ∆T + F) x̂ = b + ∆b. (3.46)

Note that rounding a matrix can only result in it having fewer non-zero elements,
thus mT+∆T ≤ mT and consequently mT+∆T,εS ≤ mT,εS .

From Tx = b and (3.46) we have

T(x − x̂) = b − b − ∆b + (∆T + F)x̂
= −∆b + (∆T + F)(x̂ − x) + (∆T + F)x.

Consequently,

x − x̂ = −T−1∆b + T−1(∆T + F)(x̂ − x) + T−1(∆T + F)x,

and

∥x − x̂∥ ≤ ∥T−1∥∥∆b∥+∥T−1∥∥∆T+F∥∥x̂ −x∥+∥T−1∥∥∆T+F∥∥x∥. (3.47)

Using |∆T| ≤ εR|T| and the bound (3.45), |∆T + F| can be bounded as

|∆T + F| ≤ |∆T| + |F|
≤ εR|T| + εSmT,εS |T + ∆T|
≤ εR|T| + εSmT,εS |T| + εSmT,εS|∆T|
≤ (εR + εSmT,εS + εRεSmT,εS)⏞ ⏟⏟ ⏞

δT,R,S

|T|.

This yields (see, e.g., [11, Lemma 6.6, case (b)]) the estimate

∥∆T + F∥ ≤ δT,R,S∥|T|∥. (3.48)

Using ∥∆b∥ ≤ δb∥b∥ and (3.48) to bound the corresponding terms in (3.47) and
using the definition of κT leads to

∥x − x̂∥ ≤ ∥T−1∥δb∥b∥ + ∥T−1∥δT,R,S∥|T|∥∥x̂ − x∥ + ∥T−1∥δT,R,S∥|T|∥∥x∥
= δb∥T−1∥∥b∥ + δT,R,S · κT · ∥x̂ − x∥ + δT,R,S · κT · ∥x∥,

106

and subsequently,

(1 − δT,R,S · κT)∥x − x̂∥ ≤ δb∥T−1∥∥b∥ + δT,R,S · κT∥x∥.

Utilizing the assumption δT,R,S · κT < 1 we have

∥x − x̂∥ ≤ δb∥T−1∥∥b∥ + δT,R,S · κT∥x∥
1 − δT,R,S · κT

.

Bounding ∥b∥ ≤ ∥T∥∥x∥ and dividing both sides by ∥x∥ leads to (3.43).

3.6.2 Finite precision error analysis of mixed precision IC
smoother

In this section we use the results from the previous section and present a
bound on the finite precision errors in the application of the IC smoother.

Theorem 3.3. Let wIC and ŵIC be the approximations computed by applying the
IC smoother, Algorithm 3.4, to a vector f in infinite precision and in finite precision,
respectively. Let δL,R,S = εR + εSmL,εS + εRεSmL,εS. Assuming δL,R,S · κL < 1 the
difference of wIC and ŵIC in the Euclidean norm can be bounded as

∥wIC − ŵIC∥ ≤ (εSκL + 2εSmL,εSκL + 2εRκL +R)∥L−1∥2∥f∥, (3.49)

where the remainder R, contains higher order terms, i.e., terms which involve
(εS)2, (εR)2, or εSεR.

Proof. Rounding f to εS-precision results in f̂ = f + ∆f , ∥∆f∥ ≤ εS∥f∥; see
(3.1). Let v be the exact solution of Lv = f . Let v̂ be the approximate solution
computed in line 2 of Algorithm 3.4.

Let δL,R,S = εR + εSmL,εS + εRεSmL,εS . Using Lemma 3.2, bound (3.43), the
relative error of the intermediate result v̂ in line 2 of Algorithm 3.4 can be bounded
as

∥v − v̂∥
∥v∥

≤
εSκL + εRκL + εSmL,εSκL + εRεSmL,εSκL

1 − δL,R,S · κL
Expanding (1 − δL,R,S · κL)−1 as (1 − δL,R,S · κL)−1 = 1 − δL,R,S · κL + R1, where
the remainder R1 containing higher order terms, i.e., terms involving (εS)2, (εR)2,
or εSεR we get

∥v − v̂∥
∥v∥

≤ (εSκL + εRκL + εSmL,εSκL + εRεSmL,εSκL)(1 − δL,R,S · κL +R1)

≤ εSκL + εRκL + εSmL,εSκL +R2⏞ ⏟⏟ ⏞
δv

,

where R2 is a reminder containing higher order terms.
The approximation wIC can be expressed as wIC = L−⊤v. Using bound (3.44)

from Lemma 3.2, the result ŵIC in line 3 of Algorithm 3.4 can be bounded as

∥wIC − ŵIC∥ ≤ δv∥L−1∥∥v∥ + δL,R,S · κL∥wIC∥
1 − δL,R,S · κL

.

107

Since wIC = (L⊤)−1L−1f and v = L−1f , we have ∥wIC∥ ≤ ∥L−1∥2∥f∥, and
∥v∥ ≤ ∥L−1∥∥f∥. Using again the expansion (1−δL,R,S ·κL)−1 = 1−δL,R,S ·κL+R1
and combining the previous yields

∥wIC − ŵIC∥ ≤ (δv + δL,R,S · κL)(1 − δL,R,S · κL +R1)∥L−1∥2∥f∥
≤ (εSκL + 2εSmL,εSκL + 2εRκL +R)∥L−1∥2∥f∥,

where the remainder R contains higher order terms.

We remark that the estimate (3.49) is the worst case scenario estimate. The
actual error could be significantly smaller. An important feature of the bound
is that it depends only mL, i.e., the maximum number of non-zero elements in a
row or a column of L, but not on the matrix size of L. The number mL depends
on the sparsity pattern of matrix A and the fill-in occurring in the incomplete
factorization.

Assuming that κL is approximately the same as κL and the εR- and εS-precisions
are sufficiently small such that

2εRκL∥L−1∥2 ≪ 1, 2εSmL,εSκL∥L−1∥2 ≪ 1,

the relative finite precision error of the IC smoother ∥wIC − ŵIC∥/∥f∥ is small.
We see that the requirements on the εR- and εS-precisions differ only in the
multiplicative constant mL,εS .

3.6.3 V-cycle correction scheme with IC smoothing
In this section, we discuss application of the IC smoothers inside the V-cycle

correction scheme Algorithm 3.3.
We consider that the IC smoothers are used on all fine levels. We have that

Mj = L−⊤
j L−1

j , j = 1, . . . , J , in infinite precision arithmetic. We consider that the
εR
j - and εS

j -precisions are lower than or equal to the ε̇j- precision on the jth level
of the V-cycle, i.e. εR

j ≥ εS
j ≥ ε̇j. Using Theorem 3.3 we see that the assumption

on the finite precision errors when applying the smoother (3.35) holds with

ΛMj
≈
(︂
εS
jκLj

+ 2εS
jmLj ,εS

j
κLj

+ 2εR
j κLj

)︂
∥L−1

j ∥2.

We note that we are not able to theoretically verify the assumption (3.34). It can
be however done numerically. In Section 3.8, we combine the result of this section
and the results of Theorem 3.2 to discussing requirements on the finite precisions
used inside a V-cycle scheme with IC smoothing when solving elliptic PDEs.

3.7 Scaling system matrices and right-hand sides
Rounding matrices or vectors to a low precision arithmetic can result in

overflow or underflow; we refer e.g., to the discussions in [13] and [24]. Scaling
the data before rounding can help to partially overcome this issue.

We present a simple scaling strategy for the system and prolongation matrices
in a multigrid hierarchy, which preserves the Galerkin condition. The matrix Aj on
the jth level, j = 0, . . . , J , is scaled as Āj = sjAj, where sj = 1/maxk,ℓ |[Aj]k,ℓ|.

108

The prolongation matrix on the jth level, j = 0, . . . , J − 1, is scaled as P̄j =√
sj−1√
sj

Pj. The Galerkin condition holds (in infinite precision) also for the scaled
matrices

Pj̄
⊤ĀjPj̄ =

√
sj−1

√
sj

P⊤
j sjAj

√
sj−1

√
sj

Pj = sj−1P⊤
j AjPj = sj−1Aj−1 = Āj−1.

An approximate solution of the original problem on the finest level AJy = fJ
can be computed using the multigrid V-cycle correction scheme with the scaled
matrices applied to ĀJy = sJ fJ .

Scaling can be also applied to a right-hand side vector before calling a correction
scheme or a smoothing routine, where the right-hand side is rounded to a lower
precision arithmetic; see [7, Section 6]. We first compute the infinity norm of the
right-hand side vector f , i.e., sf = ∥f∥∞. The right-hand side is then scaled as
f̄ = s−1

f f and the correction routine is called with the scaled vector f̄ . The result
of the correction routine is subsequently re-scaled back by multiplying with sf .

We remark that the discussed scaling may partially help with staying inside
a range of a low precision arithmetic; however, it does not guarantee that the
subsequent computation in low precision arithmetic will not break down due to
overflow or underflow.

3.8 Numerical experiments
In this section, we present a series of numerical experiments illustrating

the theoretical results. We consider solving elliptic PDEs discretized using the
continuous Galerkin finite element method. We use the IR method with a geometric
multigrid V-cycle correction scheme (IR-V-cycle) with IC smoothing. We first
describe the model problems and their discretization and subsequently present
the numerical experiments.

3.8.1 Model problems, discretization, and data generation
We consider the following 1D and 3D elliptic PDEs. The 1D problem consists

of finding u : (0, 1) → R such that

−u′′ = f in (0, 1), u(0) = u(1) = 0,

where the right-hand side function f is chosen to correspond to the manufactured
solution

u(x) = x(x− 1) sin(2πx) x ∈ (0, 1).
The 3D problems feature different anisotropy in the x-axis. We aim to find
u : (0, 1)3 → R such that

−∇ · (K∇u) = 1, in (0, 1)3, K = diag(ϵ, 1, 1),
u = 0, on ∂(0, 1)3,

where ϵ = 1, 10−2, 10−4, or 10−6.
The 1D problem is discretized by the continuous Galerkin FE method with

piecewise polynomials of degree five on a hierarchy of 15 uniformly refined meshes.

109

We choose this high order element space since it leads to systems which are
more difficult to solve. When choosing lower order FE spaces, the systems were
approximated to a required tolerance after only one iteration of IR-V-cycle with
IC, in settings where we allowed fill-in when computing the IC factors. We note
that IC smoothing may not be the most effective smoothing routine for this
concrete problem. We, however, still consider the 1D problem since we are able to
run the computation with V-cycle corrections schemes with up to 15 levels. This
would not be possible for 2D or 3D problems with high anisotropy (where using
the IC smoothers may make more sense) due to the size of the problems. The 3D
problems are discretized using the continuous Galerkin FE method with piecewise
linear functions on a hierarchy of 7 uniformly refined triangulations. We discretize
the problems on each level obtaining a geometric multigrid hierarchy. We consider
the standard prolongation matrices associated with the finite elements spaces.

The matrices are assembled in the finite element software FEniCS [3] in
double precision. The FEniCS matrix assembly uses all nodes of the mesh. The
homogeneous Dirichlet boundary condition is then applied by setting to zero
all non-diagonal elements in rows and columns which correspond to nodes on
the boundary and setting to zero the corresponding elements in the right-hand
side vector. We modify the stiffness matrices, the prolongation matrices, and
the right-hand side vectors so that the resulting systems contain just free-node
variables. The Galerkin condition is then satisfied on all coarse levels. The
numbers of degrees of freedom (DoFs) on each level can be found in Table 3.1. We
scale the system and prolongation matrices and the right-hand side vectors using
the strategy described in Section 3.7. We also filter values at around the level of
double precision unit roundoff; these values would most likely be equal to zero
in exact precision, but are present due to the use of finite precision computation.
The data and codes for reproducing the results of the experiments can be found
at https://doi.org/10.5281/zenodo.13858607.

level 1D 3D
1 24 8
2 49 125
3 99 1,331
4 199 12,167
5 399 103,823
6 799 857,375
7 1,599 6,967,871
8 3,199
9 6,399
10 12,799
11 25,599
12 51,199
13 102,399
14 204,799
15 409,599

Table 3.1 Number of DoF on individual levels of multigrid hierarchies.

110

https://doi.org/10.5281/zenodo.13858607

3.8.2 Experiment 1: Finding the lowest precisions for the
inner V-cycle solver while preserving the IR double
precision convergence rate

We solve the discretized 1D problem using the IR-V-cycle method (Algo-
rithms 3.1 and 3.3) with smoothing based on IC factorization (Algorithm 3.4).
The computation is done in MATLAB version 2023a. The data are imported from
FEniCS. The goals of this experiment are to

• show that the εS
j - and εR

j -precisions used when applying the IC smoother
on the jth level of the V-cycle correction scheme can be significantly lower
than the ε̇j-precision used for computing the residual, restriction, projection,
and correction on the jth level, and

• show that the requirements on the εS
j -, εR

j - and ε̇j-precisions for a V-cycle
scheme with smoothing based on IC factorization with fill-in may be higher
than for the IC factorization with zero fill-in.

We run the experiment in several different settings. We assume that the
coarsest level is fixed and we solve the problems AJxJ = bJ , J = 2, . . . , 14, using
the IR-V-cycle method with J + 1 levels. We consider the V-cycle correction
scheme formulated above; in particular, we use only one pre-smoothing step
and no post-smoothing. The ε̇j-precision is fixed on all fine levels i.e., ε̇j = ε̇J ,
j = 1, . . . , J . The same holds for the precisions used in IC smoothers, where we
additionally assume that the εR

j -precision is the same as the εS
j -precision, i.e.,

εR
j = εS

j = εS
J , j = 1, . . . , J . We consider two variants of IC smoothers based on

different IC factorizations. Both factorizations are computed using the MATLAB
ichol function in double precision. We use the factorizations with zero fill-in, IC(0),
and the factorizations with local dropping tolerance 5 · 10−3, ICT(dpt=5 · 10−3);
see the MATLAB ichol documentation. Allowing fill-in in the IC factorization
typically yields a better approximation of the matrix A by LL⊤ and consequently
leads to a faster convergence rate of the V-cycle scheme with the corresponding IC
smoothing. The solver on the coarsest-level is the MATLAB backslash operator
applied in double precision.

Expectations based on theory

Before describing the experiment in more detail and presenting its result, we
look at the properties of the system matrices and the IC factors and discuss
the expected requirements on the ε̇J -precision and εS

J -precision based on the
theoretical results presented in Section 3.6.3.

The approximate values of κ
1
2
Aj

, κLj
, κLj

and ∥L−1
j ∥2 are summarized in

Table 3.2. We see that κ
1
2
Aj+1

is approximately twice as large as κ
1
2
Aj

. The condition
numbers κLj

and κLj
for the same variant of the IC factorization do not differ

substantially. Their values also do not significantly change on different fine levels.
The same holds for the terms ∥L−1

j ∥2. We have also approximately computed the
following properties (they are nearly the same on all levels) ∥Aj∥ ≈ ∥|Aj|∥ ≈ 2.55,
∥A−1

j−1∥
1
2/∥A−1

j ∥ 1
2 ≈ 2, ∥Pj∥ ≈ ∥|Pj|∥ ≈ 3.14, mAj

= 11, mPj
= 11, mLj

= 10 for

111

Aj IC(0) ICT(dpt= 5 · 10−3)

level κ
1
2
Aj

κLj
κLj

∥L−1
j ∥2 κLj

κLj
∥L−1

j ∥2

1 3.75E+01 1.06E+01 1.06E+01 3.92E+01 2.83E+01 3.47E+01 3.16E+02
2 7.50E+01 1.08E+01 1.08E+01 3.98E+01 3.50E+01 4.34E+01 4.80E+02
3 1.50E+02 1.08E+01 1.08E+01 3.99E+01 3.74E+01 4.67E+01 5.50E+02
4 3.00E+02 1.08E+01 1.08E+01 3.99E+01 3.81E+01 4.76E+01 5.70E+02
5 6.01E+02 1.08E+01 1.08E+01 3.99E+01 3.83E+01 4.78E+01 5.76E+02
6 1.20E+03 1.08E+01 1.08E+01 3.99E+01 3.84E+01 4.79E+01 5.77E+02
7 2.40E+03 1.08E+01 1.08E+01 3.99E+01 3.84E+01 4.79E+01 5.77E+02
8 4.81E+03 1.08E+01 1.08E+01 3.99E+01 3.84E+01 4.79E+01 5.77E+02
9 9.61E+03 1.08E+01 1.08E+01 3.99E+01 3.84E+01 4.79E+01 5.77E+02
10 1.92E+04 1.08E+01 1.08E+01 3.99E+01 3.84E+01 4.79E+01 5.77E+02
11 3.84E+04 1.08E+01 1.08E+01 3.99E+01 3.84E+01 4.79E+01 5.77E+02
12 7.69E+04 1.08E+01 1.08E+01 3.99E+01 3.84E+01 4.79E+01 5.77E+02
13 1.54E+05 1.08E+01 1.08E+01 3.99E+01 3.84E+01 4.79E+01 5.77E+02
14 3.08E+05 1.08E+01 1.08E+01 3.99E+01 3.84E+01 4.79E+01 5.77E+02
15 6.15E+05 1.08E+01 1.08E+01 3.99E+01 3.84E+01 4.79E+01 5.77E+02

Table 3.2 1D problem. Properties of Aj and Lj .

both IC(0) and ICT(dpt=5 · 10−3); we note that mLj
is the maximum number of

nonzero entries in both a row or a column of Lj.
Knowing approximate values of these properties, we can use the results from

Theorems 3.2 and 3.3 and discuss the requirements on the finite precisions used
inside the V-cycle scheme. The following discussion works for both variants of the
IC factorization. Since we are using the IC smoother, we have Mj = L−⊤

j L−1
j in

the notation from Section 3.5. As stated before, we consider that the precisions
used when applying the smoothers are fixed on all levels, i.e., εR

j = εS
j = εS

J . Let
δL,R,S = εS

J + εS
JmLJ ,ε

S
J

+ (εS
J)2mLJ ,ε

S
J
. We assume that the εS

J -precision is chosen
such that δL,R,S · κLJ

< 1. Since κLJ
≈ κLj

≈ κLj
≈ κLJ

and mLj
is constant on

all levels, using Theorem 3.3 yields

ΛMj
≈ ΛMJ

≈ 2εS
JmLJ

κLJ
∥L−1

J ∥2. (3.50)

Since the coarsest-level solver is applied in double precision to a small well-
conditioned problem, we expect the associated finite precision error to be negligible.
We also assume that the theoretical assumptions on the convergence of the
smoothers (3.39) and the uniform convergence of the V-cycle scheme (3.38) are
satisfied, although we do not verify them here. Theorem 3.2 yields the following
estimate on the finite precision error of the V-cycle correction scheme

∥yV,J − ŷV,J∥AJ

∥yJ∥AJ

≲
J∑︂
j=1

3∥Aj∥ · 2 · εS
JmLJ

κLJ
∥L−1

J ∥2

+
J∑︂
j=1

ε̇j(C1,jκ
1
2
Aj

∥|Aj|∥∥L−1
J ∥2 + C2,j)

+ 3
J∑︂
j=1

ε̇j∥Aj∥∥L−1
J ∥2,

(3.51)

where the constants C1,j and C2,j depends only on ∥Pj∥, ∥|Pj|∥, mAj ,ε̇j
, mPj ,ε̇j

and the ratio ∥A−1
j−1∥

1
2/∥A−1

j ∥ 1
2 .

Since ε̇j = ε̇J -precision is fixed on all levels, 2κ
1
2
Aj

≈ κ
1
2
Aj+1

and the values
of mAj

, mPj
, mLj

, ∥Aj∥, ∥|Aj|∥ ∥Pj∥, and ∥|Pj|∥ do not significantly differ on

112

different levels, we can estimate the folowing sum as

J∑︂
j=1

ε̇jC1,jκ
1
2
Aj

∥|Aj|∥∥L−1
j ∥2 ≲ ε̇JC1,J∥|AJ |∥∥L−1

J ∥2
J∑︂
j=1

κ
1
2
AJ

2J−j

≲ ε̇JC1,J∥|AJ |∥∥L−1
J ∥2 · 2 · κ

1
2
AJ
, (3.52)

where we have also used the upper bound on a sum of geometric sequence.
Using (3.52) and neglecting the terms ∑︁J

j=1 ε̇jC2,j and 3∑︁J
j=1 ε̇j∥Aj∥∥L−1

J ∥2,
which are much smaller that the other terms in the estimate (3.51), the estimate
(3.51) can be approximately simplified to

∥yV,J − ŷV,J∥AJ

∥yJ∥AJ

≲ 6JεS
JmLJ ,ε

S
J
∥AJ∥∥L−1

J ∥2κLJ
+ 2ε̇JC1,J∥|AJ |∥∥L−1

J ∥2κ
1
2
AJ
.

(3.53)

If εJ - and εS
J -precisions are chosen such that the right-hand side of (3.53) is much

smaller than one, the convergence rate of the V-cycle correction scheme should not
be significantly influenced by the finite precision errors. Estimate (3.53) allows us
to make the following predictions.

Since κLJ
is constant on the fine levels (for larger J = 6, . . . , 14), whereas

κ
1
2
AJ

grows approximately by a factor of 2 with each finer level, we expect that
on fine levels (for larger J = 8, . . . , 14), εS

J could be significantly smaller than ε̇J
while preserving the same convergence rate. This is valid for both the IC(0) and
ICT(dpt=5 · 10−3) variants.

Since the values of ∥L−1
J ∥2 and κLJ

are larger for the variant with ICT(dpt=5 ·
10−3) than the corresponding values for the variant IC(0), we expect that the ε̇J -
and εS

J -precisions for the variant with ICT(dpt=5 · 10−3) might have to be chosen
higher than for the IC(0) variant.

Detailed description of the experiments
We describe the details of the experiment. We consider that the residual

computation and the correction in IR are both done in double precision. The
solver on the coarsest-level, the MATLAB backslash operator, is applied in
double precision to a problem with matrix A0 rounded to the ε̇J -precision, and
the computed coarsest-level approximation is rounded to the ε̇J -precision. As
previously stated, we assume that the coarsest level is fixed and we solve problems
AJxJ = bJ , J = 2, . . . , 14, using IR-V-cycle with J + 1 levels. The IR-V-cycle
method is run starting with zero initial approximation and stopped when the
absolute error in the AJ -norm is (approximately) less than 10−5 (the solution
for computing the error is approximated by the MATLAB backslash operator in
double precision). The initial error is approximately 10−1. The level of attainable
accuracy in the AJ -norm is different for each problem. It is approximately 10−13

for the problem with J = 2 and it grows up to 2 ·10−6 for the problem with J = 14.
The stopping tolerance 10−5 is chosen since it is attainable for all problems.

We use the Advanpix toolbox [2], version 5.1.0.15432, for simulating low
precision floating point arithmetic. It allows only to specify the number of decimal
digits d, simulating the floating point precision with approximate unit roundoff

113

10−d. It has 64 bits for representing the exponent, beside the variant with d = 34
where it is 15 bits; see e.g., [25, Section 8]. The large number of bits for representing
the exponent yields that the computation is not affected by the limited range as
when using the standard single and especially half precision, which have 8 and 5
bits for storing the exponent, respectively.

We first run the computation with all the precisions set to double. Then we
assume that the ε̇J - and εS

J -precisions are the same and we run the computation
using the Advanpix toolbox simulating ε̇J = 10−ḋJ , for ḋJ = 1, 2, We find the
smallest ḋJ , denoted as ḋJ,min, for which the method converges in the same number
of IR iterations as the corresponding variant in double precision. Further, we fix
ḋJ = ḋJ,min and run the experiments simulating εS

J = εR
J = 10−dS

J , dS
J = 1, 2,

We again find the minimal dS
J , denoted as dS

J,min, for which the method converges in
the same number of IR iterations as the corresponding variant in double precision.

Results

The results of the experiments containing the values of ḋJ,min and dS
J,min for

the variants with IC(0) or ICT(dpt=5 · 10−3) are summarized in Figure 3.1
together with the required number of IR iterations. We see that the variants
with ICT(dpt=5 · 10−3) requires significantly fewer IR iterations to reach the
chosen tolerance than the variants with IC(0). Regardless of the variant of the
IC factorization, the values of dS

J,min corresponding to the εS
J -precision used in

the smoothing are smaller than the corresponding values of ḋJ,min corresponding
to the ε̇J -precision. Moreover ḋJ,min increases when increasing J , while dS

J,min

stays constant. This illustrates that the εS
J -precision may be, in some settings,

significantly lower than the ε̇J -precision. We observe that the values of ḋJ,min for
the variant with ICT(dpt=5 · 10−3) are larger than or equal to the corresponding
values for the variant with IC(0). The same holds for the values of dS

J,min. We see
that the variant with ICT(dpt=5 · 10−3) requires higher or equal ε̇J -precision and
εS
J -precision than the variant with IC(0). On the other hand, the convergence rate

of the variant with IC(0) is lower. We conclude that the results are in alignment
with the predictions made based on the theory.

Even though we run the experiments with the ε̇J -precision fixed for all levels,
this experiment also illustrates that the ε̇j-precision j = 1 . . . , J , could be chosen
to be lower on the coarse levels and progressively increased.

3.8.3 Experiment 2: solving 3D elliptic PDEs with high
anisotropy on GPUs using the Ginkgo library

We solve the discretized 3D problems with different values of anisotropy in
the x-axis, ϵ = 1, 10−2, 10−4, 10−6, using the IR-V-cycle (Algorithms 3.1 and 3.3)
with smoothing based on IC factorization (Algorithm 3.4). The computation
is done using the Ginkgo library [5, 8] on a GPU. The data are imported from
FEniCS. The goal of this experiment is to show that applying the IC smoothers
in low-precision when solving complicated problems on GPUs may result in a
significant speedup in the runtime in comparison to using uniform double precision.

We use a V-cycle correction scheme with 7 levels, with one pre-smoothing
iteration of the IC smoother and no post-smoothing. We again assume that

114

2 3 4 5 6 7 8 9 1011121314
2

3

4

5

6

7

level J

re
qu

ire
d

di
gi

ts

2 3 4 5 6 7 8 9 1011121314
3

5

7

9

11

level J

nu
m

be
r

of
IR

ite
ra

tio
ns

Figure 3.1 Result of Experiment 1. 1D problem solved by IR-V-cycle with IC
smoother. The plot on the left contains the values of ḋJ,min and dS

J,min, i.e., the minimal
values of ḋJ and dS

J such that the variant with ε̇J = 10−ḋJ -precision and εS
J = εR

J = 10−dS
J -

precision converges in the same number of IR iterations as the corresponding variant
in double precision. The lines are labeled as ḋJ,min (), dS

J,min () for the variant
with IC(0) and ḋJ,min (), dS

J,min () for the variant with ICT(dpt=5 · 10−3). The
plot on the right contains the number of IR iterations required for convergence for the
variant with IC(0) () and ICT(dpt=5 · 10−3) ().

the ε̇j-, εR
j - and εS

j precisions are fixed on all fine levels, i.e., ε̇j = ε̇J , εR
j = εR

J ,
and εS

j = εS
J , j = 1, . . . , J . In contrast to the previous experiment, we consider

that the εS
J - and εR

J -precisions may differ. We consider two variants of the IC
factorization: the variant with zero fill-in, IC(0), and the variant which limits
the fill-in to the maximum of two times the number of nonzeros of the system
matrix, ICT(fill-in=2). The factorizations are computed in double precision on
CPUs and subsequently moved to the GPU. The coarsest-level solver is a direct
solver applied in double precision.

Expectations based on theory

Before describing the experiment in more detail, we again look at properties
of the system matrices and the IC factors and discuss the expected requirements
on the finite precisions inside the V-cycle scheme. The approximate values of κ

1
2
Aj

,
κLj

, κLj
, and ∥L−1

j ∥2 approximately computed in MATLAB are summarized in
Tables 3.3 to 3.6 for the problems with ϵ = 1, 10−2, 10−4, and 10−6, respectively.
Due to the size of the problems on the finest level, we were not able to approximate
the values of κ

1
2
Aj

, j = 5, 6, we include in the tables their extrapolated values

using κ
1
2
Aj

= 2κ
1
2
Aj−1

. We see that for all values of the anisotropy ϵ, κ
1
2
Aj

grows
by approximately a factor of two with each finer level. For the problems with
higher anisotropy, the values of κ

1
2
Aj

are slightly larger than the corresponding
values for the problems with lower anisotropy. The condition numbers κLj

and κLj

for the same size of the anisotropy and the same variant of the IC factorization
do not significantly differ. Their values also do not substantially change on
finer levels. The same holds for the terms ∥L−1

j ∥2. For the problems with
higher anisotropy, the values of κLj

, κLj
, and ∥L−1

j ∥2 are slightly larger than

115

Aj IC(0) ICT(fill-in=2)

level κ
1
2
Aj

κLj
κLj

∥L−1
j ∥2 κLj

κLj
∥L−1

j ∥2

2 3.84E+00 2.66E+00 2.66E+00 4.48E+00 3.38E+00 3.77E+00 7.76E+00
3 7.80E+00 3.09E+00 3.09E+00 5.66E+00 4.48E+00 5.13E+00 1.31E+01
4 1.56E+01 3.23E+00 3.23E+00 6.07E+00 4.90E+00 5.65E+00 1.55E+01
5 3.13E+01 3.27E+00 3.27E+00 6.21E+00 5.10E+00 5.89E+00 1.67E+01
6 6.27E+01 ∗ 3.29E+00 3.29E+00 6.26E+00 5.12E+00 5.93E+00 1.69E+01
7 1.25E+02 ∗ 3.29E+00 3.29E+00 6.26E+00 5.15E+00 5.96E+00 1.70E+01

Table 3.3 3D problem, ϵ = 1. Properties of Aj and Lj . ∗)Values of κ
1
2
Aj

, j = 5, 6 are

extrapolated using κ
1
2
Aj

= 2κ
1
2
Aj−1

.

Aj IC(0) ICT(fill-in=2)

level κ
1
2
Aj

κLj
κLj

∥L−1
j ∥2 κLj

κLj
∥L−1

j ∥2

2 3.93E+00 3.00E+00 3.00E+00 5.50E+00 3.90E+00 4.36E+00 9.89E+00
3 7.95E+00 3.58E+00 3.58E+00 7.18E+00 7.02E+00 8.57E+00 3.06E+01
4 1.60E+01 3.77E+00 3.77E+00 7.89E+00 9.39E+00 1.17E+01 5.41E+01
5 3.19E+01 3.88E+00 3.88E+00 8.28E+00 1.04E+01 1.31E+01 6.62E+01
6 6.39E+01 ∗ 3.92E+00 3.92E+00 8.40E+00 1.07E+01 1.35E+01 6.95E+01
7 1.28E+02 ∗ 3.97E+00 3.97E+00 8.55E+00 1.07E+01 1.36E+01 6.96E+01

Table 3.4 3D problem, ϵ = 10−2. Properties of Aj and Lj . ∗)Values of κ
1
2
Aj

, j = 5, 6

are extrapolated using κ
1
2
Aj

= 2κ
1
2
Aj−1

.

the corresponding values for the problems with lower anisotropy. We have also
approximately computed the following properties: regardless the size of the
anisotropy ϵ, maxj ∥Aj∥ ≈ maxj ∥|Aj|∥ ≈ 1.64, maxj ∥|Pj|∥ ≈ maxj ∥Pj∥ ≈ 2.3,
∥A−1

j−1∥
1
2/∥A−1

j ∥ 1
2 ≈ 2, maxjmAj

= 7, maxjmPj
= 99, and maxjmLj

= 7 for
IC(0). The value of maxjmLj

for ICT(fill-in=2) are 31, 89, 91 and 91 for the
problems with anisotropy ϵ equals to 1, 10−2, 10−4 and 10−6, respectively.

As for the previous experiment, knowing approximate values of these properties
we can again use the results from Theorems 3.2 and 3.3 and discuss the require-
ments on the finite precisions used inside the V-cycle scheme. Using analogous
discussion as for the previous experiment, with the difference that εS

J and εR
J might

differ, it can be shown that

∥yV − ŷV∥A

∥y∥A
≲ 6J(εS

JmLJ ,ε
S
J

+ εR
J)∥AJ∥∥L−1

J ∥2κLJ
+ 2ε̇JC1,J∥|AJ |∥∥L−1

J ∥2κ
1
2
AJ
,

where the constant C1,J depends only on ∥PJ∥, ∥|PJ |∥, mAJ ,ε̇J
, mPJ ,ε̇J

and the

Aj IC(0) ICT(fill-in=2)

level κ
1
2
Aj

κLj
κLj

∥L−1
j ∥2 κLj

κLj
∥L−1

j ∥2

2 3.93E+00 3.02E+00 3.02E+00 5.57E+00 3.93E+00 4.41E+00 1.01E+01
3 7.96E+00 3.61E+00 3.61E+00 7.30E+00 7.43E+00 9.11E+00 3.42E+01
4 1.60E+01 3.82E+00 3.82E+00 8.04E+00 1.03E+01 1.29E+01 6.49E+01
5 3.19E+01 3.93E+00 3.93E+00 8.45E+00 1.15E+01 1.46E+01 8.11E+01
6 6.39E+01 ∗ 3.97E+00 3.97E+00 8.57E+00 1.18E+01 1.51E+01 8.52E+01
7 1.28E+02 ∗ 4.01E+00 4.01E+00 8.73E+00 1.20E+01 1.53E+01 8.73E+01

Table 3.5 3D problem, ϵ = 10−4. Properties of Aj and Lj . ∗)Values of κ
1
2
Aj

, j = 5, 6

are extrapolated using κ
1
2
Aj

= 2κ
1
2
Aj−1

.

116

Aj IC(0) ICT(fill-in=2)

level κ
1
2
Aj

κLj
κLj

∥L−1
j ∥2 κLj

κLj
∥L−1

j ∥2

2 3.93E+00 3.02E+00 3.02E+00 5.57E+00 3.93E+00 4.41E+00 1.01E+01
3 7.96E+00 3.61E+00 3.61E+00 7.30E+00 7.43E+00 9.11E+00 3.42E+01
4 1.60E+01 3.82E+00 3.82E+00 8.04E+00 1.03E+01 1.29E+01 6.49E+01
5 3.19E+01 3.93E+00 3.93E+00 8.45E+00 1.15E+01 1.46E+01 8.11E+01
6 6.39E+01 ∗ 3.97E+00 3.97E+00 8.57E+00 1.18E+01 1.51E+01 8.52E+01
7 1.28E+02 ∗ 4.02E+00 4.02E+00 8.73E+00 1.20E+01 1.53E+01 8.73E+01

Table 3.6 3D problem, ϵ = 10−6. Properties of Aj and Lj . ∗)Values of κ
1
2
Aj

, j = 5, 6

are extrapolated using κ
1
2
Aj

= 2κ
1
2
Aj−1

.

ratio ∥A−1
J−1∥

1
2/∥A−1

J ∥ 1
2 . This allows us to make the following predictions.

We see that the requirements on εS
J and εR

J are lower than on ε̇J , regardless of
the values of the anisotropy ϵ. Based on the values of the terms, we may be able
to use single precision (unit roundoff ≈ 10−8) for solving the triangular systems
when applying the smoothers, and for storing the matrices Lj possibly even half
precision (unit roundoff ≈ 10−4).

Detailed description of the experiment

We describe the details of the experiment. We run the IR method with zero
initial approximation and stop when the Euclidean norm of the relative residual
is less than 10−8, i.e., ∥b − Ax̂(i)∥/∥b∥ ≤ 10−8. The computation is done in
double precision arithmetic except for the application of the IC smoothers. We
consider the following three subvariants of the method based on the use of different
finite precision(s) when applying the smoothers: a subvariant double, where the
computation is done in double precision; a subvariant single, where the matrix Lj

and the right-hand side vector are rounded to single precision and the triangular
solves are done in single precision, i.e., εS = εR; and a subvariant half, in which
the matrix Lj and the right-hand side vector are rounded to half precision, the
triangular solve routine uses single precision in the arithmetic operations, but
uses half precision to store the values in global memory unless the value has been
computed by a thread of the same thread block and can thus be communicated
cheaply in single precision via shared memory.

We use scaling of the right-hand side vectors described in Section 3.7 when
applying the smoothing. For comparison we also use IR-V-cycle with one iteration
of Jacobi smoothing in double precision. The computation is done on NVIDIA
A100-SXM4-80GB GPU, with CUDA version 12.1, V12.1.105, on system Guyot
at the Innovative Computing Laboratory, University of Tennessee.

Results

Results of the variants in double precision are summarized in Figure 3.2. We
plot the execution time, which does not involve computing the IC factorization.
We see that the variant with the Jacobi smoother is the fastest for the problem
with ϵ = 1. For problems with higher anisotropy, the variant with ICT(fill-in=2)
requires the least amount of time.

The variants which use low precision for application of the smoother converge in
the same number of IR iterations as the corresponding variants in double precision,

117

1 10−2 10−4 10−6

100

101

102

103

ϵ

tim
e

(s
ec

on
ds

)

1 10−2 10−4 10−6
101

102

103

104

105

ϵ

nu
m

be
r

of
IR

ite
ra

tio
ns

Figure 3.2 Results of Experiment 2. 3D elliptic PDEs with different values of
anisotropy ϵ in the x-axis, solved by IR-V-cycle with Jacobi smoother (), IC(0)
smoother () and ICT(fill-in=2) smoother (). The problems have 6, 967, 871
DoFs. All variants are computed in double precision. The plot on the right contains
the execution time of the method, which does not include the time needed for the IC
factorization.

except the setting ϵ = 10−4 with IC(0) half, which requires one additional IR
iteration. The speedups of the variants using low precision over the corresponding
double precision variants are plotted in Figure 3.3. We see significant speedups
when using the low precision variants for all problems. The speedups of the
half precision variants are larger than the corresponding speedups of the single
precision variants.

Comparing the problems with different anisotropy, the speedups are the largest
for the problem with ϵ = 1. For this problem the speedup of the variants with
ICT(fill-in=2) is significantly larger than for the corresponding variants with IC(0).
This is the opposite for the problems with higher anisotropy. We currently do
not have an explanation for this behavior. We would like to investigate it further
using, e.g., available profiling tools.

3.9 Conclusions
We present a mixed precision formulation of the V-cycle correction scheme

with general assumptions on the finite precision errors of the coarsest-level solver
and smoothers. Inspired by existing analysis, we derive a bound on the relative
finite precision error of the V-cycle scheme which involves bounds on the finite
precision errors of the coarsest-level solver, the smoothing routines, and error terms
coming from computing the residuals, restrictions, projections, and corrections
on the individual levels. Our results give insight into how the finite precision
errors from the individual components of the V-cycle scheme may affect the overall
finite precision error. The presented approach enables analyses of V-cycle schemes
with various (mixed precision) coarsest-level solvers and smoothers. This was not
possible in the previous approaches in the literature.

In this work, we focus on mixed precision smoothers based on IC factorization.
We derive a bound on the finite precision error resulting from their application.

118

1 10−2 10−4 10−6
0

0.5

1

1.5

2

ϵ

sp
ee

du
p

Speedup over corresponding variant in double precision

IC(0) single IC(0) half ICT(fill-in=2) single ICT(fill-in=2) half

Figure 3.3 Results of Experiment 2. 3D elliptic PDEs with different values of
anisotropy ϵ in the x-axis. The problems have 6, 967, 871 DoFs.

We test the theoretical results and proposed methods in numerical experiments.
We solve systems coming from FE discretization of elliptic PDEs. The experiments
illustrate the theoretical findings and show that in the considered settings the IC
smoothers can be applied in low precisions, resulting in significant speedups over
their corresponding double precision variant.

Further we list several interesting open problems. For the simplicity of the
analysis in this work we consider only V-cycle schemes with one iteration of
pre-smoothing and no post-smoothing. Based on the related work in [17, 18] we
believe that it should be possible to extend our results to cover multiple smoothing
iterations and post-smoothing.

In this work, we focus on the V-cycle scheme with IC smoothing. In future
work we would like to use the theoretical results to compare requirements on the
finite precisions inside the V-cycle scheme when using other smoothing routines
such as the Jacobi or the Gauss-Seidel method.

When deriving the bound on the finite precision error of the V-cycle scheme,
we assume that the solver on the coarsest-level is linear. However, in practice,
multigrid methods are also applied with iterative coarsest-level solvers, for example
with CG [10] or GMRES [21] stopped with residual-based stopping criteria. It
is not obvious whether the presented analysis can be generalized to cover such
coarsest-level solvers and what assumptions on the error reduction or stability of
the solver should be imposed.

We present numerical experiments on GPUs using the Ginkgo library which
illustrate the theoretical results and show significant speedups when applying the
IC smoothers in low precision. In future work, we would like to perform more
numerical experiments and focus more on the performance of the methods. We
would like to test the presented mixed precision methods on large-scale problems
involving different anisotropy tensors or in settings with algebraic multigrid
methods. It would be also interesting to study variants of the V-cycle schemes
where the precisions on the individual levels vary.

In the presented experiments, we compute the IC factorizations on CPUs in

119

double precision. Computing IC factorizations in low precision arithmetics (see,
e.g., [24]), and/or using parallel versions of the IC algorithm on GPUs (e.g., [4])
are worth investigating as well.

Another series of open problems lies in the theoretical analysis of the approxi-
mation and stability properties of the IC factorization. Having more theoretical
results at least for certain problem classes would be beneficial.

3.10 Appendix

3.10.1 Relations between Euclidean and A vector norms
We present derivations of the following four inequalities

∥v∥A ≤ ∥A∥
1
2 ∥v∥,

∥v∥ ≤ ∥A−1∥
1
2 ∥v∥A,

∥Av∥ ≤ ∥A∥
1
2 ∥v∥A,

∥A−1v∥A ≤ ∥A−1∥
1
2 ∥v∥.

Derivation of the first inequality

∥v∥2
A = ⟨Av,v⟩ ≤ ∥A∥⟨v,v⟩ = ∥A∥∥v∥2.

Derivation of the second inequality

∥v∥2 = ⟨v,v⟩ = ⟨A− 1
2 A

1
2 v,A− 1

2 A
1
2 v⟩ = ⟨A− 1

2 A− 1
2 A

1
2 v,A

1
2 v⟩

= ⟨A−1A
1
2 v,A

1
2 v⟩ ≤ ∥A−1∥⟨A

1
2 v,A

1
2 v⟩ = ∥A−1∥⟨Av,v⟩ = ∥A−1∥∥v∥2

A.

Derivation of the third inequality

∥Av∥2 = ⟨Av,Av⟩ = ⟨A
1
2 A

1
2 v,A

1
2 A

1
2 v⟩ = ⟨A

1
2 A

1
2 A

1
2 v,A

1
2 v⟩ = ⟨AA

1
2 v,A

1
2 v⟩

≤ ∥A∥⟨A
1
2 v,A

1
2 v⟩ = ∥A∥⟨Av,v⟩ = ∥A∥∥v∥2

A.

Derivation of the forth inequality

∥A−1v∥A = ⟨AA−1v,A−1v⟩ = ⟨v,A−1v⟩ ≤ ∥A−1∥⟨v,v⟩ = ∥A−1∥∥v∥2.

3.10.2 Derivation of bounds on finite precision errors of
certain basic routines

Derivation of (3.5): Rounding K to ε-precision, results in K + ∆K, |∆K| ≤
ε|K|. Computing (K + ∆K)w in ε-precision results in (K + ∆K)w + δ2, where

∥δ2∥ ≤ εmK,ε(1 + ε)∥|K|∥∥w∥
≤ ε(mK,ε + εmK,ε)∥|K|∥∥w∥.

Computing Kw in ε-precision results in Kw + δ1, where δ1 = ∆Kw + δ2 is the
accumulated error and

∥δ1∥ = ∥∆K∥∥w∥ + ∥δ2∥ ≤ ε∥|K|∥∥w∥ + ∥δ2∥ ≤ ε(mK,ε + 1 + εmK,ε)∥|K|∥∥w∥.

120

Derivation of (3.6): We may use the previous result and add the error occurring
due to the subsequent addition. Computing v + (Kw + δ1) in ε-precision results
in v + Kw + δ4, where (using the previous)

∥δ4∥ ≤ ε(∥v∥ + ∥Kw∥ + ∥δ1∥)
≤ ε(∥v∥ + ∥|K|∥∥w∥ + ∥δ1∥)
≤ ε(∥v∥ + (1 + ε(mK,ε + 1 + εmK,ε))∥|K|∥∥w∥)
≤ ε(1 + ε(mK,ε + 1 + εmK,ε))(∥v∥ + ∥|K|∥∥w∥).

Accumulating the errors in δ3 = δ1 + δ4 we have

∥δ3∥ ≤ ε(mK,ε + 2 + ε(2mK,ε + 1 + εmK,ε))(∥v∥ + ∥|K|∥∥w∥).

3.10.3 Derivation of multigrid related bounds
Derivation of (3.15): We rewrite ∥A−1

C P⊤v∥2
AC

as

∥A−1
C P⊤v∥2

AC
= ⟨ACA−1

C P⊤v,A−1
C P⊤v⟩

= ⟨P⊤v,A−1
C P⊤v⟩

= ⟨v,PA−1
C P⊤v⟩

= ⟨A
1
2 A− 1

2 v,PA−1
C P⊤A

1
2 A− 1

2 v⟩
= ⟨A− 1

2 v,A
1
2 PA−1

C P⊤A
1
2 A− 1

2 v⟩. (3.54)

Since

A
1
2 PA−1

C P⊤A
1
2 = A

1
2 P(P⊤AP)−1P⊤A

1
2

= A
1
2 P((A 1

2 P)⊤A
1
2 P)−1(A 1

2 P)⊤

is the orthogonal projection onto the range of A 1
2 P, there holds

∥A
1
2 PA−1

C P⊤A
1
2 ∥ ≤ 1.

Combining this and (3.54) leads to

∥A−1
C P⊤v∥2

AC
≤ ⟨A− 1

2 v,A− 1
2 v⟩

= ⟨v,A−1v⟩ = ⟨AA−1v,A−1v⟩
= ∥A−1v∥2

A.

Derivation of (3.16). Using assumption (3.10) yields

∥MCAC∥AC ≤ ∥IC∥AC + ∥IC − MCAC∥AC < 2.

Derivation of (3.17): Using the assumption (3.12) yields

∥v[3]∥A = ∥yTG∥A ≤ ∥yTG − y∥A + ∥y∥A ≤ 2∥y∥A.

Derivation of (3.18): Using Ay = f , r[1] = f − AMf , and the assumption (3.7)
results in

∥A−1r[1]∥A = ∥A−1(f − AMf)∥A = ∥y − MAy∥A

≤ ∥I − MA∥A∥y∥A ≤ ∥y∥A.

121

Derivation of (3.19): Using (3.18) yields

∥r[1]∥A ≤ ∥A∥
1
2 ∥A−1r[1]∥A ≤ ∥A∥

1
2 ∥y∥A.

Derivation of (3.20): Using r[1]
C = P⊤r[1], (3.15) and (3.18) results in

∥A−1
C r[1]

C ∥AC = ∥A−1
C P⊤r[1]∥AC ≤ ∥A−1r[1]∥A ≤ ∥y∥A.

Derivation of (3.21): Using the expressions v[2]
C = MCr[1]

C and bound (3.16)
and (3.20) results in

∥v[2]
C ∥AC = ∥MCACA−1

C r[1]
C ∥AC ≤ ∥MCAC∥AC∥A−1

C r[1]
C ∥AC ≤ 2∥y∥A.

3.10.4 Proof of Lemma 3.1
We present a proof for a lower-triangular matrix T. Proof for an upper-

triangular matrix T is analogous. The proof is based on using the following
lemma.

Lemma 3.3. [11, Lemma 8.4] Let k be a natural number an let δ, αi, i =
1, . . . , k − 1, βi, i = 1, . . . , k be real numbers belonging to a finite precision
arithmetic with unit roundoff εS. Computing

γ = (δ −
k−1∑︂
i=1

αiβi)/βk

in εS-precision results in γ̂ satisfying, no matter the order of evaluation,

βk(1 + θ
(0)
k)γ̂ = δ −

k−1∑︂
i=1

αiβi(1 + θ
(i)
k),

where |θ(i)
k | ≤ kεS/(1 − kεS), i = 0, 1, . . . , k.

We use induction on size of the leading sub-matrices. Let Ti,j and Ei,j denote
the entries of matrices T and E, respectively, in the ith row and jth column, and
let bi denote the ith entry of the right-hand side vector b.

We start by showing that the statement holds for the leading sub-matrix of
size 1 × 1. Using Lemma 3.3 for k = 1, computing x1 = b1/T1,1 in εS-precision
results in x̂1 satisfying T1,1(1 + θ

(0)
1)x̂1 = b1, where |θ(0)

1 | ≤ εS/(1 − εS). We can
take E1,1 = T1,1θ

(0)
1 .

Assume that the statement holds for the leading sub-matrix of size n× n. We
will show that it holds also for the leading sub-matrix of size (n+ 1) × (n+ 1).
The induction assumption and the fact that T is a lower triangular matrix yields
that it only remains to show existence of suitable entries in the (n + 1)th row
of E. Let x̂i, i = 1, . . . , n denote the computed entries of x̂ after n steps of the
substitution. The n+ 1 substitution step consists of computing

xn+1 = (bn+1 −
n∑︂
i=1

x̂iTn+1,i)/Tn+1,n+1.

122

Since we assume there is maximum mT nonzero elements in a row of T, the sum
consist of maximum mT − 1 nonzero terms. The equation can be rewritten as

xn+1 = (bn+1 −
∑︂

ℓ;Tn+1,ℓ ̸=0
x̂ℓTn+1,ℓ)/Tn+1,n+1.

Using Lemma 3.3 in this setting yields

Tn+1,n+1(1 + θ(0)
mT

)x̂n+1 = bn+1 −
∑︂

ℓ;Tn+1,ℓ ̸=0
x̂ℓTn+1,ℓ(1 + θ(ℓ)

mT
),

where |θ(i)
mT

| ≤ (mT ε
S)/(1 −mT ε

S), i = 0, . . . ,mT − 1. Taking En+1,ℓ = Tn+1,ℓθ
(ℓ)
mT

,
for ℓ such that Tn+1,ℓ ̸= 0 and En+1,n+1 = Tn+1,n+1θ

(0)
mT

yields that the statement
hold also for the (n+ 1) × (n+ 1) leading sub-matrix.

Acknowledgments
We acknowledge the support of the Innovative Computing Laboratory, Uni-

versity of Tennessee, which provided the computational resources for running the
expermiments on GPUs. P. Vacek acknowledges the support of the Erasmus+
program that enabled him to spend October 2023 - March 2024 at Friedrich-
Alexander-Universität Erlangen-Nürnberg. P. Vacek is also grateful for the sup-
port from the Technical University of Munich for his visit in Heilbronn in April
2024. During these visits the basis of the paper was developed.

Bibliography
[1] A. Abdelfattah et al. “A survey of numerical linear algebra methods uti-

lizing mixed-precision arithmetic”. In: The International Journal of High
Performance Computing Applications 35.4 (2021), pp. 344–369. doi: 10.
1177/10943420211003313.

[2] Advanpix Multiprecision Computing Toolbox for MATLAB ver. 5.1.0.15432.
Yokohama, Japan: Advanpix LLC. url: https://www.advanpix.com/.

[3] M. S. Alnaes, J. Blechta, J. Hake, et al. “The FEniCS Project Version 1.5”.
In: Archive of Numerical Software 3 (2015). doi: 10.11588/ans.2015.100.
20553.

[4] H. Anzt, E. Chow, and J. Dongarra. “ParILUT—A New Parallel Threshold
ILU Factorization”. In: SIAM Journal on Scientific Computing 40.4 (2018),
pp. C503–C519. doi: 10.1137/16M1079506.

[5] H. Anzt et al. “Ginkgo: A Modern Linear Operator Algebra Framework
for High Performance Computing”. In: ACM Transactions on Mathematical
Software 48.1 (2022), 2:1–2:33. doi: 10.1145/3480935.

[6] W. L. Briggs, V. E. Henson, and S. F. McCormick. A Multigrid Tutorial.
Second. Philadelphia, PA: SIAM, 2000, pp. xii+193. doi: 10.1137/1.
9780898719505.

123

https://doi.org/10.1177/10943420211003313
https://doi.org/10.1177/10943420211003313
https://www.advanpix.com/
https://doi.org/10.11588/ans.2015.100.20553
https://doi.org/10.11588/ans.2015.100.20553
https://doi.org/10.1137/16M1079506
https://doi.org/10.1145/3480935
https://doi.org/10.1137/1.9780898719505
https://doi.org/10.1137/1.9780898719505

[7] E. Carson and N. J. Higham. “Accelerating the Solution of Linear Systems
by Iterative Refinement in Three Precisions”. In: SIAM Journal on Scientific
Computing 40.2 (2018), A817–A847. doi: 10.1137/17M1140819.

[8] T. Cojean et al. “Ginkgo - A math library designed to accelerate Exas-
cale Computing Project science applications”. In: The International Jour-
nal of High Performance Computing Applications (2024). doi: 10.1177/
10943420241268323.

[9] D. Drzisga, A. Wagner, and B. Wohlmuth. “A Matrix-Free ILU Realization
Based on Surrogates”. In: SIAM Journal on Scientific Computing 45.6 (2023),
pp. C304–C329. doi: 10.1137/22M1529415.

[10] M. R. Hestenes and E. Stiefel. “Methods of conjugate gradients for solving
linear systems”. In: Journal of Research of the National Bureau of Standards
49.6 (1952), pp. 409–436. doi: 10.6028/jres.049.044.

[11] N. J. Higham. Accuracy and Stability of Numerical Algorithms. Second.
Society for Industrial and Applied Mathematics, 2002. doi: 10.1137/1.
9780898718027.

[12] N. J. Higham and T. Mary. “Mixed precision algorithms in numerical
linear algebra”. In: Acta Numerica 31 (2022), pp. 347–414. doi: 10.1017/
S0962492922000022.

[13] N. J. Higham, S. Pranesh, and M. Zounon. “Squeezing a Matrix into Half Pre-
cision, with an Application to Solving Linear Systems”. In: SIAM Journal on
Scientific Computing 41.4 (2019), A2536–A2551. doi: 10.1137/18M1229511.

[14] R. Kettler and P. Wesseling. “Aspects of multigrid methods for problems in
three dimensions”. In: Applied Mathematics and Computation 19.1 (1986),
pp. 159–168. doi: 10.1016/0096-3003(86)90102-5.

[15] R. Kettler. “Analysis and comparison of relaxation schemes in robust multi-
grid and preconditioned conjugate gradient methods”. In: Multigrid Methods.
Ed. by W. Hackbusch and U. Trottenberg. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1982, pp. 502–534. doi: 10.1007/BFb0069941.

[16] N. Kohl, S. F. McCormick, and R. Tamstorf. “Multigrid Methods Using
Block Floating Point Arithmetic”. In: SIAM Journal on Scientific Computing
(2024), S202–S224. doi: 10.1137/23M1581819.

[17] S. F. McCormick, J. Benzaken, and R. Tamstorf. “Algebraic Error Analysis
for Mixed-Precision Multigrid Solvers”. In: SIAM Journal on Scientific
Computing 43.5 (2021), S392–S419. doi: 10.1137/20M1348571.

[18] S. F. McCormick and R. Tamstorf. “Rounding-Error Analysis of Multigrid
V -Cycles”. In: SIAM Journal on Scientific Computing (2024), S88–S95. doi:
10.1137/23M1582898.

[19] Y. Notay. “Algebraic Theory of Two-Grid Methods”. In: Numerical Math-
ematics: Theory, Methods and Applications 8.2 (2015), pp. 168–198. doi:
10.4208/nmtma.2015.w04si.

[20] Y. Notay. “Convergence analysis of perturbed two-grid and multigrid meth-
ods”. In: SIAM Journal on Numerical Analysis 45.3 (2007), pp. 1035–1044.
doi: 10.1137/060652312.

124

https://doi.org/10.1137/17M1140819
https://doi.org/10.1177/10943420241268323
https://doi.org/10.1177/10943420241268323
https://doi.org/10.1137/22M1529415
https://doi.org/10.6028/jres.049.044
https://doi.org/10.1137/1.9780898718027
https://doi.org/10.1137/1.9780898718027
https://doi.org/10.1017/S0962492922000022
https://doi.org/10.1017/S0962492922000022
https://doi.org/10.1137/18M1229511
https://doi.org/10.1016/0096-3003(86)90102-5
https://doi.org/10.1007/BFb0069941
https://doi.org/10.1137/23M1581819
https://doi.org/10.1137/20M1348571
https://doi.org/10.1137/23M1582898
https://doi.org/10.4208/nmtma.2015.w04si
https://doi.org/10.1137/060652312

[21] C. C. Paige and M. A. Saunders. “Solution of Sparse Indefinite Systems of
Linear Equations”. In: SIAM Journal on Numerical Analysis 12.4 (1975),
pp. 617–629. doi: 10.1137/0712047.

[22] Y. Saad. Iterative Methods for Sparse Linear Systems. Second. Society for In-
dustrial and Applied Mathematics, 2003. doi: 10.1137/1.9780898718003.

[23] J. Scott and M. Tůma. Algorithms for sparse linear systems. Springer Nature,
2023. doi: 10.1007/978-3-031-25820-6.

[24] J. Scott and M. Tůma. “Avoiding Breakdown in Incomplete Factorizations
in Low Precision Arithmetic”. In: ACM Trans. Math. Softw. 50.2 (2024).
doi: 10.1145/3651155.

[25] R. Tamstorf, J. Benzaken, and S. F. McCormick. “Discretization -Error-
Accurate Mixed-Precision Multigrid Solvers”. In: SIAM Journal on Scientific
Computing 43.5 (2021), S420–S447. doi: 10.1137/20M1349230.

[26] S. Thomas et al. “Scaled ILU smoothers for Navier–Stokes pressure pro-
jection”. In: International Journal for Numerical Methods in Fluids 96.4
(2024), pp. 537–560. doi: 10.1002/fld.5254.

[27] U. Trottenberg, C. W. Oosterlee, and A. Schuller. Multigrid. London: Aca-
demic Press, 2001.

[28] Y.-H. Tsai. “Portable Mixed Precision Algebraic Multigrid on High Perfor-
mance GPUs”. PhD thesis. Karlsruher Institut für Technologie (KIT), 2024.
116 pp. doi: 10.5445/IR/1000168914.

[29] Y.-H. M. Tsai, N. Beams, and H. Anzt. “Mixed Precision Algebraic Multigrid
on GPUs”. In: Parallel Processing and Applied Mathematics. Ed. by R.
Wyrzykowski et al. Cham: Springer International Publishing, 2023, pp. 113–
125. doi: 10.1007/978-3-031-30442-2_9.

[30] Y.-H. M. Tsai, N. Beams, and H. Anzt. “Three-precision algebraic multigrid
on GPUs”. In: Future Generation Computer Systems 149 (2023), pp. 280–293.
doi: 10.1016/j.future.2023.07.024.

[31] P. Wesseling. “A robust and efficient multigrid method”. In: Multigrid
Methods. Ed. by W. Hackbusch and U. Trottenberg. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1982, pp. 614–630. doi: 10.1007/BFb0069947.

[32] P. Wesseling. “Theoretical and Practical Aspects of a Multigrid Method”. In:
SIAM Journal on Scientific and Statistical Computing 3.4 (1982), pp. 387–
407. doi: 10.1137/0903025.

[33] J. Xu. “Iterative methods by space decomposition and subspace correction”.
In: SIAM Review 34.4 (1992), pp. 581–613. doi: 10.1137/1034116.

[34] H. Yserentant. “Old and new convergence proofs for multigrid methods”. In:
Acta Numerica 2 (1993), pp. 285–326.

[35] Y. Zong et al. “FP16 Acceleration in Structured Multigrid Preconditioner
for Real-World Applications”. In: Proceedings of the 53rd International Con-
ference on Parallel Processing. ICPP ’24. Gotland, Sweden: Association for
Computing Machinery, 2024, pp. 52–62. doi: 10.1145/3673038.3673040.

125

https://doi.org/10.1137/0712047
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1007/978-3-031-25820-6
https://doi.org/10.1145/3651155
https://doi.org/10.1137/20M1349230
https://doi.org/10.1002/fld.5254
https://doi.org/10.5445/IR/1000168914
https://doi.org/10.1007/978-3-031-30442-2_9
https://doi.org/10.1016/j.future.2023.07.024
https://doi.org/10.1007/BFb0069947
https://doi.org/10.1137/0903025
https://doi.org/10.1137/1034116
https://doi.org/10.1145/3673038.3673040

Conclusion
In this thesis, we study multigrid methods and multilevel a posteriori error

estimates. The work is motivated by computational challenges arising when solving
large-scale problems. We demonstrate that certain parts of the computation can
be done approximately, either using an approximate coarsest-level solver, or using
low precision arithmetic, while preserving the convergence of the methods or
properties of a posteriori error estimates. The approximate techniques have to be,
however, used with caution and should be based on theoretical analysis.

Further, we restate the research questions formulated in the introduction and
summarize the obtained results:

a) Can we analytically describe how the accuracy of the coarsest-level solver
affects the convergence behavior of the multigrid method?

b) Can we design effective stopping criteria for an iterative coarsest-level solver
such that the multigrid method converges in nearly the same number of
iterations as its variant with an exact coarsest-level solver?

We focus on these questions in Chapter 1. We present a novel approach to
analyzing the effects of approximate coarsest-level solves on the convergence of
the V-cycle method for symmetric positive definite problems. The approach is
used to derive new coarsest-level stopping criterion with the required properties in
question b). The theoretical results can also be used to obtain insights into how
the convergence of the V-cycle method may be affected by the choice of tolerance
in the coarsest-level stopping criterion based on the Euclidean norm of the relative
residual.

c) Consider the residual-based multilevel a posteriori error estimates such as
in [1, Section 2.6]. Is it possible to compute the term associated with the
coarsest-level approximately while preserving the efficiency and accuracy of
the estimate?

We address this question in Chapter 2. We show that this is possible by proposing
a new approximation of the coarsest-level term, which relies on using the conjugate
gradient method with an appropriate stopping criterion. We provide theoretical
analysis showing that the resulting estimates have the desired properties.

d) Can the execution time of the mixed precision V-cycle method with IC
smoothers be reduced by introducing additional precisions for the applica-
tions of the smoothers? For example, using different precisions for storing
the IC factors or solving the triangular systems. Can we analytically describe
the requirements on these individual precisions?

We focus on this question in Chapter 3. We formulate a mixed precision V-
cycle scheme with general smoothers (not necessarily based on IC factorization).
Our approach is based on imposing assumptions on the finite precision error
resulting from the application of a smoother or the coarsest-level solver, rather
than assuming that it is applied in a precision with a certain unit roundoff. This
enables the analysis of mixed precision smoothers and coarsest-level solvers. We

126

derive a bound on the finite precision error of the V-cycle scheme, which gives
insight into how the finite precision errors from the individual parts of the V-cycle
scheme may affect the overall finite precision error. Further, we focus on the IC
smoother, we present its mixed precision formulation, and derive a bound on the
finite precision error of its application. The theoretical results can be used to
describe the requirements on the individual finite precisions in concrete settings.
Numerical experiments on GPUs using the Ginkgo library show a significant
speedup when applying IC smoothers in low precisions.

We believe that the presented results can be beneficial when designing and
implementing multigrid solvers for large-scale problems.

We list several open problems, which we would like to investigate in the future.
In the first chapter we focus on multigrid methods as a standalone solvers. In
practice, multigrid methods are also frequently used as preconditioners for Krylov
subspace methods. It is therefore an interesting question of how the approximate
coarsest-level solve affects the behavior of multigrid methods as preconditioners.
We note that in general a multigrid method with an approximate coarsest-level
solver would have to be applied as a flexible preconditioner.

In the second chapter we assume that the computation of the terms in the
a posteriori error estimate is done in infinite precision arithmetic. It would be
useful to understand the effects of the finite precision errors on the accuracy and
efficiency of the estimate. Would it make sense to compute the terms associated
with different levels in different precisions?

The derivation of the bound on the finite precision error of the V-cycle scheme in
the third chapter was done assuming that the coarsest-level solver is linear. As we
discuss in the first chapter, this assumption is not satisfied for all solvers which are
used in practice. It is an interesting open question whether the presented analysis
can be generalized to cover general coarsest-level solvers and what assumptions
on the error reduction or stability of the solver should be imposed.

Bibliography
[1] U. Rüde. Mathematical and computational techniques for multilevel adaptive

methods. Philadelphia, PA: SIAM, 1993.

127

	List of Publications
	Introduction
	The effect of approximate coarsest-level solves on the convergence of multigrid V-cycle methods
	Introduction
	Notation and motivating experiments
	Motivating experiments

	Convergence analysis of inV-cycle method
	Relative coarsest-level accuracy
	Absolute coarsest-level accuracy

	Effects of the choice of the tolerance in relative residual stopping criterion
	Absolute coarsest-level stopping criteria
	Numerical experiments
	inV-cycle method satisfying the relative coarsest-level accuracy assumption
	Accuracy of the estimates for inV-cycle methods with a relative residual coarsest-level stopping criterion
	inV-cycle method satisfying the absolute coarsest-level accuracy assumption
	inV-cycle method with absolute coarsest-level stopping criteria
	Performance of inV-cycle methods with absolute coarsest-level stopping criteria

	Conclusions and open problems
	Appendix
	Numerical approximation of E A
	Derivation of inequalities (1.24) and (1.25)

	A posteriori error estimates based on multilevel decompositions with large problems on the coarsest level
	Introduction
	Model problem, setting, and notation
	Notation for a single level
	Multilevel framework
	Discretization, approximate solution, and residuals

	Residual-based error estimates
	Estimates of Becker, Johnson & Rannacher
	Estimates of Rüde & Huber
	Estimates of Harbrecht & Schneider
	New estimate derived using stable splitting

	Efficiency of the estimates
	Efficiency of the estimates on the algebraic error
	Efficiency of estimates on total error

	Computability of the error estimates
	Algebraic formulation of the problem, residual vectors
	The terms associated with fine levels
	The term associated with the coarsest level
	Adaptive approximation of the coarsest-level term

	Numerical experiments
	Robustness with respect to the number of levels
	Robustness with respect to the size of the coarsest-level problem

	Conclusions
	Appendix
	Auxiliary results from the theory of PDEs and FEM
	Quasi-interpolation operators
	Stable splitting

	Mixed precision multigrid with smoothing based on incomplete Cholesky factorization
	Introduction
	Model problem, notation, finite precision arithmetic and standard rounding model
	Iterative refinement
	Two-grid correction scheme
	V-cycle correction scheme
	Smoothing based on incomplete Cholesky factorization
	Finite precision error analysis of solving sparse perturbed triangular system via substitution
	Finite precision error analysis of mixed precision IC smoother
	V-cycle correction scheme with IC smoothing

	Scaling system matrices and right-hand sides
	Numerical experiments
	Model problems, discretization, and data generation
	Experiment 1: Finding the lowest precisions for the inner V-cycle solver while preserving the IR double precision convergence rate
	Experiment 2: solving 3D elliptic PDEs with highanisotropy on GPUs using the Ginkgo library

	Conclusions
	Appendix
	Relations between Euclidean and A vector norms
	Derivation of bounds on finite precision errors of certain basic routines
	Derivation of multigrid related bounds
	Proof of lemma:substitution

	Conclusion

